g

OsBORNE @
The

Comple te
Reference

Borland C++

Builder’

Includes an introduction
to Windows programming

Complete coverage of
C++ language, tools, and
libraries

The most comprehensive
resource guide to Borland
C++ Builder

[vww . allitebooks.con]



http://www.allitebooks.org

Borland” C++ Builder™:
The Complete Reference

vww allitebooks.cond



http://www.allitebooks.org

About the Authors

Herbert Schildt is the world’s leading
programming author. He is an authority on the
C, C++, Java, and C# programming languages,
and a master Windows programmer. His
programming books have sold over three
million copies worldwide and have been
translated into all major foreign languages.

He is the author of numerous best-sellers,
including C++: The Complete Reference,

C: The Complete Reference, Java 2: The Complete
Reference, Java 2: A Beginner’s Guide, C#: A
Beginner’s Guide, Windows 2000 Programming
from the Ground Up, and many more. Schildt
holds a master’s degree in computer science
from the University of Illinois.

Greg Guntle has been programming and
working with PC’s for the last 20 years. He also
provides technical editing skills for computer
books and has done that for the past 15 years.

http://av. eah & mRedfield


http://www.allitebooks.org

Borland” C-++ Builder™:
The Complete Reference

Herbert Schildt
Greg Guntle

Osborne/McGraw-Hill

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

vww allitebooks.cond



http://www.allitebooks.org

McGraw-Hill/Oshorne 27

L Dhiresion of The MoCrrowe- JIl Congomies

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219439-1

The material in this eBook also appears in the print version of this title: 0-07-212778-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare @mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072194391

vww.allitebooks.cond



http://www.allitebooks.org

Contents

Preface ... XXV
Acknowledgments ........... .. .. XXix

The Foundation of C++: The C Subset

1 AnOverview of C ... .. .. 3
The Origins of the CLanguage ................. ... ..., 4

A Middle-Level Language ... 4

A Structured Language ............ ... 6

A Programmer’s Language ................ . .. i 7
Compilers Versus Interpreters ............... ..., 9

The FormofaCProgram ............. ... ... i, 9

The Library and Linking ...................... ... .. ... .. 10

Separate Compilation .............. ... .. o ool 11

A CProgram’sMemoryMap .................... ... ... ... 12

AReview of Terms . ...t 13

2 Variables, Constants, Operators, and Expressions ......... 15
Identifier Names ... 16
DataTypes ... 16
Type Modifiers ............. ... oo o i il 17

Access MOdifiers . ....viii 19

14
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



vi

Borland C++ Builder: The Complete Reference

Declaration of Variables .........
Local Variables ........
Formal Parameters .....
Global Variables .......
Storage Class Specifiers .........
extern ................
static Variables .........
static Local Variables ...
static Global Variables ..
register Variables .......
Assignment Statements .........
Multiple Assignments ..

Type Conversion in Assignments ...........................

Variable Initializations ..
Constants .....................

Backslash Character Constants ................c.ccoiiiinin...

Operators .....................
Arithmetic Operators ...
Increment and Decrement

Relational and Logical Operators ...........................

Bitwise Operators ......
The ? Operator .........

The & and * Pointer Operators .............................
The sizeof Compile-Time Operator .........................

The Comma Operator ...

The Dot (.) and Arrow (—>) Operators ......................

The [ ] and () Operators .
Precedence Summary ...
Expressions ...................

Type Conversion in Expressions ...........................

Casts .................
Spacing and Parentheses
CShorthand ...........

3 Program Control Statements

Trueand False .................
Selection Statements ............
o
Nestedifs .............
The if-else-if Ladder ....
The ? Alternative .......
switch ........ ... .. . ...
Nested switch Statements
Iteration Statements (Loops) .....
TheforLoop ..................
for Loop Variations .. ...
The Infinite Loop .......

for Loops with No Bodies

19
20
22
22
24
25
26
27
28
30
31
31
31
33
33
34
35
35
37
38
40
44
45
47
48
48
49
49
50
50
51
53
53

55
56
56
57
58
59
60
63
65
66
66
67
70
71



Contents

ThewhileLoop ....... ... .. 72
do-while . ... 74
Jump Statements ... 75
break . ... 75
XA ) et e 77
CONLINUE ..ottt et e e e e e e 78
Labelsand goto .............. . . . 80
Expression Statements .............. ... ..o o 81
Block Statements ............ o 81
Functions ...... ... .. . 83
The General Form of a Function ............. .. ... ... 84
The return Statement .......... ... 84
Returning froma Function .................... ... ... . ... 84
Returning Values ............. ... oo il 85

What Does main() Return? .......... . ... ..., 87
Understanding the Scope of a Function ............................. 87
Function Arguments .......... ... ... ... . 88
Call by Value, Call by Reference ............................ 88
Creating a Call by Reference ............................... 89

Calling Functions with Arrays ............................. 91

argc and argv—Argumentstomain() ......... ... oo 95
Function Prototypes ................. ... 101
Standard Library Function Prototypes ...................... 103
Old-Style Versus Modern Parameter Declarations .................... 104
The “Implicitint” Rule ........... .. ... ... .. 105
Declaring Variable Length Parameter Lists .......................... 106
Returning Pointers ............... ... ... 106
Recursion .........iiiii 108
Pointers to Functions ......... ... . i 109
ImplementationIssues ............. ... ... i 112
Parameters and General-Purpose Functions .................. 112
Efficiency ...... ... 113

ATTAYS oo 115
Single-Dimension Arrays ... 116
Generating a Pointer toan Array .................... ... ... ... 117
Passing Single-Dimension Arrays to Functions ....................... 118
Null-Terminated Strings ................. ... ... .. ....... 119
Two-Dimensional Arrays ... 121
Arraysof Strings ........... .. i 125
Multidimensional Arrays .......... ... . i 127
Indexing Pointers .......... ... . . ... 127
Allocated AITAYS .. ..ottt 129
Array Initialization ........ ... ... . oo o 131
Unsized-Array Initializations ................... ... ... ..., 133

A Tic-Tac-Toe Example ......... ... ... ... .. 134

vii



viii Borland C++ Builder: The Complete Reference

6 Pointers ...........oiiiiii 139
Pointers Are Addresses .. ...........uuiiiiiiiiiii i 140
Pointer Variables ............ .o 141
The Pointer Operators ........... ... ... ... 141
Pointer EXpressions ................ i 143

Pointer Assignments .................. ... 143
Pointer Arithmetic ......... ... . i i 144
Pointer Comparisons ................coiiiiiiiiiiiiiiia 145
Dynamic Allocation and Pointers ...........................ooooo. .. 147
Understanding const Pointers .................... ... ... ... . ..., 149
Pointers and Arrays ........... ... i 150
Pointers to Character Arrays ........................o...... 151
Arraysof Pointers ............. ... ... oo 153
Pointers to Pointers: Multiple Indirection ............................ 154
Initializing Pointers ......... ... .. ... ... 156
Pointers to Functions ........... .. .. i 157
Problems with Pointers .......... ... ... i 160

7  Structures, Unions, and User-Defined Types ............. 163

SEIUCEUTES . .ottt e e e e 164
Accessing Structure Members ................. ... .. .o 166
Structure Assignments .............. ... ... 167

Arrays of Structures ........... .. oo 168
An Inventory Example ............ ... ... . o ool 168

Passing Structures to Functions .................. ... ..o ool 175
Passing Structure Members to Functions .................... 175
Passing Entire Structures to Functions ...................... 176

Structure Pointers .......... ... 177
Declaring a Structure Pointer ....................... ... ..., 177
Using Structure Pointers .................................. 177

Arrays and Structures Within Structures ............... ... ... ... 181

Bit-Fields .. ... 182

UNIONS . .ot 184

Enumerations ......... ... 186

An Important Difference Between Cand C++ ........................ 189

Using sizeof to Ensure Portability .................................. 189

typedef ... 191

8 Input, Output, Streams, and Files ....................... 193
CVersus CH+1/0 o 194
Streamsand Files .......... . 195

Streams . ... ... 195
Files ..o 196

Console I/O ... 197
Reading and Writing Characters ........................... 197
Reading and Writing Strings: gets() and puts() .............. 200

Formatted Console I/O ... .. i 201
printf() ... 201

SCANE( ) © ottt 209



10

11

Contents

The CFileSystem ........ ... . . . . . i, 216
The File Pointer ......... ... . i 217
OpeningaPFile ........... ... ... ... il 218
Writinga Character .......... ... .. ... ... i 220

Reading a Character ................ ... ..o oL 220
ClosingaFile ......... ... oo i il 221

Using fopen( ), getc( ), pute( ), and fclose() .................. 221

Using feof() ... 223
Working with Strings: fgets() and fputs() ................... 224
fread()and fwrite() ...... .o 225

fseek() and Random AccessI/O ......... ..., 227

fprintf() and fscanf() ............ ... ... oo ool 230

Erasing Files ......... ... . ... . ... .. i 231
ferror()andrewind() ..........o i 231

The Console CONNECtION . ..ottt ettt et e 232
The Preprocessor and Comments ....................... 235
#define . ... . o 236
<3 o ) o PP 240
#Hinclude . ... 240
Conditional Compilation Directives ................. ..., 241
#if, #else, #elif, and #endif ............ .. ... .. .. .. .. ... ..... 242

#ifdef and #ifndef ....... ... ... 244

Hundef .. ... 245
Usingdefined ......... .. . . 246
BN .o 247
HPragma . ... 247
e 251
HMPOTt ... 251
The # and ## Preprocessor Operators .................c.cceeeeeeeo... 252
Predefined Macro Names ...........oiiiiineineneiieiieiannnenn. 253
COMMENES ..ttt et e e 255

| Part Il _|
The C++ Builder Function Library

Linking, Libraries, and Headers ........................ 259
The LInKer . ...t e e e 260
Library Files Versus Object Files ................... ... ... ... ..... 261
The Standard Library Versus C++ Builder Extensions ................. 262
Headers . ... 262
Macrosin Headers ............. ... 264
I/OFuNnctions .............i i 265
int access(const char *filename, intmode) .................... 266

int chmod(const char *filename, intmode) ................... 267

int chsize(int handle, long size) ............................. 268



X Borland C++ Builder: The Complete Reference

void clearerr(FILE *stream) ...............c.ooiiiiiiin .. 269
int close(int fd)
int _rtl_close(intfd) ........ ... 270

int _creat(const char *filename, int pmode)
int _rtl_creat(const char *filename, int attrib)
int creatnew(const char *filename, int attrib)

int creattemp(char *filename, int attrib) ................... 271
int dup(int handle)

int dup2(int old_handle, intnew_handle) ................. 273
inteof(intfd) ........ ..o i e 274
int fclose(FILE *stream)

int _fcloseall(void) ........ ... i 275
FILE *tfdopen(int handle, char *mode) ....................... 276
int feof (FILE *stream) . ............iuiiuiiiiineiiinennnn. 276
int ferror(FILE *stream) ......... ... ..o iiiiniiiinin... 277
int fflush(FILE *stream) .............coiiiiniinneennn... 278
int fgetc(FILE *stream) ................. ... ... ... o L 278
int fgetchar(void) ........ ... ... .. i 279
int *fgetpos(FILE *stream, fpos_t *pos) ...................... 279
char *fgets(char *str, int num, FILE *stream) ................. 281
long filelength(inthandle) ............... ... ... ... .. ... 282
int fileno(FILE *stream) ......... ...t 282
int _flushall(void) ......... i, 283
FILE *fopen(const char *fname, const char *mode) ............ 283
int fprintf(FILE *stream, const char *format, arg-list) .......... 285
int fputc(int ch, FILE *stream) .............................. 286
int fputchar(intch) ......... ... ... .. il 287
int fputs(const char *str, FILE *stream) ...................... 288
size_t fread(void *buf, size_t size, size_t count,

FILE *stream) ...........viiuniiiineiine i 288
FILE *freopen(const char *fname, const char *mode,

FILE *stream) ...........oiuunionnntiineineennnn 289
int fscanf(FILE *stream, const char *format, arg-list) ........... 290
int fseek(FILE *stream, long offset, int origin) ................ 291
int fsetpos(FILE *stream, const fpos_t *pos) .................. 292
FILE *_fsopen(const char *fname, const char *mode,

intshflg) ... ... ... 294
int fstat(int handle, struct stat *statbuf) ...................... 295
long ftell(FILE *stream) ................. ..., 296
size_t fwrite(const void *buf, size_t size, size_t count,

FILE *stream) . ........couuniiinein i 296
int getc(FILE *stream) ............. ... ... oo 297
int getch(void)

intgetche(void) ........ ... ... .. 298
int getchar(void) ........... ... ... ... i 299
char *gets(char *str) ............ ... ... ... il 300
int getw(FILE *stream) .............. ... ... ... o oL 301
intisatty(inthandle) ............... ... ... ... ool 302

int lock(int handle, long offset, long length) .................. 302



int locking(int handle, int mode, long length) .
long lseek(int handle, long offset, int origin) ..
int open(const char *filename,
int access, unsigned mode)

int _rtl_open(const char *filename, int access)
void perror(const char *str) .................
int printf (const char *format, arg-list) ........
int putc(int ch, FILE *stream) ...............
intputch(intch) ........................ ...
int putchar(intch) ............ ... ... . ...
int puts(const char *str) ....................
int putw(int i, FILE *stream) ................
int read(int fd, void *buf, unsigned count)

Contents

int _rtl_read(int fd, void *buf, unsigned count) ............

int remove(const char *fname) ..............
int rename(const char *oldfname,

const char *newfname) ................
void rewind(FILE *stream) .................
int _rtl_chmod (const char *filename,

int get_set, intattrib) .................
int scanf(const char *format, arg-list) .........
void setbuf(FILE *stream, char *buf) .........
int setmode(int handle, int mode) ...........
int setvbuf(FILE *stream, char *buf,

int mode, size_tsize) .................
int sopen(const char *filename, int access,

int shflag, intmode) ..................
int sprintf(char *buf, const char *format, arg-list)
int sscanf(char *buf, const char *format, arg-list)
int stat(char *filename, struct stat *statbuf) ....
long tellintfd) .............. ... ... . ...
FILE *tmpfile(void) ........................
char *tmpnam(char *name) .................
int ungetc(int ch, FILE *stream) .............
intungetch(intch) ...................... ...
int unlink(const char *fname) ...............
int unlock(int handle, long offset, long length)
int vprintf(const char *format, va_list arg_ptr)

int viprintf(FILE *stream, const char *format,
va_list arg_ptr)

int vsprintf(char *buf, const char *format, va_listarg ptr) .........

int vscanf(const char *format, va_list arg_ptr)
int vfscanf(FILE *stream, const char *format,
va_list arg_ptr)
int vsscanf(const char *buf,
const char *format, va_list arg_ptr) ........
int write(int handle, void *buf, int count)
int _rtl_write(int handle, void *buf, int count)

303
304

306
308
309
312
313
313
314
314

315
316

317
318

319
319
324
324

325

325
328
328
329
330
330
331
332
333
334
334

335

336

338



Xii Borland C++ Builder: The Complete Reference

12 String, Memory, and Character Functions ............... 341
intisalnum(@intch) ......... ... 342
intisalpha(intch) .......... ... ... il 343
intisascii(intch) ...... ... i 344
intisentrl(intch) ... ... o 344
intisdigitintch) ........ ... ... . il 345
intisgraph(intch) ............ ... ... i 346
intislower(intch) ....... ... ... 347
intisprint(intch) ......... ... ... il 348
intispunct(intch) ........... ... ... o il 348
intisspace(intch) ........... ... ... . il 349
intisupper(ch) ....... ... ... 350
intisxdigit(intch) ......... .. .. ool 351
void *memccpy(void *dest, const void *source,

intch,size_tcount) .......... ... ... i 351
void *memchr(const void *buffer, int ch, size_tcount) ......... 352
int memcmp(const void *bufl,

const void *buf2, size_tcount) ............. ... . ..., .. 353
int memicmp(const void *bufl,

const void *buf2, size_tcount) ........................ 353
void *memcpy(void *dest, const void *source,

SiZze_tCount) ... ...t 354
void *memmove(void *dest, const void *source,

SIZE_tCOUNL) ..ttt 355
void *memset(void *buf, int ch, size_tcount) ................. 356
void movmem(const void *source, void *dest,

unsigned count) ....... ... oL 356
void setmem(void *buf, unsigned count, charch) ............. 357
char *stpcpy(char *strl, const char *str2) ..................... 357
char *strcat(char *strl, const char *str2) ...................... 358
char *strchr(const char *str,intch) .......................... 359
int strcmp(const char *strl, const char *str2) .................. 359
int strcoll(const char *strl, const char *str2) .................. 360
char *strcpy(char *strl, const char *str2) ..................... 360
size_t strespn(const char *strl, const char *str2) ............... 361
char *strdup(const char*str) ................ ... ... .. ..., 362
char *_strerror(const char *str) ............ .. ... ... ... 362
char *strerror(intnum) ......... .. ... o i 363
int stricmp(const char *str1, const char *str2)

int strcmpi(const char *strl, const char *str2) .............. 363
size_t strlen(const char *str) ........... ... ... i i, 364
char *strlwr(char*str) ....... ... ... 365
char *strncat(char *str1, const char *str2, size_t count) ......... 365
int sttnemp(const char *strl, const char *str2, size_t count)
int strnicmp(const char *strl, const char *str2, size_tcount) ....... 367

int sttnempi(const char *strl, const char *str2, size_tcount) ......... 367
char *strncpy(char *dest, const char *source,

Size_tcount) . ... 368

char *strnset(char *str, int ch, size_tcount) ................... 369



Contents
char *strpbrk(const char *str1, const char *str2) ............... 369
char *strrchr(const char *str,intch) ......................... 370
char *strrev(char *str) ......... ..o iiiiiiiii i 371
char *strset(char *str,intch) .......... ... . ... ... . ... .. 371
size_t strspn(const char *strl, const char *str2) ................ 372
char *strstr(const char *strl, const char *str2) ................. 373
char *strtok(char *str1, const char *str2) ..................... 373
char *strupr(char *str) ................. ... ... i 375
size_t strxfrm(char *dest, const char *source, size_tcount) ......... 375
int tolower(int ch)
int _tolower(intch) ........ ... ... i 376
int toupper(int ch)
int _toupper(intch) .......... ... ..o 376
13 Mathematical Functions ................ ... ... .. ..... 379
double acos(double arg)
long double acosl(long doublearg) ....................... 380
double asin(double arg)
long double asinl(long doublearg) ....................... 381
double atan(double arg)
long double atanl(long doublearg) ....................... 382
double atan2(double y, double x)
long double atan2l(long double y, long double x) .......... 383
double cabs(struct complex znum)
long double cabsl(struct _complexl znum) ................ 383
double ceil(double num) long double ceill
(longdoublenum) ........... ... ...t 384
double cos(double arg)
long double cosl(long doublearg) ........................ 385
double cosh(double arg)
long double coshl(long doublearg) ...................... 386
double exp(double arg)
long double expl(long doublearg) ....................... 387
double fabs(double num)
long double fabsl(long doublenum) ..................... 387
double floor(double num) long double floorl
(longdoublenum) ............ ... ... il 388
double fmod(double x, double y) long double fmodl
(long double x, long doubley) ........................... 388
double frexp(double num, int *exp)
long double frexpl(long double num, int *exp) ............. 389
double hypot(double x, double y)
long double hypotl(long double x, long doubley) .......... 390
double Idexp(double num, int exp)
long double Idexpl(long double num, intexp) ............. 390
double log(double num)
long double logl(long doublenum) ...................... 391

double log10(double num) long double log101
(longdoublenum) ..................... oL 392



Xiv.  Borland C++ Builder: The Complete Reference

int _matherr(struct exception *err) int _matherrl

(struct _exceptionl *err) ......... ... .. oot 392
double modf(double num, double *i)
long double modfl(long double num, long double *i) ......... 394
double poly(double x, int n, double c[])
long double polyl(long double x, int n, long doublec[]) ........ 394
double pow(double base, double exp) long double powl
(long double base, long doubleexp) ...................... 395
double pow10(int n)
long double pow10l(intn) ........... ... ... ... .. ... ... 396
double sin(double arg)
long double sinl(long doublearg) ........................ 397
double sinh(double arg)
long double sinhl(long doublearg) ....................... 397
double sqrt(double num)
long double sqrtl(long doublenum) ...................... 398
double tan(double arg)
long double tanl(long doublearg) ........................ 399
double tanh(double arg)
long double tanhl(long doublearg) ...................... 399
14 Time, Date, and System-Related Functions ............... 401
char *asctime(const struct tm *ptr) ............... ... ... ... 403
clock_t clock(void) ... 404
char *ctime(const time_t*time) ............. ... ... ... 405
double difftime(time_t time2, time_t timel) .................. 406
void disable(void)
void _disable(void) ........ . ... 407
unsigned _dos_close(intfd) ............. ... ... ..ol 407
unsigned _dos_creat(const char *fname,
unsigned attr, int*fd) .......... ... ..o oo ool 408
unsigned _dos_creatnew(const char *fname,
unsigned attr, int*fd) .......... .. . .o oL 408
void _dos_getdate(struct dosdate_t *d)
void _dos_gettime(struct dostime_t*t) ................... 409
unsigned _dos_getdiskfree(unsigned char drive,
struct diskfree_t *dfptr) ......... ... ... ... ... oL 410
void _dos_getdrive(unsigned *drive) ................ ... .. .. 411
unsigned _dos_getfileattr(const char *fname,
unsigned *attrib) ... ... o oo 412
unsigned _dos_getftime(int fd, unsigned *fdate,
unsigned *ftime) ............ ... .. oo ool 413
unsigned _dos_open(const char *fname,
unsigned mode, int*fd) .......... ... ..o oL 414
unsigned _dos_read(int fd, void *buf, unsigned count,
unsigned *numread) ............ .. ool 416

unsigned _dos_setdate(struct dosdate_t *d)
unsigned _dos_settime(struct dostime_t*t) ............... 417



void _dos_setdrive(unsigned drive, unsigned *num) .
unsigned _dos_setfileattr(const char *fname,
unsigned attrib) ....... ... o oo
unsigned _dos_setftime(int fd, unsigned fdate,
unsigned ftime) .............. ... o oo oL
long dostounix(struct date *d, struct time *t) ........
unsigned _dos_write(int fd, void *buf, unsigned count,
unsigned *numwritten) .......... ... ... ...
void enable(void)
void _enable(void) ............ ... ...,
void ftime(struct timeb *time) .............. ... ..
void geninterrupt(intintr) ............... ... ... ...
void getdate(struct date *d)
void gettime(struct time *t) ....................
void getdfree(unsigned char drive, struct dfree *dfptr)
int getftime(int handle, struct ftime *ftptr) ..........
struct tm *gmtime(const time_t *time) ..............
int kbhit(void) ...........
struct tm *localtime(const time_t *time) ............
time_t mktime(structtm*p) ......... ... ... ...
void setdate(struct date *d)
void settime(struct time *t) .....................
int setftime(int handle, struct ftime *t) ..............
void sleep(unsigned time) ........................
int stime(time_t*t) .......... .. i
char *_strdate(char *buf)
char *_strtime(char *buf) .......................
size_t strftime(char *str, size_t maxsize,
char const *fmt, const struct tm *time) .........
time_t time(time_t *time) ............ ... ... ... . ...
void tzset(void) ........ ..
void unixtodos(long utime, struct date *d,
structtime *t) ......... ... o i

15 Dynamic Allocation ...........................

void *alloca(size_tsize) .............ciiiiiiin...
void *calloc(size_t num, size_tsize) ................
void free(void *ptr) .......... ... ...l
int heapcheck(void) .............. ... ... ...
int heapcheckfree(unsigned fill) ...................
int heapchecknode(void *ptr) .....................
int _heapchk(void) .............. ... ... o oL
int heapfillfree(unsigned fill) ......................
int _heapmin(void) ............... ... ... .. L
int _heapset(unsigned fill) ........................
int heapwalk(struct heapinfo *hinfo)

int _rtl_heapwalk(_ HEAPINFO *hinfo) ..........
void *malloc(size_tsize) ...
void *realloc(void *ptr, size_t newsize) .............

Contents

418

418

419
421

422

422
423
424

424
425
426
427
428
428
429

430
431
432
432

433

434
434
436

436

440
441
442
443
444
445
446
446
447
448

448
450
451

XV



Xvi Borland C++ Builder: The Complete Reference

16 Directory Functions ............. ... .. ... .. .. 453
int chdir(const char *path) ..................... ... ... . ... 454
int _chdrive(int drivenum) ....... ... ... . ... i 454

void closedir(DIR *ptr)
DIR *opendir(char *dirname)
struct dirent *readdir(DIR *ptr)
void rewinddir(DIR *ptr) ........... .. ... ... . L 455
unsigned _dos_findfirst(const char *fname, int attr,
struct find_t *ptr)

unsigned _dos_findnext(struct find_t *ptr) ................ 456
int findfirst(const char *fname, struct ffblk *ptr, int attrib)
int findnext(struct ffblk *ptr) .......... ... ... .. oL 457

void fnmerge(char *path, const char *drive, const char
*dir, const char *fname, const char *ext)
int fnsplit(const char *path, char *drive, char *dir,

char *fname, char*ext) ........... ... . ... ... ... 459
char *_fullpath(char *fpath, const char *rpath, intlen) ......... 461
int getcurdir(int drive, char *dir) ............... ... ... oL 461
char *getcwd(char *dir, intlen) ............ ... ... ... ... 462
char *_getdcwd(int drive, char *path, intlen) ................. 463
int getdisk(void) ......... ... .. il 464
int _getdrive(void) .......... ... ... il 464

void _makepath(char *pname, const char *drive,
const char *directory, const char *fname,

cont char *extension) ...............eiiiiiiiieiiia... 465
int mkdir(const char *path) ............... ... ... ..ol 466
char *mktemp(char *fname) .............. ... ... ...l 467
int rmdir(const char *path) .............. ... ... ...l 467
char *searchpath(const char *fname) ........................ 468
int setdisk(int drive) .......... .. 469
void _splitpath(const char *fpath, char *drive, char
*directory char *fname, char *extension) ................ 469
17 Process Control Functions ............................. 471
void abort(void) . ... 472
int atexit(void (*func)(void )) ... 473

unsigned long _beginthread( void (*func)(void *),
unsigned stksize, void *arglist)
unsigned long _beginthreadex(void *secattr,
unsigned stksize, unsigned (*start)(void *),
void *arglist, unsigned createflags,
unsigned *threadID)
unsigned long _beginthreadNT(void (*func)(void *),
unsigned stksize, void *arglist,
void *secattr, unsigned createflags,
unsigned *threadID); ............. ... ... ... 474
void _c_exit(void)
void _cexit(void) ... ... 476



Contents XVii

void _endthread(void)

void _endthreadex(unsigned threadvalue) ................ 477
int execl(char *fname, char *argQ, . . ., char *argN, NULL)

int execle(char *fname, char *arg, . . ., char *argN,

NULL, char*envp[]) ... 477
int execlp(char *fname, char *arg0, . . ., char *argN, NULL)

int execlpe(char *fname, char *arg0, . . ., char *argN,

NULL, char*envp[]) .........oooiiiiiii i 477
int execv(char *fname, char *arg[ ])

int execve(char *fname, char *arg[ ], char *envp[ ]) int execvp

(char *fname, char *arg[ ])

int execvpe(char *fname, char *arg[ ], char *envp[]) ........ 477
void exit(int status)
void _exit(intstatus) ... 479
intgetpid(void) ......... ... . i il 480
int spawnl(int mode, char *fname, char *arg0, . . .,
char *argN, NULL)

int spawnle(int mode, char *fname, char *argQ, .. .,
char *argN, NULL, char *envp[ ])
int spawnlp(int mode, char *fname, char *arg0, . . .,
char *argN, NULL)
int spawnlpe(int mode, char *fname, char *argg, . . .,
char *argN, NULL, char *envp| ])
int spawnv(int mode, char *fname, char *arg] ])
int spawnve(int mode, char *fname, char *arg[ ], char *envp[ ])
int spawnvp(int mode, char *fname, char *arg| ])
int spawnvpe(int mode, char *fname, char *arg| ],

char*envpl[]) ...... .. o 481
int wait(int *status) .......... . 484
18 Screen-Based Text Functions ........................... 487
char *cgets(char *inpstr) ............ ... .. ... oo il 488
void clreol(void)
void clrser(void) ... 489
int cprintf(const char*fmt, ...) ....... ... ... .. o ool 490
int cputs(const char *str) .......... ... ... oo ool 491
int cscanf(char*fmt, ...) ... .. 492
void delline(void) ....... ... i 493
int gettext(int left, int top, int right, int bottom, void *buf) ......... 494
void gettextinfo(struct text_info *info) ............... ... .. ... 494
void gotoxy(int x, inty) .......... ... .. o il 495
void highvideo(void) ............ ... ... ... . o ol 496
void insline(void) ......... ... 496
void lowvideo(void) ........ .. i 497
int movetext(int left, int top, int right, int bottom,
int newleft, intnewtop) .......... ... ... 498
void normvideo(void) . ... 498

int puttext(int left, int top, int right, int bottom, void *buf) ......... 499



Xxviii Borland C++ Builder: The Complete Reference

void textattr(intattr) ........... . ... 499
void textbackground(intcolor) ............... ... ... ... 500
void textcolor(int color) ........... i 501
void textmode(intmode) ............ .. 502
int wherex(void)
intwherey(void) ......... ... ... 503
void window(int left, int top, int right, int bottom) ............ 504
19 Miscellaneous Functions .............................. 505
intabs(intnum) . ........ . 506
void assert(intexp) ............. ool 507
double atof(const char *str)
long double _atold(const char *str) ....................... 508
int atoi(constchar *str) .............o i 509
long atol(const char *str) .............. ... ... o oo 509
void *bsearch(const void *key, const void *base, size_t num,
size_t size, int (*compare)(const void *, const void *)) ......... 510
unsigned int _clear87(void) ............. ... ... ool 512
unsigned int _control87(unsigned fpword,
unsigned fpmask) .......... ... o oo ool 512
div_t div(int numerator, int denominator) ................... 513
char *ecvt(double value, int ndigit, int *dec, int *sign) ......... 514
void _ _emit_ _(unsigned chararg,...) ...................... 514
char *fcvt(double value, int ndigit, int *dec, int *sign) ......... 515
void _fpreset(void) .......... ... .. o ool 515
char *gcvt(double value, int ndigit, char *buf) ................ 516
char *getenv(const char *name) .................. ... ... ... 516
char *getpass(const char *str) .................... ... ... 517
unsigned getpid(void) ......... ... ..ol 517
char *itoa(int num, char *str, intradix) ...................... 518
long labs(long num) ...........cooiiiiiiiiiiiiiiiii.. 519
ldiv_t Idiv(long numerator, long denominator) ............... 519

void *lfind(const void *key, const void *base, size_t *num,
size_t size, int (*compare)(const void *, const void *)
void *lsearch(const void *key, void *base, size_t *num, size_t size,

int (*compare)(const void *, const void *)) ............... 520
struct lconv *localeconv(void) .......... ... i, 522
void longjmp( jmp_buf envbuf,intval) ...................... 523
char *ltoa(long num, char *str, int radix)

char *ultoa(unsigned long num, char *str, int radix) ........ 525
unsigned long _lrotl(unsigned long 1, int i)

unsigned long _lrotr(unsigned long 1, inti) ................ 526
max(x,y)

MIN(GY) e 526
int mblen(const char *str, size_tsize) ........................ 527
size_t mbstowcs(wchar_t *out, const char *in, size_tsize) ........ 527
int mbtowc(wchar_t *out, const char *in, size_t size) .......... 528

int putenv(const char *evar) ................ ... ... oL 529



20

Contents

void gsort(void *base, size_t num, size_t size,

int (*compare) (const void *, const void *)) ............... 529
intraise(intsignal) ............ ... ... oL 531
intrand(void) . ......oiii 532
int random(int num)

void randomize(void) ......... ..o i 533
unsigned short _rotl(unsigned short val, int num)

unsigned short _rotr(unsigned short val, intnum) ......... 533
void _setcursortype(inttype) ............ ...l 534
int sefmp(jmp_bufenvbuf) ..... ... ... ...l 535
void _searchenv(const char *fname, const char *ename,

char*fpath) .......... ... ... . .. il 536
char *setlocale(int type, const char *locale) ................... 537
void (*set_new_handler(void (* newhand)()))() .............. 538
void (*signal (int signal, void (*sigfunc) (int func)))(int) ........ 538
void srand(unsigned seed) ............. ... .. o ool 539
unsigned int _status87(void) ............ ... . ..o ool 540
double strtod(const char *start, char **end)

long double _strtold(const char *start, char **end) .......... 540

long strtol(const char *start, char **end, int radix)
unsigned long strtoul(const char *start, char **end,

INtradix) ...t 542
void swab(char *source, char *dest, intnum) ................. 543
int system(const char *str) .............. ... ... o o L 543
int toascii(int ch) ... oo 544
unsigned umask(unsigned access) ............. ... ... oL 544
int utime(char *fname, struct utimbuf*t) .................... 545

void va_start(va_list argptr, last_parm)
void va_end(va_list argptr)

type va_arg(va_list argptr, type) ............ ... ..ol 546

size_t wcstombs(char *out, const wchar_t *in, size_tsize) ........ 548

int wctomb(char *out, wchar_tin) .......... ... ... .. ... .. 548

| Part IIl_
C++

AnOverview of C++ ... .. ... .. i 551
The Originsof C++ ... ... 552
What Is Object-Oriented Programming? ............................. 553
Encapsulation ............ ... ... o i il 554
Polymorphism ...............ooooiiiiiiiiiiiiiiiiiii 554
Inheritance .......... ... .. 555

Some C++ Fundamentals .......................... il 555
C++ Programs Use the .CPP Extension ...................... 558

A Closer Look at Headers and Namespaces ..................coooo... 559
Modern-Style Headers .................................... 559

Namespaces ............ooiiiiiiiiiiiiiiii 560

XIX



XX

Borland C++ Builder: The Complete Reference

21

22

23

Introducing C++ Clases ... 560
Function Overloading ............. ... ... .. ... ...l 565
Operator Overloading ............... ... ... ... .. 568
Inheritance .......... ... . .. 568
Constructors and Destructors ............... ..., 572
The C++Keywords ........... 576
TwoNew DataTypes ............. i 577
A Closer Look at Classes and Objects  ................... 579
Parameterized Constructors ............... ... .. i, 580

Constructors with One Parameter: A Special Case ............ 584
Friend Functions ......... ... ... . . . i i 585
Default Function Arguments .................. ... ... ... 590

Using Default Arguments Correctly ........................ 594
Classes and Structures Are Related ................................. 594
Unions and Classes AreRelated .................................... 596

Anonymous Unions ................ ...l 597
Inline Functions .......... ... .. .. . 598

Creating Inline Functions InsideaClass ..................... 600
Passing Objects to Functions ................. ..., 601
Returning Objects ....... ... .. i 604
Object Assignment ............... .. . . i 605
Arraysof Objects ......... . ... 605

Initializing Arrays of Objects ............................... 607

Creating Initialized Versus Uninitialized Arrays .............. 609
Pointers to Objects ........ ... .. i 610
Function and Operator Overloading .................... 613
Overloading Constructor Functions ......................... ... .. 614
Localizing Variables ............ ... . . ... ... 616

Localizing the Creation of Objects .......................... 617
Function Overloading and Ambiguity .............................. 619
Finding the Address of an Overloaded Function ..................... 622
The this Pointer ........... ... .. .. i i 623
Operator Overloading .......... ... ... ... ... ... .. L. 624

Friend Operator Functions ................................ 631
References . .....oiiiiiiii i 636

Reference Parameters .................. ..o, 636

Passing References to Objects .............................. 639

Returning References ............... ... ... ... ... L. 640

Independent References .................. ... ... ..o L 641
Using a Reference to Overload a Unary Operator ..................... 643
Overloading [] ... ... 646
Applying Operator Overloading .................... ... ... ... ..... 650
Inheritance, Virtual Functions, and Polymorphism ........ 657
Inheritance and the Access Specifiers .................. ... ... ... 658

Understanding the Access Specifiers ........................ 658

Base Class Access Control ..., 660



24

25

Contents

Constructors and Destructors in Derived Classes ...................... 663
Multiple Inheritance ............. ... .. .. ... i 667
Passing ParameterstoaBaseClass ........................ ... ..... 669
Pointers and References to Derived Types ........................... 671
References to Derived Types ............................... 673

Virtual Functions ......... ... . 674
Why Virtual Functions? ........... ... ... ... 679
Pure Virtual Functions and Abstract Types .......................... 684
Early Versus Late Binding ................ ... ... ... . oL 686
The C++1I/OClass Library ............................ 689
Why C++ Has Its Own I/OSystem ................................. 690
Old Versus Modern C++1/O ............ oo i, 690
CH+Streams ... ... 691
The C++ Predefined Streams ............................... 691

The C++ Stream Classes ........ ...t 691
Creating Your Own Inserters and Extractors ......................... 692
Creating Inserters ..................... ... ... .l 693
Overloading Extractors ....................... ... ... .... 696
Formatting I/O ... ... . 698
Formatting Using the ios Member Functions ................. 698

Using Manipulators ....................ooooi i 702
Creating Your Own Manipulator Functions .......................... 705
FleI/O oo 708
Opening and Closinga File ................. ... ... .. .... 708

Reading and Writing Text Files ............................ 710
Unformatted and Binary I/O .......... . ... 712
Using get()and put() ...........oooooiiiiiiiiiiiiiiiiL 712

Using read()and write() ............ ... i 714
Detecting EOF ... ... ... ... o i i 715
Random ACCESS ...ttt 716
Templates, Exceptions, and RTTI ....................... 719
GenericFunctions ............ ... .. . 720
A Function with Two Generic Types ........................ 722
Explicitly Overloading a Generic Function ................... 723
Overloading a Function Template .......................... 725

Generic Function Restrictions .............................. 725
GenericClasses .......... ... o i 726
An Example with Two Generic Data Types .................. 730
Exception Handling .......... ... .. ... ... 731
Exception Handling Fundamentals ................................. 731
Catching Class Types ...t 737

Using Multiple catch Statements ........................... 738
Handling Derived-Class Exceptions ........................ 739
Exception Handling Options ........... ..., 740
Catching All Exceptions ................ ... ... ... ... 741
Restricting Exceptions  ................ ... ... ..o i 742

Rethrowing an Exception ................. ... ... . ... .... 744

XXI



XXii

Borland C++ Builder: The Complete Reference

26

27

Understanding terminate( ) and unexpected() ...............
Setting the Terminate and Unexpected Handlers .............
The uncaught_exception() Function ................................
Applying Exception Handling .................... ... ... ... .. ...
Run-Time Type Identification (RTTI) ........... ... ...,
Casting Operators ........... ... i i,

Miscellaneous C++ Topics .........covviiiiiiii....
Dynamic Allocation Using new and delete ..........................
Allocating Objects ........... ...t
Another Way to Watch for Allocation Failure ................
Overloadingnew and delete ...............................
Overloading new and delete for Arrays .....................
static Class Members . ........ .ot
static DataMembers ........... .. .. .. .
static Member Functions ................ ... ... ... .. ... ....
Virtual Base Classes ...t e
const Member Functionsand mutable .............. .. ..............
Volatile Member FUNCtions ...............oiuinininii ..
Using theasm Keyword ............ ... ...
Linkage Specification ............. . ... .. ...
The *and ->* Operators ............... ...,
Creating Conversion Functions ................... .. ... . ... ...
Copy Constructors .......... ... i
Granting ACCess ...ttt
Namespaces ........ ...ttt
Namespace Fundamentals .................................
USING
Unnamed Namespaces ...............c.oooiiiiiiiiin..
Some Namespace Options ............. ... ...
The std Namespace .................. . ...,
Explicit Constructors .............. . .. i
typename and export .......... ..
Differences Between Cand C++ ...t

The Standard Template Library and the string Class ......
An Overview of the STL ... ... .. e
Containers ............c.c.eeiiiiiiiiiiiiiiiiiii
Algorithms ....... ... .. ... .
Tterators ....... .
Other STLElements ............ .. ...,
The Container Classes ...............ooiiiiiiiiiiiiiiiiiiina ..
General Theory of Operation .................... ... ... ..........
Vectors ...
Accessing a Vector Through an Iterator .....................
Inserting and Deleting Elements ina Vector .................
Storing Class Objectsina Vector ...........................

Understandingend() ............ ... ... o il
push_front() Versus push_back() ..........................

745
745
747
747
748
750

756
759
762
763
768
771
771
772
775
780
782
782
783
784
786
788
791
794
795
798
800
801
803
805
806
807

810
810
811
811
812
813
814
815
819
821
823
825
829
831



28

29

Contents

Sortalist ... 832
Merging One List with Another ............................ 833

Storing Class Objectsina List .............................. 835

MapPs 837
Storing Class ObjectsinaMap ................ ... ... ... .... 841
Algorithms ........ .. 843
Counting ... 846
Removing and Replacing Elements ......................... 849
ReversingaSequence ................... ... ... ... .. 851
Transforming aSequence ................ ... ... ... ... 852

Using Function Objects ............ ... ... .. i, 853
Unary and Binary Function Objects ......................... 854

Using the Built-in Function Objects ......................... 854
Creating a Function Object ................................ 857
UsingBinders ............ ..ol 859
Thestring Class ....... ... i 861
Some string Member Functions ............................ 866

Strings Are Containers ........................ ..o 871

Putting Strings into Other Containers ....................... 872

Final Thoughtsonthe STL ......... ... .. .. ... ... ... ... .. ... .. 873

The C++ Builder Integrated Development Environment

The Integrated Development Environment .............. 877
The Four IDE WIndows . ... ...ttt 878
The Menu WIindow . ...t e 878
File ..o 880

Edit . 882

Search . ... 883

VW e 885

Project ... ... 886

Run ..o 888
Component ........ ... 889

TO0IS .+ttt 890

Help ..o 894
Toolbars . ...t 894

Object Inspector Window ............ ... ... i 895
Form Window . ... ... 895
Code (Unit) WINdOW . ...ttt e e et 895
Using Speed Menus ........... ..ottt 896
Using Context-Sensitive Help ...t 896
Developing Applications Using the IDE ................. 897
Types of Applications .............. . ... i 898
N W o 898

Projectl ... ... 900

Forms ... e 902

Xxiii



XXiv

Borland C++ Builder: The Complete Reference

30

Dialogs ... 902
Projects ... 902
The Component Palette .............. ... . ... ... ... . .. 903
Standard Components ............... ... o i il 904
Additional Components ................ ... .. oo 904
Win32 Components .............coooiiiiiiiiiiiiiiii 905
System Components ...................oooiiiiiiiiiii 907
Dialogs Components .................c.oiiiiiiiiaini ... 908
Win 3.1 Components ................coooiiiiiiii.. 909
Samples Components .................... i 909
ActiveX Components ................ooooiiiiiiiiiiii 910
Internet Components ................ ... ... ool 911
Servers Components ................. ... ... 911
Creating a Console Application ................... ... ... ... ..... 911
Using the IDE to Create a Console Application ............... 912
Compiling the Sample Programs in This Book ................ 916
Using the Command Line Compiler ........................ 916
Creating a Simple Windows Application ............................ 918
Preliminary Steps ......... ... . i 918
Create the Application .............. ... ... ... ... ... 920
Building the GUI Form ................. ... .. ... ... ..., 920
Adding Label and Edit Components ........................ 922
Using the ActionList and ImageList Components ............. 924
Building a BasicMenu .............. ... ... 931
CreatingaToolbar .............. ... ... .o i, 933
Building Command Buttons ................. ... .. ..o 935
Adding a Help | About DialogBox ......................... 936
Adding Code and Finishing the Application ................. 937

Using C++ Builder’s Integrated Debugging

Environment ........... ... ... .. . il 941
Preparing Your Programs for Debugging ............................ 942
What Is a Source-Level Debugger? ................................. 942
Debugger Basics ............ . .. 942

Single-Stepping ........... ... 943
Breakpoints ............... 945
Setting Unconditional Source Breakpoints ................... 946
Setting Conditional Source Breakpoints ..................... 947
Watching Variables ............ ... ... . . 949
Watched-Expression Formats .............................. 950
Qualifying a Variable’sName .............................. 953
Watching theStack .......... .. ... . .. 954
Evaluating an Expression ............. ... ... i i, 955
Pausinga Program ............. ... ... 956
Usingthe CPUWindow ............ ... . i 956
ADebuggingTip ............. . 957



Preface

by Herbert Schildt

compilers since the 1980s. C++ Builder is their most powerful and full-featured
compiler yet. It is known for its compilation speed and for the efficiency of the
code it produces. C++ Builder is really two compilers in one. First, it is a C compiler.
(C is the language upon which C++ is built.) Second, it is a C++ compiler. C++ Builder
can produce programs for Windows 95/98/NT /2000 and the DOS environment
provided by Windows. By any measure, it is one of the finest programming development
environments available. The purpose of this book is to help you get the most out of it.

This book is about Borland’s C++ Builder. Borland has been making state-of-the-art

| About This Book

I have been writing about the Borland line of compilers for many years now. No doubt,
many readers will be familiar with one or more of my earlier Borland C++ books. This
book is the latest edition in my series of Borland C++ “Complete References.” The
previous edition was called Borland C++: The Complete Reference. This book is unique,
though, because it is the first to cover the new “Builder” environment.

In addition to the new “Builder” environment, another event of significant
importance has occurred which makes this book profoundly different than its earlier
editions: The ANSI/ISO standard for C++ was adopted. This standard contains
many new features, functions, and classes, which greatly expand the power of the
C++ language. As you would expect, C++ Builder fully supports this standard. Thus,

XXV
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



Xxvi Borland C++ Builder: The Complete Reference

this book has been completely updated to cover all of the new features defined by
ANSI/ISO Standard C++. For example, there is now extensive coverage of the STL, the
new I/0 classes, and the string class. Coverage of templates has also been expanded.
Frankly, the changes caused by the standardization of C++ are very significant in
several chapters.

| what’s Inside

This book describes the entire C++ Builder programming environment. As such, it
discusses both the C and the C++ languages and their libraries in significant detail. It
also shows how to use the integrated development environment (IDE) and the various
application development tools supplied by C++ Builder. Numerous example programs
are included to help illustrate the elements of C++ and the Builder environment.

This book is designed for programmers at all skill levels. If you are just learning to
program, this guide makes an excellent companion to any tutorial, providing answers
to your specific questions. If you are an experienced C/C++ programmer, this book
serves as a handy desk reference.

___ | How This Book Is Organized

As you can surmise given the size of this book, C++ Builder is a large topic. To help
bring order to such a vast amount of information, this book is organized into these
four parts:

PartI  The Foundation of C++: The C Subset

PartII The C++ Builder Function Library

Part Il The C++-Specific Features

PartIV  The C++ Builder Integrated Development Environment

This organization allows the C programmer to quickly find material related to C while
at the same time letting the C++ programmer find the material appropriate to C++.
Further, if you are currently a C programmer who is moving to C++, this organization
lets you avoid “wading through” reams of information you already know. You can
simply concentrate on the C++ sections of the book.



Preface XXVil

| conventions Used in This Book

Throughout, keywords, operators, function names, and variable names are shown

in bold when referenced in text. General forms are shown in italics. Also, when
referencing a function name in text, the name is followed by parentheses. In this way,
you can easily distinguish a variable name from a function name.

| source Code on the Web

The source code for all of the programs in this book is available at Osborne’s Web site
www.osborne.com, free of charge.

___| special Thanks

I wish to thank Greg Guntle for his help in the preparation of this book. Because of my
very busy writing schedule and the extensive changes that were required, it was not
possible for me to single-handedly prepare this edition within the time frame required
by my publisher. To solve this problem, I turned to Greg Guntle. Greg is an expert
programmer who has helped me in the past as a technical reviewer for several of my
books. He went through each chapter with a fine-tooth comb, updating and fixing where
needed. He also wrote the initial drafts for Chapters 28, 29, and 30. He did a fine job and
much of the credit for this book goes to Greg. Again, I say a wholehearted “Thanks!”



This page intentionally left blank.



Acknowledgments

would not have been able to do this book. I love you, Hon! I also need to thank my

children, Phil, Colin, and Olivia, for being so understanding when Dad did not have
time to share with them. Thanks to the fine staff at Osborne/McGraw-Hill, especially
Wendy Rinaldi and Tim Madrid. Most of all I want to thank Herb Schildt for giving me
this wonderful opportunity to work with him on this project. His leadership, guidance,
and technical prowess helped me tremendously. He is the best!

I want to thank my beautiful wife Carla for her love and support. Without those, I

Greg Guntle

XXix
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



XXX Borland C++ Builder: The Complete Reference

___| For Further Study

Borland C++ Builder: The Complete Reference is part of the “Herb Schildt” series of
programming books. Here are some others that you will find of interest.

To learn about C++, you will find these books especially helpful.
C++: The Complete Reference
Teach Yourself C++
C++ From the Ground Up
STL Programming From the Ground Up
The C/C++ Programming Annotated Archives
The C/C++ Programmer's Reference
If you want to learn more about the C language, then the following titles will be of interest.
C: The Complete Reference
Teach Yourself C
To learn about Java programming, we recommend the following:
Java 2: The Complete Reference
Java 2: A Beginner’s Guide
Java 2: Programmer’s Reference
To learn about Windows programming we suggest the following Schildt books:
Windows 98 Programming From the Ground Up
Windows 2000 Programming From the Ground Up
MEFC Programming From the Ground Up
The Windows Programming Annotated Archives
To learn about C# try this book from Herb.
C#: A Beginner’s Guide

When you need solid answers fast, turn to Herbert Schildt, the recognized
authority on programming,.



The

Complete
Reference

Part |

The Foundation of C++:
The G Subset

This book divides its description of the C++ language into two parts.
Part One discusses the C-like features of C++. This is commonly
referred to as the C subset of C++. Part Three describes those features
specific to C++. Together, they describe the entire C++ language.
Asyoumay know, C++ was built upon the foundation of C. In fact,
C++ includes the entire C language, and (with minor exceptions) all C
programs are also C++ programs. When C++ was invented, the C
language was used as the starting point. To C were added several new

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



features and extensions designed to support object-oriented programming. However,
the C-like aspects of C++ were never abandoned, and the 1989 ANSI/ISO C standard
was a base document for Standard C++. Thus, an understanding of C++ implies an
understanding of C.

Because C is a subset of C++, any C++ compiler is, by definition, also a C compiler.
C++ Builder is no exception. C++ Builder allows you to compile both C programs and C++
programs. When used as a C compiler, C++ Builder fully supports the C language. When
used as a C++ compiler, it fully supports C++.

In a book such as this Complete Reference, dividing the C++ language into two
pieces—the C foundation and the C++-specific features—achieves three major benefits:

1. The dividing line between C and C++ is clearly delineated.
2.Readers already familiar with C can easily find the C++-specific information.

3.1t provides a convenient place in which to discuss those features of C++ that
relate mostly to the C subset—for example, the CI/O system.

Understanding the dividing line between C and C++ is important because both are
widely used languages and it is very likely that you will be called upon to write or
maintain both C and C++ code. When working on C code, you need to know where C ends
and C++ begins. Many C++ programmers will, from time to time, be required to write code
that is limited to the “C subset.” This will be especially true for embedded systems
programming and the maintenance of existing applications. Knowing the difference
between C and C++ is simply part of being a top-notch professional C++ programmer.

A clear understanding of C is also valuable when converting C code into C++. To do
this in a professional manner, a solid knowledge of C is required. For example, without a
thorough understanding of the C I/O system, it is not possible to efficiently convert an
I/O-intensive C program into C++.

Many readers already know C. Covering the C-like features of C++ in their own section
makes it easier for the experienced C programmer to quickly and easily find information
about C++ without having to “wade through” reams of information that he or she already
knows. Of course, throughout Part One, any minor differences between C and C++ are
noted. Also, separating the C foundation from the more advanced, object-oriented features
of C++ makes it possible to tightly focus on those advanced features because all of the
basics have already been discussed.

Although C++ contains the entire C language, not all of the features provided by the C
language are commonly used when writing “C++-style” programs. For example, the CI1/O
system is still available to the C++ programmer even though C++ defines its own,
object-oriented version. The preprocessor is another example. The preprocessor is very
important to C, but less so to C++. Discussing several of the “C-only” features in Part One
prevents them from cluttering up the remainder of the book.

Remember: The C subset described in Part One constitutes the core of C++ and the
foundation upon which C++’s object-oriented features are built. All the features described
here are part of C++ and available for your use.

One last point: Because the programs in Part One are C programs, you must compile
them as C programs. To do this, just make sure that their filenames use the .C (not the
.CPP) extension. Whenever C++ Builder compiles a file that has the .C extension, it
automatically compiles it as a C, rather than a C++, program. For information on how
to compile programs, see Part Four.



The

Complete L

Reference by

An Overview of C



4 Borland C++ Builder: The Complete Reference

his chapter presents an overview of the origins, uses, and philosophy of the C
I programming language.

___| The Origins of the C Language

Dennis Ritchie invented and first implemented the C programming language on

a DEC PDP-11 that used the UNIX operating system. The language is the result of a
development process that started with an older language called BCPL. Martin Richards
developed BCPL, which influenced Ken Thompson’s invention of a language called B,
which led to the development of C in the 1970s.

For many years, the de facto standard for C was the version supplied with the
UNIX operating system. It was first described in The C Programming Language by
Brian Kernighan and Dennis Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1978). In
the summer of 1983, a committee was established to create an ANSI (American National
Standards Institute) standard that would define the C language. The standardization
process took six years (much longer than anyone reasonably expected).

The ANSI C standard was finally adopted in December 1989, with the first copies
becoming available in early 1990. The standard was also adopted by ISO (International
Standards Organization), and the resulting standard was typically referred to as
ANSI/ISO Standard C, or simply ANSI/ISO C. In 1995, Amendment 1 to the C standard
was adopted, which, among other things, added several new library functions. The
1989 standard for C, along with Amendment 1, became a base document for Standard
C++, defining the C subset of C++. The version of C defined by the 1989 standard is
commonly referred to as C89. This is the version of C that C++ Builder supports.

It must be noted that recently a new standard for C, called C99, has been created.
For the most part, it leaves the features of C89 intact and adds a few new ones.
However, C++ Builder does not support the new features added by C99. This is
not surprising because at the time of this writing, no commonly available compiler
supports C99, and C89 still describes what programmers think of as C. Furthermore,
as just explained, it is the C89 version of C that forms the C subset of C++. Because
the version of C supported by C++ and C++ Builder is C89, it is the version of C
described in this book. (The interested reader can find a full description of the C99
standard in C: The Complete Reference, 4th Ed. by Herbert Schildt, Berkeley:
Osborne/McGraw-Hill, 2000.)

___| A Middle-Level Language

C is often called a middle-level computer language. This does not mean that C is less
powerful, harder to use, or less developed than a high-level language such as Pascal;
nor does it imply that C is similar to, or presents the problems associated with,
assembly language. The definition of C as a middle-level language means that it
combines elements of high-level languages with the functionalism of assembly
language. Table 1-1 shows how C fits into the spectrum of languages.



Chapter 1: An Overview of C

As a middle-level language, C allows the manipulation of bits, bytes, and
addresses—the basic elements with which the computer functions. Despite this fact,

C code is surprisingly portable. Portability means that it is possible to adapt software
written for one type of computer to another. For example, if a program written for
one type of CPU can be moved easily to another, that program is portable.

All high-level programming languages support the concept of data types. A data
type defines a set of values that a variable can store along with a set of operations that
can be performed on that variable. Common data types are integer, character, and real.
Although C has several basic built-in data types, it is not a strongly typed language like
Pascal or Ada. In fact, C will allow almost all type conversions. For example, character
and integer types may be freely intermixed in most expressions. Traditionally C performs
no run-time error checking such as array-boundary checking or argument-type
compatibility checking. These checks are the responsibility of the programmer.

A special feature of C is that it allows the direct manipulation of bits, bytes, words,
and pointers. This makes it well suited for system-level programming, where these
operations are common. Another important aspect of C is that it has only 32 keywords
(5 more were added by C99, but these are not supported by C++), which are the
commands that make up the C language. This is far fewer than most other languages.

Highest level Ada
Modula-2
Pascal
COBOL
FORTRAN
BASIC
Middle level C#
Java
C++
C
FORTH
Macro-assembly language

Lowest level Assembly language

Table 1-1. C’s Place in the World of Languages

5



6 Borland C++ Builder: The Complete Reference

___| A Structured Language

In your previous programming experience, you may have heard the term “block
structured” applied to a computer language. Although the term block-structured
language does not strictly apply to C, C is commonly referred to simply as a structured
language. Technically, a block-structured language permits procedures or functions to
be declared inside other procedures or functions. Since C does not allow the creation
of functions within functions, it cannot formally be called block structured.

The distinguishing feature of a structured language is compartmentalization of code
and data. Compartmentalization is the language’s ability to section off and hide from
the rest of the program all information and instructions necessary to perform a specific
task. One way of achieving compartmentalization is to use subroutines that employ
local (temporary) variables. By using local variables, the programmer can write
subroutines so that the events that occur within them cause no side effects in other
parts of the program. This capability makes it very easy for C programs to share
sections of code. If you develop compartmentalized functions, you only need to know
what a function does, not how it does it. Remember that excessive use of global
variables (variables known throughout the entire program) may allow bugs to creep
into a program by allowing unwanted side effects. (Anyone who has programmed in
traditional BASIC is well aware of this problem!)

| The concept of compartmentalization is greatly expanded by C++. Specifically, in
C++, one part of your program can tightly control which other parts of your program
are allowed access.

A structured language allows a variety of programming possibilities. It directly
supports several loop constructs, such as while, do-while, and for. In a structured
language, the use of goto is either prohibited or discouraged and is not the common
form of program control that it is in old-style BASIC or traditional FORTRAN. A
structured language allows you to indent statements and does not require a strict
field concept.

Here are some examples of structured and nonstructured languages:

Structured Nonstructured
Pascal FORTRAN
Ada BASIC

C++ COBOL

C

C#

Modula-2

Java



Chapter 1: An Overview of C 7

Structured languages are newer; nonstructured languages are older. Today, few
programmers would seriously consider a nonstructured language for new software
development.

| New versions of many older languages have attempted to add structured elements.
: BASIC is an example. However, the shortcomings of these languages can never be fully

mitigated because they were not designed with structured features from the start.

The main structural component of C is the function—C’s stand-alone subroutine.
In C, functions are the building blocks in which all program activity occurs. They allow
the separate tasks in a program to be defined and coded separately, thus allowing your
programs to be modular. After a function has been created, you can rely on it to work
properly in various situations, without creating side effects in other parts of the
program. The fact that you can create stand-alone functions is extremely critical in
larger projects where one programmer’s code must not accidentally affect another’s.

Another way to structure and compartmentalize code in C is to use code blocks. A
code block is a logically connected group of program statements that is treated as a unit.
In C a code block is created by placing a sequence of statements between opening and
closing curly braces. In this example,

if(x < 10) {
printf ("too low, try again");
reset counter(-1);

}

the two statements after the if and between the curly braces are both executed if x is
less than 10. These two statements together with the braces are a code block. They are
a logical unit: one of the statements cannot execute without the other. Code blocks not
only allow many algorithms to be implemented with clarity, elegance, and efficiency,
but also help the programmer conceptualize the true nature of the routine.

___| A Programmer’s Language

One might respond to the statement, “C is a programmer’s language,” with the
question, “Aren’t all programming languages for programmers?” The answer is an
unqualified “No!” Consider the classic examples of nonprogrammers’ languages,
COBOL and BASIC. COBOL was designed to enable nonprogrammers to read
and, presumably, understand a program. BASIC was created essentially to allow
nonprogrammers to program a computer to solve relatively simple problems.

In contrast, C was created, influenced, and field-tested by real working programmers.
The end result is that C gives the programmer what the programmer wants: few
restrictions, few complaints, block structures, stand-alone functions, and a compact set



Borland C++ Builder: The Complete Reference

of keywords. It is truly amazing that by using C, a programmer can achieve nearly the
efficiency of assembly code, combined with the structure of ALGOL or Modula-2. It is
no wonder that C became one of the most popular programming languages.

The fact that C can often be used in place of assembly language contributed greatly
to its success. Assembly language uses a symbolic representation of the actual binary
code that the computer executes. Each assembly language operation maps into a single
task for the computer to perform. Although assembly language gives programmers
the potential for accomplishing tasks with maximum flexibility and efficiency, it is
notoriously difficult to use when developing and debugging a program. Furthermore,
since assembly language is unstructured, the final program tends to be spaghetti
code—a tangled mess of jumps, calls, and indexes. This lack of structure makes
assembly language programs difficult to read, enhance, and maintain. Perhaps more
important, assembly language routines are not portable between machines with
different CPUs.

Initially, C was used for systems programming. A systems program is part of a large
class of programs that forms a portion of the operating system of the computer or its
support utilities. For example, the following are usually called systems programs:

Operating systems
Interpreters

Editors

Compilers

File utilities
Performance enhancers
Real-time executives

As C grew in popularity, many programmers began to use it to program all tasks
because of its portability and efficiency—and because they liked it! At the time of its
creation, C was a much longed-for, dramatic improvement in programming languages.
Of course, C++ has carried on this tradition.

With the advent of C++, some thought that C as a distinct language would die
out. Such has not been the case. First, not all programs require the application of the
object-oriented programming features provided by C++. For example, applications
such as embedded systems are still typically programmed in C. Second, a substantial
amount of C code is still in use, and those programs will continue to be enhanced and
maintained. While C’s greatest legacy is as the foundation for C++, it will continue to
be a vibrant, widely used language for many years to come.



Chapter 1: An Overview of C 9

___| compilers Versus Interpreters

It is important to understand that a computer language defines the nature of a program
and not the way that the program will be executed. There are two general methods by
which a program can be executed: it can be compiled or it can be interpreted. While
programs written in any computer language can be compiled or interpreted, some
languages are designed more for one form of execution than the other. For example,
Java was designed to be interpreted and C was designed to be compiled. However,

in the case of C, it is important to understand that it was specifically optimized as a
compiled language. Although C interpreters have been written and are available in
some environments (especially as debugging aids or experimental platforms), C was
developed with compilation in mind. Since C++ Builder is a compiler, you will be
compiling and not interpreting programs. Since the difference between a compiler
and an interpreter may not be clear to all readers, the following brief description will
clarify matters.

In its simplest form, an interpreter reads the source code of your program one line
at a time, performing the specific instructions contained in that line. This is the way
that earlier versions of BASIC worked. In languages such as Java, a program’s source
code is first converted into an intermediary form that is then interpreted. In either
case, a run-time interpreter is still required to be present to execute the program.

A compiler reads the entire program and converts it into object code, which is a
translation of the program’s source code into a form that the computer can execute
directly. Object code is also referred to as binary code or machine code. Once the
program is compiled, a line of source code is no longer meaningful in the execution
of your program.

In general, an interpreted program runs slower than a compiled program.
Remember, a compiler converts a program’s source code into object code that a
computer can execute directly. Therefore, compilation is a one-time cost, while
interpretation incurs an overhead each time a program is run.

___| The Form of a C Program

Table 1-2 lists the 32 keywords that, combined with the formal C syntax, form the C
programming language as defined by the C89 standard. These are the keywords that
form the C subset of C++ and the ones that are supported by C++ Builder. Also shown
are 12 extended keywords added by Borland that may also be included in a C program.
Of course, using the extended keywords renders your program nonportable. (Additional
Borland extended keywords are defined for use with C++. See Part Three.)

All C keywords are lowercase. In C uppercase and lowercase are different: else is
a keyword; ELSE is not. A keyword may not be used for any other purpose ina C
program—that is, it cannot serve as a variable or function name.



10 Borland C++ Builder: The Complete Reference

All C programs consist of one or more functions. The only function that absolutely
must be present is called main(), and it is the first function called when program
execution begins. In well-written C code, main() outlines what the program does. The
outline is composed of function calls. Although main() is not a keyword, treat it as if it
were. Don’t try to use main as the name of a variable, for example.

The general form of a C program is illustrated in Figure 1-1, where f1() through
fN() represent user-defined functions.

The Library and Linking

Technically speaking, it is possible to create a useful, functional C program that
consists solely of the statements actually created by the programmer. However, this
is rarely done because C does not contain any keywords that perform such things as I/O

Global declarations

int main (parameter list)

statement sequence
return-type fl (parameter list)
statement sequence
return-type f2 (parameter list)
statement sequence

return-type fN(parameter list)

{

statement sequence

}

Figure 1-1. The general form of a C program




Chapter 1: An Overview of C 11

The keywords defined by C subset of C++

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

These additional keywords added by Borland are allowed in a C program:

asm _Cs _ds _es
_ss cdecl far huge
interrupt near pascal _export

Table 1-2. A List of the C Keywords Supported by C++ Builder

operations, high-level mathematical computations, or string handling. As a result,
most programs include calls to various functions contained in C’s standard library.

The C language defines a standard library that provides functions that perform
most commonly needed tasks. (This library is also supported by C++.) When you call a
function that is not part of the program you wrote, the compiler “remembers” its name.
Later the linker combines the code you wrote with the object code already found in the
standard library. This process is called linking.

The functions that are kept in the library are in relocatable format. This means that
the memory addresses for the various machine-code instructions have not been
absolutely defined; only offset information has been kept. When your program links
with the functions in the standard library, these memory offsets are used to create the
actual addresses used. There are several technical manuals and books that explain this
process in more detail. However, you do not need any further explanation of the actual
relocation process to program in C or use C++ Builder.

Separate Compilation

Most short C programs are completely contained within one source file. However, as a
program gets longer, so does its compile time, and long compile times make for short



Chapter 16: Directory Functions 469

Related Function

mktemp()

int setdisk(int drive)

Description
The prototype for setdisk() is in <dir.h>. This function is not defined by the ANSI/ISO

C/C++ standard.
The setdisk() function sets the current drive to that specified by drive. Drive A
corresponds to 0, drive B to 1, and so on. It returns the total number of drives in

the system.

Example
This program switches to drive A and reports the total number of drives in the system:

#include <stdio.h>
#include <dir.h>

int main(void)

{

printf ("%d drives", setdisk(0)) ;

return 0;

}

Related Function

getdisk()

void _splitpath(const char *fpath, char *drive, char
*directory char *fname, char *extension)

Description
The prototype for _splitpath() is in <stdlib.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _splitpath() function dissects the full path name specified in the string pointed
to by fpath. The drive letter is put in the string pointed to by drive. The directory (and
any subdirectories) is put in the string pointed to by directory. The filename is put in the



Chapter 1: An Overview of C

| A Review of Terms

The terms that follow will be used frequently throughout the remainder of this book.
You should be completely familiar with their meaning.

Source code

Object code

Linker

Library

Compile time

Run time

The text of a program that a user can read; commonly
thought of as the program. The source code is input
into the C compiler.

Translation of the source code of a program into
machine code, which the computer can read and
execute directly. Object code is the input to the linker.

A program that links separately compiled functions
together into one program. It combines the functions in
the standard C library with the code that you wrote.
The output of the linker is an executable program.

The file containing the standard functions that can be
used by your program. These functions include all I/O
operations as well as other useful routines.

The events that occur while your program is being
compiled. A common occurrence during compile time
is a syntax error.

The events that occur while your program is executing.

13



This page intentionally left blank.



The

Complete L

Reference by

Variables, Gonstants,
Operators, and
Expressions

15



16

Borland C++ Builder: The Complete Reference

are the atomic elements of the C and C++ language. This chapter will examine

Variables and constants are manipulated by operators to form expressions. These
each element closely.

Identifier Names

The names that are used to reference variables, functions, labels, and various other
user-defined objects are called identifiers. Identifiers can vary from one to several
characters in length. C defines two kinds of identifiers: external and internal. An external
identifier will be involved in an external link process. These identifiers, called external
names, include function names and global variable names that are shared between
source files. If an identifier is not used in an external link process, then it is internal.
This type, called an internal name, includes the names of local variables, for example.
The C language guarantees that at least the first 6 characters are significant for an
external identifier, as are the first 31 characters for an internal identifier. C++ Builder
recognizes the first 250 characters as being significant. (In C++, all characters are
significant.)

In an identifier, the first character must be a letter or an underscore with subsequent
characters being either letters, numbers, or the underscore. Here are some examples of
correct and incorrect identifier names:

Correct Incorrect
Count lcount

test23 hilthere
high_balance high..balance

In C/C++, upper- and lowercase are treated differently. Hence, count, Count, and
COUNT are three separate identifiers. An identifier cannot be the same as a keyword,
and it should not have the same name as any function that you wrote or that is in the
standard library.

Data Types

There are five atomic data types in the C subset of C++: character, integer,
floating-point, double floating-point, and valueless. Values of type char are used to
hold ASCII characters or any 8-bit quantity. Variables of type int are used to hold
integer quantities. Variables of type float and double hold real numbers. (Real
numbers have both an integer and a fractional component.) The void type has three
uses. The first is to declare explicitly a function as returning no value; the second is to
declare explicitly a function as having no parameters; the third is to create generic
pointers. Each of these uses is discussed in subsequent chapters.



Chapter 2: Variables, Constants, Operators, and Expressions

| ANSI/ISO C99 added three more data types to the five basic types just listed: _Bool,
_Complex, and _Imaginary, but these are not part of the C subset of C++.

C supports several aggregate types, including structures, unions, bit fields,
enumerations, and user-defined types. These complex types are discussed in Chapter 7.

Type Modifiers

Except type void, the basic data types may have various modifiers preceding them. A
type modifier is used to alter the meaning of the base type to fit the needs of various
situations more precisely. The list of modifiers is shown here:

signed
unsigned
long
short

The modifiers signed, unsigned, long, and short can be applied to integer base
types. The character base type can be modified by unsigned and signed. You can also
apply long to double. Table 2-1 shows all valid data types, along with their bit widths
and ranges as implemented by C++ Builder.

The use of signed on integers is redundant (but allowed) because the default
integer declaration assumes a signed number.

The difference between signed and unsigned integers lies in the way the high-order
bit of the integer is interpreted. If a signed integer is specified, then the compiler will
generate code that assumes the high-order bit of an integer is to be used as a sign flag. If
the sign bit is 0, then the number is positive; if it is 1, then the number is negative. Here
is an overly simplified example:

127 in binaryis00000000 01111111
-127 in binaryis 10000000 01111111

sign bit

The reader is cautioned that virtually all computers (including those that run C++
Builder) use two’s complement arithmetic, which will cause the representation of 127
to appear different than the simplified example just shown. However, the use of the
sign bit is the same. To form the negative of a number in two’s complement form,
reverse all bits and add one to the number. For example, —127 in two’s complement
appears like this:

1111111110000001



18

Borland C++ Builder: The Complete Reference

Type Bit Width Range

char 8 -128 to 127

unsigned char 8 0 to 255

signed char 8 -128 to 127

int 32 —2,147,483,648 to
2,147 483,647

unsigned int 32 0 to 4,294,967,295

signed int 32 -2,147,483,648 to
2,147,483,647

short int 16 -32,768 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 -32,768 to 32,767

long int 32 -2,147,483,648 to
2,147,483,647

unsigned long int 32 0 to 4,294,967,295

signed long int 32 -2,147,483,648 to
2,147,483,647

float 32 1.18E-38 to 3.40E+38

double 64 2.23E-308 to 1.79E+308

long double 80 3.37E-4932 to 1.18E+4932

Table 2-1. The C Data Types as Implemented by C++ Builder

Signed integers are important for a great many algorithms, but they have only half
the absolute magnitude of their unsigned relatives. For example, here is 32,767:

0111111111111111

If the high-order bit were set to 1, the number would then be interpreted as —1.
However, if you had declared this to be unsigned, then when the high-order bit is set
to 1, the number becomes 65,535.



Chapter 2: Variables, Constants, Operators, and Expressions

Access Modifiers

C/C++ has two type modifiers that are used to control the ways in which variables
may be accessed or modified. These modifiers are called const and volatile.

Variables of type const may not be changed during execution by your program.
For example,

const int a;

will create an integer variable called a that cannot be modified by your program. It can,
however, be used in other types of expressions. A const variable will receive its value
either from an explicit initialization or by some hardware-dependent means. For
example, this gives count the value of 100:

const int count = 100;

Aside from initialization, no const variable can be modified by your program.

The modifier volatile is used to tell the compiler that a variable’s value can be
changed in ways not explicitly specified by the program. For example, a global
variable’s address can be passed to the clock routine of the operating system and used
to hold the time of the system. In this situation, the contents of the variable are altered
without any explicit assignment statements in the program. This is important because
C automatically optimizes certain expressions by making the assumption that the
content of a variable is unchanging inside that expression. Also, some optimizations
may change the order of evaluation of an expression during the compilation process.
The volatile modifier prevents these changes from occurring.

It is possible to use const and volatile together. For example, if 0x30 is assumed to
be the address of a port that is changed by external conditions only, then the following
declaration is precisely what you would want to prevent any possibility of accidental
side effects:

const volatile unsigned char *port = (const volatile char *) 0x30;

Declaration of Variables

As you probably know, a variable is a named location in memory that is used to hold a
value that can be modified by the program. All variables must be declared before they
are used. The general form of a declaration is shown here:

type variable_list;

19



20

Borland C++ Builder: The Complete Reference

Here, type must be a valid C data type and variable_list may consist of one or more
identifier names with comma separators. Some declarations are shown here:

int i, j, 1;
short int si;

unsigned int ui;

double balance, profit, loss;

Remember, the name of a variable has nothing to do with its type.

There are three basic places where variables can be declared: inside functions, in

the definition of function parameters, or outside all functions. These variables are
called local variables, formal parameters, and global variables, respectively.

Local Variables

Variables that are declared inside a function are called local variables. In some literature,
these variables may be referred to as automatic variables in keeping with the use of the
(optional) keyword auto that can be used to declare them. Since the term local variable
is more commonly used, this guide will continue to use it. Local variables can be
referenced only by statements that are inside the block in which the variables are
declared. Stated another way, local variables are not known outside their own code
block. You should remember that a block of code is begun when an opening curly
brace is encountered and terminated when a closing curly brace is found.

One of the most important things to understand about local variables is that they
exist only while the block of code in which they are declared is executing. That is,
a local variable is created upon entry into its block and destroyed upon exit.

The most common code block in which local variables are declared is the function.
For example, consider these two functions:

void funcl (void)

{

int x;

void func2 (void)

{

int x;

x = -199;



Chapter 2: Variables, Constants, Operators, and Expressions

The integer variable x was declared twice, once in func1() and once in func2().
The x in func1() has no bearing on, or relationship to, the x in func2() because each
x is only known to the code within the same block as the variable’s declaration.

The C language contains the keyword auto, which can be used to declare local
variables. However, since all nonglobal variables are assumed to be auto by default,
it is virtually never used and the examples in this book will not use it. (It has been said
that auto was included in C to provide for source-level compatibility with its
predecessor, B. Further, auto is supported in C++ to provide compatibility with C.)

It is common practice to declare all variables needed within a function at the start
of that function’s code block. This is done mostly to make it easy for anyone reading
the code to know what variables are used. However, it is not necessary to do this
because local variables can be declared within any code block. To understand how
this works, consider the following function:

void f (void)

{

int t;
scanf ("sd", &t);

if (t==1) {
char s[80]; /* s exists only inside this block */
printf ("enter name:");
gets(s);
process(s) ;

}

/* s is not known here */

Here, the local variable s is created upon entry into the if code block and destroyed
upon exit. Since s is known only within the if block, it may not be referenced
elsewhere—not even in other parts of the function that contains it.

There is one small restriction that you must observe when declaring local variables
when using C if you want the widest portability: they must be declared at the start of a
block, prior to any “action” statements. This restriction does not apply to C++.

One reason you might want to declare a variable within its own block, instead of
at the top of a function, is to prevent its accidental misuse elsewhere in the function. In
essence, declaring variables inside the blocks of code that actually use them allows you
to compartmentalize your code and data into more easily managed units.

Because local variables are destroyed upon exit from the function in which they
are declared, they cannot retain their values between function calls. (As you will see
shortly, however, it is possible to direct the compiler to retain their values through the
use of the static modifier.)

21



22 Borland C++ Builder: The Complete Reference

Unless otherwise specified, local variables are stored on the stack. The fact that the
stack is a dynamic and changing region of memory explains why local variables
cannot, in general, hold their values between function calls.

Formal Parameters

If a function is to use arguments, then it must declare variables that will accept the
values of the arguments. These variables are called the formal parameters of the function.
They behave like any other local variables inside the function. As shown in the
following program fragment, their declaration occurs inside the parentheses that
follow the function name.

/* return 1 if ¢ is part of string s; 0 otherwise */
int is_in(char *s, char c)
while (*g)
if (*s==c) return 1;
else s++;

return 0;

}

The function is_in() has two parameters: s and c. You must tell C what type of
variable these are by declaring them as just shown. Once this has been done, they may
be used inside the function as normal local variables. Keep in mind that, as local
variables, they are also dynamic and are destroyed upon exit from the function.

You must make sure that the formal parameters you declare are the same type as
the arguments you will use to call the function. If there is a type mismatch, unexpected
results can occur. Unlike many other languages, C is very robust and generally will do
something, even if it is not what you want. There are few run-time errors and no
bounds checking. As the programmer, you have to make sure that errors do not occur.

As with local variables, you may make assignments to a function’s formal
parameters or use them in any allowable expression. Even though these variables
perform the special task of receiving the value of the arguments passed to the function,
they can be used like any other local variable.

Global Variables

Unlike local variables, global variables are known throughout the entire program and
may be used by any piece of code. Also, they will hold their values during the entire
execution of the program. Global variables are created by declaring them outside of
any function. They may be accessed by any expression regardless of what function
that expression is in.



Chapter 2: Variables, Constants, Operators, and Expressions

In the following program, you can see that the variable count has been declared
outside of all functions. Although its declaration occurs before the main() function,
you could have placed it anywhere prior to its first use, as long as it was not in a
function. However, it is usually best to declare global variables at the top of the
program.

#include <stdio.h>
void funcl (void), func2 (void) ;
int count; /* count is global */

int main(void)
{
count = 100;
funcl () ;

return 0;

}

void funcl (void)
{
func2 () ;
printf ("count is %d", count); /* will print 100 */

}

void func2 (void)

{

int count;

for (count=1; count<l1l0; count++)
putchar (' ');

Looking closely at this program fragment, it should be clear that although neither
main( ) nor funcl() has declared the variable count, both may use it. However,
func2() has declared a local variable called count. When func2() references count, it
will be referencing only its local variable, not the global one. If a global variable and
a local variable have the same name, all references to that variable name inside the
function where the local variable is declared refer to the local variable and have no
effect on the global variable. This is a convenient benefit. However, forgetting this
can cause your program to act very strangely, even though it “looks” correct.

23



24 Borland C++ Builder: The Complete Reference

Storage for global variables is in a fixed region of memory set aside for this purpose
by the compiler. Global variables are very helpful when the same data is used in many

functions in your program. You should avoid using unnecessary global variables,
however, for three reasons:

1. They take up memory the entire time your program is executing, not just when

they are needed.

2. Using a global variable where a local variable will do makes a function less
general because it relies on something that must be defined outside itself.

3. Using a large number of global variables can lead to program errors because of

unknown, and unwanted, side effects.

One of the principal points of a structured language is the compartmentalization
of code and data. In C, compartmentalization is achieved through the use of local
variables and functions. For example, here are two ways to write mul()—a simple
function that computes the product of two integers:

Two Ways to Write mul( )

General Specific
intx,y;
int mul(int x, int y) int mul(void)
{ {
return(x*y); return(x*y);

} }

Both functions will return the product of the variables x and y. However, the
generalized, or parameterized, version can be used to return the product of any two
numbers, whereas the specific version can be used to find only the product of the
global variables x and y.

___| storage Class Specifiers

Four storage class specifiers are supported by C. They are
extern
static
register

auto



Chapter 2: Variables, Constants, Operators, and Expressions

These specifiers tell the compiler how to store the subsequent variable. The general
form of a variable declaration that uses one is shown here:

storage_specifier type var_name;

Notice that the storage specifier precedes the rest of the variable declaration. Each
specifier will be examined in turn.

| C++ adds another storage-class specifier called mutable, which is described
in Part Three.

extern

Because C allows separately compiled modules of a large program to be linked
together to speed up compilation and aid in the management of large projects, there
must be some way of telling all the files about the global variables required by the
program. The solution is to declare all of your globals in one file and use extern
declarations in the other, as shown in Table 2-2.

In File Two, the global variable list was copied from File One and the extern specifier
was added to the declarations. The extern specifier tells the compiler that the following
variable types and names have been declared elsewhere. In other words, extern lets the
compiler know what the types and names are for these global variables without
actually creating storage for them again. When the two modules are linked, all
references to the external variables are resolved.

In real world, multifile programs, extern declarations are normally contained in a
header file that is simply included with each source code file. This is both easier and
less error prone than manually duplicating extern declarations in each file.

When a declaration creates storage for a variable, it is called a definition. In general,
extern statements are declarations, but not definitions. (If an extern declaration
includes an initializer, it becomes a definition.) They simply tell the compiler that a
definition exists elsewhere in the program.

Here is another example that uses extern. Notice that the global variables first and
last are declared after main().

#include <stdio.h>

int main(void)

extern int first, last; /* use global vars */
printf ("$d %d", first, last);
return 0;

/* global definition of first and last */
int first = 10, last = 20;



26

Borland C++ Builder: The Complete Reference

File One File Two
intx,y; externint x, y;
char ch; extern char ch;
int main(void) void func22(void)
{ {

VA x=y / 10;
} }
void funcl(void) void func23(void)
{ {

x =123; y =10;
} }

Table 2-2. Using Global Variables in Separately Compiled Files

This program outputs 10 20 because the global variables first and last used by the
printf() statement are initialized to these values. Because the extern declaration tells
the compiler that first and last are declared elsewhere (in this case, later in the same
tile), the program can be compiled without error even though first and last are used
prior to their definition.

It is important to understand that the extern variable declarations as shown in the
preceding program are necessary only because first and last had not yet been declared
prior to their use in main(). Had their declarations occurred prior to main(), then
there would have been no need for the extern statement. Remember, if the compiler
finds a variable that has not been declared within the current block, the compiler
checks if it matches any of the variables declared within enclosing blocks. If it does not,
the compiler then checks the global variables. If a match is found, the compiler assumes
that that is the variable being referenced. The extern specifier is needed when you want
to use a variable that is declared later in the file.

static Variables

Variables declared as static variables are permanent variables within their own
function or file. They differ from global variables in that they are not known outside
their function or file but they maintain their values between calls. This feature makes



Chapter 2: Variables, Constants, Operators, and Expressions

them very useful when you write generalized functions and function libraries, which
may be used by other programmers. Because the effect of static on local variables is
different from its effect on global ones, they will be examined separately.

static Local Variables

When static is applied to a local variable, it causes the compiler to create permanent
storage for it in much the same way that it does for a global variable. The key
difference between a static local variable and a global variable is that the static local
variable remains known only to the block in which it is declared. In simple terms, a
static local variable is a local variable that retains its value between function calls.

It is very important to the creation of stand-alone functions that static local
variables are available because there are several types of routines that must preserve a
value between calls. If static variables were not allowed, then globals would have to be
used—opening the door to possible side effects. A simple example of how a static local
variable can be used is illustrated by the count() function in this short program:

#include <stdio.h>
#include <conio.h>

int count (int 1) ;

int main(void)

{
do {
count (0) ;
} while (!kbhit());
printf ("count called %d times", count(1l));
return 0;
}

int count (int i)

{

static int c¢=0;

if (i) return c;
else c++;

return 0;

}

27



28

Borland C++ Builder: The Complete Reference

Sometimes it is useful to know how many times a function has been executed
during a program run. While it is certainly possible to use a global variable for this
purpose, a better way is to have the function in question keep track of this information
itself, as is done by the count() function. In this example, if count() is called with a
value of 0 then the counter variable c is incremented. (Presumably in a real application,
the function would also perform some other useful processing.) If count() is called
with any other value, it returns the number of times it has been called. Counting the
number of times a function is called can be useful during the development of a
program so that those functions called most frequently can receive the most attention.

Another good example of a function that would require a static local variable is a
number series generator that produces a new number based on the last one. It is
possible for you to declare a global variable for this value. However, each time the
function is used in a program, you would have to remember to declare that global
variable and make sure that it did not conflict with any other global variables already
declared—a major drawback. Also, using a global variable would make this function
difficult to place in a function library. The better solution is to declare the variable that
holds the generated number to be static, as in this program fragment:

int series(void)

{

static int series num;

series num = series num+23;
return series num;

}

In this example, the variable series_num stays in existence between function calls,
instead of coming and going the way a normal local variable would. This means that
each call to series() can produce a new member of the series based on the last number
without declaring that variable globally.

You may have noticed something that is unusual about the function series() as it
stands in the example. The static variable series_num is never explicitly initialized.
This means that the first time the function is called, series_num will have the value
zero, by default. While this is acceptable for some applications, most series generators
will need a flexible starting point. To do this requires that series_num be initialized
prior to the first call to series(), which can be done easily only if series_num is a global
variable. However, avoiding having to make series_num global was the entire point of
making it static to begin with. This leads to the second use of static.

static Global Variables

When the specifier static is applied to a global variable, it instructs the compiler to
create a global variable that is known only to the file in which the static global variable
is declared. This means that even though the variable is global, other routines in other



Chapter 2: Variables, Constants, Operators, and Expressions

files have no knowledge of it and are unable to alter its contents directly; thus it is not
subject to side effects. For the few situations where a local static cannot do the job, you
can create a small file that contains only the functions that need the static global
variable, separately compile that file, and use it without fear of side effects.

To see how a static global variable can be used, the series generator example from
the previous section is recoded so that a starting “seed” value can be used to initialize
the series through a call to a second function called series_start( ). The entire file
containing series( ), series_start( ), and series_num follows:

/* This must all be in one file - preferably by itself */
static int series num;

int series(void) ;
void series_ start (int seed);

int series(void)

{

series num = series num + 23;
return series num;

}

/* initialize series num */
void series_start (int seed)

{
}

series num = seed;

Calling series_start() with some known integer value initializes the series
generator. After that, calls to series() will generate the next element in the series.

To review: The names of static local variables are known only to the function or
block of code in which they are declared; the names of static global variables are
known only to the file in which they reside. This means that if you place the series()
and series_start() functions in a separate file, you can use the functions, but you
cannot reference the variable series_num. It is hidden from the rest of the code in your
program. In fact, you may even declare and use another variable called series_num in
your program (in another file, of course) and not confuse anything. In essence, the
static modifier permits variables that are known only to the functions that need them,
without unwanted side effects.

By using static variables, you can hide portions of your program from other
portions. This can be a tremendous advantage when trying to manage a very large and
complex program. The static storage specifier lets you create generalized functions that
can go into libraries for later use.

29



30 Borland C++ Builder: The Complete Reference

register Variables

C has one last storage specifier that originally applied only to variables of type int,
char, or pointer types. However, when C was standardized, its scope was broadened.
The register specifier requests the compiler to store a variable declared with this
modifier in a manner that allows the fastest access time possible. For integers,
characters, and pointers, this typically means in a register of the CPU rather than in
memory, where normal variables are stored. For other types of variables, the compiler
may use any other means to decrease their access time. In fact, it can also simply ignore
the request altogether.

In C++ Builder, the register specifier can be applied to local variables and to
the formal parameters of a function. You cannot apply register to global variables.
Also, because a register variable may be stored in a register of the CPU, you cannot
obtain the address of a register variable. (This restriction applies only to C, not
to C++.)

In general, operations on register variables occur much faster than on variables
stored in main memory. In fact, when the value of a variable is actually held in the
CPU, no memory access is required to determine or modify its value. This makes
register variables ideal for loop control. Here is an example of how to declare a register
variable of type int and use it to control a loop. This function computes the result of M*
for integers.

int int pwr (register int m, register int e)

{

register int temp;
temp = 1;
for(; e; e--) temp *= m;

return temp;

}

In this example, m, e, and temp are declared to be register variables because they
are all used within the loop. In general practice, register variables are used where they
will do the most good, that is, in places where many references will be made to
the same variable. This is important because not all variables can be optimized for
access time.

It is important to understand that the register specifier is just a request to the
compiler, which the compiler is free to ignore. In general, you can count on at least
two register variables of type char or int actually being held in a CPU register for
any one function. Additional register variables will be optimized to the best ability
of the compiler.



Chapter 2: Variables, Constants, Operators, and Expressions

___ | Assignment Statements

The general form of the assignment statement is
variable_name = expression;

where an expression may be as simple as a single constant or as complex as a
combination of variables, operators, and constants. Like BASIC and FORTRAN,
C/C++ uses a single equal sign to indicate assignment (unlike Pascal or Modula-2,
which use the := construct). The target, or left part, of the assignment must be a
variable, not a function or a constant.

Multiple Assignments

You can assign many variables the same value by using multiple assignments in a
single statement. For example, this program fragment assigns x, y, and z the value 0:

In professional programs, variables are frequently assigned common values using this
method.

Type Conversion in Assignments

Type conversion refers to the situation in which variables of one type are mixed with
variables of another type. When this occurs in an assignment statement, the type
conversion rule is very easy: The value of the right (expression) side of the assignment is
converted to the type of the left side (target variable), as illustrated by this example:

int x;

char ch;

float £;

void func (void)

{
ch = x; /* line 1 */
x = £; /* line 2 */
f = ch; /* line 3 */
f = x; /* line 4 */

}

In line 1, the left, high-order bits of the integer variable x are lopped off, leaving
ch with the lower 8 bits. If x were between 255 and 0, ch and x would have identical
values. Otherwise, the value of ch would reflect only the lower order bits of x. In line 2,
x receives the nonfractional part of f. In line 3, f receives the 8-bit integer value stored
in ch, converted into floating-point format. In line 4, f receives the value of integer x
converted into floating-point format.



32

Borland C++ Builder: The Complete Reference

When converting from integers to characters, long integers to integers, and integers
to short integers, the basic rule is that the appropriate number of high-order bits will
be removed. For C++ Builder, 24 bits will be lost when converting from an integer to
a character, and 16 bits will be lost when converting from an integer or long integer to
a short integer.

Table 2-3 summarizes several common assignment type conversions as they relate
to the way that C++ Builder implements the built-in data types. You must remember
two important points that can affect the portability of the code you write:

1. The conversion of an int to a float, or a type float to double and so on, will not
add any precision or accuracy. These kinds of conversions will only change the
form in which the value is represented.

2. Some C compilers (and processors) will always treat a char variable as positive,
no matter what value it has when converting it to an integer or a floating-point
value. Other compilers may treat char variable values greater than 127 as
negative numbers when converting (as does C++ Builder). Generally speaking,
you should use char variables for characters, and use int, short int, or signed
char when needed to avoid a possible portability problem in this area.

To use Table 2-3 to make a conversion not directly shown, simply convert one type
at a time until you finish. For example, to convert from a double to an int, first convert
from a double to a float and then from a float to an int.

Target Type Expression Type Possible Info Loss

signed char unsigned char If value > 127, the targets
will be negative

char short int High-order 8 bits

char int High-order 24 bits

char long int High-order 24 bits

short int int High-order 16 bits

int long int None

int float Fractional part and
possibly more

float double Precision, result rounded

double long double Precision, result rounded

Table 2-3. The Outcome of Common Type Conversions for C++ Builder




Chapter 2: Variables, Constants, Operators, and Expressions

If you have used a computer language like Pascal, which prohibits this automatic
type conversion, you may think that C is very loose and sloppy. However, keep in
mind that C was designed to make the life of the programmer easier by enabling work
to be done in C rather than assembler. To do this, C has to allow such type conversions.

Variable Initializations

You can give variables a value at the time they are declared by placing an equal sign
and a constant after the variable name. This is called an initialization; its general form is:

type variable_name = constant;

Some examples are

char ch = rar;
int first = 0;
float balance = 123.23;

Global variables are initialized only at the start of the program. Local variables are
initialized each time the block in which they are declared is entered. However, static
local variables are only initialized once, at program startup and not each time the block
is entered. All global variables and static local variables are initialized to zero if no
other initializer is specified. Local variables that are not initialized will have
indeterminate values.

| constants

Constants refer to fixed values that may not be altered by the program. They can be of
any data type, as shown in Table 2-4. Constants are also called literals.

By default, floating-point constants are of type double. An integer constant is fit
into the smallest integer type that will hold it. Often, these defaults are adequate.
However, you can specify precisely the type of numeric constant you want by using
a suffix. For floating-point types, if you follow the number with an F, the number is
treated as a float. If you follow it with an L, the number becomes a long double. For
integer types, the U suffix stands for unsigned and the L for long. The type suffixes are
not case dependent, and you can use lowercase, if you like. For example, both F and {
specify a float constant.

C supports one other type of constant in addition to those of the predefined data
types. This is a string. All string constants are enclosed between double quotes, such
as "this is a test". You must not confuse strings with characters. A single character
constant is enclosed by single quotes, such as 'a'. Because strings are simply arrays of
characters, they will be discussed in Chapter 5.



34 Borland C++ Builder: The Complete Reference

Data Type Constant Examples
char a9
int 1 123 21000 -234
long int 35000L -34L
short int 10 -12 90
unsigned int 10000U 987U 40000U
float 123.23F 4.34e-3F
double 123.23 12312.333 -0.9876324
long double 1001.2L
Table 2-4. Constant Examples for Data Types

Backslash Character Constants

Enclosing all character constants in single quotes works for most printing characters,
but a few, such as the carriage return, are impossible to enter from the keyboard. For
this reason, C supplies the special backslash character constants, shown in Table 2-5.
These are also referred to as escape sequences.

You use a backslash code exactly the same way you would any other character.
For example,

ch = "\t';
printf ("$c this is a test\n", ch);

first assigns a tab to ch and then prints a tab, "this is a test", and then a new line.

Code Meaning
\b Backspace
\f Form feed
\n Newline

Table 2-5. Backslash Codes




Chapter 2: Variables, Constants, Operators, and Expressions

Code Meaning
\r Carriage return
\t Horizontal tab
\" Double quote
N Single quote
\O Null
AN\ Backslash
\v Vertical tab
\a Alert
\? Question mark
\N Octal constant (where N is an octal value)
\xN Hexadecimal constant (where N is a
hexadecimal value.
Table 2-5. Backslash Codes (continued)

___| Operators

Cis very rich in built-in operators. An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations. There are four general classes
of operators in C: arithmetic, relational, logical, and bitwise. In addition, there are some
special operators for particular tasks.

Arithmetic Operators

Table 2-6 lists C’s arithmetic operators. The operators +, —, *, and / all work the same way
in C as they do in most other computer languages. They can be applied to almost any
built-in data type allowed by C. When / is applied to an integer or character, any
remainder is truncated; for example, 10 / 3 equals 3 in integer division.

The modulus division operator (%) also works in C the way it does in other
languages. Remember that the modulus division operation yields the remainder of



36 Borland C++ Builder: The Complete Reference

Operator Action

- Subtraction, also unary minus

+ Addition

* Multiplication
/ Division

% Modulus

—— Decrement

++ Increment

Table 2-6. Arithmetic Operators

an integer division. However, as such, % cannot be used on type float or double. The
following code fragment illustrates its use:

int x, y;

X = 10;

Yy = 3;

printf ("sd", x/vy); /* will display 3 */

printf ("$d", x%y); /* will display 1, the remainder of
the integer division */

X = 1;

y = 2;

printf ("%d %d4d", x/y, x%y); /* will display 0 1 */

The reason the last line prints a 0 and 1 is because 1/ 2 in integer division is 0 with a
remainder of 1. 1 % 2 yields the remainder 1.

The unary minus, in effect, multiplies its single operand by —1. That is, any number
preceded by a minus sign switches its sign.



Chapter 2: Variables, Constants, Operators, and Expressions 37

Increment and Decrement

C allows two very useful operators not generally found in other computer languages.
These are the increment and decrement operators, ++ and ——. The operation ++ adds 1
to its operand, and —— subtracts 1. Therefore, the following are equivalent operations:

is the same as

++X;

Also,

is the same as
—-x;

Both the increment and decrement operators may either precede or follow the
operand. For example,

can be written
++X;

or
X++;

However, there is a difference when they are used in an expression. When an
increment or decrement operator precedes its operand, C performs the increment or
decrement operation prior to obtaining the operand’s value. If the operator follows its



38 Borland C++ Builder: The Complete Reference
operand, C obtains the operand’s value before incrementing or decrementing it.
Consider the following:

10;

++X;

x
Y

In this case, y is set to 11. However, if the code had been written as

10;

X++;

X
Y

y would have been set to 10. In both cases, x is set to 11; the difference is when it
happens. There are significant advantages in being able to control when the increment
or decrement operation takes place.

The precedence of the arithmetic operators is as follows:

highest ++ —=
— (unary minus)
VAR
lowest + -

Operators on the same precedence level are evaluated by the compiler from left to
right. Of course, parentheses may be used to alter the order of evaluation. Parentheses
are treated by C in the same way they are by virtually all other computer languages:
They give an operation, or set of operations, a higher precedence level.

Relational and Logical Operators

In the term relational operator the word relational refers to the relationships values

can have with one another. In the term logical operator the word logical refers to the
ways these relationships can be connected together using the rules of formal logic.
Because the relational and logical operators often work together, they will be discussed
together here.

The key to the concepts of relational and logical operators is the idea of true and
false. In C, true is any value other than 0. False is 0. Expressions that use relational or
logical operators will return O for false and 1 for true.

Table 2-7 shows the relational and logical operators. The truth table for the logical
operators is shown here using 1s and Os:



Chapter 2: Variables, Constants, Operators, and Expressions

p q p&&q plliq Ip
0 0 0 1
0 1 0 1 1
1 1 1 1 0
1 0 0 1 0

Both the relational and logical operators are lower in precedence than the
arithmetic operators. This means that an expression like 10 > 1 + 12 is evaluated as if it
were written 10 > (1 + 12). The result is, of course, false.

Several operations can be combined in one expression, as shown here:

10>5 && 1(10<9) | | 3<=4

which will evaluate true.

Relational Operators

Operator Action

> Greater than

>= Greater than or equal
< Less than

<= Less than or equal
== Equal

I= Not equal

Logical Operators

Operator Action
&& AND
| OR

! NOT

Table 2-7. Relational and Logical Operators

39



40

Borland C++ Builder: The Complete Reference

The following shows the relative precedence of the relational and logical operators:

highest !

lowest I

As with arithmetic expressions, it is possible to use parentheses to alter the natural
order of evaluation in a relational or logical expression. For example,

1 && 0

will be false because the ! is evaluated first, then the && is evaluated. However, when
the same expression is parenthesized as shown here, the result is true:

(1 && 0)

Remember, all relational and logical expressions produce a result of either 0 or 1.
Therefore the following program fragment is not only correct but also prints the
number 1 on the display:

int x;

X = 100;
printf ("%d", x > 10);

Bitwise Operators

Unlike many other languages, C supports a complete complement of bitwise operators.
Since C was designed to take the place of assembly language for most programming
tasks, it needed the capability to support many operations that can be done in
assembler. Bitwise operations are the testing, setting, or shifting of the actual bits in a
byte or word, which correspond to the standard char and int data types and variants.
Bitwise operators cannot be used on type float, double, long double, void, or other
more complex types. Table 2-8 lists these operators.

The bitwise AND, OR, and NOT (one’s complement) are governed by the same
truth table as were their logical equivalents except that they work on a bit-by-bit level.
The exclusive OR ” has the truth table shown here:

p q p7q
0 0 0
0 1 1
1 0 1
1 1 0



Chapter 2: Variables, Constants, Operators, and Expressions

Operator Action

& AND

I OR

N Exclusive OR (XOR)
~ One’s complement
>> Shift right

<< Shift left

Table 2-8. The Bitwise Operators

As the table indicates, the outcome of an XOR is true only if exactly one of the
operands is true; it is false otherwise.

Bitwise operations most often find application in device drivers, such as modem
programs, disk file routines, and printer routines, because the bitwise operations
can be used to mask off certain bits, such as parity. (The parity bit is used to confirm
that the rest of the bits in the byte are unchanged. It is usually the high-order bit
in each byte.)

The bitwise AND is most commonly used to turn bits off. That is, any bit that is 0 in
either operand causes the corresponding bit in the outcome to be set to 0. For example,
the following function reads a character from the modem port using the function
read_modem() and resets the parity bit to 0:

char get char from modem(void)

{

char ch;

ch = read modem(); /* get a character from the
modem port */
return(ch & 127);

}

Parity is indicated by the eighth bit, which is set to 0 by ANDing it with a byte that
has bits 1 through 7 set to 1 and bit 8 set to 0. The expression ch & 127 means to AND
together the bits in ch with the bits that make up the number 127. The net result is that

41



42 Borland C++ Builder: The Complete Reference

the eighth bit of ch will be set to 0. In the following example, assume that ch had
received the character ‘A’ and had the parity bit set:

parity bit

11000001
01111111

01000001

ch containing an 'A' with parity bit set
127 in binary

do bitwise AND

'A' without parity

The bitwise OR, as the reverse of AND, can be used to turn bits on. Any bit that is
set to 1 in either operand causes the corresponding bit in the outcome to be set to 1. For

example, 128 | 3 is

10000000
00000011

10000011

128 in binary
3 in binary
bitwise OR

result

An exclusive OR, usually abbreviated XOR, will turn a bit on only if the bits being
compared are different. For example, 127 A 120 is

01111111
01111000

00000111

127 in binary
120 in binary
bitwise XOR

result

In general, bitwise ANDs, ORs, and XORs apply their operations directly to each bit
in the variable individually. For this reason, among others, bitwise operators are not
usually used in conditional statements the way the relational and logical operators
are. For example if x = 7, then x && 8 evaluates to true (1), whereas x & 8 evaluates

to false (0).

R Relational and logical operators always produce a result that is either 0 or 1, whereas
emember e . ; . .
the similar bitwise operations may produce any arbitrary value in accordance with the
specific operation. In other words, bitwise operations may create values other than 0 or
1, while the logical operators will always evaluate to 0 or 1.



Chapter 2: Variables, Constants, Operators, and Expressions

The shift operators, >> and <<, move all bits in a variable to the right or left as
specified. The general form of the shift right statement is

variable >> number of bit positions
and the shift left statement is
variable << number of bit positions

As bits are shifted off one end, bits are brought in the other end. Remember, a shift is
not a rotate. That is, the bits shifted off one end do not come back around to the other.
The bits shifted off are lost, and Os are brought in. However, a right shift of a negative
number shifts in ones. (This maintains the sign bit.)

Bit shift operations can be very useful when decoding external device input, like
D/A converters, and reading status information. The bitwise shift operators can also
be used to perform very fast multiplication and division of integers. A shift left will
effectively multiply a number by 2, and a shift right will divide it by 2, as shown
in Table 2-9.

The one’s complement operator, ~, will reverse the state of each bit in the specified
variable. That is, all 1s are set to 0, and all Os are set to 1.

The bitwise operators are used often in cipher routines. If you wished to make a
disk file appear unreadable, you could perform some bitwise manipulations on it.
One of the simplest methods would be to complement each byte by using the one’s
complement to reverse each bit in the byte as shown here:

Original byte 00101100
After 1** complement 11010011 — same
After 2" complement 00101100

Notice that a sequence of two complements in a row always produces the original
number. Hence, the first complement would represent the coded version of that byte.
The second complement would decode it to its original value.

You could use the encode() function shown here to encode a character:

/* A simple cipher function. */
char encode (char ch)

{

return(~ch); /* complement it */

}



44 Borland C++ Builder: The Complete Reference

x as Each Statement

Executes Value of x

char x;

xX=7 00000111 7
x=x<<1; 00001110 14
X=X<<3; 01110000 112
X=X<<2; 11000000 192
XxX=x>>1; 01100000 96
X=X >> 2; 00011000 24

Each left shift multiplies by 2. You should notice that information has been lost after x << 2 because a
bit was shifted off the end.

Each right shift divides by 2. Notice that subsequent division will not bring back any lost bits.

Table 2-9. Multiplication and Division with Shift Operators

The ? Operator

C has a very powerful and convenient operator that can be used to replace certain
statements of the if-then-else form. The ternary operator ? takes the general form

Expl ? Exp2 : Exp3

where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The ? operator works like this. Exp1 is evaluated. If it is true, then Exp2 is evaluated
and becomes the value of the expression. If Exp1 is false, then Exp3 is evaluated and its
value becomes the value of the expression. For example:

x = 10;
y = x>9 ? 100 : 200;



Chapter 2: Variables, Constants, Operators, and Expressions

Here, y will be assigned the value 100. If x had been less than or equal to 9, y would
have received the value 200. The same code written using the if/else statement
would be:

x = 10;
if(x>9) y = 100;
else y = 200;

The ? operator will be discussed more fully in Chapter 3 in relationship to C’s other
conditional statements.

The & and * Pointer Operators

A pointer is the memory address of a variable. A pointer variable is a variable that is
specifically declared to hold a pointer to a value of its specified type. Knowing a
variable’s address can be of great help in certain types of routines. Pointers have
three main uses in C:

1. They can provide a very fast means of referencing array elements.
2. They allow C functions to modify their calling parameters.

3. They support dynamic data structures, such as linked lists.

These topics and uses will be dealt with in Chapter 6, which is devoted exclusively
to pointers. However, the two operators that are used to manipulate pointers will be
presented here.

The first pointer operator is &. It is a unary operator that returns the memory
address of its operand. Remember that a unary operator only requires one operand.
For example,

m = &count;

places into m the memory address of the variable count. This address is the computer’s
internal location of the variable. It has nothing to do with the value of count. The
operation of the & can be remembered as returning the “the address of.” Therefore, the
preceding assignment statement could be read as “m receives the address of count.”

To better understand the preceding assignment, assume the variable count resides
at memory location 2000. Also assume that count has a value of 100. After this
assignment, m will have the value 2000.



46

Borland C++ Builder: The Complete Reference

The second operator, *, is the complement of the &. It is a unary operator that
returns the value of the object located at the address that follows. For example, if m contains
the memory address of the variable count, then

q = *m;

places the value of count into q. Following the preceding example, q will have the
value 100 because 100 is stored at location 2000, which is the memory address that was
stored in m. The operation of the * can be remembered as “at address.” In this case, the
statement could be read as “q receives the value at address m.”

Unfortunately, the multiplication sign and the "at address" sign are the same, and
the bitwise AND and the "address of" sign are the same. These operators have no
relationship to each other. Both & and * have a higher precedence than the binary
arithmetic operators.

Variables that will hold memory addresses, or pointers as they are called in C, must
be declared by putting a * in front of the variable name to indicate to the compiler that
it will hold a pointer to that type of variable. For example, to declare a char pointer
variable called pch, you would write

char *pch;

Here, pch is not a character, but rather a pointer to a character—there is a big
difference. The type of data that a pointer will be pointing to, in this case char, is called
the base type of the pointer. However, the pointer variable itself is a variable that will be
used to hold the address to an object of the base type. Hence, a character pointer (or
any pointer, for that matter) will be of sufficient size to hold an address as defined by
the architecture of the computer on which it is running. The key point to remember is
that a pointer should only be used to point to data that is of that pointer’s base type.

You can mix both pointer and nonpointer directives in the same declaration
statement. For example,

int x, *y, count;

declares x and count to be integer types, and y to be a pointer to an integer type.
Here, the * and & operators are used to put the value 10 into a variable
called target:

#include <stdio.h>

/* Assignment with * and &. */
int main(void)



Chapter 2: Variables, Constants, Operators, and Expressions

int target, source;
int *m;

source = 10;
m = &source;
target = *m;

printf ("%d", target);

return 0;

The sizeof Compile-Time Operator

The sizeof operator is a unary compile-time operator that returns the length, in bytes,
of the variable or parenthesized type-specifier it precedes. For example, assuming that
integers are four bytes and doubles are eight bytes, this fragment will display 8 4.

double f;

printf ("$f ", sizeof f);
printf ("$d", sizeof (int));

Remember that to compute the size of a type, you must enclose the type name in
parentheses (like a cast, which is explained later in this chapter). This is not necessary
for variable names.

The principal use of sizeof is to help generate portable code when that code
depends upon the size of the built-in data types. For example, imagine a database
program that needs to store six integer values per record. If you want to port the
database program to a variety of computers, you must not assume the size of an
integer, but determine its actual length using sizeof. This being the case, you could
use the following routine to write a record to a disk file:

/* Write 6 integers to a disk file */
void put rec(FILE *fp, int rec(6])

{

int size, num;

size = sizeof (int) * 6;
num = fwrite(rec, size, 1, fp);
if (num!=1) printf ("Write Error");

47



48

Borland C++ Builder: The Complete Reference

The key point of this example is that, coded as shown, put_rec() will compile and
run correctly on any computer—including those that use 16- and 32-bit integers. One
final point: sizeof is evaluated at compile time, and the value it produces is treated as
a constant within your program.

The Comma Operator

The comma operator strings together several expressions. The left side of the comma
operator is always evaluated as void. This means that the expression on the right side
will become the value of the total comma-separated expression. For example,

x = (y=3, y+1);

tirst assigns y the value 3 and then assigns x the value of 4. The parentheses are
necessary because the comma operator has a lower precedence than the assignment
operator.

Essentially, the comma causes a sequence of operations to be performed. When you
use it on the right side of an assignment statement, the value assigned is the value of
the last expression of the comma-separated list. For example:

10;
(y=y-5, 25/y);

Y
x

After execution, x will have the value 5 because y’s original value of 10 is reduced by 5,
and then that value is divided into 25, yielding 5 as the result.

The comma operator has somewhat the same meaning as the word “and” in
English, as used in the phrase “do this and this and this.”

The Dot (.) and Arrow ( —>) Operators

The . (dot) and —> (arrow) operators access individual elements of structures and
unions. Structures and unions are compound data types that can be referenced under a
single name. Structures and unions are thoroughly covered in Chapter 7, but a short
discussion of the operators used with them is given here.

The dot operator is used when working with a structure or union directly. The
arrow operator is used with a pointer to a structure or union. For example, given
the fragment,

struct employee {
char name[80] ;
int age;
float wage;



Chapter 2: Variables, Constants, Operators, and Expressions

} emp;

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of
structure variable emp:

emp.wage = 123.23;
However, the same assignment using a pointer to structure emp would be

p->wage = 123.23;

The [ ] and ( ) Operators

Parentheses are operators that increase the precedence of the operations inside them.
Square brackets perform array indexing (arrays are discussed fully in Chapter 5).
Given an array, the expression within square brackets provides an index into that
array. For example,

#include <stdio.h>
char s[80];

int main(void)

{
s[3] = 'Xr;
printf ("%c", s[31);
return 0;
!

first assigns the value 'X' to the fourth element (remember, all arrays begin at 0) of
array s, and then prints that element.

Precedence Summary

Table 2-10 lists the precedence of all operators defined by C. Note that all operators,
except the unary operators and ?, associate from left to right. The unary operators
(*, &, -) and ? associate from right to left.

49



50 Borland C++ Builder: The Complete Reference

Highest O[] - .
'~ 44+ —— + — (type) * & sizeof
) %

= *= /: O/O: 4= —= &: N= |: <L= >>=

Lowest ,

Table 2-10. Precedence of C Operators

| Expressions

Operators, constants, functions, and variables are the constituents of expressions. An
expression is any valid combination of these elements. Because most expressions tend to
follow the general rules of algebra, they are often taken for granted. However, a few
aspects of expressions relate specifically to C.

Type Conversion in Expressions

When constants and variables of different types are mixed in an expression, they are all
converted to the same type. The compiler converts all operands “up” to the type of the
largest operand, which is called type promotion. First, all char and short int values are
automatically elevated to int. This process is called integral promotion. Once this step
has been completed, all other conversions are done operation by operation, as
described in the following type conversion algorithm:



Chapter 2: Variables, Constants, Operators, and Expressions

IF an operand is a long double

THEN the second is converted to long double
ELSE IF an operand is a double

THEN the second is converted to double
ELSE IF an operand is a float

THEN the second is converted to float

ELSE IF an operand is an unsigned long
THEN the second is converted to unsigned long
ELSE IF an operand is long

THEN the second is converted to long

ELSE IF an operand is unsigned int

THEN the second is converted to unsigned int

There is one additional special case: If one operand is long and the other is
unsigned int, and if the value of the unsigned int cannot be represented by a long,
both operands are converted to unsigned long.

Once these conversion rules have been applied, each pair of operands is of the same
type, and the result of each operation is the same as the type of both operands.

For example, consider the type conversions that occur in Figure 2-1. First, the
character ch is converted to an integer. Then the outcome of ch/i is converted to a
double because f * d is double. The outcome of f + i is float, because f is a float. The
final result is double.

Casts

You can force an expression to be of a specific type by using a cast. The general form of
a cast is:

(type) expression

where type is valid data type. For example, to cause the expression x / 2 to evaluate to
type float, write:

(float) x/2



52 Borland C++ Builder: The Complete Reference

char ch;

int i;

float f;

double d;

result=(ch/i) + (f*d) - f+});
int double float
int double float

double
double

Figure 2-1. An example of type conversion

Casts are technically operators. As an operator, a cast is unary and has the same
precedence as any other unary operator.

Casts can be very useful. For example, suppose you want to use an integer for loop
control, yet to perform computation on it requires a fractional part, as in the following
program:

#include <stdio.h>

/* Print i1 and i/2 with fractions. */
int main(void)

{
int 1i;
for(i=1; 1i<=100; ++1i )
printf("$d / 2 is: %f\n", i, (float) 1i/2);
return O;
!

Without the cast (float), only an integer division would have been performed; but the
cast ensures that the fractional part of the answer is displayed.

| C++ adds four additional casting operators, which are described in Part Three.



Chapter 2: Variables, Constants, Operators, and Expressions

Spacing and Parentheses

To aid readability, an expression may have tabs and spaces added in it at your
discretion. For example, the following two expressions are the same.

x=10/y~(127/%) ;
x =10 / y ~(127/%);

Redundant or additional parentheses do not cause errors or slow down the
execution of an expression. You should use parentheses to clarify the exact order of
evaluation, both for yourself and for others. For example, which of the following
two expressions is easier to read?

X=y/3-34*temp&l27;

x = (y/3) - (34*temp) & 127;

C Shorthand

C has a special shorthand that simplifies the coding of a certain type of assignment
statement. For example

X = X + 10;

can be written, in C shorthand, as

The operator pair += tells the compiler to assign the value of x plus 10 to x. This type of
assignment is formally called a compound assignment.

This shorthand works for all binary operators (those that require two operands).
The general form of the shorthand

var = var operator expression;
is the same as

var operator = expression;



Borland C++ Builder: The Complete Reference

Here is another example,
X = x - 100;

is the same as
x -= 100;

You will see compound assignments used widely in professionally written
C/C++ programs.



The

Complete L

Reference by

Program Control
Statements

55



56 Borland C++ Builder: The Complete Reference

his chapter discusses C/C++’s rich and varied program control statements.
I C and C++ categorize statements into these groups:

Selection

Iteration

Label
Expression
B Block

|
|
B Jump
|
|

The selection statements are the if and switch. The term conditional statement is
often used in place of selection statement. The iteration statements are while, for, and
do/while. These are also commonly called loop statements. The jump statements are
break, continue, goto, and return. The label statements include the case and default
statements (discussed along with the switch statement) and the label statement itself
(discussed with goto). Expression statements are statements composed of a valid
expression. Block statements are simply blocks of code. (A block begins with a { and
ends with a }.) Block statements are also referred to as compound statements.

Since many statements rely upon the outcome of some conditional test, let’s begin
by reviewing the concepts of true and false.

| True and False

Many C/C++ statements rely on a conditional expression that determines what course
of action is to be taken. The conditional expression evaluates to either a true or false
value. Unlike many other computer languages that specify special values for true and
false, a true value in C/C++ is any nonzero value, including negative numbers.

A false value is zero. This approach to true and false allows a wide range of routines to
be coded very efficiently.

| C++ also defines the values true and false, which stand for the two Boolean values,
but they are not supported by the C subset. See Part Three for details.

Selection Statements

C/C++ supports two types of selection statements: if and switch. In addition, the ?
operator is an alternative to if in certain circumstances.




Chapter 3: Program Control Statements

| if
The general form of the if statement is

if(expression) statement;
else statement;

where statement may consist of a single statement, a block of statements, or nothing (in
the case of empty statements). The else clause is optional.
The general form of the if using a block of statements is

if(expression) {
statement sequence
|
else {
statement sequence

}

If expression evaluates to true (anything other than 0), the statement or block that
forms the target of the if is executed; otherwise, the statement or block that is the target
of the else is executed. Remember, only the code associated with the if or the code that
is associated with the else executes, never both.

For example, consider the following program, which plays a very simple version
of the “guess the magic number” game. It prints the message “** Right **” when the
player guesses the magic number.

#include <stdio.h>

/* Magic number program. */
int main(void)

int magic = 123; /* magic number */
int guess;

printf ("Enter your guess: ");
scanf ("%d", &guess) ;

if (guess == magic) printf("** Right **");

return 0;

}

This program uses the equality operator to determine whether the player’s guess
matches the magic number. If it does, the message is printed on the screen.

57



58 Borland C++ Builder: The Complete Reference

Taking the magic number program further, the next version illustrates the use
of the else statement to print a message in response to the wrong number.

#include <stdio.h>

/* Magic number program - improvement 1. */
int main(void)
int magic = 123; /* magic number */

int guess;

printf ("Enter your guess: ");
scanf ("%d", &guess) ;

if (guess == magic) printf ("** Right **");
else printf(".. Wrong ..");

return 0;

Nested ifs

One of the most confusing aspects of if statements is nested ifs. A nested if is an if that
is the target of another if or else. The reason that nested ifs are so troublesome is that it
can be difficult to know what else associates with what if. For example:

if (%)
if(y) printf("1i");
else printf("2");

To which if does the else refer? Fortunately, there is a very simple rule for resolving
this type of situation. The else is associated with the closest preceding if (at the same
scope level) that does not already have an else statement associated with it. In this case,
the else is associated with the if(y) statement. To make the else associate with the if(x),
you must use braces to override its normal association, as shown here:

if (x) {
if(y) printf("1i");

}

else printf("2");



Chapter 3: Program Control Statements

The else is now associated with the if(x) because it is no longer part of the if(y) block.
Because of the scope rules, the else now has no knowledge of the if(y) statement because
they are no longer in the same block of code.

You can use a nested if to further improve the magic number program by providing
the player with feedback about how close each guess is.

#include <stdio.h>

/* Magic number program - improvement 2. */
int main(void)
int magic = 123; /* magic number */

int guess;

printf ("Enter your guess: ");
scanf ("%d", &guess) ;

if (guess == magic) {
printf ("** Right ** ");
printf ("$d is the magic number", magic) ;
}
else {
printf(".. Wrong .. ");
if (guess > magic) printf ("Too high");
else printf ("Too low");

}

return 0;

The if-else-if Ladder

A common programming construct is the if-else-if ladder, sometimes called the if-else-if
staircase because of its appearance. Its general form is

if (expression)
statement;

else if (expression)
statement;

else if (expression)
statement;

59



60 Borland C++ Builder: The Complete Reference

else
statement;

The conditions are evaluated from the top downward. As soon as a true condition
is found, the statement associated with it is executed and the rest of the ladder is
bypassed. If none of the conditions are true, the final else is executed. The final else
often acts as a default condition; that is, if all other conditional tests fail, the last else
statement is performed. If the final else is not present, then no action takes place
if all other conditions are false.

Using an if-else-if ladder, the magic number program becomes

#include <stdio.h>

/* Magic number program - improvement 3. */
int main (void)
int magic = 123; /* magic number */
int guess;
printf ("Enter your guess: ");
scanf ("%d", &guess) ;

if (guess == magic) {
printf ("** Right ** ");
printf ("$d is the magic number", magic) ;

}

else if (guess > magic)
printf(".. Wrong .. Too High");
else printf(".. Wrong .. Too low");

return 0;

The ? Alternative

You can use the ? operator to replace if-else statements of the general form:

if(condition) expression;
else expression;



Chapter 3: Program Control Statements

The key restriction is that the target of both the if and the else must be a single
expression—not another statement.

The ? is called a ternary operator because it requires three operands. It takes the
general form

Expl ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The value of a ? expression is determined as follows. Exp1 is evaluated. If it is

true, Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1

is false, then Exp3 is evaluated and its value becomes the value of the expression.

For example, consider

x = 10;
y x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than or equal to 9, y
would have received the value 200. The same code written using the if-else statement
would be

x = 10;
if(x>9) y = 100;

else y = 200;

The use of the ? operator to replace if-else statements is not restricted to assignments
only. Remember, all functions (except those declared as void) return a value. Thus,
you can use one or more function calls in a ? expression. When the function’s name is
encountered, the function is executed so that its return value can be determined.
Therefore, you can execute one or more function calls using the ? operator by placing
the calls in the expressions that form the ?’s operands. Here is an example:

#include <stdio.h>
int f1(int n), £2(void) ;

int main(void)

{

int t;

printf ("Enter a number: ");
scanf ("%d", &t);
/* print proper message */

61



62 Borland C++ Builder: The Complete Reference

t ? £f1(t) + £2() : printf("zero entered.");

return 0;

int f1(int n)

{
printf ("$d ",n);
return O;

int f£2(void)

{
printf ("entered ") ;
return 0;

The program first prompts the user for a value. Entering 0 causes the printf()
function to be called, which displays the message zero entered. If you enter any other
number, both f1() and f2() execute. Note that the value of the ? expression is discarded
in this example. You don’t need to assign it to anything. Even though neither f1() nor
f2() returns a meaningful value, they cannot be defined as returning void because doing
so prevents their use in an expression. Therefore, the functions simply return zero.

Using the ? operator, you can rewrite the magic number program again as
shown here:

#include <stdio.h>

/* Magic number program - improvement 4. */
int main(void)

int magic = 123; /* magic number */

int guess;

printf ("Enter your guess: ");
scanf ("$d", &guess);
if (quess == magic)
printf ("** Right ** ");
printf ("$d is the magic number", magic) ;
}
else
guess > magic ? printf ("High") : printf ("Low") ;



Chapter 3: Program Control Statements
return 0;

Here, the ? operator displays the proper message given the outcome of the test
guess > magic.

| switch

Although the if-else-if ladder can perform multiway tests, it is hardly elegant. The
code can be difficult and confusing to follow. For these reasons, C/C++ has a built-in
multiple-branch selection statement, called switch, which successively tests the value
of an expression against a list of integer or character constants. When a match is found,
the statements associated with that constant are executed. The general form of the
switch statement is

switch(expression) {

case constant1:
statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence
break;

default:
statement sequence

J

The default statement is executed if no matches are found. The default is optional,
and if it is not present, no action takes place if all matches fail. When a match is found,
the statement sequence associated with that case is executed until the break statement
or the end of the switch statement is reached.

There are three important things to know about the switch statement:

1. The switch differs from the if in that switch can only test for equality, whereas
if can evaluate any type of relational or logical expression.

2. No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch may have case constants of the
same value.

63



64 Borland C++ Builder: The Complete Reference

3. If character constants are used in the switch statement, they are automatically
converted to integer (as specified by the type conversion rules).

The switch statement is often used to process keyboard commands, such as menu
selection. As shown here, the function menu() displays a menu for a spelling-checker
program and calls the proper procedures:

void menu (void)

{

char ch;

printf ("1. Check Spelling\n");

printf ("2. Correct Spelling Errors\n") ;
printf ("3. Display Spelling Errors\n") ;
printf ("Strike Any Other Key to Skip\n");
printf (" Enter your choice: ");

ch = getche(); /* read the selection from the keyboard */

switch(ch) {

case 'l':
check _spelling() ;
break;

case '2':
correct_errors() ;
break;

case '3':
display errors();
break;

default
printf ("No option selected") ;

Technically, the break statements inside the switch statement are optional. They
terminate the statement sequence associated with each constant. If the break statement
is omitted, execution continues on into the next case’s statements until either a break or
the end of the switch is reached. You can think of the cases as labels. Execution starts at
the label that matches and continues until a break statement is found, or the switch
ends. For example, the following function uses the “drop through” nature of the cases
to simplify the code for a device-driver input handler:

void inp handler (void)

{

int ch, flag;



Chapter 3: Program Control Statements 65

ch = read device(); /* read some sort of device */
flag = -1;

switch(ch) {

case 1: /* these cases have common statement */
case 2: /* sequences */
case 3:

flag = 0;

break;
case 4:

flag = 1;
case 5:

error (flag) ;

break;
default:

process (ch) ;

This example illustrates two aspects of switch. First, you can have case statements
that have no statement sequence associated with them. When this occurs, execution
simply drops through to the next case. In this example, the first three cases all execute
the same statements, which are

flag = 0;
break;

Second, execution of one statement sequence continues into the next case if
no break statement is present. If ch matches 4, flag is set to 1 and, because there is no
break statement at the end of the case, execution continues and the call to error(flag)
is executed. In this case, flag has the value 1. If ch had matched 5, error(flag) would
have been called with a flag value of -1 (rather than 1). The fact that cases can run
together when no break is present prevents the unnecessary duplication of statements,
resulting in more efficient code.

Nested switch Statements
You can have a switch as part of the statement sequence of an outer switch. Even if the
case constants of the inner and outer switch contain common values, no conflicts arise.
For example, the following code fragment is perfectly acceptable:

switch(x) {
case 1:



66 Borland C++ Builder: The Complete Reference

switch(y) {
case 0: printf ("Divide by zero error.");

break;
case 1: process(x,Y);
break;
}
break;
case 2:

___| Iteration Statements (Loops)

Iteration statements (also called loops) allow a set of instructions to be repeatedly
executed until a certain condition is reached. This condition may be predetermined
(as in the for loop), or open-ended (as in the while and do-while loops).

___| The for Loop

The general design of the for loop is reflected in some form or another in all procedural
programming languages. However, in C/C++, it provides unexpected flexibility
and power.

The general form of the for statement is

for(initialization; condition; increment) statement;
The for loop allows many variants, but there are three main parts:

1. The initialization is usually an assignment statement that sets the loop
control variable.

2. The condition is a relational expression that determines when the loop exits.

3. The increment defines how the loop control variable changes each time the
loop is repeated.

These three major sections must be separated by semicolons. The for loop continues
to execute as long as the condition is true. Once the condition becomes false, program
execution resumes on the statement following the for.

In the following program, a for loop is used to display the numbers 1 through 100
on the screen:

#include <stdio.h>



Chapter 3: Program Control Statements

int main(void)

{

int x;
for(x=1; x <= 100; x++) printf("sd ", x);

return 0;

}

In the loop, x is initially set to 1 and then compared to 100. Since x is less than 100,
printf() is called and the loop iterates. This causes x to be increased by 1 and again
tested to see if it is still less than or equal to 100. This process repeats until x is greater
than 100, at which point the loop terminates. In this example, x is the loop control
variable, which is changed and checked each time the loop repeats.

Here is an example of a for loop that iterates a block of statements:

for (x=100; x != 65; x -= 5) {
Z = X*X;
printf ("The square of %d, %d4d", x, z);

}

Both the squaring of x and the call to printf() are executed until x equals 65. Note that
the loop is negative running: x was initialized to 100, and 5 is subtracted from it each
time the loop repeats.

An important point about for loops is that the conditional test is always performed
at the top of the loop. This means that the code inside the loop may not be executed at
all if the condition is false to begin with. For example:

X = 10;

for(y=10; vy != x; ++y) printf("sd", vy);

printf ("%d", y); /* this is the only printf ()
statement that will execute */

This loop never executes because x and y are equal when the loop is entered. Because
this causes the conditional expression to evaluate to false, neither the body of the loop
nor the increment portion of the loop executes. Thus, y still has the value 10, and the
only output produced by the fragment is the number 10 printed once on the screen.

for Loop Variations

The previous discussion described the most common form of the for loop. However,
several variations of the for are allowed that increase its power, flexibility, and applicability
to certain programming situations.

67



68

Borland C++ Builder: The Complete Reference

One of the most common variations uses the comma operator to allow two or more
variables to control the loop. (Remember, the comma operator strings together a number
of expressions in a “do this and this” fashion. See Chapter 2.) For example, the variables x
and y control the following loop, and both are initialized inside the for statement.

for (x=0, y=0; x+y < 10; ++x) {
scanf ("sd", &y);

}

Commas separate the two initialization statements. Each time the loop repeats, x is
incremented and y’s value is set by keyboard input. Both x and y must be at the correct
value for the loop to terminate. Even though y’s value is set by keyboard input, y must
be initialized to 0 so that its value is defined before the first evaluation of the conditional
expression. (If y’s value is not set, it could, by chance, contain the value 10, making the
conditional test false and preventing the loop from executing.)

Another example of using multiple loop-control variables is found in the reverse()
function shown here. reverse() copies the contents of the first string into the second
string, in reverse order. For example, if "hello" is stored at s, then after the call r will
point to "olleh."

/* Copy s into r backwards. */
void reverse (char *s, char *r)

{
int i, Jj;
for(i=strlen(s)-1, j=0; i > =0; j++, i--) r[i]l = s[j]l;
r(j]l = '\0'; /* append null terminator */

}

The conditional expression does not have to involve testing the loop control
variable against some target value. In fact, the condition may be any relational or
logical statement. This means that you can test for several possible terminating
conditions. For example, you could use the following function to log a user onto a
remote system. The user has three tries to enter the password. The loop terminates
when the three tries are used up, or when the user enters the correct password.

void sign on(void)

{

char str[20];
int x;



Chapter 3: Program Control Statements

for (x=0; x<3 && strcmp (str, "password"); ++x) {
printf ("enter password please:");
gets (str);

}

if (x==3) hang up();

This loop uses stremp(), the standard library function that compares two strings and
returns 0 if they match.

Remember, each of the three sections of the for loop may consist of any valid
expression. The expressions need not actually have anything to do with what the
sections are generally used for. With this in mind, consider the following example:

#include <stdio.h>

int readnum(void), prompt (void) ;
int sgrnum(int num) ;

int main(void)

{

int t;

for (prompt () ; t=readnum(); prompt()) sgrnum(t) ;
return O;

int prompt (void)

{

printf ("Enter a number: ");
return 0;

int readnum(void)

{
int t;
scanf ("%d", &t);

return t;

int sgrnum(int num)

69



70 Borland C++ Builder: The Complete Reference

{

printf ("$d\n", num*num) ;
return 0;

}

Look closely at the for loop in main(). Notice that each part of the for is composed
of function calls that prompt the user and read a number entered from the keyboard.
If the number entered is 0, the loop terminates because the conditional expression will
be false. Otherwise, the number is squared. Thus, this for loop uses the initialization
and increment portions in a nontraditional but completely valid manner.

Another interesting trait of the for loop is that pieces of the loop definition need
not be there. In fact, there need not be an expression present for any of the sections—
the expressions are optional. For example, this loop will run until the user enters 123:

for(x=0; x != 123; ) scanf("%d", &x);

Notice that the increment portion of the for definition is blank. This means that each
time the loop repeats, x is tested to see if it equals 123, but no further action takes place.
If you type 123 at the keyboard, however, the loop condition becomes false and the
loop terminates.

The initialization of the loop control variable can occur outside the for statement.
This most frequently happens when the initial condition of the loop control variable
must be computed by some complicated means, as in this example:

gets(s); /* read a string into s */
if(*s) x = strlen(s); /* get the string's length */
else x = 10;

for( ; x < 10; ) {
printf ("%d", x);

++X;

}

The initialization section has been left blank, and x is initialized before the loop
is entered.

The Infinite Loop

One of the most interesting uses of the for loop is to create an infinite loop. Since none
of the three expressions that form the for loop are required, you can make an endless
loop by leaving the conditional expression empty, as here:



Chapter 3: Program Control Statements 71

for(;;) printf("This loop will run forever.\n");

When the conditional expression is absent, it is assumed to be true. You may have
an initialization and increment expression, but C programmers more commonly use
the for(;) construct to signify an infinite loop.

Actually, the for(;) construct does not guarantee an infinite loop, because a break
statement, encountered anywhere inside the body of a loop, causes immediate termination.
(break is discussed later in this chapter.) Program control then resumes at the code
following the loop, as shown here:

ch = '"\0';

for( ; ;7 ) {
ch = getchar(); /* get a character */
if(ch == 'A') break; /* exit the loop */

}

printf ("you typed an A");

This loop will run until the user types an A at the keyboard.

for Loops with No Bodies

A statement may be empty. This means that the body of the for loop (or any other
loop) may also be empty. You can use this fact to simplify the coding of certain
algorithms and to create time delay loops.

Removing spaces from an input stream is a common programming task. For example,
a database program may allow a query such as “show all balances less than 400.” The
database needs to have each word fed to it separately, without leading spaces. That is,
the database input processor recognizes “show” but not “ show” as a command. The
following loop shows one way to accomplish this. It advances past leading spaces in
the string pointed to by str:

for( ; *str == ' '; str++) ;

As you can see, this loop has no body—and no need for one either.
Time delay loops are sometimes useful. The following code shows how to create one
by using for:

for(t=0; t < SOME VALUE; t++) ;



72

Borland C++ Builder: The Complete Reference

The while Loop

The second iteration statement in C/C++ is the while loop. Its general form is
while(condition) statement ;

where statement is either an empty statement, a single statement, or a block of
statements. The condition may be any expression, and true is any nonzero value. The
loop iterates while the condition is true. When the condition becomes false, program
control passes to the line of code immediately following the loop.

The following example shows a keyboard input routine that loops until A is pressed:

char wait_for char (void)

{
char ch;
ch = '\0'; /* initialize ch */
while(ch != 'A') ch = getchar();
return ch;

}

First, ch is initialized to null. The while loop then checks to see if ch is not equal to A.
Because ch was initialized to null, the test is true and the loop begins. Each time you
press a key, the condition is tested again. Once you enter an A, the condition becomes
false because ch equals A, and the loop terminates.

Like for loops, while loops check the test condition at the top of the loop, which
means that the body of the loop will not execute at all if the condition is false to begin
with. This feature may eliminate the need to perform a separate conditional test before
the loop. The pad() function provides a good illustration of this. It adds spaces to the
end of a string to fill the string to a predefined length. If the string is already at the
desired length, no spaces are added.

/* Add spaces to the end of a string. */
void pad(char *s, int length)
{
int 1;
1 = strlen(s); /* find out how long it is */

while (1 < length) {
s[1l] =+ +; /* insert a space */



Chapter 3: Program Control Statements

s[1] = *\0'; /* strings need to be
terminated in a null */

The two arguments of pad() are s, a pointer to the string to lengthen, and length,
the number of characters that s should have. If the length of string s is already equal to
or greater than length, the code inside the while loop does not execute. If s is shorter
than length, pad() adds the required number of spaces. The strlen() function, part of
the standard library, returns the length of the string.

In cases in which any one of several separate conditions can terminate a while loop,
often a single loop-control variable forms the conditional expression. In this example

void funcl (void)

{

int working;
working = 1; /* i.e., true */

while (working) {
working = processl () ;
if (working)
working = process2();
if (working)

working = process3();

any of the three routines may return false and cause the loop to exit.
There need not be any statements in the body of the while loop. For example,

while ( (ch=getchar()) != 'A"') ;
will simply loop until the user types A. If you feel uncomfortable putting the assignment

inside the while conditional expression, remember that the equal sign is just an operator
that evaluates to the value of the right-hand operand.

73



74

Borland C++ Builder: The Complete Reference

do-while

Unlike for and while loops, which test the loop condition at the top of the loop, the
do-while loop checks its condition at the bottom of the loop. This means that a do-while
loop always executes at least once. The general form of the do-while loop is

do {
statement sequence
} while(condition);

Although the curly braces are not necessary when only one statement is present, they
are usually used to improve readability and avoid confusion (to you, not the compiler)
with the while.

This do-while loop will read numbers from the keyboard until it finds a number
less than or equal to 100:

do {
scanf ("%d", &num) ;
} while (num > 100);

Perhaps the most common use of the do-while is in a menu selection function.
When the user enters a valid response, it is returned as the value of the function.
Invalid responses cause a reprompt. The following code shows an improved version
of the spelling-checker menu shown earlier in this chapter:

void menu (void)

{
char ch;
printf ("1. Check Spelling\n");
printf ("2. Correct Spelling Errors\n") ;
printf ("3. Display Spelling Errors\n") ;
printf (" Enter your choice: ");
do {
ch = getche(); /* read the selection from the keyboard */
switch(ch) {
case 'l':
check _spelling() ;
break;
case '2':

correct_errors () ;



Chapter 3: Program Control Statements

break;
case '3':
display errors() ;
break;
}
} while(ch!='1'" && ch!='2"' && ch!='3");

}

In the case of a menu function, you always want it to execute at least once. After the
options have been displayed, the program will loop until a valid option is selected.

Jump Statements

C/C++ has four statements that perform an unconditional branch: break, return,
goto, and continue. Of these, you can use return and goto anywhere inside a function.
You can use the break and continue statements in conjunction with any of the loop
statements. As discussed earlier in this chapter, you can also use break with switch.
The return statement is discussed in Chapter 4, when functions are described. The
other jump statements are discussed here.

break

The break statement has two uses. You can use it to terminate a case in the switch
statement (covered in the section on the switch, earlier in this chapter). You can also
use it to force immediate termination of a loop, bypassing the normal loop conditional
test. This use is examined here.

When the break statement is encountered inside a loop, the loop is immediately
terminated, and program control resumes at the next statement following the loop.
For example,

#include <stdio.h>

int main(void)

{

int t;

for (t=0; t<100; t++) {
printf("sd ", t);
if(t == 10) break;

}

return 0;

75



76 Borland C++ Builder: The Complete Reference

prints the numbers 0 through 10 on the screen. Then the loop terminates because break
causes immediate exit from the loop, overriding the conditional test t < 100.

Programmers often use the break statement in loops in which a special condition
can cause immediate termination. For example, here a keypress can stop the execution
of the look_up() routine:

int look_up (char *name)
{

char tname [40];

int loc;

loc = -1;
do {
loc = read next name (tname) ;
if (kbhit ()) break;
} while(!strcmp (tname, name));
return loc;

You might use a function like this to find a name in a database file. If the search is
taking a very long time and you are tired of waiting, you could strike a key and return
from the function early. The kbhit() function returns 0 if no key has been hit, and
non-0 otherwise.

A break causes an exit from only the innermost loop. For example,

for (£=0; t<100; ++t) {

count = 1;
for(;;) {
printf ("%d ", count);
count++;
if (count == 10) break;
}

}

prints the numbers 1 through 9 on the screen 100 times. Each time the program
encounters break, control is passed back to the outer for loop.

A break used in a switch statement will affect only that switch. It does not affect
any loop the switch happens to be in.



Chapter 3: Program Control Statements

_ lexit()

Although exit() is not a program control statement, a short digression that discusses

it is in order at this time. Just as you can break out of a loop, you can break out of a
program by using the standard library function exit(). This function causes immediate
termination of the entire program, forcing a return to the operating system. In effect,
the exit() function acts as if it were breaking out of the entire program. The general
form of the exit() function is

void exit(int status);

It uses the <stdlib.h> header. The value of status is returned to the calling process,
which is usually the operating system. Zero is commonly used as a return code to
indicate normal program termination. Other values indicate some sort of error. You
can also use the predefined macros EXIT_SUCCESS and EXIT_FAILURE as values
for status.

Programmers frequently use exit() when a mandatory condition for program
execution is not satisfied. For example, imagine a virtual-reality computer game
that requires a special graphics adapter. The main() function of this game might look
like this,

#include <stdlib.h>

int main(void)

{
if (!special adapter()) exit(1);
play () ;
return 0;

}

where special_adapter() is some function that returns true if the needed special adapter
is present. If the adapter is not in the system, special_adapter() returns false and the
program terminates.

As another example, this version of menu() uses exit() to quit the program and
return to the operating system:

void menu (void)

{

char ch;



78 Borland C++ Builder: The Complete Reference

printf ("1. Check Spelling\n");
printf ("2. Correct Spelling Errors\n") ;
printf ("3. Display Spelling Errors\n") ;
printf ("4. Quit\n") ;
printf (" Enter your choice: ");
do {
ch = getche(); /* read the selection from the keyboard */

switch(ch) {

case '1l':
check _spelling() ;
break;

case '2':
correct errors() ;
break;

case '3':
display errors() ;
break;

case '4':
exit (0); /* return to 0S */

}

} while(ch!='1'" && ch!='2' && ch!='3");

| continue

The continue statement works somewhat like the break statement. Instead of forcing
termination, however, continue forces the next iteration of the loop to take place,
skipping any code in between. For example, the following routine displays only
positive numbers:

do {
scanf ("%d", &x);
if(x < 0) continue;
printf("%d ", x);

} while(x != 100);



Chapter 3: Program Control Statements

In while and do-while loops, a continue statement forces control to go directly to
the conditional test and then continue the looping process. In the case of the for, first
the increment part of the loop is performed, then the conditional test is executed, and
finally the loop continues. The previous example can be changed to allow only 100
numbers to be printed, as shown here:

for (t=0; t<100; ++t) {
scanf ("%d", &x);
if(x < 0) continue;
printf("%d ", x);

}

The following example shows how you can use continue to expedite the exit from
a loop by forcing the conditional test to be performed sooner:

void code (void)

{

char done, ch;

done = 0;
while (!done) {
ch = getchar () ;
if (ch=='.") {
done = 1;
continue;
}
putchar (ch+1); /* shift the alphabet one position */
}
}

This function codes a message by shifting all characters you type one letter higher. For
example, ‘a” would become ‘b’. The function will terminate when you type a period.
After a period has been input, no further output will occur, because the conditional
test, brought into effect by continue, will find done to be true and will cause the loop
to exit.

79



80

Borland C++ Builder: The Complete Reference

Labels and goto

Since C/C++ has a rich set of control structures and allows additional control using
break and continue, there is little need for goto. Most programmers’ chief concern
about the goto is its tendency to render programs unreadable. Although the goto
statement fell out of favor some years ago, it occasionally has its uses. This book will
not judge its validity as a form of program control. While there are no programming
situations that require goto, it is a convenience, which, if used wisely, can be a benefit
in a narrow set of programming situations, such as jumping out of a set of deeply
nested loops. The goto is not used in this book outside of this section.

The goto statement requires a label for operation. (A label is a valid identifier
followed by a colon.) Furthermore, the label must be in the same function as the goto
that uses it—you cannot jump between functions. For example, a loop from 1 to 100
could be written using a goto and a label as shown here:

X = 1;
loopl:
X++;

if(x <= 100) goto loopl;

One good use for the goto is to exit from several layers of nesting. For example:

for(...) {
for(...) {
while(...) {
if(...) goto stop;
}
}
}
stop:

printf ("error in program\n") ;

Eliminating the goto would force a number of additional tests to be performed.
A simple break statement would not work here because it would only exit from the
innermost loop.



Chapter 3: Program Control Statements

| Expression Statements

Chapter 2 covers expressions thoroughly. However, a few special points are mentioned
here. Remember, an expression statement is simply a valid expression followed by a
semicolon, as in

func(); /* a function call */

a = b+c; /* an assignment statement */

b+f () ; /* a valid, but strange statement */
; /* an empty statement */

The first expression statement executes a function call. The second is an assignment.
The third expression, though strange, is still evaluated by the compiler because the
function f() may perform some necessary task. The final example shows that a statement
can be empty (sometimes called a null statement).

| Block Statements

Block statements are groups of related statements that are treated as a unit. The
statements that make up a block are logically bound together. Block statements are also
called compound statements. A block begins with a { and terminates by its matching }.
Block statements are most commonly used to create a multistatement target for some
other statement, such as if.



This page intentionally left blank.



The

Complete L

Reference by

Functions

83



84 Borland C++ Builder: The Complete Reference

activity occurs. This chapter examines their features, including function arguments,

Functions are the building blocks of C and C++ and the place where all program
return values, prototypes, and recursion.

| The General Form of a Function

The general form of a function is

ret-type function_name(parameter list)

body of the function
}

The ret-type specifies the type of data that the function returns. A function can return
any type of data except an array. The parameter list is a comma-separated list of variable
names and their associated types. The parameters receive the values of the arguments
when the function is called. A function can be without parameters, in which case the
parameter list is empty. An empty parameter list can be explicitly specified by placing
the keyword void inside the parentheses.

| The return Statement

The return statement has two important uses. First, it causes an immediate exit from
the function. That is, it causes program execution to return to the calling code. Second,
it can be used to return a value. The following section examines how the return statement
is applied.

Returning from a Function

A function terminates execution and returns to the caller in one of two ways. The first
is when the last statement in the function has executed and, conceptually, the function’s
ending curly brace (}) is encountered. (Of course, the curly brace isn’t actually present
in the object code, but you can think of it in this way.) For example, this function takes
an address to a string as a parameter and displays the string backward:

void pr_reverse(char *s)

{

register int t;

for(t=strlen(s)-1; t >= 0; t--) printf("$c", s[t]);



Chapter 4: Functions

Once the string has been displayed, there is nothing left for pr_reverse() to do,
so it returns to the place from which it was called.

Actually, not many functions use this default method of terminating their execution.
Most functions rely on the return statement to stop execution either because a value
must be returned or to make a function’s code simpler and more efficient. A function
may contain several return statements. For example, the find_substr() function, shown
next, returns either the starting position of a substring within a string or -1 if no match
is found. It uses two return statements to simplify the coding:

int find substr(char *sl, char *s2)
register int t;
char *p, *p2;

for (t=0; s1[t]; t++) {
p = &sl[t];
p2 = s2;
while (*p2 && *p2==*p) {
p++;
P2++;
}

if (1*p2) return t; /* substring was found */

}

return -1; /* substring not found */

Returning Values

All functions, except those of type void, return a value. This value is specified by
the return statement. In C89, if a non-void function executes a return statement
that does not include a value, then a garbage value is returned. In C++ (and C99),
a non-void function must use a return statement that returns a value. As long as a
function is not declared as void, you can use it as an operand in an expression.
Therefore, each of the following expressions is valid:

%

if (max(x, y) > 100) printf ("greater");
for (ch=getchar(); isdigit(ch); ) ... ;



86

Borland C++ Builder: The Complete Reference

As a general rule, a function call cannot be on the left side of an assignment.
A statement such as

swap (x, y) = 100; /* incorrect statement */

is wrong. C++ Builder will flag it as an error and will not compile a program that
contains it.

If a function is declared as void, it cannot be used in any expression. For example,
assume that f() is declared as void. The following statements will not compile:

t = £(); /* no value to assign to t */

£f()+£(); /* no value to add */

When you write programs, your functions will be of three types. The first type is
simply computational. These functions are specifically designed to perform operations
on their arguments and return a value based on that operation. A computational
function is a “pure” function. Examples are the standard library functions sqrt() and
sin( ), which compute the square root and sine of their arguments.

The second type of function manipulates information and returns a value that
simply indicates the success or failure of that manipulation. An example is the library
function fwrite( ), which writes information to a disk file. If the write operation is
successful, fwrite() returns the number of items successfully written. If an error
occurs, fwrite() returns a number that is not equal to the number of items it was
requested to write.

The last type of function has no explicit return value. In essence, the function is
strictly procedural and produces no value. An example is srand( ), which initializes
the random number generator function rand(). Sometimes, functions that really don’t
produce an interesting result often return something anyway. For example, printf()
returns the number of characters written. Yet, it is unusual to find a program that
actually checks this. In other words, although all functions, except those of type void,
return values, you don’t have to use the return value for anything. A common question
concerning function return values is, “Don’t I have to assign this value to some variable
since a value is being returned?” The answer is no. If there is no assignment specified,
the return value is simply discarded. Consider the following program, which uses mul():

#include <stdio.h>

int mul (int a, int b);



Chapter 4: Functions

int main(void)

{

int x, vy, z;

x = 10; y = 20;

z = mul(x, v); /* 1 */
printf ("$d", mul(x, y)); /* 2 */
mul (x, v); /* 3 */

return 0;

1
int mul (int a, int b)
{
return a*b;
1

In line 1, the return value of mul() is assigned to z. In line 2, the return value is not
actually assigned, but it is used by the printf() function. Finally, in line 3, the return
value is lost because it is neither assigned to another variable nor used as part
of an expression.

What Does main() Return?

|

The main() function returns an integer to the calling process, which is generally the
operating system. Returning a value from main() is the equivalent of calling exit()
with the same value. A return value of 0 indicates that the program terminated normally.
All other values indicate that some error occurred with the exiting program.

Understanding the Scope of a Function

The scope rules of a language are the rules that govern whether a piece of code knows
about or has access to another piece of code or data.

Each function is a discrete block of code. Thus, a function defines a block scope.
This means that a function’s code is private to that function and cannot be accessed
by any statement in any other function except through a call to that function. (For
instance, you cannot use goto to jump into the middle of another function.) The code
that makes up the body of a function is hidden from the rest of the program, and
unless it uses global variables, it can neither affect nor be affected by other parts of the
program. Stated another way, the code and data defined within one function cannot
interact with the code and data defined in another function because the two functions
have different scopes.

87



88

Borland C++ Builder: The Complete Reference

Variables that are defined within a function are local variables. A local variable
comes into existence when the function is entered and is destroyed upon exit. Thus,
a local variable cannot hold its value between function calls. The only exception to this
rule is when the variable is declared with the static storage class specifier. This causes the
compiler to treat it like a global variable for storage purposes, but limits its scope to the
function. (See Chapter 2 for additional information on global and local variables.)

All functions have file scope. Thus, you cannot define a function within a function.
This is why C and C++ are not technically block-structured languages.

Function Arguments

If a function is to accept arguments, it must declare the parameters that will receive
the values of the arguments. As shown in the following function, the parameter
declarations occur after the function name:

/* return 1 if ¢ is part of string s; 0 otherwise */
int is_in(char *s, char c)
while (*g)
if (*s==c) return 1;
else s++;

return 0;

}

The function is_in() has two parameters: s and c. This function returns 1 if the
character c is part of the string pointed to by s; otherwise, it returns 0.

As with local variables, you can make assignments to a function’s formal parameters
or use them in any allowable expression. Even though parameters perform the special
task of receiving the value of the arguments passed to the function, they behave like
any other local variable.

Call by Value, Call by Reference

In a computer language, there are two ways that arguments can be passed to a subroutine.
The first is call by value. This method copies the value of an argument into the formal
parameter of the subroutine. In this case, changes made to the parameter have no effect
on the argument. Call by reference is the second way of passing arguments to a subroutine.
In this method, the address of an argument is copied into the parameter. Inside the
subroutine, the address is used to access the actual argument used in the call. This
means that changes made to the parameter affect the argument.



Chapter 4: Functions 89

By default, C/C++ uses call by value to pass arguments. In general, this means that
code within a function cannot alter the arguments used to call the function. Consider
the following program:

#include <stdio.h>
int sqgr(int x);

int main(void)

{

int t=10;

printf ("%d %d", sqr(t), t);
return O;

}

int sqgr(int x)
X = X*X;
return x;

}

In this example, the value of the argument to sqr(), 10, is copied into the
parameter x. When the assignment x = x * x takes place, only the local variable x is
modified. The variable t, used to call sqr(), still has the value 10. Therefore, the output
is 100 10.

Remember that it is a copy of the value of the argument that is passed into a function.
What occurs inside the function has no effect on the variable used in the call.

Creating a Call by Reference

Even though C/C++ uses call by value for passing parameters, you can create a call by
reference by passing a pointer to an argument instead of passing the argument itself.
Since the address of the argument is passed to the function, code within the function
can change the value of the argument outside the function.

Pointers are passed to functions just like any other argument. Of course, you need
to declare the parameters as pointer types. For example, the function swap(), which
exchanges the values of the two integer variables pointed to by its arguments, shows how:

void swap (int *x, int *y)

{

int temp;



90 Borland C++ Builder: The Complete Reference

temp = *x; /* save the value at address x */
*x = *y; /* put y into x */
*y = temp; /* put x into y */

}

The swap() function is able to exchange the values of the two variables pointed to
by x and y because their addresses (not their values) are passed. Within the function,
the contents of the variables are accessed using standard pointer operations, and their
values are swapped.

Remember that swap() (or any other function that uses pointer parameters) must
be called with the addresses of the arguments. The following program shows the correct
way to call swap():

#include <stdio.h>
void swap (int *x, int *y);

int main(void)

{

int x, y;

x = 10;

y = 20;

printf ("x and y before swapping: %d %d\n", x, y);
swap (&x, &Yy);

printf ("x and y after swapping: %d %d\n", x, Vv);

return 0;

The output from the program is shown here.

x and y before swapping: 10 20
x and y after swapping: 20 10

In this example, the variable x is assigned the value 10, and y is assigned the value 20.
Then swap() is called with the addresses of x and y. (The unary operator & is used to
produce the addresses of the variables.) Therefore, the addresses of x and y, not their
values, are passed into the function swap().



Chapter 4: Functions

| C++ allows you to fully automate a call by reference through the use of reference

parameters. Reference parameters are not supported by C.

Calling Functions with Arrays

Arrays are covered in detail in Chapter 5. However, this section discusses passing arrays
as arguments to functions because it is an exception to the normal call-by-value
parameter passing convention.

When an array is used as a function argument, its address is passed to a function.
This is, when you call a function with an array name, a pointer to the first element in
the array is passed to the function. (Remember that an array name without any index is
a pointer to the first element in the array.) The parameter declaration must be of a
compatible pointer type. There are three ways to declare a parameter that is to
receive an array pointer. First, it can be declared as an array, as shown here:

#include <stdio.h>

void display(int num([10]) ;

int main(void) /* print some numbers */
{

int t[10], 1i;

for(i=0; 1<10; ++1i) t[i]=1;

display(t) ;
return O;
!
void display(int num[10])
{
int 1i;
for(i=0; i<10; i++) printf("%d ", numl[i]) ;
1

Even though the parameter num is declared to be an integer array of 10 elements,
the compiler automatically converts it to an integer pointer because no parameter can
actually receive an entire array. Only a pointer to an array is passed, so a pointer
parameter must be there to receive it.

A second way to declare an array parameter is an unsized array, as shown here:

void display(int num[])

{

91



92 Borland C++ Builder: The Complete Reference

int 1i;

for(i=0; i<10; i++) printf("$d ", numl[i]) ;

}

Here, num is an integer array of unknown size. Since C/C++ provides no array
boundary checks, the actual size of the array is irrelevant to the parameter (but not
to the program). This method of declaration also defines num as an integer pointer.

The final way that num can be declared—and the most common form in
professionally written programs—is as a pointer, as shown here:

void display (int *num)

{

int 1i;

for(i=0; i<10; i++) printf("%d ", numl[i]) ;

}

Declaring num as a pointer works because any pointer can be indexed using [ ] as if
it were an array. (Actually, arrays and pointers are very closely linked.)

All three methods of declaring an array parameter yield the same result: a pointer.

On the other hand, an array element used as an argument is treated like any other
variable. For example, the program just examined could have been written without
passing the entire array, as shown here:

#include <stdio.hs>

void display(int num) ;

int main(void) /* print some numbers */
{

int t[10], 1i;

for(i=0; i<10; ++1i) t[i] = 1i;
for(i=0; i<10; i++) display(t[il]l);

return 0;

}



Chapter 4: Functions

void display (int num)
{
printf ("$d ", num);

}

The parameter to display() is of type int. It is not relevant that display() is called by
using an array element, because only that one value of the array is passed.

It is important to understand that when an array is used as a function argument,
its address is passed to a function. This is an exception to the call-by-value parameter
passing convention. In this case, the code inside the function is operating on, and
potentially altering, the actual contents of the array used to call the function. For
example, consider the function print_upper(), which prints its string argument in
uppercase:

#include <stdio.h>
#include <ctype.h>

void print upper (char *str);

int main(void) /* print string as uppercase */

{

char s[80];

printf ("Enter a string: ");

gets(s);

print upper(s) ;

printf ("\ns is now uppercase: %s", s);

return 0;

void print upper (char *str)

{

register int t;

for (t=0; strltl; ++t) {
str[t] = toupper(strltl]);
putchar (str[t]);
}
}

93



94 Borland C++ Builder: The Complete Reference

After the call to print_upper(), the contents of array s in main() are changed to
uppercase. If this is not what you want, you could write the program like this:

#include <stdio.hs>
#include <ctype.h>

void print upper (char *str);

int main(void) /* print string as uppercase */

{

char s[80];

printf ("Enter a string: ");
gets(s);

print upper(s) ;

printf ("\ns is unchanged: %s", s);

return 0;

void print upper (char *str)

{

register int t;

for (t=0; strlt]l; ++t)
putchar (toupper (str[t])) ;

In this case, the contents of array s remain unchanged because its values are not altered
inside print_upper().

The standard library function gets() is a classic example of passing arrays into
functions. Although the gets() in C++ Builder’s library is more sophisticated, the
following example will give you an idea of how it works. To avoid confusion with the
standard function, this one is called xgets():

/* A simple version of the gets() library function. */

char *xgets(char *s)

{

char ch, *p;
int t;



Chapter 4: Functions

p =5s;

for(t=0; t<80; ++t) {
ch = getchar();
switch(ch)
case '\n':
s[t] = '"\0'; /* terminate the string */
return p;
case '\b':
if (£>0) t--;
break;
default:
s[t] = ch;

}
}
s[79] = '\0o';
return p;

}

The xgets() function must be called with a char * pointer. This, of course, can

be the name of a character array, which by definition is a char * pointer. Upon entry,
xgets( ) establishes a for loop from 0 to 79. This prevents larger strings from being
entered at the keyboard. If more than 80 characters are entered, the function returns.
(The real gets() function does not have this restriction.) Because C/C++ has no built-in
bounds checking, you should make sure that any array used to call xgets() can accept
at least 80 characters. As you type characters on the keyboard, they are placed in the
string. If you type a backspace, the counter t is reduced by 1, effectively removing the
previous character from the array. When you press ENTER, a null is placed at the end
of the string, signaling its termination. Because the array used to call xgets() is
modified, upon return it contains the characters that you type.

argc and argv—Arguments to main( )

Sometimes it is useful to pass information into a program when you run it. Generally,
you pass information into the main() function via command line arguments. A command
line argument is the information that follows the program’s name on the command line
of the operating system. For example, when you compile programs using C++ Builder’s
command line compiler, you type something like

bcce32 program_name

95



96

Borland C++ Builder: The Complete Reference

where program_name is a command line argument that specifies the name of the
program you want to compile.

C++ Builder supports three arguments to main( ). The first two are the traditional
arguments: argc and argv. These are also the only arguments to main() defined by
standard C/C++. They allow you to pass command line arguments to your program.

The argc parameter holds the number of arguments on the command line and is an
integer. It is always at least 1 because the name of the program qualifies as the first
argument. The argv parameter is a pointer to an array of character pointers. Each element
in this array points to a command line argument. All command line arguments are
strings—any numbers will have to be converted by the program into the proper binary
format, manually. Here is a simple example that uses a command line argument.

It prints Hello and your name on the screen, if you specify your name as a command
line argument:

#include <stdio.h>

int main(int argc, char *argv([])
{
if (argc!=2) {
printf ("You forgot to type your name\n") ;
return 1;

}

printf ("Hello %s", argv[1l]);

return 0;

}

If you called this program name and your name were Jon, you would type name
Jon. The output from the program would be Hello Jon. For example, if you were
logged into drive A, you would see

A>name Jon
Hello Jon
A>

after running name.
For C++ Builder, each command line argument must be separated by a space or a
tab. Commas, semicolons, and the like are not considered separators. For example,

run Spot run

is made up of three strings, while



Chapter 4: Functions

Herb,Rick, Fred

is a single string because commas are not generally legal separators.
If you want to pass a string that contains spaces or tabs as a single argument, you
must enclose that string within double quotes. For example, this is a single argument:

"this is a test"
You must declare argv properly. The most common method is
char *argvl(];

The empty brackets indicate that the array is of undetermined length. You can now
access the individual arguments by indexing argv. For example, argv[0] points to the
first string, which is always the program’s name; argv[1] points to the next string, and
so on.

Another short example using command line arguments is the program called
countdown, shown here. It counts down from a starting value (which is specified
on the command line) and beeps when it reaches 0. Notice that the first argument
containing the starting number is converted into an integer using the standard function
atoi(). If the string display is the second command line argument, the countdown will
also be displayed on the screen.

/* Countdown program. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv([])

{

int disp, count;

if (arge<2) |
printf ("You must enter the length of the count\n");
printf ("on the command line. Try again.\n");
exit (1) ;

}

if (argc==3 && !strcmp(argv[2],"display")) disp = 1;
else disp = 0;

97



98

Borland C++ Builder: The Complete Reference

for (count=atoi (argv[1l]); count; --count)
if (disp) printf ("$d\n", count) ;

putchar('\a'); /* this will ring the bell */
printf ("Done") ;
return O;

Notice that if no command line arguments have been specified, an instructional
message is printed. A program with command line arguments often issues instructions
if the user attempts to run the program without entering the proper information.

To access an individual character in one of the command line arguments, add a
second index to argv. For example, the next program displays all the arguments with
which it was called, one character at a time:

#include <stdio.h>

int main(int argc, char *argvl([])

{

int t, 1i;

for (t=0; t<argc; ++t) {
i = 0;
while (argv([t] [1]) {
printf ("$c", argv(t] [i]);
++1;
}

printf ("™ ") ;

}

return 0;

Remember, for argv, the first index accesses the string and the second index accesses
the individual characters of the string.

You generally use argc and argv to get initial commands, which are needed at
start-up, into your program. The command line arguments often specify a filename, an
option, or an alternate behavior, for example. Using command line arguments gives
your program a professional appearance and facilitates its use in batch files.

If you link the file WILDARGS.OB] (provided with C++ Builder) with your
program, command line arguments like *.EXE automatically expand into any matching
filenames. (C++ Builder automatically processes the wildcard filename characters and
increases the value of argc appropriately.) For example, if you link the following



Chapter 4: Functions

program with WILDARGS.OB], it shows you how many files match the filename
specified on the command line:

/* Link this program with WILDARGS.OBJ. */
#include <stdio.h>

int main(int argc, char *argv([])

{

register int i;
printf ("%$d files match specified name\n", argc-1);
printf ("They are: ");

for(i=1; i<argc; i++)
printf ("%s ", argvl[il);

return 0;

If you call this program WA, then executing it in the following manner tells you the
number of files that have the .EXE extension, and lists their names:

C>WA *.EXE

C++ Builder also allows a third command line argument, env. The env argument
lets your program access the environmental information associated with the operating
system. The env parameter must follow argc and argv and is declared like this:

char *env /(]

As you can see, env is declared like argv. Like argv, it is a pointer to an array of
strings. Each string is an environmental string defined by the operating system. The
env parameter does not have a corresponding argc-like parameter that tells your
program how many environmental strings there are. Instead, the last environmental
string is null. The following program displays all the environmental strings currently
defined by the operating system:

/* This program prints all the environmental
strings.

*/

99



100 Borland C++ Builder: The Complete Reference

#include <stdio.h>

int main(int argc, char *argv([], char *env[])
{

int t;

for (t=0; envi[t]; t++)

printf ("$s\n", env[t]);

return 0;

}

Even though argc and argv are not used in this program, they must be present
in the parameter list. C/C++ does not actually know the names of the parameters.
Instead, their usage is determined by the order in which the parameters are declared.
In fact, you can call the parameters anything you like. Since argc, argv, and env are
traditional names, it is best to use them so that anyone reading your program will
instantly know that they are arguments to main( ).

It is common for a program to need to find the value of one specific environmental
string. For example, knowing the value of the PATH string allows your program to
utilize the search paths. The following program shows how to find the string that
defines the default search paths. It uses the standard library function strstr( ), which
has this prototype:

char *strstr(const char *str1, const char *str2);

The strstr() function searches the string pointed to by str1 for the first occurrence of the
string pointed to by str2. If it is found, a pointer to the first occurrence is returned. If no
match exists, then strstr() returns null.

/* This program searches the environmental
strings for the one that contains the
current PATH.

*/

#include <stdio.h>

#include <string.hs>

int main(int argc, char *argv([], char *env[])
{

int t;

for (t=0; env[t]; t++) {



Chapter 4: Functions 101

if (strstr(env[t], "PATH"))
printf ("$s\n", env[t]);

return 0;

}

___| Function Prototypes

In well-written C code, and in all C++ code, functions must be declared before they
are used. This is normally accomplished using a function prototype. Function prototypes
were not part of the original C language, but they were added when C was standardized.
While prototypes are not technically required by C, their use is strongly encouraged.
Prototypes have always been required by C++. In this book, all examples include full
function prototypes. Prototypes enable both C and C++ to provide stronger type checking.
When you use prototypes, the compiler can find and report any illegal type conversions
between the type of arguments used to call a function and the type definition of its
parameters. The compiler will also catch differences between the number of arguments
used to call a function and the number of parameters in the function.

The general form of a function prototype is

type func_name(type parm_namel, type parm_name2,. . ., type parm_nameN);

The use of parameter names is optional. However, they enable the compiler to
identify any type mismatches by name when an error occurs, so it is a good idea
to include them.

The following program illustrates the value of function prototypes. It produces an
error message because it contains an attempt to call sqr_it() with an integer argument
instead of the integer pointer required:

/* This program uses a function prototype to
enforce strong type checking. */

void sgr_it (int *i); /* prototype */
int main(void)
{

int x;

x = 10;
sgr_it(x); /* type mismatch */



102 Borland C++ Builder: The Complete Reference

return 0;

}
void sqgr_it (int *1i)
{
*1 = %1 * *1;
}

A function’s definition can also serve as its prototype if the definition occurs prior
to the function’s first use in the program. For example, this is a valid program:

#include <stdio.h>

/* This definition will also serve
as a prototype within this program. */
void f (int a, int b)

{
printf("sd ", a % Db);
!
int main(void)
{
£(10,3);
return O0;
1

In this example, since () is defined prior to its use in main( ), no separate prototype
is required. While it is possible for a function’s definition to serve as its prototype in
small programs, it is seldom possible in large ones—especially when several files are
used. The programs in this book include a separate prototype for each function because
that is the way C/C++ code is normally written in practice.

The only function that does not require a prototype is main(), since it is the first
function called when your program begins.

Because of the need for compatibility with the original version of C, there is a small
but important difference between how C and C++ handle the prototyping of a function
that has no parameters. In C++, an empty parameter list is simply indicated in the
prototype by the absence of any parameters. For example,



Chapter 4: Functions 103

int £(); /* C++ prototype for a function with no parameters */

However, in C this prototype means something different. For historical reasons,
an empty parameter list simply says that no parameter information is given. As far as the
compiler is concerned, the function could have several parameters or no parameters. In
C, when a function has no parameters, its prototype uses void inside the parameter list.
For example, here is f()’s prototype as it would appear in a C program:

int f (void) ;

This tells the compiler that the function has no parameters, and any call to that function
that has parameters is an error. In C++, the use of void inside an empty parameter list
is still allowed, but redundant.

| In C++, f() and f(void) are equivalent.

Function prototypes help you trap bugs before they occur. In addition, they help
verify that your program is working correctly by not allowing functions to be called
with mismatched arguments.

One last point: Since early versions of C did not support the full prototype syntax,
prototypes are technically optional in C. This is necessary to support pre-prototype C
code. If you are porting older C code to C++ you may need to add full function
prototypes before it will compile. Remember: Although prototypes are optional in C,
they are required by C++. This means that every function in a C++ program must be
fully prototyped.

Standard Library Function Prototypes

Any standard library functions used by your program should be prototyped. To
accomplish this, you must include the appropriate header for each library function.
All standard headers are provided by C++ Builder. In C, library headers use the .h
extension and are (usually) contained in files. A header contains two main elements:
any definitions used by the library functions and the prototypes for the library
functions. For example, <stdio.h> is included in almost all programs in this part

of the book because it contains the prototype for printf(). If you include the
appropriate header for each library function used in a program, it is possible for the
compiler to catch any accidental errors you may make when using it. (Also, when
you write a C++ program, all functions must be prototyped.) All of the programs in
this book include the appropriate headers. The headers for the functions provided
by C++ Builder are discussed in Part Two, when the C++ Builder’s function library
is described.



104

Borland C++ Builder: The Complete Reference

Old-Style Versus Modern Parameter
Declarations

Early versions of C used a different parameter declaration method than do modern
versions of C. This old-style approach is sometimes called the classic form. The
declaration approach used in this book is called the modern form. Although C++
Builder supports both forms for use in C code, new code should use only the modern
form. Also, C++ supports only the modern form. However, since the old-style approach
can still be found in older C programes, it is described here for the sake of completeness.

The old-style function parameter declaration consists of two parts: a parameter list,
which goes inside the parentheses that follow the function name, and the actual parameter
declarations, which go between the closing parenthesis and the function’s opening
curly brace. The general form of the old-style parameter definition is shown here:

type function_name(parm1, parm2,. . .parmN )
type parm1;
type parm2;

type parmN;
{

function code

}

For example, this modern declaration:

char *f (char *strl, int count, int index)

{
}

/* ... %/

will look like this when declared in the old style:

char *f (strl, count, index)
char *stril;
int count, index;

{
}

/% 0 %/

Notice that in the old style, more than one parameter can be listed after the type name.



Chapter 4: Functions

Even though the old-style declaration form is outdated, C++ Builder can still
correctly compile C programs that use this approach. Therefore, you need not worry
if you want to compile a C program that uses the old approach. Remember, however,
that C++ programs must use the modern form.

The “Implicit int” Rule
The original version of C included a feature that is sometimes described as the “implicit
int” rule (also called the “default to int” rule). This rule states that in the absence of
an explicit type specifier, the type int is assumed. This rule was included in the C89
standard but has been eliminated by C99. It is also not supported by C++. Since the
implicit int rule is obsolete and not supported by C++, this book does not use it.
However, since it is still employed by many older C programs, it is still supported
by C++ Builder for C programs and a brief discussion is warranted.

The most common use of the implicit int rule was in the return type of functions.
Years ago, many (probably, most) C programmers took advantage of the rule when
creating functions that returned an int result. Thus, years ago a function such as

int f(void) {
/* ... %/
return 0;

}

would often have been written like this:

f(void) { /* return type int by default */
/* .. %/
return O;

}

In the first instance, the return type of int is explicitly specified. In the second, it is
assumed by default.

The implicit int rule does not apply only to function return values (although that
was its most common use). For example, the following function uses the implicit int
rule for the type of its parameters:

/* Here, the return type defaults to int, and so do
the types of a and b. */

f (register a, register b) {
register c; /* ¢ defaults to int, too */

105



106 Borland C++ Builder: The Complete Reference

c =a + b;
printf ("%d", c);

return c;

}

Here, the return type of f() defaults to int. So do the types of the parameters, a and b,
and the local variable c.

Remember, the “implicit int” rule is not supported by C++. It is, however,
supported by C++ Builder when compiling C code. Even for C code, its use is not
recommended.

___| Declaring Variable Length Parameter Lists

You can specify a function that has a variable number of parameters. The most common
example is printf(). To tell the compiler that an unknown number of arguments will be
passed to a function, you must end the declaration of its parameters using three periods.
For example, this prototype specifies that func() will have at least two integer parameters
and an unknown number (including 0) of parameters after that:

int func(int a, int b, ...);

This form of declaration is also used by a function’s definition.
Any function that uses a variable number of parameters must have at least one
actual parameter. For example, this is incorrect:

int func(...); /* illegal */

___| Returning Pointers

Although functions that return pointers are handled just like any other type of function,
it is helpful to review some key concepts and look at an example.

Pointers are neither integers, nor unsigned integers. They are the memory addresses
of a certain type of data. One reason for this distinction is that pointer arithmetic is
relative to the base type. For example, if an integer pointer is incremented, it will
contain a value that is 4 greater than its previous value (assuming four-byte integers).
In general, each time a pointer is incremented (or decremented), it points to the next
(or previous) item of its type. Since the length of different data types may differ, the
compiler must know what type of data the pointer is pointing to. For this reason, a



Chapter 4:

Functions

function that returns a pointer must declare explicitly what type of pointer it is
returning. (The subject of pointer arithmetic is covered in detail in Chapter 6.)

For example, the following is a function that returns a pointer to the first occurrence

of the character c in string s. If no match is found, a pointer to the null terminator is

returned:

char *match(char ¢, char *s)

{
while(c != *s && *s) s++;

return(s) ;

}

Here is a short program that uses match():

#include <stdio.h>
char *match(char ¢, char *s);

int main(void)

{

char s[80], *p, ch;

gets(s) ;

ch = getchar () ;

p = match(ch, s);

if (*p) /* there is a match */
printf ("%s ", p);

else
printf ("No match found.");

return 0;

This program reads a string and then a character. It then searches for an occurrence
of the character in the string. If the character is in the string, p will point to that
character, and the program prints the string from the point of the match. When no
match is found, p will be pointing to the null terminator, making *p false. In this case,

the program displays “No match found”.

107



108

Borland C++ Builder: The Complete Reference

Recursion

Functions can call themselves. A function is recursive if a statement in the body of the
function calls the function that contains it. Sometimes called circular definition, recursion
is the process of defining something in terms of itself.

A simple example is the function factr(), which computes the factorial of an integer.
The factorial of a number N is the product of all the whole numbers from 1 to N. For
example, 3 factorial is 1 x 2 x 3, or 6. Both factr() and its iterative equivalent are
shown here:

/* Compute the factorial of a number. */
int factr(int n) /* recursive */

{

int answer;

if (n==1) return(l);
answer = factr(n-1)*n;
return (answer) ;

1

/* Compute the factorial of a number. */
int fact (int n) /* non-recursive */

{

int t, answer;

answer = 1;

for(t=1; t<=n; t++)
answer=answer* (t) ;

return (answer) ;

The operation of the nonrecursive fact() should be clear. It uses a loop starting at 1
and ending at the number, and progressively multiplies each number by the moving
product.

The operation of the recursive factr() is a little more complex. When factr() is
called with an argument of 1, the function returns 1; otherwise it returns the product of
factr(n—1) * n. To evaluate this expression, factr() is called with n-1. This happens until
n equals 1 and the calls to the function begin returning.

Computing the factorial of 2, the first call to factr() causes a second call to be made
with the argument of 1. This call returns 1, which is then multiplied by 2 (the original n
value). The answer is then 2. You might find it interesting to insert printf() statements
into factr() to show the level and the intermediate answers of each call.



Chapter 4: Functions

When a function calls itself, new local variables and parameters are allocated
storage on the stack, and the function code is executed with these new variables
from its beginning. A recursive call does not make a new copy of the function. Only
the arguments are new. As each recursive call returns, the old local variables and
parameters are removed from the stack and execution resumes at the point of the
function call inside the function. Recursive functions could be said to “telescope”
out and back.

Most recursive functions are not smaller than their iterative counterparts. The
recursive versions of most routines may execute a bit more slowly than the iterative
equivalents because of the added function calls; but this slightly increased overhead
is not a significant concern for most situations. Many recursive calls to a function could
cause a stack overrun. Because storage for function parameters and local variables is on
the stack and each new call creates a new copy of these variables, the stack space could
become exhausted. If this happens, a stack overflow occurs.

The main advantage to recursive functions is that they can be used to create versions
of several algorithms that are clearer and simpler than their iterative equivalents. For
example, the QuickSort sorting algorithm is quite difficult to implement in an iterative
way. Some problems, especially artificial intelligence-related ones, also seem to lend
themselves to recursive solutions. Finally, some people seem to think recursively more
easily than iteratively.

When writing recursive functions, you must have a conditional statement, such
as an if, somewhere to force the function to return without the recursive call being
executed. If you don’t, the function will never return once you call it. This is a very
common error when writing recursive functions. Use printf() and getchar() liberally
during development so that you can watch what is going on and abort execution if you
see a mistake.

Pointers to Functions

A particularly confusing yet powerful feature is the function pointer. Even though a
function is not a variable, it still has a physical location in memory that can be assigned
to a pointer. The address assigned to the pointer is the entry point of the function. This
pointer can then be used in place of the function’s name. It also allows functions to be
passed as arguments to other functions.

To understand how function pointers work, you must understand a little about
how a function is compiled and called. As each function is compiled, source code is
transformed into object code and an entry point is established. When a call is made
to a function while your program is running, a machine language “call” is made to this
entry point. Therefore, a pointer to a function actually contains the memory address of
the entry point of the function.

The address of a function is obtained by using the function’s name without any
parentheses or arguments. (This is similar to the way an array’s address is obtained by

109



110 Borland C++ Builder: The Complete Reference

using only the array name without indexes.) For example, consider the following
program, paying very close attention to the declarations:

#include <stdio.h>
#include <string.h>

void check (char *a, char *b, int (*cmp) (const char *, const char *));

int main(void)
{
char s1(80], s2[80];
int (*p) (const char*, const char¥*);

p = strcmp; /* get address of strcmp() */

gets (sl) ;
gets (s2) ;

check(sl, s2, p);
return 0;

void check (char *a, char *b, int (*cmp) (const char *, const char *))
{

printf ("Testing for equality.\n");

if (! (*cmp) (a, b)) printf ("Equal");

else printf ("Not equal");

}

When the function check() is called, two character pointers and one function
pointer are passed as parameters. Inside the function check(), the arguments are
declared as character pointers and a function pointer. Notice how the function pointer
is declared. You should use the same method when declaring other function pointers,
except that the return type or parameters of the function can be different. The parentheses
around the *cmp are necessary for the compiler to interpret this statement correctly.

When you declare a function pointer, you can still provide a prototype to it as the
preceding program illustrates. In many cases, however, you won’t know the names of
the actual parameters, so you can leave them blank, or you can use any names you like.

Once inside check( ), you can see how the stremp() function is called. The
statement



Chapter 4: Functions

if (! (*cmp) (a, b)) printf ("Equal");

performs the call to the function, in this case stremp(), which is pointed to by cmp with
the arguments a and b. This statement also represents the general form of using a
function pointer to call the function it points to. The parentheses are necessary around
the *cmp because of C and C++’s precedence rules.

Actually, you can also just use cmp directly, if you like, as shown here:

if(!cmp(a, b)) printf ("Equal");

This version also calls the function pointed to by cmp, but it uses the normal function
syntax. However, using the (*cmp) form tips off anyone reading your code that a
function pointer is being used to indirectly call a function, instead of calling a function
named cmp.

It is possible to call check() using stremp directly, as shown here:

check(sl, s2, strcmp);

This statement would eliminate the need for an additional pointer variable.

You may be asking yourself why anyone would want to write a program this way.
In this example, nothing is gained and significant confusion is introduced. However,
there are times when it is advantageous to pass arbitrary functions to procedures or
to keep an array of functions. The following helps illustrate a use of function pointers.
When an interpreter is written, it is common for it to perform function calls to various
support routines, such as the sine, cosine, and tangent functions. Instead of having
a large switch statement listing all of these functions, you can use an array of function
pointers with the function to call determined by some index. You can get the flavor of
this type of use by studying the expanded version of the previous example. In this
program, check() can be made to check for either alphabetical equality or numeric
equality by calling it with a different comparison function:

#include <stdio.hs>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>

void check(char *a, char *b, int (*cmp) (const char *, const char *));
int numcmp (const char *a, const char *b);



112

int main(void)

{
char s1[80], s2[80];
gets(sl) ;
gets(s2) ;

if (isalpha (*sl))

check (sl, s2, strcmp);
else

check (sl, s2, numcmp) ;

return 0;

}

void check (char *a, char *b, int (*cmp)
{
printf ("Testing for equality.\n");
if (! (*cmp) (a, b)) printf ("Equal");
else printf ("Not equal");

}

int numcmp (const char *a, const char *b)

{

if (atoi (a)==atoi(b)) return 0;
else return 1;

}

| Implementation Issues

Borland C++ Builder: The Complete Reference

(const char *, const char *))

When you create functions, you should remember a few important things that affect
their efficiency and usability. These issues are the subject of this section.

Parameters and General-Purpose Functions

A general-purpose function is one that is used in a variety of situations, perhaps by
many different programmers. Typically, you should not base general-purpose
functions on global data. All the information a function needs should be passed
through parameters. In the few cases in which this is not possible, you should use
static variables.

Besides making your functions general-purpose, parameters keep your code

readable and less susceptible to bugs caused by side effects.



Chapter 4: Functions

Efficiency

Functions are the building blocks of C and C++, and crucial to the creation of all but
the most trivial programs. Nothing said in this section should be construed otherwise.
In certain specialized applications, however, you may need to eliminate a function and
replace it with in-line code. In-line code is the equivalent of a function’s statements used
without a call to that function. In-line code should be substituted for function calls only
when execution time is critical.

There are two reasons in-line code is faster than a function call. First, a “call”
instruction takes time to execute. Second, arguments to be passed have to be placed on
the stack, which also takes time. For almost all applications, this very slight increase in
execution time is of no significance. But if it is, remember that each function call uses
time that would be saved if the code in the function were placed in line. For example,
here are two versions of a program that prints the square of the numbers from 1 to
10. The in-line version runs faster than the other because the function call takes time.

In-line
#include <stdio.h>

int main (void)

{
int x;
for(x=1; x<11l; ++x)
printf ("%d", x*x);
return 0;
}

Function Call

#include <stdio.h>
int sqgr(int a);
int main(void)

{

int x;

for(x=1; x<11; ++x)
printf ("%d", sqgr(x));

return 0;

}

int sqgr(int a)

{

return a*a;

As you create programs, you must always weigh the cost of functions in terms of
execution time against the benefits of increased readability and modifiability.

Note | In C++, the concept of inline functions is expanded and formalized. In fact, inline
functions are an important component of the C++ language.

113



This page intentionally left blank.



The

Complete L

Reference by

Arrays



116 Borland C++ Builder: The Complete Reference

common name. A specific element in an array is accessed by an index. In

C/C++ all arrays consist of contiguous memory locations. The lowest address
corresponds to the first element; the highest address corresponds to the last element.
Arrays can have from one to several dimensions. The most common array is the null-
terminated string, which is simply an array of characters terminated by a null.

Arrays and pointers are closely related; a discussion of one usually refers to the

other. This chapter focuses on arrays, while Chapter 6 looks closely at pointers. You
should read both to understand fully these important constructs.

ﬁ n array is a collection of variables of the same type that are referenced by a

___| single-Dimension Arrays

The general form of a single-dimension array declaration is
type var_namel[size];

Like other variables, arrays must be explicitly declared so that the compiler can
allocate space for them in memory. Here, type declares the base type of the array, which
is the type of each element in the array. size defines how many elements the array will
hold and must be a positive integer. For a single-dimension array, the total size of an
array in bytes is computed as shown here:

total bytes = sizeof(base type) * number of elements

All arrays have 0 as the index of their first element. Therefore, when you write
char p[10];

you are declaring a character array that has 10 elements, p[0] through p[9]. For example,
the following program loads an integer array with the numbers 0 through 9 and
displays them:

#include <stdio.h>

int main(void)

{

int x[10]; /* this reserves 10 integer elements */
int t;



Chapter 5: Arrays

for(t=0; t<10; ++t) x[t] = t;
for (t=0; t<10; ++t) printf("sd ", x[t]);

return 0;

}

C/C++ has no bounds checking on arrays. You could overwrite either end of an
array and write into some other variable’s data, or even into the program’s code. It is
the programmer’s job to provide bounds checking where needed. For example, make
certain that the character arrays that accept character input are long enough to accept
the longest input.

Single-dimension arrays are essentially lists of information of the same type. For
example, Figure 5-1 shows how array a appears in memory if it is declared as shown
here and starts at memory location 1000:

char al7];

___| Generating a Pointer to an Array

You can generate a pointer to the first element of an array by simply specifying the
array name, without any index. For example, given

int sample[10];

you can generate a pointer to the first element by using the name sample. Thus, the
following code fragment assigns p the address of the first element of sample:

int *p;
int sample[10];

p = sample;

You can also obtain the address of the first element of an array using the &
operator. For example, sample and &sample[0] both produce the same results.
However, in professionally written C/C++ code, you will almost never see
&sample[0].



118 Borland C++ Builder: The Complete Reference

Element a[0] a[1] al2] a[3] al4] a[5] al6]

Address 1000 1001 1002 1003 1004 1005 1006

Figure 5-1. A seven-element character array beginning at location 1000

| Passing Single-Dimension Arrays to Functions

When passing single-dimension arrays to functions, call the function with just the array
name (no index). This passes the address of the first element of the array to the function.
It is not possible to pass the entire array as an argument; a pointer is automatically
passed instead. For example, the following program fragment passes the address of

i to funcl():

int main(void)

{

int i[10];

funcl (i) ;
/*... */
return 0;

}

If a function is to receive a single-dimension array, you may declare the formal
parameter as a pointer, as a sized array, or as an unsized array. For example, to
receive i into a function called funcl(), you could declare func1() as

void funcl (int *a) /* pointer */

{
[*.x/
}

or

void funcl (int a[l10]) /* sized array */

{
[*. o/
}



Chapter 5: Arrays

or finally as

void funcl(int al]) /* unsized array */
{

VA
}

All three methods of declaration tell the compiler that an integer pointer is
going to be received. In the first declaration a pointer is used; in the second the
standard array declaration is employed. In the third declaration, a modified version
of an array declaration simply specifies that an array of type int of some length is to
be received. As far as the function is concerned, it doesn’t matter what the length of
the array actually is because C/C++ performs no bounds checking. In fact, as far
as the compiler is concerned,

void funcl (int al[32])

{
[*ox/
}

also works because the compiler generates code that instructs funcl() to receive a
pointer—it does not actually create a 32-element array.

Null-Terminated Strings

By far the most common use of the one-dimensional array is as a character string. C
defines only one type of string, the null-terminated string, which is a null-terminated
character array. (A null is zero.) Thus a null-terminated string contains the characters
that compose the string followed by a null. Sometimes null-terminated strings are
called C-strings. C++ also defines a string class, called string, which provides an
object-oriented approach to string handling. It is described later in this book. Here,
null-terminated strings are examined.

When declaring a character array that will hold a null-terminated string, you need
to declare it to be one character longer than the largest string that it will hold. For
example, to declare an array s that can hold a 10-character string, you would write

char s[11];

This statement makes room for the 10 characters as well as the null at the end of
the string.

119



120

Borland C++ Builder: The Complete Reference

A string constant (also called a string literal) is a list of characters enclosed between
double quotes. For example, here are two string constants:

"hello there"
"this is a test"

A string constant automatically creates a null-terminated string. It is not necessary
to manually add the null to the end of string constants, because compiler does this
for you.
C/C++ supports a wide range of string manipulation functions. The most common
are listed here:

Name Function

strepy(s1, 52) Copies s2 into s1.

strcat(s1, s2) Concatenates s2 onto the end of s1.

strlen(s1) Returns the length of s1.

stremp(s1, s2) Returns 0 if s1 and s2 are the same; less than 0 if s1 < s2;
greater than 0 if s1 > s2.

strchr(s1, ch) Returns a pointer to the first occurrence of ch in s1.

strstr(s1, s2) Returns a pointer to the first occurrence of s2 in s1.

These functions use the <string.h> header. (These and other string functions
are discussed in detail in Part Two of this book.)
The following program illustrates the use of these string functions:

#include <string.h>
#include <stdio.h>

int main(void)
{
char s1[80], s2[80];
gets(sl); gets(s2);
printf ("lengths: %d %d\n", strlen(sl), strlen(s2));

if (!strcmp(sl, s2)) printf ("The strings are equal\n");

strcat (sl, s2);



Chapter 5: Arrays

printf ("$s\n", s1);

strcpy(sl, "This is a test.\n");

printf (s1);
if (strchr ("hello", 'e')) printf("e is in hello\n");
if (strstr("hi there", "hi")) printf("found hi");

return 0;

If this program is run and the strings "hello" and "hello" are entered, the output is

lengths: 5 5

The strings are equal
hellohello

This is a test.

e is in hello

found hi

It is important to remember that stremp() returns false if the strings are equal, so be
sure to use the ! to reverse the condition, as shown in this example, if you are testing
for equality.

Two-Dimensional Arrays

C/C++ supports multidimensional arrays. The simplest form of the multidimensional
array is the two-dimensional array. A two-dimensional array is, essentially, an array of
one-dimensional arrays. Two-dimensional arrays are declared using this general form:

type array_name[2nd dimension size][1st dimension size];

To declare a two-dimensional integer array d of size 10,20, you would write
int d[10] [20];

Pay careful attention to the declaration. Some other computer languages use commas
to separate the array dimensions, but C/C++ places each dimension in its own
set of brackets.

Similarly, to access point 3,5 of array d, you would use

ars] [s]

121



122

Borland C++ Builder: The Complete Reference

In the following example, a two-dimensional array is loaded with the numbers 1
through 12, which is then displayed row by row:

#include <stdio.h>

int main(void)

{

int t,i, num[3] [4];

/* load numbers */
for (t=0; t<3; ++t)
for(i=0; i<4; ++1i)
num([t] [1] = (t*4)+1+1;

/* display numbers */
for (t=0; t<3; ++t) {
for(i=0; i<4; ++1)
printf("$d ", numlt] [i]);
printf ("\n") ;

}

return 0;

In this example, num[0][0] has the value 1; num[0][1], the value 2; num[0][2], the value
3; and so on. The value of num[2][3] is 12.

Two-dimensional arrays are stored in a row-column matrix, where the left index
indicates the row and the right index indicates the column. This means that the right
index changes faster than the left when accessing the elements in the array in the order
they are actually stored in memory. See Figure 5-2 for a graphic representation of a
two-dimensional array in memory. In essence, the left index can be thought of as a
“pointer” to the correct row.

The number of bytes of memory required by a two-dimensional array is computed
using the following formula:

bytes = size of 1st index * size of 2nd index * sizeof (base-type)

Therefore, assuming 4-byte integers, an integer array with dimensions 10,5 would have
10 x 5 x 4 or 200 bytes allocated.

When a two-dimensional array is used as an argument to a function, only a pointer
to the first element is passed. However, a function receiving a two-dimensional array



Chapter 5: Arrays

Right index

A

0,0 0,1 0, § 4 0,5 0,6 0,7

1,0 1,1 12 | 13 14 | 15 16 | 17

Left
index

ANN

2,0 2,1 2,2 2,3 24 2,5 2,6 2,7

3,0 31 3,2 3,3 34 3,5 3,6 3,7

7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

Figure 5-2. A two-dimensional array in memory

as a parameter must minimally define the length of the right index, because the compiler
needs to know the length of each row if it is to index the array correctly. For example,
a function that will receive a two-dimensional integer array with dimensions 5,10
would be declared like this:

void funcl (int x[] [10])

{
}

/%%

You can specify the left dimension as well, but it is not necessary. The compiler needs
to know the size of the right dimension in order to work on statements such as

x[2] [4]

inside the function. If the length of the rows is not known, it is impossible to know
where the next row begins.

The following program uses a two-dimensional array to store the numeric grade for
each student in a teacher’s classes. The program assumes that the teacher has three

123



124 Borland C++ Builder: The Complete Reference

classes and a maximum of 30 students per class. Notice how the array grade is accessed
by each of the functions:

#include <conio.hs>
#include <ctype.h>
#include <stdio.hs>
#include <stdlib.hs>

#define CLASSES 3
#define GRADES 30
int grade [CLASSES] [GRADES] ;

void disp grades (int g[] [GRADES]), enter grades(void) ;
int get grade(int num) ;

int main(void) /* class grades program */
{
char ch;
for(;;) {
do {

printf (" (E)nter grades\n") ;
printf (" (R) eport grades\n") ;
printf (" (Q)uit\n") ;
ch = toupper (getche()) ;

} while(ch!='E' && ch!='R' && ch!='Q"');

switch(ch) {

case 'E':
enter grades() ;
break;

case 'R':
disp grades (grade) ;
break;

case 'Q':
return 0;

/* Enter each student's grade. */
void enter grades (void)



Chapter 5: Arrays 125

int t, 1i;

for (t=0; t<CLASSES; t++) {
printf ("Class # %d:\n", t+1);
for(i=0; i1i<GRADES; ++1i)
grade [t] [1] = get grade(i);

/* Actually input the grade. */
int get grade(int num)

{

char s[80];

printf ("enter grade for student # %d:\n", num+l);
gets(s);
return (atoi(s)) ;

/* Display the class grades. */
void disp grades (int g[] [GRADES])

{

int t, 1i;

for (t=0; t<CLASSES; ++t) {
printf ("Class # %d:\n", t+1);
for(i=0; i<GRADES; ++1i)
printf ("grade for student #%d is %d\n",i+1, gltl] [i]);

Arrays of Strings

It is not uncommon in programming to use an array of strings. For example, the input
processor to a database may verify user commands against a string array of valid
commands. A two-dimensional character array is used to create an array of strings
with the size of the left index determining the number of strings and the size of the
right index specifying the maximum length of each string. This code fragment declares
an array of 30 strings, each having a maximum length of 79 characters:

char str array[30] [80];



126

Borland C++ Builder: The Complete Reference

To access an individual string is quite easy: You simply specify only the left index.
For example, this statement calls gets() with the third string in str_array:

gets (str_arrayl[2]);
This is functionally equivalent to
gets (&str_array[2] [0]) ;

but the previous form is much more common in professionally written code.
To understand better how string arrays work, study the following short program,
which uses a string array as the basis for a very simple text editor:

#include <stdio.h>

#define MAX 100
#define LEN 255

char text [MAX] [LEN] ;

/* A very simple text editor. */
int main(void)

{

register int t, i, J;

for (t=0; t<MAX; t++) {
printf ("%d: ", t);
gets (text [t]) ;
if (!*text[t]) break; /* quit on blank line */

/* this displays the text one character at a time */
for(i=0; i<t; 1i++) {
for(j=0; textl[i] [j]; j++) putchar(text[i] []j]);
putchar ('\n') ;

}

return 0;



Chapter 5: Arrays

This program inputs lines of text until a blank line is entered. Then it redisplays
each line. For purposes of illustration, it displays the text one character at a time by
indexing the first dimension. However, because each string in the array is
null-terminated, the routine that displays the text could be simplified like this:

for(i=0; i<t; i++)
printf ("$s\n", textl[il);

___ | Multidimensional Arrays

You can have arrays greater than two dimensions. The general form of a
multidimensional array declaration is

type name[sizel][size2][size3]. . .[sizeN];

Arrays of more than three dimensions are rarely used because of the large amount
of memory required to hold them.

A point to remember about multidimensional arrays is that it takes the computer
time to compute each index. This means that accessing an element in a multidimensional
array will be slower than accessing an element in a single-dimension array.

When passing multidimensional arrays into functions, you must declare all but the
leftmost dimension. For example, if you declare array m as

int m([4] [3] [6] [5];

then a function, funcl(), that receives m, would look like this:
int funcl (int 4[] [3] [6] [5])
{

[*.x/
}

Of course, you can include the leftmost dimension if you like.

___| Indexing Pointers

Pointers and arrays are closely related. As you know, an array name without an index
is a pointer to the first element in the array. For example, given this array,

char p[10];



128

Borland C++ Builder: The Complete Reference

the following statements are identical:
p
&p [0]

Put another way,
p == &p[0]

evaluates true because the address of the first element of an array is the same as the
address of the array.
Conversely, a pointer can be indexed as if it were declared to be an array. For example:

int *p, i[10];

p = i;
pl5] = 100; /* assign using index */
*(p+5) = 100; /* assign using pointer arithmetic */

Both assignment statements place the value 100 in the sixth element of i. The first
statement indexes p; the second uses pointer arithmetic. Either way, the result is the
same. (Pointers and pointer arithmetic are dealt with in detail in Chapter 6.)

The same holds true for arrays of two or more dimensions. For example, assuming
that a is a 10-by-10 integer array, these two statements are equivalent:

a
&a[0] [0]

Furthermore, the 0,4 element of a may be referenced either by array-indexing,
a[0][4], or by the pointer, *((int *) a + 4). Similarly, element 1,2 is either a[1][2] or
*((int *) a + 12). In general, for any two-dimensional array:

aljl[k] is equivalent to *((base type *) a + (j * rowlength) + k)

The cast of the pointer to the array into a pointer of its base type is necessary in order
for the pointer arithmetic to operate properly. Pointers are sometimes used to access
arrays because pointer arithmetic is often faster than array indexing. The gain in speed
with pointers is the greatest when an array is being accessed sequentially. In this
situation, the pointer may be incremented or decremented using the highly efficient
increment and decrement operators. On the other hand, if the array is accessed in
random order, then the pointer approach may not be any better than array-indexing.



Chapter 5: Arrays

A two-dimensional array can be reduced to a pointer to an array of one-dimensional
arrays. Therefore, using a separate pointer variable is one easy way to access elements
within a row of a two-dimensional array. The following function illustrates this technique.
It prints the contents of the specified row for the global integer array num:

int num[10] [10];

[*..0x/
void pr row(int 3J)
{
int *p, t;
p = (int *) &num[j] [0]; /* get address of first
element in row j */
for(t=0; t<10; ++t) printf("%d ", *(p+t));
}

This function can be generalized by making the calling arguments be the row,
the row length, and a pointer to the first array element, as shown here:

/* General */
void pr row(int j, int row_dimension, int *p)

int t;

p=p + (J * row dimension) ;
for (t=0; t<row dimension; ++t)
printf ("sd ", *(p+t));

Arrays greater than two dimensions may be reduced in a similar way. For example,
a three-dimensional array can be reduced to a pointer to a two-dimensional array,
which can be reduced to a pointer to a one-dimensional array. Generally, an N-dimensional
array can be reduced to a pointer and an N - 1 dimensional array. This new array can
be reduced again using the same method. The process ends when a single-dimension
array is produced.

___| Allocated Arrays

In many programming situations it is impossible to know how large an array is
needed. In addition, many types of programs need to use as much memory as is
available, yet still run on machines having only minimal memory. A text editor
or a database are examples of such programs. In these situations, it is not possible

129



130

Borland C++ Builder: The Complete Reference

to use a predefined array because its dimensions are established at compile time and
cannot be changed during execution. The solution is to create a dynamic array. A dynamic
array uses memory from the region of free memory called the heap and is accessed by
indexing a pointer to that memory. (Remember that any pointer can be indexed as if it
were an array variable.)

In C you can dynamically allocate and free memory by using the standard library
routines malloc( ), which allocates memory and returns a void * pointer to the start of
it, and free( ), which returns previously allocated memory to the heap for possible
reuse. The prototypes for malloc() and free() are

void *malloc(size_t num_bytes);
void free(void *p);

Both functions use the <stdlib.h> header. Here, num_bytes is the number of bytes
requested. The type size_t is defined as an unsigned integer. If there is not enough free
memory to fill the request, malloc() returns a null. It is important that free() be called
only with a valid, previously allocated pointer; otherwise, damage could be done to the
organization of the heap and possibly cause the program to crash.

The code fragment shown here allocates 1000 bytes of memory:

char *p;
p = malloc(1000); /* get 1000 bytes */

Here, p points to the first of 1000 bytes of free memory. Notice that no cast is used to
convert the void pointer returned by malloc() into the desired char pointer. Because
malloc() returns a void pointer, it can be assigned to any other type of pointer and is
automatically converted into a pointer of the target type. However, it is important to
understand that this automatic conversion does not occur in C++. In C++, an explicit
type cast in needed when a void pointer is assigned to another type of pointer. Thus,
in C++, the preceding assignment must be written as follows:

p = (char *) malloc(1000); /* get 1000 bytes */

As a general rule, in C++ you must use a type cast when assigning (or otherwise
converting) one type of pointer into another. This is one of the fundamental differences
between C and C++. Since type casts are needed for C++ and do no harm in C, this
book will use them when allocating memory using malloc().

This example shows the proper way to use a dynamically allocated array to read
input from the keyboard using gets():

/* Print a string backward using dynamic allocation. */



Chapter 5: Arrays

#include <stdlib.h>
#include <stdio.h>
#include <string.hs>

int main(void)

char *s;
register int t;

s = (char *) malloc(80);

if(1s) {
printf ("Memory request failed.\n");
exit (1) ;

}

gets(s);
for(t=strlen(s)-1; t>=0; t--) putchar(s[t]);
free(s);

return 0;

As the program shows, s is tested prior to its first use to ensure that a valid pointer
is returned by malloc(). This is absolutely necessary to prevent accidental use of a null
pointer. Notice how the pointer s is indexed as an array to print the string backward.

| Array Initialization

C/C++ allows the initialization of arrays at the time of their declaration. The general
form of array initialization is similar to that of other variables, as shown here:

type-specifier array_name[sizel]. . .[sizeN | = { value-list };

The value-list is a comma-separated list of values that are type-compatible with type-specifier.

The first value is placed in the first position of the array, the second value in the second
position, and so on. The last entry in the list is not followed by a comma. Note that a
semicolon follows the }.

Note | For compatibility with C89, array initializers must be constants.

131



132

Borland C++ Builder: The Complete Reference

In the following example, a 10-element integer array is initialized with the numbers
1 through 10:

int if10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

This means that i[0] has the value 1 and i[9] has the value 10.
Character arrays that hold strings allow a shorthand initialization in the form

char array_namel[size] = "string”;

In this form of initialization, the null terminator is automatically appended to the
string. For example, this code fragment initializes str to the phrase "hello™:

char str[6] = "hello";
This is the same as writing
char str[6] = {'h', 'e', '1', '1', 'o', '\0'};

Notice that in this version you must explicitly include the null terminator. Because
strings end with a null, you must make sure that the array you declare is long enough
to include it. This is why str is six characters long even though "hello" is only five
characters. When the string constant is used (as in the previous approach), the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized in the same fashion as single-dimension
ones. For example, the following initializes sqrs with the numbers 1 through 10 and
their squares:

int sqrs([10] [2] = {
1, 1,
2, 4,
3, 9,
4, 16,
5, 25,
6, 36,
7, 49,
8, 64,
9
1

7 811
0, 100



Chapter 5: Arrays 133

Here, sqrs[0][0] contains 1, sqrs[0][1] contains 1, sqrs[1]1[0] contains 2, sqrs[1][1]
contains 4, and so forth.

When initializing a multidimensional array, you may add braces around the
initializers for each dimension. This is called subaggregate grouping. For example,
here is another way to write the preceding declaration:

int sgrs([10][2] = {

{1, 1},
{2, 4},
{3, 9},
{a, 16},
{5, 25},
{6, 36},
{7, 49},
{8, 64},
{9, 81},
{10, 100}

}i

When using subaggregate grouping, if you don’t supply enough initializers for a given
group, the remaining members will be set to zero, automatically.

Unsized-Array Initializations

Imagine that you are using an array initialization to build a table of error messages as
shown here:

char el[12] "Read Error\n";
char e2[13] = "Write Error\n";
char e3[18] = "Cannot Open File\n";

As you might guess, it is very tedious to count the characters in each message
manually to determine the correct array dimensions. It is possible to let the compiler
dimension the arrays automatically by using unsized arrays. If the size of the array is
not specified in an array initialization statement, the compiler automatically creates an
array big enough to hold all the initializers present. Using this approach, the message
table becomes

char el[] = "Read Error\n";
char e2[] = "Write Error\n";
char e3[]

"Cannot Open File\n";



134

Borland C++ Builder: The Complete Reference

Given these initializations, this statement
printf ("%$s has length %d\n", e2, sizeof e2);
prints

Write Error
has length 13

Aside from being less tedious, the unsized-array initialization method allows any of
the messages to be changed without fear of accidentally counting incorrectly.

Unsized-array initializations are not restricted to only single-dimension arrays. For
multidimensional arrays, you must specify all but the leftmost dimensions in order to
allow the array to be properly indexed. (This is similar to specifying array parameters.)
In this way, you can build tables of varying lengths and the compiler automatically
allocates enough storage for them. For example, the declaration of sqrs as an unsized
array is shown here:

int sgrs([][2] = {
1, 1,

2, 4,

3, 9,

4, 1le6,
5, 25,
6, 36,
7, 49,
8, 64,
9, 81,
10, 100

}i

The advantage to this declaration over the sized version is that the table may be
lengthened or shortened without changing the array dimensions.

A Tic-Tac-Toe Example

This chapter concludes with a longer example that illustrates many of the ways arrays
can be manipulated using C/C++.

Two-dimensional arrays are commonly used to simulate board game matrices, as
in chess and checkers. Although it is beyond the scope of this book to present a chess
or checkers program, a simple tic-tac-toe program can be developed.



Chapter 5: Arrays

The tic-tac-toe matrix is represented using a 3-by-3 character array. You are “X” and
the computer is “O”. When you move, an “X” is placed in the specified position of the
game matrix. When it is the computer’s turn to move, it scans the matrix and puts its
“O” in the first empty location of the matrix. (This makes for a fairly dull game—you
might find it fun to spice it up a bit!) If the computer cannot find an empty location, it
reports a draw game and exits. The game matrix is initialized to contain spaces at the
start of the game. The tic-tac-toe program is shown here:

#include <stdio.h>
#include <stdlib.h>

/* A simple game of Tic-Tac-Toe. */
#define SPACE '

char matrix([3][3] = { /* the tic-tac-toe matrix */
{SPACE, SPACE, SPACE},
{SPACE, SPACE, SPACE},
{SPACE, SPACE, SPACE}

}i

void get computer move (void), get player move (void) ;
void disp matrix(void) ;
char check (void) ;

int main(void)

{

char done;

printf ("This is the game of Tic-Tac-Toe.\n");
printf ("You will be playing against the computer.\n") ;

do {
disp matrix(); /* display the game board */
get_player move () ; /* get your move */
done = check() ; /* see if winner */
if (done!=SPACE) break; /* winner! */
get computer move() ; /* get computer's move */
done=check () ; /* see if winner */

} while (done==SPACE) ;
if (done=='X') printf ("You won!\n") ;
else printf ("I won!!!!\n");

135



136 Borland C++ Builder: The Complete Reference

disp matrix(); /* show final positions */

return 0;

/* Input the player's move. */
void get player move (void)

{

int x, y;

printf ("Enter coordinates for your X.\n");

printf ("Row? ") ;

scanf ("%d", &x);

printf ("Column? ") ;

scanf ("sd", &y);

X--; Y--i

if(x<0 || y<0 || x>2 || y>2 || matrix[x] [y]!=SPACE) {
printf ("Invalid move, try again.\n");
get player move() ;

}

else matrix[x] [y]l='X";

/* Get the computer's move */
void get computer move (void)

{

register int t;

char *p;

p = (char *) matrix;

for(t=0; *p!=SPACE && t<9; ++t) p++;
if(t==9) {

printf ("draw\n") ;
exit (0); /* game over */

}

else *p = '0';



/* Display the game board. */
void disp matrix(void)

{
int t;
for (t=0; t<3; t++) {
printf(" %c | %c | %c ", matrix[t] [0],
matrix[t] [1], matrix [t] [2]);
if(t!=2) printf("\n---|---|---\n");
}
printf ("\n") ;
!

/* See if there is a winner. */
char check (void)

int t;
char *p;

for (t=0; t<3; t++) { /* check rows */
p = &matrix([t] [0];
if (*p==* (p+1) && * (p+1l)==*(p+2)) return *p;

}

for (t=0; t<3; t++) { /* check columns */
p = &matrix[0] [t];
if (*p==*(p+3) && *(p+3)==*(p+6)) return *p;

}

/* test diagonals */

Chapter 5: Arrays

if (matrix[0] [0] ==matrix[1] [1] && matrix[1l] [1]==matrix[2] [2])

return matrix[0] [0];

if (matrix [0] [2] ==matrix[1] [1] && matrix[1l] [1]==matrix[2] [0])

return matrix[0] [2];

return SPACE;

137



138

Borland C++ Builder: The Complete Reference

The array is initialized to contain spaces because a space is used to indicate to
get_player_move() and get_computer_move() that a matrix position is vacant. The
fact that spaces are used instead of nulls simplifies the matrix display function
disp_matrix() by allowing the contents of the array to be printed on the screen without
any translations. Note that the routine get_player_move() is recursive when an invalid
location is entered. This is an example of how recursion can be used to simplify a
routine and reduce the amount of code necessary to implement a function.

In the main loop, each time a move is entered the function check() is called. This
function determines if the game has been won and by whom. The check() function
returns an “X” if you have won, or an “O” if the computer has won. Otherwise, it returns
a space. check() works by scanning the rows, the columns, and then the diagonals
looking for a winning configuration.

The routines in this example all access the array matrix differently. You should
study them to make sure that you understand each array operation.



The

Complete L

Reference by

Pointers

139



140

Borland C++ Builder: The Complete Reference

he correct understanding and use of pointers is crucial to the successful C/C++
I programming for four reasons:

1. Pointers provide the means by which functions can modify their calling arguments.
2. Pointers support dynamic allocation.
3. Pointers can improve the efficiency of certain routines.

4. Pointers provide support for dynamic data structures such as linked lists and
binary trees.

Pointers are one of the strongest but also one of the most dangerous features in
C/C++. For example, uninitialized or wild pointers can cause the system to crash.
Perhaps worse, it is easy to use pointers incorrectly, causing bugs that are very difficult
to find.

Because of their importance and their potential for abuse, this chapter examines the
subject of pointers in detail.

Pointers Are Addresses

A pointer is a variable that holds a memory address. This address is the location of
another object (typically, a variable) in memory. If one variable contains the address
of another variable, the first variable is said to point to the second. For example, if a
variable at location 1004 is pointed to by a variable at location 1000, location 1000 will
contain the value 1004. This situation is illustrated in Figure 6-1.

Memory
Address Contents

1000 1004

1001

1002

1003

1004

Figure 6-1. One variable pointing to another




Chapter 6: Pointers 141

| Pointer Variables

If a variable is going to be a pointer, it must be declared as such. A pointer declaration
consists of a base type, an *, and the variable name. The general form for declaring a
pointer variable is

type *name;

where type is any valid type (the pointer’s base type), and name is the name of the
pointer variable.

The base type of the pointer defines what type of variables the pointer can point to.
Technically, any type of pointer can point anywhere in memory, but C/C++ assumes
that what the pointer is pointing to is an object of its base type. Also, all pointer arithmetic
is done relative to its base type, so the base type of a pointer is very important.

___| The Pointer Operators

There are two special pointer operators: * and &. These operators were introduced in
Chapter 2. We will take a closer look at them here, beginning with a review of their
basic operation.

The & is a unary operator that returns the memory address of its operand. For
example,

p = &num;

places into p the memory address of the variable num. This address is the computer’s
internal location of the variable. It has nothing to do with the value of num. The
operation of the & can be remembered as returning “the address of.” Therefore, the
preceding assignment statement could be read as “p receives the address of num.”

For example, assume the variable num uses memory location 2000 to store its
value. Also assume that num has a value of 100. Then, after the preceding assignment,
p will have the value 2000.

The second operator, *, is the complement of &. It is a unary operator that returns
the value of the variable located at the address that follows. For example, if p contains
the memory address of the variable num,

q = *p;

places the value of num into q. Following through with this example, q has the value
100 because 100 is stored at location 2000, which is the memory address that was stored
in p. The operation of the * can be remembered as “at address.” In this case the
statement could be read as “q receives the value at address p.”



142 Borland C++ Builder: The Complete Reference

The following program illustrates the foregoing discussion:

#include <stdio.h>

int main(void)

{
int num, g;
int *p;
num = 100; /* num is assigned 100 */
p = &num; /* p receives num's address */
g = *p; /* g is assigned num's value
indirectly through p */
printf ("$d", q); /* prints 100 */
return 0;
}

The preceding program displays the value 100.

Unfortunately, the multiplication sign and the “at address” sign are the same, and
the bitwise AND and the “address of” sign are the same. These operators have no
relationship to each other. Both & and * have a higher precedence than the binary
arithmetic operators.

You must make sure that your pointer variables always point to the correct type of
data. For example, when you declare a pointer to be of type int, the compiler assumes
that any address it holds points to an integer value. Because C allows you to assign any
address to a pointer variable, the following code fragment compiles (although C++
Builder will issue a warning message) but does not produce the desired result.

#include <stdio.h>

int main(void)

{

double x, vy;
int *p;

x = 100.123;
p = &X;

Yy = *p;
printf ("$£f", y); /* this will be wrong */



Chapter 6: Pointers
return 0;

This does not assign the value of x to y. Because p is declared to be an integer pointer
(and assuming 32-bit integers), only 4 bytes of information will be transferred to y, not
the 8 that normally make up a double.

| In C++, it is illegal to convert one type of pointer into another without the use of an
explicit type cast. For this reason, the preceding program will not even compile if you try
to compile it as a C++ (rather than as a C) program. However, the type of error described
can still occur in C++ in a more roundabout manner.

| Pointer Expressions

In general, expressions involving pointers conform to the same rules as any other C/C++
expression. This section will examine a few special aspects of pointer expressions.

Pointer Assignments

As with any variable, a pointer may be used on the right-hand side of assignment
statements to assign its value to another pointer. For example:

#include <stdio.h>

int main(void)

{
int x;
int *pl, *p2;

pl = &X%;
p2 = pl;

/* This will display the addresses held by
pl and p2. They will be the same.

*/

printf ("$p %p", pl, p2);

return 0;

Here, both p1 and p2 will contain the address of x.



144 Borland C++ Builder: The Complete Reference

Pointer Arithmetic

Only two arithmetic operations can be used on pointers: addition and subtraction. To
understand what occurs in pointer arithmetic, let p1 be a pointer to an integer with a
current value of 2000, and assume that integers are 4 bytes long. After the expression

pl++;

the content of p1 is 2004, not 2001! Each time p1 is incremented, it points to the next
integer. The same is true of decrements. For example,

pl--;

will cause p1 to have the value 1996, assuming that it previously was 2000.

Generalizing from the preceding example, the following rules govern pointer
arithmetic. Each time a pointer is incremented, it points to the memory location of the
next element of its base type. Each time it is decremented, it points to the location of
the previous element. When applied to character pointers, this will appear as “normal”
arithmetic because characters are always 1 byte long. All other pointers will increase
or decrease by the length of the data type they point to. This approach ensures that a
pointer is always pointing to an appropriate element of its base type. Figure 6-2
illustrates this concept.

You are not limited to the increment and decrement operations, however. You may
also add or subtract integers to or from pointers. The expression

pl = pl + 9;

makes p1 point to the ninth element of p1’s type beyond the one it is currently pointing to.

Besides addition and subtraction of a pointer and an integer, the only other operation
you can perform on a pointer is to subtract it from another pointer. For the most part,
subtracting one pointer from another only makes sense when both pointers point to a
common object, such as an array. The subtraction then yields the number of elements
of the base type separating the two pointer values. Aside from these operations, no
other arithmetic operations can be performed on pointers. You cannot multiply or divide
pointers; you cannot add pointers; you cannot apply the bitwise shift and mask operators
to them; and you cannot add or subtract type float or double to pointers.



Chapter 6: Pointers

char *ch = (char *) 3000 ;
short int *i = (short int *) 3000;
ch 3000
— i
ch+1 3001
ch+2 3002
— i+1
ch+3 3003
ch+4 3004
— i+2
ch+5 3005
Memory
Figure 6-2. All pointer arithmetic is relative to its base type. (Assume 2-byte short
integers.)

Pointer Comparisons

You can compare two pointers in a relational expression. For instance, given the
pointers p and q, the following statement is perfectly valid:

if (p<qg) printf ("p points to lower memory than g\n");

Generally, pointer comparisons are useful only when two or more pointers are
pointing to a common object. As an example, imagine that you are constructing a stack
routine to hold integer values. A stack is a list that uses “first in, last out” accessing. It

145



146

Borland C++ Builder: The Complete Reference

is often compared to a stack of plates on a table—the first one set down is the last one
to be used. Stacks are used frequently in compilers, interpreters, spreadsheets, and
other system-related software. To create a stack, you need two routines: push() and
pop(). The push() function puts values on the stack, and pop() takes them off. In the
following expample, the stack is held in the array stack, which is STCKSIZE elements
long. The variable tos holds the memory address of the top of the stack and is used to
prevent stack overflows and underflows. Once the stack has been initialized, push()
and pop() can be used to access the stack. These routines are shown here with a simple
main() function to drive them:

#include <stdio.h>
#include <stdlib.h>

#define STCKSIZE 50

void push(int 1i);
int pop (void) ;

int *pl, *tos, stack[STCKSIZE];

int main(void)

{

int value;

pl = stack; /* assign pl the start of stack */
tos = pl; /* let tos hold top of stack */

do {
printf ("Enter a number (-1 to quit, 0 to pop): ");
scanf ("%d", &value) ;
if (value!=0) push(value) ;
else printf("this is it %d\n", pop());
} while(value!=-1);
return O;

}

void push(int i)
{
pl++;
if (pl==(tos + STCKSIZE)) {
printf ("stack overflow") ;
exit (1) ;

}



Chapter 6: Pointers 147

int pop (void)
{
if (pl==tos) {
printf ("stack underflow") ;
exit (1) ;
}
pl--;
return * (pl+1l);

}

Both the push() and pop() functions perform a relational test on the pointer p1 to
detect limit errors. In push(), p1is tested against the end of stack by adding STCKSIZE
(the size of the stack) to tos. In pop(), p1is checked against tos to be sure that a stack
underflow has not occurred.

In pop(), the parentheses are necessary in the return statement. Without them, the
statement would look like

return *pl + 1;

which would return the value at location p1 plus 1, not the value of the location p1+1.

___ | pynamic Allocation and Pointers

Once compiled, all C/C++ programs organize the computer’s memory into four
regions: program code, global data, the stack, and the heap. The heap is an area of free
memory that is managed by the dynamic allocation functions malloc() and free().
These functions were introduced in Chapter 5 in conjunction with arrays. Here we
will examine them further, beginning with a review of their of their basic operation.

| Although C++ still supports C’s dynamic allocation functions, it also defines its own
approach, which is based upon dynamic allocation operators. These are described in
Part Three.

The malloc() function allocates memory and returns a pointer to the start of it. free()
returns previously allocated memory to the heap for possible reuse. The prototypes for
malloc() and free() are

void *malloc(size_t num_bytes);
void free(void *p);



148

Borland C++ Builder: The Complete Reference

Both functions use the <stdlib.h> header. Here, num_bytes is the number of bytes
requested. If there is not enough free memory to fill the request, malloc() returns a
null. The type size_t is defined in <stdlib.h> and specifies an unsigned integer type
that is capable of holding the largest amount of memory that may be allocated with a
single call to malloc(). It is important that free() be called only with a valid, previously
allocated pointer; otherwise, the organization of the heap could be damaged, which
might cause a program crash.

The code fragment shown here allocates 25 bytes of memory:

char *p;
p = (char *) malloc(25);

After the assignment, p points to the first of 25 bytes of free memory. The cast to char *
is not needed for C but is required for C++ programs. In C, if no type cast is used with
malloc(), the pointer type is converted automatically to the same type as the pointer
variable on the left side of the assignment. In C++, such implicit pointer conversions
are disallowed. Although not needed by C, the use of the type cast allows your C code
to be compatible with C++. As another example, this fragment allocates space for 50
integers. It uses sizeof to ensure portability.

int *p;
p = (int *) malloc(50*sizeof (int)) ;

Since the heap is not infinite, whenever you allocate memory it is imperative to
check the value returned by malloc() to make sure that it is not null before using the
pointer. Using a null pointer may crash the computer. The proper way to allocate
memory and test for a valid pointer is illustrated in this code fragment:

int *p;

if((p = (int *) malloc(100))==NULL) ({
printf ("Out of memory.\n");
exit (1) ;

}

The macro NULL is defined in <stdlib.h>. Of course, you can substitute some sort of
error handler in place of exit(). The point is that you do not want the pointer p to be
used if it is null.

You should include the header <stdlib.h> at the top of any file that uses malloc()
and free() because it contains their prototypes.



Chapter 6: Pointers 149

___| Understanding const Pointers

The const qualifier was introduced in Chapter 2, where it was used to create variables
that could not be changed (by the program) after they were created. However, there is
a second use of const that relates to pointers. The const qualifier can be used to prevent
the object pointed to by an argument to a function from being modified by that function.
That is, when a pointer is passed to a function, that function can modify the object
pointed to by the pointer. However, if the pointer is specified as const in the parameter
declaration, the function code won’t be able to modify the object. For example, the
sp_to_dash() function in the following program prints a dash for each space in its
string argument. That is, the string "this is a test" will be printed as "this-is-a-test". The
use of const in the parameter declaration ensures that the code inside the function
cannot modify the object pointed to by the parameter.

#include <stdio.h>
void sp to dash(const char *str);
int main(void)

{

sp_to dash("this is a test");

return 0;
}
void sp to dash(const char *str)
{
while (*str)
if (*str == ' ') printf("%c", '-');
else printf ("%c", *str);
str++;
}
}

If you had written sp_to_dash() in such a way that the string would be modified, it
would not compile. For example, if you had coded sp_to_dash() as follows, you would
receive a compile-time error:

/* This is wrong. */
void sp_ to dash(const char *str)



150 Borland C++ Builder: The Complete Reference

{
while (*str) {
if (*str == ' ') *str = '-'; /* can't do this */
printf ("%c", *str);
str++;
}
!

Many functions in the standard library use const in their parameter declarations. Doing
so ensures that no changes to the argument pointed to by a parameter will occur.

___| Pointers and Arrays

There is a close relationship between pointers and arrays. Consider this fragment:

char str[80], *pl;
pl = str;

Here, p1 has been set to the address of the first array element in str. If you wanted to
access the fifth element in str, you could write

str[4]
or
* (pl+4)

Both statements return the fifth element. Remember, arrays start at 0, so a 4 is used to
index str. You add 4 to the pointer p1 to get the fifth element because p1 currently
points to the first element of str. (Recall that an array name without an index returns
the starting address of the array, which is the first element.)

In essence, C/C++ allows two methods of accessing array elements. This is
important because pointer arithmetic can be faster than array-indexing. Since speed is
often a consideration in programming, the use of pointers to access array elements is
very common.

To see an example of how pointers can be used in place of array-indexing, consider
these two simplified versions of the puts() standard library function—one with
array-indexing and one with pointers. The puts() function writes a string to the
standard output device.



Chapter 6: Pointers

/* Use array. */
int puts(const char *g)

{

register int t;

for(t=0; s([t]l; ++t) putchar(s(t]);
return 1;

}

/* Use pointer. */

int puts(const char *g)

{
while (*s) putchar (*s++);
return 1;

}

Most professional C/C++ programmers would find the second version easier to
read and understand. In fact, the pointer version is the way routines of this sort are
commonly written.

Pointers to Character Arrays

String operations in C are usually performed by using pointers and pointer arithmetic
because strings tend to be accessed in a sequential fashion.

For example, here is one version of the standard library function stremp() that
uses pointers:

/* Use pointers. */
int strcmp(const char *sl, const char *s2)
while (*s1)
if (*sl-*g2)
return *sl-*s2;
else {
sl++;
S2++;
return 0; /* equal */

}

Remember, strings in C are terminated by a null, which is a false value. Therefore, a
statement such as

while (*sl)

151



152 Borland C++ Builder: The Complete Reference

continues to iterate until the end of the string is reached. Here, stremp() returns 0 if s1 is
equal to s2. It returns less than 0 if s1 is less than s2; otherwise, it returns greater than 0.
Most string functions resemble stremp() with regard to the way it uses pointers,
especially where loop control is concerned. Using pointers is faster, more efficient, and
often easier to understand than using array-indexing.
One common error that sometimes creeps in when using pointers is illustrated by
the following program:

/* This program is incorrect. */

#include <stdio.h>
#include <string.hs>

int main(void)

{

char *pl, s[80];

pl = s; /* assign pl the starting address of s */
do {

printf ("\nEnter string: ");

gets(s); /* read a string */

/* print the decimal equivalent of each
character */
while (*pl) printf (" %d", *pl++);

} while(strcmp (s, "done"));
return O;

Can you find the error in this program?

The problem is that p1 is assigned the address of s only once—outside the loop.
The first time through the loop, p1 does point to the first character in s. However, in
the second (and subsequent iterations), it continues from where it left off, because it is
not reset to the start of the array s. The proper way to write this program is

/* This program is correct. */

#include <stdio.h>
#include <string.hs>



Chapter 6: Pointers

int main(void)

{

char *pl, s[80];

do {
pl = s;
printf ("\nEnter string: ");
s); /* read a string */

/* assign pl the starting address of s */
gets (
/* print the decimal equivalent of each

character */
while (*pl) printf (" %d", *pl++);
} while(strcmp(s, "done"));

return 0;

}

Here, each time the loop iterates, p1 is set to the start of string s.

Arrays of Pointers

Pointers can be arrayed like any other data type. The declaration for an int pointer
array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third element of the array,
you would write:

x[2] = &var;
To find the value of var, you would write
*x[2]

If you want to pass an array of pointers into a function, you can use the same
method used for other arrays—simply call the function with the array name without
any indexes. For example, a function that could receive array x would look like:

void display array(int *qgl[])

{

153



154 Borland C++ Builder: The Complete Reference

int t;

for(t=0; t<10; t++)
printf("sd ", *qgltl);

Remember, q is not a pointer to integers, but to an array of pointers to integers. Therefore
it is necessary to declare the parameter q as an array of integer pointers as shown here.
You cannot declare q simply as an integer pointer because that is not what it is.

A common use of pointer arrays is to hold pointers to error messages. You can
create a function that outputs a message given its code number, as shown here:

void serror (int num)

{
static char *err[] = {
"Cannot Open File\n",
"Read Error\n",
"Write Error\n",
"Media Failure\n"
}i
printf ("$s", err[num]);
1

As you can see, printf() inside serror() is called with a character pointer that points to
one of the various error messages indexed by the error number passed to the function.
For example, if num is passed a 2, the message “Write Error” is displayed.

As a point of interest, note that the command line argument argv is an array of
character pointers.

| Pointers to Pointers: Multiple Indirection

The concept of arrays of pointers is straightforward because the indexes keep the
meaning clear. However, cases in which one pointer points to another can be very
confusing. A pointer to a pointer is a form of multiple indirection, or a chain of pointers.
Consider Figure 6-3.

In the case of a normal pointer, the value of the pointer is the address of the
location that contains the value desired. In the case of a pointer to a pointer, the first
pointer contains the address of the second pointer, which contains the address of the
location that contains the value desired.



Chapter 6: Pointers

Pointer Variable

address value

Single Indirection

Pointer Pointer Variable
address - address > value
Multiple Indirection

Figure 6-3. Single and multiple indirection

Multiple indirection can be carried on to whatever extent desired, but there are few
cases where using more than a pointer to a pointer is necessary, or even wise. Excessive
indirection is difficult to follow and prone to conceptual errors. (Do not confuse multiple
indirection with linked lists, which are used in databases.)

A variable that is a pointer to a pointer must be declared as such. This is done by
placing an additional asterisk in front of its name. For example, this declaration tells
the compiler that newbalance is a pointer to a pointer of type float.

float **newbalance;

It is important to understand that newbalance is not a pointer to a floating-point
number but rather a pointer to a float pointer.

In order to access the target value indirectly pointed to by a pointer to a pointer, the
asterisk operator must be applied twice, as is shown in this short example:

#include <stdio.h>

int main(void)

{

int x, *p, **q;

x = 10;
b = &xX;

155



156 Borland C++ Builder: The Complete Reference

q = &p;
printf ("$d", **q); /* print the value of x */

return 0;

Here, p is declared as a pointer to an integer, and q as a pointer to a pointer to an
integer. The call to printf() prints the number 10 on the screen.

___| Initializing Pointers

After a pointer is declared, but before it has been assigned a value, it may contain an
unknown value. If you try to use the pointer prior to giving it a value, you probably
will crash not only your program but also the operating system of your computer—a
very nasty type of error!

By convention, a pointer that is pointing nowhere should be given the value null to
signify that it points to nothing. However, just because a pointer has a null value does
not make it “safe.” If you use a null pointer on the left side of an assignment statement,
you still risk crashing your program or operating system.

Because a null pointer is assumed to be unused, you can use the null pointer to
make many of your pointer routines easier to code and more efficient. For example,
you could use a null pointer to mark the end of a pointer array. If this is done, a routine
that accesses that array knows that it has reached the end when the null value is
encountered. This type of approach is illustrated by the search() function shown here:

/* Look up a name. */
int search(char *p[], char *name)
{
register int t;
for(t=0; pltl; ++t)
if (!strcmp(p[t], name)) return t;

return -1; /* not found */

}

The for loop inside search() runs until either a match or a null pointer is found.
Assuming the end of the array is marked with a null, the condition controlling the loop
fails when it is reached.

It is common in professionally written programs to initialize strings. You saw an
example of this in the serror() function shown earlier. Another variation on this theme
is the following type of string declaration:



Chapter 6: Pointers 157

char *p = "hello world\n";

As you can see, the pointer p is not an array. The reason this sort of initialization works
has to do with the way the compiler operates. All C/C++ compilers create what is called
a string table, which is used internally by the compiler to store the string constants used
by the program. Therefore, this declaration statement places the address of "hello
world" into the pointer p. Throughout the program p can be used like any other string.
For example, the following program is perfectly valid:

#include <stdio.h>
#include <string.hs>

char *p = "hello world\n";

int main(void)

{

register int t;

/* print the string forward and backwards */
printf (p) ;

for(t=strlen(p)-1; t>-1; t--) printf("%c", pltl]);
return 0;

| Pointers to Functions

In Chapter 4, you were introduced to a particularly confusing yet powerful feature, the
function pointer. Even though a function is not a variable, it still has a physical location
in memory that can be assigned to a pointer. A function’s address is the entry point of
the function. Because of this a function pointer can be used to call a function. In this
section, we will take another look at the function pointer.

In certain types of programs, the user can select one option from a long list of possible
actions. For example, in an accounting program, you may be presented with a menu that
has 20 or more selections. Once the selection has been made, the routine that routes
program execution to the proper function can be handled two ways. The most common
way is to use a switch statement. However, in applications that demand the highest
performance there is a better way. An array of pointers can be created with each pointer in
the array containing the address of a function. The selection made by the user is decoded
and used to index into the pointer array, causing the proper function to be executed. This
method can be very fast—much faster than the switch method.

To see how an array of function pointers can be used as described, imagine that you
are implementing a very simple inventory system that is capable of entering, deleting,
and reviewing data, as well as exiting to the operating system. If the functions that



158 Borland C++ Builder: The Complete Reference

perform these activities are called enter( ), del(), review( ), and quit(), respectively, the
following fragment correctly initializes an array of function pointers to these functions:

void enter(void), del(void), review(void), quit (void) ;
int menu(void) ;

void (*options[]) (void) = ({
enter,
del,
review,

quit

b

Pay special attention to the way an array of function pointers is declared. Notice the
placement of the parentheses and square brackets.

Although the actual inventory routines are not developed, the following program
illustrates the proper way to execute the functions by using the function pointers.
Notice how the menu() function automatically returns the proper index into the
pointer array.

#include <stdlib.h>
#include <stdio.hs>
#include <conio.h>
#include <string.hs>

void enter(void), del(void), review(void), quit (void) ;
int menu(void) ;

void (*options[]) (void) = ({
enter,
del,
review,
quit

b
int main(void)
{

int 1i;

i = menu(); /* get user's choice */

(*options[il) (); /* execute it */



Chapter 6: Pointers 159

return 0;

int menu(void)

{

char ch;

-
==
m
-
o
c
Z
O
>
=
o
4

do {

printf ("1. Enter\n");
printf ( Delete\n") ;
(
(

"2.
printf ("3. Review\n") ;
printf ("4. Quit\n");
printf ("Select a number: ");
ch = getche();
printf ("\n") ;
} while(!strchr("1234", ch));

return ch-49; /* convert to an integer equivalent */

void enter (void)

{

printf ("\nIn enter.");

}

void del (void)

{

printf ("\nIn del.");

}

void review (void)

{

printf ("\nIn review.");

}

void quit (void)

{
printf ("\nIn quit.");
exit (0) ;



160

Borland C++ Builder: The Complete Reference

The program works like this. The menu is displayed, and the user enters the
number of the selection desired. Since the number is in ASCII, 49 (the decimal value
of 0) is subtracted from it in order to convert it into a binary integer. This value is then
returned to main() and is used as an index to options, the array of function pointers.
Next, the call to the proper function is executed.

Using arrays of function pointers is very common, not only in interpreters and
compilers but also in database programs, because often these programs provide a large
number of options and efficiency is important.

Problems with Pointers

Nothing will get you into more trouble than a wild pointer! Pointers are a mixed
blessing. They give you tremendous power and are necessary for many programs. But
when a pointer accidentally contains a wrong value, it can be the most difficult bug to
track down. The trouble is that the pointer itself is not the problem; the problem is that
each time you perform an operation using it, you are reading or writing to some
unknown piece of memory. If you read from it, the worst that can happen is that you
get garbage. If you write to it, you might be writing over other pieces of your code or
data. In either case, the problem might not show up until later in the execution of your
program, and may lead you to look for the bug in the wrong place. There may be little
or no evidence to suggest that the pointer is the problem.

Because pointer errors are so troublesome, you should do your best never to
generate one. Toward this end, two of the more common errors are discussed here.

The classic example of a pointer error is the uninitialized pointer. For example:

/* This program is wrong. */

int main(void)

{

int x, *p;

x = 10;
*p = X;
return 0;

This program assigns the value 10 to some unknown memory location. The pointer p
has never been given a value; therefore it contains an indeterminate (i.e., garbage)
value. This type of problem often goes unnoticed when your program is very small
because the odds are in favor of p containing a “safe” address—one that is not in your
code, data, stack, heap, or operating system. However, as your program grows, so does



Chapter 6: Pointers

the probability of p pointing into something vital. Eventually your program stops
working. The solution to this sort of trouble is obvious: make sure that a pointer is
always pointing at something valid before it is used. Although the mistake is easy to
catch in this simple case, frequently uninitialized pointers (or, incorrectly initialized
ones) occur in a way that is not as easy to find.

A second common error is caused by a simple misunderstanding of how to use a
pointer. For example, this program is fundamentally wrong.

#include <stdio.h>

/* This program is wrong. */
int main(void)

{

int x, *p;

x = 10;
p = X%;
printf ("%d", *p);

return 0;

}

The call to printf() does not print the value of x, which is 10, on the screen. It prints
some unknown value because the assignment

p = X;

is wrong. That statement has assigned the value 10 to the pointer p, which was
supposed to contain an address, not a value. Fortunately, the error in this program is
caught by C++ Builder. The compiler issues a warning message that tells you that a
nonportable pointer conversion is taking place. This is your clue that a pointer error
might have been made—which is the case in this example. To make the program
correct, you should write

p = &x;

Although C++ Builder reported a warning for the mistake in this program, you can’t
always count on it for help. These types of errors can occur in convoluted, roundabout
ways that escape detection. So, be careful.

The fact that pointers can cause very tricky bugs if handled incorrectly is no reason
to avoid using them. Simply be careful and make sure that you know where each
pointer is pointing before using it.

161



This page intentionally left blank.



The

Complete borland

Reference i

Structures, Unions, and
User-Defined Types

163



164 Borland C++ Builder: The Complete Reference

The C language gives you five ways to create a custom data type:

1. The structure, which is a grouping of variables under one name and is called a
compound data type.(The terms aggregate or conglomerate are also commonly used.)

2. The bit-field, which is a variation on the structure and allows easy access to
individual bits.

3. The union, which enables the same piece of memory to be defined as two or
more different types of variables.

4. The enumeration, which is a list of named integer constants.

5. The typedef keyword, which defines a new name for an existing type.

C++ supports all of these and adds classes, which are described in Part Three. The other
methods of creating custom data types are described here.

Note | In C++, structures and unions have both object-oriented and non-object-oriented

attributes. This chapter discusses only their C-like, non-object-oriented features.
Their object-oriented qualities are described later in this book.

| structures

A structure is a collection of variables that are referenced under one name, providing a
convenient means of keeping related information together. A structure declaration forms
a template that can be used to create structure objects. The variables that make up the
structure are called members of the structure. (Structure members are also commonly
referred to as elements or fields.)

Usually, the members of a structure are logically related. For example, the name
and address information found in a mailing list is normally represented as a structure.
The following code fragment declares a structure template that defines the name and
address fields of such a structure. The keyword struct tells the compiler that a structure
is being declared.

struct addr ({
char name[30] ;
char street[40];
char city[20];
char state[3];
char zip[11];
int customer num;



Chapter 7: Structures, Unions, and User-Defined Types

The declaration is terminated by a semicolon because a structure declaration is a statement.
Also, the structure name addr identifies this particular data structure and is its type
specifier. The structure name is often referred to as its fag.

At this point, no variable has actually been declared. Only the form of the data has been
defined. To declare a variable with this structure, you would write

struct addr addr info;

This declares a variable of type addr called addr_info. When you declare a structure,
you are defining a compound variable type, not a variable. Not until you declare a
variable of that type does one actually exist.

When a structure variable is declared, the compiler automatically allocates
sufficient memory to accommodate all of its members. Figure 7-1 shows how
addr_info appears in memory.

You may also declare one or more variables at the same time that you declare a
structure. For example,

struct addr
char name[30] ;
char street[40];
char city[20];
char state[3];
char zip[11];
int customer_num;
} addr_info, binfo, cinfo;

declares a structure type called addr and declares variables addr_info, binfo, and cinfo
of that type.

It is important to understand that each structure variable that you create contains
its own copies of the variables that make up the structure. For example, the zip field of
binfo is separate and distinct from the zip field in cinfo. In fact, the only relationship
that binfo and cinfo have with each other is that they are both instances of the same
type of structure. There is no other linkage between the two.

name 30 bytes

street 40 bytes

city 20 bytes )
state 3 bytes addr_info
zip 11 bytes

customer_num 4 bytes

Figure 7-1. The addr_info structure as it appears in memory

165



166 Borland C++ Builder: The Complete Reference

If you need only one structure variable, the structure tag is not needed. This means that

struct
char name [30] ;
char street [40];
char city[20];
char statel[3];
char zip[1l1];
int customer num;
} addr info;

declares one variable named addr_info as defined by the structure preceding it.
The general form of a structure declaration is

struct tag {
type member-name;
type member-name;
type member-name;

} structure-variables;

The tag is the type name of the structure—not a variable name. The structure-variables
are a comma-separated list of variable names. Remember, either tag or structure-variables
is optional, but not both.

Accessing Structure Members

Individual structure members are accessed through the use of the . (usually called the
“dot”) operator. For example, the following code statement assigns the value 88 to the
customer_num field of the structure variable addr_info declared earlier:

addr_info.customer num = 88;

The structure variable name followed by a period and the member name references
that individual element. All structure members are accessed in the same way. The
general form is

structure-name.member-name

Therefore, to print the customer number to the screen, you could write

printf ("%$d", addr_ info.customer num) ;



Chapter 7: Structures, Unions, and User-Defined Types 167

This prints the customer number contained in the customer_num variable of the

structure variable addr_info.
In the same fashion, the addr_info.name character array can be used with gets()

as shown here:
gets(addr_info.name) ;

This passes a character pointer to the start of name.

To access the individual characters of addr_info.name, you can index name.
For example, you can print the contents of addr_info.name one character at a time by
using this code:

register int t;
for(t=0; addr_info.name([t]; ++t) putchar(addr info.name[t]);

Structure Assignments

The information contained in one structure can be assigned to another structure of the
same type using a single assignment statement. That is, you do not need to assign the
value of each member separately. The following program illustrates structure assignments.

#include <stdio.h>

int main(void)

{

struct
int a;
int b;
}oxooyi

x.a = 10;
x.b = 20;

y = X; /* assign one structure to another */
printf ("Contents of y: %d %d.", y.a, y.b);

return 0;

After the assignment, y.a and y.b will contain the values 10 and 20, respectively.



168 Borland C++ Builder: The Complete Reference

___| Arrays of Structures

Perhaps the most common use of structures is in arrays of structures. To declare an array
of structures, you must first define a structure, and then declare an array variable of
that type. For example, to declare a 100-element array of structures of type addr, which
was declared earlier in this chapter, you would write

struct addr addr info[100];

This creates 100 sets of variables that are organized as declared in the structure type addr.
To access a specific structure within the addr_info array, index the array variable
name. For example, to print the ZIP code of the third structure, you would write

printf ("$s", addr infol[2].zip);

Like all array variables, arrays of structures begin indexing at 0.

An Inventory Example

To help illustrate how structures and arrays of structures are used, consider a simple
inventory program that uses an array of structures to hold the inventory information.
The functions in this program interact with structures and their members in various
ways to illustrate structure usage.

In this example, the information to be stored includes

M item name

B cost

B number on hand

You can define the basic data structure, called inv, to hold this information as

#define MAX 100

struct inv {
char item[30];
float cost;
int on_hand;

} inv_info [MAX] ;

In the inv structure, item is used to hold each inventoried item’s name. The cost member
contains the item’s cost, and on_hand represents the number of items currently available.



Chapter 7: Structures, Unions, and User-Defined Types

The first function needed for the program is main().

int main(void)

{

char choice;

init list(); /* initialize the structure array */
for(;;) {
choice = menu_select () ;
switch(choice) {
case 1: enter();
break;
case 2: del();
break;
case 3: list();
break;
case 4: return O;

In main(), the call to init_list() prepares the structure array for use by putting a null
character into the first byte of each item field. The program assumes that a structure is
not in use if the item field is empty. The init_list() function is defined as follows.

/* Initialize the structure array. */
void init_list (void)

register int t;

for(t=0; t<MAX; ++t) inv_infolt].item[0] = '\O';

The menu_select() function displays the option messages and returns the user’s
selection:

/* Input the user's selection. */
int menu_select (void)

char s[80];

int c¢;

169



170

Borland C++ Builder: The Complete Reference

printf ("\n") ;

printf ("1l. Enter an item\n");
printf ("2. Remove an item\n") ;
printf ("3. List the inventory\n");
printf ("4. Quit\n");

do {

printf ("\nEnter your choice: ");

gets (s);

c = atoi(s);
} while(c<0 ||
return c;

c>4) ;

The enter() function prompts the user for input and places the information entered
into the next free structure. If the array is full, the message “List Full” is printed on the
screen. The function find_free() searches the structure array for an unused element.

/* Input the inventory information. */

void enter (void)

{

int slot;

slot = find free();

if (slot == -1) {
printf ("\nList Full");
return;

}

printf ("Enter item: ");
gets(inv_infolslot].item);

printf ("Enter cost: ");
scanf ("$£f", &inv infol[slot].cost);

printf ("Enter number on hand: ");
scanf ("$d%*c", &inv_info[slot] .on_hand) ;

/* Return the index of the first unused array
location or -1 if no free locations exist.

*/

int find free(void)

{



Chapter 7: Structures, Unions, and User-Defined Types

register int t;

for(t=0; inv_infol[t].item[0] && t<MAX; ++t)
if(t == MAX) return -1; /* no slots free */
return t;

I

Notice that find_free() returns a —1 if every structure array variable is in use. This
is a “safe” number to use because there cannot be a —1 element of the inv_info array.

The del() function requires the user to specify the number of the item that needs to
be deleted. The function then puts a null character in the first character position of the
item field.

/* Remove an item from the list. */
void del (void)
{

register int slot;

char s[80];

printf ("enter record #: ");

gets(s);

slot = atoi(s);

if (slot >= 0 && slot < MAX) inv info[slot].item[0] = '\0';

The final function the program needs is list( ). It prints the entire inventory list on
the screen.

/* Display the list on the screen. */
void list (void)

{

register int t;

for (t=0; t<MAX; ++t) {
if (inv_infolt].item[0]) {
printf ("Item: %$s\n", inv_infol[t].item);
printf ("Cost: $f\n", inv_infol[t].cost);
printf ("On hand: %d\n\n", inv_infol[t].on hand) ;
}
}
printf ("\n\n") ;

}

171



172 Borland C++ Builder: The Complete Reference

The complete listing for the inventory program is shown here. If you have any
doubts about your understanding of structures, you should enter this program into
your computer and study its execution by making changes and watching their effects.

/* A simple inventory program using an array of structures */

#include <stdio.h>
#include <stdlib.h>

#define MAX 100

struct inv {
char item([30];
float cost;
int on_hand;

} inv_info [MAX] ;

void init list (void), list(void), del(void);
void enter (void) ;
int menu_select (void), find free(void);

int main(void)

{

char choice;

init list(); /* initialize the structure array */
for(;;) {
choice = menu_select () ;
switch(choice) {
case 1l: enter();
break;
case 2: del();
break;
case 3: list();
break;
case 4: return O;

/* Initialize the structure array. */
void init list (void)



Chapter T:

register int t;

for(t=0; t<MAX; ++t)

/* Input the user's selection.

int menu_select (void)

Structures,

inv_info[t].

Unions, and User-Defined Types

item[0] = '\O';

*/

{
char s[80];
int c¢;
printf ("\n")
printf ("1. Enter an item\n")
printf ("2. Remove an item\n")
printf ("3. List the inventory\n")
printf(“4 Quit\n")
do {
printf ("\nEnter your choice: ");
gets(s);
c = atoi(s);
} while(c<0 || c>4)
return c;
}

/* Input the inventory information. */

void enter (void)

{

int slot;

slot = find free();

if(slot == -1) {
printf ("\nList Full");
return;

!

printf ("Enter item: ") ;
gets (inv_info[slot] .item) ;

printf ("Enter cost: ");

scanf ("$£", &inv_infol[slot]

.cost) ;

173



174 Borland C++ Builder: The Complete Reference

printf ("Enter number on hand: ") ;
scanf ("$d%*c", &inv_info[slot] .on hand) ;

/* Return the index of the first unused array
location or -1 if no free locations exist.

*/

int find free(void)

{

register int t;

for(t=0; inv_infol[t].item[0] && t<MAX; ++t) ;
if(t == MAX) return -1; /* no slots free */
return t;

/* Remove an item from the list. */
void del (void)

{

register int slot;

char s[80];

printf ("enter record #: ");

gets(s);

slot = atoi(s);

if (slot >= 0 && slot < MAX) inv_info[slot].item[0] = '\0';

/* Display the list on the screen. */
void list (void)

{

register int t;

for (t=0; t<MAX; ++t) {
if (inv_info[t] .item[0]) {
printf ("Item: %s\n", inv_infol[t].item);
printf ("Cost: %$f\n", inv_infol[t].cost);
printf ("On hand: %$d\n\n", inv_infol[t].on hand) ;
}
}

printf ("\n\n") ;



Chapter 7: Structures, Unions, and User-Defined Types 175

___| Passing Structures to Functions

So far, all structures and arrays of structures used in the examples have been assumed
to be either global or defined within the function that uses them. In this section special
consideration will be given to passing structures and their members to functions.

Passing Structure Members to Functions

When you pass a member of a structure to a function, you are actually passing the
value of that member to the function. Therefore, you are passing a simple variable
(unless, of course, that element is compound, such as an array of characters). For
example, consider this structure:

struct fred {
char x;
int vy;
float z;
char s[10];
} mike;

Here are examples of each member being passed to a function:

/* passes character value of x */
; /* passes integer value of y */
; /* passes float value of z */
; /* passes address of string s */
1); /* passes character value of s[2] */

func (mike.x) ;
func2 (mike.y)
func3 (mike. z)
func4 (mike.s)
func (mike.s[2

If you wanted to pass the address of an individual structure member to achieve
call-by-reference parameter passing, you would place the & operator before the structure
name. For example, to pass the address of the elements in the structure mike, you
would write

func (&mike.x) ; /* passes address of character x */
func2 (&mike.y) ; /* passes address of integer y */
func3 (&mike.z) ; /* passes address of float z */

func4 (mike.s) ; /* passes address of string s */

func (&mike.s[2]); /* passes address of character s[2] */

Notice that the & operator precedes the structure name, not the individual member
name. Note also that the array s already signifies an address, so that no & is required.
However, when accessing a specific character in string s, as shown in the final example,
the & is still needed.



176 Borland C++ Builder: The Complete Reference

Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed
using the standard call-by-value method. This means that any changes made to the
contents of the structure inside the function to which it is passed do not affect the
structure used as an argument.

When using a structure as a parameter, the most important thing to remember is
that the type of the argument must match the type of the parameter. The best way to
do this is to define a structure globally and then use its tag name to declare structure
variables and parameters as needed. For example:

#include <stdio.h>

/* declare a structure type */
struct struct_ type {

int a, b;

char ch;

}i
void f1l(struct struct type parm) ;

int main(void)

{

struct struct_type arg; /* declare arg */

arg.a = 1000;
f1(arg) ;

return 0;

}

void f1(struct struct_ type parm)

{

printf ("%d", parm.a);

}

This program prints the number 1000 on the screen. As you can see, both arg and parm
are declared to be structures of type struct_type.



Chapter 7: Structures, Unions, and User-Defined Types 177

| structure Pointers

C/C++ allows pointers to structures in the same way it does to other types of
variables. However, there are some special aspects to structure pointers that you
must keep in mind.

Declaring a Structure Pointer

Structure pointers are declared by placing the * in front of a structure variable’s name.
For example, assuming the previously defined structure addr, the following declares
addr_pointer to be a pointer to data of that type:

struct addr *addr pointer;

Using Structure Pointers

To find the address of a structure variable, the & operator is placed before the structure’s
name. For example, given the following fragment,

struct bal {
float balance;
char name [80] ;
} person;

struct bal *p; /* declare a structure pointer */
then

p = &person;
places the address of the structure person into the pointer p.

To access the members of a structure using a pointer to that structure, you must
use the arrow operator. The arrow operator, —>, is formed using a minus sign and a

greater-than symbol. For example, to reference the balance member using p, you
would write

p->balance



178 Borland C++ Builder: The Complete Reference

To see how structure pointers can be used, examine this simple program that
prints the hours, minutes, and seconds on the screen using a software timer. (The
timing of the program is adjusted by changing the definition of DELAY to fit the
speed of your computer.)

/* Display a software timer. */

#include <stdio.h>
#include <conio.h>

#define DELAY 128000

struct my time {
int hours;
int minutes;
int seconds;

}i

void update(struct my time *t), display(struct my time *t);
void mydelay (void) ;

int main(void)

{

struct my time systime;

systime.hours = 0;
systime.minutes = 0;
systime.seconds = 0;
for(;;) {

update (&systime) ;
display (&systime) ;
if (kbhit()) return 0;

void update(struct my time *t)
{
t->seconds++;
if (t->seconds==60)
t->seconds = 0;
t->minutes++;



Chapter 7: Structures, Unions, and User-Defined Types 179

if (t->minutes==60)
t->minutes = 0;
t->hours++;

}
if (t->hours==24) t->hours = 0;
mydelay () ;
!
void display(struct my time *t)
{
printf ("$02d:", t->hours);
printf ("$02d:", t->minutes);
printf ("%$02d\n", t->seconds);
!
void mydelay (void)
{
long int t;
for(t=1; t<DELAY; ++t) ;
!

A global structure called my_time is declared. Inside main(), the structure variable
called systime, of type my_time, is declared and initialized to 00:00:00. This means that
systime is known directly only to the main() function.

The functions update(), which changes the time, and display( ), which prints the
time, are passed the address of systime. In both functions the argument is declared to
be a pointer to a structure of type my_time. Inside the functions, each structure element
is actually referenced through a pointer. For example, to set the hours back to 0 when
24:00:00 is reached, this statement is used.

if (t->hours==24) t->hours = 0;

This line of code tells the compiler to take the address of t (which points to systime in
main()) and assign 0 to its hours member.

Use the dot operator to access structure members when operating on the structure itself.
Remember : .
Use the arrow operator when referencing a structure through a pointer.

As a final example of using structure pointers, the following program illustrates how a
general-purpose integer input function can be designed. The function input_xy() allows



180

Borland C++ Builder: The Complete Reference

you to specify the x and y coordinates at which a prompting message will be displayed and
then inputs an integer value. To accomplish these things it uses the structure xyinput.

/* A generalized input example using structure pointers. */

#include <stdio.h>
#include <conio.h>
#include <string.hs>

struct xyinput {
int x, y; /* screen location for prompt */
char message([80]; /* prompting message */
int i; /* input value */

b
void input xy(struct xyinput *info);

int main(void)

{

struct xyinput mess;

mess.x = 10; mess.y = 10;

strcpy (mess.message, "Enter an integer: ");

clrscr () ;

input xy (&mess) ;

printf ("Your number squared is: %d.", mess.i*mess.i);

return 0;

/* Display a prompting message at the specified location
and input an integer value.
*/
void input xy(struct xyinput *info)
{
gotoxy (info->x, info->y);
printf (info->message) ;
scanf ("%d", &info->i);

}

The program uses the functions clrscr() and gotoxy() to clear the screen and
position the cursor, respectively. Both functions use the <conio.h> header file. A
function like input_xy() is useful when your program must input many pieces of
information. (In fact, you might want to create several functions like input_xy() that
input other types of data.)



Chapter 7: Structures, Unions, and User-Defined Types

___| Arrays and Structures Within Structures

A member of a structure can be either simple or compound. A simple member is any
of the built-in data types, such as integer or character. You have already seen a
few compound elements. The character array used in addr_info is an example. Other
compound data types are single- and multidimensional arrays of the other data types
and structures.

A member of a structure that is an array is treated as you might expect from the
earlier examples. For example, consider this structure:

struct x {
int a[10][10]; /* 10 x 10 array of ints */
float b;

by

To reference integer 3,7 in a of structure y, you would write

y.al3][7]

When a structure is a member of another structure, it is called a nested structure.
For example, here the structure addr is nested inside emp:

struct emp {
struct addr address;
float wage;

} worker;

Here, a structure emp has been declared as having two members. The first is the

structure of type addr, which contains an employee’s address. The other is wage,
which holds the employee’s wage. The following code fragment assigns $65,000 to
the wage element of worker and 98765 to the zip field of address:

worker.wage = 65000.00;
strcpy (worker.address.zip, "98765") ;

As this example shows, the members of each structure are referenced from outermost
to innermost (left to right).



182

Borland C++ Builder: The Complete Reference

Bit-Fields
Unlike most other computer languages, C/C++ has a built-in feature, called a bit-field, that
allows access to a single bit. Bit-fields are useful for a number of reasons. Here are three:

1. If storage is limited, you can store several Boolean (true/false) variables in one byte.

2. Certain device interfaces transmit information encoded into bits within a
single byte.
3. Certain encryption routines need to access the bits within a byte.

Although all these functions can be performed using the bitwise operators, a bit-field
can add more structure to your code.

The method C/C++ uses to access bits is based on the structure. A bit-field is really
just a special type of structure member that defines how long, in bits, the field is to be.
The general form of a bit-field declaration is

struct struct-name {
type namel : length;
type name2 : length;

t.ype nameN : length;
}
Here, type is the type of the bit-field and length is the number of bits in the field. Also,
type must be an integral type.
Here is a bit-field example:

struct device {
unsigned int active : 1;
unsigned int ready : 1;
unsigned int xmt_error : 1;
} dev_code;

This structure defines three variables of 1 bit each. The structure variable dev_code might
be used to decode information from the port of a tape drive, for example. Assuming a
hypothetical tape drive, the following code fragment writes a byte of information to the
tape and checks for errors using dev_code from the preceding code:

void wr_tape(char c)

{
while (!dev_code.ready) rd(&dev_code); /* wait */
wr to_tape(c); /* write out byte */

while (dev_code.active) rd(&dev code); /* wait until info is written */
if (dev_code.xmt error) printf ("Write Error");

}

Here, rd() returns the status of the tape drive and wr_to_tape() actually writes the data.



Chapter 7: Structures, Unions, and User-Defined Types

Figure 7-2 shows what the bit-field variable dev_code looks like in memory.

As you can see from the previous example, each bit-field is accessed using the
dot operator. However, if the structure is referenced through a pointer, you must use
the —> operator.

You do not have to name each bit-field. This makes it easy to reach the bit you want
and pass up unused ones. For example, if the tape drive also returned an end-of-tape
flag in bit 5, you could alter the structure device to accommodate this, as shown here.

struct device {
unsigned active : 1;
unsigned ready : 1;
unsigned xmt_error : 1;
unsigned : 2;
unsigned EOT : 1;

} dev_code;

Bit-fields have certain restrictions. You cannot take the address of a bit-field
variable. Bit-field variables cannot be arrayed. You cannot know, from machine to
machine, whether the fields will run from right to left or from left to right; any code
that uses bit-fields may have machine dependencies.

Finally, it is valid to mix other structure elements with bit-fields. For example,

struct emp {
struct addr address;
float pay;
unsigned lay off:1; /* lay off or active */
unsigned hourly:1; /* hourly pay or wage */
unsigned deductions:3; /* IRS deductions */

}i

defines an employee record that uses only 1 byte to hold three pieces of information:
the employee’s status, whether the employee is salaried, and the number of deductions.
Without the use of the bit-field, this information would have taken 3 bytes.

[ One byte >

0 1 2 3 4 5 6 7

4 |- Unused >

» dev_code.xmt_error
> dev_code.ready
» dev_code.active

Figure 7-2. The bit-field variable dev_code in memory

183



184 Borland C++ Builder: The Complete Reference

| Unions

A union is a memory location that is shared by several variables that are of different
types. The union declaration is similar to that of a structure, as shown in this example:

union union type {
int 1i;
char ch;

b

As with structures, you may declare a variable either by placing its name at the end
of the definition or by using a separate declaration statement. To declare a union
variable cnvt of type union_type using the definition just given, you would write

union union_type cnvt;

In cnvt, both integer i and character ch share the same memory location. Of course, for
C++ Builder, i occupies 4 bytes and ch uses only 1. Figure 7-3 shows how i and ch
share the same address. At any time, you can refer to the data stored in cnvt as either
an integer or a character.

When a union is declared, the compiler automatically creates a variable large
enough to hold the largest variable type in the union.

To access a union member, use the same syntax that you would use for structures:
the dot and arrow operators. If you are operating on the union directly, use the dot
operator. If the union variable is accessed through a pointer, use the arrow operator.
For example, to assign the integer 10 to element i of cnvt, you would write

cnvt.1 = 10;

Unions are used frequently when type conversions are needed because you can
refer to the data held in the union in fundamentally different ways. For example, using
a union you can easily create a function that writes the binary representation of an
integer to a file, one byte at a time. For C++ Builder, which uses 32-bit integers, this
means writing the four bytes that form the integer. Although there are many ways to

Byte 0 Byte 1 Byte 2 Byte 3
|+—ch—]

Figure 7-3. How i and ch use the union cnvt




Chapter 7: Structures, Unions, and User-Defined Types

code such a function, here is one way to do it using a union. First, a union composed
of one integer and a 4-byte character array is created:

union pw {
int 1i;
char ch([4];

}i

This union will let you access the four bytes that make up an interger as four individual
characters. Now, you can use pw to create the write_int() function shown in the
following program.

#include <stdio.h>
#include <stdlib>

union pw {
int 1i;
char chl4];

int write int (int num, FILE *fp);

int main ()

{

FILE *fp;

fp = fopen("test.tmp", "w+");

if (fp==NULL) ({
printf ("Cannot open file.\n");
exit (1) ;

}

write int (1000, fp);

fclose (fp) ;

return 0;

/* write an integer using union */
int write int (int num, FILE *fp)

{

union pw wrd;

wrd.i = num;
putc(wrd.ch[0], fp); /* write first byte */

185



186 Borland C++ Builder: The Complete Reference

putc(wrd.ch[1l], fp); /* write second byte */
putc(wrd.ch[2], fp); /* write third byte */
return putc(wrd.ch[3], fp); /* writes last byte */

}

Although called with an integer, write_int() uses the union to write all four bytes
(remember you are dealing with 32-bit integers—4 bytes in total) of the integer to the
disk file.

| Enumerations

An enumeration is a set of named integer constants that specifies all the legal values that
a variable of its type can have. Enumerations are common in everyday life. For example,
an enumeration of the coins used in the United States is

penny, nickel, dime, quarter, half-dollar, dollar

Enumerations are defined by using the keyword enum to signal the start of an
enumeration type. The general form is

enum tag { enumeration-list } variable-list;

Both the enumeration name tag and the variable-list are optional, but one of them
must be present. The enumeration-list is a comma-separated list of identifiers. As with
structures, the tag is used to declare variables of its type. The following fragment
defines an enumeration called coin and declares money to be of that type:

enum coin { penny, nickel, dime, quarter,
half dollar, dollar};

enum coin money;

Given this definition and declaration, the following types of statements are perfectly
valid:

money = dime;
if (money==quarter) printf("is a quarter\n");

The key point to understand about an enumeration is that each of the symbols
stands for an integer value and can be used in any integer expression. For example,



Chapter 7: Structures, Unions, and User-Defined Types

printf ("The value of quarter is %d ", quarter);

is perfectly valid.
Unless initialized otherwise, the value of the first enumeration symbol is 0, the
second is 1, and so forth. Therefore,

printf ("$d %d", penny, dime);

displays 0 2 on the screen.

It is possible to specify the value of one or more of the symbols by using an
initializer. This is done by following the symbol with an equal sign and an integer
value. Whenever an initializer is used, symbols that appear after it are assigned values
greater than the previous initialization value. For example, the following assigns the
value of 100 to quarter.

enum coin { penny, nickel, dime, quarter=100,
half dollar, dollar};

Now, the values of these symbols are

penny 0
nickel 1
dime 2
quarter 100
half_dollar 101
dollar 102

Using initializations, more than one element of an enumeration can have the same value.

A common misconception is that the symbols of an enumeration can be input and
output directly, but this is not true. For example, the following code fragment will not
perform as desired:

/* This will not work. */
money = dollar;
printf ("%s", money) ;

Remember that the symbol dollar is simply a name for an integer; it is not a string.
Hence, it is not possible for printf() to display the string "dollar" using the value in



188

Borland C++ Builder: The Complete Reference

money. Likewise, you cannot give an enumeration variable a value using a string
equivalent. That is, this code does not work:

/* This code will not work. */
money = "penny";

Actually, creating code to input and output enumeration symbols is quite tedious
(unless you are willing to settle for their integer values). For example, the following
code is needed to display, in words, the kind of coins that money contains:

switch (money)

case penny: printf ("penny") ;
break;

case nickel: printf ("nickel");
break;

case dime: printf ("dime");
break;

case quarter: printf ("quarter");
break;

case half dollar: printf("half dollar");
break;

case dollar: printf ("dollar");

Sometimes, it is possible to declare an array of strings and use the enumeration
value as an index to translate an enumeration value into its corresponding string. For
example, this code also outputs the proper string:

char name[] [12]={
"penny",
"nickel™",
"dime",
"quarter",
"half dollar",
"dollar"

Vi

/* ... */

printf ("%s", name [money]) ;



Chapter 7: Structures, Unions, and User-Defined Types

Of course, this works only if no initializations are used, because the string array must
be indexed starting at 0.

Since enumeration values must be converted manually to their human-readable
string values for human I/0O, they are most useful in routines that do not make such
conversions. For example, an enumeration is commonly used to define a compiler’s
symbol table.

An Important Difference Between C and C++

There is an important difference between C and C++ as it relates to the type names of
structures, unions, and enumerations. In C, to declare a structure, you would use the
following statement

struct addr addr info;

where addr is the tag. As you can see, the tag name addr is preceded with the keyword
struct. However in C++, you can use this shorter form:

addr addr_info; /* OK for C++, wrong for C */

Here, the keyword struct is not needed. In C++, once a structure has been declared,
you can declare variables of its type using only the tag, without preceding it with the
keyword struct. The reason for this difference is that in C, a structure’s name does not
define a complete type name. This is why C refers to this name as a tag. However, in
C++, a structure’s name is a complete type name and can be used by itself to define
variables. Keep in mind, however, that it is still okay to use the C-style declaration in a

C++ program. The preceding discussion also holds true for the use of union and enum.

Using sizeof to Ensure Portability

You have seen that structures and unions can be used to create variables of varying
sizes, and that the actual size of these variables may change from machine to machine.
The sizeof unary operator computes the size of any variable or type and can help
eliminate machine-dependent code from your programs. It is especially useful where
structures or unions are concerned.

189



190 Borland C++ Builder: The Complete Reference

For the discussion that follows, keep in mind that C++ Builder has the following
sizes for these data types:

Type Size in Bytes

char
short int
int

long int
float
double
long double 10

< T ST SUR SO \C R

Therefore, the following code will print the numbers 1, 4, 4, and 10 on the screen:

char ch;

int 1i;

float f;

printf ("$d\n", sizeof ch);

printf ("$d\n", sizeof 1i);

printf ("$d\n", sizeof f);

printf ("$d\n", sizeof (long double)) ;

The size of a structure is equal to or greater than the sum of the sizes of its
members. For example,

struct s {
char ch;
int 1i;
float £f;
} s _var;

Here, the sum of the sizes of the individual members is 9 (4+4+1). However, the actual
size of s_var might be greater because the compiler is free to align data on word (or
paragraph) boundaries. This means that the size of an aggregate data type (such as a
structure) may be slightly larger than the sum of its parts. Manually adding up the
lengths of the structure members, for example, may not yield its correct size. For C++



Chapter 7: Structures, Unions, and User-Defined Types

Builder, the size of s_var is 12, because of the reasons just stated. Therefore, for maximum
portability, you should always use sizeof to determine the size of a structure variable.

Since the sizeof operator is a compile-time operator, all the information necessary to
compute the size of any variable is known at compile time. This is especially meaningful
for unions because the size of a union is always equal to the size of its largest member.
For example, consider the following;:

union u {
char ch;
int 1i;
float f;
} u var;

The sizeof(u_var) will be 4 bytes long. At run time, it does not matter what u_var is
actually holding; all that matters is the size of the largest variable it can hold, because
the union must be as large as its largest element.

typedef

C/C++ allows you to define new data type names using the typedef keyword. You
are not actually creating a new data type; you are defining a new name for an existing
type. This process can help make machine-dependent programs more portable; only
the typedef statements need to be changed. It also can help you document your code
by allowing descriptive names for the standard data types. The general form of the
typedef statement is

typedef type newname;

where type is any existing data type and newname is the new name for this type. The
new name you define is an addition to, not a replacement for, the existing type name.
For example, you could create a new name for float by using

typedef float balance;

This statement tells the compiler to recognize balance as another name for float. Next
you could create a float variable using balance:

balance past due;

Here, past_due is a floating-point variable of type balance, which is another word for float.

191



192 Borland C++ Builder: The Complete Reference

You can also use typedef to create names for more complex types. For example:

typedef struct ({
float due;
int over_ due;
char name [40] ;
} client; /* here client is the new type name */

client clist [NUM_CLIENTS]; /* define array of
structures of type client */

Using typedef can help make your code easier to read and more portable. But
remember, you are not creating any new data types.



The

Complete b

Reference by

Input, Qutput,
Streams, and Files

193



194

Borland C++ Builder: The Complete Reference

Instead, I/O is accomplished through library functions. C++ Builder supports

The C language does not define any keywords that perform input or output.
three I/O systems:

B The ANSI/ISO Standard C I/O system
B The UNIX-like I/O system

B Several low-level, platform-specific I/O functions

With a few exceptions, this chapter discusses only the I/O system defined by the
ANSI/ISO standard for C. The reason for this is twofold. First, the ANSI/ISOC1/0
system is the most widely used. Second, it is fully portable to all platforms. The
functions that compose the other two systems are covered in Part Two of this book.

This chapter presents an overview of the ANSI/ISO C I/O system and illustrates
the way its core functions work together. The ANSI/ISO C1/0O library contains a rich
and diverse assortment of I/O routines—more than can be fully covered here.
However, the functions in this chapter are sufficient for most circumstances. From this
point forward, we will refer to the ANSI/ISO C 1/0O system as simply the C I/O system.

The prototypes and several predefined types and constants for the C I/O library
functions are found in the file <stdio.h>.

___|c Versus C++1/0

Because C forms the foundation for C++, there is sometimes confusion over how C’s

I/0 system relates to C++. First, C++ supports the entire set of C I/O functions. Thus,
if you will be porting C code to C++, you will not have to change all of the I/O routines
right away. Second, C++ defines its own, object-oriented I/O system, which includes
both I/O functions and I/O operators and completely duplicates the functionality of
the CI/0 system. If you are writing C++ programs, you should use the C++ I/0O system
(described in Part Three). For C code, you must use the standard C I/O system described
in this chapter. However, even if you will be writing mostly C++ code, you will still
want to be familiar with the C I/O system for these three reasons:

B For several years to come, C and C++ will coexist. Also, many programs will be
hybrids of both C and C++ code. Further, many C programs will be upgraded
into C++ programs. Thus, knowledge of both the C and the C++ I/O systems is
necessary. For example, in order to change the C-based I/O functions into C++
object-oriented I/O functions, you will need to know how both the C and C++
I/0O systems operate.

B An understanding of the basic principles behind the C I/O system helps you
understand the C++ object-oriented I/O system. (Both share the same general
concepts.)



Chapter 8: Input, Output, Streams, and Files 195

B In certain situations (for example, in very short, “throw-away” programs), it
may be easier to use C’s non-object-oriented approach to I/O than it is to use
the object-oriented I/O defined by C++.

In addition, there is an unwritten rule that any C++ programmer must also be a
C programmer. If you don’t know how to use the C I/O system, you will be limiting
your professional horizons.

Streams and Files

Fundamental to understanding the C (and C++) I/O system are the concepts of streams
and files. The C I/O system supplies a consistent interface to the programmer independent
of the actual device being accessed. That is, the C I/O system provides a level of abstraction
between the programmer and the hardware. This abstraction is called a stream; the
actual device is called a file. It is important to know how streams and files interact.

Streams

The C I/0 system is designed to work with a wide variety of devices, including terminals,
disk drives, and tape drives. Even though each device is different, the I/O system
transforms each into a logical device called a stream. All streams behave similarly.
Because streams are largely device independent, the same function that can write to

a disk file can also write to another type of device, such as the console. There are two
types of streams: text and binary.

Text Streams

A text stream is a sequence of characters. Standard C states that a text stream is organized
into lines terminated by a newline character. However, the newline character is optional
on the last line. In a text stream, certain character translations may occur as required

by the host environment. For example, a newline may be converted to a carriage
return/linefeed pair. Therefore, there may not be a one-to-one relationship between the
characters that are written or read and those on the external device. Also, because of
possible translations, the number of characters written or read may not be the same as
the number that is stored on the external device.

Binary Streams

A binary stream is a sequence of bytes that have a one-to-one correspondence to those
on the external device. That is, no character translations occur. Also, the number of
bytes written or read is the same as the number on the external device. However, an
implementation-defined number of null bytes may be appended to a binary stream.
These null bytes might be used to pad the information so that it fills a sector on a disk,
for example.



196 Borland C++ Builder: The Complete Reference

Files

In C, afile is a logical concept that can be applied to everything from disk files to terminals
or printers. You associate a stream with a specific file by performing an open operation.
Once a file is open, information can be exchanged between it and your program.

Not all files have the same capabilities. For example, a disk file can support random
access, while some printers cannot. This illustrates an important point about the CI/O
system: All streams are the same, but all files are not.

If the file can support random access (also called position requests), opening that file
initializes the file position indicator to the start of the file. As each character is read from
or written to the file, the position indicator is incremented, ensuring progression
through the file.

The smallest accessible portion of a disk is a sector. Information is written to or read
from a disk one sector at a time. Thus, even if your program only needs a single byte of
data, an entire sector of data will be read. This data is put into a region of memory
called a buffer until it can be used by your program. When data is output to a disk file,
it is buffered until a full sector’s worth of information has been accumulated, at which
point it is actually physically written to the file.

You disassociate a file from a specific stream using a close operation. Closing a
stream causes any contents of its associated buffer to be written to the external device
(it will be padded, if necessary, to fill out a complete sector). This process, generally
called flushing the buffer, guarantees that no information is accidentally left in the disk
buffer. All files are closed automatically when your program terminates normally by
main() returning to the operating system or by calling exit(). However, it is better to
actually close a file using fclose() as soon as it is no longer needed because several
events can prevent the buffer from being written to the disk file. For example, files are
not written if a program terminates through a call to abort(), if it crashes, or if the user
turns the computer off before terminating the program.

At the beginning of a program’s execution five predefined text streams are opened.
They are stdin, stdout, stderr, stdaux, and stdprn, and they refer to the standard I/O
devices connected to the system, as shown here:

Stream Device

stdin Keyboard
stdout Screen

stderr Screen

stdaux First serial port

stdprn Printer



Chapter 8: Input, Output, Streams, and Files 197

The first three streams are defined by ANSI/ISO Standard C, and any code that
uses them is fully portable. The last two are specific to C++ Builder and may not be
portable to other compilers. Most operating systems allow 1/O redirection, so routines
that read or write to these streams can be redirected to other devices. (Redirection of
I/0O is the process whereby information that would normally go to one device is
rerouted to another device by the operating system.) You should never try explicitly to
open or close these files.

Each stream that is associated with a file has a file control structure of type FILE.
This structure is defined in the header <stdio.h>. You must not make modifications to
this structure.

If you are new to programming, C’s separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide a
consistent interface. In C, you need only think in terms of streams and use only one file
system to accomplish all I/O operations. The C I/O system automatically converts the
raw input or output from each device into an easily managed stream.

The remainder of this chapter discusses the Standard C I/O system. It does so by
dividing it into two parts: console I/O and file I/O. As you will see, these are different
sides of the same coin. However, this somewhat artificial distinction makes it easier to
discuss them.

___| console 1/0

Console 1/O refers to operations that occur at the keyboard and screen of your
computer. Because input and output to the console is such a common affair, a
subsystem of the C1/0 file system was created to deal exclusively with console I/O.
Technically, these functions direct their operations to the standard input (stdin) and
standard output (stdout) of the system. Thus, it is possible to redirect console I/O to
other devices. However, in this chapter it is assumed that the standard input and the
standard output have not been redirected.

Neither the C nor C++ languages provide built-in support for graphic user interfaces
Note . Ly Rt ,
such as Windows. When performing input or output in a Windows environment, you

will need to use special functions defined by Windows itself.

Reading and Writing Characters

The simplest of the console I/O functions are getchar( ), which reads a character from
the keyboard, and putchar(), which prints a character to the screen. However,
getchar() has some significant limitations, which are described later. For this reason,
most of the time you will substitute getche() when you need to read a character. The



198

Borland C++ Builder: The Complete Reference

getche() function is defined by C++ Builder, not by ANSI/ISO Standard C. Although it
is a common extension, it is not portable to all other environments. getche() waits until
a key is pressed and then returns its value. The key pressed is also echoed to the screen
automatically. The prototypes for getche() and putchar() are shown here:

int getche(void); /* requires <conio.h> */
int putchar(int ch); /* requries <stdio.h> */

The getche() function returns the character pressed. The putchar() function returns
ch if successful, or EOF if an error occurs. (EOF is a macro defined in <stdio.h> that
stands for end of file.) Even though ch is declared as an integer, only the low-order byte
is displayed on the screen. Similarly, even though getche() returns an integer, the
low-order byte will contain the character entered at the keyboard. The getche()
function requires the <conio.h> header file, which is not part of Standard C.

The following program inputs characters from the keyboard and prints them in
reverse case. That is, uppercase prints as lowercase, and lowercase as uppercase. The
program halts when a period is typed.

/* Case Switcher */
#include <conio.h>
#include <stdio.h>
#include <ctype.h>

int main(void) {
char ch;

do {

ch = getche() ;

if (islower (ch)) putchar (toupper (ch)) ;

else putchar (tolower (ch)) ;
} while (ch!='.'); /* use a period to stop*/
return O;

}

There are two important alternatives to getche(). The first is getchar( ), mentioned
earlier, which is the character input function defined by ANSI/ISO Standard C. The
trouble with getchar() is that it buffers input until a carriage return is entered. The
reason for this is that the original UNIX systems line-buffered terminal input—that is,
you had to enter a carriage return before anything you had just typed was actually sent
to the computer. To be compatible with the UNIX implementation, many compilers,
including C++ Builder, have implemented getchar() so that it line-buffers input. This is



Chapter 8: Input, Output, Streams, and Files

quite annoying in today’s interactive environments, and the use of getchar() is not
recommended. You may want to play with it a little to understand its effect better.
However, this guide makes little use of getchar().

A second, more useful, variation on getche() is getch(), which operates like
getche() except that the character you type is not echoed to the screen. You can use
this fact to create a rather humorous (if disconcerting) program to run on some
unsuspecting user. The program, shown here, displays what appears to be a standard
command prompt and waits for input. However, every character the user types is
displayed as the next letter in the alphabet. That is, an “A” becomes “B”, and so forth.
To stop the program, press CTRL-A.

/* This program appears to act as a command-prompt gone wild. It
displays the command prompt but displays every character
the user types as the next letter in the alphabet.

*/

#include <stdio.h>
#include <conio.h>

int main(void)

{

char ch;

do {
printf ("C>") ;
for(;;) {
ch = getch(); /* read chars without echo */
if (ch=='"\r' || ch==1) {
printf ("\n") ;
break;

}

putchar (ch+1) ;

}

} while(ch!=1) ; /* exit on control-A */

return 0;

}

While this program is, obviously, just for fun, getch() has many practical uses. For
example, you could use it to input a password without echoing the password to the screen.

199



200 Borland C++ Builder: The Complete Reference

Reading and Writing Strings: gets( ) and puts( )

The next step up in console I/O are the functions gets() and puts(). They enable you
to read and write strings of characters.

The gets() function reads a string of characters entered at the keyboard and stores
it at the address pointed to by its argument. You can type characters at the keyboard
until you strike a carriage return. The carriage return does not become part of the
string; instead, a null terminator is placed at the end, and gets() returns. In fact, it is
impossible to use gets() to obtain a carriage return (you can use getchar() and its
variants, though). Typing mistakes can be corrected by using the backspace before
pressing ENTER. The prototype for gets() is:

char *gets(char *str);

where str is a character array. The gets() function returns a pointer to str. For example,
the following program reads a string into the array str and prints its length:

#include <stdio.h>
#include <string.h>

int main(void)

{

char str[80];

gets (str) ;
printf ("Length is %d", strlen(str));

return 0;

}

There is a potential problem with gets(). Using gets(), it is possible to overrun the
boundaries of its character array argument. This is because there is no way for gets() to
know when it has reached the limit of the array. For example, if you call gets() with an
array that is 40 bytes long and then enter 40 or more characters, you will have overrun
the array. This will, obviously, cause problems and often lead to a system crash. As an
alternative, you can use the fgets() function described later in this chapter, which
allows you to specify a maximum length. The only trouble with fgets() is that it retains
the newline character. If you don’t want the newline, it must be removed manually.

The puts() function writes its string argument to the screen followed by a newline.
Its prototype is

int puts(const char *str);



Chapter 8: Input, Output, Streams, and Files 201

Here, str is the string to display. The function returns nonnegative if successful and
EOF on failure. It recognizes the same backslash codes as printf( ), such as \t for tab.
A call to puts() requires far less overhead than the same call to printf() because
puts() outputs only a string of characters; it does not output numbers or do format
conversions. It takes up less space and runs faster than printf(). The following
statement displays "hello".

puts ("hello") ;

Table 8-1 summarizes the basic console I/O functions.

___| Formatted Console 1/0

The C/C++ standard library contains two functions that perform formatted input and
output on the built-in data types: printf() and scanf(). The term formatted refers to the
fact that these functions can read and write data in various formats that are under your
control. The printf() function is used to write data to the console. The scanf() function
reads data from the keyboard. Both printf() and scanf() can operate on any of the
built-in data types, including characters, strings, and numbers.

printf( )

The printf() function has this prototype

int printf(const char *fmt_string, .. .);

Function Operation

getchar( ) Reads a character from the keyboard; waits for carriage return.

getche() Reads a character with echo; does not wait for carriage return;
not defined by Standard C, but a common extension.

getch() Reads a character without echo; does not wait for carriage
return; not defined by Standard C, but a common extension.

putchar( ) Writes a character to the screen.

gets() Reads a string from the keyboard.

puts() Writes a string to the screen.

Table 8-1. The Basic Console |/0 Functions




202

Borland C++ Builder: The Complete Reference

The first argument, fmt_string, defines the way any subsequent arguments are displayed.
It consists of two types of items. The first type is characters that will be printed on the
screen. The second type contains format specifiers that define the way subsequent
arguments are displayed. A format specifier begins with a percent sign and is followed
by a format code. The format specifiers are shown in Table 8-2. There must be exactly the
same number of arguments as there are format specifiers, and the format specifiers and
arguments are matched in order from left to right. For example, this call to printf()

printf ("Hi %c %d %s", r'c', 10, "there!");

displays “Hi c 10 there!”. The printf() function returns the number of characters
written or an EOF if an error occurs.

Code Format
Yoc Character
%d Signed decimal integers
Yol Signed decimal integers
%€ Scientific notation (lowercase e)
%E Scientific notation (uppercase E)
%ot Decimal floating point
%g Uses %e or %f, whichever is shorter.
%G Uses %E or %F, whichever is shorter.
%0 Unsigned octal
%o String of characters
You Unsigned decimal integers
Yox Unsigned hexadecimal (lowercase letters)
%X Unsigned hexadecimal (uppercase letters)
Yop Displays a pointer.
%n The associated argument is an integer pointer into which the
number of characters written so far is placed.
%% Prints a % sign.
Table 8-2. The printf( ) Format Specifiers




Chapter 8: Input, Output, Streams, and Files 203

Printing Characters
To print an individual character, use %c. This causes its matching argument to be
output, unmodified, to the screen.

To print a string, use %s.

Printing Numbers
You can use either %d or %i to display a signed integer in decimal format. These format
specifiers are equivalent; both are supported for historical reasons.

To output an unsigned integer, use %u.

The %f format specifier displays numbers in floating point. The matching argument
must be of type double.

The %e and %E specifiers tell printf() to display a double argument in scientific
notation. Numbers represented in scientific notation take this general form:

x.dddddE+/-yy

If you want to display the letter E in uppercase, use the %E format; otherwise use %e.
You can tell printf() to use either %f or %e by using the %g or %G format
specifiers. This causes printf() to select the format specifier that produces the shortest
output. Where applicable, use %G if you want the E shown in uppercase; otherwise,
use %g. The following program demonstrates the effect of the %g format specifier:

#include <stdio.h>
int main(void)
{

double £f;

for(f=1.0; f£<1.0e+10; f£=£f*10)
printf ("$sg ", f);

return 0;

}

It produces the following output.
1 10 100 1000 10000 100000 le+06 le+07 le+08 1le+09

You can display unsigned integers in octal or hexadecimal format using %o and
%x, respectively. Since the hexadecimal number system uses the letters A through F to
represent the numbers 10 through 15, you can display these letters in either upper- or



204 Borland C++ Builder: The Complete Reference

lowercase. For uppercase, use the %X format specifier; for lowercase, use %x, as
shown here:

#include <stdio.h>
int main(void)
{

unsigned num;

for (num=0; num<=16; num++) {

printf ("%d ", num); /* Integer */
printf ("%o ", num); /* Octal */
printf ("$x ", num); /* Hexidecimal - lowercase */
printf ("$X\n", num); /* Hexidecimal - uppercase */
}
return 0

Displaying an Address

If you want to display an address, use %p. This format specifier causes printf() to
display a machine address in a format compatible with the type of addressing used by
the computer. The next program displays the address of sample:

#include <stdio.h>
int sample;

int main(void)

{

printf ("$p", &sample);

return 0;

The %n Specifier

The %n format specifier is different from the others. Instead of telling printf() to display
something, it causes printf() to load the integer variable pointed to by its corresponding
argument with a value equal to the number of characters that have been output. In
other words, the value that corresponds to the %n format specifier must be a pointer to
a variable. After the call to printf() has returned, this variable will hold the number of
characters output, up to the point at which the %n was encountered. Examine this
program to understand this somewhat unusual format code.



Chapter 8: Input, Output, Streams, and Files

#include <stdio.h>

int main(void)

{

int count;

printf ("this%n is a test\n", &count);
printf ("$d", count);

return 0;

}

This program displays this is a test followed by the number 4. The %n format specifier
is used primarily to enable your program to perform dynamic formatting.

Format Modifiers

Many format specifiers can take modifiers that alter their meaning slightly. For
example, you can specify a minimum field width, the number of decimal places, and
left justification. The format modifier goes between the percent sign and the format
code. These modifiers are discussed next.

The Minimum Field Width Specifier

An integer placed between the % sign and the format code acts as a minimum field width
specifier. This pads the output with spaces to ensure that it reaches a certain minimum
length. If the string or number is longer than that minimum, it will still be printed in
full. The default padding is done with spaces. If you want to pad with 0’s, place an 0
before the field width specifier. For example, %05d will pad a number of less than five
digits with 0’s so that its total length is five. The following program demonstrates the
minimum field width specifier:

#include <stdio.h>
int main(void)
{
double item;
item = 10.12304;
printf ("$£f\n", item);
printf ("$10£f\n", item) ;

printf ("$012f\n", item) ;

return 0;

205



206

Borland C++ Builder: The Complete Reference

This program produces the following output:

10.123040
10.123040
00010.123040

The minimum field width modifier is most commonly used to produce tables in which

the columns line up. For example, the next program produces a table of squares and
cubes for the numbers between 1 and 19:

#include <stdio.h>

int main(void)

int 1i;
/* display a table of squares and cubes */
for(i=1; i<20; i++)

printf ("%$8d %8d %8d\n", i, i*i, i*i*i);
return 0;

A sample of its output is shown here:

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
11 121 1331
12 144 1728
13 169 2197
14 196 2744
15 225 3375
16 256 4096



Chapter 8: Input, Output, Streams, and Files

17 289 4913
18 324 5832
19 361 6859

The Precision Specifier

The precision specifier follows the minimum field width specifier (if there is one). It
consists of a period followed by an integer. Its exact meaning depends upon the type
of data to which it is applied.

When you apply the precision specifier to floating-point data using the %f, %e, or
%E specifiers, it determines the number of decimal places displayed. For example,
%10.4f displays a number at least ten characters wide with four decimal places. If you
don’t specify the precision, a default of six is used for %e, %E and %f. When the
precision specifier is applied to %g or %G, it specifies the number of significant digits.

Applied to strings, the precision specifier specifies the maximum field length. For
example, %5.7s displays a string at least five and not exceeding seven characters long.
If the string is longer than the maximum field width, the end characters will be
truncated.

When applied to integer types, the precision specifier determines the minimum
number of digits that will appear for each number. Leading zeros are added to achieve
the required number of digits.

The following program illustrates the precision specifier:

#include <stdio.h>

int main(void)

{

printf ("%$.4£f\n", 123.1234567);
printf ("%$3.8d\n", 1000) ;
printf ("$10.15s\n", "This is a simple test.");

return 0;

}

It produces the following output:

123.1235
00001000
This is a simpl

207



208

Borland C++ Builder: The Complete Reference

Justifying Output

By default, all output is right-justified. That is, if the field width is larger than the data

printed, the data will be placed on the right edge of the field. You can force output to

be left-justified by placing a minus sign directly after the %. For example, %-10.2f

left-justifies a floating-point number with two decimal places in a 10-character field.
The following program illustrates left justification:

#include <stdio.h>

int main (void)

{
printf (". .. ... \n") ;
printf ("right-justified:%8d\n", 100);
printf ("left-justified:%-8d\n", 100);

return 0;

}

It produces the following output:

right-justified: 100
left-justified:100

Handling Other Data Types
There are two format modifiers that allow printf() to display short and long integers.
These modifiers may be applied to the d, i, 0, u, and x type specifiers. The 1 (ell)
modifier tells printf() that a long data type follows. For example, %ld means that a
long int is to be displayed. The h modifier instructs printf() to display a short integer.
For instance, %hu indicates that the data is of type short unsigned int.

The 1 and h modifiers can also be applied to the n specifier, to indicate that the
corresponding argument is a pointer to a long or short integer, respectively.

The L modifier may prefix the floating-point specifiers e, f, and g and indicates that
a long double follows.

The * and # Modifiers

The printf() function supports two additional modifiers to some of its format
specifiers: * and #.

Preceding g, G, f, E, or e specifiers with a # ensures that there will be a decimal
point even if there are no decimal digits. If you precede the x or X format specifier with
a #, the hexadecimal number will be printed with a 0x prefix. Preceding the o specifier
with # causes the number to be printed with a leading zero. You cannot apply # to any
other format specifiers.



Chapter 8: Input, Output, Streams, and Files

Instead of constants, the minimum field width and precision specifiers can be
provided by arguments to printf(). To accomplish this, use an * as a placeholder.
When the format string is scanned, printf() will match the * to an argument in the
order in which they occur. For example, in Figure 8-1, the minimum field width is 10,
the precision is 4, and the value to be displayed is 123.3.

The following program illustrates both # and *:

#include <stdio.h>

int main(void)

{
printf ("$x %#x\n", 10, 10);
printf ("$*.*f", 10, 4, 123.3);

return 0;

}

The following is produced:

a 0xa
123.3000

scanf( )

The general-purpose console input routine is scanf(). It reads all the built-in data types
and automatically converts numbers into the proper internal format. It is much like the
reverse of printf(). The prototype for scanf() is

int scanf(const char *fmt_string, . . .);

The fmt_string determines how values are read into the variables pointed to in the
argument list.

The format string consists of three classifications of characters:

B Format specifiers

[ ]

print("%*.*f", 10, 4, 123.3);

Figure 8-1. How the * is matched to its value

209



210

Borland C++ Builder: The Complete Reference

B White-space characters

B Non-white-space characters

The scanf() function returns the number of fields that are input. It returns EOF if a
premature end of file is reached.

Format Specifiers

The input format specifiers are preceded by a % sign and tell scanf() what type of
data is to be read next. These codes are listed in Table 8-3. The format specifiers are
matched, in order from left to right, with the arguments in the argument list.

Inputting Numbers
To read a decimal number, use the %d or %i specifiers.

To read a floating-point number represented in either standard or scientific
notation, use %e, %f, or %g.

Code Meaning

Y%c Read a single character.

%d Read a decimal integer.

Yol Read a decimal integer.

Yoe Read a floating-point number.

%ot Read a floating-point number.

%g Read a floating-point number.

%0 Read an octal number.

%os Read a string.

Yox Read a hexadecimal number.

%op Read a pointer.

%n Receives an integer value equal to the number of characters read so far.

%ou Read an unsigned integer.

%l 1 Scan for a set of characters.
Table 8-3. The scanf( ) Format Specifiers




Chapter 8: Input, Output, Streams, and Files

You can use scanf() to read integers in either octal or hexadecimal form by using
the %o and %x format commands, respectively. The %x may be in either upper-
or lowercase. Either way, you may enter the letters A through F in either case when
entering hexadecimal numbers. The following program reads an octal and hexadecimal
number:

#include <stdio.h>

int main(void)

int i, j;
scanf ("%$o%x", &i, &j);
printf ("%o %x", i, J);
return O;

The scanf() function stops reading a number when the first nonnumeric character is
encountered.

Inputting Unsigned Integers

To input an unsigned integer, use the %u format specifier. For example,

unsigned num;
scanf ("$u", &num) ;

reads an unsigned number and puts its value into num.

Reading Individual Characters Using scanf( )

As explained earlier in this chapter, you can read individual characters using getchar()

or a derivative function. You can also use scanf() for this purpose if you use the %c format

specifier. However, like most implementations of getchar(), scanf() will generally

line-buffer input when the %c specifier is used. This is the case with C++ Builder, too.

Line-buffering makes scanf() somewhat troublesome in an interactive environment.
Although spaces, tabs, and newlines are used as field separators when reading

other types of data, when reading a single character, white-space characters are read

like any other character. For example, with an input stream of "x y," this code fragment

scanf ("%$c%c%c", &a, &b, &c);

returns with the character x in a, a space in b, and the character y in c.

211



212

Borland C++ Builder: The Complete Reference

Reading Strings

The scanf() function can be used to read a string from the input stream using the %s
format specifier. The %s causes scanf() to read characters until it encounters a white-space
character. The characters that are read are put into the character array pointed to by the
corresponding argument, and the result is null terminated. As it applies to scanf(), a
white-space character is either a space, a newline, a tab, a vertical tab, or a form feed. Unlike
gets(), which reads a string until a carriage return is typed, scanf() reads a string until the
first white space is entered. This means that you cannot use scanf() to read a string like
“this is a test” because the first space terminates the reading process. To see the effect of the
%s specifier, try this program using the string “hello there”.

#include <stdio.h>
int main(void)

{

char str[80];

printf ("Enter a string: ");
scanf ("$s", str);
printf ("Here's your string: %s", str);

return 0;

The program responds with only the “hello” portion of the string.

Inputting an Address

To input a memory address, use the %p format specifier. This specifier causes scanf()
to read an address in the format defined by the architecture of the CPU. For example,
this program inputs an address and then displays what is at that memory address:

#include <stdio.h>

int main(void)

{
char *p;
printf ("Enter an address: ");
scanf ("$p", &p);

printf ("Value at location %p is %c\n", p, *p);

return 0;



Chapter 8: Input, Output, Streams, and Files

The %n Specifier

The %n specifier instructs scanf() to assign the number of characters read from the
input stream at the point at which the %n was encountered to the variable pointed
to by the corresponding argument.

Using a Scanset

The scanf() function supports a general-purpose format specifier called a scanset.

A scanset defines a set of characters. When scanf() processes the scanset, it will input
characters as long as those characters are part of the set defined by the scanset. The
characters read will be assigned to the character array that is pointed to by the scanset’s
corresponding argument. You define a scanset by putting the characters to scan for
inside square brackets. The beginning square bracket must be prefixed by a percent
sign. For example, the following scanset tells scanf() to read only the characters

X,Y, and Z.

% [XYZ]

When you use a scanset, scanf( ) continues to read characters and put them into the
corresponding character array until it encounters a character that is not in the scanset.
Upon return from scanf(), this array will contain a null-terminated string that consists
of the characters that have been read. To see how this works, try this program:

#include <stdio.h>

int main(void)
{
int 1i;
char str[80], str2[80];

scanf ("$d% [abcdefgl $s", &i, str, str2);
printf ("%$d %s %s", 1, str, str2);
return 0;

Enter 123abcdtye followed by ENTER. The program will then display 123 abcd tye.
Because the “t” is not part of the scanset, scanf() stops reading characters into str when
it encounters the “t.” The remaining characters are put into str2.

You can specify a range inside a scanset using a hyphen. For example, this tells
scanf() to accept the characters “A” through “Z”.

% [A-Z]

213



214

Borland C++ Builder: The Complete Reference

The use of the hyphen to describe a range is not defined by the ANSI/ISO C standard.

However, it is nearly universally accepted.

You can specify more than one range within a scanset. For example, this program

reads digits and then letters:

/* A scanset example using ranges. */
#include <stdio.h>

int main(void)

{
char s1[80], s2[80];
printf ("Enter numbers, then some letters");
scanf ("$[0-9]1% [a-zA-Z]", sl, s2);
printf ("%$s %s", sl, s2);
return 0;
}

You can specify an inverted set if the first character in the set is a caret (). When

the A is present, it instructs scanf() to accept any character that is not defined by the
scanset. Here, the previous program uses the # to invert the type of characters the
scanset will read:

/* A scanset example using inverted ranges. */
#include <stdio.hs>

int main(void)

{
char s1[80], s2[80];
printf ("Enter non-numbers, then some non-letters");
scanf ("$[*0-91%["a-zA-Z]", s1, s2);
printf ("%$s %s", sl, s2);
return 0;
}

One important point to remember is that the scanset is case-sensitive. Therefore,
if you want to scan for both uppercase and lowercase letters, they must be specified
individually.



Chapter 8: Input, Output, Streams, and Files

Discarding Unwanted White Space

A white-space character in the control string causes scanf() to skip over one or more
white-space characters in the input stream. A white-space character is either a space,
a tab, a vertical tab, a form feed, or a newline. In essence, one white-space character in
the control string causes scanf() to read, but not store, any number (including zero)
of white-space characters up to the first non-white-space character.

Non-White-Space Characters in the Control String

A non-white-space character in the control string causes scanf() to read and discard
matching characters in the input stream. For example, ""%d,%d" causes scanf() to read
an integer, read and discard a comma, and then read another integer. If the specified
character is not found, scanf() terminates. If you wish to read and discard a percent
sign, use %% in the control string.

You Must Pass scanf( ) Addresses

All the variables used to receive values through scanf() must be passed by their
addresses. This means that all arguments must be pointers. Recall that this is how C
creates a call by reference, which allows a function to alter the contents of an argument.
For example, to read an integer into the variable count, you would use the following
scanf() call:

scanf ("%d", &count) ;

Strings will be read into character arrays, and the array name, without any index, is
the address of the first element of the array. So, to read a string into the character array
str, you would use

scanf ("%s", str);

In this case, str is already a pointer and need not be preceded by the & operator.

Format Modifiers

As with printf(), scanf() allows a number of its format specifiers to be modified. The
format specifiers can include a maximum field length modifier. This is an integer,
placed between the % and the format specifier, that limits the number of characters
read for that field. For example, to read no more than 20 characters into str, write

scanf ("%$20s", str);

215



216

Borland C++ Builder: The Complete Reference

If the input stream is greater than 20 characters, a subsequent call to input begins
where this call leaves off. For example, if you enter

ABCDEFGHIJKLMNOPQRSTUVWXYZ

as the response to the scanf() call in this example, only the first 20 characters, or up to
the T, are placed into str because of the maximum field width specifier. This means that
the remaining characters, UVWXYZ, have not yet been used. If another scanf() call is
made, such as

scanf ("%$s", str2);

the letters UVWXYZ are placed into str2. Input for a field may terminate before the
maximum field length is reached if a white space is encountered. In this case, scanf()
moves on to the next field.

To read a long integer, put an 1 (ell) in front of the format specifier. To read a short
integer, put an h in front of the format specifier. These modifiers can be used with the
d, i, 0, u, and x format codes.

By default, the f, e, and g specifiers instruct scanf() to assign data to a float. If you
put an 1 (ell) in front of one of these specifiers, scanf( ) assigns the data to a double.
Using an L tells scanf( ) that the variable receiving the data is a long double.

Suppressing Input
You can tell scanf() to read a field but not assign it to any variable by preceding that
field’s format code with an *. For example, given

scanf ("$d%*c%d", &x, &y);

you could enter the coordinate pair 10,10. The comma would be correctly read, but not
assigned to anything. Assignment suppression is especially useful when you need to
process only a part of what is being entered.

___| The C File System

The file system is the part of the C I/O system that allows you to read and write disk
files. It is composed of several interrelated functions. The most common are shown in
Table 8-4. The header <stdio.h> must be included in any program in which these
functions are used.

The header <stdio.h> provides the prototypes for the I/O functions and defines
these three types: size_t, fpos_t, and FILE. The size_t type is an unsigned integer, as is
fpos_t. The FILE type is discussed in the next section.



Chapter 8: Input, Output, Streams, and Files 217

Name Function
fopen() Opens a file.
fclose( ) Closes a file.
putc() Writes a character to a file.
fpute() Same as putc().
getc() Reads a character from a file.
fgetc() Same as getc().
fseek() Seeks to a specified byte in a file.
fprintf( ) Is to a file what printf() is to the console.
fscanf( ) Is to a file what scanf() is to the console.
feof() Returns true if end-of-file is reached.
ferror() Returns true if an error has occurred.
rewind() Resets the file position indictor to the beginning of the file.
remove( ) Erases a file.
fflush() Flushes a file.

Table 8-4. The Most Common C File System Functions

The <stdio.h> header also defines several macros. The ones relevant to this chapter
are NULL, EOF, FOPEN_MAX, SEEK_SET, SEEK_CUR, and SEEK_END. The NULL
macro defines a null pointer. The EOF macro, generally defined as -1, is the value
returned when an input function tries to read past the end of the file. FOPEN_MAX
defines an integer value that determines the number of files that may be open at any
one time. The other macros are used with fseek(), which is the function that performs
random access on a file.

The File Pointer

The file pointer is the common thread that unites the C file system. A file pointer is a
pointer to information that defines various things about the file, including its name,
status, and the current position of the file. In essence, the file pointer identifies a
specific disk file and is used by the associated stream to direct the operation of the I/O



218

Borland C++ Builder: The Complete Reference

functions. A file pointer is a pointer variable of type FILE. In order to read or write
tiles, your program needs to use file pointers. To obtain a file pointer variable, use a
statement like this:

FILE *fp;

Opening a File

The fopen() function opens a stream for use, links a file with that stream, and then
returns a FILE pointer to that stream. Most often (always for the purpose of this
discussion) the file is a disk file. The fopen() function has this prototype

FILE *fopen(const char *filename, const char *mode);

where mode points to a string containing the desired open status. The legal values for
mode in C++ Builder are shown in Table 8-5. The filename must be a string of characters
that provides a valid filename for the operating system and may include a path
specification.

The fopen() function returns a pointer of type FILE. This pointer identifies the file
and is used by most other file system functions. It should never be altered by your
code. The function returns a null pointer if the file cannot be opened.

As Table 8-5 shows, a file can be opened in either text or binary mode. In text mode,
carriage return-linefeed sequences are translated into newline characters on input. On
output, the reverse occurs: newlines are translated to carriage return-linefeeds. No
such translations occur on binary files. When neither a t nor a b is specified in the mode
argument, the text/binary status of the file is determined by the value of the global
variable defined by C++ Builder called _fmode. By default, _fmode is set to O_TEXT,
which is text mode. When set to O_BINARY, then files will be opened in binary mode.
(These macros are defined in <fentl.h>.) Of course, using a explicit t or b overrides the
effects of the _fmode variable. Also, _fmode is specific to C++ Builder; it is not defined
by the C I/O system.

Mode Meaning

r Open a file for reading. (Opened as text file by default, see discussion.)

w Create a file for writing. (Opened as text file by default, see
discussion.)

a Append to a file. (Opened as text file by default, see discussion.)

Table 8-5. The Legal Values for mode




Chapter 8: Input, Output, Streams, and Files

Mode Meaning

"rb" Open a binary file for reading.

"wb" Create a binary file for writing.

"ab" Append to a binary file.

"r+" Open a file for read /write. (Open as text file by default, see
discussion.)

"w" Create a file for read /write. (Open as text file by default, see
discussion.)

"a+" Append or create a file for read /write. (Open as text file by default,
see discussion.)

"r+b" Open a binary file for read /write.

"w+b" Create a binary file for read /write.

"a+b" Append or create a binary file for read /write.

"rt" Open a text file for reading.

"wt" Create a text file for writing.

"at" Append to a text file.

"r+t" Open a text file for read /write.

"w+t" Create a text file for read /write.

"a+t" Append or create a text file for read /write.

Table 8-5. The Legal Values for mode (continued)

If you wish to open a file for writing with the name test, write:

FILE *fp;
fp = fopen("test", "w");

Here, fp is a variable of type FILE *. However, you usually see it written like this:

FILE *fp;

if ((fp

fopen("test", "w"))==NULL) {

printf ("Cannot open file.\n");

219



220

Borland C++ Builder: The Complete Reference

exit (1) ;

This method will detect any error in opening a file, such as a write-protected or full
disk, before your program attempts to write to it. In general, you will always want to
make sure that fopen() succeeded before attempting any other operations on the file.

If you use fopen() to open a file for output, then any preexisting file by that name
will be destroyed and a new file will be created. If no file by that name exists, then one
is created. If you want to add to the end of the file, you must use a (append) mode. If
the file does not exist, it will be created. Opening a file for read operations requires an
existing file. If no file exists, an error is returned. If a file is opened for read /write
operations it is not erased if it exists; if no file exists, one is created.

Writing a Character

The C I/0O system defines two equivalent functions that output a character: putc()
and fputc(). (Actually, putc() is implemented as a macro.) There are two identical
functions simply to preserve compatibility with older versions of C. This book uses
putc(), but you can use fputc() if you like.

The putc() function is used to write characters to a stream that was previously
opened for writing using the fopen() function. The prototype for putc() is

int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen() and ch is the character to be output. The
file pointer tells putc() which disk file to write to. For historical reasons, ch is defined
as an int, but only the low-order byte is used.

If a putc() operation is a success, it returns the character written. If pute() fails, an
EOF is returned.

Reading a Character

There are also two equivalent functions that input a character: getc() and fgetc(). Both
are defined to preserve compatibility with older versions of C. This book uses getc()
(which is actually implemented as a macro), but you can use fgetc() if you like.

The getc() function is used to read characters from a stream opened in read mode
by fopen(). The prototype is

int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). For historical reasons,
getc() returns an integer, but the high-order byte is 0.

The getc() function returns an EOF when the end of the file has been reached, or if
an error occurs. To read a text file to the end, you could use the following code:



Chapter 8: Input, Output, Streams, and Files 221

do {
ch = getc (fp);
} while (ch!=EOF) ;

Closing a File

The fclose() function closes a stream that was opened by a call to fopen(). It writes
any data still remaining in the disk buffer to the file and does a formal operating-
system-level close on the file. Failure to close a stream invites all kinds of trouble,
including lost data, destroyed files, and possible intermittent errors in your program.
fclose() frees the file control block associated with the stream and makes it available
for reuse. There is an operating system limit to the number of open files you can have
at any one time, so it may be necessary to close one file before opening another.

The fclose() function has the prototype

int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of 0 signifies
a successful close operation; an EOF is returned if an error occurs. Generally, fclose()
will fail only when a diskette has been prematurely removed from the drive or if there
is no more space on the disk.

Using fopen( ), getc( ), putc( ), and fclose( )

The functions fopen(), getc(), putc(), and fclose() comprise a minimal set of file
routines. A simple example of using putc(), fopen(), and fclose() is the following
program, ktod. It simply reads characters from the keyboard and writes them to a disk
file until a dollar sign is typed. The filename is specified from the command line. For
example, if you call this program KTOD, then typing KTOD TEST allows you to enter
lines of text into the file called test.

/* KTOD: A key to disk program. */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl([])

{
FILE *fp;
char ch;

if (arge!=2) {



222 Borland C++ Builder: The Complete Reference

printf ("You forgot to enter the filename.\n");
exit (1) ;

if ((fp=fopen(argv([1l], "w")) == NULL) {
printf ("Cannot open file.\n");
exit (1) ;

do {
ch = getchar () ;
putc(ch, £fp);

} while (ch != 131);

fclose (fp) ;

return 0;

The complementary program DTOS will read any text file and display the contents
on the screen. You must specify the name of the file on the command line.

/* DTOS: A program that reads text files

and displays them on the screen. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl([])

{
FILE *fp;
char ch;

if (argc!=2) {
printf ("You forgot to enter the filename.\n");

exit (1) ;

}

if ((fp=fopen(argv([1l], "r")) == NULL) {
printf ("Cannot open file.\n");
exit (1) ;



Chapter 8: Input, Output, Streams, and Files 223

ch = getc(fp); /* read one character */

while (ch!=EOF) {
putchar (ch); /* print on screen */
ch = getc(fp);

}

fclose (fp);

return 0;

Using feof( )

As stated earlier, the C file system can also operate on binary data. When a file is
opened for binary input, an integer value equal to the EOF mark may be read. This
would cause the routine just given to indicate an end-of-file condition even though the
physical end of the file had not been reached. Also, getc() returns EOF when it fails
and when it reaches the end of the file. So to help resolve this ambiguity, C includes the
function feof(), which is used to determine the end of the file when reading binary
data. It has this prototype:

int feof(FILE *fp);

where fp identifies the file. The feof() function returns non-0 if the end of the file has
been reached; otherwise, 0 is returned. Therefore, the following routine reads a binary
file until the end-of-file mark is encountered:

while (!feof (fp)) ch = getc(fp);

This method can be applied to text files as well as binary files.

The following program copies a file of any type. Notice that the files are opened in
binary mode and feof() is used to check for the end of the file. (No error checking is
performed on output, but in a real-world situation it would be a good idea. Try to add
it as an exercise.)

/* This program will copy a file to another. */
#include <stdio.h>
#include <stdlib.hs>

int main(int argc, char *argvl([])



224 Borland C++ Builder: The Complete Reference

FILE *in, *out;
char ch;

if (argc!=3) {
printf ("You forgot to enter a filename.\n");

exit (1) ;

}

if ((in=fopen (argv([1l], "rb")) == NULL) {
printf ("Cannot open source file.\n");
exit (1) ;

}

if ((out=fopen (argv([2], "wb")) == NULL) ({

printf ("Cannot open destination file.\n");
exit (1) ;

}

/* This code actually copies the file. */
while (!feof (in)) {

ch = getc(in);

if (!feof (in)) putc(ch, out);

}

fclose (in) ;
fclose (out) ;

return 0;

Working with Strings: fgets( ) and fputs( )

The C I/0O system includes two functions that can read and write strings from and to
streams: fgets() and fputs(). Their prototypes are

int fputs(const char *str, FILE *fp);
char *fgets(char *str, int length, FILE *fp);

The function fputs() works much like puts() except that it writes the string to the specified
stream. The fgets() function reads a string from the specified stream until either a newline
character or length —1 characters have been read. If a newline is read, it will be part of the
string (unlike gets()). In either case, the resultant string will be null-terminated. The
function returns str if successful and a null pointer if an error occurs.



Chapter 8: Input, Output, Streams, and Files

As mentioned earlier in this chapter, you may want to use fgets() as an alternative
to gets(). To do so, simply specify stdin as the file pointer. For example, this program
reads up to 79 characters received from standard input.

#include <stdio.h>

int main(void)

{

char s[80];

printf ("Enter a string: ");
fgets (s, 80, stdin);
printf ("Here is your string: %s", s);

return 0;

The advantage of using fgets() over gets() is that you can prevent the input array from
being overrun. However, the array may contain the newline character.

fread( ) and fwrite( )

The C file system provides two functions, fread() and fwrite(), that allow the reading
and writing of blocks of data. Their prototypes are

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);
size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

In the case of fread(), buffer is a pointer to a region of memory that receives the data
read from the file. For fwrite(), buffer is a pointer to the information to be written to the
file. The length of each item, in bytes, to be read or written is specified by num_bytes.
The argument count determines how many items (each being num_bytes in length) will
be read or written. Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than
count if the end of the file is reached or an error occurs. The fwrite() function returns
the number of items written. This value will equal count unless an error occurs.

As long as the file has been opened for binary data, fread() and fwrite() can read
and write any type of information. For example, this program writes a float to a disk file:

/* Write a floating point number to a disk file. */
#include <stdio.h>
#include <stdlib.h>

225



226 Borland C++ Builder: The Complete Reference

int main(void)

{
FILE *fp;
float £ = 12.23;
if ((fp=fopen("test", "wb"))==NULL) {
printf ("Cannot open file.\n");
exit (1) ;
}
fwrite(&f, sizeof(float), 1, fp);
fclose (fp) ;
return 0;
!

As this program illustrates, the buffer can be, and often is, simply a variable.

One of the most useful applications of fread() and fwrite() involves the reading
and writing of blocks of data, such as arrays or structures. For example, this fragment
writes the contents of the floating-point array balance to the file balance using a single
fwrite() statement. Next, it reads the array, using a single fread() statement, and
displays its contents.

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
register int i;
FILE *fp;
float balance[100];

/* open for write */

if ((fp=fopen ("balance", "wb"))==NULL)
printf ("Cannot open file.\n");
exit (1) ;

for(i=0; 1<100; i++) balancel[i] = (float) i;

/* this saves the entire balance array in one step */



Chapter 8: Input, Output, Streams, and Files

fwrite (balance, sizeof balance, 1, fp);
fclose (fp) ;

/* zero array */
for(i=0; 1<100; i++) balance[i] = 0.0;

/* open for read */

if ((fp=fopen ("balance", "rb"))==NULL)
printf ("cannot open file\n");
exit (1) ;

}

/* this reads the entire balance array in one step */
fread(balance, sizeof balance, 1, fp);

/* display contents of array */
for(i=0; 1i<100; i++) printf("%$f ", balancel[il);

fclose (fp) ;
return 0;

Using fread() and fwrite() to read or write complex data is more efficient than
using repeated calls to getc() and putc().

fseek( ) and Random Access |/0

You can perform random read and write operations using the buffered I/O system
with the help of fseek( ), which sets the file position locator. Its prototype is

int fseek(FILE *fp, long num_bytes, int origin);

where fp is a file pointer returned by a call to fopen(); num_bytes, a long integer, is the
number of bytes from origin to seek to; and origin is one of the following macros

(defined in <stdio.h>):
Origin Macro Name
Beginning of file SEEK_SET
Current position SEEK_CUR

End of file SEEK_END

227



228

Borland C++ Builder: The Complete Reference

The macros are defined as integer values with SEEK_SET being 0, SEEK_CUR
being 1, and SEEK_END being 2. Therefore, to seek num_bytes from the start of the file,
origin should be SEEK_SET. To seek from the current position use SEEK_CUR, and to
seek from the end of the file use SEEK_END. The fseek( ) function returns 0 when
successful and a nonzero value if an error occurs.

For example, you could use the following code to read the 234th byte in a file
called test:

int funcl (void)

{
FILE *fp;
if ((fp=fopen("test", "rb")) == NULL) {
printf ("Cannot open file.\n");
exit (1) ;
}

fseek (fp, 234L, 0);
return getc (fp) ; /* read one character */
/* at 234th position */

}

Another example that uses fseek() is the following DUMP program, which lets
you examine the contents in both ASCII and hexadecimal of any file you choose. You
can look at the file in 128-byte “sectors” as you move about the file in either direction.
To exit the program, type a —1 when prompted for the sector. Notice the use of fread()
to read the file. At the end-of-file mark, less than SIZE number of bytes are likely to be
read, so the number returned by fread() is passed to display(). (Remember that
fread() returns the number of items actually read.) Enter this program into your
computer and study it until you are certain how it works:

/* DUMP: A simple disk look utility using fseek. */
#include <stdio.h>
#include <stdlib.hs>
#include <ctype.h>

#define SIZE 128
void display (int numread) ;

char buf [SIZE];
void display () ;



Chapter 8: Input, Output, Streams, and Files

int main(int argc, char *argvl([])
FILE *fp;
int sector, numread;

if (argc!=2) {
printf ("Usage: dump filename\n") ;
exit (1) ;

if ((fp=fopen(argv[l], "rb"))==NULL) {
printf ("Cannot open file.\n");
exit (1) ;

do {
printf ("Enter sector: ");
scanf ("%d", &sector);
if (sector >= 0) {
if (fseek (fp, sector*SIZE, SEEK_SET)) {
printf ("seek error");
}
if ((numread=fread(buf, 1, SIZE, fp)) != SIZE)
printf ("EOF reached.");

display (numread) ;
}
} while(sector>=0);
return 0;

/* Display the contents of a file. */
void display(int numread)

{

int i, 5;

for (i=0; i<numread/16; i++) {
for(j=0; j<16; j++) printf ("$3X", buf[i*l6+]j]);
printf (" ");
for (§=0; j<16; j++) {
if (isprint (buf [i*16+j])) printf ("%c", bufl[i*16+j]);
else printf(".");

229



230 Borland C++ Builder: The Complete Reference

}

printf ("\n") ;

Notice that the library function isprint() is used to determine which characters are
printing characters. The isprint() function returns true if the character is printable and
false otherwise, and requires the use of the header file <ctype.h>, which is included
near the top of the program. A sample output with DUMP used on itself is shown in
Figure 8-2.

fprintf( ) and fscanf( )

In addition to the basic I/O functions, the buffered I/O system includes fprintf() and
fscanf(). These functions behave exactly like printf() and scanf() except that they
operate with disk files. The prototypes of fprintf() and fscanf() are

int fprintf(FILE *fp, const char *fmt_string, .. .);
int fscanf(FILE *fp, const char *fmt_string, . . .);

Enter sector: 0
2F 2A 20 44 55 4D 50 3A 20 41 20 73 69 6D 70 6C /* DUMP: A simpl
65 20 64 69 73 6B 20 6C 6F 6F 6B 20 75 74 69 6C e disk look util
69 74 79 20 75 73 69 6E 67 20 66 73 65 65 6B 2E ity using fseek.
20 2A 2F D A 23 69 6E 63 6C 75 64 65 20 3C 73 *x/..#include <s
74 64 69 6F 2E 68 3E D A 23 69 6E 63 6C 75 64 tdio.h>..#includ
65 20 3C 73 74 64 6C 69 62 2E 68 3E D A 23 69 e <stdlib.h>..#i
6E 63 6C 75 64 65 20 3C 63 74 79 70 65 2E 68 3E nclude <ctype.h>

D A D A 23 64 65 66 69 6E 65 20 53 49 5A 45 ....#define SIZE
Enter sector: 1

20 31 32 38 D A D A 76 6F 69 64 20 64 69 73 128....void dis

70 6C 61 79 28 69 6E 74 20 6E 75 6D 72 65 61 64 play(int numread

29 3B D A D A 63 68 61 72 20 62 75 66 5B 53 );....char buf([Ss

49 5A 45 5D 3B D A 76 6F 69 64 20 64 69 73 70 IZE];..void disp

6C 61 79 28 29 3B D A D A 69 6E 74 20 6D 61 lay();....int ma

69 6E 28 69 6E 74 20 61 72 67 63 2C 20 63 68 61 in(int argc, cha

72 20 2A 61 72 67 76 5B 5D 29 D A 7B D A 20 r *argv[])..{..

20 46 49 4C 45 20 2A 66 70 3B D A 20 20 69 6E FILE *fp;.. in
Enter sector: -1

Figure 8-2. Sample output from the dump program




Chapter 8: Input, Output, Streams, and Files 231

where fp is a file pointer returned by a call to fopen(). Except for directing their output
to the file defined by fp, they operate exactly like printf() and scanf( ) respectively.

| Although fprintf() and fscanf( ) are often the easiest way to write and read assorted

data to disk files, they are not always the most efficient. Because formatted ASCII data
is being written just as it would appear on the screen (instead of in binary), you incur

extra overhead with each call. If speed or file size is a concern, you should probably use
fread() and fwrite( ).

Erasing Files

The remove() function erases a file. Its prototype is
int remove(const char *filename);

It returns 0 upon success, non-0 if it fails.
This program uses remove() to erase a file specified by the user.

/* A remove () example. */

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

char fname[80] ;

printf ("Name of file to remove: ");
gets (fname) ;

if (remove (fname))

printf ("Error removing file\n") ;
exit (1) ;

}

return 0;

ferror( ) and rewind( )

The ferror() function is used to determine whether a file operation has produced an
error. The function ferror() has this prototype

int ferror(FILE *fp)



232 Borland C++ Builder: The Complete Reference

where fp is a valid file pointer. It returns true if an error has occurred during the last
tile operation; it returns false otherwise. Because each file operation sets the error
condition, ferror() should be called immediately after each file operation; otherwise,
an error may be lost.

The rewind() function resets the file position locator to the beginning of the file
specified as its argument. The prototype is

void rewind(FILE *fp)

where fp is a valid file pointer.

___| The Console Connection

As mentioned at the start of this chapter, whenever a program starts execution, five
streams are opened automatically. They are stdin, stdout, stderr, stdaux, and stdprn.
Because these are file pointers, they may be used by any function in the CI/0 system
that uses a file pointer. For example, putchar() could be defined as

int putchar (int c)

{
}

return putc(c, stdout);

As this example illustrates, C makes little distinction between console I/O and file I/O.
In essence, the console I/O functions are simply special versions of their parallel file
functions that direct their operations to either stdin or stdout. The reason they exist is
as a convenience to you, the programmer. In general, you may use stdin, stdout, and
stderr as file pointers in any function that uses a variable of type FILE *.

In environments that allow redirection of I/O, stdin and stdout can be redirected.
This means that they could refer to a device other than the keyboard and or screen. For
example, consider this program:

#include <stdio.h>

int main(void)

{

char str[80];

printf ("Enter a string: ");
gets (str);
printf (str) ;



Chapter 8: Input, Output, Streams, and Files

return 0;

Assume that this program is called TEST. If you execute TEST normally, it displays
its prompt on the screen, reads a string from the keyboard, and displays that string on
the display. However, either stdin, stdout, or both could be redirected to a file. For
example, in a DOS or Windows environment, executing TEST like this:

TEST > OUTPUT
causes the output of TEST to be written to a file called OUTPUT. Executing TEST like this:
TEST < INPUT > OUTPUT

directs stdin to the file called INPUT and sends output to the file called OUTPUT.
As you can see, console I/O and file I/O are really just two slightly different ways
of looking at the same thing.

233



This page intentionally left blank.



The

Complete L

Reference by

The Preprocessor
and Comments

235



236

Borland C++ Builder: The Complete Reference

compiler. Although not actually part of the C/C++ language, these preprocessor
directives expand the scope of its programming environment. This chapter examines
the preprocessor. It also examines C++ Builder’s built-in macros, and some additions
made to the preprocessor by C++ Builder. The chapter ends with an examination
of comments.
Standard C/C++ supports the following preprocessor directives:

The source code for a C (or C++) program can include various instructions to the

#define #elif #else #endif
#error #if #ifdef #ifndef
#include #line #pragma #undef

To these, C++ Builder adds #import.
All preprocessor directives begin with a # sign, and each preprocessing directive
must be on its own line. For example,

/* Will not work! */
#include <stdio.h> #include <stdlib.h>

will not work.

#define

The #define directive defines an identifier and a character sequence that will be
substituted for the identifier each time it is encountered in the source file. The identifier
is referred to as a macro name and the replacement process as macro replacement. The
general form of the directive is

#define macro-name character-sequence

Notice that there is no semicolon in this statement. There can be any number of spaces
between the identifier and the character sequence, but once it begins, it is terminated
only by a newline.

For example, if you want to use the word UP for the value 1 and DOWN for the
value 0, then you would use these two directives:

#define UP 1
#define DOWN 0

This causes the compiler to substitute a 1 or a 0 each time the name UP or DOWN is
encountered in your source file. For example, the following prints “0 1 2” on the screen:



Chapter 9: The Preprocessor and Comments

printf ("%d %d %d", DOWN, UP, UP+1) ;

Once a macro name has been defined, it can be used as part of the definition of other
macro names. For example, this code defines the values of ONE, TWO, and THREE:

#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO

Macro substitution is simply the replacement of an identifier with its associated
string. Therefore, if you wanted to define a standard error message, you might write
something like this:

#define E MS "Standard error on input.\n"
VA
printf (E_MS) ;

The compiler substitutes the string "Standard error on input.\n" when the identifier
E_MS is encountered. To the compiler, the printf() statement actually appears to be

printf ("Standard error on input.\n");
No text substitutions occur if the identifier is within a quoted string. For example,

#define XYZ "this is a test"
/*x ... */
printf ("XYZ") ;

does not print “this is a test” but “XYZ".
If the string is longer than one line, you can continue it on the next line by placing a
backslash at the end of the line, as shown in this example:

#define LONG STRING "This is a very long \
string that is used as an example."

C/C++ programmers often use capital letters for defined identifiers. This convention
helps anyone reading the program know at a glance that a macro substitution will take
place. Also, it is usually best to put all #defines at the start of the file or in a separate
header file rather than sprinkling them throughout the program.

The most common use of macro substitutions is to define names for “magic numbers”
that occur in a program. For example, you may have a program that defines an array

237



238

Borland C++ Builder: The Complete Reference

and has several routines that access that array. Instead of “hard-coding” the array’s
size with a constant, you can define a name that represents the size and use that name
whenever the size of the array is needed. This way, if you need to change the size of
the array, you will only need to change the #define statement and then recompile.

All uses of the name will automatically be updated. For example:

#define MAX SIZE 100

VAV
float balance [MAX SIZE] ;
VA

float temp[MAX SIZE];

To change the size of both arrays, simply change the definition of MAX_SIZE and
recompile.

The #define directive has another powerful feature: the macro name can have
arguments. Each time the macro name is encountered, the arguments used in its
definition are replaced by the actual arguments found in the program. This type of
macro is called a function-like macro. For example:

#include <stdio.h>
#define MIN(a,b) ((a)<(b)) ? (a) : (b)

int main(void)

{

int x, y;

x = 10;
y = 20;
printf ("The minimum is: %d", MIN(x, Vy));

return 0;

}

When this program is compiled, the expression defined by MIN(a,b) is substituted,
except that x and y are used as the operands. That is, the printf() statement looks like
this after the substitution:

printf ("The minimum is: %d4d", ((x)<(y)) ? (x) : (y));



Chapter 9: The Preprocessor and Comments

Be very careful how you define macros that take arguments; otherwise, there can be
some surprising results. For example, examine this short program, which uses a macro
to determine whether a value is even or odd:

/* This program will give the wrong answer. */
#include <stdio.h>
#define EVEN(a) a%2==0 ? 1 : O

int main(void)

{
if (EVEN (9+1)) printf("is even");
else printf("is odd") ;

return 0;

}

This program will not work correctly because of the way the macro substitution is
made. When C++ Builder compiles this program, the EVEN(9+1) is expanded to

9+1%2==0 ? 1 : O

As you may recall, the % (modulus) operator has higher precedence than the plus
operator. This means that the % operation is first performed on the 1 and that result
is added to 9, which (of course) does not equal 0. To fix the trouble, there must be
parentheses around a in the macro definition of EVEN, as shown in this corrected
version of the program:

#include <stdio.h>
#define EVEN(a) (a)%2==0 2 1 : O

int main(void)

{
if (EVEN(9+1)) printf("is even");
else printf("is odd");

return 0;

}

239



240

Borland C++ Builder: The Complete Reference

Now, the 9+1 is evaluated prior to the modulus operation. In general, it is a good idea to
surround macro parameters with parentheses to avoid troubles like the one just described.

The use of macro substitutions in place of real functions has on