

Team-Fly®

www.allitebooks.com

http://www.allitebooks.org

Borland® C++ Builder™:
The Complete Reference

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Herbert Schildt is the world’s leading
programming author. He is an authority on the
C, C++, Java, and C# programming languages,
and a master Windows programmer. His
programming books have sold over three
million copies worldwide and have been
translated into all major foreign languages.
He is the author of numerous best-sellers,
including C++: The Complete Reference,
C: The Complete Reference, Java 2: The Complete
Reference, Java 2: A Beginner's Guide, C#: A
Beginner's Guide, Windows 2000 Programming
from the Ground Up, and many more. Schildt
holds a master’s degree in computer science
from the University of Illinois.

Greg Guntle has been programming and
working with PC’s for the last 20 years. He also
provides technical editing skills for computer
books and has done that for the past 15 years.

http://avaxhome.ws/blogs/ChrisRedfieldwww.allitebooks.com

http://www.allitebooks.org

Borland® C++ Builder™:
The Complete Reference

Herbert Schildt
Greg Guntle

Osborne/McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219439-1

The material in this eBook also appears in the print version of this title: 0-07-212778-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072194391

www.allitebooks.com

http://www.allitebooks.org

Contents
Preface . xxv
Acknowledgments . xxix

Part I

The Foundation of C++: The C Subset

1 An Overview of C . 3
The Origins of the C Language . 4
A Middle-Level Language . 4
A Structured Language . 6
A Programmer’s Language . 7
Compilers Versus Interpreters . 9
The Form of a C Program . 9

The Library and Linking . 10
Separate Compilation . 11
A C Program’s Memory Map . 12

A Review of Terms . 13

2 Variables, Constants, Operators, and Expressions 15
Identifier Names . 16
Data Types . 16

Type Modifiers . 17
Access Modifiers . 19

v
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Declaration of Variables . 19
Local Variables . 20
Formal Parameters . 22
Global Variables . 22

Storage Class Specifiers . 24
extern . 25
static Variables . 26
static Local Variables . 27
static Global Variables . 28
register Variables . 30

Assignment Statements . 31
Multiple Assignments . 31
Type Conversion in Assignments . 31
Variable Initializations . 33

Constants . 33
Backslash Character Constants . 34

Operators . 35
Arithmetic Operators . 35
Increment and Decrement . 37
Relational and Logical Operators . 38
Bitwise Operators . 40
The ? Operator . 44
The & and * Pointer Operators . 45
The sizeof Compile-Time Operator . 47
The Comma Operator . 48
The Dot (.) and Arrow (–>) Operators . 48
The [] and () Operators . 49
Precedence Summary . 49

Expressions . 50
Type Conversion in Expressions . 50
Casts . 51
Spacing and Parentheses . 53
C Shorthand . 53

3 Program Control Statements . 55
True and False . 56
Selection Statements . 56
if . 57

Nested ifs . 58
The if-else-if Ladder . 59
The ? Alternative . 60

switch . 63
Nested switch Statements . 65

Iteration Statements (Loops) . 66
The for Loop . 66

for Loop Variations . 67
The Infinite Loop . 70
for Loops with No Bodies . 71

vi B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The while Loop . 72
do-while . 74
Jump Statements . 75
break . 75
exit() . 77
continue . 78
Labels and goto . 80
Expression Statements . 81
Block Statements . 81

4 Functions . 83
The General Form of a Function . 84
The return Statement . 84

Returning from a Function . 84
Returning Values . 85
What Does main() Return? . 87

Understanding the Scope of a Function . 87
Function Arguments . 88

Call by Value, Call by Reference . 88
Creating a Call by Reference . 89
Calling Functions with Arrays . 91

argc and argv—Arguments to main() . 95
Function Prototypes . 101

Standard Library Function Prototypes . 103
Old-Style Versus Modern Parameter Declarations . 104
The “Implicit int” Rule . 105
Declaring Variable Length Parameter Lists . 106
Returning Pointers . 106
Recursion . 108
Pointers to Functions . 109
Implementation Issues . 112

Parameters and General-Purpose Functions 112
Efficiency . 113

5 Arrays . 115
Single-Dimension Arrays . 116
Generating a Pointer to an Array . 117
Passing Single-Dimension Arrays to Functions . 118

Null-Terminated Strings . 119
Two-Dimensional Arrays . 121

Arrays of Strings . 125
Multidimensional Arrays . 127
Indexing Pointers . 127
Allocated Arrays . 129
Array Initialization . 131

Unsized-Array Initializations . 133
A Tic-Tac-Toe Example . 134

C o n t e n t s vii

6 Pointers . 139
Pointers Are Addresses . 140
Pointer Variables . 141
The Pointer Operators . 141
Pointer Expressions . 143

Pointer Assignments . 143
Pointer Arithmetic . 144
Pointer Comparisons . 145

Dynamic Allocation and Pointers . 147
Understanding const Pointers . 149
Pointers and Arrays . 150

Pointers to Character Arrays . 151
Arrays of Pointers . 153

Pointers to Pointers: Multiple Indirection . 154
Initializing Pointers . 156
Pointers to Functions . 157
Problems with Pointers . 160

7 Structures, Unions, and User-Defined Types 163
Structures . 164

Accessing Structure Members . 166
Structure Assignments . 167

Arrays of Structures . 168
An Inventory Example . 168

Passing Structures to Functions . 175
Passing Structure Members to Functions . 175
Passing Entire Structures to Functions . 176

Structure Pointers . 177
Declaring a Structure Pointer . 177
Using Structure Pointers . 177

Arrays and Structures Within Structures . 181
Bit-Fields . 182
Unions . 184
Enumerations . 186
An Important Difference Between C and C++ . 189
Using sizeof to Ensure Portability . 189
typedef . 191

8 Input, Output, Streams, and Files . 193
C Versus C++ I/O . 194
Streams and Files . 195

Streams . 195
Files . 196

Console I/O . 197
Reading and Writing Characters . 197
Reading and Writing Strings: gets() and puts() 200

Formatted Console I/O . 201
printf() . 201
scanf() . 209

viii B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The C File System . 216
The File Pointer . 217
Opening a File . 218
Writing a Character . 220
Reading a Character . 220
Closing a File . 221
Using fopen(), getc(), putc(), and fclose() 221
Using feof() . 223
Working with Strings: fgets() and fputs() 224
fread() and fwrite() . 225
fseek() and Random Access I/O . 227
fprintf() and fscanf() . 230
Erasing Files . 231
ferror() and rewind() . 231

The Console Connection . 232

9 The Preprocessor and Comments . 235
#define . 236
#error . 240
#include . 240
Conditional Compilation Directives . 241

#if, #else, #elif, and #endif . 242
#ifdef and #ifndef . 244

#undef . 245
Using defined . 246
#line . 247
#pragma . 247
. 251
#import . 251
The # and ## Preprocessor Operators . 252
Predefined Macro Names . 253
Comments . 255

Part II

The C++ Builder Function Library

10 Linking, Libraries, and Headers . 259
The Linker . 260
Library Files Versus Object Files . 261
The Standard Library Versus C++ Builder Extensions 262
Headers . 262

Macros in Headers . 264

11 I/O Functions . 265
int access(const char *filename, int mode) . 266
int chmod(const char *filename, int mode) 267
int chsize(int handle, long size) . 268

C o n t e n t s ix

void clearerr(FILE *stream) . 269
int close(int fd)

int _rtl_close(int fd) . 270
int _creat(const char *filename, int pmode)

int _rtl_creat(const char *filename, int attrib)
int creatnew(const char *filename, int attrib)
int creattemp(char *filename, int attrib) 271

int dup(int handle)
int dup2(int old_handle, int new_handle) 273

int eof(int fd) . 274
int fclose(FILE *stream)

int _fcloseall(void) . 275
FILE *fdopen(int handle, char *mode) . 276
int feof(FILE *stream) . 276
int ferror(FILE *stream) . 277
int fflush(FILE *stream) . 278
int fgetc(FILE *stream) . 278
int fgetchar(void) . 279
int *fgetpos(FILE *stream, fpos_t *pos) . 279
char *fgets(char *str, int num, FILE *stream) 281
long filelength(int handle) . 282
int fileno(FILE *stream) . 282
int _flushall(void) . 283
FILE *fopen(const char *fname, const char *mode) 283
int fprintf(FILE *stream, const char *format, arg-list) 285
int fputc(int ch, FILE *stream) . 286
int fputchar(int ch) . 287
int fputs(const char *str, FILE *stream) . 288
size_t fread(void *buf, size_t size, size_t count,

FILE *stream) . 288
FILE *freopen(const char *fname, const char *mode,

FILE *stream) . 289
int fscanf(FILE *stream, const char *format, arg-list) 290
int fseek(FILE *stream, long offset, int origin) 291
int fsetpos(FILE *stream, const fpos_t *pos) 292
FILE *_fsopen(const char *fname, const char *mode,

int shflg) . 294
int fstat(int handle, struct stat *statbuf) . 295
long ftell(FILE *stream) . 296
size_t fwrite(const void *buf, size_t size, size_t count,

FILE *stream) . 296
int getc(FILE *stream) . 297
int getch(void)

int getche(void) . 298
int getchar(void) . 299
char *gets(char *str) . 300
int getw(FILE *stream) . 301
int isatty(int handle) . 302
int lock(int handle, long offset, long length) 302

x B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

int locking(int handle, int mode, long length) 303
long lseek(int handle, long offset, int origin) 304
int open(const char *filename,

int access, unsigned mode)
int _rtl_open(const char *filename, int access) 306

void perror(const char *str) . 308
int printf (const char *format, arg-list) . 309
int putc(int ch, FILE *stream) . 312
int putch(int ch) . 313
int putchar(int ch) . 313
int puts(const char *str) . 314
int putw(int i, FILE *stream) . 314
int read(int fd, void *buf, unsigned count)

int _rtl_read(int fd, void *buf, unsigned count) 315
int remove(const char *fname) . 316
int rename(const char *oldfname,

const char *newfname) . 317
void rewind(FILE *stream) . 318
int _rtl_chmod (const char *filename,

int get_set, int attrib) . 319
int scanf(const char *format, arg-list) . 319
void setbuf(FILE *stream, char *buf) . 324
int setmode(int handle, int mode) . 324
int setvbuf(FILE *stream, char *buf,

int mode, size_t size) . 325
int sopen(const char *filename, int access,

int shflag, int mode) . 325
int sprintf(char *buf, const char *format, arg-list) 328
int sscanf(char *buf, const char *format, arg-list) 328
int stat(char *filename, struct stat *statbuf) 329
long tell(int fd) . 330
FILE *tmpfile(void) . 330
char *tmpnam(char *name) . 331
int ungetc(int ch, FILE *stream) . 332
int ungetch(int ch) . 333
int unlink(const char *fname) . 334
int unlock(int handle, long offset, long length) 334
int vprintf(const char *format, va_list arg_ptr)

int vfprintf(FILE *stream, const char *format,
va_list arg_ptr)

int vsprintf(char *buf, const char *format, va_list arg_ptr) 335
int vscanf(const char *format, va_list arg_ptr)

int vfscanf(FILE *stream, const char *format,
va_list arg_ptr)

int vsscanf(const char *buf,
const char *format, va_list arg_ptr) . 336

int write(int handle, void *buf, int count)
int _rtl_write(int handle, void *buf, int count) 338

C o n t e n t s xi

12 String, Memory, and Character Functions 341
int isalnum(int ch) . 342
int isalpha(int ch) . 343
int isascii(int ch) . 344
int iscntrl(int ch) . 344
int isdigit(int ch) . 345
int isgraph(int ch) . 346
int islower(int ch) . 347
int isprint(int ch) . 348
int ispunct(int ch) . 348
int isspace(int ch) . 349
int isupper(ch) . 350
int isxdigit(int ch) . 351
void *memccpy(void *dest, const void *source,

int ch, size_t count) . 351
void *memchr(const void *buffer, int ch, size_t count) 352
int memcmp(const void *buf1,

const void *buf2, size_t count) . 353
int memicmp(const void *buf1,

const void *buf2, size_t count) . 353
void *memcpy(void *dest, const void *source,

size_t count) . 354
void *memmove(void *dest, const void *source,

size_t count) . 355
void *memset(void *buf, int ch, size_t count) 356
void movmem(const void *source, void *dest,

unsigned count) . 356
void setmem(void *buf, unsigned count, char ch) 357
char *stpcpy(char *str1, const char *str2) . 357
char *strcat(char *str1, const char *str2) . 358
char *strchr(const char *str, int ch) . 359
int strcmp(const char *str1, const char *str2) 359
int strcoll(const char *str1, const char *str2) 360
char *strcpy(char *str1, const char *str2) . 360
size_t strcspn(const char *str1, const char *str2) 361
char *strdup(const char *str) . 362
char *_strerror(const char *str) . 362
char *strerror(int num) . 363
int stricmp(const char *str1, const char *str2)

int strcmpi(const char *str1, const char *str2) 363
size_t strlen(const char *str) . 364
char *strlwr(char *str) . 365
char *strncat(char *str1, const char *str2, size_t count) 365
int strncmp(const char *str1, const char *str2, size_t count)

int strnicmp(const char *str1, const char *str2, size_t count) 367
int strncmpi(const char *str1, const char *str2, size_t count) 367
char *strncpy(char *dest, const char *source,

size_t count) . 368
char *strnset(char *str, int ch, size_t count) 369

xii B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

char *strpbrk(const char *str1, const char *str2) 369
char *strrchr(const char *str, int ch) . 370
char *strrev(char *str) . 371
char *strset(char *str, int ch) . 371
size_t strspn(const char *str1, const char *str2) 372
char *strstr(const char *str1, const char *str2) 373
char *strtok(char *str1, const char *str2) . 373
char *strupr(char *str) . 375
size_t strxfrm(char *dest, const char *source, size_t count) 375
int tolower(int ch)

int _tolower(int ch) . 376
int toupper(int ch)

int _toupper(int ch) . 376

13 Mathematical Functions . 379
double acos(double arg)

long double acosl(long double arg) . 380
double asin(double arg)

long double asinl(long double arg) . 381
double atan(double arg)

long double atanl(long double arg) . 382
double atan2(double y, double x)

long double atan2l(long double y, long double x) 383
double cabs(struct complex znum)

long double cabsl(struct _complexl znum) 383
double ceil(double num) long double ceill

(long double num) . 384
double cos(double arg)

long double cosl(long double arg) . 385
double cosh(double arg)

long double coshl(long double arg) . 386
double exp(double arg)

long double expl(long double arg) . 387
double fabs(double num)

long double fabsl(long double num) . 387
double floor(double num) long double floorl

(long double num) . 388
double fmod(double x, double y) long double fmodl

(long double x, long double y) . 388
double frexp(double num, int *exp)

long double frexpl(long double num, int *exp) 389
double hypot(double x, double y)

long double hypotl(long double x, long double y) 390
double ldexp(double num, int exp)

long double ldexpl(long double num, int exp) 390
double log(double num)

long double logl(long double num) . 391
double log10(double num) long double log10l

(long double num) . 392

C o n t e n t s xiii

int _matherr(struct exception *err) int _matherrl
(struct _exceptionl *err) . 392

double modf(double num, double *i)
long double modfl(long double num, long double *i) 394

double poly(double x, int n, double c[])
long double polyl(long double x, int n, long double c[]) 394

double pow(double base, double exp) long double powl
(long double base, long double exp) . 395

double pow10(int n)
long double pow10l(int n) . 396

double sin(double arg)
long double sinl(long double arg) . 397

double sinh(double arg)
long double sinhl(long double arg) . 397

double sqrt(double num)
long double sqrtl(long double num) . 398

double tan(double arg)
long double tanl(long double arg) . 399

double tanh(double arg)
long double tanhl(long double arg) . 399

14 Time, Date, and System-Related Functions 401
char *asctime(const struct tm *ptr) . 403
clock_t clock(void) . 404
char *ctime(const time_t *time) . 405
double difftime(time_t time2, time_t time1) 406
void disable(void)

void _disable(void) . 407
unsigned _dos_close(int fd) . 407
unsigned _dos_creat(const char *fname,

unsigned attr, int *fd) . 408
unsigned _dos_creatnew(const char *fname,

unsigned attr, int *fd) . 408
void _dos_getdate(struct dosdate_t *d)

void _dos_gettime(struct dostime_t *t) 409
unsigned _dos_getdiskfree(unsigned char drive,

struct diskfree_t *dfptr) . 410
void _dos_getdrive(unsigned *drive) . 411
unsigned _dos_getfileattr(const char *fname,

unsigned *attrib) . 412
unsigned _dos_getftime(int fd, unsigned *fdate,

unsigned *ftime) . 413
unsigned _dos_open(const char *fname,

unsigned mode, int *fd) . 414
unsigned _dos_read(int fd, void *buf, unsigned count,

unsigned *numread) . 416
unsigned _dos_setdate(struct dosdate_t *d)

unsigned _dos_settime(struct dostime_t *t) 417

xiv B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void _dos_setdrive(unsigned drive, unsigned *num) 418
unsigned _dos_setfileattr(const char *fname,

unsigned attrib) . 418
unsigned _dos_setftime(int fd, unsigned fdate,

unsigned ftime) . 419
long dostounix(struct date *d, struct time *t) 421
unsigned _dos_write(int fd, void *buf, unsigned count,

unsigned *numwritten) . 422
void enable(void)

void _enable(void) . 422
void ftime(struct timeb *time) . 423
void geninterrupt(int intr) . 424
void getdate(struct date *d)

void gettime(struct time *t) . 424
void getdfree(unsigned char drive, struct dfree *dfptr) 425
int getftime(int handle, struct ftime *ftptr) 426
struct tm *gmtime(const time_t *time) . 427
int kbhit(void) . 428
struct tm *localtime(const time_t *time) . 428
time_t mktime(struct tm *p) . 429
void setdate(struct date *d)

void settime(struct time *t) . 430
int setftime(int handle, struct ftime *t) . 431
void sleep(unsigned time) . 432
int stime(time_t *t) . 432
char *_strdate(char *buf)

char *_strtime(char *buf) . 433
size_t strftime(char *str, size_t maxsize,

char const *fmt, const struct tm *time) 434
time_t time(time_t *time) . 434
void tzset(void) . 436
void unixtodos(long utime, struct date *d,

struct time *t) . 436

15 Dynamic Allocation . 439
void *alloca(size_t size) . 440
void *calloc(size_t num, size_t size) . 441
void free(void *ptr) . 442
int heapcheck(void) . 443
int heapcheckfree(unsigned fill) . 444
int heapchecknode(void *ptr) . 445
int _heapchk(void) . 446
int heapfillfree(unsigned fill) . 446
int _heapmin(void) . 447
int _heapset(unsigned fill) . 448
int heapwalk(struct heapinfo *hinfo)

int _rtl_heapwalk(_HEAPINFO *hinfo) 448
void *malloc(size_t size) . 450
void *realloc(void *ptr, size_t newsize) . 451

C o n t e n t s xv

16 Directory Functions . 453
int chdir(const char *path) . 454
int _chdrive(int drivenum) . 454
void closedir(DIR *ptr)

DIR *opendir(char *dirname)
struct dirent *readdir(DIR *ptr)
void rewinddir(DIR *ptr) . 455

unsigned _dos_findfirst(const char *fname, int attr,
struct find_t *ptr)

unsigned _dos_findnext(struct find_t *ptr) 456
int findfirst(const char *fname, struct ffblk *ptr, int attrib)

int findnext(struct ffblk *ptr) . 457
void fnmerge(char *path, const char *drive, const char

*dir, const char *fname, const char *ext)
int fnsplit(const char *path, char *drive, char *dir,

char *fname, char *ext) . 459
char *_fullpath(char *fpath, const char *rpath, int len) 461
int getcurdir(int drive, char *dir) . 461
char *getcwd(char *dir, int len) . 462
char *_getdcwd(int drive, char *path, int len) 463
int getdisk(void) . 464
int _getdrive(void) . 464
void _makepath(char *pname, const char *drive,

const char *directory, const char *fname,
cont char *extension) . 465

int mkdir(const char *path) . 466
char *mktemp(char *fname) . 467
int rmdir(const char *path) . 467
char *searchpath(const char *fname) . 468
int setdisk(int drive) . 469
void _splitpath(const char *fpath, char *drive, char

*directory char *fname, char *extension) 469

17 Process Control Functions . 471
void abort(void) . 472
int atexit(void (*func)(void)) . 473
unsigned long _beginthread(void (*func)(void *),

unsigned stksize, void *arglist)
unsigned long _beginthreadex(void *secattr,

unsigned stksize, unsigned (*start)(void *),
void *arglist, unsigned createflags,
unsigned *threadID)

unsigned long _beginthreadNT(void (*func)(void *),
unsigned stksize, void *arglist,
void *secattr, unsigned createflags,
unsigned *threadID); . 474

void _c_exit(void)
void _cexit(void) . 476

xvi B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void _endthread(void)
void _endthreadex(unsigned threadvalue) 477

int execl(char *fname, char *arg0, . . ., char *argN, NULL)
int execle(char *fname, char *arg0, . . ., char *argN,
NULL, char *envp[]) . 477

int execlp(char *fname, char *arg0, . . ., char *argN, NULL)
int execlpe(char *fname, char *arg0, . . ., char *argN,
NULL, char *envp[]) . 477

int execv(char *fname, char *arg[])
int execve(char *fname, char *arg[], char *envp[]) int execvp
(char *fname, char *arg[])
int execvpe(char *fname, char *arg[], char *envp[]) 477

void exit(int status)
void _exit(int status) . 479

int getpid(void) . 480
int spawnl(int mode, char *fname, char *arg0, . . .,

char *argN, NULL)
int spawnle(int mode, char *fname, char *arg0, . . .,

char *argN, NULL, char *envp[])
int spawnlp(int mode, char *fname, char *arg0, . . .,

char *argN, NULL)
int spawnlpe(int mode, char *fname, char *arg0, . . .,

char *argN, NULL, char *envp[])
int spawnv(int mode, char *fname, char *arg[])
int spawnve(int mode, char *fname, char *arg[], char *envp[])
int spawnvp(int mode, char *fname, char *arg[])
int spawnvpe(int mode, char *fname, char *arg[],
char *envp[]) . 481

int wait(int *status) . 484

18 Screen-Based Text Functions . 487
char *cgets(char *inpstr) . 488
void clreol(void)

void clrscr(void) . 489
int cprintf(const char *fmt, . . .) . 490
int cputs(const char *str) . 491
int cscanf(char *fmt, . . .) . 492
void delline(void) . 493
int gettext(int left, int top, int right, int bottom, void *buf) 494
void gettextinfo(struct text_info *info) . 494
void gotoxy(int x, int y) . 495
void highvideo(void) . 496
void insline(void) . 496
void lowvideo(void) . 497
int movetext(int left, int top, int right, int bottom,

int newleft, int newtop) . 498
void normvideo(void) . 498
int puttext(int left, int top, int right, int bottom, void *buf) 499

C o n t e n t s xvii

void textattr(int attr) . 499
void textbackground(int color) . 500
void textcolor(int color) . 501
void textmode(int mode) . 502
int wherex(void)

int wherey(void) . 503
void window(int left, int top, int right, int bottom) 504

19 Miscellaneous Functions . 505
int abs(int num) . 506
void assert(int exp) . 507
double atof(const char *str)

long double _atold(const char *str) . 508
int atoi(const char *str) . 509
long atol(const char *str) . 509
void *bsearch(const void *key, const void *base, size_t num,

size_t size, int (*compare)(const void *, const void *)) 510
unsigned int _clear87(void) . 512
unsigned int _control87(unsigned fpword,

unsigned fpmask) . 512
div_t div(int numerator, int denominator) 513
char *ecvt(double value, int ndigit, int *dec, int *sign) 514
void _ _emit_ _(unsigned char arg, . . .) . 514
char *fcvt(double value, int ndigit, int *dec, int *sign) 515
void _fpreset(void) . 515
char *gcvt(double value, int ndigit, char *buf) 516
char *getenv(const char *name) . 516
char *getpass(const char *str) . 517
unsigned getpid(void) . 517
char *itoa(int num, char *str, int radix) . 518
long labs(long num) . 519
ldiv_t ldiv(long numerator, long denominator) 519
void *lfind(const void *key, const void *base, size_t *num,

size_t size, int (*compare)(const void *, const void *)
void *lsearch(const void *key, void *base, size_t *num, size_t size,

int (*compare)(const void *, const void *)) 520
struct lconv *localeconv(void) . 522
void longjmp(jmp_buf envbuf, int val) . 523
char *ltoa(long num, char *str, int radix)

char *ultoa(unsigned long num, char *str, int radix) 525
unsigned long _lrotl(unsigned long l, int i)

unsigned long _lrotr(unsigned long l, int i) 526
max(x,y)

min(x,y) . 526
int mblen(const char *str, size_t size) . 527
size_t mbstowcs(wchar_t *out, const char *in, size_t size) 527
int mbtowc(wchar_t *out, const char *in, size_t size) 528
int putenv(const char *evar) . 529

xviii B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void qsort(void *base, size_t num, size_t size,
int (*compare) (const void *, const void *)) 529

int raise(int signal) . 531
int rand(void) . 532
int random(int num)

void randomize(void) . 533
unsigned short _rotl(unsigned short val, int num)

unsigned short _rotr(unsigned short val, int num) 533
void _setcursortype(int type) . 534
int setjmp(jmp_buf envbuf) . 535
void _searchenv(const char *fname, const char *ename,

char *fpath) . 536
char *setlocale(int type, const char *locale) 537
void (*set_new_handler(void (* newhand)()))() 538
void (*signal (int signal, void (*sigfunc) (int func)))(int) 538
void srand(unsigned seed) . 539
unsigned int _status87(void) . 540
double strtod(const char *start, char **end)

long double _strtold(const char *start, char **end) 540
long strtol(const char *start, char **end, int radix)

unsigned long strtoul(const char *start, char **end,
int radix) . 542

void swab(char *source, char *dest, int num) 543
int system(const char *str) . 543
int toascii(int ch) . 544
unsigned umask(unsigned access) . 544
int utime(char *fname, struct utimbuf *t) . 545
void va_start(va_list argptr, last_parm)

void va_end(va_list argptr)
type va_arg(va_list argptr, type) . 546

size_t wcstombs(char *out, const wchar_t *in, size_t size) 548
int wctomb(char *out, wchar_t in) . 548

Part III

C++

20 An Overview of C++ . 551
The Origins of C++ . 552
What Is Object-Oriented Programming? . 553

Encapsulation . 554
Polymorphism . 554
Inheritance . 555

Some C++ Fundamentals . 555
C++ Programs Use the .CPP Extension . 558

A Closer Look at Headers and Namespaces . 559
Modern-Style Headers . 559
Namespaces . 560

C o n t e n t s xix

Introducing C++ Clases . 560
Function Overloading . 565
Operator Overloading . 568
Inheritance . 568
Constructors and Destructors . 572
The C++ Keywords . 576
Two New Data Types . 577

21 A Closer Look at Classes and Objects 579
Parameterized Constructors . 580

Constructors with One Parameter: A Special Case 584
Friend Functions . 585
Default Function Arguments . 590

Using Default Arguments Correctly . 594
Classes and Structures Are Related . 594
Unions and Classes Are Related . 596

Anonymous Unions . 597
Inline Functions . 598

Creating Inline Functions Inside a Class . 600
Passing Objects to Functions . 601
Returning Objects . 604
Object Assignment . 605
Arrays of Objects . 605

Initializing Arrays of Objects . 607
Creating Initialized Versus Uninitialized Arrays 609

Pointers to Objects . 610

22 Function and Operator Overloading . 613
Overloading Constructor Functions . 614
Localizing Variables . 616

Localizing the Creation of Objects . 617
Function Overloading and Ambiguity . 619
Finding the Address of an Overloaded Function . 622
The this Pointer . 623
Operator Overloading . 624

Friend Operator Functions . 631
References . 636

Reference Parameters . 636
Passing References to Objects . 639
Returning References . 640
Independent References . 641

Using a Reference to Overload a Unary Operator . 643
Overloading [] . 646
Applying Operator Overloading . 650

23 Inheritance, Virtual Functions, and Polymorphism 657
Inheritance and the Access Specifiers . 658

Understanding the Access Specifiers . 658
Base Class Access Control . 660

xx B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Constructors and Destructors in Derived Classes . 663
Multiple Inheritance . 667
Passing Parameters to a Base Class . 669
Pointers and References to Derived Types . 671

References to Derived Types . 673
Virtual Functions . 674
Why Virtual Functions? . 679
Pure Virtual Functions and Abstract Types . 684
Early Versus Late Binding . 686

24 The C++ I/O Class Library . 689
Why C++ Has Its Own I/O System . 690
Old Versus Modern C++ I/O . 690
C++ Streams . 691

The C++ Predefined Streams . 691
The C++ Stream Classes . 691
Creating Your Own Inserters and Extractors . 692

Creating Inserters . 693
Overloading Extractors . 696

Formatting I/O . 698
Formatting Using the ios Member Functions 698
Using Manipulators . 702

Creating Your Own Manipulator Functions . 705
File I/O . 708

Opening and Closing a File . 708
Reading and Writing Text Files . 710

Unformatted and Binary I/O . 712
Using get() and put() . 712
Using read() and write() . 714
Detecting EOF . 715
Random Access . 716

25 Templates, Exceptions, and RTTI . 719
Generic Functions . 720

A Function with Two Generic Types . 722
Explicitly Overloading a Generic Function 723
Overloading a Function Template . 725
Generic Function Restrictions . 725

Generic Classes . 726
An Example with Two Generic Data Types 730

Exception Handling . 731
Exception Handling Fundamentals . 731

Catching Class Types . 737
Using Multiple catch Statements . 738
Handling Derived-Class Exceptions . 739

Exception Handling Options . 740
Catching All Exceptions . 741
Restricting Exceptions . 742
Rethrowing an Exception . 744

C o n t e n t s xxi

Understanding terminate() and unexpected() 745
Setting the Terminate and Unexpected Handlers 745

The uncaught_exception() Function . 747
Applying Exception Handling . 747
Run-Time Type Identification (RTTI) . 748
Casting Operators . 750

26 Miscellaneous C++ Topics . 755
Dynamic Allocation Using new and delete . 756

Allocating Objects . 759
Another Way to Watch for Allocation Failure 762
Overloading new and delete . 763
Overloading new and delete for Arrays . 768

static Class Members . 771
static Data Members . 771
static Member Functions . 772

Virtual Base Classes . 775
const Member Functions and mutable . 780
Volatile Member Functions . 782
Using the asm Keyword . 782
Linkage Specification . 783
The .* and ->* Operators . 784
Creating Conversion Functions . 786
Copy Constructors . 788
Granting Access . 791
Namespaces . 794

Namespace Fundamentals . 795
using . 798
Unnamed Namespaces . 800
Some Namespace Options . 801
The std Namespace . 803

Explicit Constructors . 805
typename and export . 806
Differences Between C and C++ . 807

27 The Standard Template Library and the string Class 809
An Overview of the STL . 810

Containers . 810
Algorithms . 811
Iterators . 811
Other STL Elements . 812

The Container Classes . 813
General Theory of Operation . 814
Vectors . 815

Accessing a Vector Through an Iterator . 819
Inserting and Deleting Elements in a Vector 821
Storing Class Objects in a Vector . 823

Lists . 825
Understanding end() . 829
push_front() Versus push_back() . 831

xxii B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Sort a List . 832
Merging One List with Another . 833
Storing Class Objects in a List . 835

Maps . 837
Storing Class Objects in a Map . 841

Algorithms . 843
Counting . 846
Removing and Replacing Elements . 849
Reversing a Sequence . 851
Transforming a Sequence . 852

Using Function Objects . 853
Unary and Binary Function Objects . 854
Using the Built-in Function Objects . 854
Creating a Function Object . 857
Using Binders . 859

The string Class . 861
Some string Member Functions . 866
Strings Are Containers . 871
Putting Strings into Other Containers . 872

Final Thoughts on the STL . 873

Part IV

The C++ Builder Integrated Development Environment

28 The Integrated Development Environment 877
The Four IDE Windows . 878
The Menu Window . 878

File . 880
Edit . 882
Search . 883
View . 885
Project . 886
Run . 888
Component . 889
Tools . 890
Help . 894
Toolbars . 894

Object Inspector Window . 895
Form Window . 895
Code (Unit) Window . 895
Using Speed Menus . 896
Using Context-Sensitive Help . 896

29 Developing Applications Using the IDE 897
Types of Applications . 898

New . 898
Project1 . 900
Forms . 902

C o n t e n t s xxiii

Dialogs . 902
Projects . 902

The Component Palette . 903
Standard Components . 904
Additional Components . 904
Win32 Components . 905
System Components . 907
Dialogs Components . 908
Win 3.1 Components . 909
Samples Components . 909
ActiveX Components . 910
Internet Components . 911
Servers Components . 911

Creating a Console Application . 911
Using the IDE to Create a Console Application 912
Compiling the Sample Programs in This Book 916
Using the Command Line Compiler . 916

Creating a Simple Windows Application . 918
Preliminary Steps . 918
Create the Application . 920
Building the GUI Form . 920
Adding Label and Edit Components . 922
Using the ActionList and ImageList Components 924
Building a Basic Menu . 931
Creating a Toolbar . 933
Building Command Buttons . 935
Adding a Help | About Dialog Box . 936
Adding Code and Finishing the Application 937

30 Using C++ Builder’s Integrated Debugging
Environment . 941

Preparing Your Programs for Debugging . 942
What Is a Source-Level Debugger? . 942
Debugger Basics . 942

Single-Stepping . 943
Breakpoints . 945

Setting Unconditional Source Breakpoints 946
Setting Conditional Source Breakpoints . 947

Watching Variables . 949
Watched-Expression Formats . 950
Qualifying a Variable’s Name . 953

Watching the Stack . 954
Evaluating an Expression . 955
Pausing a Program . 956
Using the CPU Window . 956
A Debugging Tip . 957

Index . 959

xxiv B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Preface
by Herbert Schildt

This book is about Borland’s C++ Builder. Borland has been making state-of-the-art
compilers since the 1980s. C++ Builder is their most powerful and full-featured
compiler yet. It is known for its compilation speed and for the efficiency of the

code it produces. C++ Builder is really two compilers in one. First, it is a C compiler.
(C is the language upon which C++ is built.) Second, it is a C++ compiler. C++ Builder
can produce programs for Windows 95/98/NT/2000 and the DOS environment
provided by Windows. By any measure, it is one of the finest programming development
environments available. The purpose of this book is to help you get the most out of it.

About This Book
I have been writing about the Borland line of compilers for many years now. No doubt,
many readers will be familiar with one or more of my earlier Borland C++ books. This
book is the latest edition in my series of Borland C++ “Complete References.” The
previous edition was called Borland C++: The Complete Reference. This book is unique,
though, because it is the first to cover the new “Builder” environment.

In addition to the new “Builder” environment, another event of significant
importance has occurred which makes this book profoundly different than its earlier
editions: The ANSI/ISO standard for C++ was adopted. This standard contains
many new features, functions, and classes, which greatly expand the power of the
C++ language. As you would expect, C++ Builder fully supports this standard. Thus,

xxv
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

xxvi B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

this book has been completely updated to cover all of the new features defined by
ANSI/ISO Standard C++. For example, there is now extensive coverage of the STL, the
new I/O classes, and the string class. Coverage of templates has also been expanded.
Frankly, the changes caused by the standardization of C++ are very significant in
several chapters.

What’s Inside
This book describes the entire C++ Builder programming environment. As such, it
discusses both the C and the C++ languages and their libraries in significant detail. It
also shows how to use the integrated development environment (IDE) and the various
application development tools supplied by C++ Builder. Numerous example programs
are included to help illustrate the elements of C++ and the Builder environment.

This book is designed for programmers at all skill levels. If you are just learning to
program, this guide makes an excellent companion to any tutorial, providing answers
to your specific questions. If you are an experienced C/C++ programmer, this book
serves as a handy desk reference.

How This Book Is Organized
As you can surmise given the size of this book, C++ Builder is a large topic. To help
bring order to such a vast amount of information, this book is organized into these
four parts:

Part I The Foundation of C++: The C Subset

Part II The C++ Builder Function Library

Part III The C++-Specific Features

Part IV The C++ Builder Integrated Development Environment

This organization allows the C programmer to quickly find material related to C while
at the same time letting the C++ programmer find the material appropriate to C++.
Further, if you are currently a C programmer who is moving to C++, this organization
lets you avoid “wading through” reams of information you already know. You can
simply concentrate on the C++ sections of the book.

P r e f a c e xxvii

Conventions Used in This Book
Throughout, keywords, operators, function names, and variable names are shown
in bold when referenced in text. General forms are shown in italics. Also, when
referencing a function name in text, the name is followed by parentheses. In this way,
you can easily distinguish a variable name from a function name.

Source Code on the Web
The source code for all of the programs in this book is available at Osborne’s Web site
www.osborne.com, free of charge.

Special Thanks
I wish to thank Greg Guntle for his help in the preparation of this book. Because of my
very busy writing schedule and the extensive changes that were required, it was not
possible for me to single-handedly prepare this edition within the time frame required
by my publisher. To solve this problem, I turned to Greg Guntle. Greg is an expert
programmer who has helped me in the past as a technical reviewer for several of my
books. He went through each chapter with a fine-tooth comb, updating and fixing where
needed. He also wrote the initial drafts for Chapters 28, 29, and 30. He did a fine job and
much of the credit for this book goes to Greg. Again, I say a wholehearted “Thanks!”

This page intentionally left blank.

Acknowledgments

Iwant to thank my beautiful wife Carla for her love and support. Without those, I
would not have been able to do this book. I love you, Hon! I also need to thank my
children, Phil, Colin, and Olivia, for being so understanding when Dad did not have

time to share with them. Thanks to the fine staff at Osborne/McGraw-Hill, especially
Wendy Rinaldi and Tim Madrid. Most of all I want to thank Herb Schildt for giving me
this wonderful opportunity to work with him on this project. His leadership, guidance,
and technical prowess helped me tremendously. He is the best!

Greg Guntle

xxix
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

xxx B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

For Further Study
Borland C++ Builder: The Complete Reference is part of the “Herb Schildt” series of
programming books. Here are some others that you will find of interest.

To learn about C++, you will find these books especially helpful.

C++: The Complete Reference

Teach Yourself C++

C++ From the Ground Up

STL Programming From the Ground Up

The C/C++ Programming Annotated Archives

The C/C++ Programmer's Reference

If you want to learn more about the C language, then the following titles will be of interest.

C: The Complete Reference

Teach Yourself C

To learn about Java programming, we recommend the following:

Java 2: The Complete Reference

Java 2: A Beginner's Guide

Java 2: Programmer's Reference

To learn about Windows programming we suggest the following Schildt books:

Windows 98 Programming From the Ground Up

Windows 2000 Programming From the Ground Up

MFC Programming From the Ground Up

The Windows Programming Annotated Archives

To learn about C# try this book from Herb.

C#: A Beginner's Guide

When you need solid answers fast, turn to Herbert Schildt, the recognized
authority on programming.

TE
AM
FL
Y

Team-Fly®

Part I
The Foundation of C++:
The C Subset

This book divides its description of the C++ language into two parts.

Part One discusses the C-like features of C++. This is commonly

referred to as the C subset of C++. Part Three describes those features

specific to C++. Together, they describe the entire C++ language.

As you may know, C++ was built upon the foundation of C. In fact,

C++ includes the entire C language, and (with minor exceptions) all C

programs are also C++ programs. When C++ was invented, the C

language was used as the starting point. To C were added several new

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

features and extensions designed to support object-oriented programming. However,
the C-like aspects of C++ were never abandoned, and the 1989 ANSI/ISO C standard
was a base document for Standard C++. Thus, an understanding of C++ implies an
understanding of C.

Because C is a subset of C++, any C++ compiler is, by definition, also a C compiler.
C++ Builder is no exception. C++ Builder allows you to compile both C programs and C++
programs. When used as a C compiler, C++ Builder fully supports the C language. When
used as a C++ compiler, it fully supports C++.

In a book such as this Complete Reference, dividing the C++ language into two
pieces—the C foundation and the C++-specific features—achieves three major benefits:

1. The dividing line between C and C++ is clearly delineated.

2. Readers already familiar with C can easily find the C++-specific information.

3. It provides a convenient place in which to discuss those features of C++ that
relate mostly to the C subset—for example, the C I/O system.

Understanding the dividing line between C and C++ is important because both are
widely used languages and it is very likely that you will be called upon to write or
maintain both C and C++ code. When working on C code, you need to know where C ends
and C++ begins. Many C++ programmers will, from time to time, be required to write code
that is limited to the “C subset.” This will be especially true for embedded systems
programming and the maintenance of existing applications. Knowing the difference
between C and C++ is simply part of being a top-notch professional C++ programmer.

A clear understanding of C is also valuable when converting C code into C++. To do
this in a professional manner, a solid knowledge of C is required. For example, without a
thorough understanding of the C I/O system, it is not possible to efficiently convert an
I/O-intensive C program into C++.

Many readers already know C. Covering the C-like features of C++ in their own section
makes it easier for the experienced C programmer to quickly and easily find information
about C++ without having to “wade through” reams of information that he or she already
knows. Of course, throughout Part One, any minor differences between C and C++ are
noted. Also, separating the C foundation from the more advanced, object-oriented features
of C++ makes it possible to tightly focus on those advanced features because all of the
basics have already been discussed.

Although C++ contains the entire C language, not all of the features provided by the C
language are commonly used when writing “C++-style” programs. For example, the C I/O
system is still available to the C++ programmer even though C++ defines its own,
object-oriented version. The preprocessor is another example. The preprocessor is very
important to C, but less so to C++. Discussing several of the “C-only” features in Part One
prevents them from cluttering up the remainder of the book.

Remember: The C subset described in Part One constitutes the core of C++ and the
foundation upon which C++’s object-oriented features are built. All the features described
here are part of C++ and available for your use.

One last point: Because the programs in Part One are C programs, you must compile
them as C programs. To do this, just make sure that their filenames use the .C (not the
.CPP) extension. Whenever C++ Builder compiles a file that has the .C extension, it
automatically compiles it as a C, rather than a C++, program. For information on how
to compile programs, see Part Four.

Chapter 1
An Overview of C

3

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

4 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This chapter presents an overview of the origins, uses, and philosophy of the C
programming language.

The Origins of the C Language
Dennis Ritchie invented and first implemented the C programming language on
a DEC PDP-11 that used the UNIX operating system. The language is the result of a
development process that started with an older language called BCPL. Martin Richards
developed BCPL, which influenced Ken Thompson’s invention of a language called B,
which led to the development of C in the 1970s.

For many years, the de facto standard for C was the version supplied with the
UNIX operating system. It was first described in The C Programming Language by
Brian Kernighan and Dennis Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1978). In
the summer of 1983, a committee was established to create an ANSI (American National
Standards Institute) standard that would define the C language. The standardization
process took six years (much longer than anyone reasonably expected).

The ANSI C standard was finally adopted in December 1989, with the first copies
becoming available in early 1990. The standard was also adopted by ISO (International
Standards Organization), and the resulting standard was typically referred to as
ANSI/ISO Standard C, or simply ANSI/ISO C. In 1995, Amendment 1 to the C standard
was adopted, which, among other things, added several new library functions. The
1989 standard for C, along with Amendment 1, became a base document for Standard
C++, defining the C subset of C++. The version of C defined by the 1989 standard is
commonly referred to as C89. This is the version of C that C++ Builder supports.

It must be noted that recently a new standard for C, called C99, has been created.
For the most part, it leaves the features of C89 intact and adds a few new ones.
However, C++ Builder does not support the new features added by C99. This is
not surprising because at the time of this writing, no commonly available compiler
supports C99, and C89 still describes what programmers think of as C. Furthermore,
as just explained, it is the C89 version of C that forms the C subset of C++. Because
the version of C supported by C++ and C++ Builder is C89, it is the version of C
described in this book. (The interested reader can find a full description of the C99
standard in C: The Complete Reference, 4th Ed. by Herbert Schildt, Berkeley:
Osborne/McGraw-Hill, 2000.)

A Middle-Level Language
C is often called a middle-level computer language. This does not mean that C is less
powerful, harder to use, or less developed than a high-level language such as Pascal;
nor does it imply that C is similar to, or presents the problems associated with,
assembly language. The definition of C as a middle-level language means that it
combines elements of high-level languages with the functionalism of assembly
language. Table 1-1 shows how C fits into the spectrum of languages.

As a middle-level language, C allows the manipulation of bits, bytes, and
addresses—the basic elements with which the computer functions. Despite this fact,
C code is surprisingly portable. Portability means that it is possible to adapt software
written for one type of computer to another. For example, if a program written for
one type of CPU can be moved easily to another, that program is portable.

All high-level programming languages support the concept of data types. A data
type defines a set of values that a variable can store along with a set of operations that
can be performed on that variable. Common data types are integer, character, and real.
Although C has several basic built-in data types, it is not a strongly typed language like
Pascal or Ada. In fact, C will allow almost all type conversions. For example, character
and integer types may be freely intermixed in most expressions. Traditionally C performs
no run-time error checking such as array-boundary checking or argument-type
compatibility checking. These checks are the responsibility of the programmer.

A special feature of C is that it allows the direct manipulation of bits, bytes, words,
and pointers. This makes it well suited for system-level programming, where these
operations are common. Another important aspect of C is that it has only 32 keywords
(5 more were added by C99, but these are not supported by C++), which are the
commands that make up the C language. This is far fewer than most other languages.

C h a p t e r 1 : A n O v e r v i e w o f C 5
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Highest level Ada

Modula-2

Pascal

COBOL

FORTRAN

BASIC

Middle level C#

Java

C++

C

FORTH

Macro-assembly language

Lowest level Assembly language

Table 1-1. C’s Place in the World of Languages

6 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

A Structured Language
In your previous programming experience, you may have heard the term “block
structured” applied to a computer language. Although the term block-structured
language does not strictly apply to C, C is commonly referred to simply as a structured
language. Technically, a block-structured language permits procedures or functions to
be declared inside other procedures or functions. Since C does not allow the creation
of functions within functions, it cannot formally be called block structured.

The distinguishing feature of a structured language is compartmentalization of code
and data. Compartmentalization is the language’s ability to section off and hide from
the rest of the program all information and instructions necessary to perform a specific
task. One way of achieving compartmentalization is to use subroutines that employ
local (temporary) variables. By using local variables, the programmer can write
subroutines so that the events that occur within them cause no side effects in other
parts of the program. This capability makes it very easy for C programs to share
sections of code. If you develop compartmentalized functions, you only need to know
what a function does, not how it does it. Remember that excessive use of global
variables (variables known throughout the entire program) may allow bugs to creep
into a program by allowing unwanted side effects. (Anyone who has programmed in
traditional BASIC is well aware of this problem!)

The concept of compartmentalization is greatly expanded by C++. Specifically, in
C++, one part of your program can tightly control which other parts of your program
are allowed access.

A structured language allows a variety of programming possibilities. It directly
supports several loop constructs, such as while, do-while, and for. In a structured
language, the use of goto is either prohibited or discouraged and is not the common
form of program control that it is in old-style BASIC or traditional FORTRAN. A
structured language allows you to indent statements and does not require a strict
field concept.

Here are some examples of structured and nonstructured languages:

Structured Nonstructured

Pascal FORTRAN

Ada BASIC

C++ COBOL

C

C#

Modula-2

Java

C h a p t e r 1 : A n O v e r v i e w o f C 7
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Structured languages are newer; nonstructured languages are older. Today, few
programmers would seriously consider a nonstructured language for new software
development.

New versions of many older languages have attempted to add structured elements.
BASIC is an example. However, the shortcomings of these languages can never be fully
mitigated because they were not designed with structured features from the start.

The main structural component of C is the function—C’s stand-alone subroutine.
In C, functions are the building blocks in which all program activity occurs. They allow
the separate tasks in a program to be defined and coded separately, thus allowing your
programs to be modular. After a function has been created, you can rely on it to work
properly in various situations, without creating side effects in other parts of the
program. The fact that you can create stand-alone functions is extremely critical in
larger projects where one programmer’s code must not accidentally affect another’s.

Another way to structure and compartmentalize code in C is to use code blocks. A
code block is a logically connected group of program statements that is treated as a unit.
In C a code block is created by placing a sequence of statements between opening and
closing curly braces. In this example,

if(x < 10) {

printf("too low, try again");

reset_counter(-1);

}

the two statements after the if and between the curly braces are both executed if x is
less than 10. These two statements together with the braces are a code block. They are
a logical unit: one of the statements cannot execute without the other. Code blocks not
only allow many algorithms to be implemented with clarity, elegance, and efficiency,
but also help the programmer conceptualize the true nature of the routine.

A Programmer’s Language
One might respond to the statement, “C is a programmer’s language,” with the
question, “Aren’t all programming languages for programmers?” The answer is an
unqualified “No!” Consider the classic examples of nonprogrammers‘ languages,
COBOL and BASIC. COBOL was designed to enable nonprogrammers to read
and, presumably, understand a program. BASIC was created essentially to allow
nonprogrammers to program a computer to solve relatively simple problems.

In contrast, C was created, influenced, and field-tested by real working programmers.
The end result is that C gives the programmer what the programmer wants: few
restrictions, few complaints, block structures, stand-alone functions, and a compact set

of keywords. It is truly amazing that by using C, a programmer can achieve nearly the
efficiency of assembly code, combined with the structure of ALGOL or Modula-2. It is
no wonder that C became one of the most popular programming languages.

The fact that C can often be used in place of assembly language contributed greatly
to its success. Assembly language uses a symbolic representation of the actual binary
code that the computer executes. Each assembly language operation maps into a single
task for the computer to perform. Although assembly language gives programmers
the potential for accomplishing tasks with maximum flexibility and efficiency, it is
notoriously difficult to use when developing and debugging a program. Furthermore,
since assembly language is unstructured, the final program tends to be spaghetti
code—a tangled mess of jumps, calls, and indexes. This lack of structure makes
assembly language programs difficult to read, enhance, and maintain. Perhaps more
important, assembly language routines are not portable between machines with
different CPUs.

Initially, C was used for systems programming. A systems program is part of a large
class of programs that forms a portion of the operating system of the computer or its
support utilities. For example, the following are usually called systems programs:

Operating systems

Interpreters

Editors

Compilers

File utilities

Performance enhancers

Real-time executives

As C grew in popularity, many programmers began to use it to program all tasks
because of its portability and efficiency—and because they liked it! At the time of its
creation, C was a much longed-for, dramatic improvement in programming languages.
Of course, C++ has carried on this tradition.

With the advent of C++, some thought that C as a distinct language would die
out. Such has not been the case. First, not all programs require the application of the
object-oriented programming features provided by C++. For example, applications
such as embedded systems are still typically programmed in C. Second, a substantial
amount of C code is still in use, and those programs will continue to be enhanced and
maintained. While C’s greatest legacy is as the foundation for C++, it will continue to
be a vibrant, widely used language for many years to come.

8 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 : A n O v e r v i e w o f C 9
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Compilers Versus Interpreters
It is important to understand that a computer language defines the nature of a program
and not the way that the program will be executed. There are two general methods by
which a program can be executed: it can be compiled or it can be interpreted. While
programs written in any computer language can be compiled or interpreted, some
languages are designed more for one form of execution than the other. For example,
Java was designed to be interpreted and C was designed to be compiled. However,
in the case of C, it is important to understand that it was specifically optimized as a
compiled language. Although C interpreters have been written and are available in
some environments (especially as debugging aids or experimental platforms), C was
developed with compilation in mind. Since C++ Builder is a compiler, you will be
compiling and not interpreting programs. Since the difference between a compiler
and an interpreter may not be clear to all readers, the following brief description will
clarify matters.

In its simplest form, an interpreter reads the source code of your program one line
at a time, performing the specific instructions contained in that line. This is the way
that earlier versions of BASIC worked. In languages such as Java, a program’s source
code is first converted into an intermediary form that is then interpreted. In either
case, a run-time interpreter is still required to be present to execute the program.

A compiler reads the entire program and converts it into object code, which is a
translation of the program’s source code into a form that the computer can execute
directly. Object code is also referred to as binary code or machine code. Once the
program is compiled, a line of source code is no longer meaningful in the execution
of your program.

In general, an interpreted program runs slower than a compiled program.
Remember, a compiler converts a program’s source code into object code that a
computer can execute directly. Therefore, compilation is a one-time cost, while
interpretation incurs an overhead each time a program is run.

The Form of a C Program
Table 1-2 lists the 32 keywords that, combined with the formal C syntax, form the C
programming language as defined by the C89 standard. These are the keywords that
form the C subset of C++ and the ones that are supported by C++ Builder. Also shown
are 12 extended keywords added by Borland that may also be included in a C program.
Of course, using the extended keywords renders your program nonportable. (Additional
Borland extended keywords are defined for use with C++. See Part Three.)

All C keywords are lowercase. In C uppercase and lowercase are different: else is
a keyword; ELSE is not. A keyword may not be used for any other purpose in a C
program—that is, it cannot serve as a variable or function name.

All C programs consist of one or more functions. The only function that absolutely
must be present is called main(), and it is the first function called when program
execution begins. In well-written C code, main() outlines what the program does. The
outline is composed of function calls. Although main() is not a keyword, treat it as if it
were. Don’t try to use main as the name of a variable, for example.

The general form of a C program is illustrated in Figure 1-1, where f1() through
fN() represent user-defined functions.

The Library and Linking
Technically speaking, it is possible to create a useful, functional C program that
consists solely of the statements actually created by the programmer. However, this
is rarely done because C does not contain any keywords that perform such things as I/O

10 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Global declarations

int main(parameter list)

{

statement sequence

}

return-type f1(parameter list)

{

statement sequence

}

return-type f2(parameter list)

{

statement sequence

}

.

.

.

return-type fN(parameter list)

{

statement sequence

}

Figure 1-1. The general form of a C program

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 : A n O v e r v i e w o f C 11
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

operations, high-level mathematical computations, or string handling. As a result,
most programs include calls to various functions contained in C’s standard library.

The C language defines a standard library that provides functions that perform
most commonly needed tasks. (This library is also supported by C++.) When you call a
function that is not part of the program you wrote, the compiler “remembers” its name.
Later the linker combines the code you wrote with the object code already found in the
standard library. This process is called linking.

The functions that are kept in the library are in relocatable format. This means that
the memory addresses for the various machine-code instructions have not been
absolutely defined; only offset information has been kept. When your program links
with the functions in the standard library, these memory offsets are used to create the
actual addresses used. There are several technical manuals and books that explain this
process in more detail. However, you do not need any further explanation of the actual
relocation process to program in C or use C++ Builder.

Separate Compilation
Most short C programs are completely contained within one source file. However, as a
program gets longer, so does its compile time, and long compile times make for short

The keywords defined by C subset of C++

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

These additional keywords added by Borland are allowed in a C program:

asm _cs _ds _es

_ss cdecl far huge

interrupt near pascal _export

Table 1-2. A List of the C Keywords Supported by C++ Builder

Related Function

mktemp()

int setdisk(int drive)

Description
The prototype for setdisk() is in <dir.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The setdisk() function sets the current drive to that specified by drive. Drive A
corresponds to 0, drive B to 1, and so on. It returns the total number of drives in
the system.

Example
This program switches to drive A and reports the total number of drives in the system:

#include <stdio.h>

#include <dir.h>

int main(void)

{

printf("%d drives", setdisk(0));

return 0;

}

Related Function

getdisk()

void _splitpath(const char *fpath, char *drive, char
*directory char *fname, char *extension)

Description
The prototype for _splitpath() is in <stdlib.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _splitpath() function dissects the full path name specified in the string pointed
to by fpath. The drive letter is put in the string pointed to by drive. The directory (and
any subdirectories) is put in the string pointed to by directory. The filename is put in the

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 469
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

A Review of Terms
The terms that follow will be used frequently throughout the remainder of this book.
You should be completely familiar with their meaning.

Source code The text of a program that a user can read; commonly
thought of as the program. The source code is input
into the C compiler.

Object code Translation of the source code of a program into
machine code, which the computer can read and
execute directly. Object code is the input to the linker.

Linker A program that links separately compiled functions
together into one program. It combines the functions in
the standard C library with the code that you wrote.
The output of the linker is an executable program.

Library The file containing the standard functions that can be
used by your program. These functions include all I/O
operations as well as other useful routines.

Compile time The events that occur while your program is being
compiled. A common occurrence during compile time
is a syntax error.

Run time The events that occur while your program is executing.

C h a p t e r 1 : A n O v e r v i e w o f C 13
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

This page intentionally left blank.

Chapter 2
Variables, Constants,
Operators, and
Expressions

15

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

16 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Variables and constants are manipulated by operators to form expressions. These
are the atomic elements of the C and C++ language. This chapter will examine
each element closely.

Identifier Names
The names that are used to reference variables, functions, labels, and various other
user-defined objects are called identifiers. Identifiers can vary from one to several
characters in length. C defines two kinds of identifiers: external and internal. An external
identifier will be involved in an external link process. These identifiers, called external
names, include function names and global variable names that are shared between
source files. If an identifier is not used in an external link process, then it is internal.
This type, called an internal name, includes the names of local variables, for example.
The C language guarantees that at least the first 6 characters are significant for an
external identifier, as are the first 31 characters for an internal identifier. C++ Builder
recognizes the first 250 characters as being significant. (In C++, all characters are
significant.)

In an identifier, the first character must be a letter or an underscore with subsequent
characters being either letters, numbers, or the underscore. Here are some examples of
correct and incorrect identifier names:

Correct Incorrect

Count 1count

test23 hi!there

high_balance high..balance

In C/C++, upper- and lowercase are treated differently. Hence, count, Count, and
COUNT are three separate identifiers. An identifier cannot be the same as a keyword,
and it should not have the same name as any function that you wrote or that is in the
standard library.

Data Types
There are five atomic data types in the C subset of C++: character, integer,
floating-point, double floating-point, and valueless. Values of type char are used to
hold ASCII characters or any 8-bit quantity. Variables of type int are used to hold
integer quantities. Variables of type float and double hold real numbers. (Real
numbers have both an integer and a fractional component.) The void type has three
uses. The first is to declare explicitly a function as returning no value; the second is to
declare explicitly a function as having no parameters; the third is to create generic
pointers. Each of these uses is discussed in subsequent chapters.

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 17
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

ANSI/ISO C99 added three more data types to the five basic types just listed: _Bool,
_Complex, and _Imaginary, but these are not part of the C subset of C++.

C supports several aggregate types, including structures, unions, bit fields,
enumerations, and user-defined types. These complex types are discussed in Chapter 7.

Type Modifiers
Except type void, the basic data types may have various modifiers preceding them. A
type modifier is used to alter the meaning of the base type to fit the needs of various
situations more precisely. The list of modifiers is shown here:

signed

unsigned

long

short

The modifiers signed, unsigned, long, and short can be applied to integer base
types. The character base type can be modified by unsigned and signed. You can also
apply long to double. Table 2-1 shows all valid data types, along with their bit widths
and ranges as implemented by C++ Builder.

The use of signed on integers is redundant (but allowed) because the default
integer declaration assumes a signed number.

The difference between signed and unsigned integers lies in the way the high-order
bit of the integer is interpreted. If a signed integer is specified, then the compiler will
generate code that assumes the high-order bit of an integer is to be used as a sign flag. If
the sign bit is 0, then the number is positive; if it is 1, then the number is negative. Here
is an overly simplified example:

127 in binary is 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
–127 in binary is 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

sign bit

The reader is cautioned that virtually all computers (including those that run C++
Builder) use two’s complement arithmetic, which will cause the representation of –127
to appear different than the simplified example just shown. However, the use of the
sign bit is the same. To form the negative of a number in two’s complement form,
reverse all bits and add one to the number. For example, –127 in two’s complement
appears like this:

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1

Signed integers are important for a great many algorithms, but they have only half
the absolute magnitude of their unsigned relatives. For example, here is 32,767:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

If the high-order bit were set to 1, the number would then be interpreted as –1.
However, if you had declared this to be unsigned, then when the high-order bit is set
to 1, the number becomes 65,535.

18 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Type Bit Width Range

char 8 –128 to 127

unsigned char 8 0 to 255

signed char 8 –128 to 127

int 32 –2,147,483,648 to
2,147,483,647

unsigned int 32 0 to 4,294,967,295

signed int 32 –2,147,483,648 to
2,147,483,647

short int 16 –32,768 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 –32,768 to 32,767

long int 32 –2,147,483,648 to
2,147,483,647

unsigned long int 32 0 to 4,294,967,295

signed long int 32 –2,147,483,648 to
2,147,483,647

float 32 1.18E–38 to 3.40E+38

double 64 2.23E–308 to 1.79E+308

long double 80 3.37E–4932 to 1.18E+4932

Table 2-1. The C Data Types as Implemented by C++ Builder

Access Modifiers
C/C++ has two type modifiers that are used to control the ways in which variables
may be accessed or modified. These modifiers are called const and volatile.

Variables of type const may not be changed during execution by your program.
For example,

const int a;

will create an integer variable called a that cannot be modified by your program. It can,
however, be used in other types of expressions. A const variable will receive its value
either from an explicit initialization or by some hardware-dependent means. For
example, this gives count the value of 100:

const int count = 100;

Aside from initialization, no const variable can be modified by your program.
The modifier volatile is used to tell the compiler that a variable’s value can be

changed in ways not explicitly specified by the program. For example, a global
variable’s address can be passed to the clock routine of the operating system and used
to hold the time of the system. In this situation, the contents of the variable are altered
without any explicit assignment statements in the program. This is important because
C automatically optimizes certain expressions by making the assumption that the
content of a variable is unchanging inside that expression. Also, some optimizations
may change the order of evaluation of an expression during the compilation process.
The volatile modifier prevents these changes from occurring.

It is possible to use const and volatile together. For example, if 0x30 is assumed to
be the address of a port that is changed by external conditions only, then the following
declaration is precisely what you would want to prevent any possibility of accidental
side effects:

const volatile unsigned char *port = (const volatile char *) 0x30;

Declaration of Variables
As you probably know, a variable is a named location in memory that is used to hold a
value that can be modified by the program. All variables must be declared before they
are used. The general form of a declaration is shown here:

type variable_list;

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 19
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

20 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here, type must be a valid C data type and variable_list may consist of one or more
identifier names with comma separators. Some declarations are shown here:

int i, j, l;

short int si;

unsigned int ui;

double balance, profit, loss;

Remember, the name of a variable has nothing to do with its type.
There are three basic places where variables can be declared: inside functions, in

the definition of function parameters, or outside all functions. These variables are
called local variables, formal parameters, and global variables, respectively.

Local Variables
Variables that are declared inside a function are called local variables. In some literature,
these variables may be referred to as automatic variables in keeping with the use of the
(optional) keyword auto that can be used to declare them. Since the term local variable
is more commonly used, this guide will continue to use it. Local variables can be
referenced only by statements that are inside the block in which the variables are
declared. Stated another way, local variables are not known outside their own code
block. You should remember that a block of code is begun when an opening curly
brace is encountered and terminated when a closing curly brace is found.

One of the most important things to understand about local variables is that they
exist only while the block of code in which they are declared is executing. That is,
a local variable is created upon entry into its block and destroyed upon exit.

The most common code block in which local variables are declared is the function.
For example, consider these two functions:

void func1(void)

{

int x;

x = 10;

}

void func2(void)

{

int x;

x = -199;

}

TE
AM
FL
Y

Team-Fly®

The integer variable x was declared twice, once in func1() and once in func2().
The x in func1() has no bearing on, or relationship to, the x in func2() because each
x is only known to the code within the same block as the variable’s declaration.

The C language contains the keyword auto, which can be used to declare local
variables. However, since all nonglobal variables are assumed to be auto by default,
it is virtually never used and the examples in this book will not use it. (It has been said
that auto was included in C to provide for source-level compatibility with its
predecessor, B. Further, auto is supported in C++ to provide compatibility with C.)

It is common practice to declare all variables needed within a function at the start
of that function’s code block. This is done mostly to make it easy for anyone reading
the code to know what variables are used. However, it is not necessary to do this
because local variables can be declared within any code block. To understand how
this works, consider the following function:

void f(void)

{

int t;

scanf("%d", &t);

if(t==1) {

char s[80]; /* s exists only inside this block */

printf("enter name:");

gets(s);

process(s);

}

/* s is not known here */

}

Here, the local variable s is created upon entry into the if code block and destroyed
upon exit. Since s is known only within the if block, it may not be referenced
elsewhere—not even in other parts of the function that contains it.

There is one small restriction that you must observe when declaring local variables
when using C if you want the widest portability: they must be declared at the start of a
block, prior to any “action” statements. This restriction does not apply to C++.

One reason you might want to declare a variable within its own block, instead of
at the top of a function, is to prevent its accidental misuse elsewhere in the function. In
essence, declaring variables inside the blocks of code that actually use them allows you
to compartmentalize your code and data into more easily managed units.

Because local variables are destroyed upon exit from the function in which they
are declared, they cannot retain their values between function calls. (As you will see
shortly, however, it is possible to direct the compiler to retain their values through the
use of the static modifier.)

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 21
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Unless otherwise specified, local variables are stored on the stack. The fact that the
stack is a dynamic and changing region of memory explains why local variables
cannot, in general, hold their values between function calls.

Formal Parameters
If a function is to use arguments, then it must declare variables that will accept the
values of the arguments. These variables are called the formal parameters of the function.
They behave like any other local variables inside the function. As shown in the
following program fragment, their declaration occurs inside the parentheses that
follow the function name.

/* return 1 if c is part of string s; 0 otherwise */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

}

The function is_in() has two parameters: s and c. You must tell C what type of
variable these are by declaring them as just shown. Once this has been done, they may
be used inside the function as normal local variables. Keep in mind that, as local
variables, they are also dynamic and are destroyed upon exit from the function.

You must make sure that the formal parameters you declare are the same type as
the arguments you will use to call the function. If there is a type mismatch, unexpected
results can occur. Unlike many other languages, C is very robust and generally will do
something, even if it is not what you want. There are few run-time errors and no
bounds checking. As the programmer, you have to make sure that errors do not occur.

As with local variables, you may make assignments to a function’s formal
parameters or use them in any allowable expression. Even though these variables
perform the special task of receiving the value of the arguments passed to the function,
they can be used like any other local variable.

Global Variables
Unlike local variables, global variables are known throughout the entire program and
may be used by any piece of code. Also, they will hold their values during the entire
execution of the program. Global variables are created by declaring them outside of
any function. They may be accessed by any expression regardless of what function
that expression is in.

22 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

In the following program, you can see that the variable count has been declared
outside of all functions. Although its declaration occurs before the main() function,
you could have placed it anywhere prior to its first use, as long as it was not in a
function. However, it is usually best to declare global variables at the top of the
program.

#include <stdio.h>

void func1(void), func2(void);

int count; /* count is global */

int main(void)

{

count = 100;

func1();

return 0;

}

void func1(void)

{

func2();

printf("count is %d", count); /* will print 100 */

}

void func2(void)

{

int count;

for(count=1; count<10; count++)

putchar(' ');

}

Looking closely at this program fragment, it should be clear that although neither
main() nor func1() has declared the variable count, both may use it. However,
func2() has declared a local variable called count. When func2() references count, it
will be referencing only its local variable, not the global one. If a global variable and
a local variable have the same name, all references to that variable name inside the
function where the local variable is declared refer to the local variable and have no
effect on the global variable. This is a convenient benefit. However, forgetting this
can cause your program to act very strangely, even though it “looks” correct.

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 23
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Storage for global variables is in a fixed region of memory set aside for this purpose
by the compiler. Global variables are very helpful when the same data is used in many
functions in your program. You should avoid using unnecessary global variables,
however, for three reasons:

1. They take up memory the entire time your program is executing, not just when
they are needed.

2. Using a global variable where a local variable will do makes a function less
general because it relies on something that must be defined outside itself.

3. Using a large number of global variables can lead to program errors because of
unknown, and unwanted, side effects.

One of the principal points of a structured language is the compartmentalization
of code and data. In C, compartmentalization is achieved through the use of local
variables and functions. For example, here are two ways to write mul()—a simple
function that computes the product of two integers:

Two Ways to Write mul()

General Specific

int x, y;
int mul(int x, int y) int mul(void)
{ {

return(x*y); return(x*y);
} }

Both functions will return the product of the variables x and y. However, the
generalized, or parameterized, version can be used to return the product of any two
numbers, whereas the specific version can be used to find only the product of the
global variables x and y.

Storage Class Specifiers
Four storage class specifiers are supported by C. They are

extern

static

register

auto

24 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 25
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

These specifiers tell the compiler how to store the subsequent variable. The general
form of a variable declaration that uses one is shown here:

storage_specifier type var_name;

Notice that the storage specifier precedes the rest of the variable declaration. Each
specifier will be examined in turn.

C++ adds another storage-class specifier called mutable, which is described
in Part Three.

extern
Because C allows separately compiled modules of a large program to be linked
together to speed up compilation and aid in the management of large projects, there
must be some way of telling all the files about the global variables required by the
program. The solution is to declare all of your globals in one file and use extern
declarations in the other, as shown in Table 2-2.

In File Two, the global variable list was copied from File One and the extern specifier
was added to the declarations. The extern specifier tells the compiler that the following
variable types and names have been declared elsewhere. In other words, extern lets the
compiler know what the types and names are for these global variables without
actually creating storage for them again. When the two modules are linked, all
references to the external variables are resolved.

In real world, multifile programs, extern declarations are normally contained in a
header file that is simply included with each source code file. This is both easier and
less error prone than manually duplicating extern declarations in each file.

When a declaration creates storage for a variable, it is called a definition. In general,
extern statements are declarations, but not definitions. (If an extern declaration
includes an initializer, it becomes a definition.) They simply tell the compiler that a
definition exists elsewhere in the program.

Here is another example that uses extern. Notice that the global variables first and
last are declared after main().

#include <stdio.h>

int main(void)

{

extern int first, last; /* use global vars */

printf("%d %d", first, last);

return 0;

}

/* global definition of first and last */

int first = 10, last = 20;

This program outputs 10 20 because the global variables first and last used by the
printf() statement are initialized to these values. Because the extern declaration tells
the compiler that first and last are declared elsewhere (in this case, later in the same
file), the program can be compiled without error even though first and last are used
prior to their definition.

It is important to understand that the extern variable declarations as shown in the
preceding program are necessary only because first and last had not yet been declared
prior to their use in main(). Had their declarations occurred prior to main(), then
there would have been no need for the extern statement. Remember, if the compiler
finds a variable that has not been declared within the current block, the compiler
checks if it matches any of the variables declared within enclosing blocks. If it does not,
the compiler then checks the global variables. If a match is found, the compiler assumes
that that is the variable being referenced. The extern specifier is needed when you want
to use a variable that is declared later in the file.

static Variables
Variables declared as static variables are permanent variables within their own
function or file. They differ from global variables in that they are not known outside
their function or file but they maintain their values between calls. This feature makes

26 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

File One File Two

int x, y; extern int x, y;

char ch; extern char ch;

int main(void) void func22(void)

{ {

/* ... */ x = y / 10;

} }

void func1(void) void func23(void)

{ {

x = 123; y = 10;

} }

Table 2-2. Using Global Variables in Separately Compiled Files

them very useful when you write generalized functions and function libraries, which
may be used by other programmers. Because the effect of static on local variables is
different from its effect on global ones, they will be examined separately.

static Local Variables
When static is applied to a local variable, it causes the compiler to create permanent
storage for it in much the same way that it does for a global variable. The key
difference between a static local variable and a global variable is that the static local
variable remains known only to the block in which it is declared. In simple terms, a
static local variable is a local variable that retains its value between function calls.

It is very important to the creation of stand-alone functions that static local
variables are available because there are several types of routines that must preserve a
value between calls. If static variables were not allowed, then globals would have to be
used—opening the door to possible side effects. A simple example of how a static local
variable can be used is illustrated by the count() function in this short program:

#include <stdio.h>

#include <conio.h>

int count(int i);

int main(void)

{

do {

count(0);

} while(!kbhit());

printf("count called %d times", count(1));

return 0;

}

int count(int i)

{

static int c=0;

if(i) return c;

else c++;

return 0;

}

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 27
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

28 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Sometimes it is useful to know how many times a function has been executed
during a program run. While it is certainly possible to use a global variable for this
purpose, a better way is to have the function in question keep track of this information
itself, as is done by the count() function. In this example, if count() is called with a
value of 0 then the counter variable c is incremented. (Presumably in a real application,
the function would also perform some other useful processing.) If count() is called
with any other value, it returns the number of times it has been called. Counting the
number of times a function is called can be useful during the development of a
program so that those functions called most frequently can receive the most attention.

Another good example of a function that would require a static local variable is a
number series generator that produces a new number based on the last one. It is
possible for you to declare a global variable for this value. However, each time the
function is used in a program, you would have to remember to declare that global
variable and make sure that it did not conflict with any other global variables already
declared—a major drawback. Also, using a global variable would make this function
difficult to place in a function library. The better solution is to declare the variable that
holds the generated number to be static, as in this program fragment:

int series(void)

{

static int series_num;

series_num = series_num+23;

return series_num;

}

In this example, the variable series_num stays in existence between function calls,
instead of coming and going the way a normal local variable would. This means that
each call to series() can produce a new member of the series based on the last number
without declaring that variable globally.

You may have noticed something that is unusual about the function series() as it
stands in the example. The static variable series_num is never explicitly initialized.
This means that the first time the function is called, series_num will have the value
zero, by default. While this is acceptable for some applications, most series generators
will need a flexible starting point. To do this requires that series_num be initialized
prior to the first call to series(), which can be done easily only if series_num is a global
variable. However, avoiding having to make series_num global was the entire point of
making it static to begin with. This leads to the second use of static.

static Global Variables
When the specifier static is applied to a global variable, it instructs the compiler to
create a global variable that is known only to the file in which the static global variable
is declared. This means that even though the variable is global, other routines in other

files have no knowledge of it and are unable to alter its contents directly; thus it is not
subject to side effects. For the few situations where a local static cannot do the job, you
can create a small file that contains only the functions that need the static global
variable, separately compile that file, and use it without fear of side effects.

To see how a static global variable can be used, the series generator example from
the previous section is recoded so that a starting “seed” value can be used to initialize
the series through a call to a second function called series_start(). The entire file
containing series(), series_start(), and series_num follows:

/* This must all be in one file - preferably by itself */

static int series_num;

int series(void);

void series_start(int seed);

int series(void)

{

series_num = series_num + 23;

return series_num;

}

/* initialize series_num */

void series_start(int seed)

{

series_num = seed;

}

Calling series_start() with some known integer value initializes the series
generator. After that, calls to series() will generate the next element in the series.

To review: The names of static local variables are known only to the function or
block of code in which they are declared; the names of static global variables are
known only to the file in which they reside. This means that if you place the series()
and series_start() functions in a separate file, you can use the functions, but you
cannot reference the variable series_num. It is hidden from the rest of the code in your
program. In fact, you may even declare and use another variable called series_num in
your program (in another file, of course) and not confuse anything. In essence, the
static modifier permits variables that are known only to the functions that need them,
without unwanted side effects.

By using static variables, you can hide portions of your program from other
portions. This can be a tremendous advantage when trying to manage a very large and
complex program. The static storage specifier lets you create generalized functions that
can go into libraries for later use.

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 29
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

register Variables
C has one last storage specifier that originally applied only to variables of type int,
char, or pointer types. However, when C was standardized, its scope was broadened.
The register specifier requests the compiler to store a variable declared with this
modifier in a manner that allows the fastest access time possible. For integers,
characters, and pointers, this typically means in a register of the CPU rather than in
memory, where normal variables are stored. For other types of variables, the compiler
may use any other means to decrease their access time. In fact, it can also simply ignore
the request altogether.

In C++ Builder, the register specifier can be applied to local variables and to
the formal parameters of a function. You cannot apply register to global variables.
Also, because a register variable may be stored in a register of the CPU, you cannot
obtain the address of a register variable. (This restriction applies only to C, not
to C++.)

In general, operations on register variables occur much faster than on variables
stored in main memory. In fact, when the value of a variable is actually held in the
CPU, no memory access is required to determine or modify its value. This makes
register variables ideal for loop control. Here is an example of how to declare a register
variable of type int and use it to control a loop. This function computes the result of Me

for integers.

int int_pwr(register int m, register int e)

{

register int temp;

temp = 1;

for(; e; e--) temp *= m;

return temp;

}

In this example, m, e, and temp are declared to be register variables because they
are all used within the loop. In general practice, register variables are used where they
will do the most good, that is, in places where many references will be made to
the same variable. This is important because not all variables can be optimized for
access time.

It is important to understand that the register specifier is just a request to the
compiler, which the compiler is free to ignore. In general, you can count on at least
two register variables of type char or int actually being held in a CPU register for
any one function. Additional register variables will be optimized to the best ability
of the compiler.

30 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 31
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Assignment Statements
The general form of the assignment statement is

variable_name = expression;

where an expression may be as simple as a single constant or as complex as a
combination of variables, operators, and constants. Like BASIC and FORTRAN,
C/C++ uses a single equal sign to indicate assignment (unlike Pascal or Modula-2,
which use the := construct). The target, or left part, of the assignment must be a
variable, not a function or a constant.

Multiple Assignments
You can assign many variables the same value by using multiple assignments in a
single statement. For example, this program fragment assigns x, y, and z the value 0:

x = y = z = 0;

In professional programs, variables are frequently assigned common values using this
method.

Type Conversion in Assignments
Type conversion refers to the situation in which variables of one type are mixed with
variables of another type. When this occurs in an assignment statement, the type
conversion rule is very easy: The value of the right (expression) side of the assignment is
converted to the type of the left side (target variable), as illustrated by this example:

int x;

char ch;

float f;

void func(void)

{

ch = x; /* line 1 */

x = f; /* line 2 */

f = ch; /* line 3 */

f = x; /* line 4 */

}

In line 1, the left, high-order bits of the integer variable x are lopped off, leaving
ch with the lower 8 bits. If x were between 255 and 0, ch and x would have identical
values. Otherwise, the value of ch would reflect only the lower order bits of x. In line 2,
x receives the nonfractional part of f. In line 3, f receives the 8-bit integer value stored
in ch, converted into floating-point format. In line 4, f receives the value of integer x
converted into floating-point format.

When converting from integers to characters, long integers to integers, and integers
to short integers, the basic rule is that the appropriate number of high-order bits will
be removed. For C++ Builder, 24 bits will be lost when converting from an integer to
a character, and 16 bits will be lost when converting from an integer or long integer to
a short integer.

Table 2-3 summarizes several common assignment type conversions as they relate
to the way that C++ Builder implements the built-in data types. You must remember
two important points that can affect the portability of the code you write:

1. The conversion of an int to a float, or a type float to double and so on, will not
add any precision or accuracy. These kinds of conversions will only change the
form in which the value is represented.

2. Some C compilers (and processors) will always treat a char variable as positive,
no matter what value it has when converting it to an integer or a floating-point
value. Other compilers may treat char variable values greater than 127 as
negative numbers when converting (as does C++ Builder). Generally speaking,
you should use char variables for characters, and use int, short int, or signed
char when needed to avoid a possible portability problem in this area.

To use Table 2-3 to make a conversion not directly shown, simply convert one type
at a time until you finish. For example, to convert from a double to an int, first convert
from a double to a float and then from a float to an int.

32 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Target Type Expression Type Possible Info Loss

signed char unsigned char If value > 127, the targets
will be negative

char short int High-order 8 bits

char int High-order 24 bits

char long int High-order 24 bits

short int int High-order 16 bits

int long int None

int float Fractional part and
possibly more

float double Precision, result rounded

double long double Precision, result rounded

Table 2-3. The Outcome of Common Type Conversions for C++ Builder

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 33
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

If you have used a computer language like Pascal, which prohibits this automatic
type conversion, you may think that C is very loose and sloppy. However, keep in
mind that C was designed to make the life of the programmer easier by enabling work
to be done in C rather than assembler. To do this, C has to allow such type conversions.

Variable Initializations
You can give variables a value at the time they are declared by placing an equal sign
and a constant after the variable name. This is called an initialization; its general form is:

type variable_name = constant;

Some examples are

char ch = 'a';

int first = 0;

float balance = 123.23;

Global variables are initialized only at the start of the program. Local variables are
initialized each time the block in which they are declared is entered. However, static
local variables are only initialized once, at program startup and not each time the block
is entered. All global variables and static local variables are initialized to zero if no
other initializer is specified. Local variables that are not initialized will have
indeterminate values.

Constants
Constants refer to fixed values that may not be altered by the program. They can be of
any data type, as shown in Table 2-4. Constants are also called literals.

By default, floating-point constants are of type double. An integer constant is fit
into the smallest integer type that will hold it. Often, these defaults are adequate.
However, you can specify precisely the type of numeric constant you want by using
a suffix. For floating-point types, if you follow the number with an F, the number is
treated as a float. If you follow it with an L, the number becomes a long double. For
integer types, the U suffix stands for unsigned and the L for long. The type suffixes are
not case dependent, and you can use lowercase, if you like. For example, both F and f
specify a float constant.

C supports one other type of constant in addition to those of the predefined data
types. This is a string. All string constants are enclosed between double quotes, such
as "this is a test". You must not confuse strings with characters. A single character
constant is enclosed by single quotes, such as 'a'. Because strings are simply arrays of
characters, they will be discussed in Chapter 5.

Backslash Character Constants
Enclosing all character constants in single quotes works for most printing characters,
but a few, such as the carriage return, are impossible to enter from the keyboard. For
this reason, C supplies the special backslash character constants, shown in Table 2-5.
These are also referred to as escape sequences.

You use a backslash code exactly the same way you would any other character.
For example,

ch = '\t';

printf("%c this is a test\n", ch);

first assigns a tab to ch and then prints a tab, "this is a test", and then a new line.

34 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Data Type Constant Examples

char 'a' '9'

int 1 123 21000 –234

long int 35000L –34L

short int 10 –12 90

unsigned int 10000U 987U 40000U

float 123.23F 4.34e–3F

double 123.23 12312.333 –0.9876324

long double 1001.2L

Table 2-4. Constant Examples for Data Types

Code Meaning

\b Backspace

\f Form feed

\n Newline

Table 2-5. Backslash Codes

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 35
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Operators
C is very rich in built-in operators. An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations. There are four general classes
of operators in C: arithmetic, relational, logical, and bitwise. In addition, there are some
special operators for particular tasks.

Arithmetic Operators
Table 2-6 lists C’s arithmetic operators. The operators +, –, *, and / all work the same way
in C as they do in most other computer languages. They can be applied to almost any
built-in data type allowed by C. When / is applied to an integer or character, any
remainder is truncated; for example, 10 / 3 equals 3 in integer division.

The modulus division operator (%) also works in C the way it does in other
languages. Remember that the modulus division operation yields the remainder of

Code Meaning

\r Carriage return

\t Horizontal tab

\" Double quote

\' Single quote

\0 Null

\\ Backslash

\v Vertical tab

\a Alert

\? Question mark

\N Octal constant (where N is an octal value)

\xN Hexadecimal constant (where N is a
hexadecimal value.

Table 2-5. Backslash Codes (continued)

an integer division. However, as such, % cannot be used on type float or double. The
following code fragment illustrates its use:

int x, y;

x = 10;

y = 3;

printf("%d", x/y); /* will display 3 */

printf("%d", x%y); /* will display 1, the remainder of

the integer division */

x = 1;

y = 2;

printf("%d %d", x/y, x%y); /* will display 0 1 */

The reason the last line prints a 0 and 1 is because 1 / 2 in integer division is 0 with a
remainder of 1. 1 % 2 yields the remainder 1.

The unary minus, in effect, multiplies its single operand by –1. That is, any number
preceded by a minus sign switches its sign.

36 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Operator Action

– Subtraction, also unary minus

+ Addition

* Multiplication

/ Division

% Modulus

– – Decrement

++ Increment

Table 2-6. Arithmetic Operators

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 37
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Increment and Decrement
C allows two very useful operators not generally found in other computer languages.
These are the increment and decrement operators, ++ and – –. The operation ++ adds 1
to its operand, and – – subtracts 1. Therefore, the following are equivalent operations:

x = x + 1;

is the same as

++x;

Also,

x = x - 1;

is the same as

--x;

Both the increment and decrement operators may either precede or follow the
operand. For example,

x = x + 1;

can be written

++x;

or

x++;

However, there is a difference when they are used in an expression. When an
increment or decrement operator precedes its operand, C performs the increment or
decrement operation prior to obtaining the operand’s value. If the operator follows its

38 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

operand, C obtains the operand’s value before incrementing or decrementing it.
Consider the following:

x = 10;

y = ++x;

In this case, y is set to 11. However, if the code had been written as

x = 10;

y = x++;

y would have been set to 10. In both cases, x is set to 11; the difference is when it
happens. There are significant advantages in being able to control when the increment
or decrement operation takes place.

The precedence of the arithmetic operators is as follows:

highest ++ – –

– (unary minus)

* / %

lowest + –

Operators on the same precedence level are evaluated by the compiler from left to
right. Of course, parentheses may be used to alter the order of evaluation. Parentheses
are treated by C in the same way they are by virtually all other computer languages:
They give an operation, or set of operations, a higher precedence level.

Relational and Logical Operators
In the term relational operator the word relational refers to the relationships values
can have with one another. In the term logical operator the word logical refers to the
ways these relationships can be connected together using the rules of formal logic.
Because the relational and logical operators often work together, they will be discussed
together here.

The key to the concepts of relational and logical operators is the idea of true and
false. In C, true is any value other than 0. False is 0. Expressions that use relational or
logical operators will return 0 for false and 1 for true.

Table 2-7 shows the relational and logical operators. The truth table for the logical
operators is shown here using 1s and 0s:

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

p q p && q p || q !p

0 0 0 0 1

0 1 0 1 1

1 1 1 1 0

1 0 0 1 0

Both the relational and logical operators are lower in precedence than the
arithmetic operators. This means that an expression like 10 > 1 + 12 is evaluated as if it
were written 10 > (1 + 12). The result is, of course, false.

Several operations can be combined in one expression, as shown here:

10>5 && !(10<9) || 3<=4

which will evaluate true.

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 39

Relational Operators

Operator Action

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

== Equal

!= Not equal

Logical Operators

Operator Action

&& AND

|| OR

! NOT

Table 2-7. Relational and Logical Operators

40 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The following shows the relative precedence of the relational and logical operators:

highest !

> >= < <=

== !=

&&

lowest ||

As with arithmetic expressions, it is possible to use parentheses to alter the natural
order of evaluation in a relational or logical expression. For example,

!1 && 0

will be false because the ! is evaluated first, then the && is evaluated. However, when
the same expression is parenthesized as shown here, the result is true:

!(1 && 0)

Remember, all relational and logical expressions produce a result of either 0 or 1.
Therefore the following program fragment is not only correct but also prints the
number 1 on the display:

int x;

x = 100;

printf("%d", x > 10);

Bitwise Operators
Unlike many other languages, C supports a complete complement of bitwise operators.
Since C was designed to take the place of assembly language for most programming
tasks, it needed the capability to support many operations that can be done in
assembler. Bitwise operations are the testing, setting, or shifting of the actual bits in a
byte or word, which correspond to the standard char and int data types and variants.
Bitwise operators cannot be used on type float, double, long double, void, or other
more complex types. Table 2-8 lists these operators.

The bitwise AND, OR, and NOT (one’s complement) are governed by the same
truth table as were their logical equivalents except that they work on a bit-by-bit level.
The exclusive OR ^ has the truth table shown here:

p q p^q
0 0 0

0 1 1

1 0 1

1 1 0

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 41
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

As the table indicates, the outcome of an XOR is true only if exactly one of the
operands is true; it is false otherwise.

Bitwise operations most often find application in device drivers, such as modem
programs, disk file routines, and printer routines, because the bitwise operations
can be used to mask off certain bits, such as parity. (The parity bit is used to confirm
that the rest of the bits in the byte are unchanged. It is usually the high-order bit
in each byte.)

The bitwise AND is most commonly used to turn bits off. That is, any bit that is 0 in
either operand causes the corresponding bit in the outcome to be set to 0. For example,
the following function reads a character from the modem port using the function
read_modem() and resets the parity bit to 0:

char get_char_from_modem(void)

{

char ch;

ch = read_modem(); /* get a character from the

modem port */

return(ch & 127);

}

Parity is indicated by the eighth bit, which is set to 0 by ANDing it with a byte that
has bits 1 through 7 set to 1 and bit 8 set to 0. The expression ch & 127 means to AND
together the bits in ch with the bits that make up the number 127. The net result is that

Operator Action

& AND

| OR

^ Exclusive OR (XOR)

~ One’s complement

>> Shift right

<< Shift left

Table 2-8. The Bitwise Operators

the eighth bit of ch will be set to 0. In the following example, assume that ch had
received the character ‘A’ and had the parity bit set:

parity bit

1 1 0 0 0 0 0 1 ch containing an 'A' with parity bit set

0 1 1 1 1 1 1 1 127 in binary

& --------------- do bitwise AND

0 1 0 0 0 0 0 1 'A' without parity

The bitwise OR, as the reverse of AND, can be used to turn bits on. Any bit that is
set to 1 in either operand causes the corresponding bit in the outcome to be set to 1. For
example, 128 | 3 is

1 0 0 0 0 0 0 0 128 in binary

0 0 0 0 0 0 1 1 3 in binary

| -------------- bitwise OR

1 0 0 0 0 0 1 1 result

An exclusive OR, usually abbreviated XOR, will turn a bit on only if the bits being
compared are different. For example, 127 ^ 120 is

0 1 1 1 1 1 1 1 127 in binary

0 1 1 1 1 0 0 0 120 in binary

^ --------------- bitwise XOR

0 0 0 0 0 1 1 1 result

In general, bitwise ANDs, ORs, and XORs apply their operations directly to each bit
in the variable individually. For this reason, among others, bitwise operators are not
usually used in conditional statements the way the relational and logical operators
are. For example if x = 7, then x && 8 evaluates to true (1), whereas x & 8 evaluates
to false (0).

Relational and logical operators always produce a result that is either 0 or 1, whereas
the similar bitwise operations may produce any arbitrary value in accordance with the
specific operation. In other words, bitwise operations may create values other than 0 or
1, while the logical operators will always evaluate to 0 or 1.

42 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The shift operators, >> and <<, move all bits in a variable to the right or left as
specified. The general form of the shift right statement is

variable >> number of bit positions

and the shift left statement is

variable << number of bit positions

As bits are shifted off one end, bits are brought in the other end. Remember, a shift is
not a rotate. That is, the bits shifted off one end do not come back around to the other.
The bits shifted off are lost, and 0s are brought in. However, a right shift of a negative
number shifts in ones. (This maintains the sign bit.)

Bit shift operations can be very useful when decoding external device input, like
D/A converters, and reading status information. The bitwise shift operators can also
be used to perform very fast multiplication and division of integers. A shift left will
effectively multiply a number by 2, and a shift right will divide it by 2, as shown
in Table 2-9.

The one’s complement operator, ~, will reverse the state of each bit in the specified
variable. That is, all 1s are set to 0, and all 0s are set to 1.

The bitwise operators are used often in cipher routines. If you wished to make a
disk file appear unreadable, you could perform some bitwise manipulations on it.
One of the simplest methods would be to complement each byte by using the one’s
complement to reverse each bit in the byte as shown here:

Original byte 00101100

After 1st complement 11010011

After 2nd complement 00101100

Notice that a sequence of two complements in a row always produces the original
number. Hence, the first complement would represent the coded version of that byte.
The second complement would decode it to its original value.

You could use the encode() function shown here to encode a character:

/* A simple cipher function. */

char encode(char ch)

{

return(~ch); /* complement it */

}

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 43
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

same

44 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The ? Operator
C has a very powerful and convenient operator that can be used to replace certain
statements of the if-then-else form. The ternary operator ? takes the general form

Exp1 ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The ? operator works like this. Exp1 is evaluated. If it is true, then Exp2 is evaluated

and becomes the value of the expression. If Exp1 is false, then Exp3 is evaluated and its
value becomes the value of the expression. For example:

x = 10;

y = x>9 ? 100 : 200;

x as Each Statement
Executes Value of x

char x;

x = 7; 0 0 0 0 0 1 1 1 7

x = x << 1; 0 0 0 0 1 1 1 0 14

x = x << 3; 0 1 1 1 0 0 0 0 112

x = x << 2; 1 1 0 0 0 0 0 0 192

x = x >> 1; 0 1 1 0 0 0 0 0 96

x=x >> 2; 0 0 0 1 1 0 0 0 24

Each left shift multiplies by 2. You should notice that information has been lost after x << 2 because a
bit was shifted off the end.

Each right shift divides by 2. Notice that subsequent division will not bring back any lost bits.

Table 2-9. Multiplication and Division with Shift Operators

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 45
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Here, y will be assigned the value 100. If x had been less than or equal to 9, y would
have received the value 200. The same code written using the if/else statement
would be:

x = 10;

if(x>9) y = 100;

else y = 200;

The ? operator will be discussed more fully in Chapter 3 in relationship to C’s other
conditional statements.

The & and * Pointer Operators
A pointer is the memory address of a variable. A pointer variable is a variable that is
specifically declared to hold a pointer to a value of its specified type. Knowing a
variable’s address can be of great help in certain types of routines. Pointers have
three main uses in C:

1. They can provide a very fast means of referencing array elements.

2. They allow C functions to modify their calling parameters.

3. They support dynamic data structures, such as linked lists.

These topics and uses will be dealt with in Chapter 6, which is devoted exclusively
to pointers. However, the two operators that are used to manipulate pointers will be
presented here.

The first pointer operator is &. It is a unary operator that returns the memory
address of its operand. Remember that a unary operator only requires one operand.
For example,

m = &count;

places into m the memory address of the variable count. This address is the computer’s
internal location of the variable. It has nothing to do with the value of count. The
operation of the & can be remembered as returning the “the address of.” Therefore, the
preceding assignment statement could be read as “m receives the address of count.”

To better understand the preceding assignment, assume the variable count resides
at memory location 2000. Also assume that count has a value of 100. After this
assignment, m will have the value 2000.

46 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The second operator, *, is the complement of the &. It is a unary operator that
returns the value of the object located at the address that follows. For example, if m contains
the memory address of the variable count, then

q = *m;

places the value of count into q. Following the preceding example, q will have the
value 100 because 100 is stored at location 2000, which is the memory address that was
stored in m. The operation of the * can be remembered as “at address.” In this case, the
statement could be read as “q receives the value at address m.”

Unfortunately, the multiplication sign and the "at address" sign are the same, and
the bitwise AND and the "address of" sign are the same. These operators have no
relationship to each other. Both & and * have a higher precedence than the binary
arithmetic operators.

Variables that will hold memory addresses, or pointers as they are called in C, must
be declared by putting a * in front of the variable name to indicate to the compiler that
it will hold a pointer to that type of variable. For example, to declare a char pointer
variable called pch, you would write

char *pch;

Here, pch is not a character, but rather a pointer to a character—there is a big
difference. The type of data that a pointer will be pointing to, in this case char, is called
the base type of the pointer. However, the pointer variable itself is a variable that will be
used to hold the address to an object of the base type. Hence, a character pointer (or
any pointer, for that matter) will be of sufficient size to hold an address as defined by
the architecture of the computer on which it is running. The key point to remember is
that a pointer should only be used to point to data that is of that pointer’s base type.

You can mix both pointer and nonpointer directives in the same declaration
statement. For example,

int x, *y, count;

declares x and count to be integer types, and y to be a pointer to an integer type.
Here, the * and & operators are used to put the value 10 into a variable

called target:

#include <stdio.h>

/* Assignment with * and &. */

int main(void)

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 47
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

{

int target, source;

int *m;

source = 10;

m = &source;

target = *m;

printf("%d", target);

return 0;

}

The sizeof Compile-Time Operator
The sizeof operator is a unary compile-time operator that returns the length, in bytes,
of the variable or parenthesized type-specifier it precedes. For example, assuming that
integers are four bytes and doubles are eight bytes, this fragment will display 8 4.

double f;

printf("%f ", sizeof f);

printf("%d", sizeof(int));

Remember that to compute the size of a type, you must enclose the type name in
parentheses (like a cast, which is explained later in this chapter). This is not necessary
for variable names.

The principal use of sizeof is to help generate portable code when that code
depends upon the size of the built-in data types. For example, imagine a database
program that needs to store six integer values per record. If you want to port the
database program to a variety of computers, you must not assume the size of an
integer, but determine its actual length using sizeof. This being the case, you could
use the following routine to write a record to a disk file:

/* Write 6 integers to a disk file */

void put_rec(FILE *fp, int rec[6])

{

int size, num;

size = sizeof(int) * 6;

num = fwrite(rec, size, 1, fp);

if(num!=1) printf("Write Error");

}

48 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The key point of this example is that, coded as shown, put_rec() will compile and
run correctly on any computer—including those that use 16- and 32-bit integers. One
final point: sizeof is evaluated at compile time, and the value it produces is treated as
a constant within your program.

The Comma Operator
The comma operator strings together several expressions. The left side of the comma
operator is always evaluated as void. This means that the expression on the right side
will become the value of the total comma-separated expression. For example,

x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value of 4. The parentheses are
necessary because the comma operator has a lower precedence than the assignment
operator.

Essentially, the comma causes a sequence of operations to be performed. When you
use it on the right side of an assignment statement, the value assigned is the value of
the last expression of the comma-separated list. For example:

y = 10;

x = (y=y-5, 25/y);

After execution, x will have the value 5 because y’s original value of 10 is reduced by 5,
and then that value is divided into 25, yielding 5 as the result.

The comma operator has somewhat the same meaning as the word “and” in
English, as used in the phrase “do this and this and this.”

The Dot (.) and Arrow (–>) Operators
The . (dot) and –> (arrow) operators access individual elements of structures and
unions. Structures and unions are compound data types that can be referenced under a
single name. Structures and unions are thoroughly covered in Chapter 7, but a short
discussion of the operators used with them is given here.

The dot operator is used when working with a structure or union directly. The
arrow operator is used with a pointer to a structure or union. For example, given
the fragment,

struct employee {

char name[80];

int age;

float wage;

} emp;

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of
structure variable emp:

emp.wage = 123.23;

However, the same assignment using a pointer to structure emp would be

p->wage = 123.23;

The [] and () Operators
Parentheses are operators that increase the precedence of the operations inside them.
Square brackets perform array indexing (arrays are discussed fully in Chapter 5).
Given an array, the expression within square brackets provides an index into that
array. For example,

#include <stdio.h>

char s[80];

int main(void)

{

s[3] = 'X';

printf("%c", s[3]);

return 0;

}

first assigns the value 'X' to the fourth element (remember, all arrays begin at 0) of
array s, and then prints that element.

Precedence Summary
Table 2-10 lists the precedence of all operators defined by C. Note that all operators,
except the unary operators and ?, associate from left to right. The unary operators
(*, &, –) and ? associate from right to left.

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 49
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

50 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Expressions
Operators, constants, functions, and variables are the constituents of expressions. An
expression is any valid combination of these elements. Because most expressions tend to
follow the general rules of algebra, they are often taken for granted. However, a few
aspects of expressions relate specifically to C.

Type Conversion in Expressions
When constants and variables of different types are mixed in an expression, they are all
converted to the same type. The compiler converts all operands “up” to the type of the
largest operand, which is called type promotion. First, all char and short int values are
automatically elevated to int. This process is called integral promotion. Once this step
has been completed, all other conversions are done operation by operation, as
described in the following type conversion algorithm:

Highest () [] –> .

! ~ ++ – – + – (type) * & sizeof

* / %

+ –

<< >>

< <= > >=

= = !=

&

^

|

&&

||

?:

= *= /= %= += –= &= ^= |= <<= >>=

Lowest ,

Table 2-10. Precedence of C Operators

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 51
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

IF an operand is a long double

THEN the second is converted to long double

ELSE IF an operand is a double

THEN the second is converted to double

ELSE IF an operand is a float

THEN the second is converted to float

ELSE IF an operand is an unsigned long

THEN the second is converted to unsigned long

ELSE IF an operand is long

THEN the second is converted to long

ELSE IF an operand is unsigned int

THEN the second is converted to unsigned int

There is one additional special case: If one operand is long and the other is
unsigned int, and if the value of the unsigned int cannot be represented by a long,
both operands are converted to unsigned long.

Once these conversion rules have been applied, each pair of operands is of the same
type, and the result of each operation is the same as the type of both operands.

For example, consider the type conversions that occur in Figure 2-1. First, the
character ch is converted to an integer. Then the outcome of ch/i is converted to a
double because f * d is double. The outcome of f + i is float, because f is a float. The
final result is double.

Casts
You can force an expression to be of a specific type by using a cast. The general form of
a cast is:

(type) expression

where type is valid data type. For example, to cause the expression x / 2 to evaluate to
type float, write:

(float) x/2

Casts are technically operators. As an operator, a cast is unary and has the same
precedence as any other unary operator.

Casts can be very useful. For example, suppose you want to use an integer for loop
control, yet to perform computation on it requires a fractional part, as in the following
program:

#include <stdio.h>

/* Print i and i/2 with fractions. */

int main(void)

{

int i;

for(i=1; i<=100; ++i)

printf("%d / 2 is: %f\n", i, (float) i/2);

return 0;

}

Without the cast (float), only an integer division would have been performed; but the
cast ensures that the fractional part of the answer is displayed.

C++ adds four additional casting operators, which are described in Part Three.

52 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 2-1. An example of type conversion

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 2 : V a r i a b l e s , C o n s t a n t s , O p e r a t o r s , a n d E x p r e s s i o n s 53

Spacing and Parentheses
To aid readability, an expression may have tabs and spaces added in it at your
discretion. For example, the following two expressions are the same.

x=10/y~(127/x);

x = 10 / y ~(127/x);

Redundant or additional parentheses do not cause errors or slow down the
execution of an expression. You should use parentheses to clarify the exact order of
evaluation, both for yourself and for others. For example, which of the following
two expressions is easier to read?

x=y/3-34*temp&127;

x = (y/3) - (34*temp) & 127;

C Shorthand
C has a special shorthand that simplifies the coding of a certain type of assignment
statement. For example

x = x + 10;

can be written, in C shorthand, as

x += 10;

The operator pair += tells the compiler to assign the value of x plus 10 to x. This type of
assignment is formally called a compound assignment.

This shorthand works for all binary operators (those that require two operands).
The general form of the shorthand

var = var operator expression;

is the same as

var operator = expression;

Here is another example,

x = x - 100;

is the same as

x -= 100;

You will see compound assignments used widely in professionally written
C/C++ programs.

54 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Chapter 3
Program Control
Statements

55

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This chapter discusses C/C++’s rich and varied program control statements.
C and C++ categorize statements into these groups:

� Selection

� Iteration

� Jump

� Label

� Expression

� Block

The selection statements are the if and switch. The term conditional statement is
often used in place of selection statement. The iteration statements are while, for, and
do/while. These are also commonly called loop statements. The jump statements are
break, continue, goto, and return. The label statements include the case and default
statements (discussed along with the switch statement) and the label statement itself
(discussed with goto). Expression statements are statements composed of a valid
expression. Block statements are simply blocks of code. (A block begins with a { and
ends with a }.) Block statements are also referred to as compound statements.

Since many statements rely upon the outcome of some conditional test, let’s begin
by reviewing the concepts of true and false.

True and False
Many C/C++ statements rely on a conditional expression that determines what course
of action is to be taken. The conditional expression evaluates to either a true or false
value. Unlike many other computer languages that specify special values for true and
false, a true value in C/C++ is any nonzero value, including negative numbers.
A false value is zero. This approach to true and false allows a wide range of routines to
be coded very efficiently.

C++ also defines the values true and false, which stand for the two Boolean values,
but they are not supported by the C subset. See Part Three for details.

Selection Statements
C/C++ supports two types of selection statements: if and switch. In addition, the ?
operator is an alternative to if in certain circumstances.

56 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

if
The general form of the if statement is

if(expression) statement;
else statement;

where statement may consist of a single statement, a block of statements, or nothing (in
the case of empty statements). The else clause is optional.

The general form of the if using a block of statements is

if(expression) {
statement sequence

}
else {

statement sequence
}

If expression evaluates to true (anything other than 0), the statement or block that
forms the target of the if is executed; otherwise, the statement or block that is the target
of the else is executed. Remember, only the code associated with the if or the code that
is associated with the else executes, never both.

For example, consider the following program, which plays a very simple version
of the “guess the magic number” game. It prints the message “** Right **” when the
player guesses the magic number.

#include <stdio.h>

/* Magic number program. */

int main(void)

{

int magic = 123; /* magic number */

int guess;

printf("Enter your guess: ");

scanf("%d", &guess);

if(guess == magic) printf("** Right **");

return 0;

}

This program uses the equality operator to determine whether the player’s guess
matches the magic number. If it does, the message is printed on the screen.

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 57
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Taking the magic number program further, the next version illustrates the use
of the else statement to print a message in response to the wrong number.

#include <stdio.h>

/* Magic number program - improvement 1. */

int main(void)

{

int magic = 123; /* magic number */

int guess;

printf("Enter your guess: ");

scanf("%d",&guess);

if(guess == magic) printf("** Right **");

else printf(".. Wrong ..");

return 0;

}

Nested ifs
One of the most confusing aspects of if statements is nested ifs. A nested if is an if that
is the target of another if or else. The reason that nested ifs are so troublesome is that it
can be difficult to know what else associates with what if. For example:

if(x)

if(y) printf("1");

else printf("2");

To which if does the else refer? Fortunately, there is a very simple rule for resolving
this type of situation. The else is associated with the closest preceding if (at the same
scope level) that does not already have an else statement associated with it. In this case,
the else is associated with the if(y) statement. To make the else associate with the if(x),
you must use braces to override its normal association, as shown here:

if(x) {

if(y) printf("1");

}

else printf("2");

58 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 59
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The else is now associated with the if(x) because it is no longer part of the if(y) block.
Because of the scope rules, the else now has no knowledge of the if(y) statement because
they are no longer in the same block of code.

You can use a nested if to further improve the magic number program by providing
the player with feedback about how close each guess is.

#include <stdio.h>

/* Magic number program - improvement 2. */

int main(void)

{

int magic = 123; /* magic number */

int guess;

printf("Enter your guess: ");

scanf("%d", &guess);

if(guess == magic) {

printf("** Right ** ");

printf("%d is the magic number", magic);

}

else {

printf(".. Wrong .. ");

if(guess > magic) printf("Too high");

else printf("Too low");

}

return 0;

}

The if-else-if Ladder
A common programming construct is the if-else-if ladder, sometimes called the if-else-if
staircase because of its appearance. Its general form is

if (expression)
statement;

else if (expression)
statement;

else if (expression)
statement;

.

.

.
else

statement;

The conditions are evaluated from the top downward. As soon as a true condition
is found, the statement associated with it is executed and the rest of the ladder is
bypassed. If none of the conditions are true, the final else is executed. The final else
often acts as a default condition; that is, if all other conditional tests fail, the last else
statement is performed. If the final else is not present, then no action takes place
if all other conditions are false.

Using an if-else-if ladder, the magic number program becomes

#include <stdio.h>

/* Magic number program - improvement 3. */

int main(void)

{

int magic = 123; /* magic number */

int guess;

printf("Enter your guess: ");

scanf("%d", &guess);

if(guess == magic) {

printf("** Right ** ");

printf("%d is the magic number", magic);

}

else if(guess > magic)

printf(".. Wrong .. Too High");

else printf(".. Wrong .. Too low");

return 0;

}

The ? Alternative
You can use the ? operator to replace if-else statements of the general form:

if(condition) expression;
else expression;

60 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

The key restriction is that the target of both the if and the else must be a single
expression—not another statement.

The ? is called a ternary operator because it requires three operands. It takes the
general form

Exp1 ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The value of a ? expression is determined as follows. Exp1 is evaluated. If it is

true, Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1
is false, then Exp3 is evaluated and its value becomes the value of the expression.

For example, consider

x = 10;

y = x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than or equal to 9, y
would have received the value 200. The same code written using the if-else statement
would be

x = 10;

if(x>9) y = 100;

else y = 200;

The use of the ? operator to replace if-else statements is not restricted to assignments
only. Remember, all functions (except those declared as void) return a value. Thus,
you can use one or more function calls in a ? expression. When the function’s name is
encountered, the function is executed so that its return value can be determined.
Therefore, you can execute one or more function calls using the ? operator by placing
the calls in the expressions that form the ?’s operands. Here is an example:

#include <stdio.h>

int f1(int n), f2(void);

int main(void)

{

int t;

printf("Enter a number: ");

scanf("%d", &t);

/* print proper message */

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 61
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

62 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

t ? f1(t) + f2() : printf("zero entered.");

return 0;

}

int f1(int n)

{

printf("%d ",n);

return 0;

}

int f2(void)

{

printf("entered ");

return 0;

}

The program first prompts the user for a value. Entering 0 causes the printf()
function to be called, which displays the message zero entered. If you enter any other
number, both f1() and f2() execute. Note that the value of the ? expression is discarded
in this example. You don’t need to assign it to anything. Even though neither f1() nor
f2() returns a meaningful value, they cannot be defined as returning void because doing
so prevents their use in an expression. Therefore, the functions simply return zero.

Using the ? operator, you can rewrite the magic number program again as
shown here:

#include <stdio.h>

/* Magic number program - improvement 4. */

int main(void)

{

int magic = 123; /* magic number */

int guess;

printf("Enter your guess: ");

scanf("%d", &guess);

if(guess == magic) {

printf("** Right ** ");

printf("%d is the magic number", magic);

}

else

guess > magic ? printf("High") : printf("Low");

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 63
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

return 0;

}

Here, the ? operator displays the proper message given the outcome of the test
guess > magic.

switch
Although the if-else-if ladder can perform multiway tests, it is hardly elegant. The
code can be difficult and confusing to follow. For these reasons, C/C++ has a built-in
multiple-branch selection statement, called switch, which successively tests the value
of an expression against a list of integer or character constants. When a match is found,
the statements associated with that constant are executed. The general form of the
switch statement is

switch(expression) {
case constant1:

statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence
break;

.

.

.
default:

statement sequence
}

The default statement is executed if no matches are found. The default is optional,
and if it is not present, no action takes place if all matches fail. When a match is found,
the statement sequence associated with that case is executed until the break statement
or the end of the switch statement is reached.

There are three important things to know about the switch statement:

1. The switch differs from the if in that switch can only test for equality, whereas
if can evaluate any type of relational or logical expression.

2. No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch may have case constants of the
same value.

64 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

3. If character constants are used in the switch statement, they are automatically
converted to integer (as specified by the type conversion rules).

The switch statement is often used to process keyboard commands, such as menu
selection. As shown here, the function menu() displays a menu for a spelling-checker
program and calls the proper procedures:

void menu(void)

{

char ch;

printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");

printf("3. Display Spelling Errors\n");

printf("Strike Any Other Key to Skip\n");

printf(" Enter your choice: ");

ch = getche(); /* read the selection from the keyboard */

switch(ch) {

case '1':

check_spelling();

break;

case '2':

correct_errors();

break;

case '3':

display_errors();

break;

default :

printf("No option selected");

}

}

Technically, the break statements inside the switch statement are optional. They
terminate the statement sequence associated with each constant. If the break statement
is omitted, execution continues on into the next case’s statements until either a break or
the end of the switch is reached. You can think of the cases as labels. Execution starts at
the label that matches and continues until a break statement is found, or the switch
ends. For example, the following function uses the “drop through” nature of the cases
to simplify the code for a device-driver input handler:

void inp_handler(void)

{

int ch, flag;

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 65
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

ch = read_device(); /* read some sort of device */

flag = -1;

switch(ch) {

case 1: /* these cases have common statement */

case 2: /* sequences */

case 3:

flag = 0;

break;

case 4:

flag = 1;

case 5:

error(flag);

break;

default:

process(ch);

}

}

This example illustrates two aspects of switch. First, you can have case statements
that have no statement sequence associated with them. When this occurs, execution
simply drops through to the next case. In this example, the first three cases all execute
the same statements, which are

flag = 0;

break;

Second, execution of one statement sequence continues into the next case if
no break statement is present. If ch matches 4, flag is set to 1 and, because there is no
break statement at the end of the case, execution continues and the call to error(flag)
is executed. In this case, flag has the value 1. If ch had matched 5, error(flag) would
have been called with a flag value of –1 (rather than 1). The fact that cases can run
together when no break is present prevents the unnecessary duplication of statements,
resulting in more efficient code.

Nested switch Statements
You can have a switch as part of the statement sequence of an outer switch. Even if the
case constants of the inner and outer switch contain common values, no conflicts arise.
For example, the following code fragment is perfectly acceptable:

switch(x) {

case 1:

switch(y) {

case 0: printf("Divide by zero error.");

break;

case 1: process(x,y);

break;

}

break;

case 2:

.

.

.

Iteration Statements (Loops)
Iteration statements (also called loops) allow a set of instructions to be repeatedly
executed until a certain condition is reached. This condition may be predetermined
(as in the for loop), or open-ended (as in the while and do-while loops).

The for Loop
The general design of the for loop is reflected in some form or another in all procedural
programming languages. However, in C/C++, it provides unexpected flexibility
and power.

The general form of the for statement is

for(initialization; condition; increment) statement;

The for loop allows many variants, but there are three main parts:

1. The initialization is usually an assignment statement that sets the loop
control variable.

2. The condition is a relational expression that determines when the loop exits.

3. The increment defines how the loop control variable changes each time the
loop is repeated.

These three major sections must be separated by semicolons. The for loop continues
to execute as long as the condition is true. Once the condition becomes false, program
execution resumes on the statement following the for.

In the following program, a for loop is used to display the numbers 1 through 100
on the screen:

#include <stdio.h>

66 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

int main(void)

{

int x;

for(x=1; x <= 100; x++) printf("%d ", x);

return 0;

}

In the loop, x is initially set to 1 and then compared to 100. Since x is less than 100,
printf() is called and the loop iterates. This causes x to be increased by 1 and again
tested to see if it is still less than or equal to 100. This process repeats until x is greater
than 100, at which point the loop terminates. In this example, x is the loop control
variable, which is changed and checked each time the loop repeats.

Here is an example of a for loop that iterates a block of statements:

for(x=100; x != 65; x -= 5) {

z = x*x;

printf("The square of %d, %d", x, z);

}

Both the squaring of x and the call to printf() are executed until x equals 65. Note that
the loop is negative running: x was initialized to 100, and 5 is subtracted from it each
time the loop repeats.

An important point about for loops is that the conditional test is always performed
at the top of the loop. This means that the code inside the loop may not be executed at
all if the condition is false to begin with. For example:

x = 10;

for(y=10; y != x; ++y) printf("%d", y);

printf("%d", y); /* this is the only printf()

statement that will execute */

This loop never executes because x and y are equal when the loop is entered. Because
this causes the conditional expression to evaluate to false, neither the body of the loop
nor the increment portion of the loop executes. Thus, y still has the value 10, and the
only output produced by the fragment is the number 10 printed once on the screen.

for Loop Variations
The previous discussion described the most common form of the for loop. However,
several variations of the for are allowed that increase its power, flexibility, and applicability
to certain programming situations.

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 67

68 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

One of the most common variations uses the comma operator to allow two or more
variables to control the loop. (Remember, the comma operator strings together a number
of expressions in a “do this and this” fashion. See Chapter 2.) For example, the variables x
and y control the following loop, and both are initialized inside the for statement.

for(x=0, y=0; x+y < 10; ++x) {

scanf("%d", &y);

.

.

.

}

Commas separate the two initialization statements. Each time the loop repeats, x is
incremented and y’s value is set by keyboard input. Both x and y must be at the correct
value for the loop to terminate. Even though y’s value is set by keyboard input, y must
be initialized to 0 so that its value is defined before the first evaluation of the conditional
expression. (If y’s value is not set, it could, by chance, contain the value 10, making the
conditional test false and preventing the loop from executing.)

Another example of using multiple loop-control variables is found in the reverse()
function shown here. reverse() copies the contents of the first string into the second
string, in reverse order. For example, if "hello" is stored at s, then after the call r will
point to "olleh."

/* Copy s into r backwards. */

void reverse(char *s, char *r)

{

int i, j;

for(i=strlen(s)-1, j=0; i > =0; j++, i--) r[i] = s[j];

r[j] = '\0'; /* append null terminator */

}

The conditional expression does not have to involve testing the loop control
variable against some target value. In fact, the condition may be any relational or
logical statement. This means that you can test for several possible terminating
conditions. For example, you could use the following function to log a user onto a
remote system. The user has three tries to enter the password. The loop terminates
when the three tries are used up, or when the user enters the correct password.

void sign_on(void)

{

char str[20];

int x;

for(x=0; x<3 && strcmp(str,"password"); ++x) {

printf("enter password please:");

gets(str);

}

if(x==3) hang_up();

}

This loop uses strcmp(), the standard library function that compares two strings and
returns 0 if they match.

Remember, each of the three sections of the for loop may consist of any valid
expression. The expressions need not actually have anything to do with what the
sections are generally used for. With this in mind, consider the following example:

#include <stdio.h>

int readnum(void), prompt(void);

int sqrnum(int num);

int main(void)

{

int t;

for(prompt(); t=readnum(); prompt()) sqrnum(t);

return 0;

}

int prompt(void)

{

printf("Enter a number: ");

return 0;

}

int readnum(void)

{

int t;

scanf("%d", &t);

return t;

}

int sqrnum(int num)

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 69
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

{

printf("%d\n", num*num);

return 0;

}

Look closely at the for loop in main(). Notice that each part of the for is composed
of function calls that prompt the user and read a number entered from the keyboard.
If the number entered is 0, the loop terminates because the conditional expression will
be false. Otherwise, the number is squared. Thus, this for loop uses the initialization
and increment portions in a nontraditional but completely valid manner.

Another interesting trait of the for loop is that pieces of the loop definition need
not be there. In fact, there need not be an expression present for any of the sections—
the expressions are optional. For example, this loop will run until the user enters 123:

for(x=0; x != 123;) scanf("%d", &x);

Notice that the increment portion of the for definition is blank. This means that each
time the loop repeats, x is tested to see if it equals 123, but no further action takes place.
If you type 123 at the keyboard, however, the loop condition becomes false and the
loop terminates.

The initialization of the loop control variable can occur outside the for statement.
This most frequently happens when the initial condition of the loop control variable
must be computed by some complicated means, as in this example:

gets(s); /* read a string into s */

if(*s) x = strlen(s); /* get the string's length */

else x = 10;

for(; x < 10;) {

printf("%d", x);

++x;

}

The initialization section has been left blank, and x is initialized before the loop
is entered.

The Infinite Loop
One of the most interesting uses of the for loop is to create an infinite loop. Since none
of the three expressions that form the for loop are required, you can make an endless
loop by leaving the conditional expression empty, as here:

70 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

for(;;) printf("This loop will run forever.\n");

When the conditional expression is absent, it is assumed to be true. You may have
an initialization and increment expression, but C programmers more commonly use
the for(;;) construct to signify an infinite loop.

Actually, the for(;;) construct does not guarantee an infinite loop, because a break
statement, encountered anywhere inside the body of a loop, causes immediate termination.
(break is discussed later in this chapter.) Program control then resumes at the code
following the loop, as shown here:

ch = '\0';

for(; ;) {

ch = getchar(); /* get a character */

if(ch == 'A') break; /* exit the loop */

}

printf("you typed an A");

This loop will run until the user types an A at the keyboard.

for Loops with No Bodies
A statement may be empty. This means that the body of the for loop (or any other
loop) may also be empty. You can use this fact to simplify the coding of certain
algorithms and to create time delay loops.

Removing spaces from an input stream is a common programming task. For example,
a database program may allow a query such as “show all balances less than 400.” The
database needs to have each word fed to it separately, without leading spaces. That is,
the database input processor recognizes “show” but not “ show” as a command. The
following loop shows one way to accomplish this. It advances past leading spaces in
the string pointed to by str:

for(; *str == ' '; str++) ;

As you can see, this loop has no body—and no need for one either.
Time delay loops are sometimes useful. The following code shows how to create one

by using for:

for(t=0; t < SOME_VALUE; t++) ;

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 71
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

72 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The while Loop
The second iteration statement in C/C++ is the while loop. Its general form is

while(condition) statement;

where statement is either an empty statement, a single statement, or a block of
statements. The condition may be any expression, and true is any nonzero value. The
loop iterates while the condition is true. When the condition becomes false, program
control passes to the line of code immediately following the loop.

The following example shows a keyboard input routine that loops until A is pressed:

char wait_for_char(void)

{

char ch;

ch = '\0'; /* initialize ch */

while(ch != 'A') ch = getchar();

return ch;

}

First, ch is initialized to null. The while loop then checks to see if ch is not equal to A.
Because ch was initialized to null, the test is true and the loop begins. Each time you
press a key, the condition is tested again. Once you enter an A, the condition becomes
false because ch equals A, and the loop terminates.

Like for loops, while loops check the test condition at the top of the loop, which
means that the body of the loop will not execute at all if the condition is false to begin
with. This feature may eliminate the need to perform a separate conditional test before
the loop. The pad() function provides a good illustration of this. It adds spaces to the
end of a string to fill the string to a predefined length. If the string is already at the
desired length, no spaces are added.

/* Add spaces to the end of a string. */

void pad(char *s, int length)

{

int l;

l = strlen(s); /* find out how long it is */

while(l < length) {

s[l] = ' '; /* insert a space */

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 73
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

l++;

}

s[l] = '\0'; /* strings need to be

terminated in a null */

}

The two arguments of pad() are s, a pointer to the string to lengthen, and length,
the number of characters that s should have. If the length of string s is already equal to
or greater than length, the code inside the while loop does not execute. If s is shorter
than length, pad() adds the required number of spaces. The strlen() function, part of
the standard library, returns the length of the string.

In cases in which any one of several separate conditions can terminate a while loop,
often a single loop-control variable forms the conditional expression. In this example

void func1(void)

{

int working;

working = 1; /* i.e., true */

while(working) {

working = process1();

if(working)

working = process2();

if(working)

working = process3();

}

}

any of the three routines may return false and cause the loop to exit.
There need not be any statements in the body of the while loop. For example,

while((ch=getchar()) != 'A') ;

will simply loop until the user types A. If you feel uncomfortable putting the assignment
inside the while conditional expression, remember that the equal sign is just an operator
that evaluates to the value of the right-hand operand.

do-while
Unlike for and while loops, which test the loop condition at the top of the loop, the
do-while loop checks its condition at the bottom of the loop. This means that a do-while
loop always executes at least once. The general form of the do-while loop is

do {
statement sequence

} while(condition);

Although the curly braces are not necessary when only one statement is present, they
are usually used to improve readability and avoid confusion (to you, not the compiler)
with the while.

This do-while loop will read numbers from the keyboard until it finds a number
less than or equal to 100:

do {

scanf("%d", &num);

} while(num > 100);

Perhaps the most common use of the do-while is in a menu selection function.
When the user enters a valid response, it is returned as the value of the function.
Invalid responses cause a reprompt. The following code shows an improved version
of the spelling-checker menu shown earlier in this chapter:

void menu(void)

{

char ch;

printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");

printf("3. Display Spelling Errors\n");

printf(" Enter your choice: ");

do {

ch = getche(); /* read the selection from the keyboard */

switch(ch) {

case '1':

check_spelling();

break;

case '2':

correct_errors();

74 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 75
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

break;

case '3':

display_errors();

break;

}

} while(ch!='1' && ch!='2' && ch!='3');

}

In the case of a menu function, you always want it to execute at least once. After the
options have been displayed, the program will loop until a valid option is selected.

Jump Statements
C/C++ has four statements that perform an unconditional branch: break, return,
goto, and continue. Of these, you can use return and goto anywhere inside a function.
You can use the break and continue statements in conjunction with any of the loop
statements. As discussed earlier in this chapter, you can also use break with switch.
The return statement is discussed in Chapter 4, when functions are described. The
other jump statements are discussed here.

break
The break statement has two uses. You can use it to terminate a case in the switch
statement (covered in the section on the switch, earlier in this chapter). You can also
use it to force immediate termination of a loop, bypassing the normal loop conditional
test. This use is examined here.

When the break statement is encountered inside a loop, the loop is immediately
terminated, and program control resumes at the next statement following the loop.
For example,

#include <stdio.h>

int main(void)

{

int t;

for(t=0; t<100; t++) {

printf("%d ", t);

if(t == 10) break;

}

return 0;

}

76 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

prints the numbers 0 through 10 on the screen. Then the loop terminates because break
causes immediate exit from the loop, overriding the conditional test t < 100.

Programmers often use the break statement in loops in which a special condition
can cause immediate termination. For example, here a keypress can stop the execution
of the look_up() routine:

int look_up(char *name)

{

char tname[40];

int loc;

loc = -1;

do {

loc = read_next_name(tname);

if(kbhit()) break;

} while(!strcmp(tname, name));

return loc;

}

You might use a function like this to find a name in a database file. If the search is
taking a very long time and you are tired of waiting, you could strike a key and return
from the function early. The kbhit() function returns 0 if no key has been hit, and
non-0 otherwise.

A break causes an exit from only the innermost loop. For example,

for(t=0; t<100; ++t) {

count = 1;

for(;;) {

printf("%d ", count);

count++;

if(count == 10) break;

}

}

prints the numbers 1 through 9 on the screen 100 times. Each time the program
encounters break, control is passed back to the outer for loop.

A break used in a switch statement will affect only that switch. It does not affect
any loop the switch happens to be in.

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 77
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

exit()
Although exit() is not a program control statement, a short digression that discusses
it is in order at this time. Just as you can break out of a loop, you can break out of a
program by using the standard library function exit(). This function causes immediate
termination of the entire program, forcing a return to the operating system. In effect,
the exit() function acts as if it were breaking out of the entire program. The general
form of the exit() function is

void exit(int status);

It uses the <stdlib.h> header. The value of status is returned to the calling process,
which is usually the operating system. Zero is commonly used as a return code to
indicate normal program termination. Other values indicate some sort of error. You
can also use the predefined macros EXIT_SUCCESS and EXIT_FAILURE as values
for status.

Programmers frequently use exit() when a mandatory condition for program
execution is not satisfied. For example, imagine a virtual-reality computer game
that requires a special graphics adapter. The main() function of this game might look
like this,

#include <stdlib.h>

int main(void)

{

if(!special_adapter()) exit(1);

play();

return 0;

}

where special_adapter() is some function that returns true if the needed special adapter
is present. If the adapter is not in the system, special_adapter() returns false and the
program terminates.

As another example, this version of menu() uses exit() to quit the program and
return to the operating system:

void menu(void)

{

char ch;

78 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");

printf("3. Display Spelling Errors\n");

printf("4. Quit\n");

printf(" Enter your choice: ");

do {

ch = getche(); /* read the selection from the keyboard */

switch(ch) {

case '1':

check_spelling();

break;

case '2':

correct_errors();

break;

case '3':

display_errors();

break;

case '4':

exit(0); /* return to OS */

}

} while(ch!='1' && ch!='2' && ch!='3');

}

continue
The continue statement works somewhat like the break statement. Instead of forcing
termination, however, continue forces the next iteration of the loop to take place,
skipping any code in between. For example, the following routine displays only
positive numbers:

do {

scanf("%d", &x);

if(x < 0) continue;

printf("%d ", x);

} while(x != 100);

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 79
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

In while and do-while loops, a continue statement forces control to go directly to
the conditional test and then continue the looping process. In the case of the for, first
the increment part of the loop is performed, then the conditional test is executed, and
finally the loop continues. The previous example can be changed to allow only 100
numbers to be printed, as shown here:

for(t=0; t<100; ++t) {

scanf("%d", &x);

if(x < 0) continue;

printf("%d ", x);

}

The following example shows how you can use continue to expedite the exit from
a loop by forcing the conditional test to be performed sooner:

void code(void)

{

char done, ch;

done = 0;

while(!done) {

ch = getchar();

if(ch=='.') {

done = 1;

continue;

}

putchar(ch+1); /* shift the alphabet one position */

}

}

This function codes a message by shifting all characters you type one letter higher. For
example, ‘a’ would become ‘b’. The function will terminate when you type a period.
After a period has been input, no further output will occur, because the conditional
test, brought into effect by continue, will find done to be true and will cause the loop
to exit.

80 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Labels and goto
Since C/C++ has a rich set of control structures and allows additional control using
break and continue, there is little need for goto. Most programmers’ chief concern
about the goto is its tendency to render programs unreadable. Although the goto
statement fell out of favor some years ago, it occasionally has its uses. This book will
not judge its validity as a form of program control. While there are no programming
situations that require goto, it is a convenience, which, if used wisely, can be a benefit
in a narrow set of programming situations, such as jumping out of a set of deeply
nested loops. The goto is not used in this book outside of this section.

The goto statement requires a label for operation. (A label is a valid identifier
followed by a colon.) Furthermore, the label must be in the same function as the goto
that uses it—you cannot jump between functions. For example, a loop from 1 to 100
could be written using a goto and a label as shown here:

x = 1;

loop1:

x++;

if(x <= 100) goto loop1;

One good use for the goto is to exit from several layers of nesting. For example:

for(...) {

for(...) {

while(...) {

if(...) goto stop;

.

.

.

}

}

}

stop:

printf("error in program\n");

Eliminating the goto would force a number of additional tests to be performed.
A simple break statement would not work here because it would only exit from the
innermost loop.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : P r o g r a m C o n t r o l S t a t e m e n t s 81
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Expression Statements
Chapter 2 covers expressions thoroughly. However, a few special points are mentioned
here. Remember, an expression statement is simply a valid expression followed by a
semicolon, as in

func(); /* a function call */

a = b+c; /* an assignment statement */

b+f(); /* a valid, but strange statement */

; /* an empty statement */

The first expression statement executes a function call. The second is an assignment.
The third expression, though strange, is still evaluated by the compiler because the
function f() may perform some necessary task. The final example shows that a statement
can be empty (sometimes called a null statement).

Block Statements
Block statements are groups of related statements that are treated as a unit. The
statements that make up a block are logically bound together. Block statements are also
called compound statements. A block begins with a { and terminates by its matching }.
Block statements are most commonly used to create a multistatement target for some
other statement, such as if.

This page intentionally left blank.

Chapter 4
Functions

83

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

84 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Functions are the building blocks of C and C++ and the place where all program
activity occurs. This chapter examines their features, including function arguments,
return values, prototypes, and recursion.

The General Form of a Function
The general form of a function is

ret-type function_name(parameter list)
{

body of the function
}

The ret-type specifies the type of data that the function returns. A function can return
any type of data except an array. The parameter list is a comma-separated list of variable
names and their associated types. The parameters receive the values of the arguments
when the function is called. A function can be without parameters, in which case the
parameter list is empty. An empty parameter list can be explicitly specified by placing
the keyword void inside the parentheses.

The return Statement
The return statement has two important uses. First, it causes an immediate exit from
the function. That is, it causes program execution to return to the calling code. Second,
it can be used to return a value. The following section examines how the return statement
is applied.

Returning from a Function
A function terminates execution and returns to the caller in one of two ways. The first
is when the last statement in the function has executed and, conceptually, the function’s
ending curly brace (}) is encountered. (Of course, the curly brace isn’t actually present
in the object code, but you can think of it in this way.) For example, this function takes
an address to a string as a parameter and displays the string backward:

void pr_reverse(char *s)

{

register int t;

for(t=strlen(s)-1; t >= 0; t--) printf("%c", s[t]);

}

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 4 : F u n c t i o n s 85

Once the string has been displayed, there is nothing left for pr_reverse() to do,
so it returns to the place from which it was called.

Actually, not many functions use this default method of terminating their execution.
Most functions rely on the return statement to stop execution either because a value
must be returned or to make a function’s code simpler and more efficient. A function
may contain several return statements. For example, the find_substr() function, shown
next, returns either the starting position of a substring within a string or –1 if no match
is found. It uses two return statements to simplify the coding:

int find_substr(char *s1, char *s2)

{

register int t;

char *p, *p2;

for(t=0; s1[t]; t++) {

p = &s1[t];

p2 = s2;

while(*p2 && *p2==*p) {

p++;

p2++;

}

if(!*p2) return t; /* substring was found */

}

return -1; /* substring not found */

}

Returning Values
All functions, except those of type void, return a value. This value is specified by
the return statement. In C89, if a non-void function executes a return statement
that does not include a value, then a garbage value is returned. In C++ (and C99),
a non-void function must use a return statement that returns a value. As long as a
function is not declared as void, you can use it as an operand in an expression.
Therefore, each of the following expressions is valid:

x = power(y);

if(max(x, y) > 100) printf("greater");

for(ch=getchar(); isdigit(ch);) ... ;

86 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

As a general rule, a function call cannot be on the left side of an assignment.
A statement such as

swap(x, y) = 100; /* incorrect statement */

is wrong. C++ Builder will flag it as an error and will not compile a program that
contains it.

If a function is declared as void, it cannot be used in any expression. For example,
assume that f() is declared as void. The following statements will not compile:

t = f(); /* no value to assign to t */

f()+f(); /* no value to add */

When you write programs, your functions will be of three types. The first type is
simply computational. These functions are specifically designed to perform operations
on their arguments and return a value based on that operation. A computational
function is a “pure” function. Examples are the standard library functions sqrt() and
sin(), which compute the square root and sine of their arguments.

The second type of function manipulates information and returns a value that
simply indicates the success or failure of that manipulation. An example is the library
function fwrite(), which writes information to a disk file. If the write operation is
successful, fwrite() returns the number of items successfully written. If an error
occurs, fwrite() returns a number that is not equal to the number of items it was
requested to write.

The last type of function has no explicit return value. In essence, the function is
strictly procedural and produces no value. An example is srand(), which initializes
the random number generator function rand(). Sometimes, functions that really don’t
produce an interesting result often return something anyway. For example, printf()
returns the number of characters written. Yet, it is unusual to find a program that
actually checks this. In other words, although all functions, except those of type void,
return values, you don’t have to use the return value for anything. A common question
concerning function return values is, “Don’t I have to assign this value to some variable
since a value is being returned?” The answer is no. If there is no assignment specified,
the return value is simply discarded. Consider the following program, which uses mul():

#include <stdio.h>

int mul(int a, int b);

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

int main(void)

{

int x, y, z;

x = 10; y = 20;

z = mul(x, y); /* 1 */

printf("%d", mul(x, y)); /* 2 */

mul(x, y); /* 3 */

return 0;

}

int mul(int a, int b)

{

return a*b;

}

In line 1, the return value of mul() is assigned to z. In line 2, the return value is not
actually assigned, but it is used by the printf() function. Finally, in line 3, the return
value is lost because it is neither assigned to another variable nor used as part
of an expression.

What Does main() Return?
The main() function returns an integer to the calling process, which is generally the
operating system. Returning a value from main() is the equivalent of calling exit()
with the same value. A return value of 0 indicates that the program terminated normally.
All other values indicate that some error occurred with the exiting program.

Understanding the Scope of a Function
The scope rules of a language are the rules that govern whether a piece of code knows
about or has access to another piece of code or data.

Each function is a discrete block of code. Thus, a function defines a block scope.
This means that a function’s code is private to that function and cannot be accessed
by any statement in any other function except through a call to that function. (For
instance, you cannot use goto to jump into the middle of another function.) The code
that makes up the body of a function is hidden from the rest of the program, and
unless it uses global variables, it can neither affect nor be affected by other parts of the
program. Stated another way, the code and data defined within one function cannot
interact with the code and data defined in another function because the two functions
have different scopes.

C h a p t e r 4 : F u n c t i o n s 87

Variables that are defined within a function are local variables. A local variable
comes into existence when the function is entered and is destroyed upon exit. Thus,
a local variable cannot hold its value between function calls. The only exception to this
rule is when the variable is declared with the static storage class specifier. This causes the
compiler to treat it like a global variable for storage purposes, but limits its scope to the
function. (See Chapter 2 for additional information on global and local variables.)

All functions have file scope. Thus, you cannot define a function within a function.
This is why C and C++ are not technically block-structured languages.

Function Arguments
If a function is to accept arguments, it must declare the parameters that will receive
the values of the arguments. As shown in the following function, the parameter
declarations occur after the function name:

/* return 1 if c is part of string s; 0 otherwise */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

}

The function is_in() has two parameters: s and c. This function returns 1 if the
character c is part of the string pointed to by s; otherwise, it returns 0.

As with local variables, you can make assignments to a function’s formal parameters
or use them in any allowable expression. Even though parameters perform the special
task of receiving the value of the arguments passed to the function, they behave like
any other local variable.

Call by Value, Call by Reference
In a computer language, there are two ways that arguments can be passed to a subroutine.
The first is call by value. This method copies the value of an argument into the formal
parameter of the subroutine. In this case, changes made to the parameter have no effect
on the argument. Call by reference is the second way of passing arguments to a subroutine.
In this method, the address of an argument is copied into the parameter. Inside the
subroutine, the address is used to access the actual argument used in the call. This
means that changes made to the parameter affect the argument.

88 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : F u n c t i o n s 89
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

By default, C/C++ uses call by value to pass arguments. In general, this means that
code within a function cannot alter the arguments used to call the function. Consider
the following program:

#include <stdio.h>

int sqr(int x);

int main(void)

{

int t=10;

printf("%d %d", sqr(t), t);

return 0;

}

int sqr(int x)

{

x = x*x;

return x;

}

In this example, the value of the argument to sqr(), 10, is copied into the
parameter x. When the assignment x = x * x takes place, only the local variable x is
modified. The variable t, used to call sqr(), still has the value 10. Therefore, the output
is 100 10.

Remember that it is a copy of the value of the argument that is passed into a function.
What occurs inside the function has no effect on the variable used in the call.

Creating a Call by Reference
Even though C/C++ uses call by value for passing parameters, you can create a call by
reference by passing a pointer to an argument instead of passing the argument itself.
Since the address of the argument is passed to the function, code within the function
can change the value of the argument outside the function.

Pointers are passed to functions just like any other argument. Of course, you need
to declare the parameters as pointer types. For example, the function swap(), which
exchanges the values of the two integer variables pointed to by its arguments, shows how:

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */

*x = *y; /* put y into x */

y = temp; / put x into y */

}

The swap() function is able to exchange the values of the two variables pointed to
by x and y because their addresses (not their values) are passed. Within the function,
the contents of the variables are accessed using standard pointer operations, and their
values are swapped.

Remember that swap() (or any other function that uses pointer parameters) must
be called with the addresses of the arguments. The following program shows the correct
way to call swap():

#include <stdio.h>

void swap(int *x, int *y);

int main(void)

{

int x, y;

x = 10;

y = 20;

printf("x and y before swapping: %d %d\n", x, y);

swap(&x, &y);

printf("x and y after swapping: %d %d\n", x, y);

return 0;

}

The output from the program is shown here.

x and y before swapping: 10 20

x and y after swapping: 20 10

In this example, the variable x is assigned the value 10, and y is assigned the value 20.
Then swap() is called with the addresses of x and y. (The unary operator & is used to
produce the addresses of the variables.) Therefore, the addresses of x and y, not their
values, are passed into the function swap().

90 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : F u n c t i o n s 91
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

C++ allows you to fully automate a call by reference through the use of reference
parameters. Reference parameters are not supported by C.

Calling Functions with Arrays
Arrays are covered in detail in Chapter 5. However, this section discusses passing arrays
as arguments to functions because it is an exception to the normal call-by-value
parameter passing convention.

When an array is used as a function argument, its address is passed to a function.
This is, when you call a function with an array name, a pointer to the first element in
the array is passed to the function. (Remember that an array name without any index is
a pointer to the first element in the array.) The parameter declaration must be of a
compatible pointer type. There are three ways to declare a parameter that is to
receive an array pointer. First, it can be declared as an array, as shown here:

#include <stdio.h>

void display(int num[10]);

int main(void) /* print some numbers */

{

int t[10], i;

for(i=0; i<10; ++i) t[i]=i;

display(t);

return 0;

}

void display(int num[10])

{

int i;

for(i=0; i<10; i++) printf("%d ", num[i]);

}

Even though the parameter num is declared to be an integer array of 10 elements,
the compiler automatically converts it to an integer pointer because no parameter can
actually receive an entire array. Only a pointer to an array is passed, so a pointer
parameter must be there to receive it.

A second way to declare an array parameter is an unsized array, as shown here:

void display(int num[])

{

92 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int i;

for(i=0; i<10; i++) printf("%d ", num[i]);

}

Here, num is an integer array of unknown size. Since C/C++ provides no array
boundary checks, the actual size of the array is irrelevant to the parameter (but not
to the program). This method of declaration also defines num as an integer pointer.

The final way that num can be declared—and the most common form in
professionally written programs—is as a pointer, as shown here:

void display(int *num)

{

int i;

for(i=0; i<10; i++) printf("%d ", num[i]);

}

Declaring num as a pointer works because any pointer can be indexed using [] as if
it were an array. (Actually, arrays and pointers are very closely linked.)

All three methods of declaring an array parameter yield the same result: a pointer.
On the other hand, an array element used as an argument is treated like any other

variable. For example, the program just examined could have been written without
passing the entire array, as shown here:

#include <stdio.h>

void display(int num);

int main(void) /* print some numbers */

{

int t[10], i;

for(i=0; i<10; ++i) t[i] = i;

for(i=0; i<10; i++) display(t[i]);

return 0;

}

C h a p t e r 4 : F u n c t i o n s 93
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

void display(int num)

{

printf("%d ", num);

}

The parameter to display() is of type int. It is not relevant that display() is called by
using an array element, because only that one value of the array is passed.

It is important to understand that when an array is used as a function argument,
its address is passed to a function. This is an exception to the call-by-value parameter
passing convention. In this case, the code inside the function is operating on, and
potentially altering, the actual contents of the array used to call the function. For
example, consider the function print_upper(), which prints its string argument in
uppercase:

#include <stdio.h>

#include <ctype.h>

void print_upper(char *str);

int main(void) /* print string as uppercase */

{

char s[80];

printf("Enter a string: ");

gets(s);

print_upper(s);

printf("\ns is now uppercase: %s", s);

return 0;

}

void print_upper(char *str)

{

register int t;

for(t=0; str[t]; ++t) {

str[t] = toupper(str[t]);

putchar(str[t]);

}

}

94 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

After the call to print_upper(), the contents of array s in main() are changed to
uppercase. If this is not what you want, you could write the program like this:

#include <stdio.h>

#include <ctype.h>

void print_upper(char *str);

int main(void) /* print string as uppercase */

{

char s[80];

printf("Enter a string: ");

gets(s);

print_upper(s);

printf("\ns is unchanged: %s", s);

return 0;

}

void print_upper(char *str)

{

register int t;

for(t=0; str[t]; ++t)

putchar(toupper(str[t]));

}

In this case, the contents of array s remain unchanged because its values are not altered
inside print_upper().

The standard library function gets() is a classic example of passing arrays into
functions. Although the gets() in C++ Builder’s library is more sophisticated, the
following example will give you an idea of how it works. To avoid confusion with the
standard function, this one is called xgets():

/* A simple version of the gets() library function. */

char *xgets(char *s)

{

char ch, *p;

int t;

p = s;

for(t=0; t<80; ++t) {

ch = getchar();

switch(ch) {

case '\n':

s[t] = '\0'; /* terminate the string */

return p;

case '\b':

if(t>0) t--;

break;

default:

s[t] = ch;

}

}

s[79] = '\0';

return p;

}

The xgets() function must be called with a char * pointer. This, of course, can
be the name of a character array, which by definition is a char * pointer. Upon entry,
xgets() establishes a for loop from 0 to 79. This prevents larger strings from being
entered at the keyboard. If more than 80 characters are entered, the function returns.
(The real gets() function does not have this restriction.) Because C/C++ has no built-in
bounds checking, you should make sure that any array used to call xgets() can accept
at least 80 characters. As you type characters on the keyboard, they are placed in the
string. If you type a backspace, the counter t is reduced by 1, effectively removing the
previous character from the array. When you press ENTER, a null is placed at the end
of the string, signaling its termination. Because the array used to call xgets() is
modified, upon return it contains the characters that you type.

argc and argv—Arguments to main()
Sometimes it is useful to pass information into a program when you run it. Generally,
you pass information into the main() function via command line arguments. A command
line argument is the information that follows the program’s name on the command line
of the operating system. For example, when you compile programs using C++ Builder’s
command line compiler, you type something like

bcc32 program_name

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 4 : F u n c t i o n s 95

where program_name is a command line argument that specifies the name of the
program you want to compile.

C++ Builder supports three arguments to main(). The first two are the traditional
arguments: argc and argv. These are also the only arguments to main() defined by
standard C/C++. They allow you to pass command line arguments to your program.

The argc parameter holds the number of arguments on the command line and is an
integer. It is always at least 1 because the name of the program qualifies as the first
argument. The argv parameter is a pointer to an array of character pointers. Each element
in this array points to a command line argument. All command line arguments are
strings—any numbers will have to be converted by the program into the proper binary
format, manually. Here is a simple example that uses a command line argument.
It prints Hello and your name on the screen, if you specify your name as a command
line argument:

#include <stdio.h>

int main(int argc, char *argv[])

{

if(argc!=2) {

printf("You forgot to type your name\n");

return 1;

}

printf("Hello %s", argv[1]);

return 0;

}

If you called this program name and your name were Jon, you would type name
Jon. The output from the program would be Hello Jon. For example, if you were
logged into drive A, you would see

A>name Jon

Hello Jon

A>

after running name.
For C++ Builder, each command line argument must be separated by a space or a

tab. Commas, semicolons, and the like are not considered separators. For example,

run Spot run

is made up of three strings, while

96 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : F u n c t i o n s 97
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Herb,Rick,Fred

is a single string because commas are not generally legal separators.
If you want to pass a string that contains spaces or tabs as a single argument, you

must enclose that string within double quotes. For example, this is a single argument:

"this is a test"

You must declare argv properly. The most common method is

char *argv[];

The empty brackets indicate that the array is of undetermined length. You can now
access the individual arguments by indexing argv. For example, argv[0] points to the
first string, which is always the program’s name; argv[1] points to the next string, and
so on.

Another short example using command line arguments is the program called
countdown, shown here. It counts down from a starting value (which is specified
on the command line) and beeps when it reaches 0. Notice that the first argument
containing the starting number is converted into an integer using the standard function
atoi(). If the string display is the second command line argument, the countdown will
also be displayed on the screen.

/* Countdown program. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[])

{

int disp, count;

if(argc<2) {

printf("You must enter the length of the count\n");

printf("on the command line. Try again.\n");

exit(1);

}

if(argc==3 && !strcmp(argv[2],"display")) disp = 1;

else disp = 0;

98 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

for(count=atoi(argv[1]); count; --count)

if(disp) printf("%d\n", count);

putchar('\a'); /* this will ring the bell */

printf("Done");

return 0;

}

Notice that if no command line arguments have been specified, an instructional
message is printed. A program with command line arguments often issues instructions
if the user attempts to run the program without entering the proper information.

To access an individual character in one of the command line arguments, add a
second index to argv. For example, the next program displays all the arguments with
which it was called, one character at a time:

#include <stdio.h>

int main(int argc, char *argv[])

{

int t, i;

for(t=0; t<argc; ++t) {

i = 0;

while(argv[t][i]) {

printf("%c", argv[t][i]);

++i;

}

printf(" ");

}

return 0;

}

Remember, for argv, the first index accesses the string and the second index accesses
the individual characters of the string.

You generally use argc and argv to get initial commands, which are needed at
start-up, into your program. The command line arguments often specify a filename, an
option, or an alternate behavior, for example. Using command line arguments gives
your program a professional appearance and facilitates its use in batch files.

If you link the file WILDARGS.OBJ (provided with C++ Builder) with your
program, command line arguments like *.EXE automatically expand into any matching
filenames. (C++ Builder automatically processes the wildcard filename characters and
increases the value of argc appropriately.) For example, if you link the following

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 4 : F u n c t i o n s 99

program with WILDARGS.OBJ, it shows you how many files match the filename
specified on the command line:

/* Link this program with WILDARGS.OBJ. */

#include <stdio.h>

int main(int argc, char *argv[])

{

register int i;

printf("%d files match specified name\n", argc-1);

printf("They are: ");

for(i=1; i<argc; i++)

printf("%s ", argv[i]);

return 0;

}

If you call this program WA, then executing it in the following manner tells you the
number of files that have the .EXE extension, and lists their names:

C>WA *.EXE

C++ Builder also allows a third command line argument, env. The env argument
lets your program access the environmental information associated with the operating
system. The env parameter must follow argc and argv and is declared like this:

char *env[]

As you can see, env is declared like argv. Like argv, it is a pointer to an array of
strings. Each string is an environmental string defined by the operating system. The
env parameter does not have a corresponding argc-like parameter that tells your
program how many environmental strings there are. Instead, the last environmental
string is null. The following program displays all the environmental strings currently
defined by the operating system:

/* This program prints all the environmental

strings.

*/

#include <stdio.h>

int main(int argc, char *argv[], char *env[])

{

int t;

for(t=0; env[t]; t++)

printf("%s\n", env[t]);

return 0;

}

Even though argc and argv are not used in this program, they must be present
in the parameter list. C/C++ does not actually know the names of the parameters.
Instead, their usage is determined by the order in which the parameters are declared.
In fact, you can call the parameters anything you like. Since argc, argv, and env are
traditional names, it is best to use them so that anyone reading your program will
instantly know that they are arguments to main().

It is common for a program to need to find the value of one specific environmental
string. For example, knowing the value of the PATH string allows your program to
utilize the search paths. The following program shows how to find the string that
defines the default search paths. It uses the standard library function strstr(), which
has this prototype:

char *strstr(const char *str1, const char *str2);

The strstr() function searches the string pointed to by str1 for the first occurrence of the
string pointed to by str2. If it is found, a pointer to the first occurrence is returned. If no
match exists, then strstr() returns null.

/* This program searches the environmental

strings for the one that contains the

current PATH.

*/

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[], char *env[])

{

int t;

for(t=0; env[t]; t++) {

100 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : F u n c t i o n s 101
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

if(strstr(env[t], "PATH"))

printf("%s\n", env[t]);

}

return 0;

}

Function Prototypes
In well-written C code, and in all C++ code, functions must be declared before they
are used. This is normally accomplished using a function prototype. Function prototypes
were not part of the original C language, but they were added when C was standardized.
While prototypes are not technically required by C, their use is strongly encouraged.
Prototypes have always been required by C++. In this book, all examples include full
function prototypes. Prototypes enable both C and C++ to provide stronger type checking.
When you use prototypes, the compiler can find and report any illegal type conversions
between the type of arguments used to call a function and the type definition of its
parameters. The compiler will also catch differences between the number of arguments
used to call a function and the number of parameters in the function.

The general form of a function prototype is

type func_name(type parm_name1, type parm_name2,. . ., type parm_nameN);

The use of parameter names is optional. However, they enable the compiler to
identify any type mismatches by name when an error occurs, so it is a good idea
to include them.

The following program illustrates the value of function prototypes. It produces an
error message because it contains an attempt to call sqr_it() with an integer argument
instead of the integer pointer required:

/* This program uses a function prototype to

enforce strong type checking. */

void sqr_it(int *i); /* prototype */

int main(void)

{

int x;

x = 10;

sqr_it(x); /* type mismatch */

102 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

void sqr_it(int *i)

{

*i = *i * *i;

}

A function’s definition can also serve as its prototype if the definition occurs prior
to the function’s first use in the program. For example, this is a valid program:

#include <stdio.h>

/* This definition will also serve

as a prototype within this program. */

void f(int a, int b)

{

printf("%d ", a % b);

}

int main(void)

{

f(10,3);

return 0;

}

In this example, since f() is defined prior to its use in main(), no separate prototype
is required. While it is possible for a function’s definition to serve as its prototype in
small programs, it is seldom possible in large ones—especially when several files are
used. The programs in this book include a separate prototype for each function because
that is the way C/C++ code is normally written in practice.

The only function that does not require a prototype is main(), since it is the first
function called when your program begins.

Because of the need for compatibility with the original version of C, there is a small
but important difference between how C and C++ handle the prototyping of a function
that has no parameters. In C++, an empty parameter list is simply indicated in the
prototype by the absence of any parameters. For example,

C h a p t e r 4 : F u n c t i o n s 103
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

int f(); /* C++ prototype for a function with no parameters */

However, in C this prototype means something different. For historical reasons,
an empty parameter list simply says that no parameter information is given. As far as the
compiler is concerned, the function could have several parameters or no parameters. In
C, when a function has no parameters, its prototype uses void inside the parameter list.
For example, here is f()’s prototype as it would appear in a C program:

int f(void);

This tells the compiler that the function has no parameters, and any call to that function
that has parameters is an error. In C++, the use of void inside an empty parameter list
is still allowed, but redundant.

In C++, f() and f(void) are equivalent.

Function prototypes help you trap bugs before they occur. In addition, they help
verify that your program is working correctly by not allowing functions to be called
with mismatched arguments.

One last point: Since early versions of C did not support the full prototype syntax,
prototypes are technically optional in C. This is necessary to support pre-prototype C
code. If you are porting older C code to C++ you may need to add full function
prototypes before it will compile. Remember: Although prototypes are optional in C,
they are required by C++. This means that every function in a C++ program must be
fully prototyped.

Standard Library Function Prototypes
Any standard library functions used by your program should be prototyped. To
accomplish this, you must include the appropriate header for each library function.
All standard headers are provided by C++ Builder. In C, library headers use the .h
extension and are (usually) contained in files. A header contains two main elements:
any definitions used by the library functions and the prototypes for the library
functions. For example, <stdio.h> is included in almost all programs in this part
of the book because it contains the prototype for printf(). If you include the
appropriate header for each library function used in a program, it is possible for the
compiler to catch any accidental errors you may make when using it. (Also, when
you write a C++ program, all functions must be prototyped.) All of the programs in
this book include the appropriate headers. The headers for the functions provided
by C++ Builder are discussed in Part Two, when the C++ Builder’s function library
is described.

104 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Old-Style Versus Modern Parameter
Declarations
Early versions of C used a different parameter declaration method than do modern
versions of C. This old-style approach is sometimes called the classic form. The
declaration approach used in this book is called the modern form. Although C++
Builder supports both forms for use in C code, new code should use only the modern
form. Also, C++ supports only the modern form. However, since the old-style approach
can still be found in older C programs, it is described here for the sake of completeness.

The old-style function parameter declaration consists of two parts: a parameter list,
which goes inside the parentheses that follow the function name, and the actual parameter
declarations, which go between the closing parenthesis and the function’s opening
curly brace. The general form of the old-style parameter definition is shown here:

type function_name(parm1, parm2,. . .parmN)
type parm1;
type parm2;
.
.
.
type parmN;
{
function code
}

For example, this modern declaration:

char *f(char *str1, int count, int index)

{

/* ... */

}

will look like this when declared in the old style:

char *f(str1, count, index)

char *str1;

int count, index;

{

/* ... */

}

Notice that in the old style, more than one parameter can be listed after the type name.

Even though the old-style declaration form is outdated, C++ Builder can still
correctly compile C programs that use this approach. Therefore, you need not worry
if you want to compile a C program that uses the old approach. Remember, however,
that C++ programs must use the modern form.

The “Implicit int” Rule
The original version of C included a feature that is sometimes described as the “implicit
int” rule (also called the “default to int” rule). This rule states that in the absence of
an explicit type specifier, the type int is assumed. This rule was included in the C89
standard but has been eliminated by C99. It is also not supported by C++. Since the
implicit int rule is obsolete and not supported by C++, this book does not use it.
However, since it is still employed by many older C programs, it is still supported
by C++ Builder for C programs and a brief discussion is warranted.

The most common use of the implicit int rule was in the return type of functions.
Years ago, many (probably, most) C programmers took advantage of the rule when
creating functions that returned an int result. Thus, years ago a function such as

int f(void) {

/* ... */

return 0;

}

would often have been written like this:

f(void) { /* return type int by default */

/* ... */

return 0;

}

In the first instance, the return type of int is explicitly specified. In the second, it is
assumed by default.

The implicit int rule does not apply only to function return values (although that
was its most common use). For example, the following function uses the implicit int
rule for the type of its parameters:

/* Here, the return type defaults to int, and so do

the types of a and b. */

f(register a, register b) {

register c; /* c defaults to int, too */

C h a p t e r 4 : F u n c t i o n s 105
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

c = a + b;

printf("%d", c);

return c;

}

Here, the return type of f() defaults to int. So do the types of the parameters, a and b,
and the local variable c.

Remember, the “implicit int” rule is not supported by C++. It is, however,
supported by C++ Builder when compiling C code. Even for C code, its use is not
recommended.

Declaring Variable Length Parameter Lists
You can specify a function that has a variable number of parameters. The most common
example is printf(). To tell the compiler that an unknown number of arguments will be
passed to a function, you must end the declaration of its parameters using three periods.
For example, this prototype specifies that func() will have at least two integer parameters
and an unknown number (including 0) of parameters after that:

int func(int a, int b, ...);

This form of declaration is also used by a function’s definition.
Any function that uses a variable number of parameters must have at least one

actual parameter. For example, this is incorrect:

int func(...); /* illegal */

Returning Pointers
Although functions that return pointers are handled just like any other type of function,
it is helpful to review some key concepts and look at an example.

Pointers are neither integers, nor unsigned integers. They are the memory addresses
of a certain type of data. One reason for this distinction is that pointer arithmetic is
relative to the base type. For example, if an integer pointer is incremented, it will
contain a value that is 4 greater than its previous value (assuming four-byte integers).
In general, each time a pointer is incremented (or decremented), it points to the next
(or previous) item of its type. Since the length of different data types may differ, the
compiler must know what type of data the pointer is pointing to. For this reason, a

106 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

function that returns a pointer must declare explicitly what type of pointer it is
returning. (The subject of pointer arithmetic is covered in detail in Chapter 6.)

For example, the following is a function that returns a pointer to the first occurrence
of the character c in string s. If no match is found, a pointer to the null terminator is
returned:

char *match(char c, char *s)

{

while(c != *s && *s) s++;

return(s);

}

Here is a short program that uses match():

#include <stdio.h>

char *match(char c, char *s);

int main(void)

{

char s[80], *p, ch;

gets(s);

ch = getchar();

p = match(ch, s);

if(*p) /* there is a match */

printf("%s ", p);

else

printf("No match found.");

return 0;

}

This program reads a string and then a character. It then searches for an occurrence
of the character in the string. If the character is in the string, p will point to that
character, and the program prints the string from the point of the match. When no
match is found, p will be pointing to the null terminator, making *p false. In this case,
the program displays “No match found”.

C h a p t e r 4 : F u n c t i o n s 107
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Recursion
Functions can call themselves. A function is recursive if a statement in the body of the
function calls the function that contains it. Sometimes called circular definition, recursion
is the process of defining something in terms of itself.

A simple example is the function factr(), which computes the factorial of an integer.
The factorial of a number N is the product of all the whole numbers from 1 to N. For
example, 3 factorial is 1 × 2 × 3, or 6. Both factr() and its iterative equivalent are
shown here:

/* Compute the factorial of a number. */

int factr(int n) /* recursive */

{

int answer;

if(n==1) return(1);

answer = factr(n-1)*n;

return(answer);

}

/* Compute the factorial of a number. */

int fact(int n) /* non-recursive */

{

int t, answer;

answer = 1;

for(t=1; t<=n; t++)

answer=answer*(t);

return(answer);

}

The operation of the nonrecursive fact() should be clear. It uses a loop starting at 1
and ending at the number, and progressively multiplies each number by the moving
product.

The operation of the recursive factr() is a little more complex. When factr() is
called with an argument of 1, the function returns 1; otherwise it returns the product of
factr(n–1) * n. To evaluate this expression, factr() is called with n–1. This happens until
n equals 1 and the calls to the function begin returning.

Computing the factorial of 2, the first call to factr() causes a second call to be made
with the argument of 1. This call returns 1, which is then multiplied by 2 (the original n
value). The answer is then 2. You might find it interesting to insert printf() statements
into factr() to show the level and the intermediate answers of each call.

108 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

When a function calls itself, new local variables and parameters are allocated
storage on the stack, and the function code is executed with these new variables
from its beginning. A recursive call does not make a new copy of the function. Only
the arguments are new. As each recursive call returns, the old local variables and
parameters are removed from the stack and execution resumes at the point of the
function call inside the function. Recursive functions could be said to “telescope”
out and back.

Most recursive functions are not smaller than their iterative counterparts. The
recursive versions of most routines may execute a bit more slowly than the iterative
equivalents because of the added function calls; but this slightly increased overhead
is not a significant concern for most situations. Many recursive calls to a function could
cause a stack overrun. Because storage for function parameters and local variables is on
the stack and each new call creates a new copy of these variables, the stack space could
become exhausted. If this happens, a stack overflow occurs.

The main advantage to recursive functions is that they can be used to create versions
of several algorithms that are clearer and simpler than their iterative equivalents. For
example, the QuickSort sorting algorithm is quite difficult to implement in an iterative
way. Some problems, especially artificial intelligence–related ones, also seem to lend
themselves to recursive solutions. Finally, some people seem to think recursively more
easily than iteratively.

When writing recursive functions, you must have a conditional statement, such
as an if, somewhere to force the function to return without the recursive call being
executed. If you don’t, the function will never return once you call it. This is a very
common error when writing recursive functions. Use printf() and getchar() liberally
during development so that you can watch what is going on and abort execution if you
see a mistake.

Pointers to Functions
A particularly confusing yet powerful feature is the function pointer. Even though a
function is not a variable, it still has a physical location in memory that can be assigned
to a pointer. The address assigned to the pointer is the entry point of the function. This
pointer can then be used in place of the function’s name. It also allows functions to be
passed as arguments to other functions.

To understand how function pointers work, you must understand a little about
how a function is compiled and called. As each function is compiled, source code is
transformed into object code and an entry point is established. When a call is made
to a function while your program is running, a machine language “call” is made to this
entry point. Therefore, a pointer to a function actually contains the memory address of
the entry point of the function.

The address of a function is obtained by using the function’s name without any
parentheses or arguments. (This is similar to the way an array’s address is obtained by

C h a p t e r 4 : F u n c t i o n s 109
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

110 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

using only the array name without indexes.) For example, consider the following
program, paying very close attention to the declarations:

#include <stdio.h>

#include <string.h>

void check(char *a, char *b, int (*cmp) (const char *, const char *));

int main(void)

{

char s1[80], s2[80];

int (*p)(const char*, const char*);

p = strcmp; /* get address of strcmp() */

gets(s1);

gets(s2);

check(s1, s2, p);

return 0;

}

void check(char *a, char *b, int (*cmp) (const char *, const char *))

{

printf("Testing for equality.\n");

if(!(*cmp) (a, b)) printf("Equal");

else printf("Not equal");

}

When the function check() is called, two character pointers and one function
pointer are passed as parameters. Inside the function check(), the arguments are
declared as character pointers and a function pointer. Notice how the function pointer
is declared. You should use the same method when declaring other function pointers,
except that the return type or parameters of the function can be different. The parentheses
around the *cmp are necessary for the compiler to interpret this statement correctly.

When you declare a function pointer, you can still provide a prototype to it as the
preceding program illustrates. In many cases, however, you won’t know the names of
the actual parameters, so you can leave them blank, or you can use any names you like.

Once inside check(), you can see how the strcmp() function is called. The
statement

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : F u n c t i o n s 111
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

if(!(*cmp) (a, b)) printf("Equal");

performs the call to the function, in this case strcmp(), which is pointed to by cmp with
the arguments a and b. This statement also represents the general form of using a
function pointer to call the function it points to. The parentheses are necessary around
the *cmp because of C and C++’s precedence rules.

Actually, you can also just use cmp directly, if you like, as shown here:

if(!cmp(a, b)) printf("Equal");

This version also calls the function pointed to by cmp, but it uses the normal function
syntax. However, using the (*cmp) form tips off anyone reading your code that a
function pointer is being used to indirectly call a function, instead of calling a function
named cmp.

It is possible to call check() using strcmp directly, as shown here:

check(s1, s2, strcmp);

This statement would eliminate the need for an additional pointer variable.
You may be asking yourself why anyone would want to write a program this way.

In this example, nothing is gained and significant confusion is introduced. However,
there are times when it is advantageous to pass arbitrary functions to procedures or
to keep an array of functions. The following helps illustrate a use of function pointers.
When an interpreter is written, it is common for it to perform function calls to various
support routines, such as the sine, cosine, and tangent functions. Instead of having
a large switch statement listing all of these functions, you can use an array of function
pointers with the function to call determined by some index. You can get the flavor of
this type of use by studying the expanded version of the previous example. In this
program, check() can be made to check for either alphabetical equality or numeric
equality by calling it with a different comparison function:

#include <stdio.h>

#include <ctype.h>

#include <string.h>

#include <stdlib.h>

void check(char *a, char *b, int (*cmp) (const char *, const char *));

int numcmp(const char *a, const char *b);

112 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main(void)

{

char s1[80], s2[80];

gets(s1);

gets(s2);

if(isalpha(*s1))

check(s1, s2, strcmp);

else

check(s1, s2, numcmp);

return 0;

}

void check(char *a, char *b, int (*cmp) (const char *, const char *))

{

printf("Testing for equality.\n");

if(!(*cmp) (a, b)) printf("Equal");

else printf("Not equal");

}

int numcmp(const char *a, const char *b)

{

if(atoi(a)==atoi(b)) return 0;

else return 1;

}

Implementation Issues
When you create functions, you should remember a few important things that affect
their efficiency and usability. These issues are the subject of this section.

Parameters and General-Purpose Functions
A general-purpose function is one that is used in a variety of situations, perhaps by
many different programmers. Typically, you should not base general-purpose
functions on global data. All the information a function needs should be passed
through parameters. In the few cases in which this is not possible, you should use
static variables.

Besides making your functions general-purpose, parameters keep your code
readable and less susceptible to bugs caused by side effects.

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 4 : F u n c t i o n s 113

Efficiency
Functions are the building blocks of C and C++, and crucial to the creation of all but
the most trivial programs. Nothing said in this section should be construed otherwise.
In certain specialized applications, however, you may need to eliminate a function and
replace it with in-line code. In-line code is the equivalent of a function’s statements used
without a call to that function. In-line code should be substituted for function calls only
when execution time is critical.

There are two reasons in-line code is faster than a function call. First, a “call”
instruction takes time to execute. Second, arguments to be passed have to be placed on
the stack, which also takes time. For almost all applications, this very slight increase in
execution time is of no significance. But if it is, remember that each function call uses
time that would be saved if the code in the function were placed in line. For example,
here are two versions of a program that prints the square of the numbers from 1 to
10. The in-line version runs faster than the other because the function call takes time.

In-line Function Call

#include <stdio.h> #include <stdio.h>

int main(void) int sqr(int a);

{ int main(void)

int x; {

int x;

for(x=1; x<11; ++x) for(x=1; x<11; ++x)

printf("%d", x*x); printf("%d", sqr(x));

return 0; return 0;

} }

int sqr(int a)

{

return a*a;

}

As you create programs, you must always weigh the cost of functions in terms of
execution time against the benefits of increased readability and modifiability.

In C++, the concept of inline functions is expanded and formalized. In fact, inline
functions are an important component of the C++ language.

This page intentionally left blank.

Chapter 5
Arrays

115

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

116 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

An array is a collection of variables of the same type that are referenced by a
common name. A specific element in an array is accessed by an index. In
C/C++ all arrays consist of contiguous memory locations. The lowest address

corresponds to the first element; the highest address corresponds to the last element.
Arrays can have from one to several dimensions. The most common array is the null-
terminated string, which is simply an array of characters terminated by a null.

Arrays and pointers are closely related; a discussion of one usually refers to the
other. This chapter focuses on arrays, while Chapter 6 looks closely at pointers. You
should read both to understand fully these important constructs.

Single-Dimension Arrays
The general form of a single-dimension array declaration is

type var_name[size];

Like other variables, arrays must be explicitly declared so that the compiler can
allocate space for them in memory. Here, type declares the base type of the array, which
is the type of each element in the array. size defines how many elements the array will
hold and must be a positive integer. For a single-dimension array, the total size of an
array in bytes is computed as shown here:

total bytes = sizeof(base type) * number of elements

All arrays have 0 as the index of their first element. Therefore, when you write

char p[10];

you are declaring a character array that has 10 elements, p[0] through p[9]. For example,
the following program loads an integer array with the numbers 0 through 9 and
displays them:

#include <stdio.h>

int main(void)

{

int x[10]; /* this reserves 10 integer elements */

int t;

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 5 : A r r a y s 117

for(t=0; t<10; ++t) x[t] = t;

for(t=0; t<10; ++t) printf("%d ", x[t]);

return 0;

}

C/C++ has no bounds checking on arrays. You could overwrite either end of an
array and write into some other variable’s data, or even into the program’s code. It is
the programmer’s job to provide bounds checking where needed. For example, make
certain that the character arrays that accept character input are long enough to accept
the longest input.

Single-dimension arrays are essentially lists of information of the same type. For
example, Figure 5-1 shows how array a appears in memory if it is declared as shown
here and starts at memory location 1000:

char a[7];

Generating a Pointer to an Array
You can generate a pointer to the first element of an array by simply specifying the
array name, without any index. For example, given

int sample[10];

you can generate a pointer to the first element by using the name sample. Thus, the
following code fragment assigns p the address of the first element of sample:

int *p;

int sample[10];

p = sample;

You can also obtain the address of the first element of an array using the &
operator. For example, sample and &sample[0] both produce the same results.
However, in professionally written C/C++ code, you will almost never see
&sample[0].

118 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Passing Single-Dimension Arrays to Functions
When passing single-dimension arrays to functions, call the function with just the array
name (no index). This passes the address of the first element of the array to the function.
It is not possible to pass the entire array as an argument; a pointer is automatically
passed instead. For example, the following program fragment passes the address of
i to func1():

int main(void)

{

int i[10];

func1(i);

/*... */

return 0;

}

If a function is to receive a single-dimension array, you may declare the formal
parameter as a pointer, as a sized array, or as an unsized array. For example, to
receive i into a function called func1(), you could declare func1() as

void func1(int *a) /* pointer */

{

/*...*/

}

or

void func1(int a[10]) /* sized array */

{

/*...*/

}

Figure 5-1. A seven-element character array beginning at location 1000

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

or finally as

void func1(int a[]) /* unsized array */

{

/*...*/

}

All three methods of declaration tell the compiler that an integer pointer is
going to be received. In the first declaration a pointer is used; in the second the
standard array declaration is employed. In the third declaration, a modified version
of an array declaration simply specifies that an array of type int of some length is to
be received. As far as the function is concerned, it doesn’t matter what the length of
the array actually is because C/C++ performs no bounds checking. In fact, as far
as the compiler is concerned,

void func1(int a[32])

{

/*...*/

}

also works because the compiler generates code that instructs func1() to receive a
pointer—it does not actually create a 32-element array.

Null-Terminated Strings
By far the most common use of the one-dimensional array is as a character string. C
defines only one type of string, the null-terminated string, which is a null-terminated
character array. (A null is zero.) Thus a null-terminated string contains the characters
that compose the string followed by a null. Sometimes null-terminated strings are
called C-strings. C++ also defines a string class, called string, which provides an
object-oriented approach to string handling. It is described later in this book. Here,
null-terminated strings are examined.

When declaring a character array that will hold a null-terminated string, you need
to declare it to be one character longer than the largest string that it will hold. For
example, to declare an array s that can hold a 10-character string, you would write

char s[11];

This statement makes room for the 10 characters as well as the null at the end of
the string.

C h a p t e r 5 : A r r a y s 119

120 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

A string constant (also called a string literal) is a list of characters enclosed between
double quotes. For example, here are two string constants:

"hello there"

"this is a test"

A string constant automatically creates a null-terminated string. It is not necessary
to manually add the null to the end of string constants, because compiler does this
for you.

C/C++ supports a wide range of string manipulation functions. The most common
are listed here:

Name Function

strcpy(s1, s2) Copies s2 into s1.

strcat(s1, s2) Concatenates s2 onto the end of s1.

strlen(s1) Returns the length of s1.

strcmp(s1, s2) Returns 0 if s1 and s2 are the same; less than 0 if s1 < s2;
greater than 0 if s1 > s2.

strchr(s1, ch) Returns a pointer to the first occurrence of ch in s1.

strstr(s1, s2) Returns a pointer to the first occurrence of s2 in s1.

These functions use the <string.h> header. (These and other string functions
are discussed in detail in Part Two of this book.)

The following program illustrates the use of these string functions:

#include <string.h>

#include <stdio.h>

int main(void)

{

char s1[80], s2[80];

gets(s1); gets(s2);

printf("lengths: %d %d\n", strlen(s1), strlen(s2));

if(!strcmp(s1, s2)) printf("The strings are equal\n");

strcat(s1, s2);

TE
AM
FL
Y

Team-Fly®

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 5 : A r r a y s 121

printf("%s\n", s1);

strcpy(s1, "This is a test.\n");

printf(s1);

if(strchr("hello", 'e')) printf("e is in hello\n");

if(strstr("hi there", "hi")) printf("found hi");

return 0;

}

If this program is run and the strings "hello" and "hello" are entered, the output is

lengths: 5 5

The strings are equal

hellohello

This is a test.

e is in hello

found hi

It is important to remember that strcmp() returns false if the strings are equal, so be
sure to use the ! to reverse the condition, as shown in this example, if you are testing
for equality.

Two-Dimensional Arrays
C/C++ supports multidimensional arrays. The simplest form of the multidimensional
array is the two-dimensional array. A two-dimensional array is, essentially, an array of
one-dimensional arrays. Two-dimensional arrays are declared using this general form:

type array_name[2nd dimension size][1st dimension size];

To declare a two-dimensional integer array d of size 10,20, you would write

int d[10][20];

Pay careful attention to the declaration. Some other computer languages use commas
to separate the array dimensions, but C/C++ places each dimension in its own
set of brackets.

Similarly, to access point 3,5 of array d, you would use

d[3][5]

122 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

In the following example, a two-dimensional array is loaded with the numbers 1
through 12, which is then displayed row by row:

#include <stdio.h>

int main(void)

{

int t,i, num[3][4];

/* load numbers */

for(t=0; t<3; ++t)

for(i=0; i<4; ++i)

num[t][i] = (t*4)+i+1;

/* display numbers */

for(t=0; t<3; ++t) {

for(i=0; i<4; ++i)

printf("%d ", num[t][i]);

printf("\n");

}

return 0;

}

In this example, num[0][0] has the value 1; num[0][1], the value 2; num[0][2], the value
3; and so on. The value of num[2][3] is 12.

Two-dimensional arrays are stored in a row-column matrix, where the left index
indicates the row and the right index indicates the column. This means that the right
index changes faster than the left when accessing the elements in the array in the order
they are actually stored in memory. See Figure 5-2 for a graphic representation of a
two-dimensional array in memory. In essence, the left index can be thought of as a
“pointer” to the correct row.

The number of bytes of memory required by a two-dimensional array is computed
using the following formula:

bytes = size of 1st index * size of 2nd index * sizeof (base-type)

Therefore, assuming 4-byte integers, an integer array with dimensions 10,5 would have
10 × 5 × 4 or 200 bytes allocated.

When a two-dimensional array is used as an argument to a function, only a pointer
to the first element is passed. However, a function receiving a two-dimensional array

C h a p t e r 5 : A r r a y s 123
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

as a parameter must minimally define the length of the right index, because the compiler
needs to know the length of each row if it is to index the array correctly. For example,
a function that will receive a two-dimensional integer array with dimensions 5,10
would be declared like this:

void func1(int x[][10])

{

/*...*/

}

You can specify the left dimension as well, but it is not necessary. The compiler needs
to know the size of the right dimension in order to work on statements such as

x[2][4]

inside the function. If the length of the rows is not known, it is impossible to know
where the next row begins.

The following program uses a two-dimensional array to store the numeric grade for
each student in a teacher’s classes. The program assumes that the teacher has three

Figure 5-2. A two-dimensional array in memory

classes and a maximum of 30 students per class. Notice how the array grade is accessed
by each of the functions:

#include <conio.h>

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#define CLASSES 3

#define GRADES 30

int grade[CLASSES][GRADES];

void disp_grades(int g[][GRADES]), enter_grades(void);

int get_grade(int num);

int main(void) /* class grades program */

{

char ch;

for(;;) {

do {

printf("(E)nter grades\n");

printf("(R)eport grades\n");

printf("(Q)uit\n");

ch = toupper(getche());

} while(ch!='E' && ch!='R' && ch!='Q');

switch(ch) {

case 'E':

enter_grades();

break;

case 'R':

disp_grades(grade);

break;

case 'Q':

return 0;

}

}

}

/* Enter each student's grade. */

void enter_grades(void)

124 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : A r r a y s 125
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

{

int t, i;

for(t=0; t<CLASSES; t++) {

printf("Class # %d:\n", t+1);

for(i=0; i<GRADES; ++i)

grade[t][i] = get_grade(i);

}

}

/* Actually input the grade. */

int get_grade(int num)

{

char s[80];

printf("enter grade for student # %d:\n", num+1);

gets(s);

return(atoi(s));

}

/* Display the class grades. */

void disp_grades(int g[][GRADES])

{

int t, i;

for(t=0; t<CLASSES; ++t) {

printf("Class # %d:\n", t+1);

for(i=0; i<GRADES; ++i)

printf("grade for student #%d is %d\n",i+1, g[t][i]);

}

}

Arrays of Strings
It is not uncommon in programming to use an array of strings. For example, the input
processor to a database may verify user commands against a string array of valid
commands. A two-dimensional character array is used to create an array of strings
with the size of the left index determining the number of strings and the size of the
right index specifying the maximum length of each string. This code fragment declares
an array of 30 strings, each having a maximum length of 79 characters:

char str_array[30][80];

126 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

To access an individual string is quite easy: You simply specify only the left index.
For example, this statement calls gets() with the third string in str_array:

gets(str_array[2]);

This is functionally equivalent to

gets(&str_array[2][0]);

but the previous form is much more common in professionally written code.
To understand better how string arrays work, study the following short program,

which uses a string array as the basis for a very simple text editor:

#include <stdio.h>

#define MAX 100

#define LEN 255

char text[MAX][LEN];

/* A very simple text editor. */

int main(void)

{

register int t, i, j;

for(t=0; t<MAX; t++) {

printf("%d: ", t);

gets(text[t]);

if(!*text[t]) break; /* quit on blank line */

}

/* this displays the text one character at a time */

for(i=0; i<t; i++) {

for(j=0; text[i][j]; j++) putchar(text[i][j]);

putchar('\n');

}

return 0;

}

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 5 : A r r a y s 127

This program inputs lines of text until a blank line is entered. Then it redisplays
each line. For purposes of illustration, it displays the text one character at a time by
indexing the first dimension. However, because each string in the array is
null-terminated, the routine that displays the text could be simplified like this:

for(i=0; i<t; i++)

printf("%s\n", text[i]);

Multidimensional Arrays
You can have arrays greater than two dimensions. The general form of a
multidimensional array declaration is

type name[size1][size2][size3]. . .[sizeN];

Arrays of more than three dimensions are rarely used because of the large amount
of memory required to hold them.

A point to remember about multidimensional arrays is that it takes the computer
time to compute each index. This means that accessing an element in a multidimensional
array will be slower than accessing an element in a single-dimension array.

When passing multidimensional arrays into functions, you must declare all but the
leftmost dimension. For example, if you declare array m as

int m[4][3][6][5];

then a function, func1(), that receives m, would look like this:

int func1(int d[][3][6][5])

{

/*...*/

}

Of course, you can include the leftmost dimension if you like.

Indexing Pointers
Pointers and arrays are closely related. As you know, an array name without an index
is a pointer to the first element in the array. For example, given this array,

char p[10];

the following statements are identical:

p

&p[0]

Put another way,

p == &p[0]

evaluates true because the address of the first element of an array is the same as the
address of the array.

Conversely, a pointer can be indexed as if it were declared to be an array. For example:

int *p, i[10];

p = i;

p[5] = 100; /* assign using index */

(p+5) = 100; / assign using pointer arithmetic */

Both assignment statements place the value 100 in the sixth element of i. The first
statement indexes p; the second uses pointer arithmetic. Either way, the result is the
same. (Pointers and pointer arithmetic are dealt with in detail in Chapter 6.)

The same holds true for arrays of two or more dimensions. For example, assuming
that a is a 10-by-10 integer array, these two statements are equivalent:

a

&a[0][0]

Furthermore, the 0,4 element of a may be referenced either by array-indexing,
a[0][4], or by the pointer, *((int *) a + 4). Similarly, element 1,2 is either a[1][2] or
*((int *) a + 12). In general, for any two-dimensional array:

a[j][k] is equivalent to *((base type *) a + (j * rowlength) + k)

The cast of the pointer to the array into a pointer of its base type is necessary in order
for the pointer arithmetic to operate properly. Pointers are sometimes used to access
arrays because pointer arithmetic is often faster than array indexing. The gain in speed
with pointers is the greatest when an array is being accessed sequentially. In this
situation, the pointer may be incremented or decremented using the highly efficient
increment and decrement operators. On the other hand, if the array is accessed in
random order, then the pointer approach may not be any better than array-indexing.

128 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

A two-dimensional array can be reduced to a pointer to an array of one-dimensional
arrays. Therefore, using a separate pointer variable is one easy way to access elements
within a row of a two-dimensional array. The following function illustrates this technique.
It prints the contents of the specified row for the global integer array num:

int num[10][10];

/*...*/

void pr_row(int j)

{

int *p, t;

p = (int *) &num[j][0]; /* get address of first

element in row j */

for(t=0; t<10; ++t) printf("%d ", *(p+t));

}

This function can be generalized by making the calling arguments be the row,
the row length, and a pointer to the first array element, as shown here:

/* General */

void pr_row(int j, int row_dimension, int *p)

{

int t;

p = p + (j * row_dimension);

for(t=0; t<row_dimension; ++t)

printf("%d ", *(p+t));

}

Arrays greater than two dimensions may be reduced in a similar way. For example,
a three-dimensional array can be reduced to a pointer to a two-dimensional array,
which can be reduced to a pointer to a one-dimensional array. Generally, an N-dimensional
array can be reduced to a pointer and an N – 1 dimensional array. This new array can
be reduced again using the same method. The process ends when a single-dimension
array is produced.

Allocated Arrays
In many programming situations it is impossible to know how large an array is
needed. In addition, many types of programs need to use as much memory as is
available, yet still run on machines having only minimal memory. A text editor
or a database are examples of such programs. In these situations, it is not possible

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 5 : A r r a y s 129

130 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

to use a predefined array because its dimensions are established at compile time and
cannot be changed during execution. The solution is to create a dynamic array. A dynamic
array uses memory from the region of free memory called the heap and is accessed by
indexing a pointer to that memory. (Remember that any pointer can be indexed as if it
were an array variable.)

In C you can dynamically allocate and free memory by using the standard library
routines malloc(), which allocates memory and returns a void * pointer to the start of
it, and free(), which returns previously allocated memory to the heap for possible
reuse. The prototypes for malloc() and free() are

void *malloc(size_t num_bytes);
void free(void *p);

Both functions use the <stdlib.h> header. Here, num_bytes is the number of bytes
requested. The type size_t is defined as an unsigned integer. If there is not enough free
memory to fill the request, malloc() returns a null. It is important that free() be called
only with a valid, previously allocated pointer; otherwise, damage could be done to the
organization of the heap and possibly cause the program to crash.

The code fragment shown here allocates 1000 bytes of memory:

char *p;

p = malloc(1000); /* get 1000 bytes */

Here, p points to the first of 1000 bytes of free memory. Notice that no cast is used to
convert the void pointer returned by malloc() into the desired char pointer. Because
malloc() returns a void pointer, it can be assigned to any other type of pointer and is
automatically converted into a pointer of the target type. However, it is important to
understand that this automatic conversion does not occur in C++. In C++, an explicit
type cast in needed when a void pointer is assigned to another type of pointer. Thus,
in C++, the preceding assignment must be written as follows:

p = (char *) malloc(1000); /* get 1000 bytes */

As a general rule, in C++ you must use a type cast when assigning (or otherwise
converting) one type of pointer into another. This is one of the fundamental differences
between C and C++. Since type casts are needed for C++ and do no harm in C, this
book will use them when allocating memory using malloc().

This example shows the proper way to use a dynamically allocated array to read
input from the keyboard using gets():

/* Print a string backward using dynamic allocation. */

TE
AM
FL
Y

Team-Fly®

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

char *s;

register int t;

s = (char *) malloc(80);

if(!s) {

printf("Memory request failed.\n");

exit(1);

}

gets(s);

for(t=strlen(s)-1; t>=0; t--) putchar(s[t]);

free(s);

return 0;

}

As the program shows, s is tested prior to its first use to ensure that a valid pointer
is returned by malloc(). This is absolutely necessary to prevent accidental use of a null
pointer. Notice how the pointer s is indexed as an array to print the string backward.

Array Initialization
C/C++ allows the initialization of arrays at the time of their declaration. The general
form of array initialization is similar to that of other variables, as shown here:

type-specifier array_name[size1]. . .[sizeN] = { value-list };

The value-list is a comma-separated list of values that are type-compatible with type-specifier.
The first value is placed in the first position of the array, the second value in the second
position, and so on. The last entry in the list is not followed by a comma. Note that a
semicolon follows the }.

For compatibility with C89, array initializers must be constants.

C h a p t e r 5 : A r r a y s 131
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

In the following example, a 10-element integer array is initialized with the numbers
1 through 10:

int i[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

This means that i[0] has the value 1 and i[9] has the value 10.
Character arrays that hold strings allow a shorthand initialization in the form

char array_name[size] = "string";

In this form of initialization, the null terminator is automatically appended to the
string. For example, this code fragment initializes str to the phrase "hello":

char str[6] = "hello";

This is the same as writing

char str[6] = {'h', 'e', 'l', 'l', 'o', '\0'};

Notice that in this version you must explicitly include the null terminator. Because
strings end with a null, you must make sure that the array you declare is long enough
to include it. This is why str is six characters long even though "hello" is only five
characters. When the string constant is used (as in the previous approach), the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized in the same fashion as single-dimension
ones. For example, the following initializes sqrs with the numbers 1 through 10 and
their squares:

int sqrs[10][2] = {

1, 1,

2, 4,

3, 9,

4, 16,

5, 25,

6, 36,

7, 49,

8, 64,

9, 81,

10, 100

};

132 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here, sqrs[0][0] contains 1, sqrs[0][1] contains 1, sqrs[1][0] contains 2, sqrs[1][1]
contains 4, and so forth.

When initializing a multidimensional array, you may add braces around the
initializers for each dimension. This is called subaggregate grouping. For example,
here is another way to write the preceding declaration:

int sqrs[10][2] = {

{1, 1},

{2, 4},

{3, 9},

{4, 16},

{5, 25},

{6, 36},

{7, 49},

{8, 64},

{9, 81},

{10, 100}

};

When using subaggregate grouping, if you don’t supply enough initializers for a given
group, the remaining members will be set to zero, automatically.

Unsized-Array Initializations
Imagine that you are using an array initialization to build a table of error messages as
shown here:

char e1[12] = "Read Error\n";

char e2[13] = "Write Error\n";

char e3[18] = "Cannot Open File\n";

As you might guess, it is very tedious to count the characters in each message
manually to determine the correct array dimensions. It is possible to let the compiler
dimension the arrays automatically by using unsized arrays. If the size of the array is
not specified in an array initialization statement, the compiler automatically creates an
array big enough to hold all the initializers present. Using this approach, the message
table becomes

char e1[] = "Read Error\n";

char e2[] = "Write Error\n";

char e3[] = "Cannot Open File\n";

C h a p t e r 5 : A r r a y s 133
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Given these initializations, this statement

printf("%s has length %d\n", e2, sizeof e2);

prints

Write Error

has length 13

Aside from being less tedious, the unsized-array initialization method allows any of
the messages to be changed without fear of accidentally counting incorrectly.

Unsized-array initializations are not restricted to only single-dimension arrays. For
multidimensional arrays, you must specify all but the leftmost dimensions in order to
allow the array to be properly indexed. (This is similar to specifying array parameters.)
In this way, you can build tables of varying lengths and the compiler automatically
allocates enough storage for them. For example, the declaration of sqrs as an unsized
array is shown here:

int sqrs[][2] = {

1, 1,

2, 4,

3, 9,

4, 16,

5, 25,

6, 36,

7, 49,

8, 64,

9, 81,

10, 100

};

The advantage to this declaration over the sized version is that the table may be
lengthened or shortened without changing the array dimensions.

A Tic-Tac-Toe Example
This chapter concludes with a longer example that illustrates many of the ways arrays
can be manipulated using C/C++.

Two-dimensional arrays are commonly used to simulate board game matrices, as
in chess and checkers. Although it is beyond the scope of this book to present a chess
or checkers program, a simple tic-tac-toe program can be developed.

134 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The tic-tac-toe matrix is represented using a 3-by-3 character array. You are “X” and
the computer is “O”. When you move, an “X” is placed in the specified position of the
game matrix. When it is the computer’s turn to move, it scans the matrix and puts its
“O” in the first empty location of the matrix. (This makes for a fairly dull game—you
might find it fun to spice it up a bit!) If the computer cannot find an empty location, it
reports a draw game and exits. The game matrix is initialized to contain spaces at the
start of the game. The tic-tac-toe program is shown here:

#include <stdio.h>

#include <stdlib.h>

/* A simple game of Tic-Tac-Toe. */

#define SPACE ' '

char matrix[3][3] = { /* the tic-tac-toe matrix */

{SPACE, SPACE, SPACE},

{SPACE, SPACE, SPACE},

{SPACE, SPACE, SPACE}

};

void get_computer_move(void), get_player_move(void);

void disp_matrix(void);

char check(void);

int main(void)

{

char done;

printf("This is the game of Tic-Tac-Toe.\n");

printf("You will be playing against the computer.\n");

do {

disp_matrix(); /* display the game board */

get_player_move(); /* get your move */

done = check(); /* see if winner */

if(done!=SPACE) break; /* winner! */

get_computer_move(); /* get computer's move */

done=check(); /* see if winner */

} while(done==SPACE);

if(done=='X') printf("You won!\n");

else printf("I won!!!!\n");

C h a p t e r 5 : A r r a y s 135
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

136 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

disp_matrix(); /* show final positions */

return 0;

}

/* Input the player's move. */

void get_player_move(void)

{

int x, y;

printf("Enter coordinates for your X.\n");

printf("Row? ");

scanf("%d", &x);

printf("Column? ");

scanf("%d", &y);

x--; y--;

if(x<0 || y<0 || x>2 || y>2 || matrix[x][y]!=SPACE) {

printf("Invalid move, try again.\n");

get_player_move();

}

else matrix[x][y]='X';

}

/* Get the computer's move */

void get_computer_move(void)

{

register int t;

char *p;

p = (char *) matrix;

for(t=0; *p!=SPACE && t<9; ++t) p++;

if(t==9) {

printf("draw\n");

exit(0); /* game over */

}

else *p = 'O';

}

C h a p t e r 5 : A r r a y s 137
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

/* Display the game board. */

void disp_matrix(void)

{

int t;

for(t=0; t<3; t++) {

printf(" %c | %c | %c ", matrix[t][0],

matrix[t][1], matrix [t][2]);

if(t!=2) printf("\n---|---|---\n");

}

printf("\n");

}

/* See if there is a winner. */

char check(void)

{

int t;

char *p;

for(t=0; t<3; t++) { /* check rows */

p = &matrix[t][0];

if(*p==*(p+1) && *(p+1)==*(p+2)) return *p;

}

for(t=0; t<3; t++) { /* check columns */

p = &matrix[0][t];

if(*p==*(p+3) && *(p+3)==*(p+6)) return *p;

}

/* test diagonals */

if(matrix[0][0]==matrix[1][1] && matrix[1][1]==matrix[2][2])

return matrix[0][0];

if(matrix[0][2]==matrix[1][1] && matrix[1][1]==matrix[2][0])

return matrix[0][2];

return SPACE;

}

The array is initialized to contain spaces because a space is used to indicate to
get_player_move() and get_computer_move() that a matrix position is vacant. The
fact that spaces are used instead of nulls simplifies the matrix display function
disp_matrix() by allowing the contents of the array to be printed on the screen without
any translations. Note that the routine get_player_move() is recursive when an invalid
location is entered. This is an example of how recursion can be used to simplify a
routine and reduce the amount of code necessary to implement a function.

In the main loop, each time a move is entered the function check() is called. This
function determines if the game has been won and by whom. The check() function
returns an “X” if you have won, or an “O” if the computer has won. Otherwise, it returns
a space. check() works by scanning the rows, the columns, and then the diagonals
looking for a winning configuration.

The routines in this example all access the array matrix differently. You should
study them to make sure that you understand each array operation.

138 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Chapter 6
Pointers

139

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The correct understanding and use of pointers is crucial to the successful C/C++
programming for four reasons:

1. Pointers provide the means by which functions can modify their calling arguments.

2. Pointers support dynamic allocation.

3. Pointers can improve the efficiency of certain routines.

4. Pointers provide support for dynamic data structures such as linked lists and
binary trees.

Pointers are one of the strongest but also one of the most dangerous features in
C/C++. For example, uninitialized or wild pointers can cause the system to crash.
Perhaps worse, it is easy to use pointers incorrectly, causing bugs that are very difficult
to find.

Because of their importance and their potential for abuse, this chapter examines the
subject of pointers in detail.

Pointers Are Addresses
A pointer is a variable that holds a memory address. This address is the location of
another object (typically, a variable) in memory. If one variable contains the address
of another variable, the first variable is said to point to the second. For example, if a
variable at location 1004 is pointed to by a variable at location 1000, location 1000 will
contain the value 1004. This situation is illustrated in Figure 6-1.

140 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 6-1. One variable pointing to another

TE
AM
FL
Y

Team-Fly®

Pointer Variables
If a variable is going to be a pointer, it must be declared as such. A pointer declaration
consists of a base type, an *, and the variable name. The general form for declaring a
pointer variable is

type *name;

where type is any valid type (the pointer’s base type), and name is the name of the
pointer variable.

The base type of the pointer defines what type of variables the pointer can point to.
Technically, any type of pointer can point anywhere in memory, but C/C++ assumes
that what the pointer is pointing to is an object of its base type. Also, all pointer arithmetic
is done relative to its base type, so the base type of a pointer is very important.

The Pointer Operators
There are two special pointer operators: * and &. These operators were introduced in
Chapter 2. We will take a closer look at them here, beginning with a review of their
basic operation.

The & is a unary operator that returns the memory address of its operand. For
example,

p = #

places into p the memory address of the variable num. This address is the computer’s
internal location of the variable. It has nothing to do with the value of num. The
operation of the & can be remembered as returning “the address of.” Therefore, the
preceding assignment statement could be read as “p receives the address of num.”

For example, assume the variable num uses memory location 2000 to store its
value. Also assume that num has a value of 100. Then, after the preceding assignment,
p will have the value 2000.

The second operator, *, is the complement of &. It is a unary operator that returns
the value of the variable located at the address that follows. For example, if p contains
the memory address of the variable num,

q = *p;

places the value of num into q. Following through with this example, q has the value
100 because 100 is stored at location 2000, which is the memory address that was stored
in p. The operation of the * can be remembered as “at address.” In this case the
statement could be read as “q receives the value at address p.”

C h a p t e r 6 : P o i n t e r s 141
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The following program illustrates the foregoing discussion:

#include <stdio.h>

int main(void)

{

int num, q;

int *p;

num = 100; /* num is assigned 100 */

p = # /* p receives num's address */

q = *p; /* q is assigned num's value

indirectly through p */

printf("%d", q); /* prints 100 */

return 0;

}

The preceding program displays the value 100.
Unfortunately, the multiplication sign and the “at address” sign are the same, and

the bitwise AND and the “address of” sign are the same. These operators have no
relationship to each other. Both & and * have a higher precedence than the binary
arithmetic operators.

You must make sure that your pointer variables always point to the correct type of
data. For example, when you declare a pointer to be of type int, the compiler assumes
that any address it holds points to an integer value. Because C allows you to assign any
address to a pointer variable, the following code fragment compiles (although C++
Builder will issue a warning message) but does not produce the desired result.

#include <stdio.h>

int main(void)

{

double x, y;

int *p;

x = 100.123;

p = &x;

y = *p;

printf("%f", y); /* this will be wrong */

142 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : P o i n t e r s 143
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

return 0;

}

This does not assign the value of x to y. Because p is declared to be an integer pointer
(and assuming 32-bit integers), only 4 bytes of information will be transferred to y, not
the 8 that normally make up a double.

In C++, it is illegal to convert one type of pointer into another without the use of an
explicit type cast. For this reason, the preceding program will not even compile if you try
to compile it as a C++ (rather than as a C) program. However, the type of error described
can still occur in C++ in a more roundabout manner.

Pointer Expressions
In general, expressions involving pointers conform to the same rules as any other C/C++
expression. This section will examine a few special aspects of pointer expressions.

Pointer Assignments
As with any variable, a pointer may be used on the right-hand side of assignment
statements to assign its value to another pointer. For example:

#include <stdio.h>

int main(void)

{

int x;

int *p1, *p2;

p1 = &x;

p2 = p1;

/* This will display the addresses held by

p1 and p2. They will be the same.

*/

printf("%p %p", p1, p2);

return 0;

}

Here, both p1 and p2 will contain the address of x.

Pointer Arithmetic
Only two arithmetic operations can be used on pointers: addition and subtraction. To
understand what occurs in pointer arithmetic, let p1 be a pointer to an integer with a
current value of 2000, and assume that integers are 4 bytes long. After the expression

p1++;

the content of p1 is 2004, not 2001! Each time p1 is incremented, it points to the next
integer. The same is true of decrements. For example,

p1--;

will cause p1 to have the value 1996, assuming that it previously was 2000.
Generalizing from the preceding example, the following rules govern pointer

arithmetic. Each time a pointer is incremented, it points to the memory location of the
next element of its base type. Each time it is decremented, it points to the location of
the previous element. When applied to character pointers, this will appear as “normal”
arithmetic because characters are always 1 byte long. All other pointers will increase
or decrease by the length of the data type they point to. This approach ensures that a
pointer is always pointing to an appropriate element of its base type. Figure 6-2
illustrates this concept.

You are not limited to the increment and decrement operations, however. You may
also add or subtract integers to or from pointers. The expression

p1 = p1 + 9;

makes p1 point to the ninth element of p1’s type beyond the one it is currently pointing to.
Besides addition and subtraction of a pointer and an integer, the only other operation

you can perform on a pointer is to subtract it from another pointer. For the most part,
subtracting one pointer from another only makes sense when both pointers point to a
common object, such as an array. The subtraction then yields the number of elements
of the base type separating the two pointer values. Aside from these operations, no
other arithmetic operations can be performed on pointers. You cannot multiply or divide
pointers; you cannot add pointers; you cannot apply the bitwise shift and mask operators
to them; and you cannot add or subtract type float or double to pointers.

144 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : P o i n t e r s 145
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Pointer Comparisons
You can compare two pointers in a relational expression. For instance, given the
pointers p and q, the following statement is perfectly valid:

if(p<q) printf("p points to lower memory than q\n");

Generally, pointer comparisons are useful only when two or more pointers are
pointing to a common object. As an example, imagine that you are constructing a stack
routine to hold integer values. A stack is a list that uses “first in, last out” accessing. It

Figure 6-2. All pointer arithmetic is relative to its base type. (Assume 2-byte short
integers.)

146 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

is often compared to a stack of plates on a table—the first one set down is the last one
to be used. Stacks are used frequently in compilers, interpreters, spreadsheets, and
other system-related software. To create a stack, you need two routines: push() and
pop(). The push() function puts values on the stack, and pop() takes them off. In the
following expample, the stack is held in the array stack, which is STCKSIZE elements
long. The variable tos holds the memory address of the top of the stack and is used to
prevent stack overflows and underflows. Once the stack has been initialized, push()
and pop() can be used to access the stack. These routines are shown here with a simple
main() function to drive them:

#include <stdio.h>

#include <stdlib.h>

#define STCKSIZE 50

void push(int i);

int pop(void);

int *p1, *tos, stack[STCKSIZE];

int main(void)

{

int value;

p1 = stack; /* assign p1 the start of stack */

tos = p1; /* let tos hold top of stack */

do {

printf("Enter a number (-1 to quit, 0 to pop): ");

scanf("%d", &value);

if(value!=0) push(value);

else printf("this is it %d\n", pop());

} while(value!=-1);

return 0;

}

void push(int i)

{

p1++;

if(p1==(tos + STCKSIZE)) {

printf("stack overflow");

exit(1);

}

C h a p t e r 6 : P o i n t e r s 147
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

*p1 = i;

}

int pop(void)

{

if(p1==tos) {

printf("stack underflow");

exit(1);

}

p1--;

return *(p1+1);

}

Both the push() and pop() functions perform a relational test on the pointer p1 to
detect limit errors. In push(), p1 is tested against the end of stack by adding STCKSIZE
(the size of the stack) to tos. In pop(), p1 is checked against tos to be sure that a stack
underflow has not occurred.

In pop(), the parentheses are necessary in the return statement. Without them, the
statement would look like

return *p1 + 1;

which would return the value at location p1 plus 1, not the value of the location p1+1.

Dynamic Allocation and Pointers
Once compiled, all C/C++ programs organize the computer’s memory into four
regions: program code, global data, the stack, and the heap. The heap is an area of free
memory that is managed by the dynamic allocation functions malloc() and free().
These functions were introduced in Chapter 5 in conjunction with arrays. Here we
will examine them further, beginning with a review of their of their basic operation.

Although C++ still supports C’s dynamic allocation functions, it also defines its own
approach, which is based upon dynamic allocation operators. These are described in
Part Three.

The malloc() function allocates memory and returns a pointer to the start of it. free()
returns previously allocated memory to the heap for possible reuse. The prototypes for
malloc() and free() are

void *malloc(size_t num_bytes);
void free(void *p);

148 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Both functions use the <stdlib.h> header. Here, num_bytes is the number of bytes
requested. If there is not enough free memory to fill the request, malloc() returns a
null. The type size_t is defined in <stdlib.h> and specifies an unsigned integer type
that is capable of holding the largest amount of memory that may be allocated with a
single call to malloc(). It is important that free() be called only with a valid, previously
allocated pointer; otherwise, the organization of the heap could be damaged, which
might cause a program crash.

The code fragment shown here allocates 25 bytes of memory:

char *p;

p = (char *) malloc(25);

After the assignment, p points to the first of 25 bytes of free memory. The cast to char *
is not needed for C but is required for C++ programs. In C, if no type cast is used with
malloc(), the pointer type is converted automatically to the same type as the pointer
variable on the left side of the assignment. In C++, such implicit pointer conversions
are disallowed. Although not needed by C, the use of the type cast allows your C code
to be compatible with C++. As another example, this fragment allocates space for 50
integers. It uses sizeof to ensure portability.

int *p;

p = (int *) malloc(50*sizeof(int));

Since the heap is not infinite, whenever you allocate memory it is imperative to
check the value returned by malloc() to make sure that it is not null before using the
pointer. Using a null pointer may crash the computer. The proper way to allocate
memory and test for a valid pointer is illustrated in this code fragment:

int *p;

if((p = (int *) malloc(100))==NULL) {

printf("Out of memory.\n");

exit(1);

}

The macro NULL is defined in <stdlib.h>. Of course, you can substitute some sort of
error handler in place of exit(). The point is that you do not want the pointer p to be
used if it is null.

You should include the header <stdlib.h> at the top of any file that uses malloc()
and free() because it contains their prototypes.

C h a p t e r 6 : P o i n t e r s 149
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Understanding const Pointers
The const qualifier was introduced in Chapter 2, where it was used to create variables
that could not be changed (by the program) after they were created. However, there is
a second use of const that relates to pointers. The const qualifier can be used to prevent
the object pointed to by an argument to a function from being modified by that function.
That is, when a pointer is passed to a function, that function can modify the object
pointed to by the pointer. However, if the pointer is specified as const in the parameter
declaration, the function code won’t be able to modify the object. For example, the
sp_to_dash() function in the following program prints a dash for each space in its
string argument. That is, the string "this is a test" will be printed as "this-is-a-test". The
use of const in the parameter declaration ensures that the code inside the function
cannot modify the object pointed to by the parameter.

#include <stdio.h>

void sp_to_dash(const char *str);

int main(void)

{

sp_to_dash("this is a test");

return 0;

}

void sp_to_dash(const char *str)

{

while(*str) {

if(*str == ' ') printf("%c", '-');

else printf("%c", *str);

str++;

}

}

If you had written sp_to_dash() in such a way that the string would be modified, it
would not compile. For example, if you had coded sp_to_dash() as follows, you would
receive a compile-time error:

/* This is wrong. */

void sp_to_dash(const char *str)

{

while(*str) {

if(*str == ' ') *str = '-'; /* can't do this */

printf("%c", *str);

str++;

}

}

Many functions in the standard library use const in their parameter declarations. Doing
so ensures that no changes to the argument pointed to by a parameter will occur.

Pointers and Arrays
There is a close relationship between pointers and arrays. Consider this fragment:

char str[80], *p1;

p1 = str;

Here, p1 has been set to the address of the first array element in str. If you wanted to
access the fifth element in str, you could write

str[4]

or

*(p1+4)

Both statements return the fifth element. Remember, arrays start at 0, so a 4 is used to
index str. You add 4 to the pointer p1 to get the fifth element because p1 currently
points to the first element of str. (Recall that an array name without an index returns
the starting address of the array, which is the first element.)

In essence, C/C++ allows two methods of accessing array elements. This is
important because pointer arithmetic can be faster than array-indexing. Since speed is
often a consideration in programming, the use of pointers to access array elements is
very common.

To see an example of how pointers can be used in place of array-indexing, consider
these two simplified versions of the puts() standard library function—one with
array-indexing and one with pointers. The puts() function writes a string to the
standard output device.

150 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : P o i n t e r s 151
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

/* Use array. */

int puts(const char *s)

{

register int t;

for(t=0; s[t]; ++t) putchar(s[t]);

return 1;

}

/* Use pointer. */

int puts(const char *s)

{

while(*s) putchar(*s++);

return 1;

}

Most professional C/C++ programmers would find the second version easier to
read and understand. In fact, the pointer version is the way routines of this sort are
commonly written.

Pointers to Character Arrays
String operations in C are usually performed by using pointers and pointer arithmetic
because strings tend to be accessed in a sequential fashion.

For example, here is one version of the standard library function strcmp() that
uses pointers:

/* Use pointers. */

int strcmp(const char *s1, const char *s2)

{

while(*s1)

if(*s1-*s2)

return *s1-*s2;

else {

s1++;

s2++;

}

return 0; /* equal */

}

Remember, strings in C are terminated by a null, which is a false value. Therefore, a
statement such as

while (*s1)

152 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

continues to iterate until the end of the string is reached. Here, strcmp() returns 0 if s1 is
equal to s2. It returns less than 0 if s1 is less than s2; otherwise, it returns greater than 0.

Most string functions resemble strcmp() with regard to the way it uses pointers,
especially where loop control is concerned. Using pointers is faster, more efficient, and
often easier to understand than using array-indexing.

One common error that sometimes creeps in when using pointers is illustrated by
the following program:

/* This program is incorrect. */

#include <stdio.h>

#include <string.h>

int main(void)

{

char *p1, s[80];

p1 = s; /* assign p1 the starting address of s */

do {

printf("\nEnter string: ");

gets(s); /* read a string */

/* print the decimal equivalent of each

character */

while(*p1) printf(" %d", *p1++);

} while(strcmp(s, "done"));

return 0;

}

Can you find the error in this program?
The problem is that p1 is assigned the address of s only once—outside the loop.

The first time through the loop, p1 does point to the first character in s. However, in
the second (and subsequent iterations), it continues from where it left off, because it is
not reset to the start of the array s. The proper way to write this program is

/* This program is correct. */

#include <stdio.h>

#include <string.h>

C h a p t e r 6 : P o i n t e r s 153
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

int main(void)

{

char *p1, s[80];

do {

p1 = s; /* assign p1 the starting address of s */

printf("\nEnter string: ");

gets(s); /* read a string */

/* print the decimal equivalent of each

character */

while(*p1) printf(" %d", *p1++);

} while(strcmp(s, "done"));

return 0;

}

Here, each time the loop iterates, p1 is set to the start of string s.

Arrays of Pointers
Pointers can be arrayed like any other data type. The declaration for an int pointer
array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third element of the array,
you would write:

x[2] = &var;

To find the value of var, you would write

*x[2]

If you want to pass an array of pointers into a function, you can use the same
method used for other arrays—simply call the function with the array name without
any indexes. For example, a function that could receive array x would look like:

void display_array(int *q[])

{

int t;

for(t=0; t<10; t++)

printf("%d ", *q[t]);

}

Remember, q is not a pointer to integers, but to an array of pointers to integers. Therefore
it is necessary to declare the parameter q as an array of integer pointers as shown here.
You cannot declare q simply as an integer pointer because that is not what it is.

A common use of pointer arrays is to hold pointers to error messages. You can
create a function that outputs a message given its code number, as shown here:

void serror(int num)

{

static char *err[] = {

"Cannot Open File\n",

"Read Error\n",

"Write Error\n",

"Media Failure\n"

};

printf("%s", err[num]);

}

As you can see, printf() inside serror() is called with a character pointer that points to
one of the various error messages indexed by the error number passed to the function.
For example, if num is passed a 2, the message “Write Error” is displayed.

As a point of interest, note that the command line argument argv is an array of
character pointers.

Pointers to Pointers: Multiple Indirection
The concept of arrays of pointers is straightforward because the indexes keep the
meaning clear. However, cases in which one pointer points to another can be very
confusing. A pointer to a pointer is a form of multiple indirection, or a chain of pointers.
Consider Figure 6-3.

In the case of a normal pointer, the value of the pointer is the address of the
location that contains the value desired. In the case of a pointer to a pointer, the first
pointer contains the address of the second pointer, which contains the address of the
location that contains the value desired.

154 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : P o i n t e r s 155
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Multiple indirection can be carried on to whatever extent desired, but there are few
cases where using more than a pointer to a pointer is necessary, or even wise. Excessive
indirection is difficult to follow and prone to conceptual errors. (Do not confuse multiple
indirection with linked lists, which are used in databases.)

A variable that is a pointer to a pointer must be declared as such. This is done by
placing an additional asterisk in front of its name. For example, this declaration tells
the compiler that newbalance is a pointer to a pointer of type float.

float **newbalance;

It is important to understand that newbalance is not a pointer to a floating-point
number but rather a pointer to a float pointer.

In order to access the target value indirectly pointed to by a pointer to a pointer, the
asterisk operator must be applied twice, as is shown in this short example:

#include <stdio.h>

int main(void)

{

int x, *p, **q;

x = 10;

p = &x;

Figure 6-3. Single and multiple indirection

156 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

q = &p;

printf("%d", **q); /* print the value of x */

return 0;

}

Here, p is declared as a pointer to an integer, and q as a pointer to a pointer to an
integer. The call to printf() prints the number 10 on the screen.

Initializing Pointers
After a pointer is declared, but before it has been assigned a value, it may contain an
unknown value. If you try to use the pointer prior to giving it a value, you probably
will crash not only your program but also the operating system of your computer—a
very nasty type of error!

By convention, a pointer that is pointing nowhere should be given the value null to
signify that it points to nothing. However, just because a pointer has a null value does
not make it “safe.” If you use a null pointer on the left side of an assignment statement,
you still risk crashing your program or operating system.

Because a null pointer is assumed to be unused, you can use the null pointer to
make many of your pointer routines easier to code and more efficient. For example,
you could use a null pointer to mark the end of a pointer array. If this is done, a routine
that accesses that array knows that it has reached the end when the null value is
encountered. This type of approach is illustrated by the search() function shown here:

/* Look up a name. */

int search(char *p[], char *name)

{

register int t;

for(t=0; p[t]; ++t)

if(!strcmp(p[t], name)) return t;

return -1; /* not found */

}

The for loop inside search() runs until either a match or a null pointer is found.
Assuming the end of the array is marked with a null, the condition controlling the loop
fails when it is reached.

It is common in professionally written programs to initialize strings. You saw an
example of this in the serror() function shown earlier. Another variation on this theme
is the following type of string declaration:

C h a p t e r 6 : P o i n t e r s 157
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

char *p = "hello world\n";

As you can see, the pointer p is not an array. The reason this sort of initialization works
has to do with the way the compiler operates. All C/C++ compilers create what is called
a string table, which is used internally by the compiler to store the string constants used
by the program. Therefore, this declaration statement places the address of "hello
world" into the pointer p. Throughout the program p can be used like any other string.
For example, the following program is perfectly valid:

#include <stdio.h>

#include <string.h>

char *p = "hello world\n";

int main(void)

{

register int t;

/* print the string forward and backwards */

printf(p);

for(t=strlen(p)-1; t>-1; t--) printf("%c", p[t]);

return 0;

}

Pointers to Functions
In Chapter 4, you were introduced to a particularly confusing yet powerful feature, the
function pointer. Even though a function is not a variable, it still has a physical location
in memory that can be assigned to a pointer. A function’s address is the entry point of
the function. Because of this a function pointer can be used to call a function. In this
section, we will take another look at the function pointer.

In certain types of programs, the user can select one option from a long list of possible
actions. For example, in an accounting program, you may be presented with a menu that
has 20 or more selections. Once the selection has been made, the routine that routes
program execution to the proper function can be handled two ways. The most common
way is to use a switch statement. However, in applications that demand the highest
performance there is a better way. An array of pointers can be created with each pointer in
the array containing the address of a function. The selection made by the user is decoded
and used to index into the pointer array, causing the proper function to be executed. This
method can be very fast—much faster than the switch method.

To see how an array of function pointers can be used as described, imagine that you
are implementing a very simple inventory system that is capable of entering, deleting,
and reviewing data, as well as exiting to the operating system. If the functions that

perform these activities are called enter(), del(), review(), and quit(), respectively, the
following fragment correctly initializes an array of function pointers to these functions:

void enter(void), del(void), review(void), quit(void);

int menu(void);

void (*options[])(void) = {

enter,

del,

review,

quit

} ;

Pay special attention to the way an array of function pointers is declared. Notice the
placement of the parentheses and square brackets.

Although the actual inventory routines are not developed, the following program
illustrates the proper way to execute the functions by using the function pointers.
Notice how the menu() function automatically returns the proper index into the
pointer array.

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include <string.h>

void enter(void), del(void), review(void), quit(void);

int menu(void);

void (*options[])(void) = {

enter,

del,

review,

quit

} ;

int main(void)

{

int i;

i = menu(); /* get user's choice */

(*options[i])(); /* execute it */

158 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

int menu(void)

{

char ch;

do {

printf("1. Enter\n");

printf("2. Delete\n");

printf("3. Review\n");

printf("4. Quit\n");

printf("Select a number: ");

ch = getche();

printf("\n");

} while(!strchr("1234", ch));

return ch-49; /* convert to an integer equivalent */

}

void enter(void)

{

printf("\nIn enter.");

}

void del(void)

{

printf("\nIn del.");

}

void review(void)

{

printf("\nIn review.");

}

void quit(void)

{

printf("\nIn quit.");

exit(0);

}

C h a p t e r 6 : P o i n t e r s 159
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The program works like this. The menu is displayed, and the user enters the
number of the selection desired. Since the number is in ASCII, 49 (the decimal value
of 0) is subtracted from it in order to convert it into a binary integer. This value is then
returned to main() and is used as an index to options, the array of function pointers.
Next, the call to the proper function is executed.

Using arrays of function pointers is very common, not only in interpreters and
compilers but also in database programs, because often these programs provide a large
number of options and efficiency is important.

Problems with Pointers
Nothing will get you into more trouble than a wild pointer! Pointers are a mixed
blessing. They give you tremendous power and are necessary for many programs. But
when a pointer accidentally contains a wrong value, it can be the most difficult bug to
track down. The trouble is that the pointer itself is not the problem; the problem is that
each time you perform an operation using it, you are reading or writing to some
unknown piece of memory. If you read from it, the worst that can happen is that you
get garbage. If you write to it, you might be writing over other pieces of your code or
data. In either case, the problem might not show up until later in the execution of your
program, and may lead you to look for the bug in the wrong place. There may be little
or no evidence to suggest that the pointer is the problem.

Because pointer errors are so troublesome, you should do your best never to
generate one. Toward this end, two of the more common errors are discussed here.

The classic example of a pointer error is the uninitialized pointer. For example:

/* This program is wrong. */

int main(void)

{

int x, *p;

x = 10;

*p = x;

return 0;

}

This program assigns the value 10 to some unknown memory location. The pointer p
has never been given a value; therefore it contains an indeterminate (i.e., garbage)
value. This type of problem often goes unnoticed when your program is very small
because the odds are in favor of p containing a “safe” address—one that is not in your
code, data, stack, heap, or operating system. However, as your program grows, so does

160 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

the probability of p pointing into something vital. Eventually your program stops
working. The solution to this sort of trouble is obvious: make sure that a pointer is
always pointing at something valid before it is used. Although the mistake is easy to
catch in this simple case, frequently uninitialized pointers (or, incorrectly initialized
ones) occur in a way that is not as easy to find.

A second common error is caused by a simple misunderstanding of how to use a
pointer. For example, this program is fundamentally wrong.

#include <stdio.h>

/* This program is wrong. */

int main(void)

{

int x, *p;

x = 10;

p = x;

printf("%d", *p);

return 0;

}

The call to printf() does not print the value of x, which is 10, on the screen. It prints
some unknown value because the assignment

p = x;

is wrong. That statement has assigned the value 10 to the pointer p, which was
supposed to contain an address, not a value. Fortunately, the error in this program is
caught by C++ Builder. The compiler issues a warning message that tells you that a
nonportable pointer conversion is taking place. This is your clue that a pointer error
might have been made—which is the case in this example. To make the program
correct, you should write

p = &x;

Although C++ Builder reported a warning for the mistake in this program, you can’t
always count on it for help. These types of errors can occur in convoluted, roundabout
ways that escape detection. So, be careful.

The fact that pointers can cause very tricky bugs if handled incorrectly is no reason
to avoid using them. Simply be careful and make sure that you know where each
pointer is pointing before using it.

C h a p t e r 6 : P o i n t e r s 161
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

This page intentionally left blank.

Chapter 7
Structures, Unions, and
User-Defined Types

163

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The C language gives you five ways to create a custom data type:

1. The structure, which is a grouping of variables under one name and is called a
compound data type.(The terms aggregate or conglomerate are also commonly used.)

2. The bit-field, which is a variation on the structure and allows easy access to
individual bits.

3. The union, which enables the same piece of memory to be defined as two or
more different types of variables.

4. The enumeration, which is a list of named integer constants.

5. The typedef keyword, which defines a new name for an existing type.

C++ supports all of these and adds classes, which are described in Part Three. The other
methods of creating custom data types are described here.

In C++, structures and unions have both object-oriented and non-object-oriented
attributes. This chapter discusses only their C-like, non-object-oriented features.
Their object-oriented qualities are described later in this book.

Structures
A structure is a collection of variables that are referenced under one name, providing a
convenient means of keeping related information together. A structure declaration forms
a template that can be used to create structure objects. The variables that make up the
structure are called members of the structure. (Structure members are also commonly
referred to as elements or fields.)

Usually, the members of a structure are logically related. For example, the name
and address information found in a mailing list is normally represented as a structure.
The following code fragment declares a structure template that defines the name and
address fields of such a structure. The keyword struct tells the compiler that a structure
is being declared.

struct addr {

char name[30];

char street[40];

char city[20];

char state[3];

char zip[11];

int customer_num;

};

164 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The declaration is terminated by a semicolon because a structure declaration is a statement.
Also, the structure name addr identifies this particular data structure and is its type
specifier. The structure name is often referred to as its tag.

At this point, no variable has actually been declared. Only the form of the data has been
defined. To declare a variable with this structure, you would write

struct addr addr_info;

This declares a variable of type addr called addr_info. When you declare a structure,
you are defining a compound variable type, not a variable. Not until you declare a
variable of that type does one actually exist.

When a structure variable is declared, the compiler automatically allocates
sufficient memory to accommodate all of its members. Figure 7-1 shows how
addr_info appears in memory.

You may also declare one or more variables at the same time that you declare a
structure. For example,

struct addr {

char name[30];

char street[40];

char city[20];

char state[3];

char zip[11];

int customer_num;

} addr_info, binfo, cinfo;

declares a structure type called addr and declares variables addr_info, binfo, and cinfo
of that type.

It is important to understand that each structure variable that you create contains
its own copies of the variables that make up the structure. For example, the zip field of
binfo is separate and distinct from the zip field in cinfo. In fact, the only relationship
that binfo and cinfo have with each other is that they are both instances of the same
type of structure. There is no other linkage between the two.

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 165
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Figure 7-1. The addr_info structure as it appears in memory

166 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

If you need only one structure variable, the structure tag is not needed. This means that

struct {

char name[30];

char street[40];

char city[20];

char state[3];

char zip[11];

int customer_num;

} addr_info;

declares one variable named addr_info as defined by the structure preceding it.
The general form of a structure declaration is

struct tag {
type member-name;
type member-name;
type member-name;
.
.
.

} structure-variables;

The tag is the type name of the structure—not a variable name. The structure-variables
are a comma-separated list of variable names. Remember, either tag or structure-variables
is optional, but not both.

Accessing Structure Members
Individual structure members are accessed through the use of the . (usually called the
“dot”) operator. For example, the following code statement assigns the value 88 to the
customer_num field of the structure variable addr_info declared earlier:

addr_info.customer_num = 88;

The structure variable name followed by a period and the member name references
that individual element. All structure members are accessed in the same way. The
general form is

structure-name.member-name

Therefore, to print the customer number to the screen, you could write

printf("%d", addr_info.customer_num);

This prints the customer number contained in the customer_num variable of the
structure variable addr_info.

In the same fashion, the addr_info.name character array can be used with gets()
as shown here:

gets(addr_info.name);

This passes a character pointer to the start of name.
To access the individual characters of addr_info.name, you can index name.

For example, you can print the contents of addr_info.name one character at a time by
using this code:

register int t;

for(t=0; addr_info.name[t]; ++t) putchar(addr_info.name[t]);

Structure Assignments
The information contained in one structure can be assigned to another structure of the
same type using a single assignment statement. That is, you do not need to assign the
value of each member separately. The following program illustrates structure assignments.

#include <stdio.h>

int main(void)

{

struct {

int a;

int b;

} x, y;

x.a = 10;

x.b = 20;

y = x; /* assign one structure to another */

printf("Contents of y: %d %d.", y.a, y.b);

return 0;

}

After the assignment, y.a and y.b will contain the values 10 and 20, respectively.

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 167
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

168 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Arrays of Structures
Perhaps the most common use of structures is in arrays of structures. To declare an array
of structures, you must first define a structure, and then declare an array variable of
that type. For example, to declare a 100-element array of structures of type addr, which
was declared earlier in this chapter, you would write

struct addr addr_info[100];

This creates 100 sets of variables that are organized as declared in the structure type addr.
To access a specific structure within the addr_info array, index the array variable

name. For example, to print the ZIP code of the third structure, you would write

printf("%s", addr_info[2].zip);

Like all array variables, arrays of structures begin indexing at 0.

An Inventory Example
To help illustrate how structures and arrays of structures are used, consider a simple
inventory program that uses an array of structures to hold the inventory information.
The functions in this program interact with structures and their members in various
ways to illustrate structure usage.

In this example, the information to be stored includes

� item name

� cost

� number on hand

You can define the basic data structure, called inv, to hold this information as

#define MAX 100

struct inv {

char item[30];

float cost;

int on_hand;

} inv_info[MAX];

In the inv structure, item is used to hold each inventoried item’s name. The cost member
contains the item’s cost, and on_hand represents the number of items currently available.

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 169
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The first function needed for the program is main().

int main(void)

{

char choice;

init_list(); /* initialize the structure array */

for(;;) {

choice = menu_select();

switch(choice) {

case 1: enter();

break;

case 2: del();

break;

case 3: list();

break;

case 4: return 0;

}

}

}

In main(), the call to init_list() prepares the structure array for use by putting a null
character into the first byte of each item field. The program assumes that a structure is
not in use if the item field is empty. The init_list() function is defined as follows.

/* Initialize the structure array. */

void init_list(void)

{

register int t;

for(t=0; t<MAX; ++t) inv_info[t].item[0] = '\0';

}

The menu_select() function displays the option messages and returns the user’s
selection:

/* Input the user's selection. */

int menu_select(void)

{

char s[80];

int c;

170 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

printf("\n");

printf("1. Enter an item\n");

printf("2. Remove an item\n");

printf("3. List the inventory\n");

printf("4. Quit\n");

do {

printf("\nEnter your choice: ");

gets(s);

c = atoi(s);

} while(c<0 || c>4);

return c;

}

The enter() function prompts the user for input and places the information entered
into the next free structure. If the array is full, the message “List Full” is printed on the
screen. The function find_free() searches the structure array for an unused element.

/* Input the inventory information. */

void enter(void)

{

int slot;

slot = find_free();

if(slot == -1) {

printf("\nList Full");

return;

}

printf("Enter item: ");

gets(inv_info[slot].item);

printf("Enter cost: ");

scanf("%f", &inv_info[slot].cost);

printf("Enter number on hand: ");

scanf("%d%*c",&inv_info[slot].on_hand);

}

/* Return the index of the first unused array

location or -1 if no free locations exist.

*/

int find_free(void)

{

TE
AM
FL
Y

Team-Fly®

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 171

register int t;

for(t=0; inv_info[t].item[0] && t<MAX; ++t) ;

if(t == MAX) return -1; /* no slots free */

return t;

}

Notice that find_free() returns a −1 if every structure array variable is in use. This
is a “safe” number to use because there cannot be a −1 element of the inv_info array.

The del() function requires the user to specify the number of the item that needs to
be deleted. The function then puts a null character in the first character position of the
item field.

/* Remove an item from the list. */

void del(void)

{

register int slot;

char s[80];

printf("enter record #: ");

gets(s);

slot = atoi(s);

if(slot >= 0 && slot < MAX) inv_info[slot].item[0] = '\0';

}

The final function the program needs is list(). It prints the entire inventory list on
the screen.

/* Display the list on the screen. */

void list(void)

{

register int t;

for(t=0; t<MAX; ++t) {

if(inv_info[t].item[0]) {

printf("Item: %s\n", inv_info[t].item);

printf("Cost: %f\n", inv_info[t].cost);

printf("On hand: %d\n\n", inv_info[t].on_hand);

}

}

printf("\n\n");

}

The complete listing for the inventory program is shown here. If you have any
doubts about your understanding of structures, you should enter this program into
your computer and study its execution by making changes and watching their effects.

/* A simple inventory program using an array of structures */

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

struct inv {

char item[30];

float cost;

int on_hand;

} inv_info[MAX];

void init_list(void), list(void), del(void);

void enter(void);

int menu_select(void), find_free(void);

int main(void)

{

char choice;

init_list(); /* initialize the structure array */

for(;;) {

choice = menu_select();

switch(choice) {

case 1: enter();

break;

case 2: del();

break;

case 3: list();

break;

case 4: return 0;

}

}

}

/* Initialize the structure array. */

void init_list(void)

172 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

{

register int t;

for(t=0; t<MAX; ++t) inv_info[t].item[0] = '\0';

}

/* Input the user's selection. */

int menu_select(void)

{

char s[80];

int c;

printf("\n");

printf("1. Enter an item\n");

printf("2. Remove an item\n");

printf("3. List the inventory\n");

printf("4. Quit\n");

do {

printf("\nEnter your choice: ");

gets(s);

c = atoi(s);

} while(c<0 || c>4);

return c;

}

/* Input the inventory information. */

void enter(void)

{

int slot;

slot = find_free();

if(slot == -1) {

printf("\nList Full");

return;

}

printf("Enter item: ");

gets(inv_info[slot].item);

printf("Enter cost: ");

scanf("%f", &inv_info[slot].cost);

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 173
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

printf("Enter number on hand: ");

scanf("%d%*c", &inv_info[slot].on_hand);

}

/* Return the index of the first unused array

location or -1 if no free locations exist.

*/

int find_free(void)

{

register int t;

for(t=0; inv_info[t].item[0] && t<MAX; ++t) ;

if(t == MAX) return -1; /* no slots free */

return t;

}

/* Remove an item from the list. */

void del(void)

{

register int slot;

char s[80];

printf("enter record #: ");

gets(s);

slot = atoi(s);

if(slot >= 0 && slot < MAX) inv_info[slot].item[0] = '\0';

}

/* Display the list on the screen. */

void list(void)

{

register int t;

for(t=0; t<MAX; ++t) {

if(inv_info[t].item[0]) {

printf("Item: %s\n", inv_info[t].item);

printf("Cost: %f\n", inv_info[t].cost);

printf("On hand: %d\n\n", inv_info[t].on_hand);

}

}

printf("\n\n");

}

174 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 175
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Passing Structures to Functions
So far, all structures and arrays of structures used in the examples have been assumed
to be either global or defined within the function that uses them. In this section special
consideration will be given to passing structures and their members to functions.

Passing Structure Members to Functions
When you pass a member of a structure to a function, you are actually passing the
value of that member to the function. Therefore, you are passing a simple variable
(unless, of course, that element is compound, such as an array of characters). For
example, consider this structure:

struct fred {

char x;

int y;

float z;

char s[10];

} mike;

Here are examples of each member being passed to a function:

func(mike.x); /* passes character value of x */

func2(mike.y); /* passes integer value of y */

func3(mike.z); /* passes float value of z */

func4(mike.s); /* passes address of string s */

func(mike.s[2]); /* passes character value of s[2] */

If you wanted to pass the address of an individual structure member to achieve
call-by-reference parameter passing, you would place the & operator before the structure
name. For example, to pass the address of the elements in the structure mike, you
would write

func(&mike.x); /* passes address of character x */

func2(&mike.y); /* passes address of integer y */

func3(&mike.z); /* passes address of float z */

func4(mike.s); /* passes address of string s */

func(&mike.s[2]); /* passes address of character s[2] */

Notice that the & operator precedes the structure name, not the individual member
name. Note also that the array s already signifies an address, so that no & is required.
However, when accessing a specific character in string s, as shown in the final example,
the & is still needed.

Passing Entire Structures to Functions
When a structure is used as an argument to a function, the entire structure is passed
using the standard call-by-value method. This means that any changes made to the
contents of the structure inside the function to which it is passed do not affect the
structure used as an argument.

When using a structure as a parameter, the most important thing to remember is
that the type of the argument must match the type of the parameter. The best way to
do this is to define a structure globally and then use its tag name to declare structure
variables and parameters as needed. For example:

#include <stdio.h>

/* declare a structure type */

struct struct_type {

int a, b;

char ch;

};

void f1(struct struct_type parm);

int main(void)

{

struct struct_type arg; /* declare arg */

arg.a = 1000;

f1(arg);

return 0;

}

void f1(struct struct_type parm)

{

printf("%d", parm.a);

}

This program prints the number 1000 on the screen. As you can see, both arg and parm
are declared to be structures of type struct_type.

176 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 177
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Structure Pointers
C/C++ allows pointers to structures in the same way it does to other types of
variables. However, there are some special aspects to structure pointers that you
must keep in mind.

Declaring a Structure Pointer
Structure pointers are declared by placing the * in front of a structure variable’s name.
For example, assuming the previously defined structure addr, the following declares
addr_pointer to be a pointer to data of that type:

struct addr *addr_pointer;

Using Structure Pointers
To find the address of a structure variable, the & operator is placed before the structure’s
name. For example, given the following fragment,

struct bal {

float balance;

char name[80];

} person;

struct bal *p; /* declare a structure pointer */

then

p = &person;

places the address of the structure person into the pointer p.
To access the members of a structure using a pointer to that structure, you must

use the arrow operator. The arrow operator, −>, is formed using a minus sign and a
greater-than symbol. For example, to reference the balance member using p, you
would write

p->balance

To see how structure pointers can be used, examine this simple program that
prints the hours, minutes, and seconds on the screen using a software timer. (The
timing of the program is adjusted by changing the definition of DELAY to fit the
speed of your computer.)

/* Display a software timer. */

#include <stdio.h>

#include <conio.h>

#define DELAY 128000

struct my_time {

int hours;

int minutes;

int seconds;

};

void update(struct my_time *t), display(struct my_time *t);

void mydelay(void);

int main(void)

{

struct my_time systime;

systime.hours = 0;

systime.minutes = 0;

systime.seconds = 0;

for(;;) {

update(&systime);

display(&systime);

if(kbhit()) return 0;

}

}

void update(struct my_time *t)

{

t->seconds++;

if(t->seconds==60) {

t->seconds = 0;

t->minutes++;

}

178 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 179
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

if(t->minutes==60) {

t->minutes = 0;

t->hours++;

}

if(t->hours==24) t->hours = 0;

mydelay();

}

void display(struct my_time *t)

{

printf("%02d:", t->hours);

printf("%02d:", t->minutes);

printf("%02d\n", t->seconds);

}

void mydelay(void)

{

long int t;

for(t=1; t<DELAY; ++t) ;

}

A global structure called my_time is declared. Inside main(), the structure variable
called systime, of type my_time, is declared and initialized to 00:00:00. This means that
systime is known directly only to the main() function.

The functions update(), which changes the time, and display(), which prints the
time, are passed the address of systime. In both functions the argument is declared to
be a pointer to a structure of type my_time. Inside the functions, each structure element
is actually referenced through a pointer. For example, to set the hours back to 0 when
24:00:00 is reached, this statement is used.

if(t->hours==24) t->hours = 0;

This line of code tells the compiler to take the address of t (which points to systime in
main()) and assign 0 to its hours member.

Use the dot operator to access structure members when operating on the structure itself.
Use the arrow operator when referencing a structure through a pointer.

As a final example of using structure pointers, the following program illustrates how a
general-purpose integer input function can be designed. The function input_xy() allows

180 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

you to specify the x and y coordinates at which a prompting message will be displayed and
then inputs an integer value. To accomplish these things it uses the structure xyinput.

/* A generalized input example using structure pointers. */

#include <stdio.h>

#include <conio.h>

#include <string.h>

struct xyinput {

int x, y; /* screen location for prompt */

char message[80]; /* prompting message */

int i; /* input value */

} ;

void input_xy(struct xyinput *info);

int main(void)

{

struct xyinput mess;

mess.x = 10; mess.y = 10;

strcpy(mess.message, "Enter an integer: ");

clrscr();

input_xy(&mess);

printf("Your number squared is: %d.", mess.i*mess.i);

return 0;

}

/* Display a prompting message at the specified location

and input an integer value.

*/

void input_xy(struct xyinput *info)

{

gotoxy(info->x, info->y);

printf(info->message);

scanf("%d", &info->i);

}

The program uses the functions clrscr() and gotoxy() to clear the screen and
position the cursor, respectively. Both functions use the <conio.h> header file. A
function like input_xy() is useful when your program must input many pieces of
information. (In fact, you might want to create several functions like input_xy() that
input other types of data.)

TE
AM
FL
Y

Team-Fly®

Arrays and Structures Within Structures
A member of a structure can be either simple or compound. A simple member is any
of the built-in data types, such as integer or character. You have already seen a
few compound elements. The character array used in addr_info is an example. Other
compound data types are single- and multidimensional arrays of the other data types
and structures.

A member of a structure that is an array is treated as you might expect from the
earlier examples. For example, consider this structure:

struct x {

int a[10][10]; /* 10 x 10 array of ints */

float b;

} y;

To reference integer 3,7 in a of structure y, you would write

y.a[3][7]

When a structure is a member of another structure, it is called a nested structure.
For example, here the structure addr is nested inside emp:

struct emp {

struct addr address;

float wage;

} worker;

Here, a structure emp has been declared as having two members. The first is the
structure of type addr, which contains an employee’s address. The other is wage,
which holds the employee’s wage. The following code fragment assigns $65,000 to
the wage element of worker and 98765 to the zip field of address:

worker.wage = 65000.00;

strcpy(worker.address.zip,"98765");

As this example shows, the members of each structure are referenced from outermost
to innermost (left to right).

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 181
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

182 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Bit-Fields
Unlike most other computer languages, C/C++ has a built-in feature, called a bit-field, that
allows access to a single bit. Bit-fields are useful for a number of reasons. Here are three:

1. If storage is limited, you can store several Boolean (true/false) variables in one byte.
2. Certain device interfaces transmit information encoded into bits within a

single byte.
3. Certain encryption routines need to access the bits within a byte.

Although all these functions can be performed using the bitwise operators, a bit-field
can add more structure to your code.

The method C/C++ uses to access bits is based on the structure. A bit-field is really
just a special type of structure member that defines how long, in bits, the field is to be.
The general form of a bit-field declaration is

struct struct-name {
type name1 : length;
type name2 : length;
.
.
.

type nameN : length;
}

Here, type is the type of the bit-field and length is the number of bits in the field. Also,
type must be an integral type.

Here is a bit-field example:

struct device {

unsigned int active : 1;

unsigned int ready : 1;

unsigned int xmt_error : 1;

} dev_code;

This structure defines three variables of 1 bit each. The structure variable dev_code might
be used to decode information from the port of a tape drive, for example. Assuming a
hypothetical tape drive, the following code fragment writes a byte of information to the
tape and checks for errors using dev_code from the preceding code:

void wr_tape(char c)

{

while(!dev_code.ready) rd(&dev_code); /* wait */

wr_to_tape(c); /* write out byte */

while(dev_code.active) rd(&dev_code); /* wait until info is written */

if(dev_code.xmt_error) printf("Write Error");

}

Here, rd() returns the status of the tape drive and wr_to_tape() actually writes the data.

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 183
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Figure 7-2 shows what the bit-field variable dev_code looks like in memory.
As you can see from the previous example, each bit-field is accessed using the

dot operator. However, if the structure is referenced through a pointer, you must use
the −> operator.

You do not have to name each bit-field. This makes it easy to reach the bit you want
and pass up unused ones. For example, if the tape drive also returned an end-of-tape
flag in bit 5, you could alter the structure device to accommodate this, as shown here.

struct device {

unsigned active : 1;

unsigned ready : 1;

unsigned xmt_error : 1;

unsigned : 2;

unsigned EOT : 1;

} dev_code;

Bit-fields have certain restrictions. You cannot take the address of a bit-field
variable. Bit-field variables cannot be arrayed. You cannot know, from machine to
machine, whether the fields will run from right to left or from left to right; any code
that uses bit-fields may have machine dependencies.

Finally, it is valid to mix other structure elements with bit-fields. For example,

struct emp {

struct addr address;

float pay;

unsigned lay_off:1; /* lay off or active */

unsigned hourly:1; /* hourly pay or wage */

unsigned deductions:3; /* IRS deductions */

};

defines an employee record that uses only 1 byte to hold three pieces of information:
the employee’s status, whether the employee is salaried, and the number of deductions.
Without the use of the bit-field, this information would have taken 3 bytes.

Figure 7-2. The bit-field variable dev_code in memory

184 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Unions
A union is a memory location that is shared by several variables that are of different
types. The union declaration is similar to that of a structure, as shown in this example:

union union_type {

int i;

char ch;

} ;

As with structures, you may declare a variable either by placing its name at the end
of the definition or by using a separate declaration statement. To declare a union
variable cnvt of type union_type using the definition just given, you would write

union union_type cnvt;

In cnvt, both integer i and character ch share the same memory location. Of course, for
C++ Builder, i occupies 4 bytes and ch uses only 1. Figure 7-3 shows how i and ch
share the same address. At any time, you can refer to the data stored in cnvt as either
an integer or a character.

When a union is declared, the compiler automatically creates a variable large
enough to hold the largest variable type in the union.

To access a union member, use the same syntax that you would use for structures:
the dot and arrow operators. If you are operating on the union directly, use the dot
operator. If the union variable is accessed through a pointer, use the arrow operator.
For example, to assign the integer 10 to element i of cnvt, you would write

cnvt.i = 10;

Unions are used frequently when type conversions are needed because you can
refer to the data held in the union in fundamentally different ways. For example, using
a union you can easily create a function that writes the binary representation of an
integer to a file, one byte at a time. For C++ Builder, which uses 32-bit integers, this
means writing the four bytes that form the integer. Although there are many ways to

Figure 7-3. How i and ch use the union cnvt

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 185
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

code such a function, here is one way to do it using a union. First, a union composed
of one integer and a 4-byte character array is created:

union pw {

int i;

char ch[4];

};

This union will let you access the four bytes that make up an interger as four individual
characters. Now, you can use pw to create the write_int() function shown in the
following program.

#include <stdio.h>

#include <stdlib>

union pw {

int i;

char ch[4];

};

int write_int(int num, FILE *fp);

int main()

{

FILE *fp;

fp = fopen("test.tmp", "w+");

if(fp==NULL) {

printf("Cannot open file.\n");

exit(1);

}

write_int(1000, fp);

fclose(fp);

return 0;

}

/* write an integer using union */

int write_int(int num, FILE *fp)

{

union pw wrd;

wrd.i = num;

putc(wrd.ch[0], fp); /* write first byte */

186 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

putc(wrd.ch[1], fp); /* write second byte */

putc(wrd.ch[2], fp); /* write third byte */

return putc(wrd.ch[3], fp); /* writes last byte */

}

Although called with an integer, write_int() uses the union to write all four bytes
(remember you are dealing with 32-bit integers—4 bytes in total) of the integer to the
disk file.

Enumerations
An enumeration is a set of named integer constants that specifies all the legal values that
a variable of its type can have. Enumerations are common in everyday life. For example,
an enumeration of the coins used in the United States is

penny, nickel, dime, quarter, half-dollar, dollar

Enumerations are defined by using the keyword enum to signal the start of an
enumeration type. The general form is

enum tag { enumeration-list } variable-list;

Both the enumeration name tag and the variable-list are optional, but one of them
must be present. The enumeration-list is a comma-separated list of identifiers. As with
structures, the tag is used to declare variables of its type. The following fragment
defines an enumeration called coin and declares money to be of that type:

enum coin { penny, nickel, dime, quarter,

half_dollar, dollar};

enum coin money;

Given this definition and declaration, the following types of statements are perfectly
valid:

money = dime;

if(money==quarter) printf("is a quarter\n");

The key point to understand about an enumeration is that each of the symbols
stands for an integer value and can be used in any integer expression. For example,

printf("The value of quarter is %d ", quarter);

is perfectly valid.
Unless initialized otherwise, the value of the first enumeration symbol is 0, the

second is 1, and so forth. Therefore,

printf("%d %d", penny, dime);

displays 0 2 on the screen.
It is possible to specify the value of one or more of the symbols by using an

initializer. This is done by following the symbol with an equal sign and an integer
value. Whenever an initializer is used, symbols that appear after it are assigned values
greater than the previous initialization value. For example, the following assigns the
value of 100 to quarter.

enum coin { penny, nickel, dime, quarter=100,

half_dollar, dollar};

Now, the values of these symbols are

penny 0

nickel 1

dime 2

quarter 100

half_dollar 101

dollar 102

Using initializations, more than one element of an enumeration can have the same value.
A common misconception is that the symbols of an enumeration can be input and

output directly, but this is not true. For example, the following code fragment will not
perform as desired:

/* This will not work. */

money = dollar;

printf("%s", money);

Remember that the symbol dollar is simply a name for an integer; it is not a string.
Hence, it is not possible for printf() to display the string "dollar" using the value in

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 187
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

188 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

money. Likewise, you cannot give an enumeration variable a value using a string
equivalent. That is, this code does not work:

/* This code will not work. */

money = "penny";

Actually, creating code to input and output enumeration symbols is quite tedious
(unless you are willing to settle for their integer values). For example, the following
code is needed to display, in words, the kind of coins that money contains:

switch(money) {

case penny: printf("penny");

break;

case nickel: printf("nickel");

break;

case dime: printf("dime");

break;

case quarter: printf("quarter");

break;

case half_dollar: printf("half_dollar");

break;

case dollar: printf("dollar");

}

Sometimes, it is possible to declare an array of strings and use the enumeration
value as an index to translate an enumeration value into its corresponding string. For
example, this code also outputs the proper string:

char name[][12]={

"penny",

"nickel",

"dime",

"quarter",

"half_dollar",

"dollar"

};

/* ... */

printf("%s", name[money]);

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 189
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Of course, this works only if no initializations are used, because the string array must
be indexed starting at 0.

Since enumeration values must be converted manually to their human-readable
string values for human I/O, they are most useful in routines that do not make such
conversions. For example, an enumeration is commonly used to define a compiler’s
symbol table.

An Important Difference Between C and C++
There is an important difference between C and C++ as it relates to the type names of
structures, unions, and enumerations. In C, to declare a structure, you would use the
following statement

struct addr addr_info;

where addr is the tag. As you can see, the tag name addr is preceded with the keyword
struct. However in C++, you can use this shorter form:

addr addr_info; /* OK for C++, wrong for C */

Here, the keyword struct is not needed. In C++, once a structure has been declared,
you can declare variables of its type using only the tag, without preceding it with the
keyword struct. The reason for this difference is that in C, a structure’s name does not
define a complete type name. This is why C refers to this name as a tag. However, in
C++, a structure’s name is a complete type name and can be used by itself to define
variables. Keep in mind, however, that it is still okay to use the C-style declaration in a
C++ program. The preceding discussion also holds true for the use of union and enum.

Using sizeof to Ensure Portability
You have seen that structures and unions can be used to create variables of varying
sizes, and that the actual size of these variables may change from machine to machine.
The sizeof unary operator computes the size of any variable or type and can help
eliminate machine-dependent code from your programs. It is especially useful where
structures or unions are concerned.

190 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

For the discussion that follows, keep in mind that C++ Builder has the following
sizes for these data types:

Type Size in Bytes

char 1

short int 2

int 4

long int 4

float 4

double 8

long double 10

Therefore, the following code will print the numbers 1, 4, 4, and 10 on the screen:

char ch;

int i;

float f;

printf("%d\n", sizeof ch);

printf("%d\n", sizeof i);

printf("%d\n", sizeof f);

printf("%d\n", sizeof(long double));

The size of a structure is equal to or greater than the sum of the sizes of its
members. For example,

struct s {

char ch;

int i;

float f;

} s_var;

Here, the sum of the sizes of the individual members is 9 (4+4+1). However, the actual
size of s_var might be greater because the compiler is free to align data on word (or
paragraph) boundaries. This means that the size of an aggregate data type (such as a
structure) may be slightly larger than the sum of its parts. Manually adding up the
lengths of the structure members, for example, may not yield its correct size. For C++

TE
AM
FL
Y

Team-Fly®

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , a n d U s e r - D e f i n e d T y p e s 191
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Builder, the size of s_var is 12, because of the reasons just stated. Therefore, for maximum
portability, you should always use sizeof to determine the size of a structure variable.

Since the sizeof operator is a compile-time operator, all the information necessary to
compute the size of any variable is known at compile time. This is especially meaningful
for unions because the size of a union is always equal to the size of its largest member.
For example, consider the following:

union u {

char ch;

int i;

float f;

} u_var;

The sizeof(u_var) will be 4 bytes long. At run time, it does not matter what u_var is
actually holding; all that matters is the size of the largest variable it can hold, because
the union must be as large as its largest element.

typedef
C/C++ allows you to define new data type names using the typedef keyword. You
are not actually creating a new data type; you are defining a new name for an existing
type. This process can help make machine-dependent programs more portable; only
the typedef statements need to be changed. It also can help you document your code
by allowing descriptive names for the standard data types. The general form of the
typedef statement is

typedef type newname;

where type is any existing data type and newname is the new name for this type. The
new name you define is an addition to, not a replacement for, the existing type name.

For example, you could create a new name for float by using

typedef float balance;

This statement tells the compiler to recognize balance as another name for float. Next
you could create a float variable using balance:

balance past_due;

Here, past_due is a floating-point variable of type balance, which is another word for float.

You can also use typedef to create names for more complex types. For example:

typedef struct {

float due;

int over_due;

char name[40];

} client; /* here client is the new type name */

client clist[NUM_CLIENTS]; /* define array of

structures of type client */

Using typedef can help make your code easier to read and more portable. But
remember, you are not creating any new data types.

192 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Chapter 8
Input, Output,
Streams, and Files

193

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The C language does not define any keywords that perform input or output.
Instead, I/O is accomplished through library functions. C++ Builder supports
three I/O systems:

� The ANSI/ISO Standard C I/O system

� The UNIX-like I/O system

� Several low-level, platform-specific I/O functions

With a few exceptions, this chapter discusses only the I/O system defined by the
ANSI/ISO standard for C. The reason for this is twofold. First, the ANSI/ISO C I/O
system is the most widely used. Second, it is fully portable to all platforms. The
functions that compose the other two systems are covered in Part Two of this book.

This chapter presents an overview of the ANSI/ISO C I/O system and illustrates
the way its core functions work together. The ANSI/ISO C I/O library contains a rich
and diverse assortment of I/O routines—more than can be fully covered here.
However, the functions in this chapter are sufficient for most circumstances. From this
point forward, we will refer to the ANSI/ISO C I/O system as simply the C I/O system.

The prototypes and several predefined types and constants for the C I/O library
functions are found in the file <stdio.h>.

C Versus C++ I/O
Because C forms the foundation for C++, there is sometimes confusion over how C’s
I/O system relates to C++. First, C++ supports the entire set of C I/O functions. Thus,
if you will be porting C code to C++, you will not have to change all of the I/O routines
right away. Second, C++ defines its own, object-oriented I/O system, which includes
both I/O functions and I/O operators and completely duplicates the functionality of
the C I/O system. If you are writing C++ programs, you should use the C++ I/O system
(described in Part Three). For C code, you must use the standard C I/O system described
in this chapter. However, even if you will be writing mostly C++ code, you will still
want to be familiar with the C I/O system for these three reasons:

� For several years to come, C and C++ will coexist. Also, many programs will be
hybrids of both C and C++ code. Further, many C programs will be upgraded
into C++ programs. Thus, knowledge of both the C and the C++ I/O systems is
necessary. For example, in order to change the C-based I/O functions into C++
object-oriented I/O functions, you will need to know how both the C and C++
I/O systems operate.

� An understanding of the basic principles behind the C I/O system helps you
understand the C++ object-oriented I/O system. (Both share the same general
concepts.)

194 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

� In certain situations (for example, in very short, “throw-away” programs), it
may be easier to use C’s non-object-oriented approach to I/O than it is to use
the object-oriented I/O defined by C++.

In addition, there is an unwritten rule that any C++ programmer must also be a
C programmer. If you don’t know how to use the C I/O system, you will be limiting
your professional horizons.

Streams and Files
Fundamental to understanding the C (and C++) I/O system are the concepts of streams
and files. The C I/O system supplies a consistent interface to the programmer independent
of the actual device being accessed. That is, the C I/O system provides a level of abstraction
between the programmer and the hardware. This abstraction is called a stream; the
actual device is called a file. It is important to know how streams and files interact.

Streams
The C I/O system is designed to work with a wide variety of devices, including terminals,
disk drives, and tape drives. Even though each device is different, the I/O system
transforms each into a logical device called a stream. All streams behave similarly.
Because streams are largely device independent, the same function that can write to
a disk file can also write to another type of device, such as the console. There are two
types of streams: text and binary.

Text Streams
A text stream is a sequence of characters. Standard C states that a text stream is organized
into lines terminated by a newline character. However, the newline character is optional
on the last line. In a text stream, certain character translations may occur as required
by the host environment. For example, a newline may be converted to a carriage
return/linefeed pair. Therefore, there may not be a one-to-one relationship between the
characters that are written or read and those on the external device. Also, because of
possible translations, the number of characters written or read may not be the same as
the number that is stored on the external device.

Binary Streams
A binary stream is a sequence of bytes that have a one-to-one correspondence to those
on the external device. That is, no character translations occur. Also, the number of
bytes written or read is the same as the number on the external device. However, an
implementation-defined number of null bytes may be appended to a binary stream.
These null bytes might be used to pad the information so that it fills a sector on a disk,
for example.

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 195
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

196 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Files
In C, a file is a logical concept that can be applied to everything from disk files to terminals
or printers. You associate a stream with a specific file by performing an open operation.
Once a file is open, information can be exchanged between it and your program.

Not all files have the same capabilities. For example, a disk file can support random
access, while some printers cannot. This illustrates an important point about the C I/O
system: All streams are the same, but all files are not.

If the file can support random access (also called position requests), opening that file
initializes the file position indicator to the start of the file. As each character is read from
or written to the file, the position indicator is incremented, ensuring progression
through the file.

The smallest accessible portion of a disk is a sector. Information is written to or read
from a disk one sector at a time. Thus, even if your program only needs a single byte of
data, an entire sector of data will be read. This data is put into a region of memory
called a buffer until it can be used by your program. When data is output to a disk file,
it is buffered until a full sector’s worth of information has been accumulated, at which
point it is actually physically written to the file.

You disassociate a file from a specific stream using a close operation. Closing a
stream causes any contents of its associated buffer to be written to the external device
(it will be padded, if necessary, to fill out a complete sector). This process, generally
called flushing the buffer, guarantees that no information is accidentally left in the disk
buffer. All files are closed automatically when your program terminates normally by
main() returning to the operating system or by calling exit(). However, it is better to
actually close a file using fclose() as soon as it is no longer needed because several
events can prevent the buffer from being written to the disk file. For example, files are
not written if a program terminates through a call to abort(), if it crashes, or if the user
turns the computer off before terminating the program.

At the beginning of a program’s execution five predefined text streams are opened.
They are stdin, stdout, stderr, stdaux, and stdprn, and they refer to the standard I/O
devices connected to the system, as shown here:

Stream Device

stdin Keyboard

stdout Screen

stderr Screen

stdaux First serial port

stdprn Printer

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 197
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The first three streams are defined by ANSI/ISO Standard C, and any code that
uses them is fully portable. The last two are specific to C++ Builder and may not be
portable to other compilers. Most operating systems allow I/O redirection, so routines
that read or write to these streams can be redirected to other devices. (Redirection of
I/O is the process whereby information that would normally go to one device is
rerouted to another device by the operating system.) You should never try explicitly to
open or close these files.

Each stream that is associated with a file has a file control structure of type FILE.
This structure is defined in the header <stdio.h>. You must not make modifications to
this structure.

If you are new to programming, C’s separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide a
consistent interface. In C, you need only think in terms of streams and use only one file
system to accomplish all I/O operations. The C I/O system automatically converts the
raw input or output from each device into an easily managed stream.

The remainder of this chapter discusses the Standard C I/O system. It does so by
dividing it into two parts: console I/O and file I/O. As you will see, these are different
sides of the same coin. However, this somewhat artificial distinction makes it easier to
discuss them.

Console I/O
Console I/O refers to operations that occur at the keyboard and screen of your
computer. Because input and output to the console is such a common affair, a
subsystem of the C I/O file system was created to deal exclusively with console I/O.
Technically, these functions direct their operations to the standard input (stdin) and
standard output (stdout) of the system. Thus, it is possible to redirect console I/O to
other devices. However, in this chapter it is assumed that the standard input and the
standard output have not been redirected.

Neither the C nor C++ languages provide built-in support for graphic user interfaces
such as Windows. When performing input or output in a Windows environment, you
will need to use special functions defined by Windows itself.

Reading and Writing Characters
The simplest of the console I/O functions are getchar(), which reads a character from
the keyboard, and putchar(), which prints a character to the screen. However,
getchar() has some significant limitations, which are described later. For this reason,
most of the time you will substitute getche() when you need to read a character. The

198 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

getche() function is defined by C++ Builder, not by ANSI/ISO Standard C. Although it
is a common extension, it is not portable to all other environments. getche() waits until
a key is pressed and then returns its value. The key pressed is also echoed to the screen
automatically. The prototypes for getche() and putchar() are shown here:

int getche(void); /* requires <conio.h> */
int putchar(int ch); /* requries <stdio.h> */

The getche() function returns the character pressed. The putchar() function returns
ch if successful, or EOF if an error occurs. (EOF is a macro defined in <stdio.h> that
stands for end of file.) Even though ch is declared as an integer, only the low-order byte
is displayed on the screen. Similarly, even though getche() returns an integer, the
low-order byte will contain the character entered at the keyboard. The getche()
function requires the <conio.h> header file, which is not part of Standard C.

The following program inputs characters from the keyboard and prints them in
reverse case. That is, uppercase prints as lowercase, and lowercase as uppercase. The
program halts when a period is typed.

/* Case Switcher */

#include <conio.h>

#include <stdio.h>

#include <ctype.h>

int main(void) {

char ch;

do {

ch = getche();

if(islower(ch)) putchar(toupper(ch));

else putchar(tolower(ch));

} while (ch!='.'); /* use a period to stop*/

return 0;

}

There are two important alternatives to getche(). The first is getchar(), mentioned
earlier, which is the character input function defined by ANSI/ISO Standard C. The
trouble with getchar() is that it buffers input until a carriage return is entered. The
reason for this is that the original UNIX systems line-buffered terminal input—that is,
you had to enter a carriage return before anything you had just typed was actually sent
to the computer. To be compatible with the UNIX implementation, many compilers,
including C++ Builder, have implemented getchar() so that it line-buffers input. This is

quite annoying in today’s interactive environments, and the use of getchar() is not
recommended. You may want to play with it a little to understand its effect better.
However, this guide makes little use of getchar().

A second, more useful, variation on getche() is getch(), which operates like
getche() except that the character you type is not echoed to the screen. You can use
this fact to create a rather humorous (if disconcerting) program to run on some
unsuspecting user. The program, shown here, displays what appears to be a standard
command prompt and waits for input. However, every character the user types is
displayed as the next letter in the alphabet. That is, an “A” becomes “B”, and so forth.
To stop the program, press CTRL-A.

/* This program appears to act as a command-prompt gone wild. It

displays the command prompt but displays every character

the user types as the next letter in the alphabet.

*/

#include <stdio.h>

#include <conio.h>

int main(void)

{

char ch;

do {

printf("C>");

for(;;) {

ch = getch(); /* read chars without echo */

if(ch=='\r' || ch==1) {

printf("\n");

break;

}

putchar(ch+1);

}

} while(ch!=1) ; /* exit on control-A */

return 0;

}

While this program is, obviously, just for fun, getch() has many practical uses. For
example, you could use it to input a password without echoing the password to the screen.

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 199
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Reading and Writing Strings: gets() and puts()
The next step up in console I/O are the functions gets() and puts(). They enable you
to read and write strings of characters.

The gets() function reads a string of characters entered at the keyboard and stores
it at the address pointed to by its argument. You can type characters at the keyboard
until you strike a carriage return. The carriage return does not become part of the
string; instead, a null terminator is placed at the end, and gets() returns. In fact, it is
impossible to use gets() to obtain a carriage return (you can use getchar() and its
variants, though). Typing mistakes can be corrected by using the backspace before
pressing ENTER. The prototype for gets() is:

char *gets(char *str);

where str is a character array. The gets() function returns a pointer to str. For example,
the following program reads a string into the array str and prints its length:

#include <stdio.h>

#include <string.h>

int main(void)

{

char str[80];

gets(str);

printf("Length is %d", strlen(str));

return 0;

}

There is a potential problem with gets(). Using gets(), it is possible to overrun the
boundaries of its character array argument. This is because there is no way for gets() to
know when it has reached the limit of the array. For example, if you call gets() with an
array that is 40 bytes long and then enter 40 or more characters, you will have overrun
the array. This will, obviously, cause problems and often lead to a system crash. As an
alternative, you can use the fgets() function described later in this chapter, which
allows you to specify a maximum length. The only trouble with fgets() is that it retains
the newline character. If you don’t want the newline, it must be removed manually.

The puts() function writes its string argument to the screen followed by a newline.
Its prototype is

int puts(const char *str);

200 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Here, str is the string to display. The function returns nonnegative if successful and
EOF on failure. It recognizes the same backslash codes as printf(), such as \t for tab.
A call to puts() requires far less overhead than the same call to printf() because
puts() outputs only a string of characters; it does not output numbers or do format
conversions. It takes up less space and runs faster than printf(). The following
statement displays "hello".

puts("hello");

Table 8-1 summarizes the basic console I/O functions.

Formatted Console I/O
The C/C++ standard library contains two functions that perform formatted input and
output on the built-in data types: printf() and scanf(). The term formatted refers to the
fact that these functions can read and write data in various formats that are under your
control. The printf() function is used to write data to the console. The scanf() function
reads data from the keyboard. Both printf() and scanf() can operate on any of the
built-in data types, including characters, strings, and numbers.

printf()
The printf() function has this prototype

int printf(const char *fmt_string, . . .);

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 201

Function Operation

getchar() Reads a character from the keyboard; waits for carriage return.

getche() Reads a character with echo; does not wait for carriage return;
not defined by Standard C, but a common extension.

getch() Reads a character without echo; does not wait for carriage
return; not defined by Standard C, but a common extension.

putchar() Writes a character to the screen.

gets() Reads a string from the keyboard.

puts() Writes a string to the screen.

Table 8-1. The Basic Console I/O Functions

The first argument, fmt_string, defines the way any subsequent arguments are displayed.
It consists of two types of items. The first type is characters that will be printed on the
screen. The second type contains format specifiers that define the way subsequent
arguments are displayed. A format specifier begins with a percent sign and is followed
by a format code. The format specifiers are shown in Table 8-2. There must be exactly the
same number of arguments as there are format specifiers, and the format specifiers and
arguments are matched in order from left to right. For example, this call to printf()

printf("Hi %c %d %s", 'c', 10, "there!");

displays “Hi c 10 there!”. The printf() function returns the number of characters
written or an EOF if an error occurs.

202 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Code Format

%c Character

%d Signed decimal integers

%i Signed decimal integers

%e Scientific notation (lowercase e)

%E Scientific notation (uppercase E)

%f Decimal floating point

%g Uses %e or %f, whichever is shorter.

%G Uses %E or %F, whichever is shorter.

%o Unsigned octal

%s String of characters

%u Unsigned decimal integers

%x Unsigned hexadecimal (lowercase letters)

%X Unsigned hexadecimal (uppercase letters)

%p Displays a pointer.

%n The associated argument is an integer pointer into which the
number of characters written so far is placed.

%% Prints a % sign.

Table 8-2. The printf() Format Specifiers

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 203
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Printing Characters
To print an individual character, use %c. This causes its matching argument to be
output, unmodified, to the screen.

To print a string, use %s.

Printing Numbers
You can use either %d or %i to display a signed integer in decimal format. These format
specifiers are equivalent; both are supported for historical reasons.

To output an unsigned integer, use %u.
The %f format specifier displays numbers in floating point. The matching argument

must be of type double.
The %e and %E specifiers tell printf() to display a double argument in scientific

notation. Numbers represented in scientific notation take this general form:

x.dddddE+/-yy

If you want to display the letter E in uppercase, use the %E format; otherwise use %e.
You can tell printf() to use either %f or %e by using the %g or %G format

specifiers. This causes printf() to select the format specifier that produces the shortest
output. Where applicable, use %G if you want the E shown in uppercase; otherwise,
use %g. The following program demonstrates the effect of the %g format specifier:

#include <stdio.h>

int main(void)

{

double f;

for(f=1.0; f<1.0e+10; f=f*10)

printf("%g ", f);

return 0;

}

It produces the following output.

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

You can display unsigned integers in octal or hexadecimal format using %o and
%x, respectively. Since the hexadecimal number system uses the letters A through F to
represent the numbers 10 through 15, you can display these letters in either upper- or

204 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

lowercase. For uppercase, use the %X format specifier; for lowercase, use %x, as
shown here:

#include <stdio.h>

int main(void)

{

unsigned num;

for(num=0; num<=16; num++) {

printf("%d ", num); /* Integer */

printf("%o ", num); /* Octal */

printf("%x ", num); /* Hexidecimal - lowercase */

printf("%X\n", num); /* Hexidecimal - uppercase */

}

return 0;

}

Displaying an Address
If you want to display an address, use %p. This format specifier causes printf() to
display a machine address in a format compatible with the type of addressing used by
the computer. The next program displays the address of sample:

#include <stdio.h>

int sample;

int main(void)

{

printf("%p", &sample);

return 0;

}

The %n Specifier
The %n format specifier is different from the others. Instead of telling printf() to display
something, it causes printf() to load the integer variable pointed to by its corresponding
argument with a value equal to the number of characters that have been output. In
other words, the value that corresponds to the %n format specifier must be a pointer to
a variable. After the call to printf() has returned, this variable will hold the number of
characters output, up to the point at which the %n was encountered. Examine this
program to understand this somewhat unusual format code.

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 205
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

#include <stdio.h>

int main(void)

{

int count;

printf("this%n is a test\n", &count);

printf("%d", count);

return 0;

}

This program displays this is a test followed by the number 4. The %n format specifier
is used primarily to enable your program to perform dynamic formatting.

Format Modifiers
Many format specifiers can take modifiers that alter their meaning slightly. For
example, you can specify a minimum field width, the number of decimal places, and
left justification. The format modifier goes between the percent sign and the format
code. These modifiers are discussed next.

The Minimum Field Width Specifier
An integer placed between the % sign and the format code acts as a minimum field width
specifier. This pads the output with spaces to ensure that it reaches a certain minimum
length. If the string or number is longer than that minimum, it will still be printed in
full. The default padding is done with spaces. If you want to pad with 0’s, place an 0
before the field width specifier. For example, %05d will pad a number of less than five
digits with 0’s so that its total length is five. The following program demonstrates the
minimum field width specifier:

#include <stdio.h>

int main(void)

{

double item;

item = 10.12304;

printf("%f\n", item);

printf("%10f\n", item);

printf("%012f\n", item);

return 0;

}

This program produces the following output:

10.123040

10.123040

00010.123040

The minimum field width modifier is most commonly used to produce tables in which
the columns line up. For example, the next program produces a table of squares and
cubes for the numbers between 1 and 19:

#include <stdio.h>

int main(void)

{

int i;

/* display a table of squares and cubes */

for(i=1; i<20; i++)

printf("%8d %8d %8d\n", i, i*i, i*i*i);

return 0;

}

A sample of its output is shown here:

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

11 121 1331

12 144 1728

13 169 2197

14 196 2744

15 225 3375

16 256 4096

206 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 207
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

17 289 4913

18 324 5832

19 361 6859

The Precision Specifier
The precision specifier follows the minimum field width specifier (if there is one). It
consists of a period followed by an integer. Its exact meaning depends upon the type
of data to which it is applied.

When you apply the precision specifier to floating-point data using the %f, %e, or
%E specifiers, it determines the number of decimal places displayed. For example,
%10.4f displays a number at least ten characters wide with four decimal places. If you
don’t specify the precision, a default of six is used for %e, %E and %f. When the
precision specifier is applied to %g or %G, it specifies the number of significant digits.

Applied to strings, the precision specifier specifies the maximum field length. For
example, %5.7s displays a string at least five and not exceeding seven characters long.
If the string is longer than the maximum field width, the end characters will be
truncated.

When applied to integer types, the precision specifier determines the minimum
number of digits that will appear for each number. Leading zeros are added to achieve
the required number of digits.

The following program illustrates the precision specifier:

#include <stdio.h>

int main(void)

{

printf("%.4f\n", 123.1234567);

printf("%3.8d\n", 1000);

printf("%10.15s\n", "This is a simple test.");

return 0;

}

It produces the following output:

123.1235

00001000

This is a simpl

208 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Justifying Output
By default, all output is right-justified. That is, if the field width is larger than the data
printed, the data will be placed on the right edge of the field. You can force output to
be left-justified by placing a minus sign directly after the %. For example, %-10.2f
left-justifies a floating-point number with two decimal places in a 10-character field.

The following program illustrates left justification:

#include <stdio.h>

int main(void)

{

printf("........................\n");

printf("right-justified:%8d\n", 100);

printf("left-justified:%-8d\n", 100);

return 0;

}

It produces the following output:

........................

right-justified: 100

left-justified:100

Handling Other Data Types
There are two format modifiers that allow printf() to display short and long integers.
These modifiers may be applied to the d, i, o, u, and x type specifiers. The l (ell)
modifier tells printf() that a long data type follows. For example, %ld means that a
long int is to be displayed. The h modifier instructs printf() to display a short integer.
For instance, %hu indicates that the data is of type short unsigned int.

The l and h modifiers can also be applied to the n specifier, to indicate that the
corresponding argument is a pointer to a long or short integer, respectively.

The L modifier may prefix the floating-point specifiers e, f, and g and indicates that
a long double follows.

The * and # Modifiers
The printf() function supports two additional modifiers to some of its format
specifiers: * and #.

Preceding g, G, f, E, or e specifiers with a # ensures that there will be a decimal
point even if there are no decimal digits. If you precede the x or X format specifier with
a #, the hexadecimal number will be printed with a 0x prefix. Preceding the o specifier
with # causes the number to be printed with a leading zero. You cannot apply # to any
other format specifiers.

Instead of constants, the minimum field width and precision specifiers can be
provided by arguments to printf(). To accomplish this, use an * as a placeholder.
When the format string is scanned, printf() will match the * to an argument in the
order in which they occur. For example, in Figure 8-1, the minimum field width is 10,
the precision is 4, and the value to be displayed is 123.3.

The following program illustrates both # and *:

#include <stdio.h>

int main(void)

{

printf("%x %#x\n", 10, 10);

printf("%*.*f", 10, 4, 123.3);

return 0;

}

The following is produced:

a 0xa

123.3000

scanf()
The general-purpose console input routine is scanf(). It reads all the built-in data types
and automatically converts numbers into the proper internal format. It is much like the
reverse of printf(). The prototype for scanf() is

int scanf(const char *fmt_string, . . .);

The fmt_string determines how values are read into the variables pointed to in the
argument list.

The format string consists of three classifications of characters:

� Format specifiers

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 209
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Figure 8-1. How the * is matched to its value

� White-space characters

� Non-white-space characters

The scanf() function returns the number of fields that are input. It returns EOF if a
premature end of file is reached.

Format Specifiers
The input format specifiers are preceded by a % sign and tell scanf() what type of
data is to be read next. These codes are listed in Table 8-3. The format specifiers are
matched, in order from left to right, with the arguments in the argument list.

Inputting Numbers
To read a decimal number, use the %d or %i specifiers.

To read a floating-point number represented in either standard or scientific
notation, use %e, %f, or %g.

210 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Code Meaning

%c Read a single character.

%d Read a decimal integer.

%i Read a decimal integer.

%e Read a floating-point number.

%f Read a floating-point number.

%g Read a floating-point number.

%o Read an octal number.

%s Read a string.

%x Read a hexadecimal number.

%p Read a pointer.

%n Receives an integer value equal to the number of characters read so far.

%u Read an unsigned integer.

%[] Scan for a set of characters.

Table 8-3. The scanf() Format Specifiers

TE
AM
FL
Y

Team-Fly®

You can use scanf() to read integers in either octal or hexadecimal form by using
the %o and %x format commands, respectively. The %x may be in either upper-
or lowercase. Either way, you may enter the letters A through F in either case when
entering hexadecimal numbers. The following program reads an octal and hexadecimal
number:

#include <stdio.h>

int main(void)

{

int i, j;

scanf("%o%x", &i, &j);

printf("%o %x", i, j);

return 0;

}

The scanf() function stops reading a number when the first nonnumeric character is
encountered.

Inputting Unsigned Integers
To input an unsigned integer, use the %u format specifier. For example,

unsigned num;

scanf("%u", &num);

reads an unsigned number and puts its value into num.

Reading Individual Characters Using scanf()
As explained earlier in this chapter, you can read individual characters using getchar()
or a derivative function. You can also use scanf() for this purpose if you use the %c format
specifier. However, like most implementations of getchar(), scanf() will generally
line-buffer input when the %c specifier is used. This is the case with C++ Builder, too.
Line-buffering makes scanf() somewhat troublesome in an interactive environment.

Although spaces, tabs, and newlines are used as field separators when reading
other types of data, when reading a single character, white-space characters are read
like any other character. For example, with an input stream of "x y," this code fragment

scanf("%c%c%c", &a, &b, &c);

returns with the character x in a, a space in b, and the character y in c.

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 211
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

212 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Reading Strings
The scanf() function can be used to read a string from the input stream using the %s
format specifier. The %s causes scanf() to read characters until it encounters a white-space
character. The characters that are read are put into the character array pointed to by the
corresponding argument, and the result is null terminated. As it applies to scanf(), a
white-space character is either a space, a newline, a tab, a vertical tab, or a form feed. Unlike
gets(), which reads a string until a carriage return is typed, scanf() reads a string until the
first white space is entered. This means that you cannot use scanf() to read a string like
“this is a test” because the first space terminates the reading process. To see the effect of the
%s specifier, try this program using the string “hello there”.

#include <stdio.h>

int main(void)

{

char str[80];

printf("Enter a string: ");

scanf("%s", str);

printf("Here's your string: %s", str);

return 0;

}

The program responds with only the “hello” portion of the string.

Inputting an Address
To input a memory address, use the %p format specifier. This specifier causes scanf()
to read an address in the format defined by the architecture of the CPU. For example,
this program inputs an address and then displays what is at that memory address:

#include <stdio.h>

int main(void)

{

char *p;

printf("Enter an address: ");

scanf("%p", &p);

printf("Value at location %p is %c\n", p, *p);

return 0;

}

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 213
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The %n Specifier
The %n specifier instructs scanf() to assign the number of characters read from the
input stream at the point at which the %n was encountered to the variable pointed
to by the corresponding argument.

Using a Scanset
The scanf() function supports a general-purpose format specifier called a scanset.
A scanset defines a set of characters. When scanf() processes the scanset, it will input
characters as long as those characters are part of the set defined by the scanset. The
characters read will be assigned to the character array that is pointed to by the scanset’s
corresponding argument. You define a scanset by putting the characters to scan for
inside square brackets. The beginning square bracket must be prefixed by a percent
sign. For example, the following scanset tells scanf() to read only the characters
X, Y, and Z.

%[XYZ]

When you use a scanset, scanf() continues to read characters and put them into the
corresponding character array until it encounters a character that is not in the scanset.
Upon return from scanf(), this array will contain a null-terminated string that consists
of the characters that have been read. To see how this works, try this program:

#include <stdio.h>

int main(void)

{

int i;

char str[80], str2[80];

scanf("%d%[abcdefg]%s", &i, str, str2);

printf("%d %s %s", i, str, str2);

return 0;

}

Enter 123abcdtye followed by ENTER. The program will then display 123 abcd tye.
Because the “t” is not part of the scanset, scanf() stops reading characters into str when
it encounters the “t.” The remaining characters are put into str2.

You can specify a range inside a scanset using a hyphen. For example, this tells
scanf() to accept the characters “A” through “Z”.

%[A-Z]

The use of the hyphen to describe a range is not defined by the ANSI/ISO C standard.
However, it is nearly universally accepted.

You can specify more than one range within a scanset. For example, this program
reads digits and then letters:

/* A scanset example using ranges. */

#include <stdio.h>

int main(void)

{

char s1[80], s2[80];

printf("Enter numbers, then some letters");

scanf("%[0-9]%[a-zA-Z]", s1, s2);

printf("%s %s", s1, s2);

return 0;

}

You can specify an inverted set if the first character in the set is a caret (^). When
the ^ is present, it instructs scanf() to accept any character that is not defined by the
scanset. Here, the previous program uses the ^ to invert the type of characters the
scanset will read:

/* A scanset example using inverted ranges. */

#include <stdio.h>

int main(void)

{

char s1[80], s2[80];

printf("Enter non-numbers, then some non-letters");

scanf("%[^0-9]%[^a-zA-Z]", s1, s2);

printf("%s %s", s1, s2);

return 0;

}

One important point to remember is that the scanset is case-sensitive. Therefore,
if you want to scan for both uppercase and lowercase letters, they must be specified
individually.

214 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 215
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Discarding Unwanted White Space
A white-space character in the control string causes scanf() to skip over one or more
white-space characters in the input stream. A white-space character is either a space,
a tab, a vertical tab, a form feed, or a newline. In essence, one white-space character in
the control string causes scanf() to read, but not store, any number (including zero)
of white-space characters up to the first non-white-space character.

Non-White-Space Characters in the Control String
A non-white-space character in the control string causes scanf() to read and discard
matching characters in the input stream. For example, "%d,%d" causes scanf() to read
an integer, read and discard a comma, and then read another integer. If the specified
character is not found, scanf() terminates. If you wish to read and discard a percent
sign, use %% in the control string.

You Must Pass scanf() Addresses
All the variables used to receive values through scanf() must be passed by their
addresses. This means that all arguments must be pointers. Recall that this is how C
creates a call by reference, which allows a function to alter the contents of an argument.
For example, to read an integer into the variable count, you would use the following
scanf() call:

scanf("%d", &count);

Strings will be read into character arrays, and the array name, without any index, is
the address of the first element of the array. So, to read a string into the character array
str, you would use

scanf("%s", str);

In this case, str is already a pointer and need not be preceded by the & operator.

Format Modifiers
As with printf(), scanf() allows a number of its format specifiers to be modified. The
format specifiers can include a maximum field length modifier. This is an integer,
placed between the % and the format specifier, that limits the number of characters
read for that field. For example, to read no more than 20 characters into str, write

scanf("%20s", str);

If the input stream is greater than 20 characters, a subsequent call to input begins
where this call leaves off. For example, if you enter

ABCDEFGHIJKLMNOPQRSTUVWXYZ

as the response to the scanf() call in this example, only the first 20 characters, or up to
the T, are placed into str because of the maximum field width specifier. This means that
the remaining characters, UVWXYZ, have not yet been used. If another scanf() call is
made, such as

scanf("%s", str2);

the letters UVWXYZ are placed into str2. Input for a field may terminate before the
maximum field length is reached if a white space is encountered. In this case, scanf()
moves on to the next field.

To read a long integer, put an l (ell) in front of the format specifier. To read a short
integer, put an h in front of the format specifier. These modifiers can be used with the
d, i, o, u, and x format codes.

By default, the f, e, and g specifiers instruct scanf() to assign data to a float. If you
put an l (ell) in front of one of these specifiers, scanf() assigns the data to a double.
Using an L tells scanf() that the variable receiving the data is a long double.

Suppressing Input
You can tell scanf() to read a field but not assign it to any variable by preceding that
field’s format code with an *. For example, given

scanf("%d%*c%d", &x, &y);

you could enter the coordinate pair 10,10. The comma would be correctly read, but not
assigned to anything. Assignment suppression is especially useful when you need to
process only a part of what is being entered.

The C File System
The file system is the part of the C I/O system that allows you to read and write disk
files. It is composed of several interrelated functions. The most common are shown in
Table 8-4. The header <stdio.h> must be included in any program in which these
functions are used.

The header <stdio.h> provides the prototypes for the I/O functions and defines
these three types: size_t, fpos_t, and FILE. The size_t type is an unsigned integer, as is
fpos_t. The FILE type is discussed in the next section.

216 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 217
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The <stdio.h> header also defines several macros. The ones relevant to this chapter
are NULL, EOF, FOPEN_MAX, SEEK_SET, SEEK_CUR, and SEEK_END. The NULL
macro defines a null pointer. The EOF macro, generally defined as –1, is the value
returned when an input function tries to read past the end of the file. FOPEN_MAX
defines an integer value that determines the number of files that may be open at any
one time. The other macros are used with fseek(), which is the function that performs
random access on a file.

The File Pointer
The file pointer is the common thread that unites the C file system. A file pointer is a
pointer to information that defines various things about the file, including its name,
status, and the current position of the file. In essence, the file pointer identifies a
specific disk file and is used by the associated stream to direct the operation of the I/O

Name Function

fopen() Opens a file.

fclose() Closes a file.

putc() Writes a character to a file.

fputc() Same as putc().

getc() Reads a character from a file.

fgetc() Same as getc().

fseek() Seeks to a specified byte in a file.

fprintf() Is to a file what printf() is to the console.

fscanf() Is to a file what scanf() is to the console.

feof() Returns true if end-of-file is reached.

ferror() Returns true if an error has occurred.

rewind() Resets the file position indictor to the beginning of the file.

remove() Erases a file.

fflush() Flushes a file.

Table 8-4. The Most Common C File System Functions

functions. A file pointer is a pointer variable of type FILE. In order to read or write
files, your program needs to use file pointers. To obtain a file pointer variable, use a
statement like this:

FILE *fp;

Opening a File
The fopen() function opens a stream for use, links a file with that stream, and then
returns a FILE pointer to that stream. Most often (always for the purpose of this
discussion) the file is a disk file. The fopen() function has this prototype

FILE *fopen(const char *filename, const char *mode);

where mode points to a string containing the desired open status. The legal values for
mode in C++ Builder are shown in Table 8-5. The filename must be a string of characters
that provides a valid filename for the operating system and may include a path
specification.

The fopen() function returns a pointer of type FILE. This pointer identifies the file
and is used by most other file system functions. It should never be altered by your
code. The function returns a null pointer if the file cannot be opened.

As Table 8-5 shows, a file can be opened in either text or binary mode. In text mode,
carriage return–linefeed sequences are translated into newline characters on input. On
output, the reverse occurs: newlines are translated to carriage return–linefeeds. No
such translations occur on binary files. When neither a t nor a b is specified in the mode
argument, the text/binary status of the file is determined by the value of the global
variable defined by C++ Builder called _fmode. By default, _fmode is set to O_TEXT,
which is text mode. When set to O_BINARY, then files will be opened in binary mode.
(These macros are defined in <fcntl.h>.) Of course, using a explicit t or b overrides the
effects of the _fmode variable. Also, _fmode is specific to C++ Builder; it is not defined
by the C I/O system.

218 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Mode Meaning

"r" Open a file for reading. (Opened as text file by default, see discussion.)

"w" Create a file for writing. (Opened as text file by default, see
discussion.)

"a" Append to a file. (Opened as text file by default, see discussion.)

Table 8-5. The Legal Values for mode

If you wish to open a file for writing with the name test, write:

FILE *fp;

fp = fopen("test", "w");

Here, fp is a variable of type FILE *. However, you usually see it written like this:

FILE *fp;

if((fp = fopen("test", "w"))==NULL) {

printf("Cannot open file.\n");

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 219
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Mode Meaning

"rb" Open a binary file for reading.

"wb" Create a binary file for writing.

"ab" Append to a binary file.

"r+" Open a file for read/write. (Open as text file by default, see
discussion.)

"w+" Create a file for read/write. (Open as text file by default, see
discussion.)

"a+" Append or create a file for read/write. (Open as text file by default,
see discussion.)

"r+b" Open a binary file for read/write.

"w+b" Create a binary file for read/write.

"a+b" Append or create a binary file for read/write.

"rt" Open a text file for reading.

"wt" Create a text file for writing.

"at" Append to a text file.

"r+t" Open a text file for read/write.

"w+t" Create a text file for read/write.

"a+t" Append or create a text file for read/write.

Table 8-5. The Legal Values for mode (continued)

exit(1);

}

This method will detect any error in opening a file, such as a write-protected or full
disk, before your program attempts to write to it. In general, you will always want to
make sure that fopen() succeeded before attempting any other operations on the file.

If you use fopen() to open a file for output, then any preexisting file by that name
will be destroyed and a new file will be created. If no file by that name exists, then one
is created. If you want to add to the end of the file, you must use a (append) mode. If
the file does not exist, it will be created. Opening a file for read operations requires an
existing file. If no file exists, an error is returned. If a file is opened for read/write
operations it is not erased if it exists; if no file exists, one is created.

Writing a Character
The C I/O system defines two equivalent functions that output a character: putc()
and fputc(). (Actually, putc() is implemented as a macro.) There are two identical
functions simply to preserve compatibility with older versions of C. This book uses
putc(), but you can use fputc() if you like.

The putc() function is used to write characters to a stream that was previously
opened for writing using the fopen() function. The prototype for putc() is

int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen() and ch is the character to be output. The
file pointer tells putc() which disk file to write to. For historical reasons, ch is defined
as an int, but only the low-order byte is used.

If a putc() operation is a success, it returns the character written. If putc() fails, an
EOF is returned.

Reading a Character
There are also two equivalent functions that input a character: getc() and fgetc(). Both
are defined to preserve compatibility with older versions of C. This book uses getc()
(which is actually implemented as a macro), but you can use fgetc() if you like.

The getc() function is used to read characters from a stream opened in read mode
by fopen(). The prototype is

int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). For historical reasons,
getc() returns an integer, but the high-order byte is 0.

The getc() function returns an EOF when the end of the file has been reached, or if
an error occurs. To read a text file to the end, you could use the following code:

220 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

do {

ch = getc(fp);

} while(ch!=EOF);

Closing a File
The fclose() function closes a stream that was opened by a call to fopen(). It writes
any data still remaining in the disk buffer to the file and does a formal operating-
system–level close on the file. Failure to close a stream invites all kinds of trouble,
including lost data, destroyed files, and possible intermittent errors in your program.
fclose() frees the file control block associated with the stream and makes it available
for reuse. There is an operating system limit to the number of open files you can have
at any one time, so it may be necessary to close one file before opening another.

The fclose() function has the prototype

int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of 0 signifies
a successful close operation; an EOF is returned if an error occurs. Generally, fclose()
will fail only when a diskette has been prematurely removed from the drive or if there
is no more space on the disk.

Using fopen(), getc(), putc(), and fclose()
The functions fopen(), getc(), putc(), and fclose() comprise a minimal set of file
routines. A simple example of using putc(), fopen(), and fclose() is the following
program, ktod. It simply reads characters from the keyboard and writes them to a disk
file until a dollar sign is typed. The filename is specified from the command line. For
example, if you call this program KTOD, then typing KTOD TEST allows you to enter
lines of text into the file called test.

/* KTOD: A key to disk program. */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *fp;

char ch;

if(argc!=2) {

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 221
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

222 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

printf("You forgot to enter the filename.\n");

exit(1);

}

if((fp=fopen(argv[1], "w")) == NULL) {

printf("Cannot open file.\n");

exit(1);

}

do {

ch = getchar();

putc(ch, fp);

} while (ch != '$');

fclose(fp);

return 0;

}

The complementary program DTOS will read any text file and display the contents
on the screen. You must specify the name of the file on the command line.

/* DTOS: A program that reads text files

and displays them on the screen. */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *fp;

char ch;

if(argc!=2) {

printf("You forgot to enter the filename.\n");

exit(1);

}

if((fp=fopen(argv[1], "r")) == NULL) {

printf("Cannot open file.\n");

exit(1);

}

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 223
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

ch = getc(fp); /* read one character */

while (ch!=EOF) {

putchar(ch); /* print on screen */

ch = getc(fp);

}

fclose(fp);

return 0;

}

Using feof()
As stated earlier, the C file system can also operate on binary data. When a file is
opened for binary input, an integer value equal to the EOF mark may be read. This
would cause the routine just given to indicate an end-of-file condition even though the
physical end of the file had not been reached. Also, getc() returns EOF when it fails
and when it reaches the end of the file. So to help resolve this ambiguity, C includes the
function feof(), which is used to determine the end of the file when reading binary
data. It has this prototype:

int feof(FILE *fp);

where fp identifies the file. The feof() function returns non-0 if the end of the file has
been reached; otherwise, 0 is returned. Therefore, the following routine reads a binary
file until the end-of-file mark is encountered:

while(!feof(fp)) ch = getc(fp);

This method can be applied to text files as well as binary files.
The following program copies a file of any type. Notice that the files are opened in

binary mode and feof() is used to check for the end of the file. (No error checking is
performed on output, but in a real-world situation it would be a good idea. Try to add
it as an exercise.)

/* This program will copy a file to another. */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *in, *out;

char ch;

if(argc!=3) {

printf("You forgot to enter a filename.\n");

exit(1);

}

if((in=fopen(argv[1], "rb")) == NULL) {

printf("Cannot open source file.\n");

exit(1);

}

if((out=fopen(argv[2], "wb")) == NULL) {

printf("Cannot open destination file.\n");

exit(1);

}

/* This code actually copies the file. */

while(!feof(in)) {

ch = getc(in);

if(!feof(in)) putc(ch, out);

}

fclose(in);

fclose(out);

return 0;

}

Working with Strings: fgets() and fputs()
The C I/O system includes two functions that can read and write strings from and to
streams: fgets() and fputs(). Their prototypes are

int fputs(const char *str, FILE *fp);
char *fgets(char *str, int length, FILE *fp);

The function fputs() works much like puts() except that it writes the string to the specified
stream. The fgets() function reads a string from the specified stream until either a newline
character or length –1 characters have been read. If a newline is read, it will be part of the
string (unlike gets()). In either case, the resultant string will be null-terminated. The
function returns str if successful and a null pointer if an error occurs.

224 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

As mentioned earlier in this chapter, you may want to use fgets() as an alternative
to gets(). To do so, simply specify stdin as the file pointer. For example, this program
reads up to 79 characters received from standard input.

#include <stdio.h>

int main(void)

{

char s[80];

printf("Enter a string: ");

fgets(s, 80, stdin);

printf("Here is your string: %s", s);

return 0;

}

The advantage of using fgets() over gets() is that you can prevent the input array from
being overrun. However, the array may contain the newline character.

fread() and fwrite()
The C file system provides two functions, fread() and fwrite(), that allow the reading
and writing of blocks of data. Their prototypes are

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);
size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

In the case of fread(), buffer is a pointer to a region of memory that receives the data
read from the file. For fwrite(), buffer is a pointer to the information to be written to the
file. The length of each item, in bytes, to be read or written is specified by num_bytes.
The argument count determines how many items (each being num_bytes in length) will
be read or written. Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than
count if the end of the file is reached or an error occurs. The fwrite() function returns
the number of items written. This value will equal count unless an error occurs.

As long as the file has been opened for binary data, fread() and fwrite() can read
and write any type of information. For example, this program writes a float to a disk file:

/* Write a floating point number to a disk file. */

#include <stdio.h>

#include <stdlib.h>

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 225
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

226 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main(void)

{

FILE *fp;

float f = 12.23;

if((fp=fopen("test", "wb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

fwrite(&f, sizeof(float), 1, fp);

fclose(fp);

return 0;

}

As this program illustrates, the buffer can be, and often is, simply a variable.
One of the most useful applications of fread() and fwrite() involves the reading

and writing of blocks of data, such as arrays or structures. For example, this fragment
writes the contents of the floating-point array balance to the file balance using a single
fwrite() statement. Next, it reads the array, using a single fread() statement, and
displays its contents.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

register int i;

FILE *fp;

float balance[100];

/* open for write */

if((fp=fopen("balance", "wb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

for(i=0; i<100; i++) balance[i] = (float) i;

/* this saves the entire balance array in one step */

fwrite(balance, sizeof balance, 1, fp);

fclose(fp);

/* zero array */

for(i=0; i<100; i++) balance[i] = 0.0;

/* open for read */

if((fp=fopen("balance","rb"))==NULL) {

printf("cannot open file\n");

exit(1);

}

/* this reads the entire balance array in one step */

fread(balance, sizeof balance, 1, fp);

/* display contents of array */

for(i=0; i<100; i++) printf("%f ", balance[i]);

fclose(fp);

return 0;

}

Using fread() and fwrite() to read or write complex data is more efficient than
using repeated calls to getc() and putc().

fseek() and Random Access I/O
You can perform random read and write operations using the buffered I/O system
with the help of fseek(), which sets the file position locator. Its prototype is

int fseek(FILE *fp, long num_bytes, int origin);

where fp is a file pointer returned by a call to fopen(); num_bytes, a long integer, is the
number of bytes from origin to seek to; and origin is one of the following macros
(defined in <stdio.h>):

Origin Macro Name

Beginning of file SEEK_SET

Current position SEEK_CUR

End of file SEEK_END

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 227
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

228 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The macros are defined as integer values with SEEK_SET being 0, SEEK_CUR
being 1, and SEEK_END being 2. Therefore, to seek num_bytes from the start of the file,
origin should be SEEK_SET. To seek from the current position use SEEK_CUR, and to
seek from the end of the file use SEEK_END. The fseek() function returns 0 when
successful and a nonzero value if an error occurs.

For example, you could use the following code to read the 234th byte in a file
called test:

int func1(void)

{

FILE *fp;

if((fp=fopen("test", "rb")) == NULL) {

printf("Cannot open file.\n");

exit(1);

}

fseek(fp, 234L, 0);

return getc(fp); /* read one character */

/* at 234th position */

}

}

Another example that uses fseek() is the following DUMP program, which lets
you examine the contents in both ASCII and hexadecimal of any file you choose. You
can look at the file in 128-byte “sectors” as you move about the file in either direction.
To exit the program, type a –1 when prompted for the sector. Notice the use of fread()
to read the file. At the end-of-file mark, less than SIZE number of bytes are likely to be
read, so the number returned by fread() is passed to display(). (Remember that
fread() returns the number of items actually read.) Enter this program into your
computer and study it until you are certain how it works:

/* DUMP: A simple disk look utility using fseek. */

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#define SIZE 128

void display(int numread);

char buf[SIZE];

void display();

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 229
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

int main(int argc, char *argv[])

{

FILE *fp;

int sector, numread;

if(argc!=2) {

printf("Usage: dump filename\n");

exit(1);

}

if((fp=fopen(argv[1], "rb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

do {

printf("Enter sector: ");

scanf("%d", §or);

if(sector >= 0) {

if(fseek(fp, sector*SIZE, SEEK_SET)) {

printf("seek error");

}

if((numread=fread(buf, 1, SIZE, fp)) != SIZE)

printf("EOF reached.");

display(numread);

}

} while(sector>=0);

return 0;

}

/* Display the contents of a file. */

void display(int numread)

{

int i, j;

for(i=0; i<numread/16; i++) {

for(j=0; j<16; j++) printf("%3X", buf[i*16+j]);

printf(" ");

for(j=0; j<16; j++) {

if(isprint(buf[i*16+j])) printf("%c", buf[i*16+j]);

else printf(".");

}

printf("\n");

}

}

Notice that the library function isprint() is used to determine which characters are
printing characters. The isprint() function returns true if the character is printable and
false otherwise, and requires the use of the header file <ctype.h>, which is included
near the top of the program. A sample output with DUMP used on itself is shown in
Figure 8-2.

fprintf() and fscanf()
In addition to the basic I/O functions, the buffered I/O system includes fprintf() and
fscanf(). These functions behave exactly like printf() and scanf() except that they
operate with disk files. The prototypes of fprintf() and fscanf() are

int fprintf(FILE *fp, const char *fmt_string, . . .);
int fscanf(FILE *fp, const char *fmt_string, . . .);

230 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Enter sector: 0

2F 2A 20 44 55 4D 50 3A 20 41 20 73 69 6D 70 6C /* DUMP: A simpl

65 20 64 69 73 6B 20 6C 6F 6F 6B 20 75 74 69 6C e disk look util

69 74 79 20 75 73 69 6E 67 20 66 73 65 65 6B 2E ity using fseek.

20 2A 2F D A 23 69 6E 63 6C 75 64 65 20 3C 73 */..#include <s

74 64 69 6F 2E 68 3E D A 23 69 6E 63 6C 75 64 tdio.h>..#includ

65 20 3C 73 74 64 6C 69 62 2E 68 3E D A 23 69 e <stdlib.h>..#i

6E 63 6C 75 64 65 20 3C 63 74 79 70 65 2E 68 3E nclude <ctype.h>

D A D A 23 64 65 66 69 6E 65 20 53 49 5A 45 #define SIZE

Enter sector: 1

20 31 32 38 D A D A 76 6F 69 64 20 64 69 73 128....void dis

70 6C 61 79 28 69 6E 74 20 6E 75 6D 72 65 61 64 play(int numread

29 3B D A D A 63 68 61 72 20 62 75 66 5B 53);....char buf[S

49 5A 45 5D 3B D A 76 6F 69 64 20 64 69 73 70 IZE];..void disp

6C 61 79 28 29 3B D A D A 69 6E 74 20 6D 61 lay();....int ma

69 6E 28 69 6E 74 20 61 72 67 63 2C 20 63 68 61 in(int argc, cha

72 20 2A 61 72 67 76 5B 5D 29 D A 7B D A 20 r *argv[])..{..

20 46 49 4C 45 20 2A 66 70 3B D A 20 20 69 6E FILE *fp;.. in

Enter sector: -1

Figure 8-2. Sample output from the dump program

TE
AM
FL
Y

Team-Fly®

where fp is a file pointer returned by a call to fopen(). Except for directing their output
to the file defined by fp, they operate exactly like printf() and scanf() respectively.

Although fprintf() and fscanf() are often the easiest way to write and read assorted
data to disk files, they are not always the most efficient. Because formatted ASCII data
is being written just as it would appear on the screen (instead of in binary), you incur
extra overhead with each call. If speed or file size is a concern, you should probably use
fread() and fwrite().

Erasing Files
The remove() function erases a file. Its prototype is

int remove(const char *filename);

It returns 0 upon success, non-0 if it fails.
This program uses remove() to erase a file specified by the user.

/* A remove() example. */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char fname[80];

printf("Name of file to remove: ");

gets(fname);

if(remove(fname)) {

printf("Error removing file\n");

exit(1);

}

return 0;

}

ferror() and rewind()
The ferror() function is used to determine whether a file operation has produced an
error. The function ferror() has this prototype

int ferror(FILE *fp)

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 231
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

where fp is a valid file pointer. It returns true if an error has occurred during the last
file operation; it returns false otherwise. Because each file operation sets the error
condition, ferror() should be called immediately after each file operation; otherwise,
an error may be lost.

The rewind() function resets the file position locator to the beginning of the file
specified as its argument. The prototype is

void rewind(FILE *fp)

where fp is a valid file pointer.

The Console Connection
As mentioned at the start of this chapter, whenever a program starts execution, five
streams are opened automatically. They are stdin, stdout, stderr, stdaux, and stdprn.
Because these are file pointers, they may be used by any function in the C I/O system
that uses a file pointer. For example, putchar() could be defined as

int putchar(int c)

{

return putc(c, stdout);

}

As this example illustrates, C makes little distinction between console I/O and file I/O.
In essence, the console I/O functions are simply special versions of their parallel file
functions that direct their operations to either stdin or stdout. The reason they exist is
as a convenience to you, the programmer. In general, you may use stdin, stdout, and
stderr as file pointers in any function that uses a variable of type FILE *.

In environments that allow redirection of I/O, stdin and stdout can be redirected.
This means that they could refer to a device other than the keyboard and or screen. For
example, consider this program:

#include <stdio.h>

int main(void)

{

char str[80];

printf("Enter a string: ");

gets(str);

printf(str);

232 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

Assume that this program is called TEST. If you execute TEST normally, it displays
its prompt on the screen, reads a string from the keyboard, and displays that string on
the display. However, either stdin, stdout, or both could be redirected to a file. For
example, in a DOS or Windows environment, executing TEST like this:

TEST > OUTPUT

causes the output of TEST to be written to a file called OUTPUT. Executing TEST like this:

TEST < INPUT > OUTPUT

directs stdin to the file called INPUT and sends output to the file called OUTPUT.
As you can see, console I/O and file I/O are really just two slightly different ways

of looking at the same thing.

C h a p t e r 8 : I n p u t , O u t p u t , S t r e a m s , a n d F i l e s 233
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

This page intentionally left blank.

Chapter 9
The Preprocessor
and Comments

235

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The source code for a C (or C++) program can include various instructions to the
compiler. Although not actually part of the C/C++ language, these preprocessor
directives expand the scope of its programming environment. This chapter examines

the preprocessor. It also examines C++ Builder’s built-in macros, and some additions
made to the preprocessor by C++ Builder. The chapter ends with an examination
of comments.

Standard C/C++ supports the following preprocessor directives:

#define #elif #else #endif

#error #if #ifdef #ifndef

#include #line #pragma #undef

To these, C++ Builder adds #import.
All preprocessor directives begin with a # sign, and each preprocessing directive

must be on its own line. For example,

/* Will not work! */

#include <stdio.h> #include <stdlib.h>

will not work.

#define
The #define directive defines an identifier and a character sequence that will be
substituted for the identifier each time it is encountered in the source file. The identifier
is referred to as a macro name and the replacement process as macro replacement. The
general form of the directive is

#define macro-name character-sequence

Notice that there is no semicolon in this statement. There can be any number of spaces
between the identifier and the character sequence, but once it begins, it is terminated
only by a newline.

For example, if you want to use the word UP for the value 1 and DOWN for the
value 0, then you would use these two directives:

#define UP 1

#define DOWN 0

This causes the compiler to substitute a 1 or a 0 each time the name UP or DOWN is
encountered in your source file. For example, the following prints “0 1 2” on the screen:

236 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

printf("%d %d %d", DOWN, UP, UP+1);

Once a macro name has been defined, it can be used as part of the definition of other
macro names. For example, this code defines the values of ONE, TWO, and THREE:

#define ONE 1

#define TWO ONE+ONE

#define THREE ONE+TWO

Macro substitution is simply the replacement of an identifier with its associated
string. Therefore, if you wanted to define a standard error message, you might write
something like this:

#define E_MS "Standard error on input.\n"

/* ... */

printf(E_MS);

The compiler substitutes the string "Standard error on input.\n" when the identifier
E_MS is encountered. To the compiler, the printf() statement actually appears to be

printf("Standard error on input.\n");

No text substitutions occur if the identifier is within a quoted string. For example,

#define XYZ "this is a test"

/* ... */

printf("XYZ");

does not print “this is a test” but “XYZ”.
If the string is longer than one line, you can continue it on the next line by placing a

backslash at the end of the line, as shown in this example:

#define LONG_STRING "This is a very long \

string that is used as an example."

C/C++ programmers often use capital letters for defined identifiers. This convention
helps anyone reading the program know at a glance that a macro substitution will take
place. Also, it is usually best to put all #defines at the start of the file or in a separate
header file rather than sprinkling them throughout the program.

The most common use of macro substitutions is to define names for “magic numbers”
that occur in a program. For example, you may have a program that defines an array

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 237
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

and has several routines that access that array. Instead of “hard-coding” the array’s
size with a constant, you can define a name that represents the size and use that name
whenever the size of the array is needed. This way, if you need to change the size of
the array, you will only need to change the #define statement and then recompile.
All uses of the name will automatically be updated. For example:

#define MAX_SIZE 100

/* ... */

float balance[MAX_SIZE];

/* ... */

float temp[MAX_SIZE];

To change the size of both arrays, simply change the definition of MAX_SIZE and
recompile.

The #define directive has another powerful feature: the macro name can have
arguments. Each time the macro name is encountered, the arguments used in its
definition are replaced by the actual arguments found in the program. This type of
macro is called a function-like macro. For example:

#include <stdio.h>

#define MIN(a,b) ((a)<(b)) ? (a) : (b)

int main(void)

{

int x, y;

x = 10;

y = 20;

printf("The minimum is: %d", MIN(x, y));

return 0;

}

When this program is compiled, the expression defined by MIN(a,b) is substituted,
except that x and y are used as the operands. That is, the printf() statement looks like
this after the substitution:

printf("The minimum is: %d",((x)<(y)) ? (x) : (y));

238 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Be very careful how you define macros that take arguments; otherwise, there can be
some surprising results. For example, examine this short program, which uses a macro
to determine whether a value is even or odd:

/* This program will give the wrong answer. */

#include <stdio.h>

#define EVEN(a) a%2==0 ? 1 : 0

int main(void)

{

if(EVEN(9+1)) printf("is even");

else printf("is odd");

return 0;

}

This program will not work correctly because of the way the macro substitution is
made. When C++ Builder compiles this program, the EVEN(9+1) is expanded to

9+1%2==0 ? 1 : 0

As you may recall, the % (modulus) operator has higher precedence than the plus
operator. This means that the % operation is first performed on the 1 and that result
is added to 9, which (of course) does not equal 0. To fix the trouble, there must be
parentheses around a in the macro definition of EVEN, as shown in this corrected
version of the program:

#include <stdio.h>

#define EVEN(a) (a)%2==0 ? 1 : 0

int main(void)

{

if(EVEN(9+1)) printf("is even");

else printf("is odd");

return 0;

}

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 239
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Now, the 9+1 is evaluated prior to the modulus operation. In general, it is a good idea to
surround macro parameters with parentheses to avoid troubles like the one just described.

The use of macro substitutions in place of real functions has one major benefit: it
increases the execution speed of the code because there is no function call overhead.
However, if the size of the macro is very large, this increased speed may be paid for
with an increase in the size of the program because of duplicated code.

Although parameterized macros are a valuable feature, you will see in Part Three that
C++ has a better way of creating in-line code that does not rely upon macros.

#error
The #error directive forces the compiler to stop compilation. It is used primarily for
debugging. The general form of the directive is

#error error-message

The error-message is not between double quotes. When the compiler encounters this
directive, it displays an error message that has the following general form and then
terminates compilation.

Fatal: filename linenum: Error directive: error-message

Here, filename is the name of the file in which the #error directive was found, linenum is
the line number of the directive, and error-message is the message, itself.

#include
The #include directive tells the compiler to read another source file in addition to the
one that contains the #include directive. The name of the additional source file must be
enclosed between double quotes or angle brackets. For example, these two directives
both instruct the compiler to read and compile the header for the standard I/O library
functions:

#include "stdio.h"

#include <stdio.h>

The preceding two #include directives are the most commonly used ones; however,
C++ Builder also supports the following:

#include macro_name

Here macro_name is a macro that once expanded has the proper header filename,
including either the double quotes or the brackets.

240 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Included files can have #include directives in them. This is referred to as nested
includes. For example, this program, shown with its include files, includes a file that
includes another file:

/* The program file: */

#include <stdio.h>

int main(void)

{

#include "one"

return 0;

}

/* Include file ONE: */

printf("This is from the first include file.\n");

#include "two"

/* Include file TWO: */

printf("This is from the second include file.\n");

If explicit path names are specified as part of the filename identifier, only those
directories are searched for the included file. Otherwise, if the filename is enclosed in
quotes, first the directory of the including file is searched (which is often the current
working directory), then in the case of nested includes, the directories of any files that
include the file are searched, and then the current working directory is searched. If the
file is not found, the standard directories are searched.

If no explicit path names are specified and the filename is enclosed by angle
brackets, the file is searched for in the standard directories. At no time is the current
working directory searched.

Conditional Compilation Directives
There are several directives that allow you to selectively compile portions of your
program’s source code. This process is called conditional compilation and is used widely
by commercial software houses that provide and maintain many customized versions
of one program.

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 241
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

242 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

#if, #else, #elif, and #endif
The general idea behind the #if is that if the constant expression following the #if is
true, the code that is between it and an #endif is compiled; otherwise, the code is
skipped. The #endif is used to mark the end of an #if block.

The general form of #if is

#if constant-expression
statement sequence

#endif

If the constant expression following the #if is true, the code that is between it and
#endif is compiled; otherwise, the intervening code is skipped. For example:

/* A simple #if example. */

#include <stdio.h>

#define MAX 100

int main(void)

{

#if MAX>99

printf("Compiled for array greater than 99.\n");

#endif

return 0;

}

This program displays the message on the screen because, as defined in the program,
MAX is greater than 99. This example illustrates an important point. The expression
that follows the #if is evaluated at compile time. Therefore, it must contain only identifiers
that have been previously defined and constants; no variables can be used.

The #else works in much the same way as the else that is part of the C/C++
language: it establishes an alternative if the #if fails. The previous example can be
expanded as shown here:

/* A simple #if/#else example. */

#include <stdio.h>

#define MAX 10

int main(void)

{

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 243
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

#if MAX>99

printf("Compiled for array greater than 99.\n");

#else

printf("Compiled for small array.\n");

#endif

return 0;

}

In this case, MAX is defined to be less than 99, so the #if portion of the code is not
compiled. Instead, the #else alternative is compiled and the message “Compiled for
small array.” is displayed.

Notice that the #else is used to mark both the end of the #if block and the
beginning of the #else block. This is necessary because there can be only one #endif
associated with any #if.

The #elif directive means “else if” and establishes an if-else-if chain for multiple
compilation options. The #elif is followed by a constant expression. If the expression
is true, that block of code is compiled and no other #elif expressions are tested.
Otherwise, the next block in the series is checked. The general form of the #elif is

#if expression
statement sequence

#elif expression 1
statement sequence

#elif expression 2
statement sequence

#elif expression 3
statement sequence

#elif expression 4
.
.
.
#elif expression N

statement sequence
#endif

For example, the following fragment uses the value of ACTIVE_COUNTRY to
define the currency sign:

#define US 0

#define ENGLAND 1

#define FRANCE 2

#define ACTIVE_COUNTRY US

#if ACTIVE_COUNTRY==US

char currency[] = "dollar";

#elif ACTIVE_COUNTRY==ENGLAND

char currency[] = "pound";

#else

char currency[] = "franc";

#endif

#ifs and #elifs can be nested. When this occurs, each #endif, #else, or #elif is
associated with the nearest #if or #elif. For example, the following is perfectly valid:

#if MAX>100

#if SERIAL_VERSION

int port = 198;

#elif

int port = 200;

#endif

#else

char out_buffer[100];

#endif

In C++ Builder, you can use the sizeof compile-time operator in an #if statement.
For example, the next fragment determines whether a program is being compiled for a
small or large arrays.

#if (sizeof(char *) == 2)

printf("Program compiled for small array.");

#else

printf("Program compiled for large array.");

#endif

#ifdef and #ifndef
Another method of conditional compilation uses the directives #ifdef and #ifndef, which
mean “if defined” and “if not defined,” respectively. The general form of #ifdef is

244 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

#ifdef macro-name
statement sequence

#endif

If the macro-name has been previously defined in a #define statement, the statement
sequence between the #ifdef and #endif is compiled.

The general form of #ifndef is

#ifndef macro-name
statement sequence

#endif

If macro-name is currently undefined by a #define statement, the block of code is compiled.
Both the #ifdef and #ifndef can use an #else or an #elif statement. For example,

#include <stdio.h>

#define TED 10

int main(void)

{

#ifdef TED

printf("Hi Ted\n");

#else

printf("Hi anyone\n");

#endif

#ifndef RALPH

printf("RALPH not defined\n");

#endif

return 0;

}

prints “Hi Ted” and “RALPH not defined”. However, if TED were not defined, “Hi
anyone” would be displayed, followed by “RALPH not defined”.

You can nest #ifdefs and #ifndefs in the same way as #ifs.

#undef
The #undef directive removes a previously defined definition of the macro name that
follows it. That is, it “undefines” a macro. Its general form is

#undef macro-name

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 245
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

For example:

#define LEN 100

#define WIDTH 100

char array[LEN][WIDTH];

#undef LEN

#undef WIDTH

/* at this point both LEN and WIDTH are undefined */

Both LEN and WIDTH are defined until the #undef statements are encountered.
The principal use of #undef is to allow macro names to be localized to only those

sections of code that need them.

Using defined
In addition to #ifdef, there is a second way to determine if a macro name is defined.
You can use the #if directive in conjunction with the defined compile-time operator.
The defined operator has this general form:

defined macro-name

If macro-name is currently defined, then the expression is true. Otherwise, it is false. For
example, to determine if the macro MYFILE is defined, you can use either of these two
preprocessing commands:

#if defined MYFILE

or

#ifdef MYFILE

You may also precede defined with the ! to reverse the condition. For example, the
following fragment is compiled only if DEBUG is not defined.

#if !defined DEBUG

printf("Final version!\n");

#endif

246 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 247

One reason for defined is that it allows the existence of a macro name to be determined
by a #elif statement.

#line
The #line directive is used to change the contents of _ _LINE_ _ and _ _FILE_ _, which
are predefined identifiers in the compiler. _ _LINE_ _ contains the line number of the
line currently being compiled, and _ _FILE_ _ contains the name of the source file
being compiled. The basic form of the #line command is

#line number "filename"

where number is any positive integer and the optional filename is any valid file
identifier. The line number becomes the new value of _ _LINE_ _. The filename
becomes the new value of _ _FILE_ _. #line is primarily used for debugging and
special applications.

For example, the following specifies that the line count will begin with 100. The
printf() statement displays the number 102 because it is the third line in the program
after the #line 100 statement.

#include <stdio.h>

#line 100 /* reset the line counter */

int main(void) /* line 100 */

{ /* line 101 */

printf("%d\n",__LINE__); /* line 102 */

return 0;

}

#pragma
The #pragma directive is defined by Standard C/C++ to be an implementation-defined
directive that allows various instructions to be given to the compiler. The general form
of the #pragma directive is

#pragma name

where name is the name of the #pragma directive.

248 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C++ Builder supports these twenty-three #pragmas:

alignment anon_struct argsused

checkoption codeseg comment

defineonoption exit hdrfile

hdrstop inline intrinsic

link message nopushoptwarn

obsolete option pack

package resource startup

undefineonoption warn

Use the alignment pragma to show the current enumeration and alignment size.
This information is displayed only in the C++ Builder IDE and only if the “Show
general messages” option is set.

To enable the use of anonymous structures, specify the anon_struct directive.
The argsused directive must precede a function. It is used to prevent a warning

message if an argument to the function that the #pragma precedes is not used in the
body of the function.

To check if a compiler option is set, use the checkoption directive.
You can specify the segment, class, or group used by a function with the codeseg

directive.
Using the comment directive, you can embed a comment into an output file, such

as your program’s .obj or .exe file.
The defineonoption directive allows you to define an alias to a command line

option. The undefineonoption removes the alias.
The exit directive specifies one or more functions that will be called when the

program terminates. The startup directive specifies one or more functions that will
be called when the program starts running. They have these general forms:

#pragma exit function-name priority
#pragma startup function-name priority

The priority is an integer value between 64 and 255 (the values 0 through 63 are
reserved). The priority determines the order in which the functions are called. If no
priority is given, it defaults to 100. All startup and exit functions must be declared as
shown here:

void f(void);

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 249
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

The following example defines a startup function called start().

#include <stdio.h>

void start(void);

#pragma startup start 65

int main(void)

{

printf("In main\n");

return 0;

}

void start(void)

{

printf("In start\n");

}

The output from this program is shown here.

In start

In main

As this example shows, you must provide a function prototype for all exit and startup
functions prior to the #pragma statement.

You can specify the name of the file that will be used to hold precompiled headers
using the hdrfile directive. Its general form is

#pragma hdrfile “fname.csm”

where fname is the name of the file (the extension must be .csm).
The hdrstop directive tells C++ Builder to stop precompiling header files.
Another #pragma directive is inline. It has the general form

#pragma inline

This tells the compiler that in-line assembly code is contained in the program. For the
fastest compile times, C++ Builder needs to know in advance that in-line assembly
code is contained in a program.

250 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Using C++ Builder, it is possible to tell the compiler to generate in-line code instead
of an actual function call using the intrinsic directive. It has the general form

#pragma intrinsic func-name

where func-name is the name of the function that you want to in-line.
If you check the Inline Intrinsic Function option in the IDE or use the –Oi command

line switch, C++ Builder automatically in-lines the following functions:

alloca memcpy strchr strncat strrchr

fabs memset strcmp strncmp rotl

memchr stpcpy strcpy strncpy rotr

memcmp strcat strlen strnset

You can override automatic in-lining by using this form of the intrinsic directive:

#pragma intrinsic –func-name

The link directive tells the compiler to add a file into the executable file. It has the
general form:

#pragma link "filename”

where filename may include the path as well as the filename.
The message directive lets you specify a message within your program code that is

displayed when the program is compiled. For example,

#include <stdio.h>

#pragma message This will be displayed.

int main(void)

{

int i=10;

printf("This is i: %d\n", i);

#pragma message This is also displayed.

return 0;

}

When you compile the program, you will see the two #pragma messages displayed.

TE
AM
FL
Y

Team-Fly®

The option directive allows you to specify command line options within your program
instead of actually specifying them on the command line. It has the general form

#pragma option option-list

For some options, the option directive must precede all declarations, including
function prototypes. For this reason, it is a good idea to make it one of the first
statements in your program.

The option directive also allows you to push options onto and pop options from a
stack. These additional options are good for saving the options state before including
any files that may alter the compiler options and then restoring the state afterward.
When using the push and pop argument, you may receive a message indicating that the
stack is not the same at the start of the file as it is at the end. To eliminate these warning
messages, you should use the nopushoptwarn directive.

The obsolete directive takes this form:

#pragma obsolete ident

and will generate a warning message that ident is obsolete, if ident is found within the
code after the #pragma.

The pack directive packs the code on a specific byte alignment.
The package directive is used to ensure that all the units in a packaged source file

are initialized in order of their dependencies.
The resource directive marks the file as a form unit for use by the IDE.
The warn directive allows you to enable or disable various warning messages. It

takes the form

#pragma warn setting

where setting specifies the warning option. These options are discussed later in this book.

#
The preprocessor directive consisting solely of a # followed by a newline is known as the
null directive. Any line that begins with this single character is ignored by the compiler.

#import
C++ Builder supports the Microsoft-defined #import directive, which is used to import
information from a type library. It is included only for Microsoft compatibility.

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 251

252 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The # and ## Preprocessor Operators
C provides two preprocessor operators: # and ##. These operators are used in
conjunction with #define.

The # operator causes the argument it precedes to be turned into a quoted string.
For example, consider this program:

#include <stdio.h>

#define mkstr(s) # s

int main(void)

{

printf(mkstr(I like C++ Builder));

return 0;

}

The preprocessor turns the line

printf(mkstr(I like C++ Builder));

into

printf("I like C++ Builder");

The ## operator is used to concatenate two tokens. For example:

#include <stdio.h>

#define concat(a, b) a ## b

int main(void)

{

int xy = 10;

printf("%d", concat(x, y));

return 0;

}

The preprocessor transforms

printf("%d", concat(x, y));

into

printf("%d", xy);

If these operators seem strange to you, keep in mind that they are not needed or
used in most programs. They exist primarily to allow some special cases to be handled
by the preprocessor.

Predefined Macro Names
Standard C specifies five built-in predefined macro names. They are

_ _LINE_ _
_ _FILE_ _
_ _DATE_ _
_ _TIME_ _
_ _STDC_ _

Standard C++ adds

_ _cplusplus

To these, C++ Builder defines these additional built-in macros:

_ _BCOPT_ _
_ _BCPLUSPLUS_ _
_ _BORLANDC_ _
_ _CDECL_ _
_CHAR_UNSIGNED
_ _CODEGUARD_ _
_ _CONSOLE_ _
_ CPPUNWIND
_ _DLL_ _
_ _FLAT_ _
_ _FUNC_ _
_M_IX86
_ _MSDOS_ _
_ _MT_ _
_ _PASCAL_ _

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 253
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

_ _TCPLUSPLUS_ _
_ _TEMPLATES_ _
_ _TLS_ _
_ _TURBOC_ _
_WCHAR_T
_WCHAR_T_DEFINED
_Windows
_ _WIN32_ _

The _ _LINE_ _ and _ _FILE_ _ macros were discussed in the #line discussion
earlier in this chapter. The others are examined here.

The _ _DATE_ _ macro contains a string in the form month/day/year that is the
date of the translation of the source file into object code.

The time at which the source code was compiled is contained as a string
in _ _TIME_ _. The form of the string is hour:minute:second.

If the macro _ _STDC_ _ is defined, your program was compiled with ANSI C
compliance checking turned on (–A compiler option). If this is not the case, _ _STDC_ _
is undefined. If your program is compiled as a C++ program, _ _cplusplus is defined
as 1. Otherwise, it is not defined.

_ _BCOPT_ _ is defined if optimization is used.
If you are using C++ Builder, the macro _ _BCPLUSPLUS_ _ is defined if you compile

your programs as a C++ program. It is undefined otherwise. Compiling a C++
program also causes _ _TCPLUSPLUS_ _ to be defined. Both these macros contain
hexadecimal values that will increase with each new release of the compiler.

_ _BORLANDC_ _ contains the current version number (as specified in hexadecimal)
of the compiler. For C++ Builder 5, the value is 0x0550.

The _ _CDECL_ _ macro is defined if the standard C calling convention is
used—that is, if the Pascal option is not in use. If this is not the case, the macro is
undefined (if defined, its value is 1).

If _CHAR_UNSIGNED is defined, the default character type is unsigned.
If the CodeGuard tool is used, _ _CODEGUARD_ _ will be defined.
When _ _CONSOLE_ _ is defined, the program is a console application.
If _ _CPPUNWIND is defined as 1, stack unwinding is enabled.
For C++ Builder, _ _DLL_ _ is defined as 1 when creating a DLL executable file.

Otherwise, it is undefined.
The _ _FLAT_ _ macro is defined to 1 when your program is being compiled in flat

32-bit memory mode.
The name of the current function is found in the _ _FUNC_ _ macro.
The _M_IX86 macro is always defined.
The _ _MSDOS_ _ macro is defined as an integer constant with a value 1.
The _ _MT_ _ macro is defined as 1 only if the multithreaded library is used.
The _ _PASCAL_ _ macro is defined as 1 only if the Pascal calling conventions are

used to compile a program. If not, this macro is undefined.

254 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

When compiling for C++, _ _TEMPLATES_ _ is defined as 1. This indicates that
templates are supported.

The _ _TLS_ _ macro is always defined as 1.
_ _TURBOC_ _ represents a hexadecimal value that is increased with each new release.
For C++ programs, _WCHAR_T and _WCHAR_T_DEFINED are defined as 1 to

indicate that wchar_t is a built-in data type. They are not defined for C programs.
For C++ Builder, _Windows is defined if your program is compiled for use

under Windows.
The _ _WIN32_ _ macro is always defined as 1.
For the most part, these built-in macros are used in fairly complex programming

environments when several different versions of a program are developed or maintained.

Comments
In C, all comments begin with the character pair /* and end with */. There must be no
spaces between the asterisk and the slash. The compiler ignores any text between the
beginning and ending comment symbols. For example, this program prints only hello
on the screen:

#include <stdio.h>

int main(void)

{

printf("hello");

/* printf("there"); */

return 0;

}

Comments may be placed anywhere in a program, as long as they do not appear in
the middle of keyword or identifier. That is, this comment is valid:

x = 10+ /* add the numbers */5;

while

swi/*this will not work*/tch(c) { ...

is incorrect because a keyword cannot contain a comment. However, you should not
generally place comments in the middle of expressions because it obscures their meaning.

C h a p t e r 9 : T h e P r e p r o c e s s o r a n d C o m m e n t s 255
TH

E
FO

U
N

D
A

TIO
N

O
F

C
+

+

Comments may not be nested. That is, one comment may not contain another
comment. For example, this code fragment causes a compile-time error:

/* this is an outer comment

x = y/a;

/* this is an inner comment - and causes an error */

*/

You should include comments whenever they are needed to explain the operation
of the code. All but the most obvious functions should have a comment at the top that
states what the function does, how it is called, and what it returns.

C++ fully supports C-style comments. However, it also allows you to define a single-line
comment. Single line comments begin with a // and end at the end of the line. Also, the
new C99 standard for C allows //-style comments.

256 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Part II
The C++ Builder Function Library

Part Two examines the function library included with C++ Builder.

Chapter 10 begins with a discussion of linking, libraries, and headers.

Chapters 11 through 19 describe the functions found in the library, with

each chapter concentrating on a specific group.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The functions described here are available for use by both C and C++ programs. As
you may know, the C++ language also defines a number of class libraries that may
only be used by C++ programs. Several of the class libraries are described in Part
Three, when C++ is discussed.

258 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Chapter 10
Linking, Libraries,
and Headers

259

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The creation of a C/C++ compiler involves two major efforts. The first is the
construction of the compiler itself. The second is the creation of the function
library. Because the C++ Builder library contains so many functions, it is safe

to assume that it required a substantial programming effort. (Consider that even a
description of these functions requires several hundred pages!) Every C or C++
program relies upon library functions to perform many of the tasks carried out by the
program. Because of the fundamental role that the library plays in your program, it is
important to have an overview of how the library works. Specifically, you need to
understand the job the linker performs, how libraries differ from object files, and the
role of headers. These items are examined here.

The Linker
The output of the compiler is a relocatable object file, and the output of the linker is an
executable file. The role the linker plays is twofold. First, it physically combines the
files specified in the link list into one program file. Second, it resolves external references
and memory addresses. An external reference is created any time the code in one file
refers to code found in another file. This may be through either a function call or a
reference to a global variable. For example, when the two files shown here are linked
together, File Two’s reference to count must be resolved. It is the linker that “tells”
the code in File Two where count will be found in memory.

File One:

int count;

void display(void);

int main(void)

{

count = 10;

display();

return 0;

}

File Two:

#include <stdio.h>

extern int count;

void display(void)

{

260 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

printf("%d", count);

}

In a similar fashion, the linker also “tells” File One where the function display() is
located so that it can be called.

When the compiler generates the object code for File Two, it substitutes a
placeholder for the address of count because it has no way of knowing where count
will be located in memory. The same sort of thing occurs when File One is compiled.
The address of display() is not known, so a placeholder is used. This process forms
the basis for relocatable code. When the files are joined by the linker, the placeholders
are replaced with relative addresses.

To better understand relocatable code, you must first understand absolute code.
Although it is seldom used today, in the early days of computers, it was not
uncommon for a program to be compiled to run at a specific memory location. When
compiled in this way, all addresses are fixed at compile time. Because the addresses
are fixed, the program can only be loaded into and executed in exactly one region of
memory: the one for which it was compiled. Relocatable code, on the other hand, is
compiled in such a way that the address information is not fixed. When making a
relocatable object file, the linker assigns each call, jump, or global variable an offset.
When the file is loaded into memory for execution, the loader automatically resolves
the offsets into addresses that will work for the location in memory into which the
program is being loaded. This means that a relocatable program can be loaded into
and run from many different memory locations.

Library Files Versus Object Files
Although libraries are similar to object files, they have one crucial difference: not all
the code in the library is added to your program. When you link a program that consists
of several object files, all the code in each object file becomes part of the finished
executable program. This happens whether the code is actually used or not. In other
words, all object files specified at link time are “added together” to form the program.
However, this is not the case with library files.

A library is a collection of functions. Unlike an object file, a library file stores the
name of each function, the function’s object code, and relocation information necessary
to the linking process. When your program references a function contained in a library,
the linker looks up that function and adds that code to your program. In this way, only
functions that you actually use in your program are added to the executable file.

Since C++ Builder functions are contained in a library, only those actually used by
your program will be included in your program’s executable code. (If they were in
object files, every program you wrote would be several hundred thousand bytes long!)

C h a p t e r 1 0 : L i n k i n g , L i b r a r i e s , a n d H e a d e r s 261
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

262 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The Standard Library Versus
C++ Builder Extensions
The ANSI/ISO standard for C defines both the form and the content of the C standard
function library. Furthermore, C++ includes the entire C function library. Thus, every
function in the C library is also a function in the C++ library. C++ Builder supplies all
functions defined by the ANSI/ISO C89 and C++ standards. However, to allow the
fullest use and control of the computer, C++ Builder contains additional functions that
are not defined by Standard C or C++. Such extensions include a complete set of screen
manipulation functions for console applications and directory management functions,
for example. This book describes both the standard functions and the extended ones
added by C++ Builder. As long as you will not be porting the programs you write to
a new environment, it is perfectly fine to use these extended functions. However, if
ANSI/ISO compliance is an issue, then you will want to use only those functions
defined by the standard.

Headers
Many functions found in the C library work with their own specific data types and
structures to which your program must have access. These structures and types are defined
in headers, which for C++ Builder are contained in files supplied with the compiler. They
must be included (using #include) in any file that uses the specific functions to which they
refer. In addition, all functions in the library have their prototypes defined in a header.
This is done for two reasons. First, in C++, all functions must be prototyped. Second,
although technically an option in C, prototyping is strongly suggested because it provides
a means of stronger type checking. In a C program, by including the headers that
correspond to the standard functions used by your program, you can catch potential
type-mismatch errors. For example, including <string.h>, the string function’s header,
causes the following code to produce a warning message when compiled.

#include <string.h>

char s1[20] = "hello ";

char s2[] = "there.";

int main(void)

{

int p;

p = strcat(s1, s2);

return 0;

}

Because strcat() is declared as returning a character pointer in its header, the compiler
can now flag as a possible error the assignment of that pointer to the integer p.

Remember: although the inclusion of many headers is technically optional (yet
advisable) in C, they must be included in all C++ programs. In the remaining chapters
of Part Two, the description of each function will specify its header.

C++ Builder supplies a large number of headers. The headers for C++ Builder
are located in its Include directory. In a standard installation, this will be
Borland\CBuilder5\Include. Fortunately, most of the time your program will only
need to include a few of the headers. Several of the more commonly used headers
supplied with C++ Builder are shown in Table 10-1. Those headers defined by the
ANSI/ISO Standard C/C++ are so indicated.

C h a p t e r 1 0 : L i n k i n g , L i b r a r i e s , a n d H e a d e r s 263
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

<alloc.h> Dynamic allocation functions.

<assert.h> Defines the assert() macro (ANSI/ISO C/C++).

<conio.h> Screen-handling functions.

<ctype.h> Character-handling functions (ANSI/ISO C/C++).

<dir.h> Directory-handling functions.

<dos.h> DOS interfacing functions.

<errno.h> Defines error codes (ANSI/ISO C/C++).

<fcntl.h> Defines constants used by open() function.

<float.h> Defines implementation-dependent floating-point values
(ANSI/ISO C/C++).

<io.h> UNIX-like I/O routines.

<limits.h> Defines various implementation-dependent limits (ANSI/ISO
C/C++).

<locale.h> Country- and language-specific functions (ANSI/ISO
C/C++).

Table 10-1. Some Commonly Used Headers

Macros in Headers
Many of the library functions are not actually functions at all but rather parameterized
macro definitions contained in a header. Generally, this is of little consequence, but this
distinction will be pointed out when discussing such “functions.” If for some reason
you wish to avoid the use of a standard macro, you can undefine it using the #undef
preprocessing directive.

264 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

<math.h> Various definitions used by the math library (ANSI/ISO
C/C++).

<process.h> spawn() and exec() functions.

<setjmp.h> Nonlocal jumps (ANSI/ISO C/C++).

<share.h> File sharing.

<signal.h> Defines signal values (ANSI/ISO C/C++).

<stdarg.h> Variable-length argument lists (ANSI/ISO C/C++).

<stddef.h> Defines some commonly used constants (ANSI/ISO C/C++).

<stdio.h> Declarations for standard I/O streams (ANSI/ISO C/C++).

<stdlib.h> Miscellaneous declarations (ANSI/ISO C/C++).

<string.h> String handling (ANSI/ISO C/C++).

<time.h> System time functions (ANSI/ISO C/C++).

Table 10-1. Some Commonly Used Headers (continued)

Chapter 11
I/O Functions

265

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

266 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C++ Builder’s I/O library functions can be grouped into three major categories:

� The ANSI/ISO C I/O system

� The UNIX-like I/O system

� Several platform-specific I/O functions

This chapter describes the functions that compose the ANSI/ISO C I/O system (which
are also supported by C++) and the UNIX-like I/O system. It also describes some of the
platform-specific functions. Other platform-specific functions, such as those for direct
screen output, are described in Chapter 18. The platform-specific functions relate mostly
to the Windows environment, including its “DOS” environment.

For the ANSI/ISO C I/O system, the header <stdio.h> is required. For the
UNIX-like routines, the header <io.h> is required. The platform-specific functions
use headers such as <conio.h>.

Many of the I/O functions set the predefined global integer variable errno to an
appropriate error code when an error occurs. This variable is declared in <errno.h>.

The C++ I/O classes, functions, and operators are discussed in Part Three.

int access(const char *filename, int mode)

Description
The prototype for access() is found in <io.h>.

The access() function belongs to the UNIX-like file system and is not defined by
the ANSI/ISO C/C++ standard. It is used to see if a file exists. It can also be used to
tell whether the file is write-protected and if it can be executed. The name of the file
in question is pointed to by filename. The value of mode determines exactly how access()
functions. The legal values are

Value Checks for

0 File existence

1 Executable file

2 Write access

4 Read access

6 Read/write access

C h a p t e r 1 1 : I / O F u n c t i o n s 267
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The access() function returns 0 if the specified access is allowed; otherwise,
it returns –1. Upon failure, the predefined global variable errno is set to one of
these values:

ENOENT File not found

EACCES Access denied

Example
The following program checks to see if the file TEST.TST is present in the current
working directory:

#include <stdio.h>

#include <io.h>

int main(void)

{

if(!access("TEST.TST", 0))

printf("File Present");

else

printf("File not Found");

return 0;

}

Related Function

chmod()

int chmod(const char *filename, int mode)

Description
The prototype for chmod() is found in <io.h>.

The chmod() function is not defined by the ANSI/ISO C/C++ standard. It changes
the access mode of the file pointed to by filename to that specified by mode. The value of
mode must be one or both of the macros S_IWRITE and S_IREAD, which correspond
to write access and read access, respectively. To change a file’s mode to read/write status,
call chmod() with mode set to S_IWRITE | S_IREAD. These macros are located in the
<sys\stat.h> header file, which must be included before they can be used.

The chmod() function returns 0 if successful and –1 if unsuccessful.

268 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
This call to chmod() attempts to set the file TEST.TST to read/write access:

if(!chmod("TEST.TST", S_IREAD | S_IWRITE))

printf("File set to read/write access.");

Related Functions

access(), _chmod()

int chsize(int handle, long size)

Description
The prototype for chsize() is found in <io.h>.

The chsize() function is not defined by the ANSI/ISO C/C++ standard. It extends
or truncates the file specified by handle to the value of size.

The chsize() function returns 0 if successful. Upon failure, it returns –1 and errno is
set to one of the following:

EACCES Access denied

EBADF Bad file handle

ENOSPC Out of space

Example
This call to chsize() attempts to change the size of TEST.TST.

/*

Assume that a file associated with handle

has been opened.

*/

if(!chsize(handle, 256))

printf("File size is now 256 bytes.");

Related Functions

open(), close(), _creat()

C h a p t e r 1 1 : I / O F u n c t i o n s 269
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

void clearerr(FILE *stream)
Description
The prototype for clearerr() is found in <stdio.h>.

The clearerr() function is used to reset the file error flag pointed to by stream to 0
(off). The end-of-file indicator is also reset.

The error flags for each stream are initially set to 0 by a successful call to fopen(). Once
an error has occurred, the flags stay set until an explicit call to either clearerr() or rewind()
is made.

File errors can occur for a wide variety of reasons, many of which are system
dependent. The exact nature of the error can be determined by calling perror(),
which displays which error has occurred (see perror()).

Example
This program copies one file to another. If an error is encountered, a message is printed
and the error is cleared.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) /* copy one file to another */

{

FILE *in, *out;

char ch;

if(argc!=3) {

printf("You forgot to enter a filename\n");

exit(0);

}

if((in=fopen(argv[1], "rb")) == NULL) {

printf("Cannot open file.\n");

exit(0);

}

if((out=fopen(argv[2],"wb")) == NULL) {

printf("Cannot open file.\n");

exit(0);

}

while(!feof(in)) {

ch = getc(in);

if(ferror(in)) {

270 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

printf("Read Error");

clearerr(in);

} else {

if(!feof(in)) putc(ch, out);

if(ferror(out)) {

printf("Write Error");

clearerr(out);

}

}

}

fclose(in);

fclose(out);

return 0;

}

Related Functions

feof(), ferror(), perror()

int close(int fd)
int _rtl_close(int fd)

Description
The prototypes for close() and _rtl_close() are found in <io.h>.

The close() function belongs to the UNIX-like file system and is not defined by the
ANSI/ISO C/C++ standard. When close() is called with a valid file descriptor, it closes
the file associated with it and flushes the write buffers if applicable. (File descriptors
are created through a successful call to open() or _creat() and do not relate to streams
or file pointers.)

When successful, close() returns a 0; if unsuccessful, it returns a –1. Although there
are several reasons why you might not be able to close a file, the most common is the
premature removal of the medium. For example, if you remove a diskette from the drive
before the file is closed, an error will result.

The _rtl_close() function works exactly like close().

Example
This program opens and closes a file using the UNIX-like file system:

#include <stdio.h>

#include <fcntl.h>

#include <sys\stat.h>

TE
AM
FL
Y

Team-Fly®

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 1 : I / O F u n c t i o n s 271

#include <io.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int fd;

if((fd=open(argv[1], O_RDONLY))==-1) {

printf("Cannot open file.");

exit(1);

}

printf("File is existent.\n");

if(close(fd))

printf("Error in closing file.\n");

return 0;

}

Related Functions

open(), _creat(), read(), write(), unlink()

int _creat(const char *filename, int pmode)
int _rtl_creat(const char *filename, int attrib)
int creatnew(const char *filename, int attrib)
int creattemp(char *filename, int attrib)

Description
The prototypes for these functions are found in <io.h>.

The _creat() function is part of the UNIX-like file system and is not defined by the
ANSI/ISO C/C++ standard. Its purpose is to create a new file with the name pointed
to by filename and to open it for writing. On success _creat() returns a file descriptor
that is greater than or equal to 0; on failure it returns a –1. (File descriptors are integers
and do not relate to streams or file pointers.)

The value of pmode determines the file’s access setting, sometimes called its permission
mode. The value of pmode is highly dependent upon the execution environment. For C++
Builder, its values can be S_IWRITE or S_IREAD. If pmode is set to S_IREAD, a read-only
file is created. If it is set to S_IWRITE, a writable file is created. You can OR these values
together to create a read/write file.

272 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

If, at the time of the call to _creat(), the specified file already exists, it is erased and
all previous contents are lost unless the original file was write-protected.

The _rtl_creat() function works like _creat() but uses a DOS/Windows attribute
byte. The attrib argument may be one of these macros:

FA_RDONLY Set file to read only

FA_HIDDEN Make hidden file

FA_SYSTEM Mark as a system file

The creatnew() function is the same as _rtl_creat() except that if the file already
exists on disk, creatnew() returns an error and does not erase the original file.

The creattemp() function is used to create a unique temporary file. You call
creattemp() with filename pointing to the path name ending with a backslash. Upon
return, filename contains the name of a unique file. You must make sure that filename
is large enough to hold the filename.

In the case of an error in any of these functions, errno is set to one of these values:

ENOENT Path or file does not exist

EMFILE Too many files are open

EACCES Access denied

EEXIST File exists (creatnew() only)

Example
The following code creates a file called test:

#include <stdio.h>

#include <sys\stat.h>

#include <io.h>

#include <stdlib.h>

int main(void)

{

int fd;

if((fd=_creat("test", S_IWRITE))==-1) {

printf("Cannot open file.\n");

exit(1);

}

/* ... */

close(fd); /* close the file */

return 0;

}

Related Functions

open(), close(), read(), write(), unlink(), eof()

int dup(int handle)
int dup2(int old_handle, int new_handle)

Description
The prototypes for dup() and dup2() are found in <io.h>. The functions are not
defined by ANSI/ISO C/C++

The dup() function returns a new file descriptor that fully describes (i.e., duplicates)
the state of the file associated with handle. It returns nonnegative on success; –1 on failure.

The dup2() function duplicates old_handle as new_handle. If there is a file associated
with new_handle prior to the call to dup2(), it is closed. It returns 0 if successful, –1 when
an error occurs. In the case of an error, errno is set to one of these values:

EMFILE Too many files are open

EBADF Bad file handle

Example
This fragment assigns fp2 a new file descriptor:

FILE *fp, *fp2;

/* ... */

fp2 = dup(fp);

Related Functions

close(), _creat()

C h a p t e r 1 1 : I / O F u n c t i o n s 273
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

274 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int eof(int fd)

Description
The prototype for eof() is found in <io.h>.

The eof() function is not defined by the ANSI/ISO C/C++ standard. When called
with a valid file descriptor, eof() returns 1 if the end of the file has been reached; otherwise,
it returns a 0. If an error has occurred, it returns a –1 and errno is set to EBADF (bad
file number).

Example
The following program displays a text file on the console using eof() to determine
when the end of the file has been reached.

#include <stdio.h>

#include <io.h>

#include <fcntl.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int fd;

char ch;

if((fd=open(argv[1], O_RDWR))==-1) {

printf("Cannot open file.\n");

exit(1);

}

while(!eof(fd)) {

read(fd, &ch, 1); /* read one char at a time */

printf("%c", ch);

}

close(fd);

return 0;

}

C h a p t e r 1 1 : I / O F u n c t i o n s 275
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

open(), close(), read(), write(), unlink()

int fclose(FILE *stream)
int _fcloseall(void)

Description
The prototypes for fclose() and _fcloseall() are found in <stdio.h>.

The fclose() function closes the file associated with stream and flushes its buffer.
After an fclose(), stream is no longer connected with the file and any automatically
allocated buffers are deallocated.

If fclose() is successful, a 0 is returned; otherwise, it returns an EOF. Trying to close
a file that has already been closed is an error.

The _fcloseall() function closes all open streams except stdin, stdout, stdprn, and
stderr. It is not defined by the ANSI/ISO C/C++ standard. It returns EOF on error.

Example
The following code opens and closes a file:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

if((fp=fopen("test", "rb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

/* ... */

if(fclose(fp))

printf("File close error.\n");

return 0;

}

276 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions
fopen(), freopen(), fflush()

FILE *fdopen(int handle, char *mode)
Description
The prototype for fdopen() is found in <stdio.h>.

The fdopen() function is not defined by the ANSI/ISO C/C++ standard. It returns
a stream that shares the same file that is associated with handle, where handle is a valid
file descriptor obtained through a call to one of the UNIX-like I/O routines. In essence,
fdopen() is a bridge between the ANSI/ISO stream-based file system and the UNIX-like
file system. The value of mode must be the same as that of the mode that originally
opened the file.

See open() and fopen() for details.

Related Functions
open(), fopen(), _creat()

int feof(FILE *stream)
Description
The prototype for feof() is found in <stdio.h>.

The feof() macro checks the file position indicator to determine if the end of the file
associated with stream has been reached. A non-0 value is returned if the file position
indicator is at the end of the file; a 0 is returned otherwise.

Once the end of the file has been reached, subsequent read operations return EOF
until either rewind() is called or the file position indicator is moved using fseek().

The feof() macro is particularly useful when working with binary files because the
end-of-file marker is also a valid binary integer. You must make explicit calls to feof()
rather than simply testing the return value of getc(), for example, to determine when
the end of the file has been reached.

Example
This code fragment shows the proper way to read to the end of a binary file:

/*

Assume that fp has been opened as a binary file

for read operations.

*/

while(!feof(fp)) getc(fp);

Related Functions

clearerr(), ferror(), perror(), putc(), getc()

int ferror(FILE *stream)

Description
The prototype for the ferror() macro is found in <stdio.h>.

The ferror() function checks for a file error on the given stream. A return value
of 0 indicates that no error has occurred, while a non-0 value indicates an error.

The error flags associated with stream stay set until either the file is closed, or
rewind() or clearerr() is called.

Use the perror() function to determine the exact nature of the error.

Example
The following code fragment aborts program execution if a file error occurs:

/*

Assume that fp points to a stream opened for write

operations.

*/

while(!done) {

putc(info,fp);

if(ferror(fp)) {

printf("File Error\n");

exit(1);

}

/* ... */

}

Related Functions

clearerr(), feof(), perror()

C h a p t e r 1 1 : I / O F u n c t i o n s 277
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

278 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int fflush(FILE *stream)

Description
The prototype for fflush() is found in <stdio.h>.

If stream is associated with a file opened for writing, a call to fflush() causes the
contents of the output buffer to be physically written to the file. If stream points to an
input file, the input buffer is cleared. In either case the file remains open.

A return value of 0 indicates success, while EOF means an error has occurred.
All buffers are automatically flushed upon normal termination of the program or

when they are full. Closing a file flushes its buffer.

Example
The following code fragment flushes the buffer after each write operation.

/*

Assume that fp is associated with an output file.

*/

/* ... */

fwrite(buf, sizeof(data_type), 1, fp);

fflush(fp);

/* ... */

Related Functions

fclose(), fopen(), _flushall(), fwrite()

int fgetc(FILE *stream)

Description
The prototype for fgetc() is found in <stdio.h>.

The fgetc() function returns the next character from the input stream from the
current position and increments the file position indicator.

If the end of the file is reached, fgetc() returns EOF. However, since EOF is a valid
integer value, when working with binary files you must use feof() to check for end-of-file.
If fgetc() encounters an error, EOF is also returned. Again, when working with binary
files you must use ferror() to check for file errors.

C h a p t e r 1 1 : I / O F u n c t i o n s 279
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This program reads and displays the contents of a binary file:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *fp;

char ch;

if((fp=fopen(argv[1], "r"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

while((ch=fgetc(fp))!=EOF) {

printf("%c", ch);

}

fclose(fp);

return 0;

}

Related Functions

fputc(), getc(), putc(), fopen()

int fgetchar(void)

Description
The prototype for fgetchar() is found in <stdio.h>.

The fgetchar() macro is defined as fgetc(stdin). Refer to fgetc() for details.

int *fgetpos(FILE *stream, fpos_t *pos)

Description
The prototype for fgetpos() is found in <stdio.h>.

280 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The fgetpos() function stores the current location of the file pointer associated with
stream in the variable pointed to by pos. The type fpos_t is defined in <stdio.h>.

If successful, fgetpos() returns 0; upon failure, a value other than 0 is returned and
errno is set to one of the following values:

EBADF Bad file stream

EINVAL Invalid argument

Example
This program uses fgetpos() to display the current file position:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *fp;

long l;

int i;

fpos_t *pos; /* fpos_t is defined in stdio.h */

pos = &l;

if((fp=fopen(argv[1], "w+"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

for (i=0; i<10; i++)

fputc('Z', fp); /* write 10 Z's to the file */

fgetpos(fp, pos);

printf("We are now at position %ld in the file.", *pos);

fclose(fp);

return 0;

}

Related Functions

fsetpos(), fseek(), ftell()

TE
AM
FL
Y

Team-Fly®

char *fgets(char *str, int num, FILE *stream)

Description
The prototype for fgets() is found in <stdio.h>.

The fgets() function reads up to num–1 characters from stream and places them into
the character array pointed to by str. Characters are read until either a newline or an EOF
is received or until the specified limit is reached. After the characters have been read, a
null is placed in the array immediately after the last character read. A newline character
will be retained and will be part of str.

If successful, fgets() returns str; a null pointer is returned upon failure. If a read error
occurs, the contents of the array pointed to by str are indeterminate. Because a null pointer
is returned when either an error occurs or the end of the file is reached, you should use
feof() or ferror() to determine what has actually happened.

Example
This program uses fgets() to display the contents of the text file specified in the first
command line argument:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *fp;

char str[128];

if((fp=fopen(argv[1], "r"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

while(!feof(fp)) {

if(fgets(str, 126, fp))

printf("%s", str);

}

fclose(fp);

return 0;

}

C h a p t e r 1 1 : I / O F u n c t i o n s 281
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

282 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions

fputs(), fgetc(), gets(), puts()

long filelength(int handle)

Description
The prototype for filelength() is found in <io.h>.

The filelength() function is not defined by the ANSI/ISO C/C++ standard.
It returns the length, in bytes, of the file associated with the file descriptor handle.
Remember that the return value is of type long. If an error occurs, –1L is returned and
errno is set to EBADF, which means bad file handle.

Example
This fragment prints the length of a file whose file descriptor is fd:

printf("The file is %ld bytes long.", filelength(fd));

Related Function

open()

int fileno(FILE *stream)

Description
The prototype for the fileno() macro is found in <stdio.h>.

The fileno() function is not defined by the ANSI/ISO C/C++ standard. It is used to
return a file descriptor to the specified stream.

Example
After this fragment has executed, fd is associated with the file pointed to by stream:

FILE *stream;

int fd;

if((stream=fopen("TEST", "r"))==NULL) {

printf("Cannot open TEST file.\n");

exit(1);

}

fd = fileno(stream);

C h a p t e r 1 1 : I / O F u n c t i o n s 283
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Function

fdopen()

int _flushall(void)

Description
The prototype for _flushall() is found in <stdio.h>. It is not defined by the ANSI/ISO
C/C++ standard.

A call to _flushall() causes the contents of all the output buffers associated with file
streams to be physically written to their corresponding files and all the input buffers to
be cleared. All streams remain open.

The number of open streams is returned.
All buffers are automatically flushed upon normal termination of the program or

when they are full. Also, closing a file flushes its buffer.

Example
The following code fragment flushes all buffers after each write operation:

/*

Assume that fp is associated with an output file.

*/

/* ... */

fwrite(buf,sizeof(data_type),1,fp);

_flushall();

Related Functions

fclose(), fopen(), _fcloseall(), fflush()

FILE *fopen(const char *fname, const char *mode)

Description
The prototype for fopen() is found in <stdio.h>.

The fopen() function opens a file whose name is pointed to by fname and returns
the stream that is associated with it. The type of operations that are allowed on the file
are defined by the value of mode. The legal values for mode are shown in Table 11-1. The
parameter fname must be a string of characters that constitutes a valid filename and can
include a path specification.

284 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

If fopen() is successful in opening the specified file, a FILE pointer is returned.
If the file cannot be opened, a null pointer is returned.

As Table 11-1 shows, a file can be opened in either text or binary mode. In text mode,
carriage return, linefeed sequences are translated to newline characters on input. On
output, the reverse occurs: newlines are translated to carriage return, linefeeds. No
such translations occur on binary files.

Mode Meaning

"r" Open a file for reading. (Opened as text file by default, see discussion.)

"w" Create a file for writing. (Opened as text file by default, see discussion.)

"a" Append to a file. (Opened as text file by default, see discussion.)

"rb" Open a binary file for reading.

"wb" Create a binary file for writing.

"ab" Append to a binary file.

"r+" Open a file for read/write. (Open as text file by default, see discussion.)

"w+" Create a file for read/write. (Open as text file by default, see discussion.)

"a+" Append or create a file for read/write. (Open as text file by default,
see discussion.)

"r+b" Open a binary file for read/write.

"w+b" Create a binary file for read/write.

"a+b" Append or create a binary file for read/write.

"rt" Open a text file for reading.

"wt" Create a text file for writing.

"at" Append to a text file.

"r+t" Open a text file for read/write.

"w+t" Create a text file for read/write.

"a+t" Append or create a text file for read/write.

Table 11-1. Legal Values for mode

If the mode string does not specify either a b (for binary) or a t (for text), the type of
file opened is determined by the value of the built-in global variable _fmode. By default,
_fmode is O_TEXT, which means text mode. It can be set to O_BINARY, which means
binary mode. These macros are defined in <fcntl.h>.

One correct method of opening a file is illustrated by this code fragment:

FILE *fp;

if ((fp = fopen("test", "w"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

This method detects any error in opening a file, such as a write-protected or full
disk, before attempting to write to it. A null, which is 0, is used because no file pointer
ever has that value. NULL is defined in <stdio.h>.

If you use fopen() to open a file for write operations, any preexisting file by that
name is erased, and a new file is started. If no file by that name exists, one is created.
If you want to add to the end of the file, you must use mode a. If the file does not exist,
an error is returned. Opening a file for read operations requires an existing file. If no
file exists, an error is returned. Finally, if a file is opened for read/write operations,
it is not erased if it exists; however, if no file exists, one is created.

Example
This fragment opens a file called test for binary read/write operations:

FILE *fp;

if((fp=fopen("test", "r+b"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

Related Functions

fclose(), fread(), fwrite(), putc(), getc()

int fprintf(FILE *stream, const char *format, arg-list)

Description
The prototype for fprintf() is found in <stdio.h>.

C h a p t e r 1 1 : I / O F u n c t i o n s 285
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The fprintf() function outputs the values of the arguments that make up arg-list as
specified in the format string to the stream pointed to by stream. The return value is the
number of characters actually printed. If an error occurs, a negative number is returned.

The operations of the format control string and commands are identical to those in
printf(); see the printf() function for a complete description.

Example
This program creates a file called test and writes the string “this is a test 10 20.01” into
the file using fprintf() to format the data:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

if((fp=fopen("test", "w"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

fprintf(fp, "this is a test %d %f", 10, 20.01);

fclose(fp);

return 0;

}

Related Functions

printf(), fscanf()

int fputc(int ch, FILE *stream)

Description
The prototype for fputc() is found in <stdio.h>.

The fputc() function writes the character ch to the specified stream at the current
file position and then increments the file position indicator. Even though ch is declared
to be an int, it is converted by fputc() into an unsigned char. Because all character

286 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : I / O F u n c t i o n s 287
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

arguments are elevated to integers at the time of the call, you generally see character
variables used as arguments. If an integer is used, the high-order byte is simply discarded.

The value returned by fputc() is the value of the character written. If an error
occurs, EOF is returned. For files opened for binary operations, EOF may be a valid
character, and the function ferror() must be used to determine whether an error has
actually occurred.

Example
This function writes the contents of a string to the specified stream:

void write_string(char *str, FILE *fp)

{

while(*str) if(!ferror(fp)) fputc(*str++, fp);

}

Related Functions

fgetc(), fopen(), fprintf(), fread(), fwrite()

int fputchar(int ch)

Description
The prototype for fputchar() is found in <stdio.h>.

The fputchar() function writes the character ch to stdout. Even though ch is declared
to be an int, it is converted by fputchar() into an unsigned char. Because all character
arguments are elevated to integers at the time of the call, you generally see character
variables used as arguments. If an integer is used, the high-order byte is simply
discarded. A call to fputchar() is the functional equivalent of a call to fputc(ch, stdout).

The value returned by fputchar() is the value of the character written. If an error
occurs, EOF is returned. For files opened for binary operations, EOF may be a valid
character and the function ferror() must be used to determine whether an error has
actually occurred.

Example
This function writes the contents of a string to stdout:

void write_string(char *str)

{

while(*str) if(!ferror(fp)) fputchar(*str++);

}

Related Functions

fgetc(), fopen(), fprintf(), fread(), fwrite()

int fputs(const char *str, FILE *stream)

Description
The prototype for fputs() is found in <stdio.h>.

The fputs() function writes the contents of the string pointed to by str to the
specified stream. The null terminator is not written.

The fputs() function returns nonnegative on success, EOF on failure. If the stream
is opened in text mode, certain character translations may take place. This means that
there may not be a one-to-one mapping of the string onto the file. However, if it is
opened in binary mode, no character translations occur and a one-to-one mapping exists
between the string and the file.

Example
This code fragment writes the string “this is a test” to the stream pointed to by fp.

fputs("this is a test", fp);

Related Functions

fgets(), gets(), puts(), fprintf(), fscanf()

size_t fread(void *buf, size_t size, size_t count,
FILE *stream)

Description
The prototype for fread() is found in <stdio.h>.

The fread() function reads count number of objects—each object being size number
of bytes in length—from the stream pointed to by stream and places them in the array
pointed to by buf. The file position indicator is advanced by the number of bytes read.

The fread() function returns the number of items actually read. If fewer items are
read than are requested in the call, either an error has occurred or the end of the file
has been reached. You must use feof() or ferror() to determine what has taken place.

If the stream is opened for text operations, then carriage return, linefeed sequences
are automatically translated into newlines.

288 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
This program reads ten floating-point numbers from a disk file called test into the
array bal:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

float bal[10];

if((fp=fopen("test", "rb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

if(fread(bal, sizeof(float), 10, fp)!=10) {

if(feof(fp)) printf("Premature end of file.");

else printf("File read error.");

}

fclose(fp);

return 0;

}

Related Functions

fwrite(), fopen(), fscanf(), fgetc(), getc()

FILE *freopen(const char *fname, const char *mode,
FILE *stream)

Description
The prototype for freopen() is found in <stdio.h>.

The freopen() function is used to associate an existing stream with a different file.
The new file’s name is pointed to by fname, the access mode is pointed to by mode, and
the stream to be reassigned is pointed to by stream. The string mode uses the same format
as fopen(); a complete discussion is found in the fopen() description.

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 1 : I / O F u n c t i o n s 289

When called, freopen() first tries to close a file that is currently associated with
stream. However, failure to achieve a successful closing is ignored, and the attempt
to reopen continues.

The freopen() function returns a pointer to stream on success and a null pointer
otherwise.

The main use of freopen() is to redirect the system-defined files stdin, stdout, and
stderr to some other file.

Example
The program shown here uses freopen() to redirect the stream stdout to the file called
OUT. Because printf() writes to stdout, the first message is displayed on the screen
and the second is written to the disk file.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

printf("This will display on the screen\n");

if((fp=freopen("OUT", "w", stdout))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

printf("This will be written to the file OUT");

fclose(fp);

return 0;

}

Related Functions

fopen(), fclose()

int fscanf(FILE *stream, const char *format, arg-list)

Description
The prototype for fscanf() is found in <stdio.h>.

290 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

The fscanf() function works exactly like the scanf() function except that it reads
the information from the stream specified by stream instead of stdin. See the scanf()
function for details.

The fscanf() function returns the number of arguments actually assigned values.
This number does not include skipped fields. A return value of EOF means that an
attempt was made to read past the end of the file.

Example
This code fragment reads a string and a float number from the stream fp:

char str[80];

float f;

fscanf(fp, "%s%f", str, &f);

Related Functions

scanf(), fprintf()

int fseek(FILE *stream, long offset, int origin)

Description
The prototype for fseek() is found in <stdio.h>.

The fseek() function sets the file position indicator associated with stream
according to the values of offset and origin. Its main purpose is to support random I/O
operations. The offset is the number of bytes from origin to make the new position. The
origin is 0, 1, or 2, with 0 being the start of the file, 1 the current position, and 2 the end
of the file. The following macros for origin are defined in <stdio.h>:

Name Origin

SEEK_SET Beginning of file

SEEK_CUR Current position

SEEK_END End-of-file

A return value of 0 means that fseek() succeeded. A non-0 value indicates failure.
You can use fseek() to move the position indicator anywhere in the file, even

beyond the end. However, it is an error to attempt to set the position indicator before
the beginning of the file.

The fseek() function clears the end-of-file flag associated with the specified stream.
Furthermore, it nullifies any prior ungetc() on the same stream. (See ungetc().)

C h a p t e r 1 1 : I / O F u n c t i o n s 291
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

292 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
The function shown here seeks to the specified structure of type addr. Notice the use of
sizeof both to obtain the proper number of bytes to seek and to ensure portability.

struct addr {

char name[40];

char street[40];

char city[40];

char state[3];

char zip[10];

} info;

void find(long client_num)

{

FILE *fp;

if((fp=fopen("mail", "rb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

/* find the proper structure */

fseek(client_num*sizeof(struct addr), 0);

/* read the data into memory */

fread(&info, sizeof(struct addr), 1, fp);

fclose(fp);

}

Related Functions
ftell(), rewind(), fopen()

int fsetpos(FILE *stream, const fpos_t *pos)

Description
The prototype for fsetpos() is found in <stdio.h>.

The fsetpos() function sets the file pointer associated with stream to the location
pointed to by pos. This value was set by a previous call to fgetpos(). The type fpos_t
is defined in <stdio.h>. It is capable of representing any file location.

If successful, fsetpos() returns 0; upon failure, a value other than 0 is returned, and
errno is also set to a non-0 value.

Example
This program uses fsetpos() to reset the current file position to an earlier value:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

FILE *fp;

long l;

int i;

fpos_t *pos; /* fpos_t is defined in stdio.h */

pos = &l;

if((fp=fopen(argv[1], "w+"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

for (i=0; i<10; i++)

fputc('Y', fp); /* write 10 Y's to the file */

fgetpos(fp, pos);

for (i=0; i<10; i++)

fputc('Z', fp); /* write 10 Z's to the file */

fsetpos(fp, pos); /* reset to the end of the Y's */

fputc('A', fp); /* replace first Z with an A. */

fclose(fp);

return 0;

}

Related Functions

fgetpos(), fseek(), ftell()

C h a p t e r 1 1 : I / O F u n c t i o n s 293
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

FILE *_fsopen(const char *fname, const char *mode,
int shflg)

Description
The prototype for _fsopen() is found in <stdio.h>. You will also need to include
<share.h>. This function is not defined by the ANSI/ISO C/C++ standard.

The _fsopen() function opens a file whose name is pointed to by fname and returns
a FILE pointer to the stream associated with it. The file is opened for shared-mode access
using a network. It returns null if the file cannot be opened.

_fsopen() is similar to the standard library function fopen() except that it is designed
for use with networks to manage file sharing. The string pointed to by mode determines
the type of operations that may be performed on the file. Its legal values are the same
as for fopen(). (Refer to fopen() for details.)

The shflg parameter determines how file sharing will be allowed. It will be one of
the following macros (defined in <share.h>):

shflg Meaning

SH_COMPAT Compatibility mode

SH_DENYRW No reading or writing

SH_DENYWR No writing

SH_DENYRD No reading

SH_DENYNONE Allow reading and writing

SH_DENYNO Allow reading and writing

Example
This call to _fsopen() opens a file called TEST.DAT for binary output and denies
network input operations:

fp=_fsopen("TEST.DAT", "wb", SH_DENYRD);

Related Functions

fopen(), sopen()

294 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int fstat(int handle, struct stat *statbuf)

Description
The prototype for fstat() is found in <sys\stat.h>.

The function is not defined by the ANSI/ISO C/C++ standard. The fstat() function
fills the structure statbuf with information on the file associated with the file descriptor
handle. Information on the contents of stat can be found in the file <sys\stat.h>.

Upon successfully filling the stat structure, 0 is returned. On error, –1 is returned
and errno is set to EBADF.

Example
The following example opens a file, fills the stat structure, and prints out one of its fields:

#include <stdio.h>

#include <sys\stat.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

struct stat buff;

if((fp=fopen("test", "rb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

/* fill the stat structure */

fstat(fileno(fp), &buff);

printf("Size of the file is: %ld\n", buff.st_size);

fclose(fp);

return 0;

}

Related Functions

stat(), access()

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 1 : I / O F u n c t i o n s 295

long ftell(FILE *stream)

Description
The prototype for ftell() is found in <stdio.h>.

The ftell() function returns the current value of the file position indicator for the
specified stream. This value is the number of bytes the indicator is from the beginning
of the file.

The ftell() function returns –1L when an error occurs. If the stream is incapable of
random seeks—if it is the console, for instance—the return value is undefined.

Example
This code fragment returns the current value of the file position indicator for the
stream pointed to by fp:

long i;

if((i=ftell(fp))==-1L) printf("A file error has occurred.\n");

Related Function

fseek()

size_t fwrite(const void *buf, size_t size, size_t count,
FILE *stream)

Description
The prototype for fwrite() is found in <stdio.h>.

The fwrite() function writes count number of objects—each object being size
number of bytes in length—to the stream pointed to by stream from the array pointed
to by buf. The file-position indicator is advanced by the number of bytes written.

The fwrite() function returns the number of items actually written, which, if the
function is successful, equals the number requested. If fewer items are written than
are requested, an error has occurred.

If the stream is opened for text operations, then newlines characters are automatically
translated into carriage return, linefeed sequences when the file is written.

Example
This program writes a float to the file test. Notice that sizeof is used both to determine
the number of bytes in a float variable and to ensure portability.

296 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

float f=12.23;

if((fp=fopen("test", "wb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

fwrite(&f, sizeof(float), 1, fp);

fclose(fp);

return 0;

}

Related Functions

fread(), fscanf(), getc(), fgetc()

int getc(FILE *stream)

Description
The prototype for getc() is found in <stdio.h>.

The getc() macro returns the next character from the current position in the input
stream and increments the file position indicator. The character is read as an unsigned
char that is converted to an integer.

If the end of the file is reached, getc() returns EOF. However, since EOF is a valid
integer value, when working with binary files you must use feof() to check for the end
of the file. If getc() encounters an error, EOF is also returned. Remember that if you are
working with binary files, you must use ferror() to check for file errors.

Example
This program reads and displays the contents of a text file:

#include <stdio.h>

#include <stdlib.h>

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 1 : I / O F u n c t i o n s 297

298 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main(int argc, char *argv[])

{

FILE *fp;

char ch;

if((fp=fopen(argv[1], "r"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

while((ch=getc(fp))!=EOF)

printf("%c", ch);

fclose(fp);

return 0;

}

Related Functions

fputc(), fgetc(), putc(), fopen()

int getch(void)
int getche(void)

Description
The prototypes for getch() and getche() are found in <conio.h>.

The getch() function returns the next character read from the console but does not
echo that character to the screen.

The getche() function returns the next character read from the console and echoes
that character to the screen.

Neither function is defined by the ANSI/ISO C/C++ standard.

Example
This fragment uses getch() to read the user’s menu selection for a spelling checker
program.

do {

printf("1: Check spelling\n");

printf("2: Correct spelling\n");

C h a p t e r 1 1 : I / O F u n c t i o n s 299
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

printf("3: Look up a word in the dictionary\n");

printf("4: Quit\n");

printf("\nEnter your selection: ");

choice = getch();

} while(!strchr("1234", choice));

Related Functions

getc(), getchar(), fgetc()

int getchar(void)

Description
The prototype for getchar() is found in <stdio.h>.

The getchar() macro returns the next character from stdin. The character is read as
an unsigned char that is converted to an integer. If the end-of-file marker is read, EOF
is returned.

The getchar() macro is functionally equivalent to getc(stdin).

Example
This program reads characters from stdin into the array s until a carriage return is
entered and then displays the string.

#include <stdio.h>

int main(void)

{

char s[256], *p;

p = s;

while((*p++=getchar())!='\n') ;

p = '\0'; / add null terminator */

printf(s);

return 0;

}

Related Functions

fputc(), fgetc(), putc(), fopen()

char *gets(char *str)

Description
The prototype for gets() is found in <stdio.h>.

The gets() function reads characters from stdin and places them into the character
array pointed to by str. Characters are read until a newline or an EOF is reached. The
newline character is not made part of the string but is translated into a null to terminate
the string.

If successful, gets() returns str; if unsuccessful, it returns a null pointer. If a read error
occurs, the contents of the array pointed to by str are indeterminate. Because a null pointer
is returned when either an error has occurred or the end of the file is reached, you should
use feof() or ferror() to determine what has actually happened.

There is no limit to the number of characters that gets() will read; it is the
programmer’s job to make sure that the array pointed to by str is not overrun.
When performing user input for real-world applications, a better choice is fgets().

Example
This program uses gets() to read a filename:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

char fname[128];

printf("Enter filename: ");

gets(fname);

if((fp=fopen(fname, "r"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

/* ...*/

300 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : I / O F u n c t i o n s 301
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

fclose(fp);

return 0;

}

Related Functions

fputs(), fgetc(), fgets(), puts()

int getw(FILE *stream)

Description
The prototype for getw() is found in <stdio.h>.

The getw() function is not defined by the ANSI/ISO C/C++ standard.
The getw() function returns the next integer from stream and advances the file

position indicator appropriately.
Because the integer read may have a value equal to EOF, you must use feof() or

ferror() to determine when the end-of-file marker is reached or an error has occurred.

Example
This program reads integers from the file inttest and displays their sum.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

int sum = 0;

if((fp=fopen("inttest", "rb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

while(!feof(fp))

sum = getw(fp)+sum;

printf("The sum is %d", sum);

302 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

fclose(fp);

return 0;

}

Related Functions

putw(), fread()

int isatty(int handle)

Description
The prototype for isatty() is found in <io.h>.

The function isatty() is not defined by the ANSI/ISO C/C++ standard. It returns
non-0 if handle is associated with a character device that is either a terminal, console,
printer, or serial port; otherwise, it returns 0.

Example
This fragment reports whether the device associated with fd is a character device:

if(isatty(fd)) printf("is a character device");

else printf("is not a character device");

Related Function

open()

int lock(int handle, long offset, long length)

Description
The prototype for lock() is found in <io.h>.

The lock() function is not defined by the ANSI/ISO C/C++ standard. It is used to
lock a region of a file, thus preventing another program from using it until the lock is

C h a p t e r 1 1 : I / O F u n c t i o n s 303
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

removed. To unlock a file use unlock(). These functions provide control for file sharing
in network environments.

The file to be locked is associated with handle. The portion of the file to be locked is
determined by the starting offset from the beginning of the file and the length.

If lock() is successful, 0 is returned. Upon failure, –1 is returned.

Example
This fragment locks the first 128 bytes of the file associated with fd:

lock(fd, 0, 128);

Related Functions

unlock(), sopen()

int locking(int handle, int mode, long length)

Description
The prototype for locking() is in <io.h>. You must also include <sys\locking.h>.

The locking() function is not defined by the ANSI/ISO C/C++ standard. It is used
to lock a region of a shared file when using a network. Locking the file prevents other
users from accessing it.

The mode parameter must be one of these macros:

Mode Meaning

LK_LOCK Lock the specified region. If the locking request fails, retry
10 times, once each second.

LK_RLCK Same as LK_LOCK

LK_NBLCK Lock the specified region. If the locking request fails, perform
no retries.

LK_NBRLCK Same as LK_NBLCK

LK_UNLCK Unlock the specified region.

The handle of the file to lock is specified in handle. The file will be locked (or
unlocked) beginning with the current position and extending length number of bytes.

The locking() function returns 0 if successful and –1 otherwise. On failure, errno is
set to one of these values:

EBADF Bad file handle

EACCESS Access denied

EDEADLOCK File cannot be locked

EINVAL Invalid argument

Example
This call to locking() unlocks 10 bytes in the file described by fd:

if(locking(fd, LK_UNLOCK, 10)) {

// process error

}

Related Functions

lock(), sopen()

long lseek(int handle, long offset, int origin)

Description
The prototype for lseek() is found in <io.h>.

The lseek() function is part of the UNIX-like I/O system and is not defined by the
ANSI/ISO C/C++ standard.

The lseek() function sets the file position indicator to the location specified by offset
and origin for the file specified by handle.

How lseek() works depends on the values of origin and offset. The origin may
be either 0, 1, or 2. The following chart explains how the offset is interpreted for each
origin value:

Origin Effect of Call to lseek()

0 Count the offset from the start of the file

1 Count the offset from the current position

2 Count the offset from the end of the file

304 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : I / O F u n c t i o n s 305
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The following macros are defined in <io.h>. They can be used for a value of origin
in order of 0 through 2.

SEEK_SET
SEEK_CUR
SEEK_END

The lseek() function returns offset on success. Therefore, lseek() will be returning a
long integer. Upon failure, a –1L is returned and errno is set to one of these values;

EBADF Bad file number

EINVAL Invalid argument

ESPIPE Seek attempted is illegal.

Example
The example shown here allows you to examine a file one sector at a time using the
UNIX-like I/O system. You will want to change the buffer size to match the sector size
of your system.

#include <stdio.h>

#include <fcntl.h>

#include <sys\stat.h>

#include <io.h>

#include <stdlib.h>

#define BUF_SIZE 128

/* read buffers using lseek() */

int main(int argc, char *argv[])

{

char buf[BUF_SIZE+1], s[10];

int fd, sector;

buf[BUF_SIZE+1] = '\0'; /* null terminate buffer for printf */

if((fd=open(argv[1], O_RDONLY | O_BINARY))==-1) { /* open for write */

printf("Cannot open file.\n");

exit(0);

}

do {

printf("Buffer: ");

gets(s);

306 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

sector = atoi(s); /* get the sector to read */

if(lseek(fd, (long)sector*BUF_SIZE,0)==-1L)

printf("Seek Error\n");

if(read(fd, buf, BUF_SIZE)==0) {

printf("Read Error\n");

}

else {

printf("%s\n", buf);

}

} while(sector > 0);

close(fd);

return 0;

}

Related Functions
read(), write(), open(), close()

int open(const char *filename,
int access, unsigned mode)

int _rtl_open(const char *filename, int access)

Description
The prototypes for open() and _rtl_open() are found in <io.h>.

The open() function is part of the UNIX-like I/O system and is not defined by the
ANSI/ISO C/C++ standard.

Unlike the C/C++ I/O system, the UNIX-like system does not use file pointers of
type FILE, but rather file descriptors of type int. The open() function opens a file with
the name filename and sets its access mode as specified by access. You can think of access
as being constructed of a base mode of operation plus modifiers. The following base
modes are allowed.

Base Meaning

O_RDONLY Open for read only

O_WRONLY Open for write only

O_RDWR Open for read/write

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y

After selecting one of these values, you may OR it with one or more of the
following access modifiers:

Access modifiers Meaning

O_NDELAY Not used; included for UNIX compatibility

O_APPEND Causes the file pointer to be set to the end of the
file before to each write operation

O_CREAT If the file does not exist, creates it with its attribute
set to the value of mode

O_TRUNC If the file exists, truncates it to length 0 but retains
its file attributes

O_EXCL When used with O_CREAT, will not create output
file if a file by that name already exists

O_BINARY Opens a binary file

O_TEXT Opens a text file

The mode argument is required only if the O_CREAT modifier is used. In this case,
mode may be one of three values:

Mode Meaning

S_IWRITE Write access

S_IREAD Read access

S_IWRITE | S_IREAD Read/write access

A successful call to open() returns a positive integer that is the file descriptor
associated with the file. A return value of –1 means that the file cannot be opened, and
errno is set to one of these values:

ENOENT File does not exist

EMFILE Too many open files

EACCES Access denied

EINVACC Access code is invalid

C h a p t e r 1 1 : I / O F u n c t i o n s 307

308 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The function _rtl_open() accepts a larger number of modifiers for the access
parameter. These additional values are

Access Modifier Meaning

O_NOINHERIT File not passed to child programs

SH_COMPAT Other open operations that use SH_COMPAT are allowed

SH_DENYRW Only the current file descriptor has access to the file

SH_DENYWR Only read access to the file allowed

SH_DENYRD Only write access to the file allowed

SH_DENYNO Allow other sharing options except SH_COMPAT

Example
You will usually see the call to open() like this:

if((fd=open(filename, mode)) == -1) {

printf("Cannot open file.\n");

exit(1);

}

Related Functions
close(), read(), write()

void perror(const char *str)

Description
The prototype for perror() is found in <stdio.h>.

The perror() function maps the value of the global errno onto a string and writes
that string to stderr. If the value of str is not null, the string is written first, followed by
a colon, and then the proper error message as determined by the value of errno.

Example
This program purposely generates a domain error by calling asin() with an
out-of-range argument. The output is "Program Error Test: Math argument".

#include <stdio.h>

#include <math.h>

#include <errno.h> /* contains declaration for errno */

int main(void)

{

/* this will generate a domain error */

asin(10.0);

if(errno==EDOM)

perror("Program Error Test");

return 0;

}

Related Function
ferror()

int printf (const char *format, arg-list)

Description
The prototype for printf() is found in <stdio.h>.

The printf() function writes to stdout the arguments that make up arg-list under
the control of the string pointed to by format.

The string pointed to by format contains two types of items. The first type consists
of characters that will be printed on the screen. The second type contains format specifiers
that define the way the arguments are displayed. A format specifier consists of a percent
sign followed by the format code. The format commands are shown in Table 11-2. There
must be exactly the same number of arguments as there are format specifiers, and the
format specifiers and arguments are matched in order. For example, this printf() call

printf("Hi %c %d %s", 'c', 10, "there!");

displays Hi c 10 there!.
If there are insufficient arguments to match the format commands, the output is

undefined. If there are more arguments than format commands, the remaining arguments
are discarded.

The printf() function returns the number of characters actually printed. A negative
return value indicates an error.

The format commands may have modifiers that specify the field width, the precision,
and left-justification. An integer placed between the percent sign and the format
command acts as a minimum field-width specifier, padding the output with blanks or zeros
to ensure that it is a minimum length. If the string or number is greater than that minimum,
it will be printed in full. The default padding is done with spaces. For numeric values,
if you wish to pad with zeros, place a zero before the field width specifier. For example,
%05d pads a number of less than five digits with zeros so that its total length is five digits.

C h a p t e r 1 1 : I / O F u n c t i o n s 309
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The effect of the precision modifier depends upon the type of format command being
modified. To add a precision modifier, place a decimal point followed by the precision
after the field-width specifier. For e, E, and f formats, the precision modifier determines
the number of decimal places printed. For example, %10.4f displays a number at least
ten characters wide with four decimal places. However, when used with the g or G
specifier, the precision determines the maximum number of significant digits displayed.

When the precision modifier is applied to integers, it specifies the minimum
number of digits that will be displayed. (Leading zeros are added, if necessary.)

When the precision modifier is applied to strings, the number following the period
specifies the maximum field length. For example, %5.7s displays a string that is at least

310 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Code Format

%c Character

%d Signed decimal integers

%i Signed decimal integers

%e Scientific notation (lowercase e)

%E Scientific notation (uppercase E)

%f Decimal floating point

%g Uses %e or %f, whichever is shorter (if %g, uses lowercase e).

%G Uses %E or %f, whichever is shorter (if %G, uses uppercase E).

%o Unsigned octal

%s String of characters

%u Unsigned decimal integers

%x Unsigned hexadecimal (lowercase letters)

%X Unsigned hexadecimal (uppercase letters)

%p Displays a pointer.

%n Associated argument is a pointer to an integer into which is placed the
number of characters written so far.

%% Prints a % sign.

Table 11-2. printf() Format Commands
TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : I / O F u n c t i o n s 311
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

five characters long and does not exceed seven. If the string is longer than the
maximum field width, the end characters are truncated.

By default, all output is right justified. That is, if the field width is larger than the
data printed, the data will be placed on the right edge of the field. You can force the
information to be left justified by placing a minus sign directly after the percent sign.
For example, %-10.2f left justifies a floating-point number with two decimal places in
a ten-character field.

There are two format modifiers that allow printf() to display short and long integers.
These specifiers may be applied to the d, i, o, u, x, and X type specifiers. The l specifier
tells printf() that a long data type follows. For example, %ld means that a long int is
to be displayed. The h specifier instructs printf() to display a short int. Therefore, %hu
indicates that the data is of type short unsigned int.

An L can prefix the floating-point commands and indicates a long double.
The n format causes the number of characters written so far to be put into the

integer variable pointed to by the argument corresponding to the n specifier. For
example, this code fragment displays the number 15 after the line this is a test.

int i;

printf("this is a test %n", &i);

printf("%d", i);

You can apply the l modifier to the n specifiers to indicate that the corresponding
argument points to a long integer. You can specify the h modifier to indicate the
corresponding argument points to a short integer.

The # has a special meaning when used with some printf() format specifiers. Preceding
a g, G, f, e or E specifier with a # ensures that the decimal point will be present even if
there are no decimal digits. If you precede the x format specifier with a #, the hexadecimal
number will be printed with a 0x prefix. When used with the o specifier, it causes a
leading 0 to be printed. The # cannot be applied to any other format specifiers.

The minimum field width and precision specifiers may be provided by arguments
to printf() instead of by constants. To accomplish this, use an * as a placeholder. When
the format string is scanned, printf() will match * to arguments in the order in which
they occur.

Example
This program displays the output shown in its comments:

#include <stdio.h>

int main(void)

{

/* This prints "this is a test" left-justified

in a 20-character field.

*/

printf("%-20s", "this is a test");

/* This prints a float with 3 decimal places in a

10-character field. The output will be " 12.235".

*/

printf("%10.3f", 12.234657);

return 0;

}

Related Functions

scanf(), fprintf()

int putc(int ch, FILE *stream)

Description
The prototype for putc() is found in <stdio.h>.

The putc() macro writes the character contained in the least significant byte of ch
to the output stream pointed to by stream. Because character arguments are elevated to
integers at the time of the call, you can use character variables as arguments to putc().

If successful, putc() returns the character written; it returns EOF if an error occurs.
If the output stream has been opened in binary mode, EOF is a valid value for ch. This
means that you must use ferror() to determine whether an error has occurred.

Example
The following loop writes the characters in string str to the stream specified by fp. The
null terminator is not written.

for(; *str; str++) putc(*str, fp);

Related Functions

fgetc(), fputc(), getchar(), putchar()

312 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : I / O F u n c t i o n s 313
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int putch(int ch)

Description
The prototype for putch() is in <conio.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The putch() function displays the character specified in ch on the screen. This function
writes directly to the screen and not to stdout. Therefore, no character translations are
performed and no redirection will occur.

If successful, putch() returns ch. On failure, EOF is returned.

Example
This outputs the character X to the screen:

putch('X');

Related Function

putchar()

int putchar(int ch)

Description
The prototype for putchar() is found in <stdio.h>.

The putchar() macro writes the character contained in the least significant byte of ch
to stdout. It is functionally equivalent to putc(ch,stdout). Because character arguments are
elevated to integers at the time of the call, you can use character variables as arguments to
putchar().

If successful, putchar() returns the character written; if an error occurs, it returns EOF.
If the output stream has been opened in binary mode, EOF is a valid value for ch. This
means that you must use ferror() to determine if an error has occurred.

Example
The following loop writes the characters in string str to stdout. The null terminator is
not written.

for(; *str; str++) putchar(*str);

314 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions

fputchar(), putc()

int puts(const char *str)

Description
The prototype for puts() is found in <stdio.h>.

The puts() function writes the string pointed to by str to the standard output
device. The null terminator is translated to a newline.

The puts() function returns non-negative if successful and an EOF if unsuccessful.

Example
The following writes the string “this is an example” to stdout.

#include <stdio.h>

#include <string.h>

int main(void)

{

char str[80];

strcpy(str, "this is an example");

puts(str);

return 0;

}

Related Functions

putc(), gets(), printf()

int putw(int i, FILE *stream)

Description
The prototype for putw() is in <stdio.h>. The putw() function is not defined by the
ANSI/ISO C/C++ standard and may not be fully portable.

C h a p t e r 1 1 : I / O F u n c t i o n s 315
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The putw() function writes the integer i to stream at the current file position and
increments the file pointer appropriately.

The putw() function returns the value written. A return value of EOF means an
error has occurred in the stream if it is in text mode. Because EOF is also a valid integer
value, you must use ferror() to detect an error in a binary stream.

Example
This code fragment writes the value 100 to the stream pointed to by fp:

putw(100, fp);

Related Functions

getw(), printf(), fwrite()

int read(int fd, void *buf, unsigned count)
int _rtl_read(int fd, void *buf, unsigned count)

Description
The prototypes for read() and _rtl_read() are found in <io.h>.

Neither the read() nor the _rtl_read() function is defined by the ANSI/ISO C/C++
standard. The read() function is part of the UNIX-like I/O system. The _rtl_read()
function is specific to Borland C++ and the Windows operating system.

The read() function reads count number of bytes from the file described by fd into
the buffer pointed to by buf. The file position indicator is incremented by the number
of bytes read. If the file is opened in text mode, character translations may take place.

The return value is the number of bytes actually read. This number will be smaller
than count if an end-of-file marker is encountered or an error occurs before count number
of bytes have been read. A value of –1 is returned if an error occurs, and a value of 0 is
returned if an attempt is made to read at end-of-file. If an error occurs, then errno is set
to one of these values:

EACCES Access denied

EBADF Bad file number

The difference between read() and _rtl_read() is that read() removes carriage
returns and returns EOF when a CTRL-Z is read from a text file. The _rtl_read()
function does not perform these actions.

316 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
This program reads the first 100 bytes from the file TEST.TST into the array buffer:

#include <stdio.h>

#include <io.h>

#include <fcntl.h>

#include <stdlib.h>

int main(void)

{

int fd;

char buffer[100];

if((fd=open("TEST.TST", O_RDONLY))==-1) {

printf("Cannot open file.\n");

exit(1);

}

if(read(fd, buffer, 100)!=100)

printf("Possible read error.\n");

return 0;

}

Related Functions

open(), close(), write(), lseek()

int remove(const char *fname)

Description
The prototype for remove() is found in <stdio.h>.

The remove() function erases the file specified by fname. It returns 0 if the file was
successfully deleted and –1 if an error occurred. If an error occurs, then errno is set to
one of these values:

ENOENT File does not exist

EACCES Access denied

C h a p t e r 1 1 : I / O F u n c t i o n s 317
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This program removes the file specified on the command line:

#include <stdio.h>

int main(int argc, char *argv[])

{

if(remove(argv[1])==-1)

printf("Remove Error\n");

return 0;

}

Related Function
rename()

int rename(const char *oldfname,
const char *newfname)

Description
The prototype for rename() is found in <stdio.h>.

The rename() function changes the name of the file specified by oldfname to newfname.
The newfname must not match any existing directory entry.

The rename() function returns 0 if successful and non-0 if an error has occurred.
If an error occurs, then errno is set to one of these values:

ENOENT File does not exist

EEXIST Filename already exists

ENOTSAM Device not the same

Example
This program renames the file specified as the first command-line argument to that
specified by the second command-line argument. Assuming the program is called
change, a command line consisting of "change this that" will change the name of a
file called this to that.

#include <stdio.h>

318 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main(int argc, char *argv[])

{

if(rename(argv[1], argv[2])!=0)

printf("Rename Error\n");

return 0;

}

Related Function

remove()

void rewind(FILE *stream)

Description
The prototype for rewind() is found in <stdio.h>.

The rewind() function moves the file position indicator to the start of the specified
stream. It also clears the end-of-file and error flags associated with stream. It returns 0 if
successful and non-0 otherwise.

Example
This function reads the stream pointed to by fp twice, displaying the file each time:

void re_read(FILE *fp)

{

/* read once */

while(!feof(fp)) putchar(getc(fp));

rewind(fp);

/* read twice */

while(!feof(fp)) putchar(getc(fp));

}

Related Function

fseek()

C h a p t e r 1 1 : I / O F u n c t i o n s 319
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int _rtl_chmod (const char *filename,
int get_set, int attrib)
Description
The prototype for _rtl_chmod() is found in <io.h>.

The _rtl_chmod() function is not defined by the ANSI/ISO C/C++ standard. It is
used to read or set the attribute byte associated with the file pointed to by filename. If
get_set is 0, _rtl_chmod() returns the current file attribute and attrib is not used. If get_set
is 1, the file attribute is set to the value of attrib. The attrib argument can be one of these
constants, which are found in the <dos.h> header file.

FA_RDONLY Set file to read only

FA_HIDDEN Make hidden file

FA_SYSTEM Mark as a system file

FA_LABEL Make volume label

FA_DIREC Make directory

FA_ARCH Mark as archive

The _rtl_chmod() function returns the file attribute if successful. Upon failure, it
returns a –1 and sets errno to either ENOENT if the file does not exist or EACCES if
access to the file is denied.

Example
This line of code sets the file TEST.TST to read only.

if(_rtl_chmod("TEST.TST", 1, FA_RDONLY)==FA_RDONLY)

printf("File set to read-only mode.");

Related Functions
chmod(), access()

int scanf(const char *format, arg-list)

Description
The prototype for scanf() is in <stdio.h>. The scanf() function is a general-purpose
input routine that reads the stream stdin. It can read all the built-in data types and

320 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

automatically convert them into the proper internal format. It is much like the reverse
of printf().

The control string pointed to by format consists of three types of characters:

� Format specifiers

� White-space characters

� Non-white-space characters

The format specifiers are preceded by a percent sign and tell scanf() what type
of data is to be read next. These codes (including some non-standard ones added by
C++ Builder) are listed in Table 11-3. For example, %s reads a string while %d reads
an integer.

The format string is read left to right, and the format codes are matched, in order,
with the arguments that make up the argument list.

A white-space character in the control string causes scanf() to skip over one or more
white-space characters in the input stream. A white-space character is either a space,
a tab, or a newline. In essence, one white-space character in the control string causes
scanf() to read, but not store, any number (including zero) of white-space characters
up to the first non-white-space character.

A non-white-space character causes scanf() to read and discard a matching
character. For example, "%d,%d" causes scanf() to read an integer, read and discard
a comma, and then read another integer. If the specified character is not found, scanf()
terminates.

All the variables used to receive values through scanf() must be passed by their
addresses. This means that all arguments must be pointers to the variables used as
arguments. This is C’s way of creating a call by reference, and it allows a function
to alter the contents of an argument. For example, to read an integer into the variable
count, you would use the following scanf() call:

scanf("%d", &count);

Strings are read into character arrays, and the array name, without any index, is
the address of the first element of the array. So, to read a string into the character array
address, use

scanf("%s", address);

In this case, address is already a pointer and need not be preceded by the & operator.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : I / O F u n c t i o n s 321
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The input data items must be separated by spaces, tabs, or newlines. Punctuation
such as commas, semicolons, and the like do not count as separators. This means that

scanf("%d%d", &r, &c);

Code Meaning

%c Read a single character

%d Read a decimal integer

%D Read a long integer (C++ Builder specific)

%i Read a decimal integer

%I Read a long integer (C++ Builder specific)

%e Read a floating-point number

%E Read a floating-point number

%f Read a floating-point number

%g Read a floating-point number

%G Read a floating-point number

%o Read an octal number

%O Read an long octal number (C++ Builder specific)

%s Read a string

%x Read a hexadecimal number

%X Read a hexadecimal number

%p Read a pointer

%n Receives an integer value equal to the number of characters read so far

%u Read an unsigned integer

%U Read an unsigned long integer (C++ Builder specific)

%[] Scan for a set of characters

%% Read a % sign

Table 11-3. scanf() Format Codes

322 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

accepts an input of 10 20, but fails with 10,20. The scanf() format specifiers are
matched in order with the variables receiving the input in the argument list.

An * placed after the % and before the format specifier reads data of the specified
type but suppresses its assignment. Thus,

scanf("%d%*c%d", &x, &y);

given the input 10/20 places the value 10 into x, discards the division sign, and gives y
the value 20.

The format commands can specify a maximum field-length modifier. This is an
integer placed between the % and the format specifier that limits the number of characters
read for any field. For example, if you wish to read no more than 20 characters into
address, you would write

scanf("%20s", address);

If the input stream were greater than 20 characters, a subsequent call to input would
begin where this call left off. Input for a field may terminate before the maximum field
length is reached if a white space is encountered. In this case, scanf() moves on to the
next field.

Although spaces, tabs, and newlines are used as field separators, they are read like
any other character when reading a single character. For example, with an input stream
of "x y",

scanf("%c%c%c", &a, &b, &c);

returns with the character x in a, a space in b, and the character y in c.
Be careful: Any other characters in the control string—including spaces, tabs, and

newlines—are used to match and discard characters from the input stream. Any character
that matches is discarded. For example, given the input stream "10t20",

scanf("%st%s", &x, &y);

places 10 into x and 20 into y. The t is discarded because of the t in the control string.
Another feature of scanf() is called a scanset. A scanset defines a set of characters

that will be read by scanf() and assigned to the scanset’s corresponding character array.
You define a scanset by putting inside square brackets the characters you want to scan
for. The beginning square bracket must be prefixed by a percent sign. For example, this
scanset tells scanf() to read only the characters A, B, and C:

%[ABC]

The argument corresponding to the scanset must be a pointer to a character array.
When you use a scanset, scanf() continues to read characters and put them into the
array until a character that is not part of the scanset is encountered. (That is, a scanset
reads only matching characters.) Upon return from scanf(), the array will contain a
null-terminated string.

You can specify an inverted set if the first character in the set is a ^ . When the ^
is present, it instructs scanf() to accept any character that is not defined by the scanset.

You can specify a range using a hyphen. For example, this tells scanf() to accept
the letters “A” through “Z”:

%[A-Z]

Remember that the scanset is case sensitive. Therefore, if you want to scan for both
upper- and lowercase letters, you must specify them individually.

The scanf() function returns a number equal to the number of fields that were
successfully assigned values. This number does not include fields that were read
but not assigned because the * modifier was used to suppress the assignment. EOF
is returned if an error occurs before the first field is assigned.

Example
The operation of the following scanf() statements are explained in their comments.

char str[80];

int i;

/* read a string and an integer */

scanf("%s%d", str, &i);

/* read up to 79 chars into str */

scanf("%79s", str);

/* skip the integer between the two strings */

scanf("%s%*d%s", str, &i, str);

Related Functions

printf(), fscanf()

C h a p t e r 1 1 : I / O F u n c t i o n s 323
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

void setbuf(FILE *stream, char *buf)

Description
The prototype to setbuf() is found in <stdio.h>.

The setbuf() function is used either to specify the buffer the specified stream will
use or, if called with buf set to null, to turn off buffering. If a programmer-defined buffer
is to be specified, it must be BUFSIZ characters long. BUFSIZ is defined in <stdio.h>.

The setbuf() function returns no value.

Example
This following fragment associates a programmer-defined buffer with the stream
pointed to by fp:

char buffer[BUFSIZ];

/* ... */

setbuf(fp,buffer);

Related Functions

fopen(), fclose(), setvbuf()

int setmode(int handle, int mode)

Description
The prototype to setmode() is found in <io.h>.

The setmode() function is not defined by the ANSI/ISO C/C++ standard. It is used
to reset the mode of an already open file given its file descriptor and the new mode
desired. The only valid modes are O_BINARY and O_TEXT.

It returns 0 on success, –1 on error. If an error occurs, errno is set to EINVAL
(invalid argument).

Example
This line of code sets the file associated with fd to text-only operation.

setmode(fd, O_TEXT)

Related Functions

open(), _creat()

324 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : I / O F u n c t i o n s 325
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int setvbuf(FILE *stream, char *buf,
int mode, size_t size)

Description
The prototype for setvbuf() is found in <stdio.h>.

The setvbuf() function allows the programmer to specify the buffer, its size, and its
mode for the specified stream. The character array pointed to by buf is used as stream’s
buffer for I/O operations. The size of the buffer is set by size, and mode determines how
buffering will be handled. If buf is null, no buffering takes place.

The legal values of mode are _IOFBF, _IONBF, and _IOLBF. These are defined
in <stdio.h>. When the mode is set to _IOFBF, full buffering takes place. This is the
default setting. When set to _IONBF, the stream is unbuffered regardless of the value
buf. If mode is _IOLBF, the stream is line-buffered, which means that the buffer is flushed
each time a newline character is written for output streams; for input streams an input
request reads all characters up to a newline. In either case, the buffer is also flushed
when full.

The value of size must be greater than 0 and less than UINT_MAX, which is found
in <limits.h>.

The setvbuf() function returns 0 on success, non-0 on failure.

Example
This fragment sets the stream fp to line-buffered mode with a buffer size of 128:

#include <stdio.h>

char buffer[128];

/* ... */

setvbuf(fp, buffer, _IOLBF, 128);

Related Function

setbuf()

int sopen(const char *filename, int access,
int shflag, int mode)

Description
The prototype for sopen() is found in <io.h>. The sopen() macro is part of the
UNIX-like file system and is not defined by ANSI/ISO C/C++.

326 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The sopen() macro opens a file for shared-mode access using a network. It is
defined as

open(filename, (access | shflag), mode)

The sopen() macro opens a file with the name filename and sets its access mode as
specified by access and its share mode as specified by shflag. You can think of access
as being constructed of a base mode of operation plus modifiers. The following base
modes are allowed:

Base Meaning

O_RDONLY Open for read only

O_WRONLY Open for write only

O_RDWR Open for read/write

After selecting one of these values, you may OR it with one or more of the
following access modifiers:

Modifiers Meaning When Set

O_NDELAY Not used; included for UNIX compatibility

O_APPEND Causes the file pointer to be set to the end of the file
before to each write operation

O_CREAT If the file does not exist, it is created with its
attribute set to the value of mode

O_TRUNC If the file exists, it is truncated to length 0 but
retains its file attributes

O_EXCL When used with O_CREAT, will not create output
file if a file by that name already exists

O_NOINHERIT Child programs do not inherit the file

O_BINARY Opens a binary file

O_TEXT Opens a text file

The shflag argument defines the type of sharing allowed on this file and can be one
of these values:

C h a p t e r 1 1 : I / O F u n c t i o n s 327
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

shflag Meaning

SH_COMPAT Compatibility mode

SH_DENYRW No read or write

SH_DENYWR No write

SH_DENYRD No read

SH_DENYNONE Allow read/write

SH_DENYNO Allow read/write

The mode argument is required only if the O_CREAT modifier is used. In this case,
mode can be one of these values:

Mode Meaning

S_IWRITE Write access

S_IREAD Read access

S_IWRITE | S_IREAD Read/write access

A successful call to sopen() returns a positive integer that is the file descriptor
associated with the file. A return value of –1 means that the file cannot be opened,
and errno will be set to one of these values:

ENOENT File does not exist

EMFILE Too many open files

EACCES Access denied

EINVACC Invalid access code

Example
You will usually see the call to sopen() like this:

if((fd=sopen(filename, access, shflag, mode)) ==-1) {

printf("Cannot open file.\n");

exit(1);

}

Related Functions

open(), _rtl_open(), close()

int sprintf(char *buf, const char *format, arg-list)

Description
The prototype for sprintf() is found in <stdio.h>.

The sprintf() function is identical to printf() except that the output generated is
placed into the array pointed to by buf. See the printf() function.

The return value is equal to the number of characters actually placed into the array.

Example
After this code fragment executes, str holds one 2 3:

char str[80];

sprintf(str, "%s %d %c", "one", 2, '3');

Related Functions

printf(), fsprintf()

int sscanf(char *buf, const char *format, arg-list)

Description
The prototype for sscanf() is found in <stdio.h>.

The sscanf() function is identical to scanf() except that data is read from the array
pointed to by buf rather than stdin. See scanf().

The return value is equal to the number of fields that were actually assigned
values. This number does not include fields that were skipped through the use of
the * format-command modifier. A value of 0 means that no fields were assigned,
and EOF indicates that a read was attempted at the end of the string.

Example
This program prints the message hello 1 on the screen:

#include <stdio.h>

int main(void)

{

328 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

char str[80];

int i;

sscanf("hello 1 2 3 4 5", "%s%d", str, &i);

printf("%s %d", str, i);

return 0;

}

Related Functions

scanf(), fscanf()

int stat(char *filename, struct stat *statbuf)

Description
The prototype for stat() is found in <sys\stat.h> It is not defined by ANSI/ISO C/C++.

The stat() function fills the structure statbuf with information on the file associated
with filename. The stat structure is defined in sys\stat.h.

Upon successfully filling the stat structure, 0 is returned. If unsuccessful, –1 is
returned and errno is set to ENOENT.

Example
The following example opens a file, fills the stat structure, and prints out one of its fields:

#include <stdio.h>

#include <sys\stat.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;

struct stat buff;

if((fp=fopen("test", "rb"))==NULL) {

printf("Cannot open file.\n");

exit(1);

}

C h a p t e r 1 1 : I / O F u n c t i o n s 329
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

/* fill the stat structure */

stat("test", &buff);

printf("Size of the file is: %ld\n", buff.st_size);

fclose(fp);

return 0;

}

Related Functions

fstat(), access()

long tell(int fd)

Description
The prototype for tell() is found in <io.h>.

The tell() function is part of the UNIX-like I/O system and is not defined by the
ANSI/ISO C/C++ standard.

The tell() function returns the current value of the file position indicator associated
with the file descriptor fd. This value is the number of bytes the position indicator is from
the start of the file. A return value of –1L indicates an error and errno is set to EBADF
(bad file handle).

Example
This fragment prints the current value of the position indicator for the file described by fd:

long pos;

/* ... */

pos = tell(fd);

printf("Position indicator is %ld bytes from the start", pos);

Related Functions

lseek(), open(), close(), read(), write()

FILE *tmpfile(void)

Description
The prototype for the tmpfile() function is found in <stdio.h>.

330 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

The tmpfile() function opens a temporary file for update and returns a pointer to
the stream. The function automatically uses a unique filename to avoid conflicts with
existing files.

The tmpfile() function returns a null pointer on failure; otherwise it returns a
pointer to the stream.

The temporary file created by tmpfile() is automatically removed when the file is
closed or when the program terminates.

Example
This fragment creates a temporary working file:

FILE *temp;

if(!(temp=tmpfile())) {

printf("Cannot open temporary work file.\n");

exit(1);

}

Related Function

tmpnam()

char *tmpnam(char *name)

Description
The prototype for tmpnam() is found in <stdio.h>.

The tmpnam() function is defined by the ANSI/ISO C/C++ standard. It generates
a unique filename and stores it in the array pointed to by name. The main purpose of
tmpnam() is to generate a temporary filename that is different from any other filename
in the directory.

The function may be called up to TMP_MAX times, defined in <stdio.h>.
Each time it generates a new temporary filename.

A pointer to name is returned. If name is null, a pointer to an internal string is returned.

Example
This program displays three unique temporary filenames:

#include <stdio.h>

int main(void)

{

C h a p t e r 1 1 : I / O F u n c t i o n s 331
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

char name[40];

int i;

for(i=0; i<3; i++) {

tmpnam(name);

printf("%s ", name);

}

return 0;

}

Related Function

tmpfile()

int ungetc(int ch, FILE *stream)

Description
The prototype for ungetc() is found in <stdio.h>.

The ungetc() function returns the character specified by the low-order byte of ch
back into the input stream. This character is then returned by the next read operation
on stream. A call to fflush() or fseek() undoes an ungetc() operation and discards
the character put back.

Only one character can be put back between subsequent read operations.
You cannot unget an EOF.
A call to ungetc() clears the end-of-file flag associated with the specified stream.

The value of the file position indicator for a text stream is undefined until all pushed-
back characters are read, in which case it is the same as it was prior to the first ungetc()
call. For binary streams, each ungetc() call decrements the file position indicator.

The return value is equal to ch on success and EOF on failure.

Example
This function reads words from the input stream pointed to by fp. The terminating
character is returned to the stream for later use. For example, given input of count/10,
the first call to read_word() returns count and puts the / back on the input stream.

void read_word(FILE *fp, char *token)

{

while(isalpha(*token=getc(fp))) token++;

332 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

ungetc(fp, *token);

}

Related Function

getc()

int ungetch(int ch)

Description
The prototype for ungetch() is in <conio.h>. This function is not defined by the
ANSI/ISO C/C++ standard. It cannot be used in Windows programs.

The ungetch() function returns the character specified in the low-order byte of ch
back into the console input buffer. This character is then returned by the next call to a
console input function. Only one character can be put back between subsequent input
operations.

The return value is equal to ch on success and EOF on failure.

Example
This program inputs a key, displays it, returns it to the input buffer, and reads and
displays it again:

#include <stdio.h>

#include <conio.h>

int main(void)

{

char ch;

ch = getch(); // get keypress

putch(ch); // show the key

ungetch(ch); // return to buffer

ch = getch(); // get same key again

putch(ch); // show the key again

return 0;

}

Related Function

ungetc()

C h a p t e r 1 1 : I / O F u n c t i o n s 333
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

334 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int unlink(const char *fname)

Description
The prototype to unlink() is found in <dos.h>.

The unlink() function is part of the UNIX-like I/O system and is not defined by the
ANSI/ISO C/C++ standard.

The unlink() function removes the specified file from the directory. It returns 0 on
success and –1 on failure and sets errno to one of the following values:

Error Meaning

ENOENT Invalid path or filename

EACCES Access denied

Example
This program deletes the file specified as the first command-line argument:

#include <stdio.h>

#include <dos.h>

int main(int argc, char *argv[])

{

if(unlink(argv[1])==-1)

printf("Cannot remove file.");

return 0;

}

Related Functions

open(), close()

int unlock(int handle, long offset, long length)

Description
The prototype for unlock() is found <io.h>.

The unlock() function is not defined by the ANSI/ISO C/C++ standard. It is used
to unlock a portion of a locked file, thus allowing another program to use it until a new

C h a p t e r 1 1 : I / O F u n c t i o n s 335
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

lock is placed on the file. To lock a file, use lock(). These functions provide control for
file sharing in network environments.

The file to be unlocked is associated with handle. The portion of the file to be unlocked
is determined by the starting offset from the beginning of the file and the length.

If unlock() is successful, 0 is returned. If it is unsuccessful, –1 is returned.

Example
This fragment unlocks the first 128 bytes of the file associated with fd:

unlock(fd, 0, 128);

Related Functions

lock(), sopen()

int vprintf(const char *format, va_list arg_ptr)
int vfprintf(FILE *stream, const char *format,

va_list arg_ptr)
int vsprintf(char *buf, const char *format, va_list arg_ptr)

Description
The prototypes for these functions require the files <stdio.h> and <stdarg.h>.

The functions vprintf(), vfprintf(), and vsprintf() are functionally equivalent to
printf(), fprintf(), and sprintf(), respectively, except that the argument list has been
replaced by a pointer to a list of arguments. This pointer must be of type va_list, which
is defined in <stdarg.h>. See the proper related function. Also see va_arg(), va_start(),
and va_end() in Chapter 19 for further information.

Example
This fragment shows how to set up a call to vprintf(). The call to va_start() creates
a variable-length argument pointer to the start of the argument list. This pointer
must be used in the call to vprintf(). The call to va_end() clears the variable-length
argument pointer.

#include <stdio.h>

#include <stdarg.h>

336 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void print_message(char *, ...);

int main(void)

{

print_message("Cannot open file %s","test");

return 0;

}

void print_message(char *format, ...)

{

va_list ptr; /* get an arg ptr */

/* initialize ptr to point to the first argument after the

format string

*/

va_start(ptr, format);

/* print out message */

vprintf(format, ptr);

va_end(ptr);

}

Related Functions

va_list(), va_start(), va_end()

int vscanf(const char *format, va_list arg_ptr)
int vfscanf(FILE *stream, const char *format,

va_list arg_ptr)
int vsscanf(const char *buf,

const char *format, va_list arg_ptr)

Description
The prototypes for these functions require the files <stdio.h> and <stdarg.h>.

The functions vscanf(), vfscanf(), and vsscanf() are functionally equivalent to
scanf(), fscanf(), and sscanf(), respectively, except that the argument list has been

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 1 : I / O F u n c t i o n s 337

replaced by a pointer to a list of arguments. This pointer must be of type va_list, which
is defined in <stdarg.h>. See the proper related function. Also see va_arg(), va_start(),
and va_end() in Chapter 19 for further information.

Example
This fragment shows how to set up a call to vscanf(). The program reads two integers
entered by the user. The call to va_start() creates a variable-length argument pointer to
the start of the argument list. It is this pointer that must be used in the call to vscanf().
The call to va_end() clears the variable-length argument pointer.

#include <stdio.h>

#include <stdarg.h>

void read_int(int num, ...);

int main(void)

{

int a, b;

read_int(2, &a, &b);

printf("%d %d", a, b);

return 0;

}

void read_int(int num, ...)

{

va_list ptr; /* get an arg ptr */

/* initialize ptr to point to the first argument after the

format string

*/

va_start(ptr, num);

printf("Enter %d integers: ", num);

/* read ints */

vscanf("%d %d", ptr);

va_end(ptr);

}

338 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions

va_list(), va_start(), va_end()

int write(int handle, void *buf, int count)
int _rtl_write(int handle, void *buf, int count)

Description
The prototypes for write() and _rtl_write() are found in <io.h>.

The write() function is part of the UNIX-like I/O system and is not defined by the
ANSI/ISO C/C++ standard.

The write() function writes count number of bytes to the file described by handle
from the buffer pointed to by buf. The file position indicator is incremented by the
number of bytes written. If the file is opened in text mode, linefeeds are automatically
expanded to carriage return, linefeed combinations. However, _rtl_write() does not
perform this expansion.

The return value is the number of bytes actually written. This number may be smaller
than count if an error is encountered. A value of –1 means an error has occurred, and
errno is set to one of these values:

Value Meaning

EACCES Access denied

EBADF Bad file number

Example
This program writes the 100 bytes from buffer to the file test.

#include <stdio.h>

#include <io.h>

#include <fcntl.h>

#include <stdlib.h>

int main(void)

{

int fd;

char buffer[100];

if((fd=open("test", O_WRONLY))==-1) {

printf("Cannot open file.\n");

exit(1);

}

gets(buffer);

if(write(fd, buffer, 100)!=100)

printf("Write Error");

close(fd);

return 0;

}

Related Functions

read(), close(), lseek()

C h a p t e r 1 1 : I / O F u n c t i o n s 339
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Chapter 12
String, Memory, and
Character Functions

341

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The C++ Builder library has a rich and varied set of string-, memory-, and
character-handling functions. As they relate to these functions, a string is a null-
terminated array of characters, memory is a block of contiguous RAM, and a

character is a single byte value. The ANSI/ISO standard string functions require the
header <string.h> to provide their prototypes. The ANSI/ISO standard memory
manipulation functions also use <string.h>. In some cases, C++ Builder includes
prototypes for these standard functions in <mem.h>, but you should use <string.h>
for the greatest portability. C++ Builder also provides several nonstandard functions.
Some of these are prototyped in <string.h>. Others are prototyped in <mem.h>. The
character functions use <ctype.h> as their header.

Because C/C++ has no bounds checking on array operations, it is the programmer’s
responsibility to prevent an array overflow. Technically, if an array has overflowed, its
behavior is undefined. In a practical sense, overflowing an array means that your program
will seriously malfunction.

In C/C++, a printable character is one that can be displayed on screen. These are
the characters between a space (0x20) and tilde (0xFE). Control characters have values
between (0) and (0x1F) as well as DEL (0x7F). The ASCII characters are between 0
and 0x7F.

The character functions are declared to take an integer argument. While this is true,
only the low-order byte is used by the function. Therefore, you are free to use a character
argument because it is automatically elevated to int at the time of the call.

Several functions use the size_t data type. This type is defined in the various headers
used by the functions described here and is an unsigned integer type.

int isalnum(int ch)

Description
The prototype for isalnum() is found in <ctype.h>.

The isalnum() macro returns non-0 if its argument is either a letter of the alphabet
(upper- or lowercase) or a digit. If the character is not alphanumeric, 0 is returned.

Example
This program checks each character read from stdin and reports all alphanumeric ones:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

342 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isalnum(ch)) printf("%c is alphanumeric\n", ch);

}

return 0;

}

Related Functions

isalpha(), isdigit(), iscntrl(), isgraph(), isprint(), ispunct(), isspace()

int isalpha(int ch)

Description
The prototype for isalpha() is found in <ctype.h>.

The isalpha() macro returns non-0 if ch is a letter of the alphabet (upper- or
lowercase); otherwise, it returns 0.

Example
This program checks each character read from stdin and reports all those that are
letters of the alphabet:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isalpha(ch)) printf("%c is a letter\n", ch);

}

return 0;

}

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 343
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

isalnum(), isdigit(), iscntrl(), isgraph(), isprint(), ispunct(), isspace()

int isascii(int ch)

Description
The prototype for isascii() is found in <ctype.h> and is not defined by the ANSI/ISO
C/C++ standard.

The isascii() macro returns non-0 if ch is in the range 0 through 0x7F; otherwise,
it returns 0.

Example
This program checks each character read from stdin and reports all those that are
defined by ASCII:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isascii(ch)) printf("%c is ASCII defined\n", ch);

}

return 0;

}

Related Functions

isalnum(), isdigit(), iscntrl(), isgraph(), isprint(), ispunct(), isspace()

int iscntrl(int ch)

Description
The prototype for iscntrl() is found in <ctype.h>.

344 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The iscntrl() macro returns non-0 if ch is between 0 and 0x1F or is equal to 0x7F
(DEL); otherwise, it returns 0.

Example
This program checks each character read from stdin and reports all those that are
control characters:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(iscntrl(ch)) printf("%c is a control character\n", ch);

}

return 0;

}

Related Functions

isalnum(), isdigit(), isalpha(), isgraph(), isprint(), ispunct(), isspace()

int isdigit(int ch)

Description
The prototype for isdigit() is found in <ctype.h>.

The isdigit() macro returns non-0 if ch is a digit, that is, 0 through 9; otherwise,
it returns 0.

Example
This program checks each character read from stdin and reports all those that are digits:

#include <ctype.h>

#include <stdio.h>

int main(void)

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 345
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

346 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isdigit(ch)) printf("%c is a digit\n", ch);

}

return 0;

}

Related Functions

isalnum(), iscntrl(), isalpha(), isgraph(), isprint(), ispunct(), isspace()

int isgraph(int ch)

Description
The prototype for isgraph() is found in <ctype.h>.

The isgraph() macro returns non-0 if ch is any printable character other than a
space; otherwise, it returns 0. Printable characters are in the range 0x21 through 0x7E.

Example
This program checks each character read from stdin and reports all those that are
printable characters:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isgraph(ch)) printf("%c is a printing character\n", ch);

}

return 0;

}

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isprint(), ispunct(), isspace()

int islower(int ch)

Description
The prototype for islower() is found in <ctype.h>.

The islower() macro returns non-0 if ch is a lowercase letter (“a” through “z”);
otherwise, it returns 0.

Example
This program checks each character read from stdin and reports all those that are
lowercase letters:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(islower(ch)) printf("%c is lowercase\n", ch);

}

return 0;

}

Related Function

isupper()

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 347
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int isprint(int ch)

Description
The prototype for isprint() is found in <ctype.h>.

The isprint() macro returns non-0 if ch is a printable character, including a space;
otherwise, it returns 0. The printable characters are in the range 0x20 through 0x7E.

Example
This program checks each character read from stdin and reports all those that are printable:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isprint(ch)) printf("%c is printable\n", ch);

}

return 0;

}

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), ispunct(), isspace()

int ispunct(int ch)

Description
The prototype for ispunct() is found in <ctype.h>.

The ispunct() macro returns non-0 if ch is a punctuation character or a space;
otherwise, it returns 0.

Example
This program checks each character read from stdin and reports all those that
are punctuation:

348 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(ispunct(ch)) printf("%c is punctuation\n", ch);

}

return 0;

}

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), isspace()

int isspace(int ch)

Description
The prototype for isspace() is found in <ctype.h>.

The isspace() macro returns non-0 if ch is either a space, carriage return,
horizontal tab, vertical tab, form feed, or newline character; otherwise, it returns 0.

Example
This program checks each character read from stdin and reports all those that are
white-space characters:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch=='.') break;

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 349
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

if(isspace(ch)) printf("%c is white-space\n", ch);

}

return 0;

}

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), ispunct()

int isupper(ch)

Description
The prototype for isupper() is found in <ctype.h>.

The isupper() macro returns non-0 if ch is an uppercase letter (“A” through “Z”);
otherwise, it returns 0.

Example
This program checks each character read from stdin and reports all those that are
uppercase letters:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isupper(ch)) printf("%c is upper-case\n", ch);

}

return 0;

}

Related Function

islower()

350 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

int isxdigit(int ch)

Description
The prototype for isxdigit() is found in <ctype.h>.

The isxdigit() macro returns non-0 if ch is a hexadecimal digit; otherwise, it returns 0.
A hexadecimal digit will be in one of these ranges: “A” through “F”, “a” through “f”,
or “0” through “9”.

Example
This program checks each character read from stdin and reports all those that are
hexadecimal digits:

#include <ctype.h>

#include <stdio.h>

int main(void)

{

char ch;

for(;;) {

ch = getchar();

if(ch==' ') break;

if(isxdigit(ch)) printf("%c is hexadecimal \n", ch);

}

return 0;

}

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), isspace(), ispunct()

void *memccpy(void *dest, const void *source,
int ch, size_t count)

Description
The prototype for memccpy() is found in both <string.h> and <mem.h> and is not
defined by the ANSI/ISO C/C++ standard.

The memccpy() function copies the contents of the memory pointed to by source
into the memory pointed to by dest. The copy operation stops either when count

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 351
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

number of bytes have been copied or after the first occurrence of ch has been copied.
It returns a pointer to the end of dest if ch is found or null if ch is not part of source.

Example
After this fragment has executed, the word “hello” will be in array out because the
space is used to terminate the copy operation:

char str[20], out[20];

strcpy(str, "hello there");

memccpy(out, str,' ', 20);

Related Functions

memcpy(), strcpy()

void *memchr(const void *buffer, int ch, size_t count)

Description
The prototype for the memchr() function is found in both <string.h> and <mem.h>.

The memchr() function searches buffer for the first occurrence of ch in the first
count characters.

The memchr() function returns a pointer to the first occurrence of ch in buffer, or
a null pointer if ch is not found.

Example
This program prints “ is a test” on the screen:

#include <stdio.h>

#include <string.h>

int main(void)

{

void *p;

p = memchr("this is a test", ' ', 14);

printf((char *) p);

return 0;

}

352 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 353

Related Functions

memmove(), memcpy()

int memcmp(const void *buf1,
const void *buf2, size_t count)

int memicmp(const void *buf1,
const void *buf2, size_t count)

Description
The prototype for the memcmp() function is found in both <string.h> and <mem.h>.
The memicmp() function is not defined by the ANSI/ISO C/C++ standard.

The memcmp() function compares the first count characters of the arrays pointed to
by buf1 and buf2. The comparison is done lexicographically.

The memcmp() function returns an integer that is interpreted as indicated here:

Value Meaning

Less than 0 buf1 is less than buf2

0 buf1 is equal to buf 2

Greater than 0 buf1 is greater than buf2

The memicmp() function is identical to memcmp() except that case is ignored
when comparing letters.

Example
This program shows the outcome of a comparison of its two command line arguments:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

int outcome;

size_t len, l1, l2;

354 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

if(argc != 3) {

printf("Use two command-line args.");

return 1;

}

/* find the length of shortest */

len = (l1=strlen(argv[1]))<(l2=strlen(argv[2])) ? l1:l2;

outcome = memcmp(argv[1], argv[2], len);

if(!outcome) printf("equal");

else if(outcome<0) printf("First less than second.\n");

else printf("First greater than second\n");

return 0;

}

Related Functions

memcpy(), memchr(), strcmp()

void *memcpy(void *dest, const void *source,
size_t count)

Description
The prototype for memcpy() is found in both <string.h> and <mem.h>.

The memcpy() function copies count characters from the array pointed to by
source into the array pointed to by dest. If the arrays overlap, the behavior of memcpy()
is undefined.

The memcpy() function returns a pointer to dest.

Example
This program copies the contents of buf1 into buf2 and displays the result:

#include <stdio.h>

#include <string.h>

#define SIZE 80

int main(void)

{

char buf1[SIZE], buf2[SIZE];

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 355
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

strcpy(buf1, "When, in the course of...");

memcpy(buf2, buf1, SIZE);

printf(buf2);

return 0;

}

Related Function

memmove()

void *memmove(void *dest, const void *source,
size_t count)

Description
The prototype for memmove() is found in both <string.h> and <mem.h>.

The memmove() function copies count characters from the array pointed to by
source into the array pointed to by dest. If the arrays overlap, the copy takes place
correctly, placing the correct contents into dest but leaving source modified.

The memmove() function returns a pointer to dest.

Example
This program copies the contents of str1 into str2 and displays the result:

#include <stdio.h>

#include <string.h>

int main(void)

{

char str1[40], str2[40];

strcpy(str1, "Born to code in C/C++.");

memmove(str2, str1, strlen(str1)+1);

printf(str2);

return 0;

}

Related Functions

memcpy(), movmem()

356 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void *memset(void *buf, int ch, size_t count)

Description
The prototype for memset() is found in both <string.h> and <mem.h>.

The memset() function copies the low-order byte of ch into the first count characters
of the array pointed to by buf. It returns buf.

The most common use of memset() is to initialize a region of memory to some
known value.

Example
This fragment first initializes to null the first 100 bytes of the array pointed to by buf
and then sets the first 10 bytes to X and displays the string XXXXXXXXXX:

memset(buf, '\0', 100);

memset(buf, 'X', 10);

printf((char *) buf);

Related Functions

memcpy(), memcmp(), memmove()

void movmem(const void *source, void *dest,
unsigned count)

Description
The prototype for movmem() is found in <mem.h>. The function movmem() is not
defined by the ANSI/ISO C/C++ standard.

The movmem() function copies count characters from the array pointed to by source
into the array pointed to by dest. If the arrays overlap, the copy takes place correctly,
placing the correct contents into dest but leaving source modified.

The movmem() function is equivalent to the memmove() function except that
the movmem() function has no return value and is not defined by the ANSI/ISO
C/C++ standard.

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y

Related Functions

memcpy(), memmove()

void setmem(void *buf, unsigned count, char ch)

Description
The prototype for setmem() is found in <mem.h>. The setmem() function is not
defined by the ANSI/ISO C/C++ standard.

The setmem() function copies ch into the first count characters of the array pointed
to by buf.

The setmem() function is equivalent to the memset() function except that
the setmem() function has no return value and is not defined by the ANSI/ISO
C/C++ standard.

Related Functions

memcpy(), memset(), memmove()

char *stpcpy(char *str1, const char *str2)

Description
The prototype for stpcpy() is found in <string.h> and is not defined by the ANSI/ISO
C/C++ standard.

The stpcpy() function is used to copy the contents of str2 into str1. str2 must be a
pointer to a null-terminated string. The stpcpy() function returns a pointer to the end
of str1.

Example
The following code fragment copies hello into string str:

char str[8];

stpcpy(str, "hello");

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 357

Related Function

strcpy()

char *strcat(char *str1, const char *str2)

Description
The prototype for strcat() is found in <string.h>.

The strcat() function concatenates a copy of str2 to str1 and terminates str1 with a
null. The null terminator originally ending str1 is overwritten by the first character of
str2. The string str2 is untouched by the operation.

The strcat() function returns str1.
Remember that no bounds checking takes place, so it is the programmer’s

responsibility to ensure that str1 is large enough to hold both its original contents
and the contents of str2.

Example
This program appends the first string read from stdin to the second. For example,
assuming the user enters hello and there, the program prints therehello.

#include <stdio.h>

#include <string.h>

int main(void)

{

char s1[80], s2[80];

gets(s1);

gets(s2);

strcat(s2, s1);

printf(s2);

return 0;

}

Related Functions

strchr(), strcmp(), strcpy()

358 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

char *strchr(const char *str, int ch)

Description
The prototype for strchr() is found in <string.h>.

The strchr() function returns a pointer to the first occurrence of ch in the string
pointed to by str. If no match is found, it returns a null pointer.

Example
This program prints the string “ is a test”:

#include <stdio.h>

#include <string.h>

int main(void)

{

char *p;

p = strchr("this is a test", ' ');

printf(p);

return 0;

}

Related Functions

strpbrk(), strstr(), strtok(), strspn()

int strcmp(const char *str1, const char *str2)

Description
The prototype for the strcmp() function is found in <string.h>.

The strcmp() function lexicographically compares two null-terminated strings and
returns an integer based on the outcome, as shown here:

Value Meaning

Less than 0 str1 is less than str2

0 str1 is equal to str2

Greater than 0 str1 is greater than str2

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 359
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
The following function can be used as a password-verification routine. It returns 0 on
failure and 1 on success.

int password(void)

{

char s[80];

printf("Enter password: ");

gets(s);

if(strcmp(s, "pass")) {

printf("Invalid password.\n");

return 0;

}

return 1;

}

Related Functions

strchr(), strcpy(), strncmp()

int strcoll(const char *str1, const char *str2)

Description
The prototype for the strcoll() function is found in <string.h>.

The strcoll() function is equivalent to the strcmp() function except that the
comparison is performed in accordance with the current locale, which is specified
using setlocale() function.

Related Functions

strncmp(), stricmp()

char *strcpy(char *str1, const char *str2)

Description
The prototype for strcpy() is found in <string.h>.

The strcpy() function is used to copy the contents of str2 into str1; str2 must be
a pointer to a null-terminated string. The strcpy() function returns a pointer to str1.

If str1 and str2 overlap, the behavior of strcpy() is undefined.

360 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Example
The following code fragment copies hello into string str.

char str[80];

strcpy(str, "hello");

Related Functions

strchr(), strcmp(), memcpy(), strncmp()

size_t strcspn(const char *str1, const char *str2)

Description
The prototype for the strcspn() function is found in <string.h>.

The strcspn() function returns the length of the initial substring of the string pointed
to by str1 that is made up of only those characters not contained in the string pointed to
by str2. Stated differently, strcspn() returns the index of the first character in the string
pointed to by str1 that matches any of the characters in the string pointed to by str2.

Example
This program prints the number 8:

#include <stdio.h>

#include <string.h>

int main(void)

{

int len;

len = strcspn("this is a test", "ab");

printf("%d", len);

return 0;

}

Related Functions

strpbrk(), strstr(), strtok(), strrchr()

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 361
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

char *strdup(const char *str)

Description
The prototype for strdup() is found in <string.h>. The strdup() function is not defined
by the ANSI/ISO C/C++ standard.

The strdup() function allocates enough memory, via a call to malloc(), to hold a
duplicate of the string pointed to by str and then copies that string into the allocated
region and returns a pointer to it.

Example
This fragment duplicates the string str.

char str[80], *p;

strcpy(str, "this is a test");

p = strdup(str);

Related Function

strcpy()

char *_strerror(const char *str)

Description
The prototype for the _strerror() function is found in <stdio.h> and <string.h>.

The _strerror() function lets you display your own error message followed by a colon
and the most recent error message generated by the program. It returns a pointer to the
entire string.

The _strerror() function is not defined by the ANSI/ISO C/C++ standard.

Example
This fragment prints a message stating that the function called swap() encountered
an error:

void swap()

{

/* ... */

if(error) printf(_strerror("Error in swap."));

362 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions

perror(), strerror()

char *strerror(int num)

Description
The prototype for the strerror() function is found in <string.h>.

The strerror() function returns a pointer to the error message associated with an
error number.

Example
This fragment prints the error message associated with the global variable errno if an
error has occurred.

if(errno) printf(strerror(errno));

Related Functions

perror(), _strerror()

int stricmp(const char *str1, const char *str2)
int strcmpi(const char *str1, const char *str2)

Description
The prototypes for the stricmp() function and strcmpi() macro are found in <string.h>.
Neither of these are defined by the ANSI/ISO C/C++ standard.

The stricmp() function lexicographically compares two null-terminated strings while
ignoring case; strcmpi() is a macro that translates to a stricmp() call.

Both functions return an integer based on the outcome, as shown here:

Value Meaning

Less than 0 str1 is less than str2

0 str1 is equal to str2

Greater than 0 str1 is greater than str2

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 363

Example
The following function compares the two filenames specified on the command line to
determine if they are the same:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

if(argc != 3) {

printf("Use two command-line args.");

return 1;

}

if(!stricmp(argv[1], argv[2]))

printf("The filenames are the same.\n");

else

printf("The filenames differ.\n");

return 0;

}

Related Functions

strnchr(), strcmp(), strncpy()

size_t strlen(const char *str)

Description
The prototype for strlen() is found in <string.h>.

The strlen() function returns the length of the null-terminated string pointed
to by str. The null is not counted.

Example
This code fragment prints the number 5 on the screen:

strcpy(s, "hello");

printf("%d", strlen(s));

364 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 365
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

strchr(), strcmp(), memcpy(), strncmp()

char *strlwr(char *str)

Description
The prototype for strlwr() is found in <string.h>. The strlwr() function is not defined
by the ANSI/ISO C/C++ standard.

The strlwr() function converts the string pointed to by str to lowercase. It returns str.

Example
This program prints this is a test on the screen:

#include <stdio.h>

#include <string.h>

int main(void)

{

char s[80];

strcpy(s, "THIS IS A TEST");

strlwr(s);

printf(s);

return 0;

}

Related Function

strupr()

char *strncat(char *str1, const char *str2, size_t count)

Description
The prototype for the strncat() function is found in <string.h>.

The strncat() function concatenates no more than count characters of the string pointed
to by str2 to the string pointed to by str1 and terminates str1 with a null. The null terminator

366 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

originally ending str1 is overwritten by the first character of str2. The string str2 is
untouched by the operation.

The strncat() function returns str1.
Remember, no bounds checking takes place, so it is the programmer’s responsibility

to ensure that str1 is large enough to hold both its original contents and those of str2.

Example
This program appends the first string read from stdin to the second and prevents an
array overflow from occurring in str1. For example, if the user enters hello and there,
the program prints therehello:

#include <stdio.h>

#include <string.h>

int main(void)

{

char s1[80], s2[80];

size_t len;

gets(s1);

gets(s2);

/* compute how many chars will actually fit */

len = 79-strlen(s2);

strncat(s2, s1, len);

printf(s2);

return 0;

}

Related Functions

strnchr(), strncmp(), strncpy(), strcat()

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 367
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int strncmp(const char *str1, const char *str2, size_t count)
int strnicmp(const char *str1, const char *str2, size_t count)
int strncmpi(const char *str1, const char *str2, size_t count)

Description
The prototypes for the strncmp() and strnicmp() functions, and the strncmpi() macro,
are found in <string.h>. Of these, only strncmp() is defined by the ANSI/ISO C/C++
standard.

The strncmp() function lexicographically compares no more than count characters
from the two null-terminated strings. The functions strnicmp() and strncmpi() perform
the same comparison while ignoring case; strncmpi() is a macro that translates to a
strnicmp() call.

All three functions return an integer based on the outcome, as shown here:

Value Meaning

Less than 0 str1 is less than str2

0 str1 is equal to str2

Greater than 0 str1 is greater than str2

If there are fewer than count characters in either string, the comparison ends when
the first null is encountered.

Example
The following function compares the first eight characters of the two filenames
specified on the command line to determine if they are the same:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

if(argc != 3) {

printf("Use two command-line args.");

return 1;

}

if(!strnicmp(argv[1], argv[2], 8))

printf("The filenames are the same.\n");

else

printf("The filenames differ.\n");

return 0;

}

Related Functions

strnchr(), strcmp(), strncpy()

char *strncpy(char *dest, const char *source,
size_t count)

Description
The prototype for strncpy() is found in <string.h>.

The strncpy() function is used to copy up to count characters from the string pointed to
by source into the string pointed to by dest. The source must be a pointer to a null-terminated
string. The strncpy() function returns a pointer to dest.

If dest and source overlap, the behavior of strncpy() is undefined.
If the string pointed to by source has fewer than count characters, nulls are appended

to the end of dest until count characters have been copied.
Alternately, if the string pointed to by source is longer than count characters, the

resulting string pointed to by dest is not null-terminated.

Example
The following code fragment copies at most 79 characters of str1 into str2, thus
ensuring that no array boundary overflow will occur:

char str1[128], str2[80];

gets(str1);

strncpy(str2, str1, 79);

368 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions

strchr(), strncmp(), memcpy(), strncat()

char *strnset(char *str, int ch, size_t count)

Description
The prototype for strnset() is found in <string.h>.

The strnset() function sets the first count characters in the string pointed to by str to
the value of ch. It returns str.

Example
This fragment sets the first 10 characters of str to the value x:

strnset(str, 'x', 10);

Related Function

strset()

char *strpbrk(const char *str1, const char *str2)

Description
The prototype to strpbrk() is found in <string.h>.

The strpbrk() function returns a pointer to the first character in the string pointed
to by str1 that matches any character in the string pointed to by str2. The null terminators
are not included. If there are no matches, a null pointer is returned.

Example
This program prints the message s is a test on the screen:

#include <stdio.h>

#include <string.h>

int main(void)

{

char *p;

p = strpbrk("this is a test", " absj");

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 369
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

370 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

printf(p);

return 0;

}

Related Functions

strrchr(), strstr(), strtok(), strspn()

char *strrchr(const char *str, int ch)

Description
The prototype to strrchr() is found in <string.h>.

The strrchr() function returns a pointer to the last occurrence of the low-order byte
of ch in the string pointed to by str. If no match is found, it returns a null pointer.

Example
This program prints the string is a test:

#include <stdio.h>

#include <string.h>

int main(void)

{

char *p;

p = strrchr("this is a test", 'i');

printf(p);

return 0;

}

Related Functions

strpbrk(), strstr(), strtok(), strspn()

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 371
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

char *strrev(char *str)

Description
The prototype for strrev() is found in <string.h>. The strrev() function is not defined
by the ANSI/ISO C/C++ standard.

The strrev() function reverses all characters, except the null terminator, in the
string pointed to by str. It returns str.

Example
This program prints hello backward on the screen:

#include <stdio.h>

#include <string.h>

char s[] = "hello";

int main(void)

{

strrev(s);

printf(s);

return 0;

}

Related Function

strset()

char *strset(char *str, int ch)

Description
The prototype for strset() is found in <string.h>. The strset() function is not defined
by the ANSI/ISO C/C++ standard.

The strset() function sets all characters in the string pointed to by str to the value of
ch. It returns str.

372 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
This fragment fills the string str with the value x.

strset(str, 'x');

Related Function

strnset()

size_t strspn(const char *str1, const char *str2)

Description
The prototype for strspn() is found in <string.h>.

The strspn() function returns the length of the initial substring of the string pointed to
by str1 that is made up of only those characters contained in the string pointed to by str2.
Stated differently, strspn() returns the index of the first character in the string pointed to
by str1 that does not match any of the characters in the string pointed to by str2.

Example
This program prints the number 8:

#include <stdio.h>

#include <string.h>

int main(void)

{

int len;

len = strspn("this is a test", "siht ");

printf("%d",len);

return 0;

}

Related Functions

strpbrk(), strstr(), strtok(), strrchr()

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 373
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

char *strstr(const char *str1, const char *str2)

Description
The prototype for strstr() is found in <string.h>.

The strstr() function returns a pointer to the first occurrence in the string pointed
to by str1 of the string pointed to by str2 (except str2’s null terminator). It returns a null
pointer if no match is found.

Example
This program displays the message is is a test:

#include <stdio.h>

#include <string.h>

int main(void)

{

char *p;

p = strstr("this is a test", "is");

printf(p);

return 0;

}

Related Functions

strpbrk(), strspn(), strtok(), strrchr(), strchr(), strcspn()

char *strtok(char *str1, const char *str2)

Description
The prototype for strtok() is in <string.h>.

The strtok() function returns a pointer to the next token in the string pointed to
by str1. The characters making up the string pointed to by str2 are the delimiters that
determine the token. A null pointer is returned when there is no token to return.

374 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The first time strtok() is called, str1 is actually used in the call. Subsequent calls
use a null pointer for the first argument. In this way the entire string can be reduced
to its tokens.

It is important to understand that the strtok() function modifies the string pointed
to by str1. Each time a token is found, a null is placed where the delimiter was found.
In this way strtok() continues to advance through the string.

It is possible to use a different set of delimiters for each call to strtok().

Example
This program tokenizes the string The summer soldier, the sunshine patriot with
spaces and commas as the delimiters.
The output is The|summer|soldier|the|sunshine|patriot.

#include <stdio.h>

#include <string.h>

int main(void)

{

char *p;

p = strtok("The summer soldier, the sunshine patriot"," ");

printf(p);

do {

p=strtok('\0', ", ");

if(p) printf("|%s", p);

} while(p);

return 0;

}

Related Functions

strpbrk(), strspn(), strrchr(), strchr(), strcspn()

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y

char *strupr(char *str)

Description
The prototype for strupr() is found in <string.h>. The strupr() function is not defined
by the ANSI/ISO C/C++ standard.

The strupr() function converts the string pointed to by str to uppercase. It returns str.

Example
This program prints THIS IS A TEST on the screen:

#include <stdio.h>

#include <string.h>

int main(void)

{

char s[80];

strcpy(s, "this is a test");

strupr(s);

printf(s);

return 0;

}

Related Function

strlwr()

size_t strxfrm(char *dest, const char *source, size_t count)

Description
The prototype for strxfrm() is found in <string.h>.

The strxfrm() function is used to copy up to count characters from the string
pointed to by source into the string pointed to by dest. The source must be a pointer
to a null-terminated string. In the process, any country-related items are transformed

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 375

376 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

into the proper format for the current country. The strxfrm() function returns the
number of characters copied.

The strxfrm() function is similar to the strncpy() function.

Related Functions

strncpy(), memcpy(), strncat()

int tolower(int ch)
int _tolower(int ch)

Description
The prototype for tolower() and the definition of the macro _tolower() are found in
<ctype.h>. The _tolower() macro is not defined by the ANSI/ISO C/C++ standard.

The tolower() function returns the lowercase equivalent of ch if ch is an uppercase
letter; otherwise, it returns ch unchanged. The _tolower() macro is equivalent, but
should only be used when ch is an uppercase letter; otherwise, the results are undefined.

Example
This code fragment displays a q.

putchar(tolower('Q'));

Related Function

toupper()

int toupper(int ch)
int _toupper(int ch)

Description
The prototype for toupper() and the macro _toupper() are found in <ctype.h>.
The _toupper() macro is not defined by the ANSI/ISO C/C++ standard.

The toupper() function returns the uppercase equivalent of ch if ch is a letter;
otherwise, it returns ch unchanged. The _toupper() macro is equivalent but should
only be used when ch is a lowercase letter; otherwise, the results are undefined.

Example
This displays an A.

putchar(toupper('a'));

Related Function

tolower()

C h a p t e r 1 2 : S t r i n g , M e m o r y , a n d C h a r a c t e r F u n c t i o n s 377
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

This page intentionally left blank.

Chapter 13
Mathematical Functions

379

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The ANSI/ISO C/C++ standard defines 22 mathematical functions that fall into
the following categories:

� Trigonometric functions

� Hyperbolic functions

� Exponential and logarithmic functions

� Miscellaneous

C++ Builder implements all of these functions and includes several of its own. Many
of the functions added by C++ Builder are long double versions of the standard functions.
These C++ Builder–specific functions are also discussed here. Remember, however, that
they are not defined by C89 or C++.

All the math functions require the header <math.h> to be included in any program
using them. In addition to declaring the math functions, this header defines three macros
called EDOM, ERANGE, and HUGE_VAL. If an argument to a math function is not
in the domain for which it is defined, an implementation-defined value is returned and
the global errno is set equal to EDOM. If a routine produces a result that is too large to
be represented, an overflow happens. This causes the routine to return HUGE_VAL
and errno is set to ERANGE, indicating a range error. (If the function returns a long
double, then it returns _LHUGE_VAL.) If an underflow happens, the routine returns 0
and sets errno to ERANGE.

double acos(double arg)
long double acosl(long double arg)

Description
The prototype for acos() is in <math.h>.

The acos() function returns the arc cosine of arg. The argument to acos() must be in
the range –1 to 1; otherwise, a domain error occurs. The return value is in the range 0 to
π and is in radians.

acosl() is the long double version of this function.

Example
This program prints the arc cosines, in one-tenth increments, of the values –1 through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

380 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y

double val = -1.0;

do {

printf("arc cosine of %f is %f\n", val, acos(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

Related Functions

asin(), atan(), atan2(), sin(), cos(), tan(), sinh(), cosh(), tanh()

double asin(double arg)
long double asinl(long double arg)

Description
The prototype for asin() is in <math.h>.

The asin() function returns the arc sine of arg. The argument to asin() must be
in the range –1 to 1; otherwise, a domain error occurs. Its return value is in the range
−π/2 to π/2 and is in radians.

asinl() is the long double version of this function.

Example
This program prints the arc sines, in one-tenth increments, of the values –1 through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = -1.0;

do {

printf("arc sine of %f is %f\n", val, asin(val));

val += 0.1;

} while(val <= 1.0);

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 381

return 0;

}

Related Functions

atan(), atan2(), sin(), cos(), tan(), sinh(), cosh(), tanh()

double atan(double arg)
long double atanl(long double arg)

Description
The prototype for atan() is in <math.h>.

The atan() function returns the arc tangent of arg. The return value is in radians and
in the range −π/2 to π/2.

atanl() is the long double version of this function.

Example
This program prints the arc tangents, in one-tenth increments, of the values –1 through 1.

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = -1.0;

do {

printf("arc tangent of %f is %f\n", val, atan(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

Related Functions

asin(), acos(), atan2(), tan(), cos(), sin(), sinh(), cosh(), tanh()

382 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 383
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

double atan2(double y, double x)
long double atan2l(long double y, long double x)

Description
The prototype for atan2() is in <math.h>.

The atan2() function returns the arc tangent of y/x. It uses the signs of its arguments
to compute the quadrant of the return value. The return value is in radians and in the
range −π to π.

atan2l() is the long double version of this function.

Example
This program prints the arc tangents, in one-tenth increments of y, from –1 through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

double y = -1.0;

do {

printf("atan2 of %f is %f\n", y, atan2(y, 1.0));

y += 0.1;

} while(y <= 1.0);

return 0;

}

Related Functions

asin(), acos(), atan(), tan(), cos(), sin(), sinh(), cosh(), tanh()

double cabs(struct complex znum)
long double cabsl(struct _complexl znum)

Description
The prototype for cabs() is in <math.h>. This macro is not defined by the ANSI/ISO
C89/C++ standard.

The cabs() macro returns the absolute value of a complex number. The structure
complex is defined as

struct complex {
double x;
double y;

};

If an overflow occurs, HUGE_VAL is returned and errno is set to ERANGE
(out of range).

cabsl() is the long double version of this macro and _complexl is the long double
equivalent of complex.

Example
This code prints the absolute value of a complex number that has a real part equal to 1
and an imaginary part equal to 2:

#include <stdio.h>

#include <math.h>

int main(void)

{

struct complex z;

z.x = 1;

z.y = 2;

printf("%f", cabs(z));

return 0;

}

Related Function

abs()

double ceil(double num)
long double ceill(long double num)

Description
The prototype for ceil() is in <math.h>.

384 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The ceil() function returns the smallest integer (represented as a double) not less
than num. For example, given 1.02, ceil() returns 2.0. Given –1.02, ceil() returns –1.

ceill() is the long double version of ceil().

Example
This fragment prints the value 10 on the screen:

printf("%f", ceil(9.9));

Related Functions

floor(), fmod()

double cos(double arg)
long double cosl(long double arg)

Description
The prototype for cos() is in <math.h>.

The cos() function returns the cosine of arg. The value of arg must be in radians.
The return value is in the range –1 to 1.

cosl() is the long double version of this function.

Example
This program prints the cosines, in one-tenth increments, of the values –1 through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = –1.0;

do {

printf("cosine of %f is %f\n", val, cos(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 385
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

386 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions

asin(), acos(), atan2(), atan(), tan(), sin(), sinh(), cosh(), tanh()

double cosh(double arg)
long double coshl(long double arg)

Description
The prototype for cosh() is in <math.h>.

The cosh() function returns the hyperbolic cosine of arg.
coshl() is the long double version of this function.

Example
This program prints the hyperbolic cosines, in one-tenth increments, of the values
–1 through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = -1.0;

do {

printf("hyperbolic cosine of %f is %f\n", val, cosh(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

Related Functions

asin(), acos(), atan2(), atan(), tan(), cos(), sin(), tanh()

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 387
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

double exp(double arg)
long double expl(long double arg)

Description
The prototype for exp() is in <math.h>.

The exp() function returns the natural logarithm e raised to the arg power.
expl() is the long double version of exp().

Example
This fragment displays the value of e (rounded to 2.718282).

printf("Value of e to the first: %f", exp(1.0));

Related Function

log()

double fabs(double num)
long double fabsl(long double num)

Description
The prototype for fabs() is in <math.h>.

The fabs() function returns the absolute value of num.
fabsl() is the long double version of this function.

Example
This program prints 1.0 1.0 on the screen:

#include <stdio.h>

#include <math.h>

int main(void)

{

388 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

printf("%1.1f %1.1f", fabs(1.0), fabs(-1.0));

return 0;

}

Related Function

abs()

double floor(double num)
long double floorl(long double num)

Description
The prototype for floor() is in <math.h>.

The floor() function returns the largest integer (represented as a double) that is
not greater than num. For example, given 1.02, floor() returns 1.0. Given −1.02, floor()
returns −2.0.

floor() is the long double version of this function.

Example
This fragment prints 10 on the screen:

printf("%f", floor(10.9));

Related Function

fmod()

double fmod(double x, double y)
long double fmodl(long double x, long double y)

Description
The prototype for fmod() is in <math.h>.

The fmod() function returns the remainder of x/y.
fmodl() is the long double version of this function.

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 389
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This program prints 1.0 on the screen, which represents the remainder of 10/3:

#include <stdio.h>

#include <math.h>

int main(void)

{

printf("%1.1f", fmod(10.0, 3.0));

return 0;

}

Related Functions

ceil(), floor(), fabs()

double frexp(double num, int *exp)
long double frexpl(long double num, int *exp)

Description
The prototype for frexp() is in <math.h>.

The frexp() function decomposes the number num into a mantissa in the range 0.5
to less than 1, and an integer exponent such that num=mantissa*2exp. The mantissa is
returned by the function, and the exponent is stored at the variable pointed to by exp.

frexpl() is the long double version of this function.

Example
This code fragment prints 0.625 for the mantissa and 4 for the exponent:

int e;

double f;

f = frexp(10.0, &e);

printf("%f %d", f, e);

Related Function

ldexp()

double hypot(double x, double y)
long double hypotl(long double x, long double y)

Description
The prototype for hypot() is in <math.h>. This function is not defined by the
ANSI/ISO C89/C++ standard.

The hypot() function returns the length of the hypotenuse of a right triangle given
the lengths of the other two sides.

hypotl() is the long double version of this function.

Example
This code fragment prints the value 2.236068:

printf("%f", hypot(2, 1));

double ldexp(double num, int exp)
long double ldexpl(long double num, int exp)

Description
The prototype for ldexp() is in <math.h>.

The ldexp() function returns the value of num * 2exp. If overflow occurs, HUGE_VAL
is returned.

ldexpl() is the long double version of this function.

Example
This program displays the number 4:

#include <stdio.h>

#include <math.h>

int main(void)

{

printf("%f", ldexp(1, 2));

390 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

return 0;

}

Related Functions

frexp(), modf()

double log(double num)
long double logl(long double num)

Description
The prototype for log() is in <math.h>.

The log() function returns the natural logarithm for num. A domain error occurs if
num is negative and a range error occurs if the argument is 0.

logl() is the long double version of this function.

Example
This program prints the natural logarithms for the numbers 1 through 10:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = 1.0;

do {

printf("%f %f\n", val, log(val));

val++;

} while (val < 11.0);

return 0;

}

Related Function

log10()

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 391
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

392 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

double log10(double num)
long double log10l(long double num)

Description
The prototype for log10() is in <math.h>.

The log10() function returns the base 10 logarithm for num. A domain error occurs
if num is negative, and a range error occurs if the argument is 0.

log10l() is the long double version of this function.

Example
This program prints the base 10 logarithms for the numbers 1 through 10:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = 1.0;

do {

printf("%f %f\n", val, log10(val));

val++;

} while (val < 11.0);

return 0;

}

Related Function

log()

int _matherr(struct exception *err)
int _matherrl(struct _exceptionl *err)

Description
The prototype for _matherr() is in <math.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _matherr() function allows you to create custom math error handling routines.
The function must perform as follows. When the _matherr() function can resolve a
problem, it returns nonzero and no message is printed. Also, the errno built-in variable
is not altered. However, if _matherr() cannot resolve the problem, it returns zero, the
appropriate error message is printed, and the value of errno is changed. By default,
C++ Builder provides a version _matherr() function that returns zero.

The _matherr() function is called with an argument of type exception, which is
shown here.

struct exception {

int type;

char *name;

double arg1, arg2;

double retval;

};

The type element holds the type of the error that occurred. Its value will be one of
the following values.

Symbol Meaning

DOMAIN Domain error

SING Result is a singularity

OVERFLOW Overflow error

UNDERFLOW Underflow error

TLOSS Total loss of significant digits

The name element holds a pointer to a string that holds the name of the function
in which the error took place. The arg1 and arg2 elements hold the arguments to the
function that caused the error. If the function takes only one argument, it will be in
arg1. Finally, retval holds the default return value for _matherr(). You can return a
different value.

_matherrl is used with the long double math functions. The structure _exceptionl
is the same as _exception except that the elements arg1, arg2, and retval are of type
long double.

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 393
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

394 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

double modf(double num, double *i)
long double modfl(long double num, long double *i)

Description
The prototype for modf() is in <math.h>.

The modf() function decomposes num into its integer and fractional parts. It returns
the fractional portion and places the integer part in the variable pointed to by i.

modfl() is the long double version of this function.

Example
This fragment prints 10 and 0.123 on the screen:

double i;

double f;

f = modf(10.123, &i);

printf("%f %f", i, f);

Related Functions

frexp(), ldexp()

double poly(double x, int n, double c[])
long double polyl(long double x, int n, long double c[])

Description
The prototype for poly() is in <math.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The poly() function evaluates a polynomial in x of degree n with coefficients c[0]
through c[n] and returns the result. For example, if n=3, the polynomial evaluated is

c[3]x3 + c[2]x2 + c[1]x + c[0]

polyl() is the long double version of this function.

Example
This program prints 47 on the screen.

#include <stdio.h>

#include <math.h>

int main(void)

{

double c[2];

c[1] = 2;

c[0] = 45;

printf("%f", poly(1, 2, c));

return 0;

}

Related Function

hypot()

double pow(double base, double exp)
long double powl(long double base, long double exp)

Description
The prototype for pow() is in <math.h>.

The pow() function returns base raised to the exp power (baseexp).
An overflow produces a range error. Domain errors may also occur.

powl() is the long double version of this function.

Example
This program prints the first 11 powers of 12.

#include <stdio.h>

#include <math.h>

int main(void)

{

double x=12.0, y=0.0;

do {

printf("%f\n", pow(x, y));

y++;

} while(y<11);

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 395
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

return 0;

}

Related Functions

exp(), log(), sqrt(), pow10()

double pow10(int n)
long double pow10l(int n)

Description
The prototype for pow10() is in <math.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The pow10() function returns 10 raised to the power n. Overflow and underflow
are the only possible errors.

pow10l() is the long double version of this function.

Example
This program prints the first 11 powers of 10:

#include <stdio.h>

#include <math.h>

int main(void)

{

int x=0;

while(x < 11)

printf("%f\n", pow10(x++));

return 0;

}

Related Functions

exp(), log(), sqrt(), pow()

396 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

double sin(double arg)
long double sinl(long double arg)

Description
The prototype to sin() is in <math.h>.

The sin() function returns the sine of arg. The value of arg must be in radians.
sinl() is the long double version of this function.

Example
This program prints the sines, in one-tenth increments, of the values –1 through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = -1.0;

do {

printf("sine of %f is %f\n", val, sin(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

Related Functions

asin(), acos(), atan2(), atan(), tan(), cos(), sinh(), cosh(), tanh()

double sinh(double arg)
long double sinhl(long double arg)

Description
The prototype for sinhl() is in <math.h>.

The sinh() function returns the hyperbolic sine of arg.
sinhl() is the long double version of this function.

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 397
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This program prints the hyperbolic sines, in one-tenth increments, of the values –1
through 1.

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = -1.0;

do {

printf("hyperbolic sine of %f is %f\n", val, sinh(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

Related Functions

asin(), acos(), atan2(), atan(), tan(), cos(), tanh(), cosh()

double sqrt(double num)
long double sqrtl(long double num)

Description
The prototype for sqrt() is in <math.h>.

The sqrt() function returns the square root of num. If called with a negative
argument, a domain error occurs.

sqrtl() is the long double version of this function.

Example
This fragment prints 4 on the screen:

printf("%f", sqrt(16.0));

Related Functions

exp(), log(), pow()

398 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

double tan(double arg)
long double tanl(long double arg)

Description
The prototype for tan() is in <math.h>.

The tan() function returns the tangent of arg. The value of arg must be in radians.
tanl() is the long double version of this function.

Example
This program prints the tangent, in one-tenth increments, of the values –1 through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = -1.0;

do {

printf("tangent of %f is %f\n", val, tan(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

Related Functions

asin(), atan(), atan2(), cos(), sin(), sinh(), cosh(), tanh()

double tanh(double arg)
long double tanhl(long double arg)

Description
The prototype for tanh() is in <math.h>.

The tanh() function returns the hyperbolic tangent of arg.
tanhl() is the long double version of this function.

C h a p t e r 1 3 : M a t h e m a t i c a l F u n c t i o n s 399
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This program prints the hyperbolic tangent, in one-tenth increments, of the values –1
through 1:

#include <stdio.h>

#include <math.h>

int main(void)

{

double val = -1.0;

do {

printf("Hyperbolic tangent of %f is %f\n", val, tanh(val));

val += 0.1;

} while(val <= 1.0);

return 0;

}

Related Functions

asin(), atan(), atan2(), cos(), sin(), cosh(), sinh()

400 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Chapter 14
Time, Date, and
System-Related
Functions

401

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

402 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This chapter covers those functions that in one way or another are more system
sensitive than others. Of the functions defined by the ANSI/ISO C/C++ standard,
these include the time and date functions, which relate to the system by using its

time and date information.
Also discussed in this chapter is a category of functions that allow a lower level

of system control than is normal. With the popularity and advancement of GUI-type
operating systems, like Windows and Linux, these types of functions are slowly being
phased out by various compilers, including C++ Builder. However, several low-level
functions are still available, and they are covered here for completeness. None of these
low-level functions are defined by the ANSI/ISO C/C++ standard. Also, some of
the low-level functions apply only to programs written for a DOS session when
running Windows.

The functions that deal with the system time and date require the header <time.h>
for their prototypes. This header also defines three types. The types time_t and clock_t
are capable of representing the system time and date as a long integer. This is referred
to as the calendar time. The structure type tm holds the date and time broken down into
its elements. The tm structure is defined as shown here:

struct tm{

int tm_sec; /* seconds, 0-59 */

int tm_min; /* minutes, 0-59 */

int tm_hour; /* hours, 0-23 */

int tm_mday; /* day of the month, 1-31 */

int tm_mon; /* months since Jan, 0-11 */

int tm_year; /* years from 1900 */

int tm_wday; /* days since Sunday, 0-6 */

int tm_yday; /* days since Jan 1, 0-365 */

int tm_isdst; /* daylight saving time indicator */

};

The value of tm_isdst will be positive if daylight saving time is in effect, 0 if it is
not in effect, and negative if there is no information available. This form of the time
and date is called the broken-down time.

C++ Builder also includes some nonstandard time and date functions that bypass
the normal time and date system and interface more closely with DOS. The functions
use structures of either type time or date, which are defined in <dos.h>. Their declarations
are shown here.

struct date{

int da_year; /* year */

char da_day; /* day of month */

char da_mon; /* month, Jan=1 */

};

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 403
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

struct time {

unsigned char ti_min; /* minutes */

unsigned char ti_hour; /* hours */

unsigned char ti_hund; /* hundredths of seconds */

unsigned char ti_sec; /* seconds */

};

The DOS interfacing functions require the header <dos.h>.

char *asctime(const struct tm *ptr)

Description
The prototype for asctime() is in <time.h>.

The asctime() function returns a pointer to a string representing the information
stored in the structure pointed to by ptr that is converted into the following form:

day month date hours:minutes:seconds year

For example:

Thu Jan 25 12:05:34 2001

The structure pointer passed to asctime() is generally obtained from either
localtime() or gmtime().

The buffer used by asctime() to hold the formatted output string is a statically
allocated character array and is overwritten each time the function is called. If you
wish to save the contents of the string, it is necessary to copy it elsewhere.

Example
This program displays the local time defined by the system:

#include <stdio.h>

#include <time.h>

int main(void)

{

struct tm *ptr;

time_t lt;

lt = time(NULL);

ptr = localtime(<);

printf(asctime(ptr));

404 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

Related Functions

localtime(), gmtime(), time(), ctime()

clock_t clock(void)

Description
The prototype for clock() is in <time.h>.

The clock() function returns the amount of time elapsed since the program that
called clock() started running. If a clock is not available, –1 is returned. To convert the
return value to seconds, divide it by the macro CLK_TCK.

Example
This program times the number of seconds that it takes for the empty for loop to go
from 0 to 500000:

#include <stdio.h>

#include <time.h>

int main(void)

{

clock_t start, stop;

unsigned long t;

start = clock();

for(t=0; t<500000L; t++);

stop = clock();

printf("Loop required %f seconds",

(stop - start) / CLK_TCK);

return 0;

}

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 405
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

localtime(), gmtime(), time(), asctime()

char *ctime(const time_t *time)

Description
The prototype for ctime() is in <time.h>.

The ctime() function returns a pointer to a string of the form

day month date hours:minutes:seconds year

given a pointer to the calendar time. The calendar time is generally obtained through
a call to time(). The ctime() function is equivalent to

asctime(localtime(time))

The buffer used by ctime() to hold the formatted output string is a statically allocated
character array and is overwritten each time the function is called. If you wish to save
the contents of the string, it is necessary to copy it elsewhere.

Example
This program displays the local time defined by the system:

#include <stdio.h>

#include <time.h>

#include <stddef.h>

int main(void)

{

time_t lt;

lt = time(NULL);

printf(ctime(<));

return 0;

}

Related Functions

localtime(), gmtime(), time(), asctime()

double difftime(time_t time2, time_t time1)

Description
The prototype for difftime() is in <time.h>.

The difftime() function returns the difference, in seconds, between time1 and time2.
That is, it returns time2–time1.

Example
This program times the number of seconds that it takes for the empty for loop to go
from 0 to 500,000:

#include <stdio.h>

#include <time.h>

#include <stddef.h>

int main(void)

{

time_t start,end;

long unsigned int t;

start = time(NULL);

for(t=0; t<500000L; t++) ;

end = time(NULL);

printf("Loop required %f seconds", difftime(end, start));

return 0;

}

Related Functions

localtime(), gmtime(), time(), asctime()

406 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void disable(void)
void _disable(void)

Description
The prototypes for disable() and _disable() are in <dos.h>. These macros are not
defined by the ANSI/ISO C/C++ standard.

The disable() and _disable() macros disable interrupts. The only interrupt that
they allow is the NMI (nonmaskable interrupt). Use this function with care because
many devices in the system use interrupts.

Related Functions

enable(), geninterrupt()

unsigned _dos_close(int fd)

Description
The prototype for _dos_close() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard. This function is obsolete and not recommended for
future code.

The _dos_close() function closes the file specified by the file descriptor fd.
The file must have been opened using a call to either _dos_creat(), _dos_open(), or
_dos_creatnew(). The function returns 0 if successful. Otherwise, non-0 is returned
and errno is set to EBADF (bad file descriptor).

Example
This fragment closes the file associated with the file descriptor fd:

_dos_close(fd);

Related Functions

_dos_creat(), _dos_open()

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 407
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

unsigned _dos_creat(const char *fname,
unsigned attr, int *fd)

unsigned _dos_creatnew(const char *fname,
unsigned attr, int *fd)

Description
The prototypes for _dos_creat() and _dos_creatnew() are in <dos.h>. These functions
are not defined by the ANSI/ISO C/C++ standard. These functions are obsolete and
not recommended for future code.

The _dos_creat() function creates a file by the name pointed to by fname with the
attributes specified by attr. It returns a file descriptor to the file in the integer pointed
to by fd. If the file already exists, it will be erased. The _dos_creatnew() function is the
same as _dos_creat() except that if the file already exists, it will not be erased and
_dos_creatnew() will return an error.

The valid values for attr are shown here. (The macros are defined in <dos.h>.)

Macro Meaning

_A_NORMAL Normal file

_A_RDONLY Read-only file

_A_HIDDEN Hidden file

_A_SYSTEM System file

_A_VOLID Volume Label

_A_SUBDIR Subdirectory

_A_ARCH Archive byte set

Both functions return 0 if successful and non-0 on failure. On failure, errno will
contain one of these values: ENOENT (file not found), EMFILE (too many open files),
EACCES (access denied), or EEXIST (file already exists).

Example
This fragment opens a file called TEST.TST for output:

int fd;

if(_dos_creat("test.tst", _A_NORMAL, &fd))

printf("Cannot open file.\n");

408 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 409
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Function

_dos_open()

void _dos_getdate(struct dosdate_t *d)
void _dos_gettime(struct dostime_t *t)

Description
The prototypes for _dos_getdate() and _dos_gettime() are in <dos.h>. These functions
are not defined by the ANSI/ISO C/C++ standard. These functions are obsolete and
not recommended for future code.

The _dos_getdate() function returns the DOS system date in the structure pointed
to by d. The _dos_gettime() function returns the DOS system time in the structure
pointed to by t.

The dosdate_t structure is defined like this:

struct dosdate_t {

unsigned char day;

unsigned char month;

unsigned int year;

unsigned char dayofweek; /* Sunday is 0 */

};

The dostime_t structure is defined as shown here:

struct dostime_t {

unsigned char hour;

unsigned char minute;

unsigned char second;

unsigned char hsecond; /* hundredths of second */

};

Example
This displays the system time and date:

#include <stdio.h>

#include <dos.h>

int main(void)

{

struct dosdate_t d;

struct dostime_t t;

410 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

_dos_getdate(&d);

_dos_gettime(&t);

printf("Time and date: %d:%d:%d, %d/%d/%d",

t.hour, t.minute, t.second, d.month, d.day,

d.year);

return 0;

}

Related Functions

_dos_settime(), _dos_setdate()

unsigned _dos_getdiskfree(unsigned char drive,
struct diskfree_t *dfptr)

Description
The prototype for _dos_getdiskfree() is in <dos.h>. This function is not defined by
the ANSI/ISO C/C++ standard. This function is obsolete and not recommended for
future code.

The _dos_getdiskfree() function returns the amount of free disk space in the
structure pointed to by dfptr for the drive specified by drive. The drives are numbered
from 1 beginning with A. You can specify the default drive by giving drive the value 0.
The diskfree_t structure is defined like this:

struct diskfree_t {

unsigned total_clusters;

unsigned avail_clusters;

unsigned sectors_per_cluster;

unsigned bytes_per_sector;

};

The function returns 0 if successful. If an error occurs, it returns non-0 and errno is
set to EINVAL (invalid drive).

Example
This program prints the number of free clusters available for use on drive C:

TE
AM
FL
Y

Team-Fly®

#include <dos.h>

#include <stdio.h>

int main(void)

{

struct diskfree_t p;

_dos_getdiskfree(3, &p); /* drive C */

printf("Number of free clusters is %d.",

p.avail_clusters);

return 0;

}

Related Function

getdfree()

void _dos_getdrive(unsigned *drive)

Description
The prototype for _dos_getdrive() is in <dos.h>. This function is not defined by
the ANSI/ISO C/C++ standard. This function is obsolete and not recommended
for future code.

The _dos_getdrive() function returns the number of the currently logged in disk
drive in the integer pointed to by drive. Drive A is encoded as 1, drive B as 2, and so on.

Example
This fragment displays the current disk drive:

unsigned d;

_dos_getdrive(&d);

printf("drive is %c", d-1+'A');

Related Function

_dos_setdrive()

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 411
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

unsigned _dos_getfileattr(const char *fname,
unsigned *attrib)

Description
The prototype for _dos_getfileattr() is in <dos.h>. This function is not defined by
the ANSI/ISO C/C++ standard. This function is obsolete and not recommended for
future code.

The _dos_getfileattr() returns the attribute of the file specified by fname in the unsigned
integer pointed to by attrib, which may be one or more of these values. (The macros are
defined in <dos.h>.)

Macro Meaning

_A_NORMAL Normal file

_A_RDONLY Read-only file

_A_HIDDEN Hidden file

_A_SYSTEM System file

_A_VOLID Volume label

_A_SUBDIR Subdirectory

_A_ARCH Archive byte set

The _dos_getfileattr() function returns 0 if successful; it returns non-0 otherwise.
If failure occurs, errno is set to ENOENT (file not found).

Example
This fragment determines if the file TEST.TST is a normal file:

unsigned attr;

if(_dos_getfileattr("test.tst", &attr))

printf("file error");

if(attr & _A_NORMAL) printf("File is normal.\n");

Related Function

_dos_setfileattr()

412 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 413
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

unsigned _dos_getftime(int fd, unsigned *fdate,
unsigned *ftime)

Description
The prototype for _dos_getftime() is in <dos.h>. This function is not defined by
the ANSI/ISO C/C++ standard. This function is obsolete and not recommended
for future code.

The function _dos_getftime() returns the time and date of creation for the file
associated with file descriptor fd in the integers pointed to by ftime and fdate. The file
must have been opened using either _dos_open(), _dos_creatnew(), or _dos_creat().

The bits in the object pointed to by ftime are encoded as shown here:

The bits in the object pointed to by fdate are encoded like this:

As indicated, the year is represented as the number of years from 1980. Therefore, if
the year is 2000, the value of bits 9 through 15 will be 20. The _dos_getftime() function
returns 0 if successful. If an error occurs, non-0 is returned and errno is set to EBADF
(bad file handle).

Example
This program prints the year the file TEST.TST was created:

#include <io.h>

#include <dos.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

struct {

unsigned day: 5;

unsigned month: 4;

unsigned year: 7;

} d;

unsigned t;

int fd;

if(_dos_open("TEST.TST", O_RDONLY, &fd)) {

printf("Cannot open file.\n");

exit(1);

}

_dos_getftime(fd, (unsigned *) &d, &t);

printf("Date of creation: %u", d.year+1980);

return 0;

}

Related Function

_dos_setftime()

unsigned _dos_open(const char *fname,
unsigned mode, int *fd)

Description
The prototype for _dos_open() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard. This function is obsolete and not recommended for
future code.

The _dos_open() function opens the file whose name is pointed to by fname in the
mode specified by mode and returns a file descriptor to the file in the integer pointed to
by fd.

The foundation values for the mode parameter are shown below. (These macros are
defined in <fcntl.h>.)

414 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y

Value Meaning

O_RDONLY Read only

O_WRONLY Write only

O_RDWR Read/write

You may add the following file sharing attributes to mode by ORing them to the
foundation value. (These macros are defined in <share.h>.)

Value Meaning

SH_COMPAT Compatibility mode only

SH_DENYNO Allow reading and writing

SH_DENYRD Deny reading

SH_DENYRW Deny reading and writing

SH_DENYWR Deny writing

You may also specify that the file cannot be inherited by a child process by ORing
the macro O_NOINHERIT. This macro is defined in <fcntl.h>.

The _dos_open() function returns 0 if successful and non-0 on failure. If an error
occurs, errno is set to one of these values:

EACCES Access denied

EINVACC Invalid access attempted

EMFILE Too many open files

ENOENT File not found

Example
This fragment opens a file called TEST.TST for read/write operations:

int fd;

if(_dos_open("test.tst", O_RDWR, &fd))

printf("Error opening file.");

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 415

Related Functions

_dos_creat(), _dos_creatnew(), _dos_close()

unsigned _dos_read(int fd, void *buf, unsigned count,
unsigned *numread)

Description
The prototype for _dos_read() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard. This function is obsolete and not recommended for
future code.

The _dos_read() function reads up to count bytes from the file specified by the file
descriptor fd into the buffer pointed to by buf. The number of bytes actually read are
returned in numread, which may be less than count if the end of the file is reached before
the specified number of bytes have been input. The file must have been opened using
a call to _dos_creat(), _dos_creatnew(), or _dos_open(). Also, _dos_read() treats all
files as binary.

Upon success, _dos_read() returns 0; non-0 on failure. On failure, errno is set
to either EACCES (access denied) or EBADF (bad file handle). Also, when a failure
occurs, the return value is determined by DOS and you will need DOS technical
documentation to determine the exact nature of the error, if one should occur.

Example
This fragment reads up to 128 characters from the file described by fd:

int fd;

unsigned count

char *buf[128];

.

.

.

if(_dos_read(fd, buf, 128, &count))

printf("Error reading file.\n");

Related Function

_dos_write()

416 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 417
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

unsigned _dos_setdate(struct dosdate_t *d)
unsigned _dos_settime(struct dostime_t *t)

Description
The prototypes for _dos_setdate() and _dos_settime() are in <dos.h>. These functions
are not defined by the ANSI/ISO C/C++ standard. These functions are obsolete and
not recommended for future code.

The _dos_setdate() function sets the DOS system date as specified in the structure
pointed to by d. The _dos_settime() function sets the DOS system time as specified in
the structure pointed to by t.

The dosdate_t structure is defined like this:

struct dosdate_t {

unsigned char day;

unsigned char month;

unsigned int year;

unsigned char dayofweek; /* Sunday is 0 */

};

The dostime_t structure is defined as shown here:

struct dostime_t {

unsigned char hour;

unsigned char minute;

unsigned char second;

unsigned char hsecond; /* hundredths of second */

};

Both functions return 0 if successful. On failure they return a non-0 DOS error code
and errno is set to EINVAL (invalid time or date).

Example
The following program sets the system time to 10:10:10.0.

struct dostime_t t;

t.hour = 10;

t.minute = 10;

t.second = 10;

t.hsecond = 0;

_dos_settime(&t);

Related Functions

_dos_gettime(), _dos_getdate()

void _dos_setdrive(unsigned drive, unsigned *num)

Description
The prototype for _dos_setdrive() is in <dos.h>. This function is not defined by
the ANSI/ISO C/C++ standard. This function is obsolete and not recommended
for future code.

The _dos_setdrive() function changes the current disk drive to the one specified
by drive. Drive A corresponds to 1, drive B to 2, and so on. The number of drives in the
system is returned in the integer pointed to by num.

Example
This fragment makes drive C the current drive:

unsigned num;

_dos_setdrive(3, &num);

Related Function

_dos_getdrive()

unsigned _dos_setfileattr(const char *fname,
unsigned attrib)

Description
The prototype for _dos_setfileattr() is in <dos.h>. This function is not defined by
the ANSI/ISO C/C++ standard. This function is obsolete and not recommended for
future code.

418 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The _dos_setfileattr() sets the attributes of the file specified by fname to that
specified by attrib, which must be one (or more) of these values. When using more
than one, OR them together. (The macros are defined in <dos.h>.)

Macro Meaning

_A_NORMAL Normal file

_A_RDONLY Read-only file

_A_HIDDEN Hidden file

_A_SYSTEM System file

_A_VOLID Volume label

_A_SUBDIR Subdirectory

_A_ARCH Archive byte set

The _dos_setfileattr() function returns 0 if successful; it returns non-0 otherwise.
If failure occurs, errno is set to ENOENT (invalid file).

Example
This fragment sets the file TEST.TST to read only:

unsigned attr;

attr = _A_RDONLY;

if(_dos_setfileattr("test.tst", attr))

printf("File Error");

Related Function

_dos_getfileattr()

unsigned _dos_setftime(int fd, unsigned fdate,
unsigned ftime)

Description
The prototype for _dos_setftime() is in <dos.h>. This function is not defined by
the ANSI/ISO C/C++ standard. This function is obsolete and not recommended
for future code.

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 419
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

420 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The _dos_setftime() sets the date and time of the file specified by fd, which must
be a valid file descriptor obtained through a call to _dos_open(), _dos_creat(), or
_dos_creatnew().

The bits in ftime are encoded as shown here:

The bits in fdate are encoded like this:

As indicated, the year is represented as the number of years from 1980. Therefore,
to set the year to 2002, the value of bits 9 through 15 must be 22. The _dos_setftime()
function returns 0 if successful. If an error occurs, non-0 is returned and errno is set to
EBADF (bad file handle).

Example
This changes the year of the file’s creation date to 2002:

#include <stdio.h>

#include <io.h>

#include <dos.h>

#include <fcntl.h>

#include <stdlib.h>

int main(void)

{

struct dt {

unsigned day: 5;

unsigned month: 4;

unsigned year: 7;

} ;

TE
AM
FL
Y

Team-Fly®

union {

struct dt date_time;

unsigned u;

} d;

unsigned t;

int fd;

if(_dos_open("TEST.TST", O_RDWR, &fd)) {

printf("Cannot open file.\n");

exit(1);

}

_dos_getftime(fd, &d.u, &t);

d.date_time.year = 22;

_dos_setftime(fd, d.u, t);

return 0;

}

Related Function

_dos_getftime()

long dostounix(struct date *d, struct time *t)

Description
The prototype for dostounix() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The function dostounix() returns the system time as returned by gettime() and
getdate() into a form compatible with the UNIX time format.

Example
See getdate() for an example.

Related Functions

unixtodos(), ctime(), time()

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 421
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

unsigned _dos_write(int fd, void *buf, unsigned count,
unsigned *numwritten)

Description
The prototype for _dos_write() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard. This function is obsolete and not recommended for
future code.

The _dos_write() function writes up to count bytes to the file specified by the file
descriptor fd from the buffer pointed to by buf. The number of bytes actually written
are returned in numwritten, which may be less than requested if the disk becomes full.
All files are treated as binary, and no character translations will occur.

Upon success, _dos_write() returns 0; it returns non-0 on failure. The return value
is determined by DOS and you will need DOS technical documentation to determine
the nature of the error, if one should occur. Also, if an error occurs, errno will be set to
either EACCES (access denied) or EBADF (bad file handle).

Example
This fragment writes 128 characters from the file described by fd:

int fd;

unsigned count

char *buf[128];

.

.

.

if(_dos_write(fd, buf, 128, &count))

printf("Error writing file.");

Related Function

_dos_read()

void enable(void)
void _enable(void)

Description
The prototypes for enable() and _enable() are in <dos.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The enable() and _enable() functions enable interrupts.

422 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 423
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

disable(), geninterrupt()

void ftime(struct timeb *time)

Description
The prototype for ftime() is in <sys\timeb.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The ftime() function fills the timeb structure with system time information.
Specifically, it retrieves the elapsed time in seconds since January 1, 1970 (GMT),
the fractional part of any elapsed second in milliseconds, the difference between
GMT and local time in minutes, and whether daylight saving time is in effect.

The timeb structure looks like this:

struct timeb {

long time; /* time in seconds from Jan. 1, 1970 */

short millitm; /* milliseconds */

short timezone; /* difference between GMT and local time */

short dstflag; /* non-0 if daylight saving time is in effect */

};

Example
This program displays the number of seconds that have elapsed since January 1, 1970,
Greenwich mean time:

#include <stdio.h>

#include <sys\timeb.h>

int main(void)

{

struct timeb lt;

ftime(<);

printf("%ld seconds %d milliseconds.",lt.time,lt.millitm);

return 0;

}

Related Functions

localtime(), gmtime(), ctime(), asctime()

424 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void geninterrupt(int intr)

Description
The prototype for geninterrupt() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The geninterrupt() macro generates a software interrupt. The number of the
interrupt generated is determined by the value of intr. Given the nature of Windows
and its protection of low-level access, this function fits best in device drivers.

Related Functions

enable(), disable()

void getdate(struct date *d)
void gettime(struct time *t)

Description
The prototypes for getdate() and gettime() are in <dos.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The getdate() function fills the date structure pointed to by d with the DOS form of
the current system date. The gettime() function fills the time structure pointed to by t
with the DOS form of the current system time.

Example
This converts the DOS version of time and date into the form that can be used by the
standard ANSI/ISO C/C++ time and date routines and displays the time and date on
the screen:

#include <stdio.h>

#include <time.h>

#include <dos.h>

int main(void)

{

time_t t;

struct time dos_time;

struct date dos_date;

struct tm *local;

getdate(&dos_date);

gettime(&dos_time);

t = dostounix(&dos_date, &dos_time);

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y

local = localtime(&t);

printf("time and date: %s", asctime(local));

return 0;

}

Related Functions

settime(), setdate()

void getdfree(unsigned char drive, struct dfree *dfptr)

Description
The prototype for getdfree() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The getdfree() function assigns information about the amount of free disk space to
the structure pointed to by dfptr for the drive specified by drive. The drives are numbered
from 1 beginning with drive A. You can specify the default drive by calling getdfree()
with a value of 0. The dfree structure is defined like this:

struct dfree {

unsigned df_avail; /* unused clusters */

unsigned df_total; /* total number of clusters */

unsigned df_bsec; /* number of bytes per sector */

unsigned df_sclus; /* number of sectors per cluster */

};

If an error occurs, the df_sclus field is set to −1.

Example
This program prints the number of free clusters available for use on drive C:

#include <stdio.h>

#include <dos.h>

int main(void)

{

struct dfree p;

getdfree(3, &p); /* drive C */

printf("Number of free clusters is %d.", p.df_avail);

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 425

426 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

Related Function

_dos_getdiskfree()

int getftime(int handle, struct ftime *ftptr)

Description
The prototype for getftime() is in <io.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The function getftime() returns time and date of creation for the file associated
with handle. The information is loaded into the structure pointed to by ftptr. The
bit-field structure ftime is defined like this:

struct ftime {

unsigned ft_tsec: 5; /* seconds */

unsigned ft_min: 6; /* minutes */

unsigned ft_hour: 5; /* hours */

unsigned ft_day: 5; /* days */

unsigned ft_month: 4; /* month */

unsigned ft_year: 7; /* year from 1980 */

};

The getftime() function returns 0 if successful. If an error occurs, -1 is returned and
errno is set to either EINVFNC (invalid function number), EBADF (bad file number),
or EACCES (access denied).

Example
This program prints the year the file TEST.TST was created:

#include <stdio.h>

#include <io.h>

#include <dos.h>

#include <fcntl.h>

#include <stdlib.h>

int main(void)

{

struct ftime p;

int fd;

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 427
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

if((fd=open("TEST.TST", O_RDONLY))==-1) {

printf("Cannot open file.\n");

exit(1);

}

getftime(fd, &p);

printf("%d", p.ft_year + 1980);

return 0;

}

Related Functions

open(), _dos_open()

struct tm *gmtime(const time_t *time)

Description
The prototype for gmtime() is in <time.h>.

The gmtime() function returns a pointer to the broken-down form of time in the
form of a tm structure. The time is represented in Greenwich mean time. The time value
is generally obtained through a call to time().

The structure used by gmtime() to hold the broken-down time is statically allocated
and is overwritten each time the function is called. If you wish to save the contents of
the structure, it is necessary to copy it elsewhere.

Example
This program prints both the local time and the Greenwich mean time of the system:

#include <stdio.h>

#include <time.h>

#include <stddef.h>

/* print local and GM time */

int main(void)

{

struct tm *local, *gm;

time_t t;

t = time(NULL);

local = localtime(&t);

printf("Local time and date: %s", asctime(local));

gm = gmtime(&t);

printf("Greenwich mean time and date: %s", asctime(gm));

return 0;

}

Related Functions

localtime(), time(), asctime()

int kbhit(void)

Description
The prototype for kbhit() is in <conio.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The kbhit() function returns true if a key has been pressed on the keyboard.
It returns 0 otherwise. In no situation is the key removed from the input buffer.

Example
This fragment loops until a key is pressed:

while(!kbhit()); /* wait for keypress */

Related Functions

getch(), getche()

struct tm *localtime(const time_t *time)

Description
The prototype for localtime() is in <time.h>

The localtime() function returns a pointer to the broken-down form of time in the
form of a tm structure. The time is represented in local time. The time value is generally
obtained through a call to time().

The structure used by localtime() to hold the broken-down time is statically allocated
and is overwritten each time the function is called. To save the contents of the structure,
it is necessary to copy it elsewhere.

Example
This program prints both the local time and the Greenwich mean time of the system:

428 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 429
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

include <stdio.h>

#include <time.h>

#include <stddef.h>

/* Print local and Greenwich mean time. */

int main(void)

{

struct tm *local, *gm;

time_t t;

t = time(NULL);

local = localtime(&t);

printf("Local time and date: %s", asctime(local));

gm = gmtime(&t);

printf("Greenwich mean time and date: %s", asctime(gm));

return 0;

}

Related Functions

gmtime(), time(), asctime()

time_t mktime(struct tm *p)

Description
The prototype for mktime() is in <time.h>.

The mktime() function converts the time pointed to by p into calendar time.
The mktime() returns the time as a value of type time_t. If no time information is

available, then –1 is returned.

Example
This program displays the day of the week for the given year, month, and day:

#include <stdio.h>

#include <time.h>

int main(void)

{

struct tm t;

t.tm_year = 90; /* year 1990 */

t.tm_mon = 1; /* month - 1 */

t.tm_mday = 7;

mktime(&t);

printf("The day of the week is %d", t.tm_wday);

return 0;

}

Related Functions

localtime(), time(), asctime()

void setdate(struct date *d)
void settime(struct time *t)

Description
The prototypes for setdate() and settime() are in <dos.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The setdate() function sets the DOS system date as specified in the structure pointed
to by d. The settime() function sets the DOS system time as specified in the structure
pointed to by t.

Example
The following code fragment sets the system time to 10:10:10.0.

struct time t;

t.ti_hour = 10;

t.ti_min = 10;

t.ti_sec = 10;

t.ti_hund = 0;

settime(&t);

Related Functions

gettime(), getdate()

430 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

int setftime(int handle, struct ftime *t)

Description
The prototype for setftime() is found in <io.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The setftime() function is used to set the date and time associated with a disk file.
It changes the date and time of the file linked to handle using the information found in
the structure pointed to by t. The ftime structure is shown here:

struct ftime {

unsigned ft_tsec: 5; /* seconds */

unsigned ft_min: 6; /* minutes */

unsigned ft_hour: 5; /* hours */

unsigned ft_day: 5; /* days */

unsigned ft_month: 4; /* month */

unsigned ft_year: 7; /* year from 1980 */

}

Since a file’s date and time are generally used to indicate the time of the file’s last
modification, you should use setftime() carefully.

If setftime() is successful, 0 is returned. If an error occurs, –1 is returned and errno
is set to one of the following:

EINVFNC Invalid function number

EACCES Access denied

EBADF Bad file handle

Example
This line of code sets the file to the date and time specified in the ftime structure:

setftime(fd, &t);

Related Function

getftime()

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 431
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

432 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void sleep(unsigned time)

Description
The prototype for sleep() is in <dos.h>. This function is not defined by the ANSI/ISO
C/C++ standard. This function is obsolete and not recommended for future code.

The sleep() function suspends program execution for time number of seconds.

Example
This program waits 10 seconds between messages:

#include <stdio.h>

#include <dos.h>

int main(void)

{

printf("hello");

sleep(10);

printf(" there");

return 0;

}

Related Function

time()

int stime(time_t *t)

Description
The prototype for stime() is in <time.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The stime() function sets the current system time to the value pointed to by t. This
value must specify the time as the number of seconds since January 1, 1970, Greenwich
mean time.

The stime() function always returns 0.

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 433
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

settime(), gettime(), time()

char *_strdate(char *buf)
char *_strtime(char *buf)

Description
The prototypes for _strdate() and _strtime() are in <time.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The _strdate() function converts the system date into a string and copies it into the
character array pointed to by buf. The date will have the form MM/DD/YY. The array
pointed to by buf must be at least 9 characters long. _strdate() returns buf.

The _strtime() function converts the system time into a string and copies it into the
array pointed to by buf. The time will have this form: HH:MM:SS. The array pointed to
by buf must be at least 9 characters long. _strtime() returns a pointer to buf.

Example
This program displays the current system time and date:

#include <stdio.h>

#include <time.h>

int main(void)

{

char str[9];

_strtime(str);

printf("Time: %s", str);

_strdate(str);

printf(", Date: %s", str);

return 0;

}

434 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Functions

time(), clock()

size_t strftime(char *str, size_t maxsize,
char const *fmt, const struct tm *time)

Description
The prototype for strftime() is in <time.h>. It stores time and date information, along
with other information, into the string pointed to by str according to the format commands
found in the string pointed to by fmt and using the time specified in time. A maximum
of maxsize characters will be placed into str.

The strftime() function works a little like sprintf() in that it recognizes a set of format
commands that begin with the percent sign (%) and it places its formatted output into
a string. The format commands are used to specify the exact way various time and date
information is represented in str. Any other characters found in the format string are
placed into str unchanged. The time and date displayed are in local time. The format
commands are shown in Table 14-1. Notice that many of the commands are case sensitive.

The strftime() function returns the number of characters placed in the string pointed
to by str, or 0 if an error occurs.

Example
Assuming that ltime points to a structure that contains 10:00:00 AM, Jan 18, 2001, then
this fragment will print “It is now 10 AM”.

strftime (str, 100, "It is now %H %p", 1time)

printf(str);

Related Functions

time(), localtime(), gmtime()

time_t time(time_t *time)

Description
The prototype for time() is in <time.h>.

The time() function returns the current calendar time of the system.

The time() function can be called either with a null pointer or with a pointer to
a variable of type time_t. If the latter is used, then the argument is also assigned the
calendar time.

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 435
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Command Replaced by

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Standard date and time string

%d Day-of-month as decimal (1–31)

%H Hour, range (0–23)

%I Hour, range (1–12)

%j Day-of-year as decimal (1–366)

%m Month as decimal (1–12)

%M Minute as decimal (0–59)

%p Locale’s equivalent of AM or PM

%S Second as decimal (0–60)

%U Week-of-year, Sunday being first day (0–53)

%w Weekday as decimal (0–6, Sunday being 0)

%W Week-of-year, Monday being first day (0–53)

%x Standard date string

%X Standard time string

%y Year in decimal without century (00–99)

%Y Year including century as decimal

%Z Time zone name

%% The percent sign

Table 14-1. The ANSI/ISO Defined strftime() Format Commands

Example
This program displays the local time defined by the system:

#include <stdio.h>

#include <time.h>

int main(void)

{

struct tm *ptr;

time_t lt;

lt = time(NULL);

ptr = localtime(<);

printf(asctime(ptr));

return 0;

}

Related Functions

localtime(), gmtime(), strftime(), ctime()

void tzset(void)

Description
The prototype for tzset() is in <time.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The tzset() function sets C++ Builder’s built-in variables _daylight (daylight saving
time indicator), _timezone (time zone number), and _tzname (time zone name) using
the environmental variable TZ. Since the ANSI/ISO C/C++ standard time functions
provide complete access and control over the system time and date, there is no reason
to use tzset(). The tzset() function is included for UNIX compatibility.

void unixtodos(long utime, struct date *d,
struct time *t)

Description
The prototype for unixtodos() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

436 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The unixtodos() function converts the UNIX-like time format into a DOS format. The
UNIX and ANSI standard time formats are the same. The utime argument holds the UNIX
time format. The structures pointed to by d and t are loaded with the corresponding DOS
date and time.

Example
This converts the time contained in timeandday into its corresponding DOS format:

struct time t;

struct date d;

unixtodos(timeandday, &d, &t)

Related Function

dostounix()

C h a p t e r 1 4 : T i m e , D a t e , a n d S y s t e m - R e l a t e d F u n c t i o n s 437
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

This page intentionally left blank.

Chapter 15
Dynamic Allocation

439

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

440 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

There are two primary ways in which your program can store information in the
main memory of the computer. The first uses global and local variables—including
arrays, structures, and classes. In the case of global and static local variables, the

storage is fixed throughout the run time of your program. For local variables, storage
is allocated on the stack. Although these variables are implemented efficiently in C++
Builder, they require the programmer to know in advance the amount of storage needed
for every situation.

The second way information can be stored is through the use of C++ Builder’s
dynamic allocation system. In this method, storage for information is allocated
from the free memory area as it is needed and returned to free memory when
it has served its purpose. The free memory region lies between your program’s
permanent storage area and the stack. This region, called the heap, is used to satisfy
a dynamic allocation request.

One advantage of dynamically allocated memory is that the same memory can
be used for several different things in the course of a program’s execution. Because
memory can be allocated for one purpose and freed when that use has ended, it is
possible for another part of the program to use the same memory for something else
at a different time. Another advantage of dynamically allocated storage is that it
enables the creation of linked lists, binary trees, and other dynamic data structures.

At the core of C’s dynamic allocation system are the functions malloc() and free(),
which are part of the standard library. Each time a malloc() memory request is made, a
portion of the remaining free memory is allocated. Each time a free() memory release
call is made, memory is returned to the system.

C++ also defines two dynamic allocation operators called new and delete. These are
discussed in Part Three of this book. For C++ code, you will normally use the allocation
operators and not the C-based functions described in this chapter. However, C++ does
fully support the C dynamic allocation functions.

Standard C/C++ defines only four functions for the dynamic allocation system:
calloc(), malloc(), free(), and realloc(). The header used by the dynamic allocation
functions is <stdlib.h>. However, C++ Builder lets you use either <stdlib.h> or
<alloc.h>. This guide uses <stdlib.h> because it is portable. C++ Builder also includes
several nonstandard dynamic allocation fucntions. These require the headers <alloc.h>,
or <malloc.h>. You should pay special attention to which header is used with
each function.

void *alloca(size_t size)

Description
The prototype for alloca() is in <malloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 5 : D y n a m i c A l l o c a t i o n 441
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The alloca() function allocates size bytes of memory from the system stack (not the
heap) and returns a character pointer to it. A null pointer is returned if the allocation
request cannot be honored.

Memory allocated using alloca() is automatically released when the function that
called alloca() returns. This means that you should never use a pointer generated by
alloca() as an argument to free().

For technical reasons, to ensure that the stack is not corrupted, any function that
executes a call to alloca() must contain at least one local variable that is assigned
a value.

Example
The following program allocates 80 bytes from the stack using alloca().

#include <malloc.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char *str;

if(!(str = (char *) alloca(80))) {

printf("Allocation error.");

exit(1);

}

/* ... */

return 0;

}

Related Function

malloc()

void *calloc(size_t num, size_t size)

Description
The prototype for calloc() is in <stdlib.h>.

The calloc() function returns a pointer to the allocated memory. The amount of
memory allocated is equal to num*size where size is in bytes. That is, calloc() allocates
sufficient memory for an array of num objects of size bytes.

The calloc() function returns a pointer to the first byte of the allocated region.
If there is not enough memory to satisfy the request, a null pointer is returned. It is

442 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

always important to verify that the return value is not a null pointer before attempting
to use the pointer.

Example
This function returns a pointer to a dynamically allocated array of 100 floats:

#include <stdlib.h>

#include <stdio.h>

float *get_mem(void)

{

float *p;

p = (float *) calloc(100, sizeof(float));

if(!p) {

printf("Allocation failure.");

exit(1);

}

return p;

}

Related Functions

malloc(), realloc(), free()

void free(void *ptr)

Description
The prototype for free() is in <stdlib.h>.

The free() function returns the memory pointed to by ptr back to the heap. This
makes the memory available for future allocation.

It is imperative that free() be called only with a pointer that was previously obtained
using one of these dynamic allocation functions: malloc(), realloc(), or calloc(). Using
an invalid pointer in the call most likely will destroy the memory-management
mechanism and cawuse a system crash.

Example
This program first allocates room for strings entered by the user and then frees them:

C h a p t e r 1 5 : D y n a m i c A l l o c a t i o n 443
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

char *str[100];

int i;

for(i=0; i<100; i++) {

if((str[i]=(char *)malloc(128))==NULL) {

printf("Allocation error.");

exit(0);

}

gets(str[i]);

}

/* now free the memory */

for(i=0; i<100; i++) free(str[i]);

return 0;

}

Related Functions
malloc(), realloc(), calloc()

int heapcheck(void)
Description
The prototype for heapcheck() is in <alloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard, and is specific to C++ Builder.

The heapcheck() function examines the heap for errors and returns one of
these values:

Value Meaning

_HEAPOK No errors

_HEAPEMPTY No heap present

_HEAPCORRUPT Error found in the heap

444 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
This fragment illustrates how to check the heap for errors:

if(heapcheck() == _HEAPOK)

printf("Heap is correct.");

else

printf("Error in heap.");

Related Functions
heapwalk(), heapchecknode()

int heapcheckfree(unsigned fill)
Description
The prototype for heapcheckfree() is in <alloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard, and is specific to C++ Builder.

The heapcheckfree() function verifies that the free area is filled with the specified
value fill and returns one of these values:

Value Meaning

_HEAPOK No errors

_HEAPEMPTY No heap present

_HEAPCORRUPT Error found in the heap

_BADVALUE A value other than fill was found

Example
The following code illustrates how to check the heap for the specified value after filling
the heap with that value.

int status;

heapfillfree(1);

status = heapcheckfree(1)

if(status == _HEAPOK)

printf("Heap is filled correctly.\n");

else

if(status == _BADVALUE)

printf("Heap not filled with correct value.\n");

C h a p t e r 1 5 : D y n a m i c A l l o c a t i o n 445
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions
heapfillfree(), heapchecknode()

int heapchecknode(void *ptr)
Description
The prototype for heapchecknode() is in <alloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard, and is specific to C++ Builder.

The heapchecknode() function checks the status of a single node in the heap pointed
to by ptr and returns one of these values:

Value Meaning

_BADNODE The specified node could not be located

_FREEENTRY The specified node is free memory

_HEAPCORRUPT Error found in the heap

_HEAPEMPTY No heap present

_USEDENTRY The specified node is being used

If either function is called with a pointer to a node that has been freed, _BADNODE
could be returned because adjacent free memory is sometimes merged.

Example
The following code illustrates how to check a node on the heap.

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

int main(void)

{

char *ptr;

int status;

if((ptr = (char *) malloc(10)) == NULL)

exit(1);

status = heapchecknode(ptr);

if(status == _USEDENTRY)

printf("Node is being used.\n");

446 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

else

printf("Error in heap.\n");

free(ptr);

return 0;

}

Related Functions

heapcheck(), heapcheckfree()

int _heapchk(void)

Description
The prototype for _heapchk() is in <malloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _heapchk() function checks the heap. It returns one of these values:

Value Meaning

_HEAPOK No errors

_HEAPEMPTY No heap present

_HEAPBADNODE Error found in the heap

Related function

heapcheck()

int heapfillfree(unsigned fill)

Description
The prototype for heapfillfree() is in <alloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard and is specific to C++ Builder.

C h a p t e r 1 5 : D y n a m i c A l l o c a t i o n 447
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The heapfillfree() function fills the free blocks of memory in the heap with fill.
You may want to use this function to give allocated memory a known initial value.

This function returns one of these values:

Value Meaning

_HEAPOK No errors

_HEAPEMPTY No heap present

_HEAPCORRUPT Error found in the heap

Example
This code fragment illustrates how to fill the heap with a desired value:

int status;

status = heapfillfree(0);

if(status == _HEAPOK)

printf("Heap is correct.");

else

printf("Error in heap.");

Related Functions

heapcheckfree(), _heapset()

int _heapmin(void)

Description
The prototype for _heapmin() is in <malloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _heapmin() function releases unallocated portions of the heap so that it can be
used by other processes. That is, it “minimizes” the heap. It returns 0 if successful and
−1 on failure.

Related Function

free()

448 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int _heapset(unsigned fill)

Description
The prototype for _heapset() is in <malloc.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _heapset() function fills unallocated blocks of memory in the heap with fill.
(Only the low-order byte of fill is used.) The function returns one of these values.

Value Meaning

_HEAPOK No errors

_HEAPEMPTY No heap present

_HEAPBADNODE Error found in the heap

Related Functions

heapcheckfree(), heapfillfree()

int heapwalk(struct heapinfo *hinfo)
int _rtl_heapwalk(_HEAPINFO *hinfo)

Description
The prototype for heapwalk() is in <alloc.h>. The prototype for _rtl_heapwalk() is in
<malloc.h>. These functions are not defined by the ANSI/ISO C/C++ standard and
are specific to C++ Builder.

The heapwalk() function fills the structure pointed to by hinfo. Each call to
heapwalk() steps to the next node in the heap and obtains information for that node.
When there are no more nodes on the heap, _HEAPEND is returned. If there is no heap,
_HEAPEMPTY is returned. Each time a valid block is examined, _HEAPOK is returned.

The heapinfo structure contains four fields: two pointers to blocks, the size of the
block, and a flag that is set if the block is being used. This structure is shown here:

struct heapinfo {

void *ptr; /* pointer to block */

void *ptr2;/* pointer to block */

unsigned int size; /* size of block, in bytes */

int in_use; /* set if block is in use */

};

Before the first call is made, you must set ptr field to NULL.

C h a p t e r 1 5 : D y n a m i c A l l o c a t i o n 449
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Because of the way C++ Builder organizes the dynamic allocation system, the size
of an allocated block of memory is slightly larger than the amount requested when it
is allocated.

This function assumes the heap is not corrupted. Always call heapcheck() before
beginning a walk through the heap.

The _rtl_heapwalk() function is similar to heapwalk() except that it uses the
following structure.

typedef struct _heapinfo {

int *_pentry; /* pointer to block */

int *__pentry;/* pointer to block */

size_t _size; /* size of block */

int _useflag; /* contains _USEDENTRY if block is in use --

contains _FREEENTRY if not in use */

} _HEAPINFO;

In addition to the values returned by heapwalk(), _rtl_heapwal() can also return
_HEAPBADNODE (error found in heap) or _HEAPBADPTR (_pentry is invalid).

Example
This program walks through the heap, printing the size of each allocated block:

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

int main(void)

{

struct heapinfo hinfo;

char *p1, *p2;

if((p1 = (char *) malloc(80)) == NULL)

exit(1);

if((p2 = (char *) malloc(20)) == NULL)

exit(1);

if(heapcheck() < 0) { /* always check heap before walk */

printf("Heap corrupt.");

exit(1);

}

hinfo.ptr = NULL; /* set ptr to null before first call */

450 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

/* examine first block */

if(heapwalk(&hinfo) == _HEAPOK)

printf("Size of p1's block is %d\n", hinfo.size);

/* examine second block */

if(heapwalk(&hinfo) == _HEAPOK)

printf("Size of p2's block is %d\n", hinfo.size);

free(p1);

free(p2);

return 0;

}

Related Function
heapcheck()

void *malloc(size_t size)

Description
The prototype for malloc() is in <stdlib.h>.

The malloc() function returns a pointer to the first byte of a region of memory size
bytes long that has been allocated from the heap. If there is insufficient memory in the
heap to satisfy the request, malloc() returns a null pointer. It is always important to
verify that the return value is not a null pointer before attempting to use the pointer.
Attempting to use a null pointer usually causes a system crash.

Example
This function allocates sufficient memory to hold structures of type addr:

#include <stdlib.h>

struct addr {

char name[40];

char street[40];

char city[40];

char state[3];

char zip[10];

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 5 : D y n a m i c A l l o c a t i o n 451
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

};

/* ... */

struct addr *get_struct(void)

{

struct addr *p;

if(!(p=(struct addr *)malloc(sizeof(addr)))) {

printf("Allocation error.");

exit(0);

}

return p;

}

Related Functions

free(), realloc(), calloc()

void *realloc(void *ptr, size_t newsize)

Description
The prototype for realloc() is in <stdlib.h>.

The realloc() function changes the size of the allocated memory pointed to by ptr
to that specified by newsize. The value of newsize specified in bytes can be greater or
less than the original. A pointer to the memory block is returned because it may be
necessary for realloc() to move the block to increase its size. If this occurs, the contents
of the old block are copied into the new block and no information is lost.

If there is not enough free memory in the heap to allocate newsize bytes, a null
pointer is returned.

Example
The following program allocates 17 characters of memory, copies the string “this is 16
chars” into them, and then uses realloc() to increase the size to 18 in order to place a
period at the end.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

452 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

char *p;

p = (char *) malloc(17);

if(!p) {

printf("Allocation error.");

exit(1);

}

strcpy(p, "This is 16 chars");

p = (char *) realloc(p,18);

if(!p) {

printf("Allocation error.");

exit(1);

}

strcat(p, ".");

printf(p);

free(p);

return 0;

}

Related Functions
free(), malloc(), calloc()

Chapter 16
Directory Functions

453

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

454 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C++ Builder has a number of directory-manipulation functions in its library.
Although none of these functions is defined by the ANSI/ISO C/C++ standard,
they are included to allow easy access to directories.

int chdir(const char *path)

Description
The prototype for chdir() is in <dir.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The chdir() function makes the directory whose path name is pointed to by path the
current directory. The path name may include a drive specifier. The directory must exist.

If successful, chdir() returns 0.
If unsuccessful, it returns −1 and sets errno to ENOENT (invalid path name).

Example
This fragment makes the WP\FORMLET directory on drive C the current working
directory:

chdir("C:\\WP\\FORMLET");

Related Functions

mkdir(), rmdir()

int _chdrive(int drivenum)

Description
The prototype for _chdrive() is in <direct.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _chdrive() function changes the currently logged-in drive to the one specified
by drivenum, with A being 1, B being 2, and so on.

The _chrdrive() function returns 0 if successful. Otherwise, −1 is returned.

Example
This changes the currently logged in drive to C.

_chdrive(3); /* switch to drive C */

Related Functions

setdrive(), getdrive()

void closedir(DIR *ptr)
DIR *opendir(char *dirname)
struct dirent *readdir(DIR *ptr)
void rewinddir(DIR *ptr)

Description
The prototypes for closedir(), opendir(), readdir(), and rewinddir() are found in
<dirent.h>. These functions are not defined by the ANSI/ISO C/C++ standard. These
functions are included for UNIX compatibility.

The closedir() function closes a directory that was previously opened using opendir().
The opendir() function opens a directory stream and returns a pointer to a structure of
type DIR, which maintains information about the directory. You should not modify the
contents of this structure. The closedir() function closes the directory stream pointed to
by ptr.

The readdir() function returns the name of the next file in the directory. That is,
readdir() reads the contents of the directory a file at a time. The parameter ptr must
point to a directory stream opened by opendir(). The dirent structure is shown here.

struct dirent

{

char d_name[260];

};

Therefore, d_name contains the name of the next file in the directory after a call to
readdir() has returned.

The rewinddir() function causes the directory pointed to by ptr (and previously
obtained using opendir()) to return to the start (that is, to the first entry in the specified
directory). This allows the directory to be reread.

The closedir() function returns 0 if successful; it returns−1 otherwise. On failure, it
also sets errno to EBADF (invalid directory). The opendir() function returns null if the
directory cannot be opened and errno is set to either ENOENT (directory not found) or
ENOMEM (insufficient memory). The readdir() function returns null when the end of
the directory is reached.

Because these functions are primarily included for compatibility with UNIX (and
better ways exist under Windows to access directories), no examples are given.

Related Functions

findfirst(), findnext()

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 455
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

unsigned _dos_findfirst(const char *fname, int attr,
struct find_t *ptr)

unsigned _dos_findnext(struct find_t *ptr)

Description
The prototypes for _dos_findfirst() and _dos_findnext() are in <dos.h>. These functions
are not defined by the ANSI/ISO C/C++ standard. These functions are obsolete and not
recommended for future code.

The _dos_findfirst() function searches for the first filename that matches that
pointed to by fname. The filename may include both a drive specifier and a path name.
Also, the filename may include the wildcard characters * and ?. If a match is found,
the structure pointed to by ptr is filled with information about the file.

The find_t structure is defined like this:

struct find_t {

long reserved;

long size; /* size in bytes */

unsigned long attrib; /* attribute of file */

unsigned wr_time; /* last time file was written to */

unsigned wr_date; /* last date file was written to */

char name[MAXPATH]; /* filename */

};

The attrib parameter determines what type of files will be found by _dos_findfirst().
The attrib can be one or more of the following macros (defined in <dos.h>):

Macro Meaning

_A_NORMAL Normal file

_A_RDONLY Read-only file

_A_HIDDEN Hidden file

_A_SYSTEM System file

_A_VOLID Volume label

_A_SUBDIR Subdirectory

_A_ARCH Archive bit set

The _dos_findnext() function continues a search started by _dos_findfirst(). The
buffer pointed to by ptr must be the one used in the call to _dos_findfirst().

456 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 457
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Both the _dos_findfirst() and _dos_findnext() functions return 0 on success and
non-0 on failure or when no more matches are found. On failure, errno will be set to
ENOENT (file not found).

Example
This program displays all normal files and their sizes in the current directory with a
.C extension.

#include <dos.h>

#include <stdio.h>

int main(void)

{

struct find_t f;

register int done;

done = _dos_findfirst("*.c", _A_NORMAL, &f);

while(!done) {

printf("%s %ld\n", f.name, f.size);

done = _dos_findnext(&f);

}

return 0;

}

Related Functions

findfirst(), findnext()

int findfirst(const char *fname, struct ffblk *ptr, int attrib)
int findnext(struct ffblk *ptr)

Description
The prototypes for findfirst() and findnext() are in <dir.h>. However, you also need
to include the <dos.h> header, which contains macros that can be used as values for
attrib. These functions are not defined by the ANSI/ISO C/C++ standard.

The findfirst() function searches for the first filename that matches that pointed
to by fname. The filename may include both a drive specifier and a path name. The
filename may also include the wildcard characters * and ?. If a match is found, the
structure pointed to by ptr is filled with information about the file.

458 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The ffblk structure is defined like this:

struct ffblk {

long ff_reserved; /* reserved */

long ff_fsize; /* size in bytes */

unsigned long ff_attrib; /* attributes of file */

unsigned ff_ftime; /* creation time */

unsigned ff_fdate; /* creation date */

char ff_name[MAXPATH]; /* file name */

};

The attrib parameter determines the type of files to be found by findfirst(). If attrib
is 0, all types of files that match the desired filename are acceptable. To cause a more
selective search, attrib can be one the following macros:

Macro Meaning

FA_RDONLY Read-only file

FA_HIDDEN Hidden file

FA_SYSTEM System file

FA_LABEL Volume label

FA_DIREC Subdirectory

FA_ARCH Archive bit set

The findnext() function continues a search started by findfirst().
Both the findfirst() and findnext() functions return 0 on success and −1 on failure.

On failure, errno is set to ENOENT (filename not found). _doserrno is set to either
ENMFILE (no more files in directory) or ENOENT.

Example
This program displays all files with a .CPP extension (and their sizes) in the current
working directory:

#include <stdio.h>

#include <dos.h>

#include <dir.h>

int main(void)

{

struct ffblk f;

register int done;

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 459
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

done = findfirst("*.cpp", &f, 0);

while(!done) {

printf("%s %ld\n", f.ff_name, f.ff_fsize);

done = findnext(&f);

}

return 0;

}

Related Function

fnmerge()

void fnmerge(char *path, const char *drive, const char
*dir, const char *fname, const char *ext)

int fnsplit(const char *path, char *drive, char *dir,
char *fname, char *ext)

Description
The prototypes for fnmerge() and fnsplit() are in <dir.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The fnmerge() function constructs a filename from the specified individual
components and puts that name into the string pointed to by path. For example, if
drive is C:, dir is \CBuilder5\, fname is TEST, and ext is .C, the filename produced
is C:\CBuilder5\TEST.C.

The fnsplit() decomposes the filename pointed to by path into its component parts.
The array size needed for each parameter is shown here, along with a macro defined in
<dir.h> that can be used in place of the actual number:

Parameter Size Macro Name

path 260 MAXPATH

drive 3 MAXDRIVE

dir 256 MAXDIR

fname 256 MAXFILE

ext 256 MAXEXT

The fnsplit() function puts the colon after the drive specifier in the string pointed
to by drive. It puts the period preceding the extension into the string pointed to by ext.
Leading and trailing backslashes are retained.

The two functions fnmerge() and fnsplit() are complementary—the output from
one can be used as input to the other.

The fnsplit() function returns an integer than has five flags encoded into it. The
flags have these macro names associated with them (defined in <dir.h>):

Macro Name Meaning When Set

EXTENSION Extension present

FILENAME Filename present

DIRECTORY Directory path present

DRIVE Drive specifier present

WILDCARDS One or more wildcard characters present

To determine if a flag is set, AND the flag macro with the return value and test the
result. If the result is 1, the flag is set; otherwise, it is cleared.

Example
This program illustrates how fnmerge() encodes a filename. Its output is “C:TEST.C”:

#include <stdio.h>

#include <dir.h>

int main(void)

{

char path[MAXPATH];

fnmerge(path, "C:", "", "TEST", ".C");

printf(path);

return 0;

}

Related Functions

findfirst(), findnext()

460 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

char *_fullpath(char *fpath, const char *rpath, int len)

Description
The prototype for _fullpath() is in <stdlib.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _fullpath() function constructs a full path name given a relative path name.
The relative path name is pointed to by rpath. The full path name is put into the array
pointed to by fpath. The size of the array pointed to by fpath is specified by len. If fpath is
null, then an array will be dynamically allocated. (In this case, the array must be freed
manually using free().)

The _fullpath() function returns a pointer to fpath, or null if an error occurs.

Example
This program displays the full path to the \INCLUDE directory.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char fpath[_MAX_PATH];

_fullpath(fpath, "\\INCLUDE", _MAX_PATH);

printf("Full path: %s\n", fpath);

return 0;

}

Related Functions

_makepath(), mkdir(), getcwd()

int getcurdir(int drive, char *dir)

Description
The prototype for getcurdir() is in <dir.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The getcurdir() function copies the name of the current working directory of the
drive specified in drive into the string pointed to by dir. A 0 value for drive specifies the
default drive. For drive A, use 1; for B, use 2; and so on.

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 461
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The string pointed to by dir must be at least MAXDIR bytes in length. MAXDIR is
a macro defined in <dir.h>. The directory name will not contain the drive specifier and
will not include leading backslashes.

The getcurdir() function returns 0 if successful, −1 on failure.

Example
The following program prints the current directory on the default drive:

#include <stdio.h>

#include <dir.h>

int main(void)

{

char dir[MAXDIR];

getcurdir(0, dir);

printf("Current directory is %s", dir);

return 0;

}

Related Function

getcwd()

char *getcwd(char *dir, int len)

Description
The prototype for getcwd() is in <dir.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The getcwd() function copies the full path name (up to len characters) of the current
working directory into the string pointed to by dir. An error occurs if the full path name
is longer than len characters. The getcwd() function returns a pointer to dir.

If getcwd() is called with dir’s value being null, getcwd() automatically allocates a
buffer using malloc() and returns a pointer to this buffer. You can free the memory
allocated by getcwd() using free().

On failure, getcwd() returns null and errno is set to either ENODEV (nonexistent
device), ENOMEM (insufficient memory), or ERANGE (out-of-range).

Example
This program prints the full path name of the current working directory:

462 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

#include <stdio.h>

#include <dir.h>

int main(void)

{

char dir[MAXDIR];

getcwd(dir, MAXDIR);

printf("Current directory is %s", dir);

return 0;

}

Related Function

getcurdir()

char *_getdcwd(int drive, char *path, int len)

Description
The prototype for _getdcwd() is in <direct.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _getdcwd() function obtains the path name of the current directory of the drive
specified by drive, with A being 1, B being 2, and so on. (The default drive is specified
as 0.) It copies the path name into the array pointed to by path. The size of path is
specified by len. If path is null, then an array will be dynamically allocated. (In this
case, the array must be freed manually using free().)

The _getdcwd() function returns path. On failure, a null pointer is returned and
errno contains either ENOMEM (insufficient memory) or ERANGE (path name exceeds
array size).

Example
This program displays the current directory of drive D.

#include <stdio.h>

#include <direct.h>

int main(void)

{

char path[MAXPATH];

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 463
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

_getdcwd(4, path, MAXPATH);

printf("Current directory of drive D is %s\n", path);

return 0;

}

Related Functions

mkdir(), chdir(), _fullpath()

int getdisk(void)

Description
The prototype for getdisk() is in <dir.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The getdisk() function returns the number of the current drive. Drive A corresponds
to 0, drive B is 1, and so on.

Example
This program displays the name of the current drive:

#include <stdio.h>

#include <dir.h>

int main(void)

{

printf("Current drive is %c", getdisk()+'A');

return 0;

}

Related Functions

setdisk(), getcwd()

int _getdrive(void)

Description
The prototype for _getdrive() is in <dos.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

464 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 465
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The _getdrive() function returns the number of the current drive, with A being 1, B
being 2, and so on.

Example
This statement displays the number of the current drive.

printf("Current drive is %d.", _getdrive());

Related Functions

getcwd()

void _makepath(char *pname, const char *drive,
const char *directory, const char *fname,
cont char *extension)

Description
The prototype for _makepath() is in <stdlib.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _makepath() function constructs a full path name from the elements specified
in its parameters and places the result in the array pointed to by pname. The drive is
specified in the string pointed to by drive. The directory (along with any subdirectories)
is specified in the string pointed to by directory. The filename is pointed to by fname,
and the extension is pointed to by extension. Any of these strings may be empty.

Example
This program constructs a full path name from its elements. Next, it displays the path
and then dissects it into its components using _splitpath(), which is the complement to
_makepath().

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char fpath[_MAX_PATH];

char fname[_MAX_FNAME];

char dir[_MAX_DIR];

char drive[_MAX_DRIVE];

char ext[_MAX_EXT];

_makepath(fpath, "B:", "MYDIR", "MYFILE", "DAT");

printf("%s\n", fpath);

_splitpath(fpath, drive, dir, fname, ext);

printf("%s %s %s %s\n", drive, dir, fname, ext);

return 0;

}

Related Functions

_splitpath(), fnmerge(), fnsplit()

int mkdir(const char *path)

Description
The prototype for mkdir() is in <dir.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The mkdir() function creates a directory using the path name pointed to by path.
The mkdir() function returns 0 if successful. If unsuccessful, it returns −1 and sets

errno to either EACCES (access denied) or ENOENT (invalid path name).

Example
This program creates a directory called FORMLET:

#include <dir.h>

int main(void)

{

mkdir("FORMLET");

return 0;

}

Related Function

rmdir()

466 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

char *mktemp(char *fname)

Description
The prototype for mktemp() is in <dir.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The mktemp() function creates a unique filename and copies it into the string pointed
to by fname. When you call mktemp(), the string pointed to by fname must contain six “X”s
followed by a null terminator. The mktemp() function transforms that string into a unique
filename. It does not create the file, however.

If successful, mktemp() returns a pointer to fname; otherwise, it returns a null.

Example
This program displays a unique filename:

#include <stdio.h>

#include <dir.h>

char fname[7] = "XXXXXX";

int main(void)

{

mktemp(fname);

printf(fname);

return 0;

}

Related Functions

findfirst(), findnext()

int rmdir(const char *path)

Description
The prototype for rmdir() is in <dir.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The rmdir() function removes the directory whose path name is pointed to by path.
To be removed, a directory must be empty, must not be the current directory, and must
not be the root.

If rmdir() is successful, 0 is returned. Otherwise,−1 is returned and errno is set to
either EACCES (access denied) or ENOENT (invalid path name).

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 467
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This removes the directory called FORMLET:

#include <stdio.h>

#include <dir.h>

int main(void)

{

if(!rmdir("FORMLET")) printf("FORMLET removed.\n");

return 0;

}

Related Function

mkdir()

char *searchpath(const char *fname)

Description
The prototype for searchpath() is in <dir.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The searchpath() function tries to find the file whose name is pointed to by fname
using the PATH environmental variable. If it finds the file, it returns a pointer to the
entire path name. This string is statically allocated and is overwritten by each call to
searchpath(). If the file cannot be found, a null is returned.

Example
This program displays the path name for the file BCC32.EXE:

#include <stdio.h>

#include <dir.h>

int main(void)

{

printf(searchpath("BCC32.EXE"));

return 0;

}

468 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Function

mktemp()

int setdisk(int drive)

Description
The prototype for setdisk() is in <dir.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The setdisk() function sets the current drive to that specified by drive. Drive A
corresponds to 0, drive B to 1, and so on. It returns the total number of drives in
the system.

Example
This program switches to drive A and reports the total number of drives in the system:

#include <stdio.h>

#include <dir.h>

int main(void)

{

printf("%d drives", setdisk(0));

return 0;

}

Related Function

getdisk()

void _splitpath(const char *fpath, char *drive, char
*directory char *fname, char *extension)

Description
The prototype for _splitpath() is in <stdlib.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _splitpath() function dissects the full path name specified in the string pointed
to by fpath. The drive letter is put in the string pointed to by drive. The directory (and
any subdirectories) is put in the string pointed to by directory. The filename is put in the

C h a p t e r 1 6 : D i r e c t o r y F u n c t i o n s 469
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

string pointed to by fname and the extension is put in the string pointed to by extension.
The minimum size of the arrays pointed to by these parameters is shown here.

Parameter Size Macro Name

fpath 260 _MAX_PATH

drive 3 _MAX_DRIVE

directory 256 _MAX_DIR

fname 256 _MAX_FNAME

extension 256 _MAX_EXT

Example
This program displays the elements of this full path: C:\MYDIR\MYFILE.DAT.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char fname[_MAX_FNAME];

char dir[_MAX_DIR];

char drive[_MAX_DRIVE];

char ext[_MAX_EXT];

_splitpath("C:\\MYDIR\\MYFILE.DAT", drive, dir, fname, ext);

printf("%s %s %s %s\n", drive, dir, fname, ext);

return 0;

}

Related Functions

_makepath(), fnsplit(), fnmerge()

470 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Chapter 17
Process Control
Functions

471

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

472 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This chapter covers a number of functions that are used to control the way a
program executes, terminates, or invokes the execution of another program.
Aside from abort(), atexit(), and exit(), none of the functions described here is

defined by the ANSI/ISO C/C++ standard. However, all allow your program greater
flexibility in its execution.

The process control functions have their prototypes in <process.h>. However, those
functions defined by the ANSI/ISO C/C++ standard also have their prototypes in the
<stdlib.h> header file.

void abort(void)

Description
The prototype for abort() is in <process.h> and <stdlib.h>.

The abort() function causes immediate termination of a program. No files are
flushed. It returns a value of 3 to the calling process (usually the operating system).

The primary use of abort() is to prevent a runaway program from closing
active files.

Example
This program terminates if the user enters an “A”:

#include <process.h>

#include <conio.h>

int main(void)

{

for(;;)

if(getch()=='A') abort();

return 0;

}

Related Functions

exit(), atexit()

int atexit(void (*func)(void))

Description
The prototype for atexit() is in <stdlib.h>.

The atexit() function establishes the function pointed to by func as the function
to be called upon normal program termination. That is, the specified function is
called at the end of a program run. The act of establishing the function is referred
to as registration.

The atexit() function returns 0 if the function is registered as the termination
function, and non-0 otherwise.

Up to 32 termination functions can be established. They are called in the reverse
order of their establishment: first in, last out.

Example
This program prints Hello there! on the screen:

#include <stdio.h>

#include <stdlib.h>

/* Example using atexit(). */

int main(void)

{

void done();

if(atexit(done)) printf("Error in atexit().");

return 0;

}

void done()

{

printf("Hello there!");

}

Related Functions

exit(), abort()

C h a p t e r 1 7 : P r o c e s s C o n t r o l F u n c t i o n s 473
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

474 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

unsigned long _beginthread(void (*func)(void *),
unsigned stksize, void *arglist)

unsigned long _beginthreadex(void *secattr,
unsigned stksize, unsigned (*start)(void *),
void *arglist, unsigned createflags,
unsigned *threadID)

unsigned long _beginthreadNT(void (*func)(void *),
unsigned stksize, void *arglist,
void *secattr, unsigned createflags,
unsigned *threadID);

Description
The prototypes for these functions are in <process.h>. These functions are not defined
by the ANSI/ISO C/C++ standard.

The _beginthread group of functions is used for multithreaded programming. A
multithreaded program contains two or more parts that can run concurrently. Each
part of such a program is called a thread, and each defines a separate path of execution.

Each of these three functions do the same thing, create and execute threads. For
each _beginthread function, func is the name of the function that serves as the entry
point to the new thread of execution, stksize specifies the size of the stack for the thread,
which must be a multiple of 4096, and arglist is a pointer to information passed to the
thread and can be NULL. In addition, the _beginthreadex() and _beginthreadNT()
functions take these additional parameters: secattr, createflags, and threadID. The secattr
parameter is a pointer to the SECURITY_ATTRIBUTES structure, which is defined
like this:

typedef struct _SECURITY_ATTRIBUTES

{

DWORD nLength;

LPVOID lpSecurityDescriptor;

BOOL bInheritHandle;

} SECURITY_ATTRIBUTES;

C h a p t e r 1 7 : P r o c e s s C o n t r o l F u n c t i o n s 475
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

If secattr is set to NULL, then default security is used. The createflags parameter
indicates that the thread should be executed immediately. It can also be set to
CREATE_SUSPENDED, which causes the thread to be suspended until resumed.
The threadID parameter points to a variable that receives the thread identifier.

When successful, the beginthread functions return the handle to the thread.
On failure, they return −1 and set errno to one of the following values.

Macro Meaning

EAGAIN There are too many threads opened

EINVAL Bad request

ENOMEM Not enough free memory to create/execute the thread

Example
The follow program starts and executes 10 threads. It needs to be compiled using the
−tWM options in order to execute.

#include <stdio.h>

#include <stddef.h>

#include <process.h>

#include <conio.h>

void ThreadToRun(void *);

int main(void)

{

int i;

unsigned long thread;

for(i = 1; i < 10; i++)

{

thread = _beginthread(ThreadToRun, 4096, (void *)i);

if((long)thread == -1)

{

printf("Error creating thread number %d\n", i);

exit(1);

}

printf("Thread %d created with an ID of %uld.\n", i, thread);

}

printf("Press any key to exit...\n");

getch();

return 0;

}

void ThreadToRun(void *num)

{

printf("Running thread %d with an ID of %ld\n",

(int)num, _threadid);

_endthread();

}

Related Function

_endthread()

void _c_exit(void)
void _cexit(void)

Description
The prototypes for _c_exit() and _cexit() are in <process.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The _c_exit() function performs the same actions as _exit() except that the program
is not terminated.

The _cexit() function performs the same actions as exit() except that the program
is not terminated. However, all files are closed and all buffers are flushed and any
termination functions are executed.

Example
This statement performs program shutdown procedures, except that the program is
not terminated.

_cexit();

Related Functions

exit(), _exit(), atexit()

476 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : P r o c e s s C o n t r o l F u n c t i o n s 477
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

void _endthread(void)
void _endthreadex(unsigned threadvalue)

Description
The prototypes for these functions are in <process.h>. These functions are not defined
by the ANSI/ISO C/C++ standard.

The endthread group of functions is used for terminating a thread created by one
of the _beginthread() functions described earlier.

The _endthreadex() function returns the value in threadvalue to the calling process.

Example
See the _beginthread() function for an example.

Related Functions

_beginthread(), _beginthreadex()

int execl(char *fname, char *arg0, . . ., char *argN, NULL)
int execle(char *fname, char *arg0, . . ., char *argN,

NULL, char *envp[])
int execlp(char *fname, char *arg0, . . ., char *argN, NULL)
int execlpe(char *fname, char *arg0, . . ., char *argN,

NULL, char *envp[])
int execv(char *fname, char *arg[])
int execve(char *fname, char *arg[], char *envp[])
int execvp(char *fname, char *arg[])
int execvpe(char *fname, char *arg[], char *envp[])

Description
The prototypes for these functions are in <process.h>. These functions are not defined
by the ANSI/ISO C/C++ standard.

The exec group of functions is used to execute another program. This other program,
called the child process, is loaded over the one that contains the exec call. The name of
the file that contains the child process is pointed to by fname. Any arguments to the
child process are pointed to either individually by arg0 through argN or by the array
arg[]. An environment string must be pointed to by envp[]. (The arguments are pointed
to by argv in the child process.)

If no extension or period is part of the string pointed to by fname, a search is first
made for a file by that name. If that fails, the .EXE extension is added and the search
is tried again. If that fails, the .COM extension is added and the search is tried again.
When an extension is specified, only an exact match will satisfy the search. Finally, if
a period but no extension is present, a search is made for only the file specified by the
left side of the filename.

The exact way the child process is executed depends on which version of exec you
use. You can think of the exec function as having different suffixes that determine its
operation. A suffix can consist of either one or two characters.

Functions that have a p in the suffix search for the child process in the directories
specified by the PATH command. If a p is not in the suffix, only the current directory
is searched.

An l in the suffix specifies that pointers to the arguments to the child process will
be passed individually. Use this method when passing a fixed number of arguments.
Notice that the last argument must be NULL. (NULL is defined in <stdio.h>.)

A v in the suffix means that pointers to the arguments to the child process will be
passed in an array. This is the way you must pass arguments when you do not know
in advance how many there will be or when the number of arguments may change
during the execution of your program. Typically, the end of the array is signaled by
a null pointer.

An e in the suffix specifies that one or more environmental strings will be passed to
the child process. The envp parameter is an array of string pointers. Each string pointed
to by the array must have the form

environment-variable = value

The last pointer in the array must be NULL. If the first element in the array is NULL,
the child retains the same environment as the parent.

It is important to remember that files open at the time of an exec call are also open
in the child program.

When successful, the exec functions return no value. On failure, they return −1 and
set errno to one of the following values.

Macro Meaning

EACCES Access to child process file denied

EMFILE Too many open files

ENOENT File not found

ENOEXEC Format of exec is invalid

ENOMEM Not enough free memory to load child process

478 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
The first of the following programs invokes the second, which displays its arguments.
Remember, both programs must be in separate files.

/* First file - parent */

#include <stdio.h>

#include <process.h>

#include <stdlib.h>

int main(void)

{

execl("test.exe", "test.exe", "hello", "10", NULL);

return 0;

}

/* Second file - child */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

printf("This program is executed with these command line ");

printf("arguments: ");

printf(argv[1]);

printf(" %d", atoi(argv[2]));

return 0;

}

Related Function
The spawn family of functions.

void exit(int status)
void _exit(int status)

Description
The prototypes for exit() and _exit() are in <process.h> and <stdlib.h>.

C h a p t e r 1 7 : P r o c e s s C o n t r o l F u n c t i o n s 479
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The exit() function causes immediate, normal termination of a program. The
value of status is passed to the calling process. By convention, if the value of status is 0,
normal program termination is assumed. A non-0 value can be used to indicate an
implementation-defined error. You can also use the macros EXIT_SUCCESS and
EXIT_FAILURE as values for status. They indicate normal and abnormal termination,
respectively. Calling exit() flushes and closes all open files and calls any program
termination functions registered using atexit().

The _exit() program does not close any files, flush any buffers, or call any termination
functions. This function is not defined by the ANSI/ISO C/C++ standard.

Example
This function performs menu selection for a mailing-list program. If Q is pressed, the
program is terminated.

char menu(void)

{

char ch;

do {

printf("Enter names (E)");

printf("Delete name (D)");

printf("Print (P)");

printf("Quit (Q)");

} while(!strchr("EDPQ", toupper(ch)));

if(ch=='Q') exit(0);

return ch;

}

Related Functions

atexit(), abort()

int getpid(void)

Description
The prototypes for this function is in <process.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The getpid() function returns the process ID for the calling process.

Example
The following code returns the current process ID.

480 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

#include <stdio.h>

#include <process.h>

#include <conio.h>

int main()

{

printf("This program PID = %d\n", getpid());

return 0;

}

int spawnl(int mode, char *fname, char *arg0, . . .,
char *argN, NULL)

int spawnle(int mode, char *fname, char *arg0, . . .,
char *argN, NULL, char *envp[])

int spawnlp(int mode, char *fname, char *arg0, . . .,
char *argN, NULL)

int spawnlpe(int mode, char *fname, char *arg0, . . .,
char *argN, NULL, char *envp[])

int spawnv(int mode, char *fname, char *arg[])
int spawnve(int mode, char *fname, char *arg[], char *envp[])
int spawnvp(int mode, char *fname, char *arg[])
int spawnvpe(int mode, char *fname, char *arg[], char *envp[])

Description
The prototypes for these functions are in <process.h>. These functions are not defined
by the ANSI/ISO C/C++ standard.

The spawn group of functions is used to execute another program. This other
program, the child process, does not necessarily replace the parent program (unlike
the child process executed by the exec group of functions). The name of the file that
contains the child process is pointed to by fname. The arguments to the child process,
if any, are pointed to either individually by arg0 through argN or by the array arg[]. If
you pass an environment string, it must be pointed to by envp[]. (The arguments will
be pointed to by argv in the child process.) The mode parameter determines how the
child process will be executed. It can have one of these values (defined in <process.h>).

C h a p t e r 1 7 : P r o c e s s C o n t r o l F u n c t i o n s 481
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Macro Execution Mode

P_WAIT Suspends parent process until the child
has finished executing

P_NOWAIT Executes both the parent and the child
concurrently. The ID of the child process
is returned to the parent.

P_NOWAITO Same as P_NOWAIT except that the child
process ID is not returned to the parent.

P_DETACH Same as P_NOWAITO except that the child
executes as a background process.

P_OVERLAY Replaces the parent process in memory

If you use the P_WAIT option, when the child process terminates, the parent
process is resumed at the line after the call to spawn.

If no extension or period is part of the string pointed to by fname, a search is made
for a file by that name. If that fails, then a .EXE extension is tried. If that fails, the .COM
extension is added and the search is tried again. If that fails, then a .BAT extension is
tried. If an extension is specified, only an exact match satisfies the search. If a period
but no extension is present, a search is made for only the file specified by the left side
of the filename.

The exact way the child process is executed depends on which version of spawn
you use. You can think of the spawn function as having different suffixes that determine
its operation. A suffix can consist of either one or two characters.

Those functions that have a p in the suffix search for the child process in the directories
specified by the PATH command. If a p is not in the suffix, only the current directory
is searched.

An l in the suffix specifies that pointers to the arguments to the child process will
be passed individually. Use this method when passing a fixed number of arguments.
Notice that the last argument must be NULL. (NULL is defined in <stdio.h>.)

A v in the suffix means that pointers to the arguments to the child process will be
passed in an array. This is the way you must pass arguments when you do not know
in advance how many there will be or when the number of arguments may change
during the execution of your program. Typically, the end of the array is signaled by
a null pointer.

An e in the suffix specifies that one or more environmental strings will be passed
to the child process. The envp[] parameter is an array of string pointers. Each string
pointed to by the array must have the form:

environment-variable = value

482 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The last pointer in the array must be NULL. If the first element in the array is NULL,
the child retains the same environment as the parent.

It is important to remember that files open at the time of a spawn call are also open
in the child process.

When successful, the spawned functions return 0. On failure, they return −1 and
set errno to one of the following values:

Macro Meaning

EINVAL Bad argument

E2BIG Too many arguments

ENOENT File not found

ENOEXEC Format of spawn is invalid

ENOMEM Not enough free memory to load child process

A spawned process can spawn another process. The level of nested spawns is
limited by the amount of available RAM and the size of the programs.

Example
The first of the following programs invokes the second, which displays its arguments
and invokes a third program. After the third program terminates, the second is resumed.
When the second program terminates, the parent program is resumed. Remember that
the three programs must be in separate files.

/* Parent process */

#include <stdio.h>

#include <process.h>

int main(void)

{

printf("In parent\n");

spawnl(P_WAIT, "test.exe", "test.exe", "hello", "10", NULL);

printf("In parent\n");

return 0;

}

/* First child */

C h a p t e r 1 7 : P r o c e s s C o n t r o l F u n c t i o n s 483
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

#include <stdio.h>

#include <stdlib.h>

#include <process.h>

int main(int argc, char *argv[])

{

printf("First child process executing ");

printf("with these command line arguments: ");

printf(argv[1]);

printf(" %d\n", atoi(argv[2]));

spawnl(P_WAIT, "test2.exe", "test2.exe", NULL);

printf("In first child process.\n");

return 0;

}

/* Second child */

#include <stdio.h>

int main(void)

{

printf("In second child process.\n");

return 0;

}

Related Functions

The exec family of functions.

int wait(int *status)

Description
The prototype for this function is in <process.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The wait() function causes a program to wait until a child process has completed.
The value returned by the child process will be stored in the variable pointed to by
status. If you don’t need the status code, specify NULL for status. The status code is
interpreted as follows.

If the child process ends without error, bits 0–7 will be zero and bits 8–15 will
contain the value being returned from the child process. If the other application ends
because of an error (or a user-break), then these two sections of bits are reversed.
Bits 8–15 will be zero and bits 0–7 will hold a value that indicates the cause of the error.

484 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

It will be 1 if the child process was aborted, 2 if a protection error occurred, and 3 if
the user (or some other external event) terminated the program.

The wait() method returns the child’s process ID if the child application ends
normally. Otherwise, it returns −1 and sets errno to ECHILD or EINTR.

Related Functions

The exec and spawn families of functions.

C h a p t e r 1 7 : P r o c e s s C o n t r o l F u n c t i o n s 485
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

This page intentionally left blank.

Chapter 18
Screen-Based
Text Functions

487

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The ANSI/ISO C/C++ standard doesn’t define any screen-based text functions
that take advantage of the various capabilities of the modern computer display
environment, such as cursor positioning, setting of foreground and background

colors, and clearing the screen. The reason these types of functions are not standardized
is that the capabilities of diverse hardware environments preclude standardization
across a wide range of machines. However, C++ Builder provides extensive screen
support for the DOS-style environment available under Windows. If you will be using
this environment and not be porting your code to a different compiler, you should feel
free to use these screen-based functions.

None of the functions described in this chapter relate to or can be used for Windows GUI
programming. Graphical output in Windows is accomplished through the use of API
(application program interface) functions provided by Windows. The functions described
in this chapter relate only to a DOS session run under Windows.

The prototypes and header information for the screen-based text functions are
in <conio.h>. None of the functions described in this chapter are defined by the
ANSI/ISO C/C++ standard.

Central to the screen-based text functions is the concept of the window. As the term is
used here, “window” does not refer to a GUI window provided by Windows, but rather
the active part of the DOS-like screen within which output is displayed. A window can
be as large as the entire screen, as it is by default, or as small as your specific needs require.
In general, all output is contained within the active window. That is, output that would
extend beyond the boundaries of a window is automatically clipped.

It is important to understand that most of the text functions are window relative.
For example, the gotoxy() cursor location function sends the cursor to the specified x,y
position relative to the window, not the screen. Of course, by default, the window is
the entire screen. One last point: the upper-left corner is location 1,1.

char *cgets(char *inpstr)

Description
The prototype for cgets() is in <conio.h>.

The cgets() function reads a string and stores it in the array pointed to by inpstr.
The string is stored beginning at inpstr[2]. Before the call, inpstr[0] must contain the
maximum number of characters that the string pointed to by inpstr can store. On
return, inpstr[1] contains the number of characters actually read.

The cgets() function returns a pointer to the start of the string, which is at inpstr[2].

Example
This program reads a string using cgets().

488 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

#include <conio.h>

int main(void)

{

char holdstr[12];

char *inpstr;

holdstr[0] = 10; /* Only allow 10 characters */

cprintf("Enter a string: ");

inpstr = cgets(holdstr);

cprintf("\r\nThe string: \"%s\" contains %d characters.\n",

inpstr, holdstr[1]);

return 0;

}

Related Functions

getch(), gets()

void clreol(void)
void clrscr(void)

Description
The prototypes for clreol() and clrscr() are in <conio.h>.

The clreol() function clears from the current cursor position to the end of the line in
the active text window. The cursor position remains unchanged.

The clrscr() function clears the entire active text window and locates the cursor in
the upper-left corner (1,1).

Example
This program illustrates clreol() and clrscr():

#include <conio.h>

int main(void)

{

register int i;

gotoxy(10, 10);

C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 489
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

cprintf("This is a test of the clreol() function.");

getch();

gotoxy(10, 10);

clreol();

for(i=0; i<20; i++) cprintf("Hello there\n\r");

getch();

/* clear the screen */

clrscr();

return 0;

}

Related Functions

delline(), window()

int cprintf(const char *fmt, . . .)

Description
The prototype for cprintf() is in <conio.h>.

The cprintf() function works like the printf() function except that it writes to
the current text window instead of stdout. Its output may not be redirected, and it
automatically prevents the boundaries of the window from being overrun. See the
printf() function for details.

The cprintf() function does not translate the newline (\n) into the linefeed, carriage
return pair as does the printf() function, so it is necessary to manually insert a
carriage return (\r) where desired.

The cprintf() function returns the number of characters actually printed. A negative
return value indicates that an error has taken place.

Example
This program displays the output shown in its comments:

#include <conio.h>

int main(void)

{

/* This prints "this is a test" left justified

490 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

in 20 character field.

*/

cprintf("%-20s", "this is a test");

/* This prints a float with 3 decimal places in a 10

character field. The output will be " 12.235".

*/

cprintf("%10.3f\n\r", 12.234657);

return 0;

}

Related Functions

cscanf(), cputs()

int cputs(const char *str)

Description
The prototype for cputs() is in <conio.h>.

The cputs() function outputs the string pointed to by str to the current text window.
Its output cannot be redirected, and it automatically prevents the boundaries of the
window from being overrun.

It returns the last character written if successful and EOF if unsuccessful.

Example
This program creates a window and uses cputs() to write a line longer than will fit in
the window. The line is automatically wrapped at the end of the window instead of
spilling over into the rest of the screen.

#include <conio.h>

void border(int, int, int, int);

int main(void)

{

clrscr();

/* create first window */

window(3, 2, 40, 9);

border(3, 2, 40, 9);

C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 491
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

gotoxy(1,1);

cputs("This line will be wrapped at the end of the window.");

getche();

return 0;

}

/* Draws a border around a text window. */

void border(int startx, int starty, int endx, int endy)

{

register int i;

gotoxy(1, 1);

for(i=0; i<=endx-startx; i++)

putch('-');

gotoxy(1, endy-starty);

for(i=0; i<=endx-startx; i++)

putch('-');

for(i=2; i<endy-starty; i++) {

gotoxy(1, i);

putch('|');

gotoxy(endx-startx+1, i);

putch('|');

}

}

Related Functions

cprintf(), window()

int cscanf(char *fmt, . . .)

Description
The prototype for cscanf() is in <conio.h>.

The cscanf() function works like the scanf() function except that it reads the
information from the console instead of stdin. It cannot be redirected. See the scanf()
function for details.

492 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The cscanf() function returns the number of arguments that are actually assigned
values. This number does not include skipped fields. The cscanf() function returns the
value EOF if an attempt is made to read past end-of-file.

Example
This code fragment reads a string and a float number from the console:

char str[80];

float f;

cscanf("%s%f", str, &f);

Related Functions

scanf(), cprintf(), sscanf()

void delline(void)

Description
The prototype for delline() is in <conio.h>.

The delline() function deletes the line in the active window that contains the
cursor. All lines below the deleted line are moved up to fill the void. Remember that
if the current window is smaller than the entire screen, only the text inside the window
is affected.

Example
This program prints 24 lines on the screen and then deletes line 3:

#include <conio.h>

int main(void)

{

register int i;

clrscr();

for(i=0; i<24; i++) cprintf("line %d\n\r", i);

getch();

gotoxy(1, 4);

delline();

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 493

getch();

return 0;

}

Related Functions

clreol(), insline()

int gettext(int left, int top, int right, int bottom, void *buf)

Description
The prototype for gettext() is in <conio.h>.

The gettext() function copies the text from a rectangle with upper-left corner
coordinates left,top and lower-right corner coordinates right,bottom into the buffer
pointed to by buf. The coordinates are screen, not window, relative.

The amount of memory needed to hold a region of the screen is computed by the
formula num_bytes = rows × columns × 2. The reason you must multiply the number
of rows times the number of columns by 2 is that each character displayed on the
screen requires 2 bytes of storage: 1 for the character itself and 1 for its attributes.

The function returns 1 on success and 0 on failure.

Example
This fragment copies a region of the screen into the memory pointed to by buf:

buf = (char *)malloc(10 * 10 *2);

gettext(10, 10, 20, 20, buf);

Related Functions

puttext(), movetext()

void gettextinfo(struct text_info *info)

Description
The prototype for gettextinfo() is in <conio.h>.

The gettextinfo() function obtains the current text settings and returns them in
the structure pointed to by info. The text_info structure is declared as shown here.

494 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

struct text_info {

unsigned char winleft; /* upper left */

unsigned char wintop; /* coordinates */

unsigned char winright; /* lower right */

unsigned char winbottom; /* coordinates */

unsigned char attribute; /* current attributes */

unsigned char normattr; /* normal attributes */

unsigned char currmode; /* active video mode */

unsigned char screenheight; /* screen */

unsigned char screenwidth; /* dimensions */

unsigned char curx; /* current X and */

unsigned char cury; /* Y cursor location */

};

Example
This fragment obtains the current text settings.

struct text_info i;

gettextinfo(&i);

Related Function

textmode()

void gotoxy(int x, int y)

Description
The prototype for gotoxy() is in <conio.h>.

The gotoxy() function sends the text screen cursor to the location specified by x,y.
If either or both of the coordinates are invalid, no action takes place.

Example
This program prints Xs diagonally across the screen:

#include <conio.h>

int main(void)

{

register int i, j;

C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 495
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

clrscr();

/* print diagonal Xs */

for(i=1, j=1; j<24; i+=3, j++) {

gotoxy(i, j);

cprintf("X");

}

getche();

clrscr();

return 0;

}

Related Functions

wherex(), wherey()

void highvideo(void)

Description
The prototype for highvideo() is in <conio.h>.

After a call to highvideo(), characters written to the screen are displayed in
high-intensity video.

Example
This fragment turns on high-intensity output:

highvideo();

Related Functions

lowvideo(), normvideo()

void insline(void)

Description
The prototype for insline() is in <conio.h>.

The insline() function inserts a blank line at the current cursor position. All lines
below the cursor move down. This function operates relative to the current text window.

496 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
The following program illustrates the use of insline().

#include <conio.h>

int main(void)

{

register int i;

clrscr();

for(i=1; i<24; i++) {

gotoxy(1, i);

cprintf("This is line %d\n\r", i);

}

getche();

gotoxy(1, 10);

insline();

getch();

return 0;

}

Related Function

delline()

void lowvideo(void)

Description
The prototype for lowvideo() is in <conio.h>.

After a call to lowvideo(), characters written to the screen are displayed in
low-intensity video.

Example
This fragment turns on low-intensity output:

lowvideo();

C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 497
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

highvideo(), normvideo()

int movetext(int left, int top, int right, int bottom,
int newleft, int newtop)

Description
The prototype for movetext() is in <conio.h>.

The movetext() function moves the portion of a text screen with the upper-left
corner at left,top and lower-right corner at right,bottom to the region of the screen that
has newleft,newtop as the coordinates of its upper-left corner. This function is screen,
not window, relative.

The movetext() function returns 0 if one or more coordinates are out of range and
non-0 otherwise.

Example
This fragment moves the contents of the rectangle with upper-left corner coordinates
of 1,1 and lower-right corner coordinates of 8,8 to 10,10:

movetext(1, 1, 8, 8, 10, 10);

Related Function

gettext()

void normvideo(void)

Description
The prototype for normvideo() is in <conio.h>.

After a call to normvideo(), characters written to the screen are displayed in
normal-intensity video.

498 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 499
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This fragment turns on normal-intensity output:

normvideo();

Related Functions

highvideo(), lowvideo()

int puttext(int left, int top, int right, int bottom, void *buf)

Description
The prototype for puttext() is in <conio.h>.

The puttext() function copies text previously saved by gettext() from the buffer
pointed to by buf into the region with upper-left and lower-right corners specified by
left,top and right,bottom.

The puttext() function uses screen-absolute, not window-relative, coordinates.
It returns 0 if the coordinates are out of range, non-0 otherwise.

Example
This fragment copies a region of the screen into the memory pointed to by buf and puts
that text in a new location:

buf = (char *) malloc(10 * 10 *2);

gettext(10, 10, 20, 20, buf);

puttext(0, 0, 30, 30, buf);

Related Functions

gettext(), movetext()

void textattr(int attr)

Description
The prototype for textattr() is in <conio.h>.

500 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The textattr() function sets both the foreground and background colors in a text
screen at one time. The value of attr represents an encoded form of the color information,
as shown here.

If bit 7 is set, the text blinks. Bits 6 through 4 determine the background color. Bits 3
through 0 set the color for the text. The easiest way to encode the background color into
the attribute byte is to multiply the number of the color you desire by 16 and then OR
that with the text color. For example, to create a green background with blue text you
would use GREEN * 16 | BLUE. To cause the text to blink, OR the text color, background
color, and BLINK (128) together.

Example
This fragment displays the text in red with a blue background:

textattr(RED | BLUE*16);

Related Functions

textbackground(), textcolor()

void textbackground(int color)

Description
The prototype for textbackground() is in <conio.h>.

The textbackground() function sets the background text color. The valid colors are
shown here along with their macro names (defined in <conio.h>):

Macro Integer Equivalent

BLACK 0

BLUE 1

GREEN 2

TE
AM
FL
Y

Team-Fly®

Macro Integer Equivalent

CYAN 3

RED 4

MAGENTA 5

BROWN 6

LIGHTGRAY 7

The new background color takes effect after the call to textbackground(). The
background of characters currently on the screen is not affected.

Example
This fragment sets the background color to cyan.

textbackground(CYAN);

Related Function

textcolor()

void textcolor(int color)

Description
The prototype of textcolor() is in <conio.h>.

The textcolor() function sets the color in which characters are displayed. It can also
be used to specify blinking characters. The valid values for color are shown here, along
with their macro names (defined in <conio.h>):

Macro Integer Equivalent

BLACK 0

BLUE 1

GREEN 2

CYAN 3

RED 4

MAGENTA 5

BROWN 6

C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 501
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

502 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Macro Integer Equivalent

LIGHTGRAY 7

DARKGRAY 8

LIGHTBLUE 9

LIGHTGREEN 10

LIGHTCYAN 11

LIGHTRED 12

LIGHTMAGENTA 13

YELLOW 14

WHITE 15

BLINK 128

The color of characters on the screen is not changed by textcolor(); it affects only
those written after textcolor() has executed.

Example
This fragment displays subsequent output in blinking characters:

textcolor(BLINK);

Related Function

textattr()

void textmode(int mode)

Description
The prototype for textmode() is in <conio.h>.

The textmode() function changes the video mode of a text screen. The argument
mode must be one of the values shown in the following table. You can use either the
integer value or the macro name (the macros are defined in <conio.h>):

Macro Name Integer Equivalent Description

BW40 0 40-column black and white

C40 1 40-column color

BW80 2 80-column black and white

Macro Name Integer Equivalent Description

C80 3 80-column color

MONO 7 80-column monochrome

C4350 64 43-line EGA or 50-line VGA

LASTMODE −1 Previous mode

After a call to textmode(), the screen is reset and all text screen attributes are
returned to their default settings.

Example
This fragment puts the video hardware into 80-column color mode:

textmode(C80);

Related Function

gettextinfo()

int wherex(void)
int wherey(void)

Description
The prototypes for wherex() and wherey() are in <conio.h>.

The wherex() and wherey() functions return the current x and y cursor coordinates
relative to the current text window.

Example
This fragment loads the variables xpos and ypos with the current x,y coordinates:

int xpos, ypos;

xpos = wherex();

ypos = wherey();

Related Function

gotoxy()

C h a p t e r 1 8 : S c r e e n - B a s e d T e x t F u n c t i o n s 503
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

void window(int left, int top, int right, int bottom)

Description
The prototype for window() is in <conio.h>.

The window() function creates a rectangular text window with upper-left and
lower-right coordinates specified by left,top and right,bottom. If any coordinate is
invalid, window() takes no action. Once a call to window() has been successfully
completed, all references to location coordinates are interpreted relative to the window,
not the screen.

Example
This fragment creates a window and writes a line of text at location 2,3 inside that window:

window(10, 10, 60, 15);

gotoxy(2, 3);

cprintf("at location 2, 3");

Related Function

clrscr()

504 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Chapter 19
Miscellaneous
Functions

505

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

506 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The functions discussed in this chapter are those that don’t fit easily in any
other category. They include various conversions, variable-length argument
processing, sorting, and random number generators.

Many of the functions covered here require the use of the header <stdlib.h>.
This header defines two types: div_t and ldiv_t, which are the types of the structures
returned by div() and ldiv(), respectively. Also defined are size_t, which is the unsigned
value that is returned by sizeof, and wchar_t, which is the data type of wide characters.
These macros are also defined:

Macro Meaning

NULL A null pointer.

RAND_MAX The maximum value that can be returned by the
rand() function.

EXIT_FAILURE The value returned to the calling process if program
termination is unsuccessful.

EXIT_SUCCESS The value returned to the calling process if program
termination is successful.

MB_CUR_MAX Maximum number of bytes in a multibyte character.

Some functions require a different header, which will be discussed for those functions.

int abs(int num)

Description
The prototype for abs() is in both <stdlib.h> and <math.h>. For maximum portability,
use <stdlib.h>.

The abs() function returns the absolute value of the integer num.

Example
This program converts a user-entered number into its absolute value:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 507
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

char num[80];

gets(num);

printf("Absolute value is %d.\n", abs(atoi(num)));

return 0;

}

Related Function

labs()

void assert(int exp)

Description
The prototype for assert() is in <assert.h>.

The assert() macro writes error information to stderr and aborts program execution
if the expression exp evaluates to 0. Otherwise, assert() does nothing. The output of the
function is in this general form:

Assertion failed: exp, file <file >, line <linenum >

The assert() macro is generally used to help verify that a program is operating
correctly; the expression is devised so that it evaluates true only when no errors have
taken place.

It is not necessary to remove the assert() statements from the source code once a
program is debugged, because if the macro NDEBUG is defined (as anything) before
the <assert.h> header is included, the assert() macros are ignored.

Example
This code fragment is used to test whether the data read from a serial port is ASCII
(that is, that it does not use the 8th bit):

ch = read_port ();

assert(!(ch & 128)); /* check bit 8 */

Related Function

abort()

508 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

double atof(const char *str)
long double _atold(const char *str)

Description
The prototypes for atof() and _atold() are in <stdlib.h> and <math.h>. For
compatibility with the ANSI/ISO C/C++ standard, use <stdlib.h>.

The atof() function converts the string pointed to by str into a double value. The
string must contain a valid floating-point number. If this is not the case, 0 is returned
and errno is set to ERANGE.

The number can be terminated by any character that cannot be part of a valid
floating-point number. This includes white space, punctuation (other than periods),
and characters other than “E” or “e”. This means that if atof() is called with
“100.00HELLO”, the value 100.00 is returned.

_atold() is the long double version of atof().

Example
This program reads two floating-point numbers and displays their sum:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char num1[80], num2[80];

printf("Enter first number: ");

gets(num1);

printf("Enter second number: ");

gets(num2);

printf("The sum is: %f", atof(num1)+atof(num2));

return 0;

}

Related Functions

atoi(), atol()

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 509
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int atoi(const char *str)

Description
The prototype for atoi() is in <stdlib.h>.

The atoi() function converts the string pointed to by str into an int value. The string
must contain a valid integer number. If this is not the case, 0 is returned.

The number can be terminated by any character that cannot be part of an integer
number. This includes white space, punctuation, and other nondigit characters. This
means that if atoi() is called with 123.23, the integer value 123 is returned and the
0.23 ignored.

Example
This program reads two integer numbers and displays their sum:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char num1[80], num2[80];

printf("Enter first number: ");

gets(num1);

printf("Enter second number: ");

gets(num2);

printf("The sum is: %d", atoi(num1)+atoi(num2));

return 0;

}

Related Functions

atof(), atol()

long atol(const char *str)

Description
The prototype for atol() is in <stdlib.h>.

The atol() function converts the string pointed to by str into a long int value. The
string must contain a valid long integer number. If this is not the case, 0 is returned.

The number can be terminated by any character that cannot be part of an integer
number. This includes white space, punctuation, and other nondigit characters. This
means that if atol() is called with 123.23, the integer value 123 is returned and
the 0.23 ignored.

Example
This program reads two long integer numbers and displays their sum:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char num1[80], num2[80];

printf("Enter first number: ");

gets(num1);

printf("Enter second number: ");

gets(num2);

printf("The sum is: %ld", atol(num1)+atol(num2));

return 0;

}

Related Functions

atof(), atoi()

void *bsearch(const void *key, const void *base, size_t num,
size_t size, int (*compare)(const void *, const void *))

Description
The prototype for bsearch() is in <stdlib.h>.

The bsearch() function performs a binary search on the sorted array pointed to by
base and returns a pointer to the first member that matches the key pointed to by key.
The number of elements in the array is specified by num, and the size (in bytes) of each
element is described by size.

The type size_t is defined as an unsigned int in <stdlib.h>.

510 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

The function pointed to by compare compares an element of the array with the key.
The form of the compare function must be

func_name(const void *arg1, const void *arg2)

It must return the following values:

If arg1 is less than arg2, return less than 0.

If arg1 is equal to arg2, return 0.

If arg1 is greater than arg2, return greater than 0.

The array must be sorted in ascending order with the lowest address containing
the lowest element.

If the array does not contain the key, a null pointer is returned.

Example
This program reads characters entered at the keyboard and determines whether they
belong to the alphabet:

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

char *alpha="abcdefghijklmnopqrstuvwxyz";

int comp(const void *, const void *);

int main(void)

{

char ch;

char *p;

do {

printf("Enter a character: ");

scanf("%c%*c", &ch);

ch = tolower(ch);

p = (char *) bsearch(&ch, alpha, 26, 1, comp);

if(p) printf("is in alphabet\n");

else printf("is not in alphabet\n");

} while(p);

return 0;

}

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 511
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

512 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

/* Compare two characters. */

int comp(const void *ch, const void *s)

{

return *(char *)ch - *(char *)s;

}

Related Function

qsort()

unsigned int _clear87(void)

Description
The prototype for _clear87() is in <float.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _clear87() function resets the 80x87 hardware floating-point coprocessor’s
status word. The function returns the previous status word.

You must have an 80x87 math coprocessor installed in your system in order to use
any of the 80x87-based functions.

Related Function

_status87()

unsigned int _control87(unsigned fpword,
unsigned fpmask)

Description
The prototype for _control87() is in <float.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _control87() function returns or modifies the value of the 80x87 control word
that controls the behavior of the chip. You must have an 80x87 math coprocessor
installed in the computer before using this function.

The parameter fpmask determines which bits of the control word will be modified.
Each bit in fpmask corresponds with each bit in fpword and the bits in the floating-point
control word. If the bit in fpmask is non-0, the control word at the corresponding bit
position is set to the value of the corresponding position in fpword.

The _control87() function returns the modified control word. However, if fpmask
contains 0, the control word is unchanged, and the current value of the control word
is returned.

For a complete description of what each bit controls, consult the header file <float.h>.

Related Functions

_clear87(), _fpreset()

div_t div(int numerator, int denominator)

Description
The prototype for div() is in <stdlib.h>.

The div() function returns the quotient and the remainder of the operation
numerator/denominator.
The structure type div_t is defined in <stdlib.h> and has these two fields.

int quot; /* the quotient */

int rem; /* the remainder */

Example
This program displays the quotient and the remainder of 10/3:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

div_t n;

n = div(10,3);

printf("Quotient and remainder: %d %d\n", n.quot, n.rem);

return 0;

}

Related Function

ldiv()

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 513
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

char *ecvt(double value, int ndigit, int *dec, int *sign)

Description
The prototype for ecvt() is in <stdlib.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The ecvt() function converts value into a string ndigit long. After the call, the value
of the variable pointed to by dec indicates the position of the decimal point. If the decimal
point is to the left of the number, the number pointed to by dec is negative. The decimal
point is not actually stored in the string. If value is positive, sign is 0. If the number is
negative, sign is non-0.

The ecvt() function returns a pointer to a static data area that holds the string
representation of the number.

Example
This call converts the number 10.12 into a string:

int decpnt, sign;

char *out;

out = ecvt(10.12, 5, &decpnt, &sign);

Related Functions

fcvt(), gcvt()

void _ _emit_ _(unsigned char arg, . . .)

Description
There is no prototype for _ _ emit_ _() because C++ Builder automatically handles this
function. This function is not defined by the ANSI/ISO C/C++ standard.

The _ _emit_ _() function is used to insert one or more values directly into the
executable code of your program at the point at which _ _emit_ _() is called. These
values generally will be x86 machine instructions. If a value fits into a byte, it is treated
as a byte quantity. Otherwise, it is treated as a word quantity. You can pass _ _emit_ _()
byte or word values only.

You must be an expert assembly language programmer to use _ _emit_ _(). If you
insert incorrect values, your program will crash.

514 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 515
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

char *fcvt(double value, int ndigit, int *dec, int *sign)

Description
The prototype for fcvt() is in <stdlib.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The fcvt() function is the same as ecvt() except that the output is rounded to the
number of digits specified by ndigit.

The fcvt() function returns a pointer to a static data area that holds the string
representation of the number.

Example
This call converts the number 10.12 into a string:

int decpnt, sign

char *out;

out = fcvt(10.12, 5, &decpnt, &sign);

Related Functions

ecvt(), gcvt()

void _fpreset(void)

Description
The prototype for _fpreset() is in <float.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _fpreset() function resets the floating-point arithmetic system. You may need
to reset the floating-point routines after a system(), exec(), spawn(), or signal()
function executes. Refer to the user manuals for specific details.

Example
This fragment ensures that the floating-point arithmetic routines are reset after
system() returns:

/* compute and print payroll checks */

system("payroll");

_fpreset();

Related Function

_status87()

char *gcvt(double value, int ndigit, char *buf)

Description
The prototype for gcvt() is in <stdlib.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The gcvt() function converts value into a string ndigit long. The converted string
is stored in the array pointed to by buf in FORTRAN F-format if possible. If not, it uses
the E-format as defined for printf(). A pointer to buf is returned.

Example
This call converts the number 10.12 into a string:

char buf [80]

gcvt(10.12, 5, buf);

Related Functions

fcvt(), ecvt()

char *getenv(const char *name)

Description
The prototype for getenv() is in <stdlib.h>.

The getenv() function returns a pointer to environmental information associated
with the string pointed to by name in the environmental information table. The string
returned must never be changed by the program.

The environment of a program can include such things as path names and devices
online. The exact meaning of this data is defined by the operating system.

If a call is made to getenv() with an argument that does not match any of the
environmental data, a null pointer is returned.

Example
The following fragment returns a pointer to the PATH list.

p = getenv("PATH");

516 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 517
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

putenv(), system()

char *getpass(const char *str)

Description
The prototype for getpass() is in <conio.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

After displaying the prompt str on the screen, the getpass() function returns a
pointer to a null-terminated string of not more than eight characters. This string is
statically allocated by getpass() and is overwritten each time the function is called.
If you want to save the string, you must copy it elsewhere. Keystrokes are not echoed
when the password is entered.

Example
This function waits until the proper password is entered:

#include <conio.h>

#include <string.h>

void pswd (char *pw)

{

char *input;

do {

input = getpass("Enter your password:");

}while (strcmp("starbar", input));

printf("You're in!");

}

unsigned getpid(void)

Description
The prototype for getpid() is in <process.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The getpid() function returns the process ID number associated with a program.

518 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Example
This fragment displays the process ID number:

printf("The process ID of this program is %d\n", getpid());

char *itoa(int num, char *str, int radix)

Description
The prototype for itoa() is in <stdlib.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The itoa() function converts the integer num into its string equivalent and places
the result in the string pointed to by str. The base of the output string is determined by
radix, which can be in the range 2 through 36.

The itoa() function returns a pointer to str. There is no error return value. Be sure
to call itoa() with a string of sufficient length to hold the converted result. The
maximum length needed is 33 bytes.

Example
This program displays the value of 1423 in hexadecimal (58f):

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char p[17];

itoa(1423, p, 16);

printf(p);

return 0;

}

Related Functions

atoi(), sscanf()

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 519
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

long labs(long num)

Description
The prototype for labs() is in <stdlib.h> and <math.h>. For the ANSI/ISO C/C++
standard compatibility, use <stdlib.h>.

The labs() function returns the absolute value of the long int num.

Example
This function converts the user-entered numbers into their absolute values:

#include <stdio.h>

#include <stdlib.h>

long int get_labs()

{

char num[80];

gets(num);

return labs(atol(num));

}

Related Function

abs()

ldiv_t ldiv(long numerator, long denominator)

Description
The prototype for ldiv() is in <stdlib.h>.

The ldiv() function returns the quotient and the remainder of the operation
numerator/denominator.

The structure type ldiv_t is defined in <stdlib.h> and has these two fields:

long quot; /*the quotient*/

long rem; /* the remainder */

Example
This program displays the quotient and the remainder of 100000L/3L:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

ldiv_t n;

n = ldiv(100000L,3L);

printf("Quotient and remainder: %ld %ld.\n", n.quot, n.rem);

return 0;

}

Related Function

div()

void *lfind(const void *key, const void *base, size_t *num,
size_t size, int (*compare)(const void *, const void *)

void *lsearch(const void *key, void *base, size_t *num, size_t size,
int (*compare)(const void *, const void *))

Description
The prototypes for lfind() and lsearch() are in <stdlib.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The lfind() and lsearch() functions perform a linear search on the array pointed to
by base and return a pointer to the first element that matches the key pointed to by key.
The number of elements in the array is pointed to by num, and the size (in bytes) of
each element is described by size.

The function pointed to by compare compares an element of the array with the key.
The form of the compare function must be

int func_name(const void *arg1, const void *arg2)

It must return the following values:

If arg1 does not equal arg2, return non-0.

520 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

If arg1 is equal to arg2, return 0.

The array being searched does not have to be sorted. If the array does not contain
the key, a null pointer is returned.

The difference between lfind() and lsearch() is that if the item being searched for
does not exist in the array, lsearch() adds it to the end of the array; lfind() does not.

Example
This program reads characters entered at the keyboard and determines whether they
belong to the alphabet:

#include <stdlib.h>

#include <ctype.h>

#include <stdio.h>

char *alpha="abcdefghijklmnopqrstuvwxyz";

int comp(const void *, const void *);

int main(void)

{

char ch;

char *p;

size_t num=26;

do {

printf("Enter a character: ");

scanf("%c%*c", &ch);

ch = tolower(ch);

p = (char *) lfind(&ch, alpha, &num, 1, comp);

if(p) printf("is in alphabet\n");

else printf("is not in alphabet\n");

} while(p);

return 0;

}

/* Compare two characters. */

int comp(const void *ch, const void *s)

{

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 521
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

return *(char *)ch - *(char *)s;

}

Related Function

qsort()

struct lconv *localeconv(void)

Description
The prototype for localeconv() is in <locale.h>. It returns a pointer to a structure
of type lconv, which contains various items of country-specific environmental
information relating to the way numbers are formatted. The lconv structure is
organized as shown here.

struct lconv {

char *decimal_point; /* decimal point character

for non-monetary values */

char *thousands_sep; /* thousands separator

for non-monetary values */

char *grouping; /* specifies grouping for

non-monetary values */

char int_curr_symbol; /* international currency symbol */

char *currency_symbol; /* local currency symbol */

char *mon_decimal_point; /* decimal point character

for monetary values */

char *mon_thousands_sep; /* thousands separator

for monetary values */

char *mon_grouping; /* specifies grouping for

monetary values */

char *positive_sign; /* positive value indicator

for monetary values */

char *negative_sign; /* negative value indicator

for monetary values */

char int_frac_digits; /* number of digits displayed

to the right of the decimal

point for monetary values

displayed using international

format */

char frac_digits; /* number of digits displayed

522 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

to the right of the decimal

point for monetary values

displayed using local format */

char p_cs_precedes; /* 1 if currency symbol precedes

positive value,

0 if currency symbol

follows value */

char p_sep_by_space; /* 1 if currency symbol is

separated from value by a

space, 0 otherwise */

char n_cs_precedes; /* 1 if currency symbol precedes

a negative value, 0 if

currency symbol follows value */

char n_sep_by_space; /* 1 if currency symbol is

separated from a negative

value by a space, 0 if

currency symbol follows value */

char p_sign_posn; /* indicates position of positive

value symbol */

char n_sign_posn; /* indicates position of negative

value symbol */

}

Related Function

setlocale()

void longjmp(jmp_buf envbuf, int val)

Description
The prototype for longjmp() is in <setjmp.h>.

The longjmp() instruction causes program execution to resume at the point of the
last call to setjmp(). These two functions create a way to jump between functions.

The longjmp() function operates by resetting the stack to the state defined in
envbuf, which must have been set by a prior call to setjmp(). This causes program
execution to resume at the statement following the setjmp() invocation. That is, the
computer is “tricked” into thinking that it never left the function that called setjmp().
(As a somewhat graphic explanation, the longjmp() function “warps” across time and
[memory] space to a previous point in your program without having to perform the
normal function-return process.)

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 523
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The buffer envbuf is of type jmp_buf, which is defined in the header <setjmp.h>.
The buffer must have been set through a call to setjmp() prior to calling longjmp().

The value of val becomes the return value of setjump() and can be interrogated to
determine where the long jump came from. The only value not allowed is 0.

It is important to understand that the longjmp() function must be called before the
function that called setjmp() returns. If not, the result is technically undefined.
(Actually, a crash will almost certainly occur.)

By far, the most common use of longjmp() is to return from a deeply nested set of
routines when a catastrophic error occurs.

Example
This program prints 1 2 3:

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf ebuf;

void f2(void);

int main(void)

{

int i;

printf("1 ");

i = setjmp(ebuf);

if (i !=0) {

printf("%d",i);

exit(1);

}

f2();

return 0;

}

void f2(void)

{

printf("2 ");

longjmp(ebuf, 3);

}

524 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Related Function

setjmp()

char *ltoa(long num, char *str, int radix)
char *ultoa(unsigned long num, char *str, int radix)

Description
The prototype for ltoa() and ultoa() are in <stdlib.h>. These functions are not defined
by the ANSI/ISO C/C++ standard.

The ltoa() function converts the long integer num into its string equivalent and
places the result in the string pointed to by str. The base of the output string is
determined by radix, which must be in the range 2 through 36. The ultoa() function
performs the same conversion, but on an unsigned long integer.

The ltoa() and ultoa() functions return a pointer to str. There is no error return
value. Be sure str is of sufficient length to hold the converted result. The longest array
you need is 34 bytes.

Example
This program displays the value of 1423 in hexadecimal (58f):

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char p[34];

ltoa(1423, p, 16);

printf(p);

return 0;

}

Related Functions

itoa(), sscanf()

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 525

526 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

unsigned long _lrotl(unsigned long l, int i)
unsigned long _lrotr(unsigned long l, int i)

Description
The prototypes for _lrotl() and _lrotr() are in <stdlib.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

The _lrotl() and _lrotr() functions rotate the bits of the long value l, i number
of bits to the left or right, respectively, and return the result. When a rotate is performed,
bits rotated off one end are inserted onto the other end. For example, given the value

1111 0000 0000 1111 1111 0000 1010 0101

rotating it left by one bit, produces the value

1110 0000 0001 1111 1110 0001 0100 1011

Example
The following program shows the effect of left and right rotation.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

unsigned long l = 1;

printf("1 rotated left 2 bits = %ld\n", _lrotl(l,2));

l=16;

printf("16 rotated right 2 bits = %ld\n", _lrotr(l,2));

return 0;

}

Related Functions

_rotl(), _rotr()

max(x,y)
min(x,y)

Description
The max() and min() macros are defined in <stdlib.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 527
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

The max() macro returns the larger of the two values and the min() returns the
smaller of the two values. The max() and min() macros return the same type as passed
to them; both arguments passed must be of the same type.

Example
This program illustrates the min() and max() macros:

#include <stdlib.h>

#include <stdio.h>

int main (void)

{

printf("max of 10, 20 is %d\n", max (10, 20));

printf("min of 10, 20 is %d\n", min (10, 20));

return 0;

}

int mblen(const char *str, size_t size)

Description
The prototype for mblen() is in <stdlib.h>.

This function returns the length of a multibyte character pointed to by str. Only the
first size number of characters are examined.

If str is null, then mblen() determines if multibyte characters have state-dependent
encodings. In this case, it returns nonzero if they do and zero if they do not.

Example
This statement displays the length of the multibyte character pointed to by mb.

printf("%d", mblen(mb, 2));

Related Functions

mbtowc(), wctomb()

size_t mbstowcs(wchar_t *out, const char *in, size_t size)

Description
The prototype for mbstowcs() is in <stdlib.h>.

528 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The mbstowcs() converts the multibyte string pointed to by in into a wide character
string and puts that result in the array pointed to by out. Only size number of bytes will
be stored in out.

The mbstowcs() function returns the number of multibyte characters that are
converted. If an error occurs, the function returns−1.

Example
This statement converts the first four characters in the multibyte string pointed to by
mb and puts the result in wstr.

mbstowcs(wstr, mb, 4);

Related Functions

wcstombs(), mbtowc()

int mbtowc(wchar_t *out, const char *in, size_t size)

Description
The prototype for mbtowc() is in <stdlib.h>.

The mbtowc() function converts the multibyte character in the array pointed to by
in into its wide character equivalent and puts that result in the array pointed to by out.
Only size number of characters will be examined.

This function returns the number of bytes that are put into out. −1 is returned if an
error occurs.

If in is null, then mbtowc() returns non-0 if multibyte characters have state
dependencies. If they do not, 0 is returned.

Example
This statement converts the multibyte character in mbstr into its equivalent wide
character and puts the result in the object pointed to by wstr. (Only the first 2 bytes
of mbstr are examined.)

mbtowc(wstr, mbstr, 2);

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 529
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Related Functions

mblen(), wctomb()

int putenv(const char *evar)

Description
The prototype for putenv() is in <stdlib.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The putenv() function defines an environmental variable. It returns 0 if successful,
−1 if unsuccessful. Refer to getenv() and to your operating system manual for
information about environmental variables.

Related Function

getenv()

void qsort(void *base, size_t num, size_t size,
int (*compare) (const void *, const void *))

Description
The prototype for qsort() is in <stdlib.h>.

The qsort() function sorts the array pointed to by base using a quicksort, a
general-purpose sorting algorithm (developed by C.A.R. Hoare). Upon termination,
the array is sorted. The number of elements in the array is specified by num, and the
size (in bytes) of each element is described by size.

The function pointed to by compare compares an element of the array with the key.
The form of the compare function must be

int func_name(const void *arg1, const void *arg2)

It must return the following values:

If arg1 is less than arg2, return less than 0.

If arg1 is equal to arg2, return 0.

If arg1 is greater than arg2, return greater than 0.

The array is sorted into ascending order with the lowest address containing the
lowest element.

Example
This program sorts a list of integers and displays the result:

#include <stdio.h>

#include <stdlib.h>

int num[10] = {

1,3,6,5,8,7,9,6,2,0

};

int comp(const int *, const int *);

int main(void)

{

int i;

printf("Original array: ");

for(i=0; i<10; i++) printf("%d ",num[i]);

printf("\n");

qsort(num, 10, sizeof(int),

(int(*)(const void *, const void *)) comp);

printf("Sorted array: ");

for(i=0; i<10; i++) printf("%d ", num[i]);

return 0;

}

/* compare the integers */

int comp(const int *i, const int *j)

{

return *i - *j;

}

Related Function

bsearch()

530 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

int raise(int signal)

Description
The prototype for raise() is in <signal.h>. The raise() function sends the signal specified
by signal to the currently executing program.

The following signals are defined in <signal.h>:

Macro Meaning

SIGABRT Termination error

SIGBREAK User pressed CTRL-Break

SIGFPE Floating-point error

SIGILL Bad instruction

SIGINT User pressed CTRL-C

SIGSEGV Illegal memory access

SIGTERM Terminate program

SIGUSR1, SIGUSR2, SIGUSR3 User-defined signals

On success, raise() returns 0.
You will often use this function in conjunction with the signal() function.

Example
This program raises the SIGTERM signal, which causes myhandler() to be executed:

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

void myhandler(int);

int main(void)

{

signal(SIGTERM, myhandler);

raise(SIGTERM);

printf("This line will not be executed.\n");

return 0;

}

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 531
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

532 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void myhandler(int notused)

{

printf("Program terminated.\n");

exit(1);

}

Related Function

signal()

int rand(void)

Description
The prototype for rand() is in <stdlib.h>.

The rand() function generates a sequence of pseudorandom numbers. Each time it
is called it returns an integer between 0 and RAND_MAX.

Example
This program displays ten pseudorandom numbers:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int i;

for(i=0; i<10; i++)

printf("%d ", rand());

return 0;

}

Related Function

srand()

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 533
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int random(int num)
void randomize(void)

Description
The prototypes for random() and randomize() are in <stdlib.h>. These functions are
not defined by the ANSI/ISO C/C++ standard.

The random() macro returns a random number in the range 0 through num −1.
The randomize() macro initializes the random number generator to some random

value. It uses the time() function, so you should include <time.h> in any program that
uses randomize().

Example
This program prints ten random numbers between 0 and 24:

#include <time.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int i;

randomize();

for(i=0; i<10; i++) printf("%d ", random(25));

return 0;

}

Related Functions

rand(), srand()

unsigned short _rotl(unsigned short val, int num)
unsigned short _rotr(unsigned short val, int num)

Description
The prototypes for _rotl() and _rotr() are in <stdlib.h>. These functions are not
defined by the ANSI/ISO C/C++ standard.

534 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The _rotl() and _rotr() functions rotate the bits of the value val, num number of bits
to the left or right, respectively, and return the result. When a rotate is performed, bits
rotated off one end are inserted onto the other end. For example, given the value

1111 0000 0000 1111

rotating it left by one bit produces the value

1110 0000 0001 1111

Example
The following program prints the value of 64 after it is rotated left and it is rotated right:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

unsigned val = 64;

printf("Rotated left 2 bits = %d\n", _rotl(val,2));

printf("Rotated right 2 bits = %d\n", _rotr(val,2));

return 0;

}

Related Functions

_lrotl(), _lrotr()

void _setcursortype(int type)

Description
The prototype for _setcursortype() is in <conio.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _setcursortype() function changes how the cursor is displayed. It can be called
with one of three macros (defined in <conio.h>). Calling _setcursortype() with
_NOCURSOR turns off the cursor. Using _SOLIDCURSOR makes a block cursor, and
_NORMALCURSOR creates an underscore cursor.

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 535
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

Example
This fragment changes the cursor type to a block:

_setcursortype(_SOLIDCURSOR);

int setjmp(jmp_buf envbuf)

Description
The prototype for setjmp() is in <setjmp.h>.

The setjmp() function saves the contents of the system stack in the buffer envbuf for
later use by longjmp().

The setjmp() function returns zero upon invocation. However, when longjmp()
executes, it passes an argument (always nonzero) to setjmp(), which appears to be
setjmp()’s return value.

See longjmp() for additional information.

Example
This program prints 1 2 3:

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf ebuf;

void f2(void);

int main(void)

{

int i;

printf("1 ");

i = setjmp(ebuf);

if(i != 0) {

printf("%d",i);

exit(1);

}

f2();

return 0;

}

void f2(void)

{

printf("2 ");

longjmp(ebuf, 3);

}

Related Function

longjmp()

void _searchenv(const char *fname, const char *ename,
char *fpath)

Description
The prototype for _searchenv() is in <stdlib.h>. The function is not defined by the
ANSI/ISO C/C++ standard.

The _searchenv() searches for the file whose name is pointed to by fname using the
path defined by the environmental name pointed to by ename. If the file is found, its
full path is put into the string pointed to by fpath.

Example
This program searches for the specified file using the specified path. If it finds the file,
it displays the full path.

#include <stdio.h>

int main(int argc, char *argv[])

{

char fpath[64];

if(argc!=3) {

printf("Usage: FINDFILE <fname> <ename>");

return 1;

}

_searchenv(argv[1], argv[2], fpath);

536 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

/* fpath will contain path if file is found */

if(*fpath) printf("Path: %s", fpath);

return 0;

}

Related Function

searchpath()

char *setlocale(int type, const char *locale)

Description
The prototype for setlocale() is in <locale.h>. This function allows certain parameters
that are sensitive to the geopolitical location of a program’s execution to be queried or
set. For example, in Europe, the comma is used in place of the decimal point.

If locale is null, then setlocale() returns a pointer to the current localization string.
Otherwise, setlocale() attempts to use the specified localization string to set the locale
parameters as specified by type.

At the time of the call, type must be one of the following macros:

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

LC_ALL refers to all localization categories. LC_COLLATE affects the operation
of the strcoll() function. LC_CTYPE alters the way the character functions work.
LC_MONETARY determines the monetary format. LC_NUMERIC changes the
decimal-point character for formatted input/output functions. Finally, LC_TIME
determines the behavior of the strftime() function.

The setlocale() function returns a pointer to a string associated with the type
parameter. It returns null if an error occurs.

Related Functions

localeconv(), time(), strcoll(), strftime()

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 537
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

void (*set_new_handler(void (* newhand)()))()

Description
The prototype for set_new_handler() is in <new.h>. This function is not defined by
the ANSI/ISO C/C++ standard.

The set_new_handler() function allows you to determine which function is called
when a new memory allocation request fails. The address of this function is passed in
newhand. To deactivate your function and return to the default processing of allocation
request failures, call set_new_handler() with newhand being NULL.

In general, you should not use this function. Its use is highly specialized and no
example is given.

void (*signal (int signal, void (*sigfunc) (int func)))(int)

Description
The prototype for signal() is in <signal.h>.
The signal() function tells C++ Builder to execute the function pointed to by sigfunc

if signal is received.
The value for func must be one of the following macros, defined in <signal.h>, or

the address of a function you created:

Macro Meaning

SIG_DFL Use default signal handling

SIG_IGN Ignore the signal

If you create your own function, it is executed each time the specified signal
is received.

The following signals are defined in <signal.h>. These are the values that can
be given to signal.

Macro Meaning

SIGABRT Termination error

SIGBREAK User pressed CTRL-Break

SIGFPE Floating-point error

SIGILL Bad instruction

SIGINT User pressed CTRL-C

SIGSEGV Illegal memory access

538 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Macro Meaning

SIGTERM Terminate program

SIGUSR1,
SIGUSR2,
SIGUSR3

User-defined signals

On success, signal() returns the address of the previously defined function for the
specified signal. On error, SIG_ERR is returned, and errno is set to EINVAL.

Example
This line causes the function myint() to be called if CTRL-C is pressed:

signal(SIGINT, myint);

Related Function

raise()

void srand(unsigned seed)

Description
The prototype for srand() is in <stdlib.h>.

The srand() function is used to set a starting point for the sequence generated by
rand(). (The rand() function returns pseudorandom numbers.)

The srand() function allows multiple program runs using different sequences of
pseudorandom numbers.

Example
This program uses the system time to initialize the rand() function randomly by
using srand().

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

/* Seed rand with the system time

and display the first 10 numbers.

*/

int main(void)

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 539
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

{

int i, stime;

long ltime;

/* get the current calendar time */

ltime = time(NULL);

stime = (unsigned int) ltime/2;

srand(stime);

for(i=0; i<10; i++) printf("%d ", rand());

return 0;

}

Related Function

rand()

unsigned int _status87(void)

Description
The prototype for _status87() is in <float.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The _status87() function returns the value of the floating-point status word.
You must have an 80x87 math coprocessor installed in the computer before using
this function.

Related Functions

_clear87(), _fpreset()

double strtod(const char *start, char **end)
long double _strtold(const char *start, char **end)

Description
The strtod() function converts the string representation of a number stored in the string
pointed to by start into a double and returns the result. Its prototype is in <stdlib.h>.

540 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

The strtod() function works as follows: First, any leading white space in the string
pointed to by start is stripped. Next, each character that makes up the number is read.
Any character that cannot be part of a floating-point number stops the process. This
includes white space, punctuation other than periods, and characters other than “E”
or “e”. Finally, end is set to point to the remainder, if any, of the original string. This
means that if strtod() is called with 100.00 Pliers, the value 100.00 is returned and end
points to the space that precedes “Pliers”.

If a conversion error occurs, strtod() returns either HUGE_VAL for overflow, or
−HUGE_VAL for underflow. If no conversion could take place, 0 is returned.

_strtold() is the long double version of this function.

Example
This program reads floating-point numbers from a character array:

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

int main(void)

{

char *end, *start="100.00 pliers 200.00 hammers";

end = start;

while(*start) {

printf("%f, ",strtod(start, &end));

printf("Remainder: %s\n", end);

start = end;

/* move past the non-digits */

while(!isdigit(*start) && *start) start++;

}

return 0;

}

The output is

100.000000, Remainder: pliers 200.00 hammers

200.000000, Remainder: hammers

Related Function

atof()

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y
C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 541

long strtol(const char *start, char **end, int radix)
unsigned long strtoul(const char *start, char **end, int radix)

Description
The prototypes for strtol() and strtoul() are in <stdlib.h>.

The strtol() function converts the string representation of a number stored in the
string pointed to by start into a long int and returns the result. The strtoul() function
performs the same conversion, but the result is an unsigned long. The base of the
number is determined by radix. If radix is 0, the base is determined by rules that govern
constant specification. If radix is other than 0, it must be in the range 2 through 36.

The strtol() and strtoul() functions work as follows: First, any leading white space
in the string pointed to by start is stripped. Next, each character that makes up the
number is read. Any character that cannot be part of a long integer number stops this
process. This includes white space, punctuation, and nondigit characters. Finally, end
is set to point to the remainder, if any, of the original string. This means that if strtol()
is called with 100 Pliers, the value 100L is returned and end points to the space that
precedes “Pliers”.

If a conversion error occurs, the return value is LONG_MAX for overflow, or
LONG_MIN for underflow, or ULONG_MAX for strtoul(). If no conversion could
take place, 0 is returned.

Example
This function reads base 10 numbers from standard input and returns their long
equivalents:

#include <stdio.h>

#include <stdlib.h>

long int read_long()

{

char start[80], *end;

printf("Enter a number: ");

gets(start);

return strtol(start, &end, 10);

}

Related Function

atol()

542 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void swab(char *source, char *dest, int num)

Description
The prototype for swab() is in <stdlib.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The swab() function copies num bytes from the string pointed to by source into
the string pointed to by dest, switching the position of each even/odd pair of bytes
as it goes.

Example
This fragment prints iH:

char dest[3];

swab("Hi", dest, 2);

printf(dest);

int system(const char *str)

Description
The prototype for system() is in <stdlib.h>.

The system() function passes the string pointed to by str as a command to the
command processor of the operating system and returns the exit status of the command.
A command processor must be present to execute the command.

Example
This program displays the contents of the current working directory:

#include <stdlib.h>

int main(void)

{

system("dir");

return 0;

}

Related Functions

spawn(), exec()

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 543
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

int toascii(int ch)

Description
The prototype for toascii() is in <ctype.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The toascii() function clears all but the lower 7 bits in ch and returns the result.

Example
This fragment clears all but the lower 7 bits of the character input from the keyboard.

int ch;

ch = getche():

ch = toascii(ch);

Related Functions

tolower(), toupper()

unsigned umask(unsigned access)

Description
The prototype for umask() is in <io.h>. This function is not defined by the ANSI/ISO
C/C++ standard.

The umask() function modifies the access attribute of a file opened by either
open() or _creat(). The attribute specified in access is removed from the access
attribute. The access parameter must be one of these two values (which may also
be ORed together):

Macro Meaning

S_IWRITE File is writable

S_IREAD File is readable

The umask() function returns the previous access permission mask.

Example
This statement causes subsequent files to be opened as write-only.

umask(S_IREAD);

544 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TH
E

C
+

+
B

U
ILD

ER
FU

N
C

TIO
N

LIB
R

A
R

Y

Related Functions

_creat(), open(), fopen()

int utime(char *fname, struct utimbuf *t)

Description
The prototype for utime() is in <utime.h>. This function is not defined by the
ANSI/ISO C/C++ standard.

The utime() function changes the creation (or last modification) time of the file
whose name is pointed to by fname. The new time is specified by the structure pointed
to by t. The utimbuf structure is defined like this:

struct utimbuf {

time_t actime;

time_t modtime;

};

If t is null, then the file’s creation time is set to the current system time.
The utime() function returns 0 if successful. If an error occurs,−1 is returned and

errno is set to one of these values:

EACCES Access denied

EMFILE Too many files are open

ENOENT Nonexistent file

Example
This program sets the specified file’s creation time to the current time of the system.
(This is a simple version of the common TOUCH utility program.)

#include <utime.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

if(argc!=2) {

printf("Usage: SETTIME <fname>");

return 1;

}

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 545

546 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

/* set to current system time */

utime(argv[1], NULL);

return 0;

}

Related Functions

time(), asctime(), gmtime()

void va_start(va_list argptr, last_parm)
void va_end(va_list argptr)
type va_arg(va_list argptr, type)

Description
The prototypes for these macros are in <stdarg.h>.

The va_arg(), va_start(), and va_end() macros work together to allow a variable
number of arguments to be passed to a function. The most common example of a
function that takes a variable number of arguments is printf(). The type va_list is
defined by <stdarg.h>.

The general procedure for creating a function that can take a variable number of
arguments is as follows: The function must have at least one known parameter, but
can have more, prior to the variable parameter list. The rightmost known parameter
is called the last_parm. The name of the last_parm is used as the second parameter in
a call to va_start(). Before any of the variable-length parameters can be accessed, the
argument pointer argptr must be initialized through a call to va_start(). After that,
parameters are returned via calls to va_arg() with type being the type of the next
parameter. Finally, once all the parameters have been read and prior to returning
from the function, a call to va_end() must be made to ensure that the stack is properly
restored. If va_end() is not called, a program crash is very likely.

Example
This program uses sum_series() to return the sum of a series of numbers. The first
argument contains a count of the number of arguments to follow. In this example, the
first five elements of the following series are summed

1
2

1
4

1
8

1
16

1
2

+ + + +K
n

The output displayed is Sum of series is 0.968750.

/* Variable length argument example - sum a series.*/

#include <stdio.h>

#include <stdarg.h>

double sum_series(int, ...);

int main(void)

{

double d;

d = sum_series(5, 0.5, 0.25, 0.125, 0.0625, 0.03125);

printf("Sum of series is %f\n",d);

return 0;

}

double sum_series(int num, ...)

{

double sum = 0.0, t;

va_list argptr;

/* initialize argptr */

va_start(argptr, num);

/* sum the series */

for(; num; num--) {

t = va_arg(argptr,double);

sum += t;

}

/* do orderly shutdown */

va_end(argptr);

return sum;

}

Related Function

vprintf()

C h a p t e r 1 9 : M i s c e l l a n e o u s F u n c t i o n s 547
TH

E
C

+
+

B
U

ILD
ER

FU
N

C
TIO

N
LIB

R
A

R
Y

size_t wcstombs(char *out, const wchar_t *in, size_t size)

Description
The prototype for wcstombs() is in <stdlib.h>.

The wcstombs() converts the wide character string pointed to by in into its
multibyte equivalent and puts the result in the string pointed to by out. Only the first
size bytes of in are converted. Conversion stops before that if the null terminator is
encountered.

If successful, wcstombs() returns the number of bytes converted. On failure,−1 is
returned.

Related Functions

wctomb(), mbstowcs()

int wctomb(char *out, wchar_t in)

Description
The prototype for wctomb() is in <stdlib.h>.

The wctomb() converts the wide character in in into its multibyte equivalent and
puts the result in the string pointed to by out. The array pointed to by out must be at
least MB_CUR_MAX characters long.

If successful, wctomb() returns the number of bytes contained in the multibyte
character. On failure, −1 is returned.

If out is NULL, then wctomb() returns non-0 if the multibyte character has state
dependencies and 0 if it does not.

Related Functions

wcstombs(), mbtowc()

548 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Part III
C++

Part One examined the C subset of C++. Part Three describes those

features of the language specific to C++. That is, it discusses those

features of C++ that it does not have in common with C. Because many

of the C++ features are designed to support object-oriented

programming (OOP), Part Three also provides a discussion of its

theory and merits. We will begin with an overview of C++.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Chapter 20
An Overview of C++

551

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Put simply, C++ is an object-oriented programming language. The object-oriented
features of C++ are interrelated, so it is important to have a general understanding
of these features before attempting to learn the details. The purpose of this

chapter is to provide an overview of the key concepts embodied in C++. The rest of
Part Three closely examines specific C++ features.

The Origins of C++
C++ began as an expanded version of C. The C++ extensions were first invented by Bjarne
Stroustrup in 1979 at Bell Laboratories in Murray Hill, New Jersey. He initially called the
new language “C with Classes.” However, in 1983 the name was changed to C++.

Although C was one of the most liked and widely used professional programming
languages in the world, the invention of C++ was necessitated by one major
programming factor: increasing complexity. Over the years, computer programs have
become larger and more complex. Even though C is an excellent programming language,
it has its limits. In C, once a program exceeds somewhere around 25,000 lines of code,
it becomes so complex that it is difficult to grasp as a totality. The purpose of C++ is
to allow this barrier to be broken. The essence of C++ is to allow the programmer to
comprehend and manage larger, more complex programs.

Most additions made by Stroustrup to C support object-oriented programming,
sometimes referred to as OOP. (See the next section for a brief explanation of object-
oriented programming.) Stroustrup states that some of C++’s object-oriented features
were inspired by another object-oriented language called Simula67. Therefore, C++
represents the blending of two powerful programming methods.

Since C++ was first invented, it has undergone three major revisions, with each
adding to and altering the language. The first revision was in 1985, and the second
in 1990. The third occurred during the standardization of C++. Several years ago,
work began on a standard for C++. Toward that end a joint ANSI (American National
Standards Institute) and ISO (International Standards Organization) standardization
committee was formed. The first draft of the proposed standard was created on
January 25, 1994. In that draft, the ANSI/ISO C++ committee kept the features first
defined by Stroustrup and added some new ones as well. But, in general, this initial
draft reflected the state of C++ at the time.

Soon after the completion of the first draft of the C++ standard, an event occurred
that caused the language to be greatly expanded: the creation of the Standard Template
Library (STL) by Alexander Stepanov. The STL is a set of generic routines that you can
use to manipulate data. It is both powerful and elegant. But it is also quite large.
Subsequent to the first draft, the committee voted to include the STL in the specification
for C++. The addition of the STL expanded the scope of C++ well beyond its original
definition. While important, the inclusion of the STL, among other things, slowed the
standardization of C++.

552 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

It is fair to say that the standardization of C++ took far longer than any one had
expected when it began. In the process many new features were added to the language
and many small changes were made. In fact, the version of C++ defined by the C++
committee is much larger and more complex than Stroustrup’s original design.
However, the standard is now complete. The final draft was passed out of committee
on November 14, 1997. The final version was adopted as the ANSI/ISO Standard for
C++ late in 1998. C++ Builder implements the ANSI/ISO Standard for C++.

What Is Object-Oriented Programming?
Object-oriented programming is a powerful way of approaching the job of programming.
Programming methodologies have changed dramatically since the invention of the
computer in order to accommodate the increasing complexity of programs. For example,
when computers were first invented, programming was done by toggling in the binary
machine instructions using the front panel. As long as programs were just a few hundred
instructions long, this approach worked. As programs grew, assembly language was
invented so that a programmer could deal with larger, increasingly complex programs
using symbolic representations of the machine instructions.

Eventually high-level languages were introduced that gave the programmer more
tools with which to handle complexity. The first widely used language was FORTRAN.
While FORTRAN was a very impressive first step, it is hardly a language that encourages
clear and easily understood programs.

The 1960s gave birth to structured programming—the method encouraged by
languages such as C and Pascal. For the first time, with structured languages it was
possible to write moderately complex programs fairly easily. However, even using
structured programming methods, once a project reaches a certain size, its complexity
becomes too difficult for a programmer to manage.

At each milestone in the development of programming, techniques and tools were
created to allow the programmer to deal with increasingly greater complexity. Each
step of the way, the new approach took the best elements of the previous methods
and moved forward. Prior to the invention of OOP, many projects were nearing (or
exceeding) the point where the structured approach no longer worked. To solve this
problem, object-oriented programming was invented.

Object-oriented programming took the best ideas of structured programming and
combined them with several new concepts. The result was a different way of organizing
a program. In the most general sense, a program can be organized in one of two ways:
around its code (what is happening) or around its data (who is being affected). Using
only structured programming techniques, programs are typically organized around
code. This approach can be thought of as “code acting on data.” For example, a program
written in a structured language such as C is defined by its functions, any of which
may operate on any type of data used by the program.

C
+

+
C h a p t e r 2 0 : A n O v e r v i e w o f C + + 553

Object-oriented programs work the other way around. They are organized around
data, with the key principle being “data controlling access to code.” In an object-
oriented language, you define the data and the routines that are permitted to act on
that data. Thus, a data type defines precisely what sort of operations can be applied
to that data.

To support the principles of object-oriented programming, all OOP languages
have three traits in common: encapsulation, polymorphism, and inheritance. Let’s
examine each.

Encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse. In an object-oriented
language, code and data may be combined in such a way that a self-contained “black
box” is created. When code and data are linked together in this fashion, an object is
created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private
code or data is known to and accessible only by another part of the object. That is,
private code or data may not be accessed by a piece of the program that exists outside
the object. When code or data is public, other parts of your program may access it even
though it is defined within an object. Typically, the public parts of an object are used to
provide a controlled interface to the private elements of the object.

For all intents and purposes, an object is a variable of a user-defined type. It may
seem strange at first to think of an object, which links both code and data, as a variable.
However, in object-oriented programming, this is precisely the case. When you define
an object, you are implicitly creating a new data type.

Polymorphism
Object-oriented programming languages support polymorphism, which is characterized
by the phrase “one interface, multiple methods.” In simple terms, polymorphism is the
attribute that allows one interface to be used with a general class of actions. The specific
action selected is determined by the exact nature of the situation. A real-world example
of polymorphism is a thermostat. No matter what type of furnace your house has (gas,
oil, electric, etc.), the thermostat works the same way. In this case, the thermostat (which
is the interface) is the same no matter what type of furnace (method) you have. For
example, if you want a 70-degree temperature, you set the thermostat to 70 degrees.
It doesn’t matter what type of furnace actually provides the heat.

This same principle can also apply to programming. For example, you might have
a program that defines three different types of stacks. One stack is used for integer values,
one for character values, and one for floating-point values. Because of polymorphism,
you can create three sets of functions called push() and pop()—one set for each type
of data. The general concept (interface) is that of pushing and popping data onto and
from a stack. The functions define the specific ways (methods) this is done for each

554 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

type of data. When you push data on the stack, it is the type of the data that will
determine which specific version of the push() function will be called.

Polymorphism helps reduce complexity by allowing the same interface to be used
to specify a general class of actions. It is the compiler’s job to select the specific action
(i.e., method) as it applies to each situation. You, the programmer, don’t need to do
this selection manually. You need only remember and utilize the general interface.

The first object-oriented programming languages were interpreters, so
polymorphism was supported at run time. However, because C++ is a compiled
language, polymorphism is supported at both run time and compile time.

Inheritance
Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of classification. If you think
about it, most knowledge is made manageable by hierarchical classifications. For
example, a Red Delicious apple is part of the apple class, which in turn is part of the
fruit class, which is under the larger food class. Without the use of classifications, each
object would have to define all of its characteristics explicitly. Using classifications, an
object need only define those qualities that make it unique within its class. It is the
inheritance mechanism that makes it possible for one object to be a specific instance
of a more general case.

Some C++ Fundamentals
Since C++ is a superset of C, most C programs are C++ programs as well. (There are a
few minor differences between C and C++ that will prevent certain types of C programs
from being compiled by a C++ compiler. These differences will be discussed later in
this book.) You can write C++ programs that look just like C programs, but you won’t
be taking full advantage of C++’s capabilities. Further, although C++ allows you to
write C-like programs, most C++ programmers use a style and certain features that
are unique to C++. Since it is important to use C++ to its full potential, this section
introduces a few of these features before moving on to the “meat” of C++.

Let’s begin with an example. Examine this C++ program:

#include <iostream>

using namespace std;

int main()

{

int i;

char str[80];

C
+

+
C h a p t e r 2 0 : A n O v e r v i e w o f C + + 555

556 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

cout << "I like C++ Builder.\n"; // this is a single-line comment

/* you can still use C-style comments, too */

// input a number using >>

cout << "Enter a number: ";

cin >> i;

// now, output a number using <<

cout << "Your number is " << i << "\n";

// read a string

cout << "Enter a string: ";

cin >> str;

// print it

cout << str;

return 0;

}

As you can see, this program looks different from the average C program. To begin,
notice that the header <iostream> is included, not <stdio.h>. The <iostream> header is
defined by C++ and supports the C++ I/O operations. Notice one other thing: there is
no .h extension to the name <iostream>. The reason is that <iostream> is a modern,
C++-style header, which does not use the .h extension.

The next line is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a relatively recent
addition to C++. A namespace creates a declarative region in which various program
elements can be placed. Namespaces help in the organization of large programs. The
using statement informs the compiler that you want to use the std namespace. This is
the namespace in which the entire Standard C++ library is declared. By using the std
namespace, you simplify access to the standard library. The programs in Part One and
Part Two, which use only the C subset, don’t need a namespace statement because the
C library functions are also available in the default, global namespace.

Since both the new-style headers and namespaces are relatively recent additions to
C++, you may encounter older code that does not use them. This will be especially
likely if you are porting code developed under an older compiler.

Now let’s examine the declaration of main(), which is defined like this

int main()

rather than the

int main(void)

that many of the programs in the preceding parts of this book have used. The reason
for this is that in C++, an empty parameter list is the same as one specified as void.
That is, the preceding two ways to declare main() are the same as far as C++ is
concerned. In C++, the use of void to indicate an empty parameter list is still permitted,
but it is redundant. Since it’s not needed, none of the C++ programs shown in this part
of the book will use void to indicate an empty parameter list.

The following line introduces several C++ features:

cout << "I like C++ Builder.\n"; // this is a single line comment

This line has two parts. First, the statement

cout << "I like C++ Builder.\n";

displays "I like C++ Builder." on the screen followed by a carriage return, linefeed
combination. In C++, the << has an expanded role. It is still the left-shift operator, but
when it is used as shown in this example, it is also an output operator. The word cout
is an identifier that is linked to the screen. Like C, C++ supports I/O redirection, but
for the sake of discussion, we can assume that cout refers to the screen. You can use
cout and the << to output any of the built-in data types plus strings of characters.

It is important to note that you can still use printf() or any other of C’s I/O
functions, but most programmers feel that using cout << is more in the spirit of C++.
More generally, a C++ program can use any library function supported by C++
Builder—including those defined by C. (These functions are described in Part Two
of this book.) However, in cases where C++ provides an alternative approach, it
should usually be used instead of a C-like library function (although there is no rule
that enforces this).

The second part of the line is a C++-style comment. In C++, two types of comments
are supported. First, you can use a C-like /*...*/ comment, which works the same in C++
as it does in C. Second, you can define a single-line comment using //. When you start a
comment using //, whatever follows is ignored by the compiler until the end of the line
is reached. In general, use C-like comments when creating multiline comments and use
single-line comments when only a short comment is needed.

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 557
C

+
+

558 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Next, the program prompts the user for a number. The number is read from the
keyboard using this statement:

cin >> i;

In C++, the >> operator retains its right-shift meaning, but when used as shown, it
causes i to be given a value read from the keyboard. The identifier cin refers to the
keyboard. In general you can use cin >> to load a variable of any of the basic data
types or a string.

Although this fact is not illustrated by the program, you are free to use any of C’s
input functions, such as scanf(), instead of using cin >>. However, as with cout, the
vast majority of programmers feel that cin >> is more in the spirit of C++.

Another interesting line in the program is shown here:

cout << "Your number is " << i << "\n";

This code displays the following phrase (assuming i has the value 100):

Your number is 100

followed by a carriage return and linefeed. In general, you can run together as many
<< output operations as you want.

The rest of the program demonstrates how you can read and write a string using
cin >> and cout <<. When inputting a string, cin >> stops reading when the first
white-space character is encountered. This is similar to the way the standard C function
scanf() works when inputting a string.

C++ Programs Use the .CPP Extension
Like all C++ compilers, C++ Builder can compile both C and C++ programs. In general,
if a program ends in .CPP it is compiled as a C++ program. If it ends in .C, it is compiled
as a C program. Therefore, the simplest way to cause C++ Builder to compile your
C++ program as a C++ program is to give it the .CPP extension. This is important
because attempting to compile a C++ program as if it were a C program will cause
compilation errors.

For information on compiling C++ programs, see Part 4.

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 559
C

+
+

A Closer Look at Headers and Namespaces
As explained earlier, C++ went through many changes before being standardized in
1998. In the course of these changes, many features were added to the language. Of
these, two affect the way nearly all programs are written: modern-style headers and
namespace statements. As they are relatively new additions to C++, old-style,
prestandard C++ supports neither of them. Of course, there are millions and millions
of lines of existing, old-style code. For the sake of compatibility with this older code,
most C++ compilers, including C++ Builder, continue to support the old approach.
However, for new code, you should use the modern approach, as the code in this
book does.

Since the key differences between old-style and modern code involve headers and
the namespace statement, a brief discussion of these features is warranted at this time.
This discussion is especially important if you will be bringing older code up-to-date.

Modern-Style Headers
As you know, when you use a library function in a program, you must include its header
file. This is done using the #include statement. For example, in C, to include the header
file for the I/O functions, you include stdio.h with a statement like this:

#include <stdio.h>

Here, stdio.h is (for all practical purposes) the name of the file used by the I/O functions,
and the preceding statement causes that file to be included in your program. The key
point is that this #include statement almost always specifies a file.

When C++ was first invented and for several years after that, it used the same style
of headers that C uses. That is, it used header files. In fact, Standard C++ still supports
C-style headers for header files that you create and for backward compatibility. However,
Standard C++ created a new kind of header that is used by the Standard C++ library.
The new style headers do not specify filenames. Instead, they simply specify standard
identifiers that may be mapped to files by the compiler but need not be. The new-style
C++ headers are an abstraction that simply guarantees that the appropriate prototypes
and definitions required by the C++ library have been declared.

Since the new-style headers are not filenames, they do not have a .h extension. They
consist solely of the header name contained between angle brackets. For example, here
are some of the new-style headers supported by C++.

<iostream> <fstream> <vector> <string>

560 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Like the old-style headers, the new-style headers are included using the #include
statement.

It is important to understand that ANSI/ISO Standard C++ does not support the
older, .h headers. Thus, a program that uses an old-style header is technically
nonstandard. As mentioned, C++ Builder supports the old-style headers for the sake of
compatibility with older code, but for new code you should use the modern headers.

Because C++ includes the entire C function library, it still supports the standard
C-style header files associated with that library. That is, header files such as <stdio.h>
or <ctype.h> are still available. However, Standard C++ also defines new-style headers
that you can use in place of these header files. The C++ versions of the C standard
headers simply add a c prefix to the filename and drop the .h. For example, the C++
new-style header for <math.h> is <cmath>. The one for <string.h> is <cstring>.
Although it is currently permissible to include a C-style header file when using C
library functions, this approach is deprecated by Standard C++ (that is, it is not
recommended). For this reason, Part Three of this book will use modern C++ headers
in all #include statements.

Namespaces
When you include a modern C++ header in your program, the contents of that header
are contained in the std namespace. As mentioned, a namespace is simply a declarative
region. The purpose of a namespace is to localize the names of identifiers to avoid name
collisions. Elements declared in one namespace are separate from elements declared in
another. Originally, the names of the C++ library functions, etc., were simply put into
the global namespace (as they are in C). However, with the advent of the ANSI/ISO
C++ standard and the modern-style headers, the contents of the headers are in the std
namespace. We will look at namespaces in detail later in this book. For now, you won’t
need to worry about them because the statement

using namespace std;

brings the std namespace into visibility (i.e., it puts std into the global namespace).
One other point: for the sake of compatibility, when a C++ program includes a C

header, such as <stdio.h>, its contents are put into the global namespace. This allows
a C++ compiler to compile C-subset programs.

Introducing C++ Classes
The class is at the root of C++. Before you can create an object in C++, you must first
define its general form using the keyword class. A class is similar syntactically to a

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 561
C

+
+

structure. As an example, this class defines a type called queue, which will be used to
implement a queue:

// This creates the class queue.

class queue {

int q[100];

int sloc, rloc;

public:

void init();

void qput(int i);

int qget();

};

A class can contain private as well as public parts. By default, all items defined in
the class are private. For example, the variables q, sloc, and rloc are private, meaning
they cannot be accessed by any function that is not a member of the class. This is how
encapsulation is achieved—access to certain items of data is tightly controlled by keeping
them private. Although not shown in this example, you can also define private functions,
which can only be called by other members of the class.

To make parts of a class public (accessible to other parts of your program), you
must declare them after the public keyword. All variables or functions defined after
public are accessible by all other functions in the program. Generally, the rest of your
program accesses an object through its public functions. Although you can have public
variables, you should try to limit or eliminate their use. Instead, you should make all
data private and control access to it through public functions. Thus, public functions
provide the interface to your class’s private data. This helps preserve encapsulation.
One other point: Notice that the public keyword is followed by a colon.

The functions init(), qput(), and qget() are called member functions because they
are part of the class queue. The variables sloc, rloc, and q are called member variables
(or data members). Only member functions have access to the private members of the
class in which they are declared. Thus, only init(), qput(), and qget() have access to
sloc, rloc, and q.

Once you have defined a class, you can create an object of that type using the class
name. In essence, the class’s name becomes a new data type specifier. For example, this
code creates an object called intqueue of type queue:

queue intqueue;

You can also create objects when defining a class by putting the variable names after
the closing curly brace, in exactly the same way as you do with a structure.

The general form of a class declaration is

class class-name {
private data and functions

public:
public data and functions

} object-list;

Of course, the object-list may be empty.
Inside the declaration of queue, prototypes to the member functions are used.

In C++, when you need to tell the compiler about a function, you must use its full
prototype form. Further, in C++, all functions must be prototyped. Prototypes are
not optional, as they are in C.

When it comes time to actually code a function that is a member of a class, you
must tell the compiler to which class the function belongs. For example, here is one
way to code the qput() function:

void queue::qput(int i)

{

if(sloc==99) {

cout << "Queue is full.\n";

return;

}

sloc++;

q[sloc] = i;

}

The :: is called the scope resolution operator. Essentially, it tells the compiler that this
version of qput() belongs to the queue class or, put differently, that this qput() is in
queue’s scope. In C++, several different classes can use the same function names. The
compiler knows which function belongs to which class because of the scope resolution
operator and the class name.

To call a member function from a part of your program that is not a member of the
class, you must use an object’s name and the dot operator. For example, this fragment
calls init() for object a:

queue a, b;

a.init();

It is very important to understand that a and b are two separate objects. This means
that initializing a does not cause b to be initialized. The only relationship a has with b

562 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

is that they are objects of the same type. Further, a’s copies of sloc, rloc, and q are
completely separate from b’s.

Only when a member function is called by code that does not belong to the class
must the object name and the dot operator be used. Otherwise, one member function
can call another member function directly, without using the dot operator. Also,
a member function can refer directly to member variables without the use of the
dot operator.

The program shown here demonstrates all the pieces of queue class.

#include <iostream>

using namespace std;

// This creates the class queue.

class queue {

int q[100];

int sloc, rloc;

public:

void init();

void qput(int i);

int qget();

};

void queue::init()

{

rloc = sloc = 0;

}

void queue::qput(int i)

{

if(sloc==99) {

cout << "Queue is full.\n";

return;

}

sloc++;

q[sloc] = i;

}

int queue::qget()

{

if(rloc == sloc) {

cout << "Queue underflow.\n";

return 0;

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 563
C

+
+

}

rloc++;

return q[rloc];

}

int main()

{

queue a, b; // create two queue objects

// now, access the queues through their member functions

a.init();

b.init();

a.qput(10);

b.qput(19);

a.qput(20);

b.qput(1);

cout << a.qget() << " ";

cout << a.qget() << " ";

cout << b.qget() << " ";

cout << b.qget() << "\n";

return 0;

}

Remember that the private members of an object are accessible only by functions
that are also members of that object. For example, the statement

a.rloc = 0;

could not be in the main() function of the previous program because rloc is private.

By convention, in most C programs the main() function is the first function in the
program. However, in the queue program the member functions of queue are defined
before the main() function. While there is no rule that dictates this (they could be defined
anywhere in the program), this is the most common approach used when writing C++
code. (In fact, classes and the member functions associated with them are usually
contained in a header file.)

564 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Function Overloading
One way that C++ achieves polymorphism is through the use of function overloading.
In C++, two or more functions can share the same name as long as their parameter
declarations are different. In this situation, the functions that share the same name are
said to be overloaded. For example, consider this program:

#include <iostream>

using namespace std;

// sqr_it is overloaded three ways

int sqr_it(int i);

double sqr_it(double d);

long sqr_it(long l);

int main()

{

cout << sqr_it(10) << "\n";

cout << sqr_it(11.0) << "\n";

cout << sqr_it(9L) << "\n";

return 0;

}

// Define sqr_it for ints.

int sqr_it(int i)

{

cout << "Inside the sqr_it() function that uses ";

cout << "an integer argument.\n";

return i*i;

}

// Overload sqr_it for doubles.

double sqr_it(double d)

{

cout << "Inside the sqr_it() function that uses ";

cout << "a double argument.\n";

return d*d;

}

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 565
C

+
+

// Overload sqr_it again, this time for longs.

long sqr_it(long l)

{

cout << "Inside the sqr_it() function that uses ";

cout << "a long argument.\n";

return l*l;

}

This program creates three similar but different functions called sqr_it(), each of
which returns the square of its argument. As the program illustrates, the compiler
knows which function to use in each case because of the type of the argument. The
value of overloaded functions is that they allow related sets of functions to be accessed
using a common name. In a sense, function overloading lets you create a generic name
for an operation; the compiler resolves which function is actually needed to perform
the operation.

Function overloading is important because it can help manage complexity. To
understand how, consider this example. C++ Builder contains the functions itoa(),
ltoa(), and ultoa() in its standard library. Collectively, these functions convert different
types of numbers (integers, long integers, and unsigned integers) into their string
equivalents. Even though these functions perform almost identical actions, in C three
different names must be used to represent these tasks, which makes the situation more
complex than it actually is. Even though the underlying concept of each function is the
same, the programmer has three things to remember. However, in C++ it is possible to
use the same name, such as numtoa(), for all three functions. Thus, the name numtoa()
represents the general action that is being performed. It is left to the compiler to choose
the specific version for a particular circumstance; the programmer need only remember
the general action being performed. Therefore, by applying polymorphism, three
things to remember are reduced to one. If you expand the concept, you can see how
polymorphism can help you manage very complex programs.

A more practical example of function overloading is illustrated by the following
program. There are no library functions that prompt the user for input and then wait
for a response, but it is possible to create one. This program creates three functions
called prompt() that perform this task for data of types int, double, and long:

#include <iostream>

using namespace std;

void prompt(char *str, int *i);

void prompt(char *str, double *d);

void prompt(char *str, long *l);

566 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main()

{

int i;

double d;

long l;

prompt("Enter an integer: ", &i);

prompt("Enter a double: ", &d);

prompt("Enter a long: ", &l);

cout << i << " " << d << " " << l;

return 0;

}

// Prompt for an int.

void prompt(char *str, int *i)

{

cout << str;

cin >> *i;

}

// Prompt for a double.

void prompt(char *str, double *d)

{

cout << str;

cin >> *d;

}

// Prompt for a long.

void prompt(char *str, long *l)

{

cout << str;

cin >> *l;

}

You can use the same name to overload unrelated functions, but you should not.
For example, you could use the name sqr_it() to create functions that return the
square of an int and the square root of a double. However, these two operations are
fundamentally different, and applying function overloading in this manner defeats
its purpose. In practice, you should only overload closely related operations.

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 567
C

+
+

Operator Overloading
Another way that polymorphism is achieved in C++ is through operator overloading.
For example, in C++ you can use the << and >> operators to perform console I/O
operations. This is possible because in the <iostream> header, these operators
are overloaded. When an operator is overloaded, it takes on an additional meaning
relative to a certain class. However, it still retains all of its old meanings.

In general, you can overload C++’s operators by defining what they mean relative
to a specific class. For example, think back to the queue class developed earlier in this
chapter. It is possible to overload the + operator relative to objects of type queue so
that it appends the contents of one queue to another. However, the + still retains its
original meaning relative to other types of data.

Because operator overloading is, in practice, somewhat more complicated than
function overloading, examples are deferred until Chapter 22, when the subject is
covered in detail.

Inheritance
Inheritance is one of the major traits of an object-oriented programming language. In
C++, inheritance is supported by allowing one class to incorporate another class into
its declaration. Inheritance allows a hierarchy of classes to be built, moving from most
general to most specific. The process involves first defining a base class, which defines
those qualities common to all objects to be derived from the base. The base class
represents the most general description. The classes derived from the base are usually
referred to as derived classes. A derived class includes all features of the generic base
class and then adds qualities specific to itself. To demonstrate how this process works,
the next example creates classes that categorize different types of vehicles.

To begin, here is a class, called road_vehicle, that very broadly defines vehicles
that travel on the road. It stores the number of wheels a vehicle has and the number
of passengers it can carry.

class road_vehicle {

int wheels;

int passengers;

public:

void set_wheels(int num);

int get_wheels();

void set_pass(int num);

int get_pass();

};

We can now use this broad definition of a road vehicle to define specific objects. For
example, this declares a class called truck using road_vehicle.

568 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

class truck : public road_vehicle {

int cargo;

public:

void set_cargo(int size);

int get_cargo();

void show();

};

Notice how road_vehicle is inherited. The general form for inheritance is:

class new-class-name : access inherited-class {
// body of new class

}

Here, access is optional, but if present it must be either public, private, or protected.
You will learn more about these options in Chapter 23. For now, all inherited classes
will use public, which means that all the public elements of the ancestor are also public
in the class that inherits it. Therefore, in the example, members of the class truck have
access to the member functions of road_vehicle just as if they had been declared inside
truck. However, the member functions of truck do not have access to the private
elements of road_vehicle.

The following program illustrates inheritance by creating two subclasses of
road_vehicle: truck and automobile:

#include <iostream>

using namespace std;

class road_vehicle {

int wheels;

int passengers;

public:

void set_wheels(int num);

int get_wheels();

void set_pass(int num);

int get_pass();

};

// Extend road_vehicle for trucks.

class truck : public road_vehicle {

int cargo;

public:

void set_cargo(int size);

int get_cargo();

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 569
C

+
+

void show();

};

enum type {car, van, wagon};

// Extend road_vehicle for cars.

class automobile : public road_vehicle {

enum type car_type;

public:

void set_type(enum type t);

enum type get_type();

void show();

};

void road_vehicle::set_wheels(int num)

{

wheels = num;

}

int road_vehicle::get_wheels()

{

return wheels;

}

void road_vehicle::set_pass(int num)

{

passengers = num;

}

int road_vehicle::get_pass()

{

return passengers;

}

void truck::set_cargo(int num)

{

cargo = num;

}

int truck::get_cargo()

{

return cargo;

570 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

}

void truck::show()

{

cout << "Wheels: " << get_wheels() << "\n";

cout << "Passengers: " << get_pass() << "\n";

cout << "Cargo capacity in cubic feet: " << cargo << "\n";

}

void automobile::set_type(enum type t)

{

car_type = t;

}

enum type automobile::get_type()

{

return car_type;

}

void automobile::show()

{

cout << "Wheels: " << get_wheels() << "\n";

cout << "Passengers: " << get_pass() << "\n";

cout << "Type: ";

switch(get_type()) {

case van: cout << "Van\n";

break;

case car: cout << "Car\n";

break;

case wagon: cout << "Wagon\n";

}

}

int main()

{

truck t1, t2;

automobile c;

t1.set_wheels(18);

t1.set_pass(2);

t1.set_cargo(3200);

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 571
C

+
+

572 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

t2.set_wheels(6);

t2.set_pass(3);

t2.set_cargo(1200);

t1.show();

t2.show();

c.set_wheels(4);

c.set_pass(6);

c.set_type(van);

c.show();

return 0;

}

As this program illustrates, the major advantage of inheritance is that you can
create a base classification that can be incorporated into more specific classes. In this
way, each object can represent its own classification precisely.

Notice that both truck and automobile include member functions called show(),
which display information about each object. This is another aspect of polymorphism.
Since each show() is linked with its own class, the compiler can easily tell which one
to call in any circumstance.

Constructors and Destructors
It is not unusual for some part of an object to require initialization before it can be used.
For example, think back to the queue class developed earlier in this chapter. Before
queue could be used, the variables rloc and sloc had to be set to 0 using the function
init(). Because the requirement for initialization is so common, C++ allows objects to
initialize themselves when they are created. This automatic initialization is performed
through the use of a constructor.

A constructor is a special function that is a member of a class and has the same name
as that class. For example, here is how the queue class looks when converted to use a
constructor function for initialization:

// This creates the class queue.

class queue {

int q[100];

int sloc, rloc;

public:

queue(); // constructor

void qput(int i);

int qget();

};

Notice that the constructor queue() has no return type specified. In C++, constructors
cannot return values.

The queue() function is coded like this:

// This is the constructor function.

queue::queue()

{

sloc = rloc = 0;

cout << "Queue initialized.\n";

}

Keep in mind that the message "Queue initialized." is output as a way to illustrate the
constructor. In actual practice, most constructors will not output or input anything.
They will simply perform various initializations.

An object’s constructor is automatically called when the object is created. This
means that it is called when the object’s declaration is executed. There is an important
distinction between a C-like declaration statement and a C++ declaration. In C, variable
declarations are, loosely speaking, passive and resolved mostly at compile time. Put
differently, in C, variable declarations are not thought of as being executable statements.
However, in C++, variable declarations are active statements that are, in fact, executed
at run time. One reason for this is that an object declaration may need to call a
constructor, thus causing the execution of a function. Although this difference may
seem subtle and largely academic at this point, it has some important implications
relative to variable initialization, as you will see later.

An object’s constructor is called once for global or static local objects. For local
objects, the constructor is called each time the object declaration is encountered.

The complement of the constructor is the destructor. In many circumstances, an
object needs to perform some action or actions when it is destroyed. Local objects are
created when their block is entered and destroyed when the block is left. Global objects
are destroyed when the program terminates. There are many reasons why a destructor
may be needed. For example, an object may need to deallocate memory that it had
previously allocated. In C++, it is the destructor that handles deactivation. The destructor
has the same name as the constructor but is preceded by a ~. The following is an example
of queue that uses a constructor and a destructor. (Keep in mind that the queue class
does not require a destructor, so the one shown here is just for illustration.)

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 573
C

+
+

// This creates the class queue.

class queue {

int q[100];

int sloc, rloc;

public:

queue(); // constructor

~queue(); // destructor

void qput(int i);

int qget();

};

// This is the constructor function.

queue::queue()

{

sloc = rloc = 0;

cout << "Queue initialized.\n";

}

// This is the destructor function.

queue::~queue()

{

cout << "Queue destroyed.\n";

}

To see how constructors and destructors work, here is a new version of the queue
sample program from earlier in this chapter:

#include <iostream>

using namespace std;

// This creates the class queue.

class queue {

int q[100];

int sloc, rloc;

public:

queue(); // constructor

~queue(); // destructor

void qput(int i);

int qget();

};

// This is the constructor function.

574 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

queue::queue()

{

sloc = rloc = 0;

cout << "Queue initialized.\n";

}

// This is the destructor function.

queue::~queue()

{

cout << "Queue destroyed.\n";

}

void queue::qput(int i)

{

if(sloc==99) {

cout << "Queue is full.\n";

return;

}

sloc++;

q[sloc] = i;

}

int queue::qget()

{

if(rloc == sloc) {

cout << "Queue underflow.\n";

return 0;

}

rloc++;

return q[rloc];

}

int main()

{

queue a, b; // create two queue objects

a.qput(10);

b.qput(19);

a.qput(20);

b.qput(1);

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 575
C

+
+

cout << a.qget() << " ";

cout << a.qget() << " ";

cout << b.qget() << " ";

cout << b.qget() << "\n";

return 0;

}

This program displays the following:

Queue initialized.

Queue initialized.

10 20 19 1

Queue destroyed.

Queue destroyed.

The C++ Keywords
There are 63 keywords currently defined by Standard C++. These are shown in
Table 20-1. Remember that you cannot use any of the keywords as names for variables
or functions. C++ Builder also defines a few special-purpose, nonstandard keywords,
such as _ _rtti and _ _classid, which can be used in nonportable programs.

576 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

asm auto bool break

case catch char class

const const_cast continue default

delete do double dynamic_cast

else enum explicit export

extern false float for

friend goto if inline

int long mutable namespace

new operator private protected

public register reinterpret_cast return

Table 20-1. The Standard C++ Keywords

Two New Data Types
In looking at the list of keywords in Table 20-1, you may have noticed bool and
wchar_t. The bool data type is capable of holding a Boolean value. Objects of type
bool may have only the values true and false. The values true and false are also
keywords that are part of the C++ language. Values of type bool are automatically
elevated to integers when used in a non-Boolean expression. Although C++ defines the
bool data type, it still fully supports the fundamental concept of nonzero values being
true and zero being false.

The type wchar_t holds wide characters. They are used to represent the character
sets of languages that have more than 255 characters. The wchar_t is supported in C
as a defined type using typedef. In C++, it has become a keyword.

Now that you have been introduced to many of C++’s major features, the remaining
chapters in this section will examine C++ in detail.

C h a p t e r 2 0 : A n O v e r v i e w o f C + + 577
C

+
+

short signed sizeof static

static_cast struct switch template

this throw true try

typedef typeid typename union

unsigned using virtual void

volatile wchar_t while

Table 20-1. The Standard C++ Keywords (continued)

This page intentionally left blank.

Chapter 21
A Closer Look at
Classes and Objects

579

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Classes and objects are two of C++’s most important features. This chapter
examines them and related issues in detail.

Parameterized Constructors
It is possible to pass arguments to constructors. Typically, these arguments are used to
initialize an object when it is created. To create a parameterized constructor, simply
add parameters to it the way you would to any other function. When you define the
constructor’s body, use the parameters to initialize the object. For example, it is possible
to enhance the queue class that ended the previous chapter to accept an argument that
will act as the queue’s ID number. First, queue is changed to look like this:

// This creates the class queue.

class queue {

int q[100];

int sloc, rloc;

int who; // holds the queue's ID number

public:

queue(int id); // parameterized constructor

~queue(); // destructor

void qput(int i);

int qget();

};

The variable who is used to hold an ID number that identifies the queue. Its value
is determined by the argument passed to id when a variable of type queue is created.
The queue() constructor function now looks like this:

// This is the constructor function.

queue::queue(int id)

{

sloc = rloc = 0;

who = id;

cout << "Queue " << who << " initialized\n";

}

To pass an argument to the constructor, you must specify its value when an object
is declared. C++ has two ways to accomplish this. The first method is shown here.

queue a = queue(101);

580 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

This calls the queue class’s constructor directly, passing the value 101 to it. The object
returned by the constructor is assigned to a.

The second method is shorter and more to the point. In this method, the argument
or arguments must follow the object’s name and be enclosed in parentheses. This code
accomplishes the same thing as the previous declaration:

queue a(101);

Since this method is used by virtually all C++ programmers, it is used by this book
nearly exclusively.

The general form of passing arguments to constructor functions is

class-type obj(arg-list);

Here, arg-list is a comma-separated list of arguments that are passed to the constructor.
The following version of the queue program demonstrates passing arguments to

constructor functions:

#include <iostream>

using namespace std;

// This creates the class queue.

class queue {

int q[100];

int sloc, rloc;

int who; // holds the queue's ID number

public:

queue(int id); // parameterized constructor

~queue(); // destructor

void qput(int i);

int qget();

};

// This is the constructor function.

queue::queue(int id)

{

sloc = rloc = 0;

who = id;

cout << "Queue " << who << " initialized.\n";

}

// This is the destructor function.

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 581
C

+
+

queue::~queue()

{

cout << "Queue " << who << " destroyed.\n";

}

void queue::qput(int i)

{

if(sloc==99) {

cout << "Queue is full.\n";

return;

}

sloc++;

q[sloc] = i;

}

int queue::qget()

{

if(rloc == sloc) {

cout << "Queue underflow.\n";

return 0;

}

rloc++;

return q[rloc];

}

int main()

{

queue a(1), b(2); // create two queue objects

a.qput(10);

b.qput(19);

a.qput(20);

b.qput(1);

cout << a.qget() << " ";

cout << a.qget() << " ";

cout << b.qget() << " ";

cout << b.qget() << "\n";

return 0;

}

582 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This program produces the following output:

Queue 1 initialized.

Queue 2 initialized.

10 20 19 1

Queue 2 destroyed.

Queue 1 destroyed.

As you can see by looking at main(), the queue associated with a is given the ID
number 1, and the queue associated with b is given the number 2.

Although the queue example passes only a single argument when an object is
created, it is possible to pass several. Here, for example, objects of type widget are
passed two values:

#include <iostream>

using namespace std;

class widget {

int i;

int j;

public:

widget(int a, int b);

void put_widget();

} ;

widget::widget(int a, int b)

{

i = a;

j = b;

}

void widget::put_widget()

{

cout << i << " " << j << "\n";

}

int main()

{

widget x(10, 20), y(0, 0);

x.put_widget();

y.put_widget();

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 583
C

+
+

584 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

This program displays

10 20

0 0

Constructors with One Parameter: A Special Case
If a constructor has only one parameter, then there is a third way to pass an initial
value to that constructor. For example, consider the following short program.

#include <iostream>

using namespace std;

class X {

int a;

public:

X(int j) { a = j; }

int geta() { return a; }

};

int main()

{

X ob = 99; // passes 99 to j

cout << ob.geta(); // outputs 99

return 0;

}

Here, the constructor for X takes one parameter. Pay special attention to how ob is
declared in main(). In this form of initialization, 99 is automatically passed to the j
parameter in the X() constructor. That is, this statement

X ob = 99; // passes 99 to j

is handled by the compiler as if it were written like this:

X ob = X(99);

C
+

+

In general, any time that you have a constructor that requires only one argument,
you can use either ob(i) or ob = i to initialize an object. The reason for this is that
whenever you create a constructor that takes one argument, you are also implicitly
creating a conversion from the type of that argument to the type of the class.

Remember that the alternative shown here applies only to constructors that
have exactly one parameter.

Friend Functions
It is possible for a nonmember function to have access to the private members of a
class by declaring it as a friend of the class. For example, here frd() is declared to be
a friend of the class cl:

class cl {

// ...

public:

friend void frd();

// ...

};

As you can see, the keyword friend precedes the entire function declaration.
One reason that friend functions are allowed in C++ is to accommodate situations

in which, for the sake of efficiency, two classes must share the same function. To see an
example, consider a program that defines two classes called line and box. The class line
contains all necessary data and code to draw a horizontal dashed line of any specified
length, beginning at a specified x,y coordinate using a specified color. The box class
contains all code and data to draw a box at the specified upper-left and lower-right
coordinates in a specified color. Both classes use the same_color() function to
determine whether a line and a box are drawn in the same color. These classes
are declared as shown here:

class line;

class box {

int color; // color of box

int upx, upy; // upper left corner

int lowx, lowy; // lower right corner

public:

friend int same_color(line l, box b);

void set_color(int c);

void define_box(int x1, int y1, int x2, int y2);

void show_box();

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 585

} ;

class line {

int color; // color of line

int startx, starty; // coordinates

int len; // length

public:

friend int same_color(line l, box b);

void set_color(int c);

void define_line(int x, int y, int l);

void show_line();

} ;

The same_color() function, which is a member of neither class but a friend of
both, returns true if both the line object and the box object, which form its arguments,
are drawn in the same color; it returns 0 otherwise. The same_color() function is
defined as:

// Return true if line and box have same color.

int same_color(line l, box b)

{

if(l.color==b.color) return 1;

return 0;

}

As you can see, the same_color() function needs access to the private members of
both line and box to perform its task efficiently. Being a friend of each class grants it
this access privilege. Further, notice that because same_color() is not a member, no
scope resolution operator or class name is used in its definition. (Remember that public
functions can be created to return the colors of both line and box, and any function
could have compared their colors. However, such an approach requires extra function
calls, which in some cases is inefficient.)

Notice the empty declaration of line at the start of the class declarations. Since
same_color() in box refers to line before line is declared, line must be forward
referenced. If this is not done, the compiler will not know about line when it is
encountered in the declaration of box. In C++, a forward reference to a class is
simply the keyword class followed by the type name of the class.

Here is a program that demonstrates the line and box classes and illustrates how
a friend function can access the private members of a class. (This program must be run
in a console session under Windows.)

586 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 587
C

+
+

#include <iostream>

#include <conio.h>

using namespace std;

class line;

class box {

int color; // color of box

int upx, upy; // upper left corner

int lowx, lowy; // lower right corner

public:

friend int same_color(line l, box b);

void set_color(int c);

void define_box(int x1, int y1, int x2, int y2);

void show_box();

} ;

class line {

int color; // color of line

int startx, starty; // coordinates

int len; // length

public:

friend int same_color(line l, box b);

void set_color(int c);

void define_line(int x, int y, int l);

void show_line();

} ;

// Return true if line and box have same color.

int same_color(line l, box b)

{

if(l.color==b.color) return 1;

return 0;

}

void box::set_color(int c)

{

color = c;

}

void line::set_color(int c)

588 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

{

color = c;

}

void box::define_box(int x1, int y1, int x2, int y2)

{

upx = x1;

upy = y1;

lowx = x2;

lowy = y2;

}

void box::show_box()

{

int i;

textcolor(color);

gotoxy(upx, upy);

for(i=upx; i<=lowx; i++) cprintf("-");

gotoxy(upx, lowy-1);

for(i=upx; i<=lowx; i++) cprintf("-");

gotoxy(upx, upy);

for(i=upy; i<=lowy; i++) {

cprintf("|");

gotoxy(upx, i);

}

gotoxy(lowx, upy);

for(i=upy; i<=lowy; i++) {

cprintf("|");

gotoxy(lowx, i);

}

}

void line::define_line(int x, int y, int l)

{

startx = x;

starty = y;

len = l;

}

void line::show_line()

{

int i;

textcolor(color);

gotoxy(startx, starty);

for(i=0; i<len; i++) cprintf("-");

}

int main()

{

box b;

line l;

b.define_box(10, 10, 15, 15);

b.set_color(3);

b.show_box();

l.define_line(2, 2, 10);

l.set_color(2);

l.show_line();

if(!same_color(l, b)) cout << "Not the same.\n";

cout << "\nPress a key.";

getch();

// now, make line and box the same color

l.define_line(2, 2, 10);

l.set_color(3);

l.show_line();

if(same_color(l, b)) cout << "Are the same color.\n";

return 0;

}

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 589
C

+
+

Notice that same_color() is not called on an object, using the dot operator. As a friend,
it cannot be called on an object the way a member function is. Usually, friend functions
are passed the objects that they will operate on, as is the case with same_color().

There are two important restrictions that apply to friend functions. First, a derived
class does not inherit friend functions. Second, friend functions may not have a
storage-class specifier. That is, they may not be declared as static or extern.

Default Function Arguments
C++ allows a function to assign a default value to a parameter when no argument
corresponding to that parameter is specified in a call to that function. The default value
is specified in a manner syntactically similar to a variable initialization. For example,
this declares f() as taking one integer variable that has a default value of 1:

void f(int i = 1)

{

// ...

}

Now, f() can be called one of two ways, as these examples show.

f(10); // pass an explicit value

f(); // let function use default

The first call passes the value 10 to i. The second call gives i the default value 1.
Default arguments in C++ enable a programmer to manage greater complexity.

In order to handle the widest variety of situations, a function frequently contains more
parameters than are required for its most common use. When using default arguments,
you need only specify arguments that are not the defaults in that particular situation.

To better understand the reason for default arguments, let’s develop a practical
example. One useful function, called xyout(), is shown here:

//Output a string at specified X,Y location.

void xyout(char *str, int x = 0, int y = 0)

{

if(!x) x = wherex();

if(!y) y = wherey();

gotoxy(x, y);

cout << str;

}

590 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

This function displays the string pointed to by str beginning at the x,y location
defined by x and y. However, if neither x nor y are specified, the string is output at the
current x,y location. (You can think of this function as an advanced version of puts().)
The functions wherex(), wherey(), and gotoxy() are part of C++ Builder’s library.
The wherex() and wherey() functions return the current x and y coordinates,
respectively. The current x and y coordinates define where the following output
operation will begin. The gotoxy() function moves the cursor to the specified x,y
location. (Chapter 18 discusses the screen control functions in depth.)

The following short program demonstrates how to use xyout(). (This program
must be run in a console session in Windows.)

#include <iostream>

#include <conio.h>

using namespace std;

void xyout(char *str, int x=0, int y=0)

{

if(!x) x = wherex();

if(!y) y = wherey();

gotoxy(x, y);

cout << str;

}

int main()

{

xyout("hello", 10, 10);

xyout(" there");

xyout("I like C++", 40); // this is still on line 10

xyout("This is on line 11.\n", 1, 11);

xyout("This follows on line 12.\n");

xyout("This follows on line 13.");

return 0;

}

Look closely at how xyout() is called inside main(). This program produces
output similar to that shown in Figure 21-1. As this program illustrates, although it is
sometimes useful to specify the exact location where text will be displayed, often, you
simply can continue on from the point at which the last output occurred. By using
default arguments, you can use the same function to accomplish both goals—there is
no need for two separate functions.

C
+

+
C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 591

Notice that in main(), xyout() is called with either three, two, or one arguments.
When the function is called with only one argument, both x and y default. However,
when it is called with two arguments, only y defaults. There is no way to call xyout()
with x defaulting and y being specified. More generally, when a function is called, all
arguments are matched to their respective parameters in order from left to right. Once
all existing arguments have been matched, any remaining, default arguments are used.

When creating functions that have default argument values, the default values
must be specified only once, and this must be the first time the function is declared
within the file. For example, if xyout() is defined after main(), the default arguments
must be declared in xyout()’s prototype, but the values are not repeated in xyout()’s
definition. The following program illustrates this:

#include <iostream>

#include <conio.h>

using namespace std;

void xyout(char *str, int x = 0, int y = 0);

int main()

{

xyout("hello", 10, 10);

xyout(" there");

xyout("I like C++", 40); // this is still on line 10

xyout("This is on line 11.\n", 1, 11);

xyout("This follows on line 12.\n");

xyout("This follows on line 13.");

return 0;

}

592 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

hello there I like C++
This is on line 11.
This follows on line 12.
This follows on line 13.

Figure 21-1. Sample output from the xyout() program

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 593
C

+
+

/* Since x and y's defaults have already been specified

in xyout()'s prototype, they cannot

be repeated here.

*/

void xyout(char *str, int x, int y)

{

if(!x) x = wherex();

if(!y) y = wherey();

gotoxy(x, y);

cout << str;

}

If you try specifying new or even the same default values in xyout()’s definition,
the compiler will display an error and not compile your program.

Even though default arguments cannot be redefined, each version of an overloaded
function can specify different default arguments.

When defining parameters, it is important to understand that all parameters that
take default values must appear to the right of those that do not. That is, you cannot
specify a nondefaulting parameter once you have defined a parameter that takes a
default value. For example, it would have been incorrect to define xyout() as:

// wrong!

void xyout(int x = 0, int y = 0, char *str)

Here is another incorrect attempted use of default parameters.

// wrong !

int f(int i, int j=10, int k)

Once the default parameters begin, no nondefaulting parameter may occur in the list.
You can also use default parameters in an object’s constructor. For example, here

is a slightly different version of the queue() constructor function, shown earlier in
this chapter.

/* This is the constructor function that uses

a default value. */

queue::queue(int id=0)

{

sloc = rloc = 0;

who = id;

cout << "Queue " << who << " initialized.\n";

}

In this version, if an object is declared without any initializing values, id defaults to 0.
For example,

queue a, b(2);

creates two objects, a and b. The id value of a is 0 and b is 2.

Using Default Arguments Correctly
Although default arguments can be a very powerful tool when used correctly, they
can be misused. Default arguments should allow a function to perform its job efficiently
and easily while still allowing considerable flexibility. Toward this end, default
arguments should represent a common usage of the function. It should be the
exception, not the rule, for the user of your function to specify other arguments. One
other important guideline you should follow when using default arguments is this:
No default argument should cause a harmful or destructive action. Put differently,
the accidental use of a default argument should not cause a catastrophe.

Classes and Structures Are Related
In C++ the struct has some expanded capabilities compared to its C counterpart. In
C++, classes and structs are closely related. In fact, with one exception, they are
interchangeable because the C++ struct can include data and the code that manipulates
that data in the same way that a class can. Structures may also contain constructor and
destructor functions. The only difference is that by default the members of a class are
private, while by default the members of a struct are public. According to the formal
C++ syntax, a struct defines a class type. Consider this program:

#include <iostream>

using namespace std;

struct cl {

int get_i(); // these are public

void put_i(int j); // by default

private:

594 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int i;

} ;

int cl::get_i()

{

return i;

}

void cl::put_i(int j)

{

i = j;

}

int main()

{

cl s;

s.put_i(10);

cout << s.get_i();

return 0;

}

This simple program defines a structure type called cl in which get_i() and put_i()
are public and i is private. Notice that a struct uses the keyword private to introduce
the private members of the structure.

The following program shows an equivalent program using a class instead of a struct.

#include <iostream>

using namespace std;

class cl {

int i; // private by default

public:

int get_i();

void put_i(int j);

} ;

int cl::get_i()

{

return i;

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 595
C

+
+

}

void cl::put_i(int j)

{

i = j;

}

int main()

{

cl s;

s.put_i(10);

cout << s.get_i();

return 0;

}

For the most part, C++ programmers use class when defining an object that contains
both code and data. They use struct when defining a data-only object. (That is, struct is
usually used in a way that is compatible with C-style structures.) However, from time
to time you will see C++ code that uses the expanded capabilities of structures.

Unions and Classes Are Related
Just as structures and classes are related in C++, unions are also related to classes.
A union is essentially a structure in which all elements are stored in the same location.
A union can contain constructor and destructor functions as well as member and
friend functions. As in a structure, union members are public by default. For example,
the following program uses a union to display the characters that make up the low-
and high-order bytes of a short integer (which is 2 bytes long for C++ Builder):

#include <iostream>

using namespace std;

union u_type {

u_type(short int a); // public by default

void showchars();

short int i;

char ch[2];

};

596 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

// constructor

u_type::u_type(short int a)

{

i = a;

}

// Show the characters that compose an int.

void u_type::showchars()

{

cout << ch[0] << " ";

cout << ch[1] << "\n";

}

int main()

{

u_type u(1000);

u.showchars();

return 0;

}

It is important to understand that like a structure, a union declaration in C++
defines a class type. This means that the principles of encapsulation are preserved.

There are several restrictions that must be observed when you use C++ unions.
First, a union cannot inherit any other classes of any type. Further, a union cannot be
a base class. A union cannot have virtual member functions. (Virtual functions are
discussed in Chapter 23.) No static variables can be members of a union. A union
cannot have as a member any object that overloads the = operator. A reference member
cannot be used. Finally, no object can be a member of a union if the object has an explicit
constructor or destructor.

Anonymous Unions
There is a special type of union in C++ called an anonymous union. An anonymous
union does not include a type name, and no variables of the union can be declared.
Instead, an anonymous union tells the compiler that its member variables are to share
the same location. However, the variables themselves are referred to directly, without
the normal dot operator syntax. Here is a short example using an anonymous union.

#include <iostream>

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 597
C

+
+

using namespace std;

int main()

{

// This declares an anonymous union.

union { // no tag name

int i;

char ch[4];

} ; // no variables specified

/* Now reference i and ch without referencing

a union name or dot or arrow operators.

*/

i = 88;

cout << i << " " << ch[0];

return 0;

}

As you can see, the elements of the union are referenced as if they had been declared
as normal local variables. In fact, relative to your program, that is exactly how you will
use them. Further, even though they are defined within a union declaration, they are
at the same scope level as any other local variable within the same block. This implies
that the names of the members of an anonymous union must not conflict with other
identifiers known within the same scope.

All restrictions involving unions apply to anonymous ones, with these additions.
First, the elements contained within an anonymous union must be data. No member
functions are allowed. Anonymous unions cannot contain private or protected elements.
Finally, global anonymous unions must be specified as static.

Remember, just because C++ gives unions greater power and flexibility does not
mean that you have to use it. In cases where you simply need a C-style union you
are free to use one in that manner. However, in cases where you can encapsulate a
union along with the routines that manipulate it, you add considerable structure to
your program.

Inline Functions
Although it does not pertain specifically to object-oriented programming, a very useful
feature of C++ is the inline function. An inline function is a function whose code is
expanded in line at the point at which it is called instead of actually being called. This
is much like a parameterized function-like macro in C, but more flexible. There are two

598 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

ways to create an inline function. The first is to use the inline modifier. For example, to
create an inline function called f that returns an int and takes no parameters, you must
declare it like this:

inline int f()

{

// ...

}

The general form of inline is

inline function_declaration

The inline modifier precedes all other aspects of a function’s declaration.
The reason for inline functions is efficiency. Every time a function is called, a series

of instructions must be executed to set up the function call, including pushing any
arguments onto the stack, and returning from the function. In some cases, many CPU
cycles are used to perform these procedures. However, when a function is expanded
in line, no such overhead exists, and the overall speed of your program increases.
However, in cases where the inline function is large, the overall size of your program
also increases. For this reason, the best inline functions are those that are very small.
Larger functions should be left as normal functions.

As an example, the following program uses inline to inline the calls to get_i() and
put_i():

#include <iostream>

using namespace std;

class cl {

int i;

public:

int get_i();

void put_i(int j);

} ;

inline int cl::get_i()

{

return i;

}

inline void cl::put_i(int j)

{

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 599
C

+
+

i = j;

}

int main()

{

cl s;

s.put_i(10);

cout << s.get_i();

return 0;

}

If you compile this version of the program and compare it to a compiled version
of the program in which inline is removed, the inline version is several bytes smaller.
Also, calls to get_i() and put_i() will execute faster. Remember, however, that if get_i()
and put_i() had been very large functions, then the inline version of the program would
have been larger than its noninline version, but it would still have run faster.

It is important to understand that, technically, inline is a request, not a command, to
the compiler to generate inline code. There are various situations that can prevent the
compiler from complying with the request. For example, some compilers will not inline
a function if it contains a loop, a switch, or a goto. C++ Builder will not inline a function
that uses an exception or that has a parameter of a class type that defines a destructor.
It will also not inline functions that return objects that contain destructors.

Creating Inline Functions Inside a Class
The second way to create an inline function is to define the code to a function inside a
class declaration. Any function that is defined inside a class declaration is automatically
made into an inline function, if possible. It is not necessary to precede its declaration
with the keyword inline. For example, the previous program can be rewritten as
shown here:

#include <iostream>

using namespace std;

class cl {

int i;

public:

// automatic inline functions

int get_i() { return i; }

600 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

void put_i(int j) { i = j; }

} ;

int main()

{

cl s;

s.put_i(10);

cout << s.get_i();

return 0;

}

Notice the way the function code is arranged. For very short functions, this
arrangement reflects common C++ style. However, you could also write them as
shown here:

class cl {

int i;

public:

// automatic inline functions

int get_i()

{

return i;

}

void put_i(int j)

{

i = j;

}

} ;

In professionally written C++ code, short functions like those illustrated in the
example are commonly defined inside the class declaration. This convention is followed
in most of the C++ examples in this book.

Passing Objects to Functions
Objects can be passed to functions in just the same way that any other type of variable
can. Objects are passed to functions through the use of the standard call-by-value
mechanism. This means that a copy of an object is made when it is passed to a function.

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 601
C

+
+

602 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

However, the fact that a copy is created means, in essence, that another object is created.
This raises the question of whether the object’s constructor function is executed when
the copy is made and whether the destructor function is executed when the copy is
destroyed. The answer to these two questions may surprise you. To begin, here is
an example:

#include <iostream>

using namespace std;

class myclass {

int i;

public:

myclass(int n);

~myclass();

void set_i(int n) { i=n; }

int get_i() { return i; }

};

myclass::myclass(int n)

{

i = n;

cout << "Constructing " << i << "\n";

}

myclass::~myclass()

{

cout << "Destroying " << i << "\n";

}

void f(myclass ob);

int main()

{

myclass o(1);

f(o);

cout << "This is i in main: ";

cout << o.get_i() << "\n";

return 0;

}

void f(myclass ob)

{

C
+

+

ob.set_i(2);

cout << "This is local i: " << ob.get_i();

cout << "\n";

}

This program produces this output:

Constructing 1

This is local i: 2

Destroying 2

This is i in main: 1

Destroying 1

Notice that two calls to the destructor are executed, but only one call is made to
the constructor. As the output illustrates, the constructor is not called when the copy
of o (in main()) is passed to ob (within f()). The reason that the constructor is not
called when the copy of the object is made is easy to understand. When you pass an
object to a function, you want the current state of that object. If the constructor is
called when the copy is created, initialization will occur, possibly changing the object.
Thus, the constructor cannot be executed when the copy of an object is generated in
a function call.

Although the constructor is not called when an object is passed to a function, it is
necessary to call the destructor when the copy is destroyed. (The copy is destroyed like
any other local variable, when the function terminates.) Remember, the copy of the
object does exist as long as the function is executing. This means that the copy could
be performing operations that will require a destructor to be called when the copy is
destroyed. For example, it is perfectly valid for the copy to allocate memory that must
be freed when it is destroyed. For this reason, the destructor must be executed when
the copy is destroyed.

To summarize: When a copy of an object is generated because it is passed to a function,
the object’s constructor is not called. However, when the copy of the object inside the
function is destroyed, its destructor is called.

By default, when a copy of an object is made, a bitwise copy occurs. This means that
the new object is an exact duplicate of the original. The fact that an exact copy is made can,
at times, be a source of trouble. Even though objects are passed to functions by means of
the normal call-by-value parameter passing mechanism which, in theory, protects and
insulates the calling argument, it is still possible for a side effect to occur that may affect,
or even damage, the object used as an argument. For example, if an object used as an
argument allocates memory and frees that memory when it is destroyed, then its local
copy inside the function will free the same memory when its destructor is called. This
will leave the original object damaged and effectively useless. As you will see later in this
book, it is possible to prevent this type of problem by defining the copy operation relative

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 603

to your own classes by creating a special type of constructor called a copy constructor (see
Chapter 26).

Returning Objects
A function may return an object to the caller. For example, this is a valid C++ program:

#include <iostream>

using namespace std;

class myclass {

int i;

public:

void set_i(int n) { i=n; }

int get_i() { return i; }

};

myclass f(); // return object of type myclass

int main()

{

myclass o;

o = f();

cout << o.get_i() << "\n";

return 0;

}

myclass f()

{

myclass x;

x.set_i(1);

return x;

}

When an object is returned by a function, a temporary object is automatically
created, which holds the return value. It is this object that is actually returned by the
function. After the value has been returned, this object is destroyed. The destruction of
this temporary object may cause unexpected side effects in some situations. For example,
if the object returned by the function has a destructor that frees dynamically allocated

604 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

memory, that memory will be freed even though the object that is receiving the return
value is still using it. As you will see later in this book, there are ways to overcome
this problem that involve overloading the assignment operator and defining a copy
constructor.

Object Assignment
Assuming that both objects are of the same type, you can assign one object to another.
This causes the data of the object on the right side to be copied into the data of the
object on the left. For example, this program displays this is ob2's i: 99:

#include <iostream>

using namespace std;

class myclass {

int i;

public:

void set_i(int n) { i=n; }

int get_i() { return i; }

};

int main()

{

myclass ob1, ob2;

ob1.set_i(99);

ob2 = ob1; // assign data from ob1 to ob2

cout << "this is ob2's i: " << ob2.get_i();

return 0;

}

By default, all data from one object is assigned to the other by use of a bit-by-bit
copy. However, it is possible to overload the assignment operator and define some
other assignment procedure (see Chapter 22).

Arrays of Objects
You can create arrays of objects in the same way that you create arrays of any other
data types. For example, the following program establishes a class called display that

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 605
C

+
+

606 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

holds information about various video display options. Inside main(), an array of
three display objects is created, and the objects that make up the elements of the array
are accessed using the normal indexing procedure.

// An example of arrays of objects.

#include <iostream>

using namespace std;

enum resolution { r640x480, r800x600, r1024x768 };

enum coloroption { c16, c256, cHighColor, cTrueColor };

class display {

coloroption coption; // color option

resolution res; // resolution

public:

void set_coloropt(coloroption opt) { coption = opt; }

coloroption get_coloropt() { return coption; }

void set_res(resolution r) { res = r; }

resolution get_res() { return res; }

} ;

char options[4][20] = {

"16 Colors",

"256 Colors",

"High Color (16 bit)",

"True Color (32 bit)"

} ;

char resvals[3][20] = {

"640 x 480",

"800 x 600",

"1024 x 768"

} ;

int main()

{

display monitors[3];

register int i;

monitors[0].set_coloropt(c16);

monitors[0].set_res(r640x480);

monitors[1].set_coloropt(cTrueColor);

monitors[1].set_res(r640x480);

monitors[2].set_coloropt(c256);

monitors[2].set_res(r1024x768);

for(i=0; i<3; i++) {

cout << options[monitors[i].get_coloropt()] << " ";

cout << "with resolution of " <<

resvals[monitors[i].get_res()];

cout << "\n";

}

return 0;

}

This program produces the following output:

16 Colors with resolution of 640 x 480

True Color (32 bit) with resolution of 640 x 480

256 Colors with resolution of 1024 x 768

Although not related to arrays of objects, notice how the two-dimensional character
arrays options and resvals are used to convert between an enumerated value and its
equivalent character string. In all enumerations that do not contain explicit initializations,
the first constant has the value 0, the second 1, and so on. Therefore, the value returned
by get_coloropt() can be used to index the options array, causing the appropriate
name to be printed. Likewise, the value returned by get_res() can be used to index
resvals to obtain a string representing the resolution.

Multidimensional arrays of objects are indexed in precisely the same way as arrays
of other types of data.

Initializing Arrays of Objects
If a class defines a parameterized constructor, you can initialize each object in an array
by specifying an initialization list as you do for other types of arrays. However, the
exact form of the initialization list will be decided by the number of parameters required
by the object’s constructor. For objects whose constructors take only one parameter,
you can simply specify a list of initial values, using the normal array-initialization

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 607
C

+
+

608 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

syntax. Each value in the list is passed, in order, to the constructor function as each
element in the array is created. For example, here is a program that initializes an array:

#include <iostream>

using namespace std;

class cl {

int i;

public:

cl(int j) { i=j; } // constructor

int get_i() { return i; }

};

int main()

{

cl ob[3] = {1, 2, 3}; // initializers

int i;

for(i=0; i<3; i++)

cout << ob[i].get_i() << "\n";

return 0;

}

This program displays the numbers 1, 2, and 3 on the screen.
If an object’s constructor requires two or more arguments, then you will have to use

the slightly different initialization form shown here.

#include <iostream>

using namespace std;

class cl {

int h;

int i;

public:

cl(int j, int k) { h=j; i=k; } // constructor

int get_i() { return i; }

int get_h() { return h; }

};

int main()

{

cl ob[3] = {

cl(1, 2),

cl(3, 4),

cl(5, 6)

}; // initializers

int i;

for(i=0; i<3; i++) {

cout << ob[i].get_h();

cout << ", ";

cout << ob[i].get_i() << "\n";

}

return 0;

}

In this example, cl’s constructor has two parameters and, therefore, requires two
arguments. This means that the “shorthand” initialization format cannot be used.
Instead, use the “long form” shown in the example. (Of course, you may use the long
form in cases where the constructor requires only one argument, too. It is just that the
short form is easier to use when only one argument is required.)

Creating Initialized Versus Uninitialized Arrays
A special case occurs if you intend to create both initialized and uninitialized arrays of
objects. Consider the following class.

class cl {

int i;

public:

cl(int j) { i=j; }

int get_i() { return i; }

};

Here, the constructor function defined by cl requires one parameter. This implies
that any array declared of this type must be initialized. That is, it precludes this
array declaration:

cl a[9]; // error, constructor requires initializers

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 609
C

+
+

The reason that this statement isn’t valid (as cl is currently defined) is that it implies
that cl has a parameterless constructor because no initializers are specified. However,
as it stands, cl does not have a parameterless constructor. Because there is no valid
constructor that corresponds to this declaration, the compiler will report an error. To
solve this problem, you need to overload the constructor, adding one that takes no
parameters. In this way, arrays that are initialized and those that are not initialized
are both allowed. For example, here is an improved version of cl:

class cl {

int i;

public:

cl() { i=0; } // called for non-initialized arrays

cl(int j) { i=j; } // called for initialized arrays

int get_i() { return i; }

};

Given this class, both of the following statements are permissible:

cl a1[3] = { 3, 5, 6 }; // initialized

cl a2[34]; // uninitialized

Pointers to Objects
In C you can access a structure directly or through a pointer to that structure. Similarly,
in C++ you can refer to an object either directly (as has been the case in all preceding
examples) or by using a pointer to that object. Pointers to objects are among C++’s most
important features.

To access a member of an object when using the actual object itself, you use the dot
(.) operator. To access a specific member of an object through a pointer to the object,
you must use the arrow operator (–>). The use of the dot and arrow operators for
objects is the same as their use for structures and unions.

You declare an object pointer using the same declaration syntax as you do for any
other type of data. The following program creates a simple class called P_example and
defines an object of that class called ob and a pointer for an object of type P_example
called p. It then illustrates how to access ob directly and indirectly using a pointer.

// A simple example using an object pointer.

#include <iostream>

using namespace std;

610 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

class P_example {

int num;

public:

void set_num(int val) { num = val; }

void show_num();

};

void P_example::show_num()

{

cout << num << "\n";

}

int main()

{

P_example ob, *p; // declare an object and pointer to it

ob.set_num(1); // access ob directly

ob.show_num();

p = &ob; // assign p the address of ob

p->show_num(); // access ob using pointer

return 0;

}

Notice that the address of ob is obtained using the & (address of) operator in the same
way the address is obtained for any type of variable.

When a pointer is incremented or decremented, it is increased or decreased in such
a way that it will always point to the next element of its base type. The same thing
occurs when a pointer to an object is incremented or decremented: the next object is
pointed to. The following example modifies the preceding program so that ob is a
two-element array of type P_example. Notice how p is incremented and decremented
to access the two elements in the array.

// Incrementing an object pointer

#include <iostream>

using namespace std;

class P_example {

int num;

public:

void set_num(int val) { num = val; }

C h a p t e r 2 1 : A C l o s e r L o o k a t C l a s s e s a n d O b j e c t s 611
C

+
+

void show_num();

};

void P_example::show_num()

{

cout << num << "\n";

}

int main()

{

P_example ob[2], *p;

ob[0].set_num(10); // access objects directly

ob[1].set_num(20);

p = &ob[0]; // obtain pointer to first element

p->show_num(); // show value of ob[0] using pointer

p++; // advance to next object

p->show_num(); // show value of ob[1] using pointer

p--; // retreat to previous object

p->show_num(); // again show value of ob[0]

return 0;

}

The output from this program is 10, 20, 10.

612 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Chapter 22
Function and Operator
Overloading

613

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Chapter 20 introduced two of C++’s most important features, function overloading
and operator overloading. This chapter explores these topics in detail. In the
course of the discussion, other related topics are also examined.

Overloading Constructor Functions
Although they perform a unique service, constructor functions are not much different
from other types of functions, and they too can be overloaded. As the last example in
the preceding chapter showed, to overload a class’s constructor, simply declare the
various forms it will take. As you will see, in many cases there is a significant
advantage to be gained by providing overloaded constructors.

Let’s begin with an example. The following program declares a class called timer
that acts as a countdown timer (such as a darkroom timer). When an object of type
timer is created, it is given an initial time value. When the run() function is called,
the timer counts down to 0 and then rings the bell. In this example, the constructor is
overloaded to allow the time to be specified in seconds as either an integer or a string,
or in minutes and seconds by specifying two integers.

This program makes use of the clock() library function, which returns the number
of system clock ticks since the program began running. Dividing this value by the
macro CLK_TCK converts the return value of clock() into seconds. Both the prototype
for clock() and the definition of CLK_TCK are found in the header <time.h>.

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

class timer{

int seconds;

public:

// seconds specified as a string

timer(char *t) { seconds = atoi(t); }

// seconds specified as integer

timer(int t) { seconds = t; }

// time specified in minutes and seconds

timer(int min, int sec) { seconds = min*60 + sec; }

void run();

} ;

614 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void timer::run()

{

clock_t t1, t2;

t1 = t2 = clock()/CLK_TCK;

while(seconds) {

if(t1/CLK_TCK+1 <= (t2=clock())/CLK_TCK) {

seconds--;

t1 = t2;

}

}

cout << "\a"; // ring the bell

}

int main()

{

timer a(10), b("20"), c(1, 10);

a.run(); // count 10 seconds

b.run(); // count 20 seconds

c.run(); // count 1 minute, 10 seconds

return 0;

}

As you can see, when a, b, and c are created inside main() they are given initial
values using the three different methods supported by the overloaded constructor
functions. Each approach causes the appropriate constructor to be used and initializes
all three variables properly.

In the program just shown, you may see little value in overloading a constructor
function, because you could simply decide on a single way to specify the time.
However, if you were creating a library of classes for someone else to use, you might
want to supply constructors for the most common forms of initialization, allowing the
programmer to choose the most appropriate form for his or her application. The next
section shows another advantage that is gained by overloading a constructor function.

C++ defines a special type of overloaded constructor, called a copy constructor, that
allows you to determine how objects are copied under certain circumstances. Copy
constructors are discussed later in this book.

C
+

+
C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 615

616 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Localizing Variables
Before continuing with the discussion of overloaded constructors, an important
difference between the way local variables can be declared in C versus the way they
can be declared in C++ needs to be explained. In C you must declare all local variables
used within a block at the start of that block. You cannot declare a variable in a block
after an “action” statement has occurred. For example, in C, this fragment is incorrect:

/* Incorrect in C */

void f()

{

int i;

i = 10;

int j;

/* ... */

}

Because the statement i=10 falls between the declaration of i and that of j, a C
compiler will flag an error and refuse to compile this function. In C++, however, this
fragment is perfectly acceptable and will compile without error. In C++, a local variable
can be declared at any point within a block. Furthermore, it is known only to code that
comes after it within that block.

Here is an example program that shows how local variables can be declared
anywhere within a block when using C++.

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

int i;

i = 10;

int j = 100; // perfectly legal in C++

cout << i*j << "\n";

cout << "Enter a string: ";

char str[80]; // also legal in C++

cin >> str;

// display the string in reverse order

int k; // in C++, declare k where it is needed

C
+

+

k = strlen(str);

k--;

while(k>=0) {

cout << str[k];

k--;

}

return 0;

}

Since much of the philosophy behind C++ is the encapsulation of code and data, it
makes sense that you can declare variables close to where they are used instead of only
at the beginning of the block. Here, the declarations of i and j are separated simply for
illustration. However, you can see how the localization of k to its relevant code helps
encapsulate that routine. Declaring variables close to the point where they are used
helps you avoid accidental side effects. This feature of C++ is also helpful when
creating objects, as the next section illustrates.

Localizing the Creation of Objects
The fact that local variables can be declared at any point within a block of code has
significant implications for the creation of objects. In real-world programs, you often
need to create objects that are initialized using values known only during the execution
of your program. Being able to create an object after those values are known can be
quite helpful because it prevents you from having to first create an uninitialized object
and then later, set its values.

To see the advantages of declaring local objects near their point of first use, consider
this version of the timer program. In it, two objects, b and c, are constructed using
information furnished at run time, just prior to their use. It also further illustrates the
benefit of overloading constructors to accept different forms of initializations.

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

class timer{

int seconds;

public:

// seconds specified as a string

timer(char *t) { seconds = atoi(t); }

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 617

618 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

// seconds specified as integer

timer(int t) { seconds = t; }

// time specified in minutes and seconds

timer(int min, int sec) { seconds = min*60 + sec; }

void run();

} ;

void timer::run()

{

clock_t t1, t2;

t1 = t2 = clock()/CLK_TCK;

while(seconds) {

if(t1/CLK_TCK+1 <= (t2=clock())/CLK_TCK) {

seconds--;

t1 = t2;

}

}

cout << "\a"; // ring the bell

}

int main()

{

timer a(10);

a.run();

cout << "Enter number of seconds: ";

char str[80];

cin >> str;

timer b(str); // initialize at runtime using a string

b.run();

cout << "Enter minutes and seconds: ";

int min, sec;

cin >> min >> sec;

timer c(min, sec); /* initialize at runtime

using minutes and seconds */

c.run();

return 0;

}

Here, object a is constructed using an integer constant. However, objects b and c are
constructed using information entered by the user. Thus, they are not declared until
that information is known. Also, both b and c are constructed using the type of data
available at the point of their creation. For b, this is a string representing seconds. For c,
this is two integers describing minutes and seconds. By allowing various initialization
formats, you need not perform any unnecessary conversions from one form to another
when initializing an object. You also more easily allow objects to be constructed near
their point of first use.

Function Overloading and Ambiguity
When overloading functions, it is possible to produce a type of error with which you
may not be familiar. You can create a situation in which the compiler is unable to
choose between two (or more) overloaded functions. When this happens, the situation
is said to be ambiguous. Ambiguous statements are errors, and programs containing
ambiguity will not compile.

By far the main cause of ambiguity involves C++’s automatic type conversions.
C++ automatically attempts to convert the arguments used to call a function into the
type of arguments expected by the function. For example, consider this fragment:

int myfunc(double d);

// ...

cout << myfunc('c'); // not an error, conversion applied

As the comment indicates, this is not an error because C++ automatically converts the
character c into its double equivalent. In C++, very few type conversions of this sort
are actually disallowed. Although automatic type conversions are convenient, they are
also a prime cause of ambiguity. For example, consider the following program:

#include <iostream>

using namespace std;

float myfunc(float i);

double myfunc(double i);

int main()

{

cout << myfunc(10.1) << " "; // unambiguous, calls myfunc(double)

cout << myfunc(10); // ambiguous

return 0;

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 619
C

+
+

620 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

}

float myfunc(float i)

{

return i;

}

double myfunc(double i)

{

return -i;

}

Here, myfunc() is overloaded so that it can take arguments of either type float or type
double. In the unambiguous line, myfunc(double) is called because, unless explicitly
specified as float, all floating-point constants in C++ are automatically of type double.
Hence, that call is unambiguous. However, when myfunc() is called using the integer 10,
ambiguity is introduced because the compiler has no way of knowing whether it should be
converted to a float or to a double. This causes an error message to be displayed, and the
program will not compile.

As preceding example illustrates, it is not the overloading of myfunc() relative to
double and float that causes the ambiguity. Rather, it is the specific call to myfunc()
using an indeterminate type of argument that causes the confusion. Put differently, the
error is not caused by the overloading of myfunc(), but by the specific invocation.

Here is another example of ambiguity caused by C++’s automatic type conversions:

#include <iostream>

using namespace std;

char myfunc(unsigned char ch);

char myfunc(char ch);

int main()

{

cout << myfunc('c'); // this calls myfunc(char)

cout << myfunc(88) << " "; // ambiguous

return 0;

}

char myfunc(unsigned char ch)

{

return ch-1;

TE
AM
FL
Y

Team-Fly®

}

char myfunc(char ch)

{

return ch+1;

}

In C++, unsigned char and char are not inherently ambiguous. However, when
myfunc() is called by using the integer 88, the compiler does not know which function
to call. That is, should 88 be converted into a char or an unsigned char?

Another way you can cause ambiguity is by using default arguments in overloaded
functions. To see how, examine this program:

#include <iostream>

using namespace std;

int myfunc(int i);

int myfunc(int i, int j=1);

int main()

{

cout << myfunc(4, 5) << " "; // unambiguous

cout << myfunc(10); // ambiguous

return 0;

}

int myfunc(int i)

{

return i;

}

int myfunc(int i, int j)

{

return i*j;

}

Here, in the first call to myfunc(), two arguments are specified; therefore, no
ambiguity is introduced and myfunc(int i, int j) is called. However, when the second
call to myfunc() is made, ambiguity occurs because the compiler does not know
whether to call the version of myfunc() that takes one argument or to apply the default
to the version that takes two arguments.

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 621
C

+
+

Finding the Address of an Overloaded Function
As you saw in Part One, you can assign the address of a function to a pointer and then
call that function through the pointer. This process is straightforward when the function
is not overloaded. However, when the function is overloaded, this process is a little
more complex. To understand why, first consider this statement, which assigns the
address of some function called myfunc() to a pointer called p:

p = myfunc;

If myfunc() is not overloaded, there is one and only one function called myfunc(),
and the compiler has no difficulty assigning its address to p. However, if myfunc() is
overloaded, how does the compiler know which function’s address to assign to p? The
answer is that it depends upon how p is declared. For example, consider this program:

#include <iostream>

using namespace std;

int myfunc(int a);

int myfunc(int a, int b);

int main()

{

int (*fp)(int a); // pointer to int xxx(int)

fp = myfunc; // points to myfunc(int)

cout << fp(5);

return 0;

}

int myfunc(int a)

{

return a;

}

int myfunc(int a, int b)

{

return a*b;

}

622 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

As the program illustrates, fp is declared as a pointer to a function that returns an
integer and that takes one integer argument. C++ uses this information to select the
myfunc(int a) version of myfunc(). Had fp been declared like this:

int (*fp)(int a, int b);

then fp would have been assigned the address of the myfunc(int a, int b) version
of myfunc().

To review: When you assign the address of an overloaded function to a function
pointer, it is the declaration of the pointer that determines which function’s address is
assigned. Further, the declaration of the function pointer must exactly match one and
only one of the overloaded function’s declarations.

The this Pointer
Before moving on to operator overloading, it is necessary for you to learn about another
of C++’s keywords, this, which is an essential ingredient for many overloaded operators.

Each time a member function is called, it is automatically passed a pointer to the
object that invoked it. You can access this pointer using this. Thus, the this pointer is
an implicit parameter to all member functions. (friend functions do not have a this
pointer.) For example, given

ob.f();

the function f() is automatically passed a this pointer, which points to ob.
As you know, a member function can access the data of its class directly. For

example, given the following class:

class cl {

int i;

// ...

};

a member function can assign i the value 10 using this statement:

i = 10;

Actually, this statement is shorthand for the statement

this->i = 10;

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 623
C

+
+

To see how the this pointer works, examine this short program:

#include <iostream>

using namespace std;

class cl {

int i;

public:

void load_i(int val) { this->i = val; } // same as i = val

int get_i() { return this->i; } // same as return i

} ;

int main()

{

cl o;

o.load_i(100);

cout << o.get_i();

return 0;

}

This program displays the number 100.
While the preceding example is trivial—in fact, no one would actually use the this

pointer in this way—the following section shows one reason why the this pointer is
so important.

Operator Overloading
A feature of C++ that is related to function overloading is operator overloading. With
very few exceptions, most of C++’s operators can be given special meanings relative to
specific classes. For example, a class that defines a linked list might use the + operator
to add an object to the list. Another class might use the + operator in an entirely
different way. When an operator is overloaded, none of its original meaning is lost. It
simply means that a new operation relative to a specific class is defined. Therefore,
overloading the + to handle a linked list does not cause its meaning relative to integers
(that is, addition) to be changed.

Operator functions will usually be either members or friends of the class for which
they are being used. Although very similar, there are some differences between the
way a member operator function is overloaded and the way a friend operator function
is overloaded. In this section, only member functions will be overloaded. Later in this
chapter, you will see how to overload friend operator functions.

624 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

To overload an operator, you must define what that operation means relative to the
class that it is applied to. To do this, you create an operator function, which defines its
action. The general form of a member operator function is

type classname ::operator#(arg-list)
{

// operation defined relative to the class
}

Here, the operator that you are overloading is substituted for the # and type is the type of
value returned by the specified operation. To facilitate its use in larger expressions, the
return value of an operator often is of the same type as the class for which the operator is
being overloaded (although it could be of any type you choose). The specific nature of
arg-list is determined by several factors, as you will soon see.

To see how operator overloading works, let’s start with a simple example that creates
a class called three_d that maintains the coordinates of an object in three-dimensional
space. This program overloads the + and = operators relative to the three_d class:

#include <iostream>

using namespace std;

class three_d {

int x, y, z; // 3-d coordinates

public:

three_d operator+(three_d t);

three_d operator=(three_d t);

void show() ;

void assign(int mx, int my, int mz);

} ;

// Overload the +.

three_d three_d::operator+(three_d t)

{

three_d temp;

temp.x = x+t.x;

temp.y = y+t.y;

temp.z = z+t.z;

return temp;

}

// Overload the =.

C
+

+
C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 625

three_d three_d::operator=(three_d t)

{

x = t.x;

y = t.y;

z = t.z;

return *this;

}

// Show X, Y, Z coordinates.

void three_d::show()

{

cout << x << ", ";

cout << y << ", ";

cout << z << "\n";

}

// Assign coordinates.

void three_d::assign(int mx, int my, int mz)

{

x = mx;

y = my;

z = mz;

}

int main()

{

three_d a, b, c;

a.assign(1, 2, 3);

b.assign(10, 10, 10);

a.show();

b.show();

c = a+b; // now add a and b together

c.show();

c = a+b+c; // add a, b and c together

c.show();

c = b = a; // demonstrate multiple assignment

c.show();

626 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

b.show();

return 0;

}

This program produces the following output:

1, 2, 3

10, 10, 10

11, 12, 13

22, 24, 26

1, 2, 3

1, 2, 3

As you examine this program, you may be surprised to see that both operator
functions have only one parameter each, even though they overload binary operations.
This is because, when a binary operator is overloaded using a member function, only
one argument is explicitly passed to it. The other argument is implicitly passed using
the this pointer. Thus, in the line

temp.x = x + t.x;

the x refers to this –>x, which is the x associated with the object that invoked the
operator function. In all cases, it is the object on the left side of an operation that causes
the call to the operator function. The object on the right side is passed to the function.

In general, when using a member function, no parameters are needed when
overloading a unary operator, and only one parameter is required when overloading
a binary operator. (You cannot overload the ? ternary operator.) In either case, the
object that causes the activation of the operator function is implicitly passed through
the this pointer.

To understand how operator overloading works, let’s examine the preceding
program carefully, beginning with the overloaded operator +. When two objects of
type three_d are operated on by the + operator, the magnitudes of their respective
coordinates are added together, as shown in the operator+() function associated with
this class. Notice, however, that this function does not modify the value of either
operand. Instead, an object of type three_d, which contains the result of the operation,
is returned by the function. To understand why the + operation does not change the
contents of either object, think about the standard arithmetic + operation as applied
like this: 10+12. The outcome of this operation is 22, but neither 10 nor 12 is changed
by it. Although there is no rule that states that an overloaded operator cannot alter the
value of one of its operands, it usually makes sense for the overloaded operator to stay

C
+

+
C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 627

consistent with its original meaning. Further, related to the three_d class, we don’t
want the + to alter the contents of an operand.

Another key point about how the + operator is overloaded is that it returns an
object of type three_d. Although the function could have returned any valid C++
type, the fact that it returns a three_d object allows the + operator to be used in more
complicated expressions, such as a+b+c. Here, a+b generates a result that is of type
three_d. This value can then be added to c. Had any other type of value been generated
by a+b, it could not have been added to c.

Contrasting with the + operator, the assignment operator does, indeed, cause one
of its arguments to be modified. (This is, after all, the very essence of assignment.)
Since the operator=() function is called by the object that occurs on the left side of the
assignment, it is this object that is modified by the assignment operation. Of course,
even the assignment operation must return a value because the assignment operation
produces the value that occurs on the right side. Thus, to allow statements like

a = b = c = d;

it is necessary for operator =() to return the object pointed to by this, which will be the
object that occurs on the left side of the assignment statement. Doing so allows a chain
of assignments to be made.

You can also overload unary operators, such as ++ or – –. As stated earlier, when
overloading a unary operator using a member function, no object is explicitly passed to
the operator function. Instead, the operation is performed on the object that generates
the call to the function through the implicitly passed this pointer. For example, here is
an expanded version of the previous example program that defines the increment
operation for objects of type three_d.

#include <iostream>

using namespace std;

class three_d {

int x, y, z; // 3-d coordinates

public:

three_d operator+(three_d op2); // op1 is implied

three_d operator=(three_d op2); // op1 is implied

three_d operator++(); // op1 is also implied here

void show() ;

void assign(int mx, int my, int mz);

} ;

// Overload the +.

628 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

three_d three_d::operator+(three_d op2)

{

three_d temp;

temp.x = x+op2.x; // these are integer additions

temp.y = y+op2.y; // and the + retains its original

temp.z = z+op2.z; // meaning relative to them

return temp;

}

// Overload the =.

three_d three_d::operator=(three_d op2)

{

x = op2.x; // these are integer assignments

y = op2.y; // and the = retains its original

z = op2.z; // meaning relative to them

return *this;

}

// Overload a unary operator.

three_d three_d::operator++()

{

x++;

y++;

z++;

return *this;

}

// Show X, Y, Z coordinates.

void three_d::show()

{

cout << x << ", ";

cout << y << ", ";

cout << z << "\n";

}

// Assign coordinates.

void three_d::assign(int mx, int my, int mz)

{

x = mx;

y = my;

z = mz;

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 629
C

+
+

}

int main()

{

three_d a, b, c;

a.assign(1, 2, 3);

b.assign(10, 10, 10);

a.show();

b.show();

c = a+b; // now add a and b together

c.show();

c = a+b+c; // add a, b and c together

c.show();

c = b = a; // demonstrate multiple assignment

c.show();

b.show();

++c; // increment c

c.show();

return 0;

}

In early versions of C++, it was not possible to determine whether an overloaded ++
or - - preceded or followed its operand. For example, assuming some object called O,

these two statements were identical:

O++;

++O;

However, later versions of C++ provide a means of differentiating between a prefix
or postfix increment or decrement operation. To accomplish this, your program must
define two versions of the operator++() function. One is defined as shown in the
foregoing program. The other is declared like this:

loc operator++(int x);

630 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

If the ++ precedes its operand, then the operator++() function is called. If the ++
follows its operand, then the operator++(int x) is called and x has the value 0.

The action of an overloaded operator as applied to the class for which it is defined
need not have any relationship to that operator’s default use with C++’s built-in types.
For example, the << and >> as applied to cout and cin have little in common with the
same operators applied to integer types. However, for the purpose of structure and
readability of your code, an overloaded operator should reflect, when possible, the
spirit of the operator’s original use. For example, the + relative to three_d is conceptually
similar to the + relative to integer types. There is little benefit, for example, in defining
the + operator relative to a particular class in such a way that it acts more like you would
expect the || operator to perform. While you can give an overloaded operator any
meaning you like, it is best, for clarity, to relate its new meaning to its original meaning.

Some restrictions to overloading operators also apply. First, you cannot alter the
precedence of any operator. Second, you cannot alter the number of operands required
by the operator, although your operator() function could choose to ignore an operand.
Finally, except for the =, overloaded operators are inherited by any derived classes.
Each class must define explicitly its own overloaded = operator if one is needed. Of
course, a derived class is free to overload any operator relative to itself—including
those overloaded by its base class.

The only operators you cannot overload are

. :: .* ?

Friend Operator Functions
It is possible for an operator function to be a friend of a class rather than a member.
As you learned earlier in this chapter, since friend functions are not members of a
class, they do not have the implied argument this. Therefore, when a friend is used to
overload an operator, both operands are passed when overloading binary operators
and a single operand is passed when overloading unary operators. The only operators
that cannot use friend functions are =, (), [], and –>. The rest can use either member or
friend functions to implement the specified operation relative to its class. For example,
here is a modified version of the preceding program using a friend instead of a member
function to overload the + operator:

#include <iostream>

using namespace std;

class three_d {

int x, y, z; // 3-d coordinates

public:

friend three_d operator+(three_d op1, three_d op2);

three_d operator=(three_d op2); // op1 is implied

C
+

+
C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 631

632 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

three_d operator++(); // op1 is implied here, too

void show() ;

void assign(int mx, int my, int mz);

} ;

// This is now a friend function.

three_d operator+(three_d op1, three_d op2)

{

three_d temp;

temp.x = op1.x + op2.x; // these are integer additions

temp.y = op1.y + op2.y; // and the + retains its original

temp.z = op1.z + op2.z; // meaning relative to them

return temp;

}

// Overload the =.

three_d three_d::operator=(three_d op2)

{

x = op2.x; // these are integer assignments

y = op2.y; // and the = retains its original

z = op2.z; // meaning relative to them

return *this;

}

// Overload a unary operator.

three_d three_d::operator++()

{

x++;

y++;

z++;

return *this;

}

// Show X, Y, Z coordinates.

void three_d::show()

{

cout << x << ", ";

cout << y << ", ";

cout << z << "\n";

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 633
C

+
+

}

// Assign coordinates.

void three_d::assign(int mx, int my, int mz)

{

x = mx;

y = my;

z = mz;

}

int main()

{

three_d a, b, c;

a.assign(1, 2, 3);

b.assign(10, 10, 10);

a.show();

b.show();

c = a+b; // now add a and b together

c.show();

c = a+b+c; // add a, b and c together

c.show();

c = b = a; // demonstrate multiple assignment

c.show();

b.show();

++c; // increment c

c.show();

return 0;

}

As you can see by looking at operator+(), now both operands are passed to it. The left
operand is passed in op1 and the right operand in op2.

In many cases, there is no benefit to using a friend function instead of a member
function when overloading an operator. However, there is one situation in which you
must use a friend function. As you know, a pointer to an object that invokes a member
operator function is passed in this. In the case of binary operators, this is a pointer to

634 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

the object on the left. This works as long as the object on the left defines the specified
operation. For example, assuming an object called Ob, which has assignment and
addition defined for it, this is a valid statement:

0b = 0b + 10; // will work

Since the object Ob is on the left of the + operator, it invokes its overloaded operator
function, which (presumably) is capable of adding an integer value to some element
of Ob. However, this statement doesn’t work:

0b = 10 + 0b; // won't work

The reason this statement does not work is that the object on the left of the + operator is
an integer, which is a built-in type for which no operation involving an integer and an
object of Ob’s type is defined.

You can use built-in types on the left side of an operation if the + is overloaded
using two friend functions. In this case, the operator function is explicitly passed both
arguments and it is invoked like any other overloaded function, according to the types
of its arguments. One version of the + operator function handles object + integer and the
other handles integer + object. Overloading the + (or any other binary operator) using a
friend allows a built-in type to occur on the left or right side of the operator. The
following program shows how to accomplish this:

#include <iostream>

using namespace std;

class CL {

public:

int count;

CL operator=(int i);

friend CL operator+(CL ob, int i);

friend CL operator+(int i, CL ob);

};

CL CL::operator=(int i)

{

count = i;

return *this;

}

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 635
C

+
+

// This handles ob + int.

CL operator+(CL ob, int i)

{

CL temp;

temp.count = ob.count + i;

return temp;

}

// This handles int + ob.

CL operator+(int i, CL ob)

{

CL temp;

temp.count = ob.count + i;

return temp;

}

int main()

{

CL obj;

obj = 10;

cout << obj.count << " "; // outputs 10

obj = 10 + obj; // add object to integer

cout << obj.count << " "; // outputs 20

obj = obj + 12; // add integer to object

cout << obj.count; // outputs 32

return 0;

}

As you can see, the operator+() function is overloaded twice to accommodate the two
ways in which an integer and an object of type CL can occur in the addition operation.

Although you can use a friend function to overload a unary operator, such as ++,
you first need to know about another feature of C++, called the reference, which is the
subject of the next section.

636 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

References
C++ contains a feature that is related to the pointer. This feature is called a reference.
A reference is essentially an implicit pointer that acts as another name for an object.

Reference Parameters
By default, C and C++ pass arguments to a function using call-by-value. Passing an
argument using call-by-value causes a copy of that argument to be used by the function
and prevents the argument used in the call from being modified by the function. In C
(and optionally in C++), when a function needs to be able to alter the values of the
variables used as arguments, the parameters must be explicitly declared as pointer types
and the function must operate on the calling variables using the * pointer operator. For
example, the following program implements a function called swap(), which exchanges
the values of its two integer arguments:

#include <iostream>

using namespace std;

void swap(int *a, int *b);

int main()

{

int x, y;

x = 99;

y = 88;

cout << x << " " << y << "\n";

swap(&x, &y); // exchange their values

cout << x << " " << y << "\n";

return 0;

}

// C-like, explicit pointer version of swap().

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 637
C

+
+

*b = t;

}

When calling swap(), the variables used in the call must be preceded by the &
operator in order to produce a pointer to each argument. This is the way that a
call-by-reference is generated in C. However, even though C++ still allows this syntax,
it supports a cleaner, more transparent method of generating a call-by-reference using
a reference parameter.

In C++, it is possible to tell the compiler to automatically generate a call-by-reference
rather than a call-by-value for one or more parameters of a particular function. This is
accomplished by preceding the parameter name in the function’s declaration with the &.
For example, here is a function called f() that takes one reference parameter of type int.

void f(int &f)

{

f = rand(); // this modifies the calling argument

}

Notice that the statement

f = rand();

does not use the * pointer operator. When you declare a reference parameter, the C++
compiler automatically knows that it is an implicit pointer and dereferences it for you.

Each time f() is called, it is automatically passed the address of its argument. For
example, given this fragment

int val;

f(val); // get random value

printf("%d", val);

the address of val, not its value, is passed to f(). Thus, f() can modify the value of val.
Notice that it is not necessary to precede val with the & operator when f() is called.
The compiler automatically passes val’s address.

To see reference parameters in actual use, the swap() function is rewritten using
references. Look carefully at how swap() is declared and called:

#include <iostream>

using namespace std;

void swap(int &a, int &b); // declare as reference parameters

int main()

{

int x, y;

x = 99;

y = 88;

cout << x << " " << y << "\n";

swap(x, y); // exchange their values

cout << x << " " << y << "\n";

return 0;

}

/* Here, swap() is defined as using call-by-reference,

not call-by-value. */

void swap(int &a, int &b)

{

int t;

t = a;

a = b; // this swaps x

b = t; // this swaps y

}

Again, notice that by making a and b reference parameters, there is no need to precede
the arguments of swap() with the & operator or to apply the * inside swap() when
the values are exchanged. In fact, it would be an error to do so. Remember that the
compiler automatically generates the addresses of the arguments used to call swap()
and automatically dereferences a and b.

There are several restrictions that apply to reference variables:

1. You cannot reference a reference variable. That is, you cannot take its address.

2. You cannot create arrays of references.

3. You cannot create a pointer to a reference.

4. References are not allowed on bit-fields.

638 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C
+

+

Passing References to Objects
In Chapter 21 it was explained that when an object is passed as an argument to a
function, a copy of that object is made. When the function terminates, the copy’s
destructor is called. If for some reason you do not want a copy to be made or the
destructor function to be called, simply pass the object by reference. When you
pass by reference, no copy of the object is made. This means that no object used as a
parameter is destroyed when the function terminates, and the parameter’s destructor
is not called. For example, try this program:

#include <iostream>

using namespace std;

class cl {

int id;

public:

int i;

cl(int i);

~cl();

void neg(cl &o) {o.i = -o.i;}

};

cl::cl(int num)

{

cout << "Constructing " << num << "\n";

id = num;

}

cl::~cl()

{

cout << "Destructing " << id << "\n";

}

int main()

{

cl o(1);

o.i = 10;

o.neg(o);

cout << o.i << "\n";

return 0;

}

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 639

640 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here is the output of this program:

Constructing 1

-10

Destructing 1

As you can see, only one call is made to cl’s destructor function. Had o been passed
by value, a second object would have been created inside neg(), and the destructor
would have been called a second time when that object was destroyed at the time
neg() terminated.

When passing parameters by reference, remember that changes to the object inside
the function affect the calling object.

Returning References
A function can return a reference. This has the rather startling effect of allowing a
function to be used on the left side of an assignment statement! For example, consider
this simple program:

#include <iostream>

using namespace std;

char &replace(int i); // return a reference

char s[80] = "Hello There";

int main()

{

replace(5) = 'X'; // assign X to space after Hello

cout << s;

return 0;

}

char &replace(int i)

{

return s[i];

}

This program replaces the space between Hello and There with an X. That is, the
program displays HelloXThere. Take a look at how this is accomplished.

TE
AM
FL
Y

Team-Fly®

As shown, replace() is declared as returning a reference to a character array. As
replace() is coded, it returns a reference to the element of s that is specified by its
argument i. The reference returned by replace() is then used in main() to assign to
that element the character X.

Independent References
Even though references are included in C++ primarily to support call-by-reference
parameter passing and to act as a return value from a function, it is possible to declare
a stand-alone reference variable. This is called an independent reference. However,
independent reference variables are seldom a good idea because they tend to confuse
and destructure your program. With these reservations in mind, we will take a short
look at them here.

Since a reference variable must point to some object, an independent reference
must be initialized when it is declared. Generally, this means that it will be assigned
the address of a previously declared variable. Once this is done, the reference variable
can be used anywhere that the variable it references can. In fact, there is virtually no
distinction between the two. For example, consider this program:

#include <iostream>

using namespace std;

int main()

{

int j, k;

int &i = j; // independent reference to j

j = 10;

cout << j << " " << i; // outputs 10 10

k = 121;

i = k; // copies k's value into j -- not k's address

cout << "\n" << j; // outputs 121

return 0;

}

This program displays the following output:

10 10

121

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 641
C

+
+

The address pointed to by the reference variable i is fixed and cannot be changed.
Thus, when the statement i = k is evaluated, it is k’s value that is copied into j
(referenced by i), not its address. For another example, i++ does not cause i to point
to a new address. Instead, k is increased by 1.

You can also use an independent reference to point to a constant. For example, the
following is valid.

void f() {

int &i = 100;

// ...

}

In this case, C++ Builder generates a temporary object that has the value 100 and i
references that object.

As stated earlier, in general it is not a good idea to use independent references
because they are not necessary and tend to confuse your code.

642 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

A Matter of Style
When declaring pointer and reference variables, some C++ programmers use a
unique coding style that associates the * or the & with the type name and not the
variable. For example, here are two functionally equivalent declarations.

int& p; // & associated with type

int &p; // & associated with variable

Associating the * or & with the type name reflects the desire of some
programmers for C++ to contain a separate pointer or reference type. However,
the trouble with associating the & or * with the type name rather than the variable
is that, according to the formal C++ syntax, neither the & nor the * is distributive
over a list of variables. Thus, misleading declarations are easily created. For
example, the following declaration creates one, not two, integer pointers. Here, b is
declared as an integer (not an integer pointer) because, as specified by the C++
syntax, when used in a declaration the * (or &) is linked to the individual variable
that it precedes, not to the type that it follows.

int* a, b;

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 643
C

+
+

Using a Reference to Overload a Unary Operator
Now that you have learned about references, you will see how to use them to allow
a friend function to overload a unary operator. To begin, think back to the original
version of the overloaded ++ operator relative to the three_d class. It is shown here
for your convenience:

// Overload a unary operator.

three_d three_d::operator++()

{

x++;

y++;

z++;

return *this;

}

As you know, each member function has as an implicit argument a pointer to itself
that is referred to inside the member function using the keyword this. For this reason,
when overloading a unary operator using a member function, no argument is explicitly
declared. The only argument needed in this situation is the implicit pointer to the
object that activated the call to the overloaded operator function. Since this is a pointer
to the object, any changes made to the object’s data affect the object that generates the
call to the operator function. Unlike member functions, a friend function does not
receive a this pointer and therefore cannot reference the object that activated it. For this
reason, trying to create a friend operator++() function as shown here does not work:

// THIS WILL NOT WORK

three_d operator++(three_d op1)

{

The trouble with this declaration is that the visual message suggests that both
a and b are pointer types, even though, in fact, only a is a pointer. This visual confusion
misleads not only novice C++ programmers, but occasionally old pros, too.

It is important to understand that, as far as the C++ compiler is concerned, it
doesn’t matter whether you write int *p or int* p. Thus, if you prefer to associate
the * or & with the type rather than the variable, feel free to do so. However, to
avoid confusion, this book will continue to associate the * and the & with the
variables that they modify rather than their types.

op1.x++;

op1.y++;

op1.z++;

return op1;

}

This function does not work because a copy of the object that activated the call to
operator++() is passed to the function in parameter op1. Thus, the changes inside
operator++() do not affect the called object.

The way to use a friend when overloading a unary ++ or – – is to use a reference
parameter. In this way the compiler knows in advance that it must generate the
address of the invoking object when it calls the operator function. Here is the entire
three_d program, using a friend operator++() function:

// This version uses a friend operator++() function.

#include <iostream>

using namespace std;

class three_d {

int x, y, z; // 3-d coordinates

public:

friend three_d operator+(three_d op1, three_d op2);

three_d operator=(three_d op2); // op1 is implied

// use a reference to overload the ++

friend three_d operator++(three_d &op1);

void show() ;

void assign(int mx, int my, int mz);

} ;

// This is now a friend function.

three_d operator+(three_d op1, three_d op2)

{

three_d temp;

temp.x = op1.x + op2.x; // these are integer additions

temp.y = op1.y + op2.y; // and the + retains its original

temp.z = op1.z + op2.z; // meaning relative to them

return temp;

}

644 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

// Overload the =.

three_d three_d::operator=(three_d op2)

{

x = op2.x; // these are integer assignments

y = op2.y; // and the = retains its original

z = op2.z; // meaning relative to them

return *this;

}

/* Overload a unary operator using a friend function.

This requires the use of a reference parameter. */

three_d operator++(three_d &op1)

{

op1.x++;

op1.y++;

op1.z++;

return op1;

}

// Show X, Y, Z coordinates.

void three_d::show()

{

cout << x << ", ";

cout << y << ", ";

cout << z << "\n";

}

// Assign coordinates.

void three_d::assign(int mx, int my, int mz)

{

x = mx;

y = my;

z = mz;

}

int main()

{

three_d a, b, c;

a.assign(1, 2, 3);

b.assign(10, 10, 10);

a.show();

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 645
C

+
+

646 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

b.show();

c = a+b; // now add a and b together

c.show();

c = a+b+c; // add a, b and c together

c.show();

c = b = a; // demonstrate multiple assignment

c.show();

b.show();

++c; // increment c

c.show();

return 0;

}

In general, you should use member functions to implement overloaded operators. friend
functions are allowed in C++ mostly to handle some special-case situations.

Overloading []
Aside from the few operators mentioned earlier, you can overload any other C++
operator. Most of the time you will need to overload only the standard operators, such
as the arithmetic, relational, or logical. However, there is one rather “exotic” operator
that is often useful to overload: [], the array subscripting operator. In C++, the [] is
considered a binary operator when you are overloading it. The [] must be overloaded
by a member function. You cannot use a friend function. The general form of an
operator[]() function is shown here:

type class-name::operator[](int i)
{
// . . .
}

Technically, the parameter does not have to be of type int, but an operator[]() function
is typically used to provide array subscripting, and as such, an integer value is
generally used.

Given an object called O, the expression

O[3]

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 647
C

+
+

translates into this call to the operator[]() function:

operator[](3)

That is, the value of the expression within the subscripting operator is passed to the
operator[]() function in its explicit parameter. The this pointer will point to O, the
object that generated the call.

In the following program, atype declares an array of three integers. Its constructor
function initializes each member of the array to the specified values. The overloaded
operator[]() function returns the value of the array as indexed by the value of its
parameter.

#include <iostream>

using namespace std;

class atype {

int a[3];

public:

atype(int i, int j, int k) {

a[0] = i;

a[1] = j;

a[2] = k;

}

int operator[](int i) { return a[i]; }

};

int main()

{

atype ob(1, 2, 3);

cout << ob[1]; // displays 2

return 0;

}

You can design the operator[]() function in such a way that the [] can be used on
both the left and right sides of an assignment statement. To do this, simply specify the
return value of operator[]() as a reference. The following program makes this change
and shows its use:

#include <iostream>

using namespace std;

648 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

class atype {

int a[3];

public:

atype(int i, int j, int k) {

a[0] = i;

a[1] = j;

a[2] = k;

}

int &operator[](int i) { return a[i]; }

};

int main()

{

atype ob(1, 2, 3);

cout << ob[1]; // displays 2

cout << " ";

ob[1] = 25; // [] on left of =

cout << ob[1]; // now displays 25

return 0;

}

Because operator[]() now returns a reference to the array element indexed by i,
it can be used on the left side of an assignment to modify an element of the array.
(Of course, it may still be used on the right side as well.)

One advantage of being able to overload the [] operator is that it allows a means
of implementing safe array indexing in C++. As you know, in C++, it is possible to
overrun (or underrun) an array boundary at run time without generating a run-time
error message. However, if you create a class that contains the array, and allow access to
that array only through the overloaded [] subscripting operator, then you can intercept
an out-of-range index. For example, this program adds a range check to the preceding
program and proves that it works:

// A safe array example.

#include <iostream>

#include <cstdlib>

using namespace std;

class atype {

int a[3];

public:

atype(int i, int j, int k) {

a[0] = i;

a[1] = j;

a[2] = k;

}

int &operator[](int i);

};

// Provide range checking for atype.

int &atype::operator[](int i)

{

if(i<0 || i> 2) {

cout << "Boundary Error\n";

exit(1);

}

return a[i];

}

int main()

{

atype ob(1, 2, 3);

cout << ob[1]; // displays 2

cout << " ";

ob[1] = 25; // [] appears on left

cout << ob[1]; // displays 25

ob[3] = 44; // generates runtime error, 3 out-of-range

return 0;

}

In this program, when the statement

ob[3] = 44;

executes, the boundary error is intercepted by operator[](), and the program
is terminated before any damage can be done. (In actual practice, some sort of
error-handling function would be called to deal with the out-of-range condition;
the program would not have to terminate.)

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 649
C

+
+

650 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Applying Operator Overloading
This chapter concludes by designing and implementing a small string class. As you
may know, Standard C++ provides a powerful, full-featured string class called string
(which is discussed later in this book). The purpose of this chapter is not to develop an
alternative to this class. Instead, it is give you insight into how any new data type can
be easily added and integrated into the C++ environment through the use of operator
overloading. The creation of a string class is the quintessential example of this process.
In the past, many programmers honed their object-oriented skills developing their own
personal string classes. To conclude this chapter, we will do the same.

Before beginning, it is useful to understand why string classes are important. A
string class is a useful alternative to the null-terminated strings that are used by C++ by
default. While it is true that null-terminated strings are powerful, elegant, and efficient,
there are many times when you need to use a string but don’t need an extremely high
level of efficiency. In these cases, working with a null-terminated string can be a
tiresome chore. One of the problems with null-terminated strings is that they are not
fully integrated into C++’s type system. For example, they cannot be acted upon by
operators. However, when you create a string class, you can overload the standard
operators so that they can also be applied to strings. This allow strings to be
manipulated using the normal expression syntax.

To begin, the following class declares the type str_type:

#include <iostream>

#include <cstring>

using namespace std;

class str_type {

char string[80];

public:

str_type(char *str = "\0") { strcpy(string, str); }

str_type operator+(str_type str); // concatenate

str_type operator=(str_type str); // assign

// output the string

void show_str() { cout << string; }

} ;

Here, str_type declares one string in its private portion. For the sake of this
example, no string can be longer than 80 bytes. The class has one constructor function
that can be used to initialize the array string with a specific value or assign it a null

TE
AM
FL
Y

Team-Fly®

C
+

+

string in the absence of any initializer. It also declares two overloaded operators that
perform concatenation and assignment. Finally, it declares the function show_str(),
which outputs string to the screen. The overloaded operator functions are shown here:

// Concatenate two strings.

str_type str_type::operator+(str_type str) {

str_type temp;

strcpy(temp.string, string);

strcat(temp.string, str.string);

return temp;

}

// Assign one string to another.

str_type str_type::operator=(str_type str) {

strcpy(string, str.string);

return *this;

}

Given these definitions, the following main() illustrates their use:

int main()

{

str_type a("Hello "), b("There"), c;

c = a + b;

c.show_str();

return 0;

}

This program outputs Hello There on the screen. It first concatenates a with b and
then assigns this value to c.

Keep in mind that both the = and the + are defined only for objects of type str_type. For
example, this statement is invalid because it tries to assign object a a null-terminated string:

a = "this is currently wrong";

However, the str_type class can be enhanced to allow such a statement. To expand
the types of operations supported by the str_type class so that you can assign

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 651

null-terminated strings to str_type objects or concatenate a null-terminated string with
a str_type object, you need to overload the + and = operations a second time. First, the
class declaration is changed, as shown here:

class str_type {

char string[80];

public:

str_type(char *str = "\0") { strcpy(string, str); }

str_type operator+(str_type str); // concatenate objects

str_type operator+(char *str); /* concatenate object with

a string */

str_type operator=(str_type str); /* assign object to

object */

char *operator=(char *str); // assign string to object

void show_str() { cout << string; }

} ;

Next, the overloaded operator+() and operator =() are implemented, as shown here:

// Assign a string to an object.

str_type str_type::operator=(char *str)

{

str_type temp;

strcpy(string, str);

strcpy(temp.string, string);

return temp;

}

// Add a string to an object.

str_type str_type::operator+(char *str)

{

str_type temp;

strcpy(temp.string, string);

strcat(temp.string, str);

return temp;

}

652 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 653
C

+
+

Look carefully at these functions. Notice that the right-side argument is not an object
of type str_type but rather a pointer to a character array—that is, a null-terminated
string. However, notice that both functions return an object of type str_type. Although
the functions could, in theory, have returned some other type, it makes the most sense to
return an object, since the targets of these operations are also objects. The advantage to
defining string operations that accept null-terminated strings as the right-side operand is
that it allows some statements to be written in a natural way. For example, these are now
valid statements:

str_type a, b, c;

a = "hi there"; // assign an object a string

c = a + " George"; // concatenate an object with a string

The following program incorporates the additional meanings for the + and =
operators and illustrates their use.

// Expanding the string type.

#include <iostream>

#include <cstring>

using namespace std;

class str_type {

char string[80];

public:

str_type(char *str = "\0") { strcpy(string, str); }

str_type operator+(str_type str);

str_type operator+(char *str);

str_type operator=(str_type str);

str_type operator=(char *str);

void show_str() { cout << string; }

} ;

str_type str_type::operator+(str_type str) {

str_type temp;

strcpy(temp.string, string);

strcat(temp.string, str.string);

return temp;

}

str_type str_type::operator=(str_type str) {

strcpy(string, str.string);

return *this;

}

str_type str_type::operator=(char *str)

{

str_type temp;

strcpy(string, str);

strcpy(temp.string, string);

return temp;

}

str_type str_type::operator+(char *str)

{

str_type temp;

strcpy(temp.string, string);

strcat(temp.string, str);

return temp;

}

int main()

{

str_type a("Hello "), b("There"), c;

c = a + b;

c.show_str();

cout << "\n";

a = "to program in because";

a.show_str();

cout << "\n";

b = c = "C++ is fun";

c = c+" "+a+" "+b;

c.show_str();

return 0;

}

654 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This program displays the following on the screen:

Hello There

to program in because

C++ is fun to program in because C++ is fun

On your own, try creating other string operations. For example, you might try
defining the – so that it performs a substring deletion. For example, if object A’s string
is “This is a test” and object B’s string is “is”, then A–B yields “th a test”. In this case,
all occurrences of the substring are removed from the original string.

C
+

+
C h a p t e r 2 2 : F u n c t i o n a n d O p e r a t o r O v e r l o a d i n g 655

This page intentionally left blank.

Chapter 23
Inheritance,
Virtual Functions,
and Polymorphism

657

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Two of the cornerstones of OOP are inheritance and polymorphism. Inheritance
is important because it allows the creation of hierarchical classifications. Using
inheritance, you can create a general class that defines traits common to a set

of related items. This class can then be inherited by other, more specific classes, each
adding only those things that are unique to the derived class. Inheritance was introduced
in Chapter 20. It is examined in detail, here.

Inheritance is also important for another reason: it is used to support run-time
polymorphism. Polymorphism is sometimes characterized by the phrase “one interface,
multiple methods.” This means that a general class of operations can be accessed in
the same fashion even though the specific actions associated with each operation
may differ.

In C++, polymorphism is supported both at run time and at compile time. Operator
and function overloading are examples of compile-time polymorphism. However,
as powerful as operator and function overloading are, they cannot perform all tasks
required by a true, object-oriented language. Therefore, C++ also allows run-time
polymorphism through the use of derived classes (i.e., inheritance) and virtual functions,
both of which are discussed in this chapter.

Inheritance and the Access Specifiers
In this section we will explore the interplay between C++’s access specifiers and
inheritance. Before beginning, let’s review terminology. A class that is inherited by
another class is called the base class. Sometimes it is also referred to as the parent class
or the superclass. The class that does the inheriting is called the derived class, sometimes
called the child class or subclass. This book uses the terms base and derived because
they are the traditional terms.

Understanding the Access Specifiers
In C++, a class can categorize its members into three classifications: public, private,
or protected. A public member can be accessed by any other function in the program.
A private member can be accessed only by member or friend functions of its class. A
protected member is similar to a private member, except where inheritance is concerned.

When one class inherits another class, all public members of the base class become
public members of the derived class and are, therefore, accessible to the derived class.
However, all private members of the base class remain private to that class and are
inaccessible to the derived class. For example, in the following fragment

class X {

int i;

int j;

public:

658 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

void get_ij();

void put_ij();

} ;

class Y : public X {

int k;

public:

int get_k();

void make_k();

} ;

Class Y inherits and can access X’s public functions get_ij() and put_ij(), but it cannot
access i or j because they are private to X. In all cases, a private member remains private
to the class in which it is declared. Thus, private members cannot participate in inheritance.

The fact that private members cannot be inherited gives rise to an interesting question:
What if you want to keep a member private, but allow its use by derived classes?
The answer is the keyword protected. A protected member acts just like a private
one except for one important difference: When a protected member is inherited, the
derived class has access to it. Thus, specifying a member as protected allows you to
make it available within a class hierarchy but prevent its access from outside that
hierarchy. For example,

class X {

protected:

int i;

int j;

public:

void get_ij();

void put_ij();

} ;

class Y : public X {

int k;

public:

int get_k();

void make_k();

} ;

Here, Y has access to i and j even though they are still inaccessible to the rest of the
program. When you make an element protected, you restrict its access, but you allow
this access to be inherited. When an member is private, access is not inherited.

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 659
C

+
+

660 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

One other point about private, protected, and public. These keywords can appear
in any order and any number of times in the declaration of a class. For example, this
code is perfectly valid:

class my_class {

protected:

int i;

int j;

public:

void f1();

void f2();

protected:

int a;

public:

int b;

} ;

However, it is usually considered good form to have only one heading for each access
specifier inside each class or struct declaration.

Base Class Access Control
How a base class is inherited by a derived class affects the access status of the inherited
members. As you know, the general form for inheriting a class is

class class-name : access class-name {
// ...
} ;

Here, access determines how the derived class is inherited, and it must be either private,
public, or protected. (It can also be omitted, in which case public is assumed if the base
class is a structure; or private if the base class is a class.) If access is public, all public
and protected members of the base class become public and protected members of the
derived class, respectively. If access is private, all public and protected members of the
base class become private members of the derived class. If access is protected, all public
and protected members of the base class become protected members of the derived
class. To understand the ramifications of these conversions, let’s work through an
example. Consider the following program:

#include <iostream>

using namespace std;

class X {

protected:

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 661
C

+
+

int i;

int j;

public:

void get_ij() {

cout << "Enter two numbers: ";

cin >> i >> j;

}

void put_ij() { cout << i << " " << j << "\n"; }

} ;

// In Y, i and j of X become protected members.

class Y : public X {

int k;

public:

int get_k() { return k; }

void make_k() { k = i*j; }

} ;

/* Z has access to i and j of X, but not to

k of Y, since it is private. */

class Z : public Y {

public:

void f();

} ;

// i and j are accessible here

void Z::f()

{

i = 2; // ok

j = 3; // ok

}

int main()

{

Y var;

Z var2;

var.get_ij();

var.put_ij();

var.make_k();

cout << var.get_k();

cout << "\n";

662 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

var2.f();

var2.put_ij();

return 0;

}

Since Y inherits X as public, the protected elements of X become protected elements
of Y, which means that they can be inherited by Z and this program compiles and
runs correctly. However, changing X’s status in Y to private, as shown in the following
program, causes Z to be denied access to i and j, and the functions get_ij() and put_ij()
that access them, because they have been made private in Y.

#include <iostream>

using namespace std;

class X {

protected:

int i;

int j;

public:

void get_ij() {

cout << "Enter two numbers: ";

cin >> i >> j;

}

void put_ij() { cout << i << " " << j << "\n"; }

} ;

// Now, i and j are converted to private members of Y.

class Y : private X {

int k;

public:

int get_k() { return k; }

void make_k() { k = i*j; }

} ;

/* Because i and j are private in Y, they

cannot be inherited by Z. */

class Z : public Y {

public:

void f();

} ;

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 663
C

+
+

// This function no longer works.

void Z::f()

{

// i = 2; i and j are no longer accessible

// j = 3;

}

int main()

{

Y var;

Z var2;

// var.get_ij(); no longer accessible

// var.put_ij(); no longer accessible

var.make_k();

cout << var.get_k();

cout << "\n";

var2.f();

// var2.put_ij(); no longer accessible

return 0;

}

When X is inherited as private in Y’s declaration, it causes i, j, get_ij(), and put_ij() to
be treated as private in Y, which means they cannot be inherited by Z; thus, Z’s class
can no longer access them.

Constructors and Destructors in Derived Classes
When using derived classes, it is important to understand how and when constructors
and destructors are executed in both the base and derived classes. Let’s begin with
constructors.

It is possible for a base class and a derived class to each have a constructor function.
(In fact, in the case of a multilayered class hierarchy, it is possible for all involved
classes to have constructors, but we will start with the simplest case.) When a base class
contains a constructor, that constructor is executed before the constructor in the derived
class. For example, consider this short program:

#include <iostream>

using namespace std;

664 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

class Base {

public:

Base() { cout << "\nBase created\n"; }

};

class D_class1 : public Base {

public:

D_class1() { cout << "D_class1 created\n"; }

};

int main()

{

D_class1 d1;

// do nothing but execute constructors

return 0;

}

This program creates an object of type D_class1. It displays this output:

Base created

D_class1 created

Here, d1 is an object of type D_class1, which is derived using Base. Thus, when d1 is
created, first Base() is executed, then D_class1() is called.

It makes sense for constructors to be called in the same order in which the
derivation takes place. Because the base class has no knowledge of the derived class,
any initialization it needs to perform is separate from and possibly prerequisite
to any initialization performed by the derived class, so it must be executed first.

On the other hand, a destructor function in a derived class is executed before the
destructor in the base. The reason for this is also easy to understand. Since the destruction
of a base class object implies the destruction of the derived class object, the derived object’s
destructor must be executed before the base object is destroyed. This program illustrates
the order in which constructors and destructors are executed:

#include <iostream>

using namespace std;

class Base {

public:

Base() { cout << "\nBase created\n"; }

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 665
C

+
+

~Base() { cout << "Base destroyed\n\n"; }

};

class D_class1 : public Base {

public:

D_class1() { cout << "D_class1 created\n"; }

~D_class1() { cout << "D_class1 destroyed\n"; }

};

int main()

{

D_class1 d1;

cout << "\n";

return 0;

}

This program produces the following output:

Base created

D_class1 created

D_class1 destroyed

Base destroyed

As you know, it is possible for a derived class to be used as a base class in the
creation of another derived class. When this happens, constructors are executed in the
order of their derivation and destructors in the reverse order. For example, consider
this program, which uses D_class1 to derive D_class2:

#include <iostream>

using namespace std;

class Base {

public:

Base() { cout << "\nBase created\n"; }

~Base() { cout << "Base destroyed\n\n"; }

};

class D_class1 : public Base {

public:

D_class1() { cout << "D_class1 created\n"; }

~D_class1() { cout << "D_class1 destroyed\n"; }

};

class D_class2 : public D_class1 {

public:

D_class2() { cout << "D_class2 created\n"; }

~D_class2() { cout << "D_class2 destroyed\n"; }

};

int main()

{

D_class1 d1;

D_class2 d2;

cout << "\n";

return 0;

}

The program produces this output:

Base created

D_class1 created

Base created

D_class1 created

D_class2 created

D_class2 destroyed

D_class1 destroyed

Base destroyed

D_class1 destroyed

Base destroyed

As you can see, each derived constructor is called before its base class’s constructor.
The reverse is true for the destructors.

Constructors are called in order of derivation. Destructors are called in reverse order.

666 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Multiple Inheritance
It is possible for one class to inherit the attributes of two or more classes at the same
time. To accomplish this, use a comma-separated inheritance list in the derived class’s
base class list. The general form is

class derived-class-name : base-class list
{
// ...
} ;

For example, in this program Z inherits both X and Y.

#include <iostream>

using namespace std;

class X {

protected:

int a;

public:

void make_a(int i) { a = i; }

};

class Y {

protected:

int b;

public:

void make_b(int i) { b = i; }

} ;

// Z inherits both X and Y

class Z : public X, public Y {

public:

int make_ab() { return a*b; }

} ;

int main()

{

Z i;

i.make_a(10);

i.make_b(12);

cout << i.make_ab();

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 667
C

+
+

return 0;

}

In this example, Z inherits both X and Y. This means that it has access to the public and
protected portions of both X and Y.

In the preceding example, neither X, Y, nor Z contained constructor functions.
However, the situation is more complex when a base class contains a constructor
function. For example, let’s change the preceding example so that the classes X, Y,
and Z each have a constructor.

#include <iostream>

using namespace std;

class X {

protected:

int a;

public:

X() {

a = 10;

cout << "Initializing X\n";

}

};

class Y {

protected:

int b;

public:

Y() {

cout << "Initializing Y\n";

b = 20;

}

} ;

// Z inherits both X and Y

class Z : public X, public Y {

public:

Z() { cout << "Initializing Z\n"; }

int make_ab() { return a*b; }

} ;

668 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main()

{

Z i;

cout << i.make_ab();

return 0;

}

When this program runs, it displays the following:

Initializing X

Initializing Y

Initializing Z

200

Notice that the base classes are constructed in the order they appear from left to right
in Z’s declaration.

In general, when a list of base classes is used, the constructors are called in order
from left to right. Destructors are called in order from right to left.

Passing Parameters to a Base Class
So far, none of the examples of inheritance have included a base class constructor that
used parameters. As long as no base class constructor requires arguments, a derived
class need not do anything special. However, when a base class constructor requires
arguments, your derived classes must explicitly handle this situation by passing the
necessary arguments to the base class. To accomplish this, you will use an extended
form of the constructor function within the derived class that passes arguments to the
constructor function of the base class. This extended form is shown here:

derived-constructor(arg-list) : base1(arg-list), base2(arg-list), . . ., baseN(arg-list)
{
// ...
}

Here, base1 through baseN are the names of the base classes inherited by the derived
class. Notice that the colon is used to separate the derived class’s constructor function
from the argument lists of the base classes. The argument lists associated with the base
classes can consist of constants, global variables, or the parameters to the derived
class’s constructor function. Since an object’s initialization occurs at run time, you can
use as an argument any identifier that is defined within the current scope.

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 669
C

+
+

The following program illustrates how to pass arguments to the base classes of a
derived class by modifying the preceding program:

#include <iostream>

using namespace std;

class X {

protected:

int a;

public:

X(int i) { a = i; }

};

class Y {

protected:

int b;

public:

Y(int i) { b = i; }

} ;

// Z inherits both X and Y

class Z : public X, public Y {

public:

/* Initialize X and Y via Z's constructor.

Notice that Z does not actually use x or y

itself, but it could, if it so chooses. */

Z(int x, int y) : X(x), Y(y)

{

cout << "Initializing\n";

}

int make_ab() { return a*b; }

} ;

int main()

{

Z i(10, 20);

cout << i.make_ab();

return 0;

}

670 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

Notice how the constructor Z does not actually use its parameters directly. Instead,
in this example, they are simply passed along to the constructor functions for X and Y.
There is no reason, however, that Z could not use these or other arguments.

Pointers and References to Derived Types
Before moving on to virtual functions and polymorphism, it is necessary to explain
a unique attribute of pointers and references that provides their foundation. We will
begin with pointers. In general, a pointer of one type cannot point to an object of a
different type. However, there is an important exception to this rule that relates only
to derived classes. In C++, a base class pointer can point to an object of a class derived
from that base. For example, assume that you have a base type called B_class and a
type called D_class, that is derived from B_class. In C++, any pointer declared as type
B_class * can also a point to an object of type D_class. For example, given

B_class *p; // pointer to object of type B_class

B_class B_ob; // object of type B_class

D_class D_ob; // object of type D_class

the following is perfectly valid:

p = &B_ob; // p points to object of type B_class

p = &D_ob; /* p points to object of type D_class,

which is an object derived from B_class. */

Using p, all elements of D_ob inherited from B_ob can be accessed. However, elements
specific to D_ob cannot be referenced using p (unless a type cast is employed). This is
because the pointer only “knows” about the members of its base type even though it
can point to derived types.

For a concrete example that uses base class pointers, consider this short program,
which defines a base class called B_class and a derived class called D_class. The
derived class implements a simple automated telephone book.

// Using pointers on derived class objects.

#include <iostream>

#include <cstring>

using namespace std;

class B_class {

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 671
C

+
+

672 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

char name[80];

public:

void put_name(char *s) { strcpy(name, s); }

void show_name() { cout << name << " "; }

} ;

class D_class : public B_class {

char phone_num[80];

public:

void put_phone(char *num) {

strcpy(phone_num, num);

}

void show_phone() { cout << phone_num << "\n"; }

};

int main()

{

B_class *p;

B_class B_ob;

D_class *dp;

D_class D_ob;

p = &B_ob; // address of base

// Access B_class via pointer.

p->put_name("Thomas Edison");

// Access D_class via base pointer.

p = &D_ob;

p->put_name("Albert Einstein");

// Show that each name went into proper object.

B_ob.show_name();

D_ob.show_name();

cout << "\n";

/* Since put_phone and show_phone are not part of the

base class, they are not accessible via the base

pointer p and must be accessed either directly,

or, as shown here, through a pointer to the

derived type.

*/

dp = &D_ob;

dp->put_phone("555 555-1234");

p->show_name(); // either p or dp can be used in this line

dp->show_phone();

return 0;

}

In this example, the pointer p is defined as a pointer to B_class. However, it can
point to an object of the derived class D_class and can be used to access those elements
of the derived class that are defined by the base class. Remember that a base pointer
cannot access those elements specific to the derived class without the use of a type cast.
This is why show_phone() is accessed using the dp pointer, which is a pointer to the
derived class.

If you want to access elements defined by a derived type using a base type pointer,
you must cast it into a pointer of the derived type. For example, this line of code calls
the show_phone() function of D_ob:

((D_class *)p)->show_phone();

The outer set of parentheses are necessary to associate the cast with p and not with the
return type of show_phone(). While there is technically nothing wrong with casting a
pointer in this manner, it is best avoided because it simply adds confusion to your code.

While a base pointer can be used to point to any type of derived object, the reverse
is not true. That is, you cannot use a pointer to a derived class to access an object of the
base type.

One final point: a pointer is incremented and decremented relative to its base type.
Therefore, when a pointer to a base class is pointing to a derived class, incrementing or
decrementing it does not make it point to the next object of the derived class. Therefore,
you should consider it invalid to increment or decrement a pointer when it is pointing
to a derived object.

References to Derived Types
Similar to the action of pointers just described, a base class reference can be used to refer
to an object of a derived type. The most common application of this is found in function
parameters. A base class reference parameter can receive objects of the base class as well
as any other type derived from that base. You will see an example of this, shortly.

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 673
C

+
+

674 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Virtual Functions
Run-time polymorphism is achieved through the use of derived types and virtual
functions. In short, a virtual function is a function that is declared as virtual in a base
class and redefined in one or more derived classes. Virtual functions are special
because when one is called through a base-class pointer (or reference) to an object of a
derived class, C++ determines which function to call at run time according to the type
of object pointed to. Thus, when different objects are pointed to, different versions of the
virtual function are executed. A class that contains one or more virtual functions is
called a polymorphic class.

A virtual function is declared as virtual inside the base class by preceding its
declaration with the keyword virtual. However, when a virtual function is redefined
by a derived class, the keyword virtual need not be repeated (although it is not an error
to do so).

As a first example of virtual functions, examine this short program:

// A short example that uses virtual functions.

#include <iostream>

using namespace std;

class Base {

public:

virtual void who() { // specify a virtual function

cout << "Base\n";

}

};

class first_d : public Base {

public:

void who() { // define who() relative to first_d

cout << "First derivation\n";

}

};

class second_d : public Base {

public:

void who() { // define who() relative to second_d

cout << "Second derivation\n";

}

};

int main()

{

Base base_obj;

Base *p;

first_d first_obj;

second_d second_obj;

p = &base_obj;

p->who(); // access Base's who

p = &first_obj;

p->who(); // access first_d's who

p = &second_obj;

p->who(); // access second_d's who

return 0;

}

This program produces the following output:

Base

First derivation

Second derivation

Let’s examine the program in detail to understand how it works.
In Base, the function who() is declared as virtual. This means that the function can

be redefined by a derived class. Inside both first_d and second_d, who() is redefined
relative to each class. Inside main(), four variables are declared. The first is base_obj,
which is an object of type Base; p, which is a pointer to Base objects; and first_obj
and second_obj, which are objects of the two derived classes. Next, p is assigned the
address of base_obj, and the who() function is called. Since who() is declared as
virtual, C++ determines at run time which version of who() is referred to by the type
of object pointed to by p. In this case, it is an object of type Base, so the version of
who() declared in Base is executed. Next, p is assigned the address of first_obj.
(Remember that a base class pointer can point to an object of a derived class.) Now
when who() is called, C++ again examines the type of object pointed to by p to determine
what version of who() to call. Since p points to an object of type first_d, that version
of who() is used. Likewise, when p is assigned the address of second_obj, the version
of who() declared inside second_d is executed.

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 675
C

+
+

676 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The most common way that a base class reference is used to call a virtual function is
through a function parameter. For example, consider the following variation on the
preceding program.

/* Here, a base class reference is used to access

a virtual function. */

#include <iostream>

using namespace std;

class Base {

public:

virtual void who() { // specify a virtual function

cout << "Base\n";

}

};

class first_d : public Base {

public:

void who() { // define who() relative to first_d

cout << "First derivation\n";

}

};

class second_d : public Base {

public:

void who() { // define who() relative to second_d

cout << "Second derivation\n";

}

};

// Use a base class reference parameter.

void show_who(Base &r) {

r.who();

}

int main()

{

Base base_obj;

first_d first_obj;

second_d second_obj;

show_who(base_obj); // access Base's who

show_who(first_obj); // access first_d's who

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 677
C

+
+

show_who(second_obj); // access second_d's who

return 0;

}

This program produces the same output as its preceding version. In this example, the
function show_who() defines a reference parameter of type Base. Inside main(), the
function is called using objects of type Base, first_d, and second_d. Inside
show_who(), the specific version of who() that is called is determined by the type of
object being referenced when the function is called.

The key point to using virtual functions to achieve run-time polymorphism is that
you must access those functions through the use of a base class pointer or reference.
Although it is legal to call a virtual function just as you call any other “normal” function,
by applying the dot operator to an object, it is only when a virtual function is called
through a base class pointer (or reference) that run-time polymorphism is achieved.

At first glance, the redefinition of a virtual function in a derived class looks like a
special form of function overloading. But this is not the case, and the term overloading
is not applied to virtual function redefinition because several differences exist. First, the
prototypes for virtual functions must match. As you know, when overloading normal
functions, the number and type of parameters must differ. However, when redefining
a virtual function, these elements must be unchanged. If the prototypes of the functions
differ, then the function is simply considered overloaded, and its virtual nature is lost.
Also, if only the return types of the function differ, an error occurs. (Functions that
differ only in their return types are inherently ambiguous.) Another restriction is that
a virtual function must be a nonstatic member, not a friend, of the class for which it is
defined. However, a virtual function can be a friend of another class. Also, destructor
functions can be virtual, but constructors cannot.

Because of the restrictions and differences between overloading normal functions
and redefining virtual functions, the term overriding is used to describe the virtual
function redefinition.

Once a function is declared as virtual, it stays virtual no matter how many layers
of derived classes it passes through. For example, if second_d is derived from first_d
instead of Base, as shown in the following example, who() is still virtual, and the
proper version is still correctly selected:

// Derive from first_d, not Base

class second_d : public first_d {

public:

void who() { // define who() relative to second_d

cout << "Second derivation\n";

}

};

When a derived class does not override a virtual function, then the version of the
function in the base class is used. For example, try this version of the preceding program:

#include <iostream>

using namespace std;

class Base {

public:

virtual void who() {

cout << "Base\n";

}

};

class first_d : public Base {

public:

void who() {

cout << "First derivation\n";

}

};

class second_d : public Base {

// who() not defined

};

int main()

{

Base base_obj;

Base *p;

first_d first_obj;

second_d second_obj;

p = &base_obj;

p->who(); // access Base's who()

p = &first_obj;

p->who(); // access first_d's who()

p = &second_obj;

p->who(); /* access Base's who() because

second_d does not redefine it */

678 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

This program now outputs the following:

Base

First derivation

Base

Keep in mind that inherited characteristics are hierarchical. To illustrate this point,
imagine that in the preceding example second_d is derived from first_d instead of
Base. When who() is referenced relative to an object of type second_d (in which who()
is not defined) it is the version of who() declared inside first_d that is called, since it is
the class closest to second_d. In general, when a class does not override a virtual
function, C++ uses the first definition that it finds in reverse order of derivation.

Why Virtual Functions?
As stated at the start of this chapter, virtual functions in combination with derived
types allow C++ to support run-time polymorphism. Polymorphism is essential to
object-oriented programming because it allows a generalized class to specify those
functions that will be common to any derivative of that class, while allowing a derived
class to specify the exact implementation of those functions. In other words, the base
class dictates the general interface that any object derived from that class will have, but
it lets the derived class define the actual method. This is why the phrase “one interface,
multiple methods” is often used to describe polymorphism.

Part of the key to successfully applying polymorphism is understanding that base
and derived classes form a hierarchy that moves from greater to lesser generalization
(base to derived). Hence, when used correctly, the base class provides all elements that
a derived class can use directly plus the basis for those functions that the derived class
must implement on its own.

Having a consistent interface with multiple implementations is important because
it helps the programmer handle increasingly complex programs. For example, when
you develop a program, all objects you derive from a particular base class are accessed
in the same general way, even if the specific actions vary from one derived class to the
next. This means that you need to remember only one interface rather than several.
Further, the separation of interface and implementation allows the creation of class
libraries, which can be provided by a third party. If these libraries are implemented
correctly, they provide a common interface that you can use to derive your own
specific classes.

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 679
C

+
+

To get an idea of the power of the “one interface, multiple methods” concept,
examine this short program. It creates a base class called figure. This class is used to
store the dimensions of various two-dimensional objects and to compute their areas.
The function set_dim() is a standard member function because its operation is
common to all derived classes. However, show_area() is declared as virtual because
the way the area of each object is computed varies. The program uses figure to derive
two specific classes, called square and triangle.

#include <iostream>

using namespace std;

class figure {

protected:

double x, y;

public:

void set_dim(double i, double j) {

x = i;

y = j;

}

virtual void show_area() {

cout << "No area computation defined ";

cout << "for this class.\n";

}

} ;

class triangle : public figure {

public:

void show_area() {

cout << "Triangle with height ";

cout << x << " and base " << y;

cout << " has an area of ";

cout << x * 0.5 * y << ".\n";

}

};

class square : public figure {

public:

void show_area() {

cout << "Square with dimensions ";

cout << x << "x" << y;

cout << " has an area of ";

cout << x * y << ".\n";

680 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 681
C

+
+

}

};

int main()

{

figure *p; /* create a pointer to base type */

triangle t; /* create objects of derived types */

square s;

p = &t;

p->set_dim(10.0, 5.0);

p->show_area();

p = &s;

p->set_dim(10.0, 5.0);

p->show_area();

return 0;

}

As you can see by examining this program, the interface to both square and
triangle is the same even though both provide their own methods for computing the
area of each of their objects.

Given the declaration for figure, it is possible to derive a class called circle that
computes the area of a circle given its radius. To do so, you must create a new derived
type that computes the area of a circle. The power of virtual functions is based in the
fact that you can easily derive a new type that shares the same common interface as
other related objects. For example, here is one way to do it:

class circle : public figure {

public:

void show_area() {

cout << "Circle with radius ";

cout << x;

cout << " has an area of ";

cout << 3.14 * x * x;

}

} ;

Before trying to use circle, look closely at the definition of show_area(). Notice that
it uses only the value of x, which is assumed to hold the radius. (Remember that the
area of a circle is computed using the formula π R2.) However, the function set_dim()

as defined in figure assumes that it will be passed not just one, but two values. Since
circle does not require this second value, what is the best course of action?

There are two ways to resolve this problem. First, you can call set_dim() using a
dummy value as the second parameter when using a circle object. This has the
disadvantage of being sloppy as well as requiring you to remember a special exception,
which violates the “one interface, many methods” approach.

A better way to resolve this problem is to give the y parameter inside set_dim() a
default value. In this way, when calling set_dim() for a circle, you need specify only
the radius. When calling set_dim() for a triangle or a square, you would specify both
values. The expanded program is shown here:

#include <iostream>

using namespace std;

class figure {

protected:

double x, y;

public:

void set_dim(double i, double j=0) {

x = i;

y = j;

}

virtual void show_area() {

cout << "No area computation defined ";

cout << "for this class.\n";

}

} ;

class triangle : public figure {

public:

void show_area() {

cout << "Triangle with height ";

cout << x << " and base " << y;

cout << " has an area of ";

cout << x * 0.5 * y << ".\n";

}

};

class square : public figure {

public:

void show_area() {

cout << "Square with dimensions ";

682 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

cout << x << "x" << y;

cout << " has an area of ";

cout << x * y << ".\n";

}

};

class circle : public figure {

public:

void show_area() {

cout << "Circle with radius ";

cout << x;

cout << " has an area of ";

cout << 3.14 * x * x;

}

} ;

int main()

{

figure *p; /* create a pointer to base type */

triangle t; /* create objects of derived types */

square s;

circle c;

p = &t;

p->set_dim(10.0, 5.0);

p->show_area();

p = &s;

p->set_dim(10.0, 5.0);

p->show_area();

p = &c;

p->set_dim(9.0);

p->show_area();

return 0;

}

This example also points out that when defining base classes it is important to be as
flexible as possible. Don’t give your program unnecessary restrictions.

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 683
C

+
+

Pure Virtual Functions and Abstract Types
When a virtual function that is not overridden in a derived class is called for an object
of that derived class, the version of the function as defined in the base class is used.
However, in many circumstances there is no meaningful definition of a virtual function
inside the base class. For example, in the base class figure, used in the preceding
example, the definition of show_area() is simply a placeholder. It does not compute
and display the area of any type of object. There are two ways you can handle this
situation. One way is to simply have it report a warning message, as shown in the
example. While this approach can be useful in certain situations, it is not appropriate
for all circumstances. There can be virtual functions that must be defined by the
derived class in order for the derived class to have any meaning. For example, the class
triangle has no meaning if show_area() is not defined. In this sort of case, you want
some method to ensure that a derived class does, indeed, define all necessary
functions. C++’s solution to this problem is the pure virtual function.

A pure virtual function is a function declared in a base class that has no definition
relative to the base. Since it has no definition relative to the base, any derived type
must define its own version—it cannot simply use the version defined in the base. To
declare a pure virtual function, use this general form:

virtual type func_name(parameter list) = 0;

where type is the return type of the function and func_name is the name of the function.
For example, in the following version of figure, show_area() is a pure virtual function:

class figure {

double x, y;

public:

void set_dim(double i, double j=0) {

x = i;

y = j;

}

virtual void show_area() = 0; // pure

} ;

By declaring a virtual function as pure, you force any derived class to define its
own implementation. If a class fails to do so, a compile-time error results. For example,
if you try to compile this modified version of the figure program, in which the
definition for show_area() has been removed from the circle class, you will see an
error message:

/*

684 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This program will not compile because the class

circle does not override show_area().

*/

#include <iostream>

using namespace std;

class figure {

protected:

double x, y;

public:

void set_dim(double i, double j) {

x = i;

y = j;

}

virtual void show_area() = 0; // pure

} ;

class triangle : public figure {

public:

void show_area() {

cout << "Triangle with height ";

cout << x << " and base " << y;

cout << " has an area of ";

cout << x * 0.5 * y << ".\n";

}

};

class square : public figure {

public:

void show_area() {

cout << "Square with dimensions ";

cout << x << "x" << y;

cout << " has an area of ";

cout << x * y << ".\n";

}

};

class circle : public figure {

// no definition of show_area() will cause an error

};

int main()

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 685
C

+
+

686 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

{

figure *p; // create a pointer to base type

circle c; // attempt to create a circle -- ERROR

triangle t; // create objects of derived types

square s;

p = &t;

p->set_dim(10.0, 5.0);

p->show_area();

p = &s;

p->set_dim(10.0, 5.0);

p->show_area();

return 0;

}

If a class has at least one pure virtual function, that class is said to be abstract.
Abstract classes have one important feature: There can be no objects of that class.
Instead, an abstract class must be used only as a base that other classes will inherit. The
reason that an abstract class cannot be used to declare an object is that one or more of
its member functions have no definition. However, even if the base class is abstract,
you still can use it to declare pointers or references, which are needed to support
run-time polymorphism.

Early Versus Late Binding
There are two terms that are commonly used when discussing object-oriented
programming languages: early binding and late binding. Relative to C++, these terms
refer to events that occur at compile time and events that occur at run time, respectively.

In object-oriented terms, early binding means that an object is bound to its function
call at compile time. That is, all information necessary to determine a function call is
known when the program is compiled. Examples of early binding include standard
function calls, overloaded function calls, and overloaded operator function calls. The
principal advantage to early binding is efficiency—it is both faster and often requires
less memory than late binding. Its disadvantage is a lack of flexibility.

Late binding means that an object is bound to its function call only at run time, not
before. Late binding is achieved in C++ by using virtual functions and derived types.
The advantage to late binding is that it allows greater flexibility. It can be used to
support a common interface while allowing various objects that use that interface to
define their own implementations. Further, it can be used to help you create class
libraries, which can be reused and extended.

Whether your program uses early or late binding depends on what your program
is designed to do. (Actually, most large programs use a combination of both.) Late
binding is one of C++’s most powerful additions to the C language. However, the price
you pay for this power is that your program will run slightly slower. Therefore, it is
best to use late binding only when it adds to the structure and manageability of your
program. Keep in mind that the loss of performance is small, so when the situation
calls for late binding, you should most definitely use it.

C h a p t e r 2 3 : I n h e r i t a n c e , V i r t u a l F u n c t i o n s , a n d P o l y m o r p h i s m 687
C

+
+

This page intentionally left blank.

Chapter 24
The C++ I/O
Class Library

689

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This chapter presents an overview of the C++ I/O class library. It also discusses
how to overload the << and >> operators so that you can input or output objects
of classes that you design. C++’s I/O system is very large and it isn’t possible to

cover every class, function, or feature here, but this chapter introduces you to those
that are most important and commonly used.

Why C++ Has Its Own I/O System
Since the I/O system inherited from C is extremely rich, flexible, and powerful, you
might be wondering why C++ defines yet another system. The answer is that C’s I/O
system knows nothing about objects. Therefore, for C++ to provide complete support
for object-oriented programming, it was necessary to create an I/O system that could
operate on user-defined objects. In addition to support for objects, there are several
benefits to using C++’s I/O system even in programs that don’t make extensive (or
any) use of user-defined objects. Frankly, for all new code, you should use the C++ I/O
system. The C I/O is supported by C++ only for compatibility.

Old Versus Modern C++ I/O
There are currently two versions of the C++ object-oriented I/O library in use: the
older one that is based upon the original specifications for C++ and the newer one
defined by the ANSI/ISO standard for C++. The old I/O library is supported by the
header file <iostream.h>. The new I/O library is supported by the header <iostream>.
For the most part the two libraries appear the same to the programmer. This is because
the new I/O library is, in essence, simply an updated and improved version of the old
one. In fact, the vast majority of differences between the two occur beneath the surface,
in the way that the libraries are implemented—not in how they are used.

From the programmer’s perspective, there are two main differences between the
old and new C++ I/O libraries. First, the new I/O library contains a few additional
features and defines some new data types. Thus, the new I/O library is essentially a
superset of the old one. Nearly all programs originally written for the old library will
compile without substantive changes when the new library is used. Second, the
old-style I/O library was in the global namespace. The new-style library is in the std
namespace. (Recall that the std namespace is used by all of the Standard C++ libraries.)
Since the old-style I/O library is now obsolete, this book describes only the new I/O
library, but most of the information is applicable to the old I/O library as well.

C++ Builder supports both the old and new style approaches to I/O. Thus, you can
use C++ Builder to maintain older code. For new code, however, you should use the
new style I/O because it complies with the ANSI/ISO standard for C++.

690 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 691
C

+
+

C++ Streams
The C and C++ I/O systems have one important thing in common: they both operate
on streams, which are discussed in Part One of this book. The fact that C and C++
streams are similar means that what you already know about streams is completely
applicable to C++.

The C++ Predefined Streams
Like C, C++ contains several predefined streams that are opened automatically when
your C++ program begins execution. They are cin, cout, cerr, and clog. As you know,
cin is the stream associated with standard input and cout is the stream associated with
standard output. The streams cerr and clog are used for error output. The difference
between cerr and clog, which are both linked to standard output, is that cerr is not
buffered, so any data sent to it is immediately output. Alternatively, clog is buffered,
and output is written only when a buffer is full.

By default, the C++ standard streams are linked to the console, but they can be
redirected to other devices or files by your program. Also, they can be redirected by
the operating system.

The C++ Stream Classes
As mentioned, Standard C++ provides support for its I/O system in <iostream>. In
this header, a rather complicated set of class hierarchies is defined that supports I/O
operations. The I/O classes begin with a system of template classes. Templates are
discussed in Chapter 25, but here is a brief description. A template class defines the form
of a class without fully specifying the data upon which it will operate. Once a template
class has been defined, specific instances of a template class can be created. As it relates
to the I/O library, Standard C++ creates two specializations of the I/O template classes:
one for 8-bit characters and another for wide characters. This book will use only the
8-bit character classes, since they are by far the most common. But the same techniques
apply to both.

The C++ I/O system is built upon two related, but different, template class
hierarchies. The first is derived from the low-level I/O class called basic_streambuf.
This class supplies the basic, low-level input and output operations, and provides the
underlying support for the entire C++ I/O system. Unless you are doing advanced I/O
programming, you will not need to use basic_streambuf directly. The class hierarchy
that you will most commonly be working with is derived from basic_ios. This is a
high-level I/O class that provides formatting, error-checking, and status information
related to stream I/O. (A base class for basic_ios is called ios_base, which defines

several nontemplate traits used by basic_ios.) basic_ios is used as a base for several
derived classes, including basic_istream, basic_ostream, and basic_iostream. These
classes are used to create streams capable of input, output, and input/output, respectively.

As explained, the I/O library creates two specializations of the template class
hierarchies just described: one for 8-bit characters and one for wide characters. Here
is a list of the mapping of template class names to their character and wide-character
versions.

Template Class Character-Based Class Wide-Character-Based Class

basic_streambuf streambuf wstreambuf

basic_ios ios wios

basic_istream istream wistream

basic_ostream ostream wostream

basic_iostream iostream wiostream

basic_fstream fstream wfstream

basic_ifstream ifstream wifstream

basic_ofstream ofstream wofstream

The character-based names will be used throughout the remainder of this book,
since they are the names that you will usually use in your programs. They are also the
same names that were used by the old I/O library. This is why the old and new I/O
libraries are compatible at the source code level.

One last point: The ios class contains many member functions and variables that
control or monitor the fundamental operation of a stream. It will be referred to
frequently. Just remember that if you include <iostream> in your program, you will
have access to this important class.

Creating Your Own Inserters and Extractors
In the preceding four chapters, member functions were created in order to output or
input a class’s data, often called something like show_data() or get_data(). While there
is nothing technically wrong with this approach, C++ provides a much better way of
performing I/O operations on classes by overloading the << and >> operators.

In the language of C++, the << operator is referred to as the insertion operator
because it inserts characters into a stream. Likewise, the >> operator is called the
extraction operator because it extracts characters from a stream. The operator functions
that overload the insertion and extraction operators are generally called inserters and
extractors, respectively.

692 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The insertion and extraction operators are already overloaded (in <iostream>) to
perform stream I/O on any of C++’s built-in types. This section explains how to define
these operators relative to classes that you define.

Creating Inserters
C++ provides an easy way to create inserters for classes that you create. This simple
example creates an inserter for the three_d class (first defined in Chapter 22):

class three_d {

public:

int x, y, z; // 3-d coordinates

three_d(int a, int b, int c) { x=a; y=b; z=c; }

} ;

To create an inserter function for an object of type three_d, you must define what
an insertion operation means relative to the class three_d. To do this, you must
overload the << operator, as shown here:

// Display X, Y, Z coordinates (three_d's inserter).

ostream &operator<<(ostream &stream, three_d obj)

{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

return stream; // return the stream

}

Many of the features in this function are common to all inserter functions. First,
notice that it is declared as returning a reference to an object of type ostream. This is
necessary to allow several insertion operations to be performed in a single statement.
Next, the function has two parameters. The first is the reference to the stream that
occurs on the left side of the << operator; the second parameter is the object that occurs
on the right side. Inside the function, the three values contained in an object of type
three_d are output, and stream is returned. Here is a short program that demonstrates
the inserter:

#include <iostream>

using namespace std;

class three_d {

public:

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 693
C

+
+

694 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int x, y, z; // 3-d coordinates

three_d(int a, int b, int c) { x=a; y=b; z=c; }

} ;

// Display X, Y, Z coordinates - three_d inserter.

ostream &operator<<(ostream &stream, three_d obj)

{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

return stream; // return the stream

}

int main()

{

three_d a(1, 2, 3), b(3, 4, 5), c(5, 6, 7);

cout << a << b << c;

return 0;

}

If you eliminate the code that is specific to the three_d class you are left with the
general form of an inserter function, as shown here:

ostream &operator<<(ostream &stream, class_type obj)
{
// type specific code goes here
return stream; // return the stream
}

What an inserter function actually does is up to you. Just make sure that you return
stream. Also, it is perfectly acceptable—indeed, it is common—for the obj parameter to
be a reference, rather than an object. The advantage of passing a reference to the object
being output is twofold. First, if the object is quite large, it will save time to pass only
its address. Second, it prevents the object’s destructor from being called when the
inserter returns.

You might wonder why the three_d inserter function was not coded like this:

// Limited version - don't use.

ostream &operator<<(ostream &stream, three_d obj)

{

cout << obj.x << ", ";

cout << obj.y << ", ";

cout << obj.z << "\n";

return stream; // return the stream

}

In this version, the cout stream is hard-coded into the function. Remember that the <<
operator can be applied to any stream. Therefore, you must use the stream passed to
the function if it is to work correctly in all cases.

In the three_d inserter program, the overloaded inserter function is not a member
of three_d. In fact, neither inserter nor extractor functions can be members of a class.
This is because when an operator function is a member of a class, the left operand
(implicitly passed using the this pointer) is an object of the class that generated the call
to the operator function. There is no way to change this. However, when overloading
inserters, the left argument is a stream and the right argument is an object of the class.
Therefore, overloaded inserters cannot be member functions.

The fact that inserters must not be members of the class on which they are defined
to operate raises a serious question: How can an overloaded inserter access the private
elements of a class? In the previous program, the variables x, y, and z were made
public so that the inserter could access them. But, hiding data is an important part of
object-oriented programming, and forcing all data to be public is inconsistent with the
object-oriented approach. However, there is a solution: An inserter can be a friend of
a class. As a friend of the class, it has access to private data. To see an example of this,
the three_d class and sample program are reworked here, with the overloaded inserter
declared as a friend.

#include <iostream>

using namespace std;

class three_d {

int x, y, z; // 3-d coordinates - - now private

public:

three_d(int a, int b, int c) { x=a; y=b; z=c; }

friend ostream &operator<<(ostream &stream, three_d obj);

} ;

// Display X, Y, Z coordinates - three_d inserter.

ostream &operator<<(ostream &stream, three_d obj)

{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 695
C

+
+

696 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return stream; // return the stream

}

int main()

{

three_d a(1, 2, 3), b(3, 4, 5), c(5, 6, 7);

cout << a << b << c;

return 0;

}

Notice that the variables x, y, and z are now private to three_d but can still be
accessed directly by the inserter. Making inserters (and extractors) friends of the classes
for which they are defined preserves the encapsulation principle of object-oriented
programming.

Overloading Extractors
To overload an extractor, use the same general approach as when overloading an
inserter. For example, this extractor inputs 3-D coordinates. Notice that it also prompts
the user.

// Get three dimensional values - extractor.

istream &operator>>(istream &stream, three_d &obj)

{

cout <<

"Enter X Y Z values, separating each with a space: ";

stream >> obj.x >> obj.y >> obj.z;

return stream;

}

Extractors must return a reference to an object of type istream. Also, the first
parameter must be a reference to an object of type istream. The second parameter
is a reference to the variable that will be receiving input. Because it is a reference,
the second argument can be modified when information is input.

The general form of an extractor is

istream &operator>>(istream &stream, class_type &obj)
{
// put your extractor code here
return stream;
}

Here is a program that demonstrates the extractor for objects of type three_d.

#include <iostream>

using namespace std;

class three_d {

int x, y, z; // 3-d coordinates

public:

three_d(int a, int b, int c) {x=a; y=b; z=c;}

friend ostream &operator<<(ostream &stream, three_d obj);

friend istream &operator>>(istream &stream, three_d &obj);

} ;

// Display X, Y, Z coordinates - inserter.

ostream &operator<<(ostream &stream, three_d obj)

{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

return stream; // return the stream

}

// Get three dimensional values - extractor.

istream &operator>>(istream &stream, three_d &obj)

{

cout <<

"Enter X Y Z values, separating each with a space: ";

stream >> obj.x >> obj.y >> obj.z;

return stream;

}

int main()

{

three_d a(1, 2, 3);

cout << a;

cin >> a;

cout << a;

return 0;

}

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 697
C

+
+

698 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Like inserters, extractor functions cannot be members of the class they are designed
to operate upon. As shown in the example, they can be friends, or simply independent
functions.

Except for the fact that you must return a reference to an object of type istream, you
can do anything you like inside an extractor function. However, for the sake of structure
and clarity, it is best to limit the actions of an extractor to the input operation.

Formatting I/O
As you know, using printf() you can control the format of information displayed on
the screen. For example, you can specify field widths and left- or right-justification.
You can also accomplish the same type of formatting using C++’s approach to I/O.
There are two ways to format output. The first uses member functions of the ios class.
The second uses a special type of function called a manipulator. We will begin by
looking at formatting using the member functions of ios.

Formatting Using the ios Member Functions
Each stream has associated with it a set of format flags that control the way information
is formatted. The ios class declares a bitmask enumeration called fmtflags in which the
following values are defined. (Technically, these values are defined within ios_base,
which, as explained earlier, is a base class for ios.)

adjustfield basefield boolalpha dec

fixed floatfield hex internal

left oct right scientific

showbase showpoint showpos skipws

unitbuf uppercase

The values defined by this enumeration are used to set or clear flags that control some
of the ways information is formatted by a stream. The following describes each flag.

When the skipws flag is set, leading white-space characters (spaces, tabs, and
newlines) are discarded when performing input on a stream. When skipws is cleared,
white-space characters are not discarded.

When the left flag is set, output is left justified. When right is set, output is right
justified. When the internal flag is set, a numeric value is padded to fill a field by
inserting spaces between any sign or base character. If none of these flags is set, output
is right justified by default.

By default, numeric values are output in decimal. However, it is possible to change
the number base. Setting the oct flag causes output to be displayed in octal. Setting the
hex flag causes output to be displayed in hexadecimal. To return output to decimal, set
the dec flag.

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 699
C

+
+

Setting showbase causes the base of numeric values to be shown. For example, if
the conversion base is hexadecimal, the value 1F will be displayed as 0x1F.

By default, when scientific notation is displayed, the e is in lowercase. Also, when
a hexadecimal value is displayed, the x is in lowercase. When uppercase is set, these
characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values.
Setting showpoint causes a decimal point and trailing zeros to be displayed for all

floating-point output—whether needed or not.
By setting the scientific flag, floating-point numeric values are displayed using

scientific notation. When fixed is set, floating-point values are displayed using normal
notation. When neither flag is set, the compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion operation.
When boolalpha is set, Booleans can be input or output using the keywords true

and false.
Since it is common to refer to the oct, dec, and hex fields, they can be collectively

referred to as basefield. Similarly, the left, right, and internal fields can be referred to
as adjustfield. Finally, the scientific and fixed fields can be referenced as floatfield.

To set a flag, use the setf() function, whose most common form is shown here:

fmtflags setf(fmtflags flags);

This function returns the stream’s previous format flag settings and turns on those
flags specified by flags. All other flags are unaffected. For example, to turn on the
showbase flag, you can use the following statement.

stream.setf(ios::showbase);

Here, stream can be any stream you want to affect.
The following program turns on both the showpos and scientific flags for cout:

#include <iostream>

using namespace std;

int main()

{

cout.setf(ios::showpos);

cout.setf(ios::scientific);

cout << 123 << " " << 123.23 << " ";

return 0;

}

700 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The output produced by this program is

+123 +1.232300e+02

You can OR together as many flags as you like in a single call. For example, you can
change the program so that only one call is made to setf() by ORing together scientific
and showpos, as shown here.

cout.setf(ios::scientific | ios::showpos);

To turn off a flag, use the unsetf() function. Its prototype is shown here:

void unsetf(fmtflags flags);

It turns off those flags specified by flags.
Sometimes it is useful to know the current flag settings. You can retrieve the

current flag values using this form of the flags() function:

fmtflags flags();

This function returns the current value of the flags associated with the invoking stream.
The following form of flags() sets the flag values to those specified by flags and

returns the previous flag values:

fmtflags flags(fmtflags flags);

To see how flags() and unsetf() work, examine this program. It includes a function
called showflags() that displays the state of the flags.

#include <iostream>

using namespace std;

void showflags (long f);

int main ()

{

long f;

f = cout.flags();

showflags(f);

cout.setf(ios::showpos);

cout.setf(ios::scientific);

TE
AM
FL
Y

Team-Fly®

f = cout.flags();

showflags(f);

cout.unsetf(ios::scientific);

f = cout.flags();

showflags(f);

return 0;

}

void showflags(long f)

{

long i;

for(i=0x4000; i; i = i >> 1)

if(i & f) cout << "1 ";

else cout << "0 ";

cout << "\n";

}

When run, the program produces this output:

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 1 0 0 1 0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

In addition to the formatting flags, you can also set a stream’s field width, the fill
character, and the number of digits displayed after a decimal point, using these functions:

streamsize width(streamsize len);
char fill(char ch);
streamsize precision(streamsize num);

The width() function returns the stream’s current field width and sets the field width
to len. By default the field width varies, depending upon the number of characters it
takes to hold the data. The fill() function returns the current fill character, which is a
space by default, and makes the current fill character the same as ch. The fill character
is the character used to pad output to fill a specified field width. The precision()
function returns the number of digits displayed after a decimal point and sets that
value to num. The streamsize type is defined as some form of integer.

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 701
C

+
+

702 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here is a program that demonstrates these three functions:

#include <iostream>

using namespace std;

int main()

{

cout.setf(ios::showpos);

cout.setf(ios::scientific);

cout << 123 << " " << 123.23 << "\n";

cout.precision(2); // two digits after decimal point

cout.width(10); // in a field of ten characters

cout << 123 << " " << 123.23 << "\n";

cout.fill('#'); // fill using #

cout.width(10); // in a field of ten characters

cout << 123 << " " << 123.23;

return 0;

}

The program displays this output:

+123 +1.232300e+02

+123 +1.23e+02

######+123 +1.23e+02

Remember, each stream maintains its own set of format flags. Changing the flag
settings of one stream does not affect another stream.

Using Manipulators
The C++ I/O system includes a second way to alter the format parameters of a stream.
This way uses special functions called manipulators, which can be included in an I/O
expression. The standard manipulators are shown in Table 24-1. To use the manipulators
that take parameters, you must include <iomanip> in your program.

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 703
C

+
+

Manipulator Purpose Input/Output

boolalpha Turns on boolalpha flag. Input/Output

dec Turns on dec flag. Input/Output

endl Output a newline character
and flush the stream.

Output

ends Output a null. Output

fixed Turns on fixed flag. Output

flush Flush a stream. Output

hex Turns on hex flag. Input/Output

internal Turns on internal flag. Output

left Turns on left flag. Output

noboolalpha Turns off boolalpha flag. Input/Output

noshowbase Turns off showbase flag. Output

noshowpoint Turns off showpoint flag. Output

noshowpos Turns off showpos flag. Output

noskipws Turns off skipws flag. Input

nounitbuf Turns off unitbuf flag. Output

nouppercase Turns off uppercase flag. Output

oct Turns on oct flag. Input/Output

resetiosflags(fmtflags f) Turn off the flags specified in f. Input/Output

right Turns on right flag. Output

scientific Turns on scientific flag. Output

setbase(int base) Set the number base to base Input/Output

setfill(int ch) Set the fill character to ch Output

Table 24-1. The C++ I/O Manipulators

704 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

A manipulator can be used as part of an I/O expression. Here is an example
program that uses manipulators to change the format of output:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << setiosflags(ios::fixed);

cout << setprecision(2) << 1000.243 << endl;

cout << setw(20) << "Hello there.";

return 0;

}

It produces this output.

1000.24

Hello there.

Manipulator Purpose Input/Output

setiosflags(fmtflags f) Turn on the flags specified in f Input/Output

setprecision(int p) Set the number of digits
of precision.

Output

setw(int w) Set the field width to w Output

showbase Turns on showbase flag. Output

showpoint Turns on showpoint flag. Output

showpos Turns on showpos flag. Output

skipws Turns on skipws flag. Input

unitbuf Turns on unitbuf flag. Output

uppercase Turns on uppercase flag. Output

ws Skip leading white space. Input

Table 24-1. The C++ I/O Manipulators (continued)

Notice how the manipulators occur in the chain of I/O operations. Also, notice that
when a manipulator does not take an argument, such as endl in the example, it is not
followed by parentheses. This is because the address of the manipulator is passed to
the overloaded << operator.

This program uses setiosflags() to set cout's scientific and showpos flags:

#include <iostream>

#include <iomanip>

using namespace std;

main()

{

cout << setiosflags(ios::showpos);

cout << setiosflags(ios::scientific);

cout << 123 << " " << 123.23;

return 0;

}

The following program uses ws to skip any leading white space when inputting a
string into s.

#include <iostream>

using namespace std;

int main()

{

char s[80];

cin >> ws >> s;

cout << s;

}

Creating Your Own Manipulator Functions
In addition to overloading the insertion and extraction operators, you can further
customize C++’s I/O system by creating your own manipulator functions. Custom
manipulators are important for two main reasons. First, you can consolidate a sequence
of several separate I/O operations into one manipulator. For example, it is not uncommon
to have situations in which the same sequence of I/O operations occurs frequently
within a program. In these cases you can use a custom manipulator to perform these
actions, thus simplifying your source code and preventing accidental errors. A custom

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 705
C

+
+

manipulator can also be important when you need to perform I/O operations on a
nonstandard device. For example, you might use a manipulator to send control codes
to a special type of printer or to an optical recognition system.

Custom manipulators are a feature of C++ that supports OOP, but they also can
benefit programs that aren’t object oriented. As you will see, custom manipulators can
help make any I/O-intensive program clearer and more efficient.

As you know, there are two basic types of manipulators: those that operate on
input streams and those that operate on output streams. In addition to these two broad
categories, there is a secondary division: those manipulators that take an argument and
those that don’t. Here, the creation of parameterless manipulators is described, since
they are the most common type of custom manipulator.

All parameterless manipulator output functions have this skeleton:

ostream &manip-name(ostream &stream)
{
// your code here
return stream;
}

Here, manip-name is the name of the manipulator. It is important to understand that
even though the manipulator has as its single argument a reference to the stream upon
which it is operating, no argument is used when the manipulator is inserted in an
output operation.

The following program creates a manipulator called setup() that turns on left-
justification, sets the field width to 10, and specifies the dollar sign as the fill character.

#include <iostream>

#include <iomanip>

using namespace std;

ostream &setup(ostream &stream)

{

stream.setf(ios::left);

stream << setw(10) << setfill('$');

return stream;

}

int main()

{

cout << 10 << " " << setup << 10;

return 0;

}

706 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 707
C

+
+

All parameterless manipulator input functions have this general form:

istream &manip-name(istream &stream)
{
// your code here
return stream;
}

For example, this program creates the prompt() manipulator, which displays a
prompting message and then switches numeric input to hexadecimal:

#include <iostream>

#include <iomanip>

using namespace std;

istream &prompt(istream &stream)

{

cin >> hex;

cout << "Enter number using hex format: ";

return stream;

}

int main()

{

int i;

cin >> prompt >> i;

cout << i;

return 0;

}

It is crucial that your manipulator return the stream. If this is not done, then your
manipulator cannot be used in a larger I/O statement.

As you work with C++, you will find that custom manipulators can help streamline
your I/O statements.

708 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

File I/O
C++ supports an extensive file I/O system. Although the end result is the same, C++’s
approach to file I/O differs somewhat from the C I/O system discussed earlier. For this
reason, you should pay special attention to this section.

In order to perform file I/O, you must include the header <fstream> in your
program. It defines several important classes and values.

Opening and Closing a File
In C++, a file is opened by linking it to a stream. There are three types of streams:
input, output, and input/output. To open an input stream, you must declare the
stream to be of class ifstream. To open an output stream, it must be declared as class
ofstream. Streams that will perform both input and output operations must be declared
as class fstream. For example, this fragment creates one input stream, one output stream,
and one stream capable of both input and output:

ifstream in; // input

ofstream out; // output

fstream both; // input and output

Once you have created a stream, one way to associate it with a file is by using
open(). This function is a member of each of the three stream classes. The prototype
for each is shown here:

void ifstream::open(const char *filename,
ios::openmode mode = ios::in);

void ofstream::open(const char *filename,
ios::openmode mode = ios::out | ios::trunc);

void fstream::open(const char *filename,
ios::openmode mode = ios::in | ios::out);

Here, filename is the name of the file; it can include a path specifier. The value of mode
determines how the file is opened. It must be one or more of the values defined by
openmode, which is an enumeration defined by ios (through its base clase ios_base).

ios::app
ios::ate
ios::binary
ios::in
ios::out
ios::trunc

You can combine two or more of these values by ORing them together.

Including ios::app causes all output to that file to be appended to the end. This
value can be used only with files capable of output. Including ios::ate causes a seek to
the end of the file to occur when the file is opened. Although ios::ate causes an initial
seek to end-of-file, I/O operations can still occur anywhere within the file.

The ios::in value specifies that the file is capable of input. The ios::out value
specifies that the file is capable of output.

The ios::binary value causes a file to be opened in binary mode. By default, all files are
opened in text mode. In text mode, various character translations may take place, such as
carriage return, linefeed sequences being converted into newlines. However, when a file is
opened in binary mode, no such character translations will occur. Understand that any file,
whether it contains formatted text or raw data, can be opened in either binary or text mode.
The only difference is whether character translations take place.

The ios::trunc value causes the contents of a preexisting file by the same name to
be destroyed, and the file is truncated to zero length. When creating an output stream
using ofstream, any preexisting file by that name is automatically truncated.

The preceding versions of open() are the ones defined by the ANSI/ISO standard
for C++. C++ builder supports these versions. However, to each it adds a third parameter,
which specifies a UNIX permission code, which defaults to normal access. Since this
code is nonstandard, it is not used or described here.

The following fragment opens a normal output file.

ofstream out;

out.open("test", ios::out);

However, you will seldom see open() called as shown, because the mode parameter
provides default values for each type of stream. As their prototypes show, for ifstream,
mode defaults to ios::in, for ofstream it is ios::out | ios::trunc, and for fstream, it is ios::in
| ios::out. Therefore, the preceding statement will usually look like this:

out.open("test"); // defaults to output and normal file

If open() fails, the stream will evaluate to false when used in a Boolean expression.
Therefore, before using a file, you should test to make sure that the open operation
succeeded. You can do so by using a statement like this:

if(!mystream) {

cout << "Cannot open file.\n";

// handle error

}

Although it is entirely proper to open a file by using the open() function, most of
the time you will not do so because the ifstream, ofstream, and fstream classes have

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 709
C

+
+

710 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

constructor functions that automatically open the file. The constructor functions have
the same parameters and defaults as the open() function. Therefore, you will most
commonly see a file opened as shown here:

ifstream mystream("myfile"); // open file for input

C++ Builder also supplies an extra, nonstandard, parameter to the stream
constructors which specifies a UNIX permission code. This parameter defaults to
normal access. Since this parameter is nonstandard, it is not described here.

As stated, if for some reason the file cannot be opened, the value of the associated
stream variable will evaluate to false. Therefore, whether you use a constructor
function to open the file or an explicit call to open(), you will want to confirm that the
file has actually been opened by testing the value of the stream.

You can also check to see if you have successfully opened a file by using the
is_open() function, which is a member of fstream, ifstream, and ofstream. It has this
prototype.

bool is_open();

It returns true if the stream is linked to an open file and false otherwise. For example,
the following checks if mystream is currently open.

if(!mystream.is_open()) {

cout << "File is not open.\n";

// ...

To close a file, use the member function close(). For example, to close the file linked
to a stream called mystream, use this statement:

mystream.close();

The close() function takes no parameters and returns no value.

Reading and Writing Text Files
To read from or write to a text file, you simply use the << and >> operators with the
stream you opened. For example, the following program writes an integer, a floating-
point value, and a string to a file called TEST.

#include <iostream>

#include <fstream>

using namespace std;

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 711
C

+
+

int main()

{

ofstream out("test");

if(!out) {

cout << "Cannot open file.\n";

return 1;

}

out << 10 << " " << 123.23 << "\n";

out << "This is a short text file.\n";

out.close();

return 0;

}

The following program reads an integer, a floating-point number, and a string from
the file created by the preceding program:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

int i;

float f;

char str[80];

ifstream in("test");

if(!in) {

cout << "Cannot open file.\n";

return 1;

}

in >> i;

in >> f;

in >> str;

cout << i << " " << f << " " << "\n";

cout << str;

712 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

in.close();

return 0;

}

When reading text files using the >> operator, keep in mind that certain character
translations occur. For example, white-space characters are omitted. If you want to
prevent any character translations, you must use C++’s binary I/O functions, discussed
in the next section.

Unformatted and Binary I/O
While reading and writing formatted text files is very easy, it is not always the most
efficient way to handle files. Also, there will be times when you need to store unformatted
(raw) binary data, not text. The functions that allow you to do this are described here.

When performing binary operations on a file, be sure to open it using the
ios::binary mode specifier. Although the unformatted file functions will work on files
opened for text mode, some character translations may occur. Character translations
negate the purpose of binary file operations.

Before beginning our examination of unformatted I/O, it is important to clarify an
important concept. For many years, I/O in C and C++ was thought of as byte-oriented.
This is because a char is equivalent to a byte and the only types of streams available
were char streams. However, with the advent of wide characters (of type wchar_t) and
their attendant streams, we can no longer say that C++ I/O is byte-oriented. Instead, we
must say that it is character-oriented. Of course, char streams are still byte-oriented and we
can continue to think in terms of bytes, especially when operating on nontextual data.
But the equivalence between a byte and a character can no longer be taken for granted.

All of the streams used in this book are char streams, since they are by far the most
common. They also make unformatted file handling easier because a char stream
establishes a one-to-one correspondence between bytes and characters, which is a
benefit when reading or writing blocks of binary data.

Using get() and put()
One way that you can read and write unformatted data is by using the member
functions get() and put(). These functions operate on characters. That is, get() will
read a character and put() will write a character. Of course, if you have opened the file
for binary operations and are operating on a char (rather a wchar_t stream), then these
functions read and write bytes of data.

The get() function has many forms, but the most commonly used version is shown
here along with put():

istream &get(char &ch);
ostream &put(char ch);

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 713
C

+
+

The get() function reads a single character from the associated stream and puts that
value in ch. It returns a reference to the stream. The put() function writes ch to the
stream and returns a reference to the stream.

Remember, when working with binary files, be sure to open them using the ios::binary
mode specifier.

This program displays the contents of any file on the screen. It uses the get() function.

#include <iostream>

#include <fstream>

using namespace std;

int main(int argc, char *argv[])

{

char ch;

if(argc!=2) {

cout << "Usage: PR <filename>\n";

return 1;

}

ifstream in(argv[1], ios::in | ios::binary);

if(!in) {

cout << "Cannot open file.\n";

return 1;

}

while(in) { // in will be null when eof is reached

in.get(ch);

cout << ch;

}

in.close();

return 0;

}

When in reaches the end of the file it will become null, causing the while loop to stop.
There is a more compact way to code the loop that reads and displays a file, as

shown here:

while(in.get(ch))

cout << ch;

714 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This works because get() returns the stream in, and in will be null when the end of
the file is encountered.

This program uses put() to write a string that includes non-ASCII characters to a file.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

char *p = "hello there\n\r\xfe\xff";

ofstream out("test", ios::out | ios::binary);

if(!out) {

cout << "Cannot open file.\n";

return 1;

}

while(*p) out.put(*p++);

out.close();

return 0;

}

Using read() and write()
The second way to read and write binary data uses C++’s read() and write() member
functions. The prototypes for two of their most commonly used forms are

istream &read(char *buf, streamsize num);
ostream &write(const char *buf, streamsize num);

The read() function reads num bytes from the associated stream and puts them in the
buffer pointed to by buf. The write() function writes num bytes to the associated stream
from the buffer pointed to by buf. streamsize is some form of integer that is capable of
holding the number of characters that can be transferred in any one I/O operation.

The following program writes and then reads an array of integers:

#include <iostream>

#include <fstream>

using namespace std;

int main()

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 715
C

+
+

{

int n[5] = {1, 2, 3, 4, 5};

register int i;

ofstream out("test", ios::out | ios::binary);

if(!out) {

cout << "Cannot open file.\n";

return 1;

}

out.write((char *) &n, sizeof n);

out.close();

for(i=0; i<5; i++) // clear array

n[i] = 0;

ifstream in("test", ios::in | ios::binary);

in.read((char *) &n, sizeof n);

for(i=0; i<5; i++) // show values read from file

cout << n[i] << " ";

in.close();

return 0;

}

Note that the type casts inside the calls to read() and write() are necessary when
operating on a buffer that is not defined as a character array.

If the end of the file is reached before num characters have been read, read() simply
stops and the buffer contains as many characters as were available. You can find out
how many characters have been read using another member function called gcount(),
which has this prototype:

streamsize gcount();

It returns the number of characters read by the last binary input operation.

Detecting EOF
You can detect when the end of the file is reached using the member function eof(),
which has the prototype

bool eof();

It returns true when the end of the file has been reached; otherwise, it returns false.

716 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Random Access
In C++’s I/O system, you perform random access using the seekg() and seekp()
functions. Their most common forms are

istream &seekg(off_type offset, seekdir origin);
ostream &seekp(off_type offset, seekdir origin);

Here, off_type is an integer type defined by ios that is capable of containing the largest
valid value that offset can have. seekdir is an enumeration defined by ios that determines
how the seek will take place.

The C++ I/O system manages two pointers associated with each file. One is the get
pointer, which specifies where in the file the next input operation will occur. The other
is the put pointer, which specifies where in the file the next output operation will occur.
Each time an input or an output operation takes place, the appropriate pointer is
automatically advanced. However, using the seekg() and seekp() functions, it is
possible to access the file in a nonsequential fashion.

The seekg() function moves the associated file’s current get pointer offset number
of bytes from the specified origin, which must be one of these three values:

Value Meaning

ios::beg Beginning of file

ios::cur Current location

ios::end End of file

The seekp() function moves the associated file’s current put pointer offset number
of bytes from the specified origin, which must be one of the same three values.

This program demonstrates the seekp() function. It allows you to specify a
filename on the command line followed by the specific byte in the file you want to
change. It then writes an “X” at the specified location. Notice that the file must be
opened for read/write operations.

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])

{

if(argc!=3) {

cout << "Usage: CHANGE <filename> <byte>\n";

return 1;

C h a p t e r 2 4 : T h e C + + I / O C l a s s L i b r a r y 717
C

+
+

}

fstream out(argv[1], ios::in | ios::out | ios::binary);

if(!out) {

cout << "Cannot open file.\n";

return 1;

}

out.seekp(atoi(argv[2]), ios::beg);

out.put('X');

out.close();

return 0;

}

The next program uses seekg() to display the contents of a file beginning with the
location you specify on the command line:

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])

{

char ch;

if(argc!=3) {

cout << "Usage: NAME <filename> <starting location>\n";

return 1;

}

ifstream in(argv[1], ios::in | ios::binary);

if(!in) {

cout << "Cannot open file.\n";

return 1;

}

in.seekg(atoi(argv[2]), ios::beg);

while(in.get(ch))

cout << ch;

in.close();

return 0;

}

You can determine the current position of each file pointer using these functions:

pos_type tellg();
pos_type tellp();

Here, pos_type is a type defined by ios that is capable of holding the largest value that
either function can return.

You can use the values returned by tellg() and tellp() as arguments to the
following forms of seekg() and seekp(), respectively.

istream &seekg(pos_type pos);

ostream &seekp(pos_type pos);

These functions allow you to save the current file location, perform other file
operations, and then reset the file location to its previously saved location.

As you have seen, C++’s I/O system is both powerful and flexible. Although this
chapter discusses some of the most commonly used classes and functions, C++
includes several others. For example, you will want to explore the getline() function
(defined by istream) and the various overloaded forms of the I/O functions described
in this chapter.

718 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Chapter 25
Templates, Exceptions,
and RTTI

719

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

720 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This chapter discusses several of C++’s most advanced features: templates,
exceptions, run-time type ID (RTTI), and the casting operators.
Using a template, it is possible to create generic functions and generic classes. In a

generic function or class, the type of data upon which the function or class operates is
specified as a parameter. Thus, you can use one function or class with several different
types of data without having to explicitly recode specific versions for different data types.

Exception handling allows you to handle run-time errors in a structured and
controlled manner. The principal advantage of exception handling is that it automates
much of the error-handling code that previously had to be implemented “by hand”
in any large program.

Run-time type identification (RTTI) lets you determine the actual type of an object
at run time. You can also test if an object is of a particular type or if two objects are of
the same type.

Also discussed in this chapter are four casting operators: const_cast, dynamic_cast,
reinterpret_cast, and static_cast. These casting operators give you fine-grained control
over type casting.

Generic Functions
A generic function defines a general set of operations that will be applied to various
types of data. Using this mechanism, the same general procedure can be applied to a
wide range of data. As you probably know, many algorithms are logically the same no
matter what type of data is being operated upon. For example, the Quicksort sorting
algorithm is the same whether it is applied to an array of integers or an array of floats.
It is just that the type of the data being sorted is different. By creating a generic
function, you can define, independent of any data, the nature of the algorithm. Once
this is done, the compiler automatically generates the correct code for the type of data
that is actually used when you execute the function. In essence, when you create a
generic function you are creating a function that can automatically overload itself.

A generic function is created with the keyword template. The normal meaning of the
word “template” accurately reflects its use in C++. It is used to create a template (or
framework) that describes what a function will do, leaving it to the compiler to fill in the
details, as needed. The general form of a template function definition is shown here:

template <class Ttype> ret-type func-name(parameter list)
{

// body of function
}

Here, Ttype is a placeholder name for a data type used by the function. This name can
be used within the function definition. However, it is only a placeholder that the

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 721
C

+
+

compiler will automatically replace with an actual data type when it creates a specific
version of the function.

Here is a short example that creates a generic function that swaps the values of the
two variables with which it is called. Because the general process of exchanging two
values is independent of the type of the variables, it is a good choice to be made into a
generic function.

// Function template example.

#include <iostream>

using namespace std;

// This is a function template.

template <class X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

int main()

{

int i=10, j=20;

float x=10.1, y=23.3;

char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << endl;

cout << "Original x, y: " << x << ' ' << y << endl;

cout << "Original a, b: " << a << ' ' << b << endl;

swapargs(i, j); // swap integers

swapargs(x, y); // swap floats

swapargs(a, b); // swap chars

cout << "Swapped i, j: " << i << ' ' << j << endl;

cout << "Swapped x, y: " << x << ' ' << y << endl;

cout << "Swapped a, b: " << a << ' ' << b << endl;

return 0;

}

Let’s look closely at this program. The line:

template <class X> void swapargs(X &a, X &b)

tells the compiler two things: that a template is being created and that a generic
definition is beginning. Here, X is a generic type that is used as a placeholder. After
the template portion, the function swapargs() is declared, using X as the data type
of the values that will be swapped. In main(), the swapargs() function is called using
three different types of data: integers, floats, and chars. Because swapargs() is a
generic function, the compiler automatically creates three versions of swapargs()—
one that will exchange integer values, one that will exchange floating-point values,
and one that will swap characters.

A Function with Two Generic Types
You can define more than one generic data type in the template statement, using a
comma-separated list. For example, this program creates a generic function that has
two generic types:

#include <iostream>

using namespace std;

template <class type1, class type2>

void myfunc(type1 x, type2 y)

{

cout << x << ' ' << y << endl;

}

int main()

{

myfunc(10, "hi");

myfunc(0.23, 10L);

return 0;

}

In this example, the placeholder types type1 and type2 are replaced by the
compiler with the data types int and char * and double and long, respectively,
when the compiler generates the specific instances of myfunc() within main().
Remember: When you create a generic function, you are, in essence, allowing the
compiler to generate as many different versions of that function as necessary to
handle the various ways that your program calls that function.

722 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 723
C

+
+

Explicitly Overloading a Generic Function
Even though a template function overloads itself as needed, you can explicitly overload
one, too. If you overload a generic function, then that overloaded function overrides (or
“hides”) the generic function relative to that specific version. For example, consider
this version of swapargs():

// Overriding a template function.

#include <iostream>

using namespace std;

template <class X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

// This overrides the generic version of swap().

void swapargs(int &a, int &b)

{

int temp;

temp = a;

a = b;

b = temp;

cout << "Inside overloaded swapargs(int &, int &).\n";

}

int main()

{

int i=10, j=20;

float x=10.1, y=23.3;

char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << endl;

cout << "Original x, y: " << x << ' ' << y << endl;

cout << "Original a, b: " << a << ' ' << b << endl;

724 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

swapargs(i, j); // this calls the explicitly overloaded swapargs()

swapargs(x, y); // swap floats

swapargs(a, b); // swap chars

cout << "Swapped i, j: " << i << ' ' << j << endl;

cout << "Swapped x, y: " << x << ' ' << y << endl;

cout << "Swapped a, b: " << a << ' ' << b << endl;

return 0;

}

As the comments indicate, when swapargs(i, j) is called, it invokes the explicitly
overloaded version of swapargs() defined in the program. Thus, the compiler does not
generate this version of the generic swapargs() function because the generic function
is overridden by the explicit overloading.

Recently, a new-style syntax was introduced to denote the explicit specialization of a
function. This new method uses the template keyword. For example, using the new-style
specialization syntax, the overloaded swapargs() function from the preceding program
looks like this:

// Use new-style specialization syntax

template<> void swapargs<int>(int &a, int &b)

{

int temp;

temp = a;

a = b;

b = temp;

cout << "Inside specialized swapargs(int &, int &).\n";

}

As you can see, the new-style syntax uses the template<> construct to indicate
specialization. The type of data for which the specialization is being created is placed
inside the angle brackets following the function name. This same syntax is used to
specialize any type of generic function. While there is no advantage to using one
specialization syntax over the other, the new-style is probably a better approach for
the long term.

Manual overloading of a template, as shown in this example, allows you to
specially tailor a version of a generic function to accommodate a special situation. In

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 725
C

+
+

general, however, if you need to have different versions of a function for different data
types, you should use overloaded functions rather than templates.

Overloading a Function Template
In addition to creating explicit, overloaded versions of a generic function, you can also
overload the template specification itself. To do so, simply create another version of the
template that differs from any others in its parameter list. For example:

// Overload a function template declaration.

#include <iostream>

using namespace std;

// First version of f() template.

template <class X> void f(X a)

{

cout << "Inside f(X a)\n a = " << a << endl;

}

// Second version of f() template.

template <class X, class Y> void f(X a, Y b)

{

cout << "Inside f(X a, Y b)\n a = " << a << "\n b = " << b << endl;

}

int main()

{

f(10); // calls f(X)

f(10, 20); // calls f(X, Y)

return 0;

}

Here, the template for f() is overloaded to accept either one or two parameters.

Generic Function Restrictions
Generic functions are similar to overloaded functions except that they are more
restrictive. When functions are overloaded, you can have different actions performed

within the body of each function. But a generic function must perform the same general
action for all versions—only the type of data may differ. For example, in the following
program, the overloaded functions could not be replaced by a generic function because
they do not do the same thing.

#include <iostream>

#include <cmath>

using namespace std;

void myfunc(int i)

{

cout << "value is: " << i << "\n";

}

void myfunc(double d)

{

double intpart;

double fracpart;

fracpart = modf(d, &intpart);

cout << "Fractional part: " << fracpart;

cout << "\n";

cout << "Integer part: " << intpart;

}

int main()

{

myfunc(1);

myfunc(12.2);

return 0;

}

Generic Classes
In addition to generic functions, you can also define a generic class. When you do this,
you create a class that defines all algorithms used by that class, but the actual type of data
being manipulated will be specified as a parameter when objects of that class are created.

Generic classes are useful when a class contains generalizable logic. For example,
the same algorithm that maintains a queue of integers will also work for a queue of
characters. Also, the same mechanism that maintains a linked list of mailing addresses
will also maintain a linked list of auto part information. By using a generic class, you
can create a class that will maintain a queue, a linked list, and so on for any type of

726 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 727
C

+
+

data. The compiler will automatically generate the correct type of object according to
the type you specify when the object is created.

The general form of a generic class declaration is shown here.

template <class Ttype> class class-name {
// ...

}

Here, Ttype is the placeholder type name that will be specified when a class is
instantiated. If necessary, you may define more than one generic data type using a
comma-separated list.

Once you have created a generic class, you create a specific instance of that class
using the following general form:

class-name <type> ob;

Here, type is the type name of the data that the class will be operating upon.
Member functions of a generic class are, themselves, automatically generic. They

need not be explicitly specified as such using template.
In the following program, a generic stack class is created that implements a

standard last-in, first-out stack. Thus, it can be used to provide a stack for any type
of object. In the example shown here, a character stack, an integer stack, and a
floating-point stack are created.

// Demonstrate a generic stack class.

#include <iostream>

using namespace std;

const int SIZE = 100;

// This creates the generic class stack.

template <class SType> class stack {

SType stck[SIZE];

int tos;

public:

stack();

~stack();

void push(SType i);

SType pop();

};

// stack's constructor function.

template <class SType> stack<SType>::stack()

{

tos = 0;

cout << "Stack Initialized\n";

}

/* stack's destructor function.

This function is not required. It is included

for illustration only. */

template <class SType> stack<SType>::~stack()

{

cout << "Stack Destroyed\n";

}

// Push an object onto the stack.

template <class SType> void stack<SType>::push(SType i)

{

if(tos==SIZE) {

cout << "Stack is full.\n";

return;

}

stck[tos] = i;

tos++;

}

// Pop an object off the stack.

template <class SType> SType stack<SType>::pop()

{

if(tos==0) {

cout << "Stack underflow.\n";

return 0;

}

tos--;

return stck[tos];

}

int main()

{

stack<int> a; // create integer stack

stack<double> b; // create a double stack

stack<char> c; // create a character stack

728 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int i;

// use the integer and double stacks

a.push(1);

b.push(99.3);

a.push(2);

b.push(-12.23);

cout << a.pop() << " ";

cout << a.pop() << " ";

cout << b.pop() << " ";

cout << b.pop() << "\n";

// demonstrate the character stack

for(i=0; i<10; i++) c.push((char) 'A'+i);

for(i=0; i<10; i++) cout << c.pop();

cout << "\n";

return 0;

}

As you can see, the declaration of a generic class is similar to that of a generic function.
The generic data type is used in the class declaration and in its member functions. It is not
until an object of the stack is declared that the actual data type is determined. When a
specific instance of stack is declared, the compiler automatically generates all the
necessary functions and data to handle the actual data. In this example, three different
types of stacks are declared. (One for ints, one for doubles, and one for chars.) Pay special
attention to these declarations:

stack<int> a; // create integer stack

stack<double> b; // create a double stack

stack<char> c; // create a character stack

Notice how the desired data type is passed inside the angle brackets. By changing the
type of data specified when stack objects are created, you can change the type of data
stored in that stack. For example, you could create another stack that stores character
pointers by using this declaration:

stack<char *> chrptrstck;

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 729
C

+
+

You can also create stacks to store data types that you create. For example, suppose
you want to store address information using this structure:

struct addr {

char name[40];

char street[40];

char city[30];

char state[3];

char zip[12];

}

Then, to use stack to generate a stack that will store objects of type addr, use a
declaration like this:

stack<addr> obj;

An Example with Two Generic Data Types
A template class can have more than one generic data type. Simply declare all the data
types required by the class in a comma-separated list within the template specification.
For example, the following short example creates a class that uses two generic data types.

/* This example uses two generic data types in a

class definition.

*/

#include <iostream>

using namespace std;

template <class Type1, class Type2> class myclass

{

Type1 i;

Type2 j;

public:

myclass(Type1 a, Type2 b) { i = a; j = b; }

void show() { cout << i << ' ' << j << '\n'; }

};

int main()

{

myclass<int, double> ob1(10, 0.23);

myclass<char, char *> ob2('X', "This is a test");

730 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

ob1.show(); // show int, double

ob2.show(); // show char, char *

return 0;

}

This program produces the following output:

10 0.23

X This is a test

The program declares two types of objects. ob1 uses int and double data. ob2 uses a
character and a character pointer. For both cases, the compiler automatically generates
the appropriate data and functions to accommodate the way the objects are created.

Template functions and classes give you unprecedented power to create reusable
code. When you have a generalizable routine, consider making it into a template. Once
you have fully debugged and tested it, you can employ it over and over again, in
different situations, without having to incur additional development overhead.
However, resist the temptation to make everything into a generic function or class. Using
templates where they do not apply renders your code both confusing and misleading.

Exception Handling
Exception handling allows you to manage run-time errors in an orderly fashion. Using
C++ exception handling, your program can automatically invoke an error-handling
routine when an error occurs. The principal advantage of exception handling is that it
automates much of the error-handling code that previously had to be coded “by hand”
in any large program.

Exception Handling Fundamentals
C++ exception handling is built upon three keywords: try, catch, and throw. In the
most general terms, program statements that you want to monitor for exceptions are
contained in a try block. If an exception (i.e., an error) occurs within the try block, it
is thrown (using throw). The exception is caught, using catch, and processed. The
following discussion elaborates upon this general description.

As stated, any statement that throws an exception must have been executed from
within a try block. (Functions called from within a try block may also throw an
exception.) Any exception must be caught by a catch statement that immediately

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 731
C

+
+

follows the try statement that throws the exception. The general form of try and catch
are shown here.

try {
// try block

}
catch (type1 arg) {

// catch block
}
catch (type2 arg) {

// catch block
}
catch (type3 arg) {

// catch block
}
.
.
.
catch (typeN arg) {

// catch block
}

The try block must contain that portion of your program that you want to monitor
for errors. This can be as short as a few statements within one function or as
all-encompassing as enclosing the main() function code within a try block (which
effectively causes the entire program to be monitored).

When an exception is thrown, it is caught by its corresponding catch statement,
which processes the exception. There can be more than one catch statement associated
with a try. Which catch statement is used is determined by the type of the exception.
That is, if the data type specified by a catch matches that of the exception, then that
catch statement is executed (and all others are bypassed). When an exception is caught,
arg will receive its value. Any type of data may be caught, including classes that you
create. If no exception is thrown (that is, no error occurs within the try block), then no
catch statement is executed.

The general form of the throw statement is shown here.

throw exception;

throw must be executed either from within the try block, proper, or from any function
called (directly or indirectly) from within the try block. exception is the value thrown.

If you throw an exception for which there is no applicable catch statement, an
abnormal program termination may occur. Throwing an unhandled exception causes the
terminate() function to be invoked. By default, terminate() calls abort() to stop your
program. However, you may specify your own handlers if you like, using set_terminate().

732 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here is a simple example that shows the way C++ exception handling operates.

// A simple exception handling example.

#include <iostream>

using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

This program displays the following output:

Start

Inside try block

Caught an exception -- value is: 100

End

Look carefully at this program. As you can see, there is a try block containing three
statements and a catch(int i) statement that processes an integer exception. Within the
try block, only two of the three statements will execute: the first cout statement and
the throw. Once an exception has been thrown, control passes to the catch expression
and the try block is terminated. That is, catch is not called. Rather, program execution
is transferred to it. (The program’s stack is automatically reset as needed to accomplish
this.) Thus, the cout statement following the throw will never execute.

Usually, the code within a catch statement attempts to remedy an error by taking
appropriate action. If the error can be fixed, then execution will continue with the

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 733
C

+
+

statements following the catch. However, sometimes an error cannot be fixed and a
catch block will terminate the program with a call to exit() or abort().

As mentioned, the type of the exception must match the type specified in a catch
statement. In the preceding example, for example, if you change the type in the catch
statement to double, then the exception will not be caught and abnormal termination
will occur. This change is shown here.

// This example will not work.

#include <iostream>

using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

}

catch (double i) { // Won't work for an int exception

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

This program produces the following output because the integer exception will not be
caught by the catch(double i) statement.

Start

Inside try block

Abnormal program termination

An exception can be thrown from a statement that is outside a try block as long
as it is within a function that is called from within the try block. For example, this is
a valid program.

734 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

/* Throwing an exception from a function outside the

try block.

*/

#include <iostream>

using namespace std;

void Xtest(int test)

{

cout << "Inside Xtest, test is: " << test << "\n";

if(test) throw test;

}

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

Xtest(0);

Xtest(1);

Xtest(2);

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

This program produces the following output:

Start

Inside try block

Inside Xtest, test is: 0

Inside Xtest, test is: 1

Caught an exception -- value is: 1

End

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 735
C

+
+

A try block can be localized to a function. When this is the case, each time the
function is entered, the exception handling relative to that function is reset. For
example, examine this program.

#include <iostream>

using namespace std;

// A try/catch can be inside a function other than main().

void Xhandler(int test)

{

try{

if(test) throw test;

}

catch(int i) {

cout << "Caught Exception #: " << i << '\n';

}

}

int main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

return 0;

}

This program displays this output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught Exception #: 3

End

736 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 737
C

+
+

As you can see, three exceptions are thrown. After each exception, the function returns.
When the function is called again, the exception handling is reset.

It is important to understand that the code associated with a catch statement will be
executed only if it catches an exception. Otherwise, execution simply bypasses the
catch statement.

Catching Class Types
An exception can be of any type, including class types that you create. Actually, in
real-world programs, most exceptions will be class types rather than built-in types.
Perhaps the most common reason that you will want to define a class type for an
exception is to create an object that describes the error that occurred. This information
can be used by the exception handler to help it process the error. The following
example demonstrates this.

// Catching class type exceptions.

#include <iostream>

#include <cstring>

using namespace std;

class MyException {

public:

char str_what[80];

int what;

MyException() { *str_what = 0; what = 0; }

MyException(char *s, int e) {

strcpy(str_what, s);

what = e;

}

};

int main()

{

int i;

try {

cout << "Enter a positive number: ";

cin >> i;

if(i<0)

738 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

throw MyException("Not Positive", i);

}

catch (MyException e) { // catch an error

cout << e.str_what << ": ";

cout << e.what << "\n";

}

return 0;

}

This program produces the following output:

Enter a positive number: -20

Not Positive: -20

The program prompts the user for a positive number. If a negative number is entered, an
object of the class MyException is created that describes the error. Thus, MyException
encapsulates information about the error. This information is then used by the exception
handler. In general, you will want to create exception classes that will encapsulate
information about an error to enable the exception handler to respond effectively.

Using Multiple catch Statements
As stated, you can have more than one catch associated with a try. In fact, it is common
to do so. However, each catch must catch a different type of exception. For example,
this program catches both integers and strings.

#include <iostream>

using namespace std;

// Different types of exceptions can be caught.

void Xhandler(int test)

{

try{

if(test) throw test;

else throw "Value is zero";

}

catch(int i) {

cout << "Caught Exception #: " << i << '\n';

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 739
C

+
+

}

catch(char *str) {

cout << "Caught a string: ";

cout << str << '\n';

}

}

int main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

return 0;

}

This program produces the following output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught a string: Value is zero

Caught Exception #: 3

End

As you can see, each catch statement responds only to its own type.
In general, catch expressions are checked in the order in which they occur in a

program. Only a matching statement is executed. All other catch blocks are ignored.

Handling Derived-Class Exceptions
You need to be careful how you order your catch statements when trying to catch
exception types that involve base and derived classes because a catch clause for a base
class will also match any class derived from that base. Thus, if you want to catch
exceptions of both a base class type and a derived class type, put the derived class first

in the catch sequence. If you don’t do this, the base class catch will also catch all
derived classes. For example, consider the following program.

// Catching derived classes.

#include <iostream>

using namespace std;

class B {

};

class D: public B {

};

int main()

{

D derived;

try {

throw derived;

}

catch(B b) {

cout << "Caught a base class.\n";

}

catch(D d) {

cout << "This won't execute.\n";

}

return 0;

}

Here, because derived is an object that has B as a base class, it will be caught by
the first catch clause and the second clause will never execute. C++ Builder will
flag this condition with a warning message. To fix this condition, reverse the order
of the catch clauses.

Exception Handling Options
There are several additional features and nuances to C++ exception handling that
make it easier and more convenient to use. These attributes are discussed here.

740 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 741
C

+
+

Catching All Exceptions
In some circumstances you will want an exception handler to catch all exceptions
instead of just a certain type. This is easy to accomplish. Simply use this form of catch.

catch(...) {
// process all exceptions

}

Here, the ellipsis matches any type of data. The following program illustrates catch(...).

// This example catches all exceptions.

#include <iostream>

using namespace std;

void Xhandler(int test)

{

try{

if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char

if(test==2) throw 123.23; // throw double

}

catch(...) { // catch all exceptions

cout << "Caught One!\n";

}

}

int main()

{

cout << "Start\n";

Xhandler(0);

Xhandler(1);

Xhandler(2);

cout << "End";

return 0;

}

This program displays the following output.

Start

Caught One!

Caught One!

Caught One!

End

As you can see, all three throws were caught using the one catch statement.

Restricting Exceptions
When a function is called from within a try block, you can restrict what type of
exceptions that function can throw. In fact, you can also prevent that function from
throwing any exceptions whatsoever. To accomplish these restrictions, you must
add a throw clause to a function definition. The general form of this is shown here.

ret-type func-name(arg-list) throw(type-list)
{

// ...
}

Here, only those data types contained in the comma-separated type-list may be thrown
by the function. Throwing any other type of expression will cause abnormal program
termination. If you don’t want a function to be able to throw any exceptions, then use
an empty list.

Attempting to throw an exception that is not supported by a function will cause the
unexpected() function to be called. Generally, this function, in turn, calls terminate().
You can specify your own unexpected exception handler using set_unexpected().

The following program shows how to restrict the types of exceptions that can be
thrown from a function.

// Restricting function throw types.

#include <iostream>

using namespace std;

// This function can only throw ints, chars, and doubles.

void Xhandler(int test) throw(int, char, double)

{

if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char

if(test==2) throw 123.23; // throw double

}

742 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 743
C

+
+

int main()

{

cout << "start\n";

try{

Xhandler(0); // also, try passing 1 and 2 to Xhandler()

}

catch(int i) {

cout << "Caught an integer\n";

}

catch(char c) {

cout << "Caught char\n";

}

catch(double d) {

cout << "Caught double\n";

}

cout << "end";

return 0;

}

In this program, the function Xhandler() may throw only int, char, and double
exceptions. If it attempts to throw any other type of exception, then an abnormal
program termination will occur. (Specifically, the unexpected() function will be
called.) To see an example of this, remove int from the list and retry the program.

A function can be restricted only in what types of exceptions it throws outside of
itself. That is, a try block within a function can throw any type of exception so long as it
is caught within that function. The restriction applies only when throwing an exception
outside of the function.

The following change to Xhandler() prevents it from throwing any exceptions.

// This function can throw NO exceptions!

void Xhandler(int test) throw()

{

/* The following statements no longer work. Instead,

they will cause an abnormal program termination. */

if(test==0) throw test;

if(test==1) throw 'a';

if(test==2) throw 123.23;

}

Rethrowing an Exception
If you want to rethrow an expression from within an exception handler, you may do so
by calling throw, by itself, with no exception. This causes the current exception to be
passed on to an outer try/catch sequence. The most likely reason for doing so is to
allow multiple handlers access to the exception. For example, perhaps one exception
handler manages one aspect of an exception and a second handler copes with another.
An exception can only be rethrown from within a catch block (or from any function
called from within that block). When you rethrow an exception, it will not be recaught
by the same catch statement. It will propogate to the next catch statement. The
following program illustrates rethrowing an exception. It rethrows a char * exception.

// Example of "rethrowing" an exception.

#include <iostream>

using namespace std;

void Xhandler()

{

try {

throw "hello"; // throw a char *

}

catch(char *) { // catch a char *

cout << "Caught char * inside Xhandler\n";

throw ; // rethrow char * out of function

}

}

int main()

{

cout << "Start\n";

try{

Xhandler();

}

catch(char *) {

cout << "Caught char * inside main\n";

}

cout << "End";

return 0;

}

744 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This program displays this output:

Start

Caught char * inside Xhandler

Caught char * inside main

End

Understanding terminate() and unexpected()
As mentioned earlier, terminate() and unexpected() are called when something goes
wrong during the exception handling process. These functions are supplied by the
Standard C++ Library. Their prototypes are shown here:

void terminate();
void unexpected();

These functions require the header <exception>.
The terminate() function is called whenever the exception handling subsystem fails

to find a matching catch statement for an exception. It is also called if your program
attempts to rethrow an exception when no exception was originally thrown. The
terminate() function is also called under various other, more obscure circumstances.
For example, such a circumstance could occur when, in the process of unwinding the
stack because of an exception, a destructor for an object being destroyed throws an
exception. In general, terminate() is the handler of last resort when no other handlers
for an exception are available. By default, terminate() calls abort().

The unexpected() function is called when a function attempts to throw an exception
that is not allowed by its throw list. By default, unexpected() calls terminate().

Setting the Terminate and Unexpected Handlers
The terminate() and unexpected() functions simply call other functions to actually
handle an error. As just explained, by default terminate() calls abort(), and
unexpected() calls terminate(). Thus, by default, both functions halt program
execution when an exception handling error occurs. However, you can change the
functions that are called by terminate() and unexpected(). Doing so allows your
program to take full control of the exception handling subsystem. To change the
terminate handler, use set_terminate(), shown here:

terminate_handler set_terminate(terminate_handler newhandler);

Here, newhandler is a pointer to the new terminate handler. The function returns a
pointer to the old terminate handler. The new terminate handler must be of type
terminate_handler, which is defined like this:

typedef void (*terminate_handler) ();

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 745
C

+
+

746 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The only thing that your terminate handler must do is stop program execution.
It must not return to the program or resume it in any way.

To change the unexpected handler, use set_unexpected(), as shown here:

unexpected_handler set_unexpected(unexpected_handler newhandler);

Here, newhandler is a pointer to the new unexpected handler. The function returns a
pointer to the old unexpected handler. The new unexpected handler must be of type
unexpected_handler, which is defined like this:

typedef void (*unexpected_handler) ();

This handler may itself throw an exception, stop the program, or call terminate().
However, it must not return to the program.

Both set_terminate() and set_unexpected() require the header <exception>. Here
is an example that defines its own terminate() handler.

// Set a new terminate handler.

#include <iostream>

#include <cstdlib>

#include <exception>

using namespace std;

void my_Thandler() {

cout << "Inside new terminate handler\n";

abort();

}

int main()

{

// set a new terminate handler

set_terminate(my_Thandler);

try {

cout << "Inside try block\n";

throw 100; // throw an error

}

catch (double i) { // won't catch an int exception

// ...

}

return 0;

}

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 747
C

+
+

The output from this program is shown here.

Inside try block

Inside new terminate handler

Abnormal program termination

The uncaught_exception() Function
The C++ exception handling subsystem supplies one other function that you may find
useful: uncaught_exception(). Its prototype is shown here:

bool uncaught_exception();

This function returns true if an exception has been thrown but not yet caught. Once
caught, the function returns false.

Applying Exception Handling
Exception handling is designed to provide a structured means by which your program
can handle abnormal events. This implies that the error handler must do something
rational when an error occurs. For example, consider the following simple program. It
inputs two numbers and divides the first by the second. It uses exception handling to
manage a divide-by-zero error.

#include <iostream>

using namespace std;

void divide(double a, double b);

int main()

{

double i, j;

do {

cout << "Enter numerator (0 to stop): ";

cin >> i;

cout << "Enter denominator: ";

cin >> j;

divide(i, j);

} while(i != 0);

return 0;

}

void divide(double a, double b)

{

try {

if(!b) throw b; // check for divide-by-zero

cout << "Result: " << a/b << endl;

}

catch (double b) {

cout << "Can't divide by zero.\n";

}

}

While the preceding program is a very simple example, it does illustrate the
essential nature of exception handling. Since division by zero is illegal, the program
cannot continue if a zero is entered for the second number. In this case, the exception is
handled by not performing the division (which would have caused abnormal program
termination) and by notifying the user of the error. The program then reprompts the
user for two more numbers. Thus, the error has been handled in an orderly fashion and
the user may continue on with the program. The same basic concepts will apply to
more complex applications of exception handling.

Exception handling is especially useful for exiting from a deeply nested set of
routines when a catastrophic error occurs. In this regard, C++’s exception handling is
designed to replace the rather clumsy C-based setjmp() and longjmp() functions.

The key point about using exception handling is to provide an orderly means of handling
errors. This means rectifying the situation, if possible.

Run-Time Type Identification (RTTI)
Using run-time type identification, you can determine the type of an object during
program execution. To obtain an object’s type, use typeid. You must include the header
<typeinfo> in order to use typeid. Its general form is shown here.

typeid(object)

Here, object is the object whose type you will be obtaining. typeid returns a reference
to an object of type type_info that describes the type of object defined by object. The
type_info class defines the following public members:

748 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

bool operator==(const type_info & ob) const;
bool operator!=(const type_info & ob) const;
bool before(const type_info & ob) const;
const char *name() const;

The overloaded == and != provide for the comparison of types. The before()
function returns true if the invoking object is before the object used as a parameter in
collation order. (This function is mostly for internal use only. Its return value has
nothing to do with inheritance or class hierarchies.) The name() function returns a
pointer to the name of the type.

When typeid is applied to a base class pointer of a polymorphic class, it will
automatically return the type of the object being pointed to, which might be a class
derived from that base. (Remember, a polymorphic class is one that contains at least
one virtual function.) Thus, using typeid, you can determine at run time the type of
the object that is being pointed to by a base class pointer. The following program
demonstrates this principle.

// An example that uses typeid.

#include <iostream>

#include <typeinfo>

using namespace std;

class BaseClass {

int a, b;

virtual void f() {}; // make BaseClass polymorphic

};

class Derived1: public BaseClass {

int i, j;

};

class Derived2: public BaseClass {

int k;

};

int main()

{

int i;

BaseClass *p, baseob;

Derived1 ob1;

Derived2 ob2;

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 749
C

+
+

// First, display type name of a built in type.

cout << "Typeid of i is ";

cout << typeid(i).name() << endl;

// Demonstrate typeid with polymorphic types.

p = &baseob;

cout << "p is pointing to an object of type ";

cout << typeid(*p).name() << endl;

p = &ob1;

cout << "p is pointing to an object of type ";

cout << typeid(*p).name() << endl;

p = &ob2;

cout << "p is pointing to an object of type ";

cout << typeid(*p).name() << endl;

return 0;

}

The output produced by this program is shown here.

Typeid of i is int

p is pointing to an object of type BaseClass

p is pointing to an object of type Derived1

p is pointing to an object of type Derived2

As mentioned, when typeid is applied to a base class pointer of a polymorphic
type, the type of object pointed to will be determined at run time, as the output
produced by the program shows. For an experiment, comment out the virtual function
f() in BaseClass and observe the results.

Run-time type identification is not something that every program will use. However,
when working with polymorphic types, it allows you to know what type of object is
being operated upon in any given situation.

Casting Operators
Although C++ still fully supports the traditional casting operator, it defines four
additional casting operators. They are const_cast, dynamic_cast, reinterpret_cast,
and static_cast. Their general forms are shown here.

750 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

const_cast<target-type> (expr)
dynamic_cast<target-type> (expr)
reinterpret_cast<target-type> (expr)
static_cast<target-type> (expr)

Here, target-type specifies the target type of the cast and expr is the expression being
cast to the new type.

The const_cast operator is used to explicitly override const and/or volatile in a cast.
The target type must be the same as the source type except for the alteration of its const
or volatile attributes. The most common use of const_cast is to remove const-ness.

dynamic_cast performs a run-time cast that verifies the validity of the cast. If the cast
cannot be made, the cast fails and the expression evaluates to null. Its main use is for
performing casts on polymorphic types. For example, given two polymorphic classes
B and D, with D derived from B, a dynamic_cast can always cast a D* pointer into a B*
pointer. A dynamic_cast can cast a B* pointer into a D* pointer only if the object being
pointed to actually is a D*. In general, dynamic_cast will succeed if the attempted
polymorphic cast is permitted (that is, if the target type can legally apply to the type of
object being cast). If the cast cannot be made, then dynamic_cast evaluates to null.

The static_cast operator performs a nonpolymorphic cast. For example, it can be
used to cast a base class pointer into a derived class pointer. It can also be used for any
standard conversion. No run-time checks are performed The reinterpret_cast operator
changes one type into a fundamentally different type. For example, it can be used to
change a pointer into an integer. A reinterpret_cast should be used for casting
inherently incompatible pointer types.

Only const_cast can cast away const-ness. That is, neither dynamic_cast,
static_cast, nor reinterpret_cast can alter the const-ness of an object.

The following program demonstrates the use of dynamic_cast.

#include <iostream>

using namespace std;

#define NUM_EMPLOYEES 4

class employee {

public:

employee() { cout << "Constructing employee\n"; }

virtual void print() = 0;

};

class programmer : public employee {

public:

programmer() { cout << "Constructing programmer\n"; }

C
+

+
C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 751

void print() { cout << "Printing programmer object\n"; }

};

class salesperson : public employee {

public:

salesperson() { cout << "Constructing salesperson\n"; }

void print() { cout << "Printing salesperson object\n"; }

};

class executive : public employee {

public:

executive() { cout << "Constructing executive\n"; }

void print() { cout << "Printing executive object\n"; }

};

int main() {

programmer prog1, prog2;

executive ex;

salesperson sp;

// Initialize the array of employees

employee *e[NUM_EMPLOYEES];

e[0] = &prog1;

e[1] = &sp;

e[2] = &ex;

e[3] = &prog2;

// See which ones are programmers.

for(int i = 0; i < NUM_EMPLOYEES; i++) {

programmer *pp = dynamic_cast<programmer*>(e[i]);

if(pp) {

cout << "Is a programmer\n";

pp->print();

}

else {

cout << "Not a programmer\n";

}

}

}

The array e contains pointers to the four employees. The dynamic_cast operator is used
to identify which of these are programmers. If the dynamic_cast operator returns a

752 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

null, that employee is not a programmer. Otherwise, the print() function for that object
is invoked.

The output produced by this program is shown here:

Constructing employee

Constructing programmer

Constructing employee

Constructing programmer

Constructing employee

Constructing executive

Constructing employee

Constructing salesperson

Is a programmer

Printing programmer object

Not a programmer

Not a programmer

Is a programmer

Printing programmer object

The following program demonstrates the use of reinterpret_cast.

// An example that uses reinterpret_cast.

#include <iostream>

using namespace std;

int main()

{

int i;

char *p = "This is a string";

i = reinterpret_cast<int> (p); // cast pointer to integer

cout << i;

return 0;

}

One final point: Although the traditional casting operator can handle a wide
variety of casts, the casting operators just described give you more control over
casting. This finer-grained control can be a great benefit in today’s type-rich
programming environments, such as Windows.

C h a p t e r 2 5 : T e m p l a t e s , E x c e p t i o n s , a n d R T T I 753
C

+
+

This page intentionally left blank.

Chapter 26
Miscellaneous
C++ Topics

755

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This chapter discusses several aspects of C++ not covered in the previous
chapters. It also looks at some differences between C and C++, as well as some
design philosophy.

Dynamic Allocation Using new and delete
As you know, C uses the functions malloc() and free() (among others) to dynamically
allocate memory and to free dynamically allocated memory. However, C++ contains two
operators that perform the functions of allocating and freeing memory in a more efficient
and easier-to-use way. The operators are new and delete. Their general forms are

pointer_var = new var_type ;
delete pointer_var ;

Here, pointer_var is a pointer of type var_type. The new operator allocates sufficient
memory to hold a value of type var_type and returns an address to it. Any data type
can be allocated using new. The delete operator frees the memory pointed to by
pointer_var.

If an allocation request cannot be filled, the new operator throws an exception of type
bad_alloc. If your program does not catch this exception, then your program will be
terminated. While this default behavior is fine for short sample programs, in real-world
programs that you write, you should catch this exception and process it in some rational
manner. To watch for this exception, you must include <new> in your program.

The actions of new on failure as just described are specified by ANSI/ISO Standard
C++ and correctly implemented by C++ Builder. The trouble is that not all compilers,
especially older ones, will have implemented new in compliance with Standard C++.
When C++ was first invented, new returned null on failure. Later, this was changed
such that new caused an exception on failure. Finally, it was decided that a new failure
will generate an exception by default, but that a null pointer could be returned instead,
as an option. Thus, new has been implemented differently, at different times, by
compiler manufacturers. If you are updating old code, or porting code from another
environment, you will need to check all uses of new very carefully.

Because of the way dynamic allocation is managed, you must use delete only with
a pointer to memory that was allocated using new. Using delete with any other type of
address will cause serious problems.

There are several advantages to using new instead of malloc(). First, new
automatically computes the size of the type being allocated. You don’t have to make
use of the sizeof operator, which saves you some effort. More important, it prevents
the wrong amount of memory from being accidentally allocated. Second, it automatically
returns the correct pointer type—you don’t need to use a type cast. Third, as you will
soon see, it is possible to initialize the object being allocated using new. Finally, it is
possible to overload new (and delete) relative to classes you create, or globally.

756 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here is a simple example of new and delete. Notice how a try/catch block is used
to monitor for an allocation failure.

#include <iostream>

#include <new>

using namespace std;

int main()

{

int *p;

try {

p = new int; // allocate memory for int

} catch (bad_alloc xa) {

cout << "Allocation failure.\n";

return 1;

}

*p = 20; // assign that memory the value 20

cout << *p; // prove that it works by displaying value

delete p; // free the memory

return 0;

}

This program assigns to p an address in memory that is large enough to hold an
integer. It then assigns that memory the value 20 and displays the contents of that
memory on the screen. Finally, it frees the dynamically allocated memory.

As stated, you can initialize the memory using the new operator. To do this, specify
the initial value inside parentheses after the type name. For example, this program uses
initialization to give the memory pointed to by p the value 99:

#include <iostream>

#include <new>

using namespace std;

int main()

{

int *p;

try {

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 757
C

+
+

758 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

p = new int (99); // initialize with 99

} catch(bad_alloc xa) {

cout << "Allocation failure.\n";

return 1;

}

cout << *p;

delete p;

return 0;

}

You can allocate arrays using new. The general form for a single-dimension array is

pointer_var = new var_type [size];

Here, size specifies the number of elements in the array. There is one important
restriction to remember when allocating an array: you cannot initialize it.

When you free a dynamically allocated array, you must use this form of delete:

delete [] pointer_var;

Here, the [] informs delete that an array is being released.
The following program allocates a 10-element array of floats, assigns the array the

values 100 to 109, and displays the contents of the array on the screen:

#include <iostream>

#include <new>

using namespace std;

int main()

{

float *p;

int i;

try {

p = new float [10]; // get a 10-element array

} catch(bad_alloc xa) {

cout << "Allocation failure.\n";

return 1;

}

// assign the values 100 through 109

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 759
C

+
+

for(i=0; i<10; i++) p[i] = 100.00 + i;

// display the contents of the array

for(i=0; i<10; i++) cout << p[i] << " ";

delete [] p; // delete the entire array

return 0;

}

Allocating Objects
As stated, you can allocate memory for any valid type. This includes objects. A
dynamically created object acts just like any other object. When it is created, its
constructor (if it has one) is called. When the object is freed, its destructor is executed.
For example, in this program, new allocates memory for an object of type three_d:

#include <iostream>

#include <new>

using namespace std;

class three_d {

public:

int x, y, z; // 3-d coordinates

three_d(int a, int b, int c);

~three_d() { cout << "Destructing\n"; }

} ;

three_d::three_d(int a, int b, int c)

{

cout << "Constructing\n";

x = a;

y = b;

z = c;

}

// Display X, Y, Z coordinates - three_d inserter.

ostream &operator<<(ostream &stream, three_d &obj)

{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

760 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return stream; // return the stream

}

int main()

{

three_d *p;

try {

p = new three_d (5, 6, 7);

} catch(bad_alloc xa) {

cout << "Allocation failure.\n";

return 1;

}

cout << *p;

delete p;

return 0;

}

When you run the program, you will see that three_d’s constructor is called when
new is encountered and that its destructor function is called when delete is reached.
Also note that the initializers are automatically passed to the constructor by new.

Here is an example that allocates an array of objects of type three_d.

#include <iostream>

#include <new>

using namespace std;

class three_d {

public:

int x, y, z; // 3-d coordinates

three_d(int a, int b, int c) ;

three_d(){ x=y=z=0; cout << "Constructing\n"; } // needed for arrays

~three_d() { cout << "Destructing\n"; }

};

three_d::three_d(int a, int b, int c)

{

cout << "Constructing\n";

TE
AM
FL
Y

Team-Fly®

x = a;

y = b;

z = c;

}

// Display X, Y, Z coordinates - three_d inserter.

ostream &operator<<(ostream &stream, three_d &obj)

{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

return stream; // return the stream

}

int main()

{

three_d *p;

int i;

try {

p = new three_d [10];

} catch (bad_alloc xa) {

cout << "Allocation failure.\n";

return 1;

}

for(i=0; i<10; i++) {

p[i].x = 1;

p[i].y = 2;

p[i].z = 3;

}

for(i=0; i<10; i++) cout << *p;

delete [] p;

return 0;

}

Notice that a second constructor has been added to the three_d class. Because
allocated arrays cannot be initialized, a constructor that does not have any parameters is
needed. If you don’t supply this constructor, a compile-time message will be displayed.

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 761
C

+
+

Another Way to Watch for Allocation Failure
As mentioned, when C++ was first invented, the new operator did not throw an
exception when an allocation error occurred. Instead, it returned null (just like C’s
malloc() function). If you want to have new work this way instead of throwing an
exception, call the new function as shown here:

p_var = new(nothrow) type;

Here, p_var is a pointer variable of type. The nothrow form of new works like the
original version of new from years ago. Since it returns null on failure, it can be
“dropped into” older code without having to add exception handling. However, for
new code, exceptions provide a better alternative. To use the nothrow option, you
must include the header <new>.

The following program shows this alternative approach to using new.

// Demonstrate nothrow version of new.

#include <iostream>

#include <new>

using namespace std;

int main()

{

int *p, i;

p = new(nothrow) int[32]; // use nothrow option

if(!p) {

cout << "Allocation failure.\n";

return 1;

}

for(i=0; i<32; i++) p[i] = i;

for(i=0; i<32; i++) cout << p[i] << " ";

delete [] p; // free the memory

return 0;

}

As this program demonstrates, when using this approach you must check the pointer
returned by new after each allocation request.

762 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 763
C

+
+

Overloading new and delete
It is possible to overload new and delete. You might want to do this to use some
special allocation method. For example, you may want allocation routines that
automatically begin using a disk file as virtual memory when the heap has been
exhausted. Whatever the reason, it is a very simple matter to overload these operators.

The skeletons for the functions that overload new and delete are

void *operator new(size_t size)
{

// perform allocation
return pointer_to_memory;

}

void operator delete(void *p)
{

// free memory pointed to by p
}

The parameter size will contain the number of bytes needed to hold the object being
allocated. This value is automatically obtained for you. The overloaded new function
must return a pointer to the memory that it allocates or throw a bad_alloc exception
if an allocation error occurs. Beyond these constraints, the overloaded new function
can do anything else you require. When you allocate an object using new (whether
your own version or not), the object’s constructor is automatically called.

The delete function receives a pointer to the region of memory to free. It must then
release the memory pointed to by that pointer. When an object is deleted, its destructor
function is automatically called.

The new and delete operators can be overloaded globally so that all uses of these
operators call your custom versions. They can also be overloaded relative to one or
more classes. Let’s begin with an example of overloading new and delete relative to a
class. For the sake of simplicity, no new allocation scheme will be used. Instead, the
overloaded operators will simply invoke the standard library functions malloc() and
free(). (In your own application, you may, of course, implement any alternative
allocation scheme you like.)

To overload the new and delete operators for a class, simply make the overloaded
operator functions class members. For example, here the new and delete operators are
overloaded for the loc class:

#include <iostream>

#include <cstdlib>

#include <new>

using namespace std;

764 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

void *operator new(size_t size);

void operator delete(void *p);

};

// new overloaded relative to loc.

void *loc::operator new(size_t size)

{

void *p;

cout << "In overloaded new.\n";

p = malloc(size);

if(!p) {

bad_alloc ba;

throw ba;

}

return p;

}

// delete overloaded relative to loc.

void loc::operator delete(void *p)

{

cout << "In overloaded delete.\n";

free(p);

}

int main()

{

loc *p1, *p2;

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 765
C

+
+

try {

p1 = new loc (10, 20);

} catch (bad_alloc xa) {

cout << "Allocation error for p1.\n";

return 1;

}

try {

p2 = new loc (-10, -20);

} catch (bad_alloc xa) {

cout << "Allocation error for p2.\n";

return 1;;

}

p1->show();

p2->show();

delete p1;

delete p2;

return 0;

}

Output from this program is shown here.

In overloaded new.

In overloaded new.

10 20

-10 -20

In overloaded delete.

In overloaded delete.

You can overload new and delete globally by overloading these operators outside
of any class declaration. When new and delete are overloaded globally, C++’s default
new and delete are ignored and the new operators are used for all allocation requests. Of
course, if you have defined any version of new and delete relative to one or more classes,
then the class-specific versions are used when allocating objects of the class for which
they are defined. In other words, when new or delete are encountered, the compiler first
checks to see whether they are defined relative to the class they are operating on. If so,
those specific versions are used. If not, C++ uses the globally defined new and delete.
If these have been overloaded, the overloaded versions are used.

766 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

To see an example of overloading new and delete globally, examine this program:

#include <iostream>

#include <cstdlib>

#include <new>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

};

// Global new

void *operator new(size_t size)

{

void *p;

p = malloc(size);

if(!p) {

bad_alloc ba;

throw ba;

}

return p;

}

// Global delete

void operator delete(void *p)

{

free(p);

}

int main()

{

loc *p1, *p2;

float *f;

try {

p1 = new loc (10, 20);

} catch (bad_alloc xa) {

cout << "Allocation error for p1.\n";

return 1;

}

try {

p2 = new loc (-10, -20);

} catch (bad_alloc xa) {

cout << "Allocation error for p2.\n";

return 1;

}

try {

f = new float; // uses overloaded new, too

} catch (bad_alloc xa) {

cout << "Allocation error for f.\n";

return 1;

}

*f = 10.10F;

cout << *f << "\n";

p1->show();

p2->show();

delete p1;

delete p2;

delete f;

return 0;

}

Run this program to prove to yourself that the built-in new and delete operators
have indeed been overloaded.

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 767
C

+
+

768 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Overloading new and delete for Arrays
If you want to be able to allocate arrays of objects using your own allocation system,
you will need to overload new and delete a second time. To allocate and free arrays,
you must use these forms of new and delete.

void *operator new[](size_t size)
{

// perform allocation — throw bad_alloc on failure
return pointer_to_memory;

}

void operator delete[](void *p)
{

// free memory pointed to by p
}

When allocating an array, the constructor for each object in the array is automatically
called. When freeing an array, each object’s destructor is automatically called. You do
not have to provide explicit code to accomplish these actions.

The following program allocates and frees an object and an array of objects of type loc.

#include <iostream>

#include <cstdlib>

#include <new>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() { longitude = latitude = 0; }

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

C
+

+
C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 769

void *operator new(size_t size);

void operator delete(void *p);

void *operator new[](size_t size);

void operator delete[](void *p);

};

// new overloaded relative to loc.

void *loc::operator new(size_t size)

{

void *p;

cout << "In overloaded new.\n";

p = malloc(size);

if(!p) {

bad_alloc ba;

throw ba;

}

return p;

}

// delete overloaded relative to loc.

void loc::operator delete(void *p)

{

cout << "In overloaded delete.\n";

free(p);

}

// new overloaded for loc arrays.

void *loc::operator new[](size_t size)

{

void *p;

cout << "Using overload new[].\n";

p = malloc(size);

if(!p) {

bad_alloc ba;

throw ba;

}

return p;

}

// delete overloaded for loc arrays.

void loc::operator delete[](void *p)

{

cout << "Freeing array using overloaded delete[]\n";

free(p);

}

int main()

{

loc *p1, *p2;

int i;

try {

p1 = new loc (10, 20); // allocate an object

} catch (bad_alloc xa) {

cout << "Allocation error for p1.\n";

return 1;

}

try {

p2 = new loc [10]; // allocate an array

} catch (bad_alloc xa) {

cout << "Allocation error for p2.\n";

return 1;

}

p1->show();

for(i=0; i<10; i++)

p2[i].show();

delete p1; // free an object

delete [] p2; // free an array

return 0;

}

770 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 771
C

+
+

static Class Members
Both function and data members of a class can be made static. This section explains the
consequences of each.

static Data Members
The keyword static can be applied to members of a class. Its meaning in this context is
similar to its original C-like meaning. When you declare a member of a class as static,
you are telling the compiler that no matter how many objects of the class are created,
there is only one copy of the static member. A static member is shared by all objects of
the class. All static data is initialized to zero when the first object of its class is created
and if no other initialization is specified.

When you declare a static data member within a class, you are not defining it. (That
is, you are not allocating storage for it.) Instead, you must provide a global definition
for it elsewhere, outside the class. You do this by redeclaring the static variable, using
the scope resolution operator to identify which class it belongs to. This is necessary for
storage to be allocated for the static variable.

To understand the usage and effect of a static data member, consider this program:

#include <iostream>

using namespace std;

class shared {

static int a;

int b;

public:

void set(int i, int j) { a=i; b=j; }

void show();

} ;

int shared::a; // define a

void shared::show()

{

cout << "This is static a: " << a;

cout << "\nThis is non-static b: " << b;

cout << "\n";

}

772 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main()

{

shared x, y;

x.set(1, 1); // set a to 1

x.show();

y.set(2, 2); // change a to 2

y.show();

x.show(); /* Here, a has been changed for both x and y

because a is shared by both objects. */

return 0;

}

The program displays the following output when run.

This is static a: 1

This is non-static b: 1

This is static a: 2

This is non-static b: 2

This is static a: 2

This is non-static b: 1

Notice that the integer a is declared both inside shared and outside of it. As
mentioned earlier, this is necessary because the declaration of a inside shared does
not allocate storage.

As a convenience, older versions of C++ did not require the second declaration of a
static member variable. However, this convenience gave rise to serious inconsistencies,
and it was eliminated several years ago. Nonetheless, you may still find older C++ code
that does not redeclare static member variables. In these cases, you will need to add the
required definitions.

static Member Functions
You can also have static member functions. static member functions cannot refer
directly to nonstatic data and nonstatic functions declared in their class. This is because
a static member function does not have a this pointer; it has no way of knowing which
object’s nonstatic data to access. For example, if there are two objects of a class that
contains a static function called f() and if f() attempts to access a nonstatic variable

called var, defined by its class, which copy of var is being referred to? The compiler has
no way of knowing. This is why static functions can access only other static functions
or data directly. Also, a static function cannot be virtual or declared as const or
volatile. A static function can be called either by using an object of its class or by using
the class name and the scope resolution operator. Remember, even when called using
an object, the function is still not passed a this pointer.

The following short program illustrates one of the many ways you can use static
functions. It is not uncommon for an object to require access to some scarce resource,
such as a shared file in a network. As the program illustrates, the use of static data and
functions provides a method by which an object can check on the status of the resource
and access it if it is available.

#include <iostream>

using namespace std;

enum access_t {shared, in_use, locked, unlocked};

// a scarce resource control class

class access {

static enum access_t acs;

// ...

public:

static void set_access(enum access_t a) { acs = a; }

static enum access_t get_access()

{

return acs;

}

// ...

};

enum access_t access::acs; // define acs

int main()

{

access obj1, obj2;

access::set_access(locked); // call using class name

// ... intervening code

// see if obj2 can access resource

if(obj2.get_access()==unlocked) { // call using object

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 773
C

+
+

774 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

access::set_access(in_use); // call using class name

cout << "Access resource.\n";

}

else cout << "Locked out.\n";

// ...

return 0;

}

When you run this program, Locked out. is displayed. Notice that set_access() is
called using the class name and the scope resolution operator. The function
get_access() is called using an object and the dot operator. Either form may be used
when calling a static member function and both forms have the same effect. You might
want to play with the program a little to make sure you understand the effect of static
on both data and functions.

As stated, static functions can directly access only other static functions or static
data within the same class. To prove this, try compiling this version of the program:

// This program contains an error and will not compile.

#include <iostream>

using namespace std;

enum access_t {shared, in_use, locked, unlocked};

// a scarce resource control class

class access {

static enum access_t acs;

int i; // non-static

// ...

public:

static void set_access(enum access_t a) { acs = a; }

static enum access_t get_access()

{

i = 100; // this will not compile

return acs;

}

// ...

};

enum access_t access::acs; // define acs

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 775
C

+
+

int main()

{

access obj1, obj2;

access::set_access(locked); // call using class name

// ... intervening code

// see if obj2 can access resource

if(obj2.get_access()==unlocked) { // call using object

access::set_access(in_use); // call using class name

cout << "Access resource.\n";

}

else cout << "Locked out.\n";

// ...

return 0;

}

This program does not compile because get_access() is attempting to access a
nonstatic variable.

You may not see an immediate need for static members, but as you continue to
write programs in C++, you will find them very useful in certain situations because
they allow you to avoid the use of global variables.

Virtual Base Classes
As you know, in C++, the virtual keyword is used to declare virtual functions that
will be overridden by a derived class. However, virtual also has another use that
enables you to specify virtual base classes. To understand what a virtual base class is
and why the keyword virtual has a second meaning, let’s begin with the short,
incorrect program shown here:

// This program contains an error and will not compile.

#include <iostream>

using namespace std;

class base {

public:

int i;

};

776 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

// d1 inherits base.

class d1 : public base {

public:

int j;

};

// d2 inherits base.

class d2 : public base {

public:

int k;

};

/* d3 inherits both d1 and d2. This means that there

are two copies of base in d3! */

class d3 : public d1, public d2 {

public:

int m;

};

int main()

{

d3 d;

d.i = 10; // this is ambiguous, which i???

d.j = 20;

d.k = 30;

d.m = 40;

// also ambiguous, which i???

cout << d.i << " ";

cout << d.j << " " << d.k << " ";

cout << d.m;

return 0;

}

As the comments in the program indicate, both d1 and d2 inherit base. However,
d3 inherits both d1 and d2. This means there are two copies of base present in an object
of type d3. Therefore, in an expression like

d.i = 20;

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 777
C

+
+

which i is being referred to? The one in d1 or the one in d2? Since there are two copies
of base present in object d, there are two d.i’s. As you can see, the statement is
inherently ambiguous.

There are two ways to remedy the preceding program. The first is to apply the
scope resolution operator to i and manually select one i. For example, this version of
the program does compile and run as expected:

#include <iostream>

using namespace std;

class base {

public:

int i;

};

// d1 inherits base.

class d1 : public base {

public:

int j;

};

// d2 inherits base.

class d2 : public base {

public:

int k;

};

/* d3 inherits both d1 and d2. This means that there

are two copies of base in d3! */

class d3 : public d1, public d2 {

public:

int m;

};

int main()

{

d3 d;

d.d2::i = 10; // scope resolved, using d2's i

d.j = 20;

d.k = 30;

d.m = 40;

778 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

// scope resolved, using d2's i

cout << d.d2::i << " ";

cout << d.j << " " << d.k << " ";

cout << d.m;

return 0;

}

By applying the ::, the program has manually selected d2’s version of base. However,
this solution raises a deeper issue: What if only one copy of base is actually required? Is
there some way to prevent two copies from being included in d3? The answer, as you
probably have guessed, is yes. And this solution is achieved by using virtual base classes.

When two or more classes are derived from a common base class, you can prevent
multiple copies of the base class from being present in a class derived from those
classes by declaring the base class as virtual when it is inherited. For example, here is
another version of the example program in which d3 contains only one copy of base:

#include <iostream>

using namespace std;

class base {

public:

int i;

};

// d1 inherits base as virtual.

class d1 : virtual public base {

public:

int j;

};

// d2 inherits base as virtual.

class d2 : virtual public base {

public:

int k;

};

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 779
C

+
+

/* d3 inherits both d1 and d2. However, now there is

only one copy of base in d3. */

class d3 : public d1, public d2 {

public:

int m;

};

int main()

{

d3 d;

d.i = 10; // no longer ambiguous

d.j = 20;

d.k = 30;

d.m = 40;

cout << d.i << " "; // no longer ambiguous

cout << d.j << " " << d.k << " ";

cout << d.m;

return 0;

}

As this examples shows, the keyword virtual precedes the rest of the inherited class’s
specification. Now that both d1 and d2 have inherited base as virtual, any multiple
inheritance involving them will cause only one copy of base to be present. Therefore, in
d3, there is only one copy of base, so d.i = 10 is perfectly valid and unambiguous.

One further point to keep in mind: Even though both d1 and d2 specify base as
virtual, base is still present in any objects of either type. For example, the following
sequence is perfectly valid:

// define a class of type d1

d1 myclass;

myclass.i = 100;

Virtual base classes and normal ones differ only when an object inherits the base
more than once. If virtual base classes are used, only one base class is present in the
object. Otherwise, multiple copies will be found.

const Member Functions and mutable
Class member functions may be declared as const, which causes this to be treated as a
const pointer. Thus, a const function cannot modify the object that invokes it. Also, a
const object may not invoke a nonconst member function. However, a const member
function can be called by either const or nonconst objects.

To specify a member function as const, use the form shown in the following example.

class X {

int some_var;

public:

int f1() const; // const member function

};

As you can see, the const follows the function’s parameter declaration.
The purpose of declaring a member function as const is to prevent it from

modifying the object that invokes it. For example, consider the following program.

/*

Demonstrate const member functions.

This program won't compile.

*/

#include <iostream>

using namespace std;

class Demo {

int i;

public:

int geti() const {

return i; // ok

}

void seti(int x) const {

i = x; // error!

}

};

int main()

{

Demo ob;

ob.seti(1900);

780 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

cout << ob.geti();

return 0;

}

This program will not compile because seti() is declared as const. This means that it is
not allowed to modify the invoking object. Since it attempts to change i, the program is
in error. In contrast, since geti() does not attempt to modify i, it is perfectly acceptable.

Sometimes there will be one or more members of a class that you want a const
function to be able to modify even though you don’t want the function to be able to
modify any of its other members. You can accomplish this through the use of mutable.
It overrides constness. That is, a mutable member can be modified by a const member
function. For example,

// Demonstrate mutable.

#include <iostream>

using namespace std;

class Demo {

mutable int i;

int j;

public:

int geti() const {

return i; // ok

}

void seti(int x) const {

i = x; // now, OK.

}

/* The following function won't compile.

void setj(int x) const {

j = x; // Still Wrong!

}

*/

};

int main()

{

Demo ob;

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 781
C

+
+

ob.seti(1900);

cout << ob.geti();

return 0;

}

Here, i is specified as mutable, so it may be changed by the seti() function. However, j
is not mutable and setj() is unable to modify its value.

Volatile Member Functions
Class member functions may be declared as volatile, which causes this to be treated as
a volatile pointer. To specify a member function as volatile, use the form shown in the
following example.

class X {

public:

void f2(int a) volatile; // volatile member function

};

Using the asm Keyword
In C++ Builder, you can embed assembly language directly into your program by
using the asm keyword. The asm keyword has three slightly different general forms:

asm instruction ;
asm instruction newline
asm {

instruction sequence
}

Here, instruction is any valid assembly language instruction. Unlike any other C++
Builder statement, an asm statement does not have to end with a semicolon; it can end
with either a semicolon or a newline. To use embedded assembly code, you will need
to have TASM32.EXE (Borland’s assembler) installed on your computer.

A thorough working knowledge of assembly language programming is required to use
the asm statement. If you are not proficient at assembly language, it is best to avoid
using it because nasty errors may result.

782 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Linkage Specification
In C++ you can specify how a function is linked. By default, functions are linked as C++
functions. By using a linkage specification, however, you can cause a function to be linked
as a different type of language function. The general form of a linkage specifier is

extern "language " function-prototype

where language denotes the desired language. In C++ Builder, language must be either C
or C++, but other implementations may allow other language types.

This program causes myCfunc() to be linked as a C function:

#include <iostream>

using namespace std;

extern "C" void myCfunc(void);

int main()

{

myCfunc();

return 0;

}

// This will link as a C function.

void myCfunc(void)

{

cout << "This links as a C function.\n";

}

The extern keyword is a necessary part of the linkage specification. Further, the linkage
specification must be global; it cannot be used inside a function.

You can specify more than one function at a time by using this form of the linkage
specification:

extern "language " {
prototypes

}

Linkage specifications are rare; you will probably not need to use one.

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 783
C

+
+

The .* and ->* Operators
The .* and ->* are called pointer-to-member operators. Their job is to allow you to
“point to” a member of a class, generically, rather than to a specific instance of that
member within some object. These two operators are needed because a pointer to a
member does not fully define an address. Instead, it provides an offset at which that
member can be found within any object of its class. Since member pointers are not
true pointers, the normal . and -> operators cannot be used. Instead, the .* and ->*
operators must be employed.

Let’s begin with an example. The following program displays the summation of the
number 7. It accesses the function sum_it() and the variable sum using member pointers.

#include <iostream>

using namespace std;

class myclass {

public:

int sum;

void myclass::sum_it(int x);

};

void myclass::sum_it(int x) {

int i;

sum = 0;

for(i=x; i; i--) sum += i;

}

int main()

{

int myclass::*dp; // pointer to an integer class member

void (myclass::*fp)(int x); // pointer to member function

myclass c;

dp = &myclass::sum; // get address of data

fp = &myclass::sum_it; // get address of function

(c.*fp)(7); // compute summation of 7

cout << "summation of 7 is " << c.*dp;

return 0;

}

784 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 785
C

+
+

Inside main(), this program creates two member pointers: dp, which points to the
variable sum, and fp, which points to the function sum_it(). Note carefully the syntax
of each declaration. The scope resolution operator is used to specify which class is
being referred to. The program also creates an object of myclass called c.

The program then obtains the addresses of sum and sum_it(). As stated earlier,
these “addresses” are really just offsets into an object of myclass where sum and
sum_it() are found. Next, the program uses a function pointer fp to call the sum_it()
function of c. The extra parentheses are necessary in order to correctly associate the .*
operator. Finally, the summed value is displayed by accessing c’s sum through dp.

When you are accessing a member of an object using an object or a reference, you
must use the .* operator. However, if you are using a pointer to the object, you need to
use the ->* operator, as illustrated in this version of the preceding program:

#include <iostream>

using namespace std;

class myclass {

public:

int sum;

void myclass::sum_it(int x);

};

void myclass::sum_it(int x) {

int i;

sum = 0;

for(i=x; i; i--) sum += i;

}

int main()

{

int myclass::*dp; // pointer to an integer class member

void (myclass::*fp)(int x); // pointer to member function

myclass *c, d; // c is now a pointer to an object

c = &d; // give c the address of an object

dp = &myclass::sum; // get address of data

fp = &myclass::sum_it; // get address of function

(c->*fp)(7); // now, use ->* to call function

cout << "summation of 7 is " << c->*dp; // use ->*

786 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

In this version, c is now a pointer to an object of type myclass, and the ->* operator is
used to access sum and sum_it().

Creating Conversion Functions
Sometimes you will create a class that you want to be able to freely mix in an expression
with other types of data. While overloaded operator functions can provide a means of
mixing types, sometimes a simple conversion is all that you want. In these cases, you can
use a type conversion function to convert your class into a type compatible with that of
the rest of the expression. The general form of a type conversion function is

operator type () {return value ;}

Here, type is the target type that you are converting your class to and value is the value
of the class after conversion. A conversion function must be a member of the class for
which it is defined.

To illustrate how to create a conversion function, let’s use the three_d class once
again. Suppose you want to be able to convert an object of type three_d into an integer
so that it can be used in an integer expression. Further, the conversion will take place
by using the product of the three dimensions. To accomplish this, you use a conversion
function that looks like this:

operator int() { return x * y * z; }

Here is a program that illustrates how the conversion function works:

#include <iostream>

using namespace std;

class three_d {

int x, y, z; // 3-d coordinates

public:

three_d(int a, int b, int c) { x=a; y=b, z=c; }

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 787
C

+
+

three_d operator+(three_d op2) ;

friend ostream &operator<<(ostream &stream, three_d &obj);

operator int() { return x*y*z; }

} ;

// Display X, Y, Z coordinates - three_d inserter.

ostream &operator<<(ostream &stream, three_d &obj)

{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

return stream; // return the stream

}

three_d three_d::operator+(three_d op2)

{

three_d temp(0, 0, 0);

temp.x = x+op2.x; // these are integer additions

temp.y = y+op2.y; // and the + retains its original

temp.z = z+op2.z; // meaning relative to them

return temp;

}

int main()

{

three_d a(1, 2, 3), b(2, 3, 4), c(0, 0, 0);

cout << a << b;

cout << b+100; // displays 124 because of conversion to int

cout << "\n";

c = a+b; // adds two objects

cout << c;

return 0;

}

788 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

This program displays the output

1, 2, 3

2, 3, 4

124

3, 5, 7

As the program illustrates, when a three_d object is used in an integer expression,
such as cout << b+100, the conversion function is applied to the object. In this specific
case, the conversion function returns the value 24, which is then added to 100. However,
when no conversion is needed, as in c = a+b, the conversion function is not called.

Remember that you can create different conversion functions to meet different
needs. You could define one that converts to double or long, for example. Each is
applied automatically.

Copy Constructors
By default, when one object is used to initialize another, C++ performs a bitwise copy.
That is, an identical copy of the initializing object is created in the target object.
Although this is perfectly adequate for many cases—and generally exactly what you
want to happen—there are situations in which a bitwise copy cannot be used. One of
the most common situations in which you must avoid a bitwise copy is when an object
allocates memory when it is created. For example, assume two objects, A and B, of the
same class called ClassType, which allocates memory when creating objects, and
assume that A is already in existence. This means that A has already allocated its
memory. Further, assume that A is used to initialize B, as shown here.

ClassType B = A;

If a bitwise copy is performed, then B will be an exact copy of A. This means that B will
be using the same piece of allocated memory that A is using, instead of allocating its
own. Clearly, this is not the desired outcome. For example, if ClassType includes a
destructor that frees the memory, then the same piece of memory will be freed twice
when A and B are destroyed!

The same type of problem can occur in two additional ways: first, when a copy of
an object is made when it is passed as an argument to a function; and second, when a
temporary object is created as a return value from a function. (Remember, temporary
objects are automatically created to hold the return value of a function, and they may
also be created in certain other circumstances.)

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 789
C

+
+

To solve the type of problem just described, C++ allows you to create a copy constructor,
which the compiler uses when one object is used to initialize another. When a copy
constructor exists, the bitwise copy is bypassed. The general form of a copy constructor is

classname (const classname &o) {
// body of constructor

}

Here, o is a reference to the object on the right side of the initialization. It is permissible
for a copy constructor to have additional parameters as long as they have default
arguments defined for them. However, in all cases the first parameter must be a
reference to the object doing the initializing.

It is important to understand that C++ defines two distinct types of situations in
which the value of one object is given to another. The first is assignment. The second is
initialization, which can occur in three ways:

� when one object explicitly initializes another, such as in a declaration

� when a copy of an object is made to be passed to a function

� when a temporary object is generated (most commonly, as a return value)

The copy constructor applies only to initializations. For example, assuming a class
called myclass, and that y is an object of type myclass, each of the following statements
involves initialization.

myclass x = y; // y explicitly initializating x

func(y); // y passed as a parameter

y = func(); // y receiving a temporary, return object

Following is an example where an explicit copy constructor is needed. This
program creates a very simple “safe” integer array type that prevents array boundaries
from being overrun. Storage for each array is allocated by the use of new, and a pointer
to the memory is maintained within each array object.

/* This program creates a "safe" array class. Since space

for the array is allocated using new, a copy constructor

is provided to allocate memory when one array object is

used to initialize another.

*/

#include <iostream>

#include <new>

#include <cstdlib>

using namespace std;

class array {

int *p;

int size;

public:

array(int sz) {

try {

p = new int[sz];

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

exit(EXIT_FAILURE);

}

size = sz;

}

~array() { delete [] p; }

// copy constructor

array(const array &a);

void put(int i, int j) {

if(i>=0 && i<size) p[i] = j;

}

int get(int i) {

return p[i];

}

};

// Copy Constructor

array::array(const array &a) {

int i;

try {

p = new int[a.size];

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

exit(EXIT_FAILURE);

}

for(i=0; i<a.size; i++) p[i] = a.p[i];

}

790 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

int main()

{

array num(10);

int i;

for(i=0; i<10; i++) num.put(i, i);

for(i=9; i>=0; i--) cout << num.get(i);

cout << "\n";

// create another array and initialize with num

array x(num); // invokes copy constructor

for(i=0; i<10; i++) cout << x.get(i);

return 0;

}

When num is used to initialize x, the copy constructor is called, memory for the
new array is allocated and stored in x.p, and the contents of num are copied to x’s
array. In this way, x and num have arrays that have the same values, but each array
is separate and distinct. (That is, num.p and x.p do not point to the same piece of
memory.) If the copy constructor had not been created, the default bitwise initialization
would have resulted in x and num sharing the same memory for their arrays. (That
is, num.p and x.p would have, indeed, pointed to the same location.)

The copy constructor is called only for initializations. For example, this sequence
does not call the copy constructor defined in the preceding program:

array a(10);

// ...

array b(10);

b = a; // does not call copy constructor

In this case, b = a performs the assignment operation. If = is not overloaded (as it is not
here), a bitwise copy will be made. Therefore, in some cases, you may need to overload
the = operator as well as create a copy constructor to avoid problems.

Granting Access
When a base class is inherited as private, all public and protected members of that class
become private members of the derived class. However, in certain circumstances, you
may want to restore one or more inherited members to their original access specification.

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 791
C

+
+

For example, you might want to grant certain public members of the base class public
status in the derived class even though the base class is inherited as private. You have
two ways to accomplish this. First, you can use a using statement, and this is the
preferred way. The using statement, designed primarily to support namespaces, is
discussed later in this chapter. The second way to restore an inherited member’s access
specification is to employ an access declaration within the derived class. Access declarations
are currently supported by ANSI/ISO Standard C++, but they are deprecated. This
means that they should not be used for new code. Since there are still many existing
programs that use access declarations, they will be examined here.

An access declaration takes this general form:

base-class::member;

The access declaration is put under the appropriate access heading in the derived
class’s declaration. Notice that no type declaration is required (or, indeed, allowed) in
an access declaration.

To see how an access declaration works, let’s begin with this short fragment:

class base {

public:

int j; // public in base

};

// Inherit base as private.

class derived: private base {

public:

// here is access declaration

base::j; // make j public again

.

.

.

};

Because base is inherited as private by derived, the public member j is made a private
member of derived. However, by including

base::j;

as the access declaration under derived’s public heading, j is restored to its public status.
You can use an access declaration to restore the access rights of public and

protected members. However, you cannot use an access declaration to raise or lower a
member’s access status. For example, a member declared as private to a base class

792 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 793
C

+
+

cannot be made public by a derived class. (If C++ allowed this to occur, it would
destroy its encapsulation mechanism!)

The following program illustrates the access declaration: Notice how this program
uses access declarations to restore j, seti(), and geti() to public status.

#include <iostream>

using namespace std;

class base {

int i; // private to base

public:

int j, k;

void seti(int x) { i = x; }

int geti() { return i; }

};

// Inherit base as private.

class derived: private base {

public:

/* The next three statements override

base's inheritance as private and restore j,

seti(), and geti() to public access. */

base::j; // make j public again - but not k

base::seti; // make seti() public

base::geti; // make geti() public

// base::i; // illegal, you cannot elevate access

int a; // public

};

int main()

{

derived ob;

//ob.i = 10; // illegal because i is private in derived

ob.j = 20; // legal because j is made public in derived

//ob.k = 30; // illegal because k is private in derived

ob.a = 40; // legal because a is public in derived

ob.seti(10);

cout << ob.geti() << " " << ob.j << " " << ob.a;

return 0;

}

Access declarations are supported in C++ to accommodate those situations in
which most of an inherited class is intended to be made private, but a few members are
to retain their public or protected status.

ANSI/ISO Standard C++ still allows access declarations, but they are deprecated. This
means that they are allowed for now, but they might not be supported in the future.
Instead, the standard suggests achieving the same effect by applying the using keyword.

Namespaces
Namespaces were briefly introduced earlier in this book. They are a relatively recent
addition to C++. Their purpose is to localize the names of identifiers to avoid name
collisions. In the C++ programming environment, there has been an explosion of
variable, function, and class names. Prior to the invention of namespaces, all of these
names competed for slots in the global namespace, and many conflicts arose. For
example, if your program defined a function called abs(), it could (depending upon its
parameter list) override the standard library function abs() because both names would
be stored in the global namespace. Name collisions were compounded when two or
more third-party libraries were used by the same program. In this case, it was
possible—even likely—that a name defined by one library would conflict with the
same name defined by the other library. The situation can be particularly troublesome
for class names. For example, if your program defines a class call ThreeDCircle and a
library used by your program defines a class by the same name, a conflict will arise.

The creation of the namespace keyword was a response to these problems. Because
it localizes the visibility of names declared within it, a namespace allows the same
name to be used in different contexts without conflicts arising. Perhaps the most
noticeable beneficiary of namespace is the C++ standard library. Prior to namespace,
the entire C++ library was defined within the global namespace (which was, of course,
the only namespace). Since the addition of namespace, the C++ library is now defined
within its own namespace, called std, which reduces the chance of name collisions. You
can also create your own namespaces within your program to localize the visibility of
any names that you think may cause conflicts. This is especially important if you are
creating class or function libraries.

794 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Namespace Fundamentals
The namespace keyword allows you to partition the global namespace by creating a
declarative region. In essence, a namespace defines a scope. The general form of
namespace is shown here.

namespace name {
// declarations

}

Anything defined within a namespace statement is within the scope of that namespace.
Here is an example of a namespace. It localizes the names used to implement a

simple countdown counter class. In the namespace are defined the counter class, which
implements the counter, and the variables upperbound and lowerbound, which
contain the upper and lower bounds that apply to all counters.

namespace CounterNameSpace {

int upperbound;

int lowerbound;

class counter {

int count;

public:

counter(int n) {

if(n <= upperbound) count = n;

else count = upperbound;

}

void reset(int n) {

if(n <= upperbound) count = n;

}

int run() {

if(count > lowerbound) return count--;

else return lowerbound;

}

};

}

Here, upperbound, lowerbound, and the class counter are part of the scope defined by
the CounterNameSpace namespace.

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 795
C

+
+

Inside a namespace, identifiers declared within that namespace can be referred to
directly, without any namespace qualification. For example, within CounterNameSpace,
the run() function can refer directly to lowerbound in the statement

if(count > lowerbound) return count--;

However, since namespace defines a scope, you need to use the scope resolution
operator to refer to objects declared within a namespace from outside that namespace.
For example, to assign the value 10 to upperbound from code outside
CounterNameSpace you must use this statement.

CounterNameSpace::upperbound = 10;

Or, to declare an object of type counter from outside CounterNameSpace you will use
a statement like this:

CounterNameSpace::counter ob;

In general, to access a member of a namespace from outside its namespace, precede the
member’s name with the name of the namespace followed by the scope resolution
operator.

Here is a program that demonstrates the use of the CounterNamespace.

// Demonstrate a namespace.

#include <iostream>

using namespace std;

namespace CounterNameSpace {

int upperbound;

int lowerbound;

class counter {

int count;

public:

counter(int n) {

if(n <= upperbound) count = n;

else count = upperbound;

}

void reset(int n) {

if(n <= upperbound) count = n;

796 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

}

int run() {

if(count > lowerbound) return count--;

else return lowerbound;

}

};

}

int main()

{

CounterNameSpace::upperbound = 100;

CounterNameSpace::lowerbound = 0;

CounterNameSpace::counter ob1(10);

int i;

do {

i = ob1.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

cout << endl;

CounterNameSpace::counter ob2(20);

do {

i = ob2.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

cout << endl;

ob2.reset(100);

CounterNameSpace::lowerbound = 90;

do {

i = ob2.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

return 0;

}

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 797
C

+
+

798 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Notice that the declaration of a counter object and the references to upperbound and
lowerbound are qualified by CounterNameSpace. However, once an object of type
counter has been declared, it is not necessary to further qualify it or any of its members.
Thus, ob1.run() can be called directly; the namespace has already been resolved.

using
As you can imagine, if your program includes frequent references to the members of a
namespace, having to specify the namespace and the scope resolution operator each time
you need to refer to one quickly becomes a tedious chore. The using statement was
invented to alleviate this problem. The using statement has these two general forms:

using namespace name;

using name::member;

In the first form, name specifies the name of the namespace you want to access. All of
the members defined within the specified namespace are brought into view (i.e., they
become part of the current namespace) and may be used without qualification. In the
second form, only a specific member of the namespace is made visible. For example,
assuming CounterNameSpace as shown previously, the following using statements
and assignments are valid.

using CounterNameSpace::lowerbound; // only lowerbound is visible

lowerbound = 10; // OK because lowerbound is visible

using namespace CounterNameSpace; // all members are visible

upperbound = 100; // OK because all members are now visible

The following program illustrates using by reworking the counter example from
the previous section.

// Demonstrate using.

#include <iostream>

using namespace std;

namespace CounterNameSpace {

int upperbound;

int lowerbound;

class counter {

int count;

public:

counter(int n) {

if(n <= upperbound) count = n;

else count = upperbound;

}

void reset(int n) {

if(n <= upperbound) count = n;

}

int run() {

if(count > lowerbound) return count--;

else return lowerbound;

}

};

}

int main()

{

// use only upperbound from CounterNameSpace

using CounterNameSpace::upperbound;

// now, no qualification needed to set upperbound

upperbound = 100;

// qualification still needed for lowerbound, etc.

CounterNameSpace::lowerbound = 0;

CounterNameSpace::counter ob1(10);

int i;

do {

i = ob1.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

cout << endl;

// now, use entire CounterNameSpace

using namespace CounterNameSpace;

counter ob2(20);

do {

i = ob2.run();

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 799
C

+
+

800 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

cout << i << " ";

} while(i > lowerbound);

cout << endl;

ob2.reset(100);

lowerbound = 90;

do {

i = ob2.run();

cout << i << " ";

} while(i > lowerbound);

return 0;

}

The program illustrates one other important point: using one namespace does not
override another. When you bring a namespace into view, it simply adds its names to
whatever other namespaces are currently in effect. Thus, by the end of the program
both std and CounterNameSpace have been added to the global namespace.

Unnamed Namespaces
There is a special type of namespace, called an unnamed namespace, that allows you to
create identifiers that are unique within a file. Unnamed namespaces are also called
anonymous namespaces. They have this general form:

namespace {
// declarations

}

Unnamed namespaces allow you to establish unique identifiers that are known only
within the scope of a single file. That is, within the file that contains the unnamed
namespace, the members of that namespace may be used directly, without qualification.
But outside the file, the identifiers are unknown.

Unnamed namespaces eliminate the need for certain uses of the static storage class
modifier. As explained in Chapter 2, one way to restrict the scope of a global name to
the file in which it is declared, is to use static. For example, consider the following two
files that are part of the same program.

File One File Two

static int k;
void f1() {
k = 99; // OK

}

extern int k;
void f2() {

k = 10; // error
}

TE
AM
FL
Y

Team-Fly®

Because k is defined in File One, it may be used in File One. In File Two, k is specified
as extern, which means that its name and type are known but that k, itself, is not
actually defined. When these two files are linked, the attempt to use k within File Two
results in an error because there is no definition for k. By preceding k with static in File
One, its scope is restricted to that file and it is not available to File Two.

While static global declarations are still allowed in C++, a better way to accomplish
this is to use an unnamed namespace. For example,

File One File Two

namespace {
int k;

}
void f1() {
k = 99; // OK

}

extern int k;
void f2() {

k = 10; // error
}

Here, k is also restricted to File One. The use of the unnamed namespace rather than
static is recommended for new code.

Some Namespace Options
There may be more than one namespace declaration of the same name. This allows
a namespace to be split over several files or even separated within the same file.
For example,

#include <iostream>

using namespace std;

namespace NS {

int i;

}

// ...

namespace NS {

int j;

}

int main()

{

NS::i = NS::j = 10;

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 801
C

+
+

802 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

// refer to NS specifically

cout << NS::i * NS::j << "\n";

// use NS namespace

using namespace NS;

cout << i * j;

return 0;

}

This program produces the following output.

100

100

Here, NS is split into two pieces. However, the contents of each piece are still within
the same namespace, i.e., NS.

A namespace must be declared outside of all other scopes. This means that you
cannot declare namespaces that are localized to a function, for example. There is,
however, one exception: a namespace can be nested within another. Consider this
program:

#include <iostream>

using namespace std;

namespace NS1 {

int i;

namespace NS2 { // a nested namespace

int j;

}

}

int main()

{

NS1::i = 19;

// NS2::j = 10; Error, NS2 is not in view

NS1::NS2::j = 10; // this is right

cout << NS1::i << " "<< NS1::NS2::j << "\n";

// use NS1

using namespace NS1;

/* Now that NS1 is in view, NS2 can be used to

refer to j. */

cout << i * NS2::j;

return 0;

}

This program produces the following output.

19 10

190

Here, the namespace NS2 is nested within NS1. Thus, when the program begins, to
refer to j, you must qualify it with both the NS1 and NS2 namespaces. NS2 by itself is
insufficient. After the statement

using namespace NS1;

executes, you can refer directly to NS2, since the using statement brings NS1 into view.
Typically, you will not need to create namespaces for most small to medium-sized

programs. However, if you will be creating libraries of reusable code or if you want to
ensure the widest portability, then consider wrapping your code within a namespace.

The std Namespace
C++ defines its entire library in its own namespace called std. This is the reason that
most of the C++ programs in this book include the following statement.

using namespace std;

This causes the std namespace to be brought into the current namespace, which gives
you direct access to the names of the functions and classes defined within the library
without having to qualify each one with std::.

Of course, you can explicitly qualify each name with std:: if you like. For example,
the following program does not bring the library into the global namespace.

// Use explicit std:: qualification.

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 803
C

+
+

804 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

#include <iostream>

int main()

{

int val;

std::cout << "Enter a number: ";

std::cin >> val;

std::cout << "This is your number: ";

std::cout << std::hex << val;

return 0;

}

Here, cout, cin, and the manipulator hex are explicitly qualified by their namespace.
That is, to write to standard output, you must specify std::cout; to read from standard
input, you must use std::cin; and the hex manipulator must be referred to as std::hex.

You may not want to bring the standard C++ library into the global namespace if
your program will be making only limited use of it. However, if your program contains
hundreds of references to library names, then including std in the current namespace is
far easier than qualifying each name individually.

If you are using only a few names from the C++ library, it may make more sense to
specify a using statement for each individually. The advantage to this approach is that
you can still use those names without an std:: qualification but you will not be bringing
the entire standard library into the global namespace. For example,

// Bring only a few names into the global namespace.

#include <iostream>

// gain access to cout, cin, and hex

using std::cout;

using std::cin;

using std::hex;

int main()

{

int val;

cout << "Enter a number: ";

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 805
C

+
+

cin >> val;

cout << "This is your number: ";

cout << hex << val;

return 0;

}

Here, cin, cout, and hex may be used directly, but the rest of the std namespace has not
been brought into view.

As explained, the original C++ library was defined in the global namespace. If you
will converting older C++ programs (including those developed using earlier versions
of Borland’s C++ compiler), then you will need to either include a using namespace
std statement or qualify each reference to a library member with std::. This is especially
important if you are replacing old .h header files with the modern headers. Remember,
the old .h headers put their contents into the global namespace. The modern headers
put their contents into the std namespace.

Explicit Constructors
The keyword explicit is used to create “nonconverting constructors.” For example,
given the following class

class MyClass {

int i;

public:

MyClass(int j) {i = j;}

// ...

};

MyClass objects can be declared as shown here:

MyClass ob1(1);

MyClass ob2 = 10;

In this case, the statement

MyClass ob2 = 10;

is automatically converted into the form

MyClass ob2(10);

806 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

However, by declaring the MyClass constructor as explicit, this automatic conversion
will not be supplied. Here is MyClass shown using an explicit constructor.

class MyClass {

int i;

public:

explicit MyClass(int j) {i = j;}

// ...

};

Now, only constructors of the form

MyClass ob(110);

will be allowed.

typename and export
Recently, two keywords were added to C++ that relate specifically to templates: typename
and export. Both play specialized roles in C++ programming. Each is briefly examined.

The typename keyword has two uses. First, it can be substituted for the keyword
class in a template declaration. For example, the swapargs() template function could
be specified like this:

template <typename X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

Here, typename specifies the generic type X. There is no difference between using class
and using typename in this context.

The second use of typename is to inform the compiler that a name used in a
template declaration is a type name rather than an object name. For example,

typename X::Name someObject;

ensures that X::Name is treated as a type name.
The export keyword can precede a template declaration. Currently, for C++

Builder, it has no effect.

Differences Between C and C++
For the most part, C++ is a superset of C, and virtually all C programs are also C++
programs. However, a few differences do exist, the most important of which are
discussed here.

One of the most important yet subtle differences between C and C++ is the fact that
in C, a function declared like this:

int f();

says nothing about any parameters to that function. That is, when there is nothing
specified between the parentheses following the function’s name, in C this means that
nothing is being stated, one way or the other, about any parameters to that function. It
might have parameters and it might not have parameters. However, in C++, a function
declaration like this means that the function does not have parameters. That is, in C++,
these two declarations are equivalent:

int f();

int f(void);

In C++, the void is optional. Many C++ programmers include the void as a means of
making it completely clear to anyone reading the program that a function does not
have any parameters, but this is technically unnecessary.

In C++, all functions must be prototyped. This is an option in C (although good
programming practice suggests full prototyping be used in a C program).

A small, but potentially important, difference between C and C++ is that in C, a
character constant is automatically elevated to an integer. In C++, it is not.

In C, it is not an error to declare a global variable several times, even though it is
bad programming practice. In C++, this is an error.

In C, an identifier will have at least 31 significant characters. In C++, all characters
are considered significant. However, from a practical point of view, extremely long
identifiers are unwieldy and are seldom needed.

In C, although unusual, you can call main() from within a program. In C++, this is
not allowed.

In C, you cannot take the address of a register variable. In C++, you can.
In C, if no type specifier is present in some types of declaration statements, the type

int is assumed. This “default-to-int” rule does not apply to C++. The “default-to-int” rule
has also been dropped from the C99 standard.

In C++, local variables can be declared anywhere within a block. In C, they must be
declared at the start of a block, before any “action” statements occur.

C h a p t e r 2 6 : M i s c e l l a n e o u s C + + T o p i c s 807
C

+
+

This page intentionally left blank.

Chapter 27
The Standard Template
Library and the
string Class

809

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This chapter explores what is considered by many to be the most important new
feature added to C++ in recent years: the Standard Template Library. The inclusion
of the standard template library, or STL, was one of the major efforts that took place

during the standardization of C++. The STL provides general-purpose, templatized classes
and functions that implement many popular and commonly used algorithms and data
structures. For example, it includes support for vectors, lists, queues, and stacks. It also
defines various routines that access them. Because the STL is constructed from template
classes, the algorithms and data structures can be applied to nearly any type of data.

The STL is a complex piece of software engineering that uses some of C++’s most
sophisticated features. To understand and use the STL, you must have a complete
understanding of the C++ language, including pointers, references, and templates.
Frankly, the template syntax that describes the STL can seem quite intimidating—
although it looks more complicated than it actually is. While there is nothing in this
chapter that is any more difficult than the material in the rest of this book, don’t be
surprised or dismayed if you find the STL confusing at first. Just be patient, study
the examples, and don’t let the unfamiliar syntax override the STL’s basic simplicity.

The purpose of this chapter is to present an overview of the STL, including its design
philosophy, organization, and constituents, along with the programming techniques
needed to use it. Because the STL is a large library, it is not possible to discuss all of its
features here.

This chapter also describes one of C++’s most important classes: string. The string
class defines a string data type that allows you to work with character strings much as
you do with other data types: using operators. The string class is closely related to the
STL, so it makes sense to discuss both in this chapter.

An Overview of the STL
Although the Standard Template Library is large and its syntax is, at times, rather
intimidating, it is actually quite easy to use once you understand how it is constructed
and what elements it employs. Therefore, before looking at any code examples, an
overview of the STL is warranted.

At the core of the Standard Template Library are three foundational items: containers,
algorithms, and iterators. These items work in conjunction with one another to provide
off-the-shelf solutions to a variety of programming problems.

Containers
Containers are objects that hold other objects. There are several different types of
containers. For example, the vector class defines a dynamic array, deque creates
a double-ended queue, and list provides a linear list. These containers are called

810 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 811
C

+
+

sequence containers because in STL terminology, a sequence is a linear list. In addition
to the basic containers, the STL also defines associative containers that allow efficient
retrieval of values according to keys. For example, a map provides access to values
with unique keys. Thus, a map stores a key/value pair and allows a value to be retrieved
given its key.

Each container class defines a set of functions that may be applied to the container.
For example, a list container includes functions that insert, delete, and merge elements.
A stack includes functions that push and pop values.

Algorithms
Algorithms act on containers. They provide the means by which you will manipulate
the contents of containers. Their capabilities include initializing, sorting, searching,
and transforming the contents of containers. Many algorithms operate on a range of
elements within a container.

Iterators
Iterators are objects that act, more or less, like pointers. They give you the ability to
cycle through the contents of a container in much the same way that you would use
a pointer to cycle through an array. There are five types of iterators:

Iterator Access Allowed

Random Access Store and retrieve values. Elements may be accessed randomly.

Bidirectional Store and retrieve values. Forward and backward moving.

Forward Store and retrieve values. Forward moving only.

Input Retrieve, but not store, values. Forward moving only.

Output Store, but not retrieve, values. Forward moving only.

In general, an iterator that has greater access capabilities can be used in place of one
that has lesser capabilities. For example, a forward iterator can be used in place of an
input iterator.

Iterators are handled just like pointers. You can increment and decrement them.
You can apply the * operator to them. Iterators are declared using the iterator type
defined by the various containers.

The STL also supports reverse iterators. Reverse iterators are either bidirectional or
random-access iterators that move through a sequence in the reverse direction. Thus,
if a reverse iterator points to the end of a sequence, incrementing that iterator will cause
it to point one element before the end.

812 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

When referring to the various iterator types in template descriptions, this book will
use the following terms.

Term Represents

BiIter Bidirectional iterator

ForIter Forward iterator

InIter Input iterator

OutIter Output iterator

RandIter Random-access iterator

Other STL Elements
In addition to containers, algorithms, and iterators, the STL relies upon several
other standard components for support. Chief among these are allocators, predicates,
comparison functions, and function objects.

Each container has defined for it an allocator. Allocators manage memory allocation
for a container. The default allocator is an object of class allocator, but you can define
your own allocators if needed by specialized applications. For most uses, the default
allocator is sufficient.

Several of the algorithms and containers use a special type of function called a predicate.
There are two variations of predicates: unary and binary. A unary predicate takes one
argument. A binary predicate has two arguments. These functions return true/false
results. But the precise conditions that make them return true or false are defined by
you. For the rest of this chapter, when a unary predicate function is required, it will be
notated using the type UnPred. When a binary predicate is required, the type BinPred
will be used. In a binary predicate, the arguments are always in the order of first, second.
For both unary and binary predicates, the arguments will contain values of the type of
objects being stored by the container.

Some algorithms and classes use a special type of binary predicate that compares
two elements. Comparison functions return true if their first argument is less than their
second. Comparison functions will be notated using the type Comp.

In addition to the headers required by the various STL classes, the C++ standard
library includes the <utility> and <functional> headers, which provide support for
the STL. For example, in <utility> is defined the template class pair, which can hold
a pair of values. We will make use of pair later in this chapter.

The templates in <functional> help you to construct objects that define operator().
These are called function objects, and they may be used in place of function pointers in
many places. Several predefined function objects are declared within <functional>.
They are shown here.

plus minus multiplies divides modulus

negate equal_to not_equal_to greater greater_equal

less less_equal logical_and logical_or logical_not

Perhaps the most widely used function object is less, which determines when
one object is less than another. Function objects can be used in place of actual function
pointers in the STL algorithms described later. Using function objects rather than
function pointers allows the STL to generate more efficient code.

Two other entities that populate the STL are binders and negators. A binder binds
an argument to a function object. A negator returns the complement of a predicate.

One final term to know is adaptor. In STL terms, an adaptor transforms one thing
into another. For example, the container queue (which creates a standard queue) is
an adaptor for the deque container.

The Container Classes
As explained, containers are the STL objects that actually store data. The containers
defined by the STL are shown in Table 27-1. Also shown are the headers necessary
to use each container. The string class, which manages character strings, is also a
container, but it is discussed later in this chapter.

Since the names of the generic placeholder types in a template class declaration are
arbitrary, the container classes declare typedefed versions of these types. This makes
the type names concrete. Some of the most common typedef names are shown here.

size_type Some type of integer.

reference A reference to an element.

const_reference A const reference to an element.

iterator An iterator.

const_iterator A const iterator.

reverse_iterator A reverse iterator.

const_reverse_iterator A const reverse iterator.

value_type The type of a value stored in a container.

allocator_type The type of the allocator.

key_type The type of a key.

key_compare The type of a function that compares two keys.

value_compare The type of a function that compares two values.

C
+

+
C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 813

814 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

General Theory of Operation
Although the internal operation of the STL is quite sophisticated, to use the STL is
actually quite easy. First, you must decide on the type of container that you wish to
use. Each offers certain benefits and trade-offs. For example, a vector is very good
when a random-access, array-like object is required and not too many insertions or
deletions are required. A list offers low-cost insertion and deletion but trades away
speed. A map provides an associative container but, of course, incurs additional overhead.

Once you have chosen a container, you will use its member functions to add elements
to the container, access or modify those elements, and delete elements. Except for bitset,
a container will automatically grow as needed when elements are added to it and shrink
when elements are removed.

Container Description Required Header

bitset A set of bits. <bitset>

deque A double-ended queue. <deque>

list A linear list. <list>

map Stores key/value pairs in which
each key is associated with only
one value.

<map>

multimap Stores key/value pairs in which
one key may be associated with
two or more values.

<map>

multiset A set in which each element is not
necessarily unique.

<set>

priority_queue A priority queue. <queue>

queue A queue. <queue>

set A set in which each element
is unique.

<set>

stack A stack. <stack>

vector A dynamic array. <vector>

Table 27-1. The Containers Defined by the STL

Elements can be added to and removed from a container in a number of different
ways. For example, both the sequence containers (vector, list, and deque) and the
associative containers (map, multimap, set, and multiset) provide member functions
called insert(), which inserts elements into a container, and erase(), which removes
elements from a container. The sequence containers also provide push_back()
and pop_back(), which add an element to or remove an element from the end,
respectively. These functions are probably the most common way that individual
elements are added to or removed from a sequence container. The list and deque
containers also include push_front() and pop_front(), which add and remove
elements from the start of the container.

One of the most common ways to access the elements within a container is through
an iterator. The sequence containers and the associative containers provide the member
functions begin() and end(), which return iterators to the start and end of the container,
respectively. These iterators are very useful when accessing the contents of a container. For
example, to cycle through a container you can obtain an iterator to its beginning using
begin() and then increment that iterator until its value is equal to end().

The associative containers provide the function find(), which is used to locate an
element in an associative container given its key. Since associative containers link a
key with its value, find() is the way that most elements in such a container are located.

Since a vector is a dynamic array, it also supports the standard array-indexing
syntax for accessing its elements.

Once you have a container that holds information, it can be manipulated using one
or more algorithms. The algorithms not only allow you to alter the contents of a container
in some prescribed fashion, but they also let you transform one type of sequence
into another.

In the following sections, you will learn to apply these general techniques to three
representative containers: vector, list, and map. Once you understand how these containers
work, you will have no trouble using the others.

Vectors
Perhaps the most general-purpose of the containers is vector. The vector class supports
a dynamic array. This is an array that can grow as needed. As you know, in C++ the size
of an array is fixed at compile time. While this is by far the most efficient way to implement
arrays, it is also the most restrictive because the size of the array cannot be adjusted at
run time to accommodate changing program conditions. A vector solves this problem
by allocating memory as needed. Although a vector is dynamic, you can still use the
standard array subscript notation to access its elements.

The template specification for vector is shown here.

template <class T, class Allocator = allocator<T> > class vector

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 815
C

+
+

Here, T is the type of data being stored and Allocator specifies the allocator, which
defaults to the standard allocator. vector has the following constructors.

explicit vector(const Allocator &a = Allocator());

explicit vector(size_type num, const T &val = T (),
const Allocator &a = Allocator());

vector(const vector<T, Allocator> &ob);

template <class InIter> vector(InIter start, InIter end,
const Allocator &a = Allocator());

The first form constructs an empty vector. The second form constructs a vector that has
num elements with the value val. The value of val may be allowed to default. The third
form constructs a vector that contains the same elements as ob. The fourth form constructs
a vector that contains the elements in the range specified by the iterators start and end.

For maximum flexibility (and portability to other STL implementations), any object
that will be stored in a vector should define a default constructor. It should also define
one or more relational operators, especially the < and = =. The relational operators are
used by various parts of the STL. All of the built-in types automatically satisfy these
requirements.

Although the template syntax looks rather complex, there is nothing difficult about
declaring a vector. Here are some examples:

vector<int> iv; // create zero-length int vector

vector<char> cv(5); // create 5-element char vector

vector<char> cv(5, 'x'); // initialize a 5-element char vector

vector<int> iv2(iv); // create int vector from an int vector

The following comparison operators are defined for vector.

==, <, <=, !=, >, >=

The subscripting operator [] is also defined for vector. This allows you to access the
elements of a vector using standard array subscripting notation.

Several of the member functions defined by vector are shown in Table 27-2. Some
of the most commonly used member functions are size(), begin(), end(), push_back(),
insert(), and erase(). The size() function returns the current size of the vector. This
function is quite useful because it allows you to determine the size of a vector at run
time. Remember, vectors will increase in size as needed, so the size of a vector must be
determined during execution, not during compilation.

The begin() function returns an iterator to the start of the vector. The end() function
returns an iterator to the end of the vector. As explained, iterators are similar to pointers,

816 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

and it is through the use of the begin() and end() functions that you obtain an iterator
to the beginning and end of a vector.

The push_back() function puts a value onto the end of the vector. If necessary,
the vector is increased in length to accommodate the new element. You can also add

C
+

+
C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 817

Member Description

reference back();
const_reference back() const;

Returns a reference to the last element in the vector.

iterator begin();
const_iterator begin() const;

Returns an iterator to the first element in the vector.

void clear(); Removes all elements from the vector.

bool empty() const; Returns true if the invoking vector is empty and false
otherwise.

iterator end();
const_iterator end() const;

Returns an iterator to the end of the vector.

iterator erase(iterator i); Removes the element pointed to by i. Returns an iterator to the
element after the one removed.

iterator erase(iterator start,
iterator end);

Removes the elements in the range start to end. Returns an
iterator to the element after the last element removed.

reference front();
const_reference front() const;

Returns a reference to the first element in the vector.

iterator insert(iterator i,
const T &val);

Inserts val immediately before the element specified by i.
An iterator to the element is returned.

void insert(iterator i,
size_type num,
const T & val)

Inserts num copies of val immediately before the element
specified by i.

template <class InIter>
void insert(iterator i, InIter start,

InIter end);

Inserts the sequence defined by start and end immediately
before the element specified by i.

reference operator[]
(size_type i) const;

const_reference operator[]
(size_type i)
const;

Returns a reference to the element specified by i.

void pop_back(); Removes the last element in the vector.

void push_back (const T &val); Adds an element with the value specified by val to the end of
the vector.

size_type size() const; Returns the number of elements currently in the vector.

Table 27-2. Some Commonly Used Member Functions Defined by vector

818 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

elements to the middle using insert(). A vector can also be initialized. In any event,
once a vector contains elements, you can use array subscripting to access or modify
those elements. You can remove elements from a vector using erase().

One other point: Since vector implements a dynamic array, notice that the [] array
subscript operator is overloaded. This operator allows you to access the elements in a
vector using the standard array notation.

Here is a short example that illustrates the basic operation of a vector.

// Demonstrate a vector.

#include <iostream>

#include <vector>

#include <cctype>

using namespace std;

int main()

{

vector<char> v(10); // create a vector of length 10

unsigned int i;

// display original size of v

cout << "Size = " << v.size() << endl;

// assign the elements of the vector some values

for(i=0; i<10; i++) v[i] = i + 'a';

// display contents of vector

cout << "Current Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

cout << "Expanding vector\n";

/* put more values onto the end of the vector,

it will grow as needed */

for(i=0; i<10; i++) v.push_back(i + 10 + 'a');

// display current size of v

cout << "Size now = " << v.size() << endl;

// display contents of vector

cout << "Current contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 819
C

+
+

// change contents of vector

for(i=0; i<v.size(); i++) v[i] = toupper(v[i]);

cout << "Modified Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

return 0;

}

The output of this program is shown here.

Size = 10

Current Contents:

a b c d e f g h i j

Expanding vector

Size now = 20

Current contents:

a b c d e f g h i j k l m n o p q r s t

Modified Contents:

A B C D E F G H I J K L M N O P Q R S T

Let’s look at this program carefully. In main(), a character vector called v is created
with an initial capacity of 10. That is, v initially contains 10 elements. This is confirmed
by calling the size() member function. Next, these 10 elements are initialized to the
characters 'a' through 'j' and the contents of v are displayed. Notice that the standard
array subscripting notation is employed. Next, 10 more elements are added to the end
of v using the push_back() function. This causes v to grow in order to accommodate
the new elements. As the output shows, its size after these additions is 20. Finally, the
values of v’s elements are altered using standard subscripting notation.

There is one other point of interest in this program. Notice that the loops that display
the contents of v use as their target value v.size(). One of the advantages that vectors
have over arrays is that it is possible to find the current size of a vector. As you can
imagine, this is quite useful in a variety of situations.

Accessing a Vector Through an Iterator
As you know, arrays and pointers are tightly linked in C++. An array can be accessed
either through subscripting or through a pointer. The parallel to this in the STL is

the link between vectors and iterators. You can access the members of a vector using
subscripting or through the use of an iterator. The following example shows how.

// Access the elements of a vector through an iterator.

#include <iostream>

#include <vector>

#include <cctype>

using namespace std;

int main()

{

vector<char> v(10); // create a vector of length 10

vector<char>::iterator p; // create an iterator

int i;

// assign elements in vector a value

p = v.begin();

i = 0;

while(p != v.end()) {

*p = i + 'a';

p++;

i++;

}

// display contents of vector

cout << "Original contents:\n";

p = v.begin();

while(p != v.end()) {

cout << *p << " ";

p++;

}

cout << "\n\n";

// change contents of vector

p = v.begin();

while(p != v.end()) {

*p = toupper(*p);

p++;

}

// display contents of vector

cout << "Modified Contents:\n";

820 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 821
C

+
+

p = v.begin();

while(p != v.end()) {

cout << *p << " ";

p++;

}

cout << endl;

return 0;

}

The output from this program is:

Original contents:

a b c d e f g h i j

Modified Contents:

A B C D E F G H I J

In the program, notice how the iterator p is declared. The type iterator is defined by
the container classes. Thus, to obtain an iterator for a particular container, you will use
a declaration similar that shown in the example: simply qualify iterator with the name
of the container. In the program, p is initialized to point to the start of the vector by using
the begin() member function. This function returns an iterator to the start of the vector.
This iterator can then be used to access the vector one element at a time by incrementing
it as needed. This process is directly parallel to the way a pointer can be used to access the
elements of an array. To determine when the end of the vector has been reached, the
end() member function is employed. This function returns an iterator to the location
that is one past the last element in the vector. Thus, when p equals v.end(), the end of
the vector has been reached.

Inserting and Deleting Elements in a Vector
In addition to putting new values on the end of a vector, you can insert elements into
the middle using the insert() function. You can also remove elements using erase().
The following program demonstrates insert() and erase().

// Demonstrate insert and erase.

#include <iostream>

#include <vector>

using namespace std;

822 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main()

{

vector<char> v(10);

vector<char> v2;

char str[] = "<Vector>";

unsigned int i;

// initialize v

for(i=0; i<10; i++) v[i] = i + 'a';

// copy characters in str into v2

for(i=0; str[i]; i++) v2.push_back(str[i]);

// display original contents of vector

cout << "Original contents of v:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

vector<char>::iterator p = v.begin();

p += 2; // point to 3rd element

// insert 10 X's into v

v.insert(p, 10, 'X');

// display contents after insertion

cout << "Size after inserting X's = " << v.size() << endl;

cout << "Contents after insert:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

// remove those elements

p = v.begin();

p += 2; // point to 3rd element

v.erase(p, p+10); // remove next 10 elements

// display contents after deletion

cout << "Size after erase = " << v.size() << endl;

cout << "Contents after erase:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 823
C

+
+

// Insert v2 into v

v.insert(p, v2.begin(), v2.end());

cout << "Size after v2's insertion = ";

cout << v.size() << endl;

cout << "Contents after insert:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

return 0;

}

This program produces the following output.

Original contents of v:

a b c d e f g h i j

Size after inserting X's = 20

Contents after insert:

a b X X X X X X X X X X c d e f g h i j

Size after erase = 10

Contents after erase:

a b c d e f g h i j

Size after v2's insertion = 18

Contents after insert:

a b < V e c t o r > c d e f g h i j

This program demonstrates two forms of insert(). The first time it is used, it inserts
10 X’s into v. The second time, it inserts the contents of a second vector, v2, into v. This
second use is the most interesting. It takes three iterator arguments. The first specifies
the point at which the insertion will occur within the invoking container. The last two
point to the beginning and ending of the sequence to be inserted.

Storing Class Objects in a Vector
Although the preceding examples have only stored objects of the built-in types in a vector,
vectors are not limited to this. They can store any type of objects, include those of classes
that you create. Here is an example that uses a vector to store objects that hold the daily
temperature highs for a week. Notice that DailyTemp defines the default constructor and

824 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

that overloaded versions of < and = = are provided. While C++ Builder does not require
them to be defined for this example, they are needed for many other STL operations.
Thus, it is a good idea to define them for all objects that will be operated on by the STL.
Doing so also ensures maximum portability to other STL implementations.

// Store a class object in a vector.

#include <iostream>

#include <vector>

#include <cstdlib>

using namespace std;

class DailyTemp {

int temp;

public:

DailyTemp() { temp = 0; }

DailyTemp(int x) { temp = x; }

DailyTemp &operator=(int x) {

temp = x; return *this;

}

double get_temp() { return temp; }

};

bool operator<(DailyTemp a, DailyTemp b)

{

return a.get_temp() < b.get_temp();

}

bool operator==(DailyTemp a, DailyTemp b)

{

return a.get_temp() == b.get_temp();

}

int main()

{

vector<DailyTemp> v;

unsigned int i;

for(i=0; i<7; i++)

v.push_back(DailyTemp(60 + rand()%30));

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 825
C

+
+

cout << "Fahrenheit temperatures:\n";

for(i=0; i<v.size(); i++)

cout << v[i].get_temp() << " ";

cout << endl;

// convert from Fahrenheit to Celsius

for(i=0; i<v.size(); i++)

v[i] = (v[i].get_temp()-32) * 5/9 ;

cout << " Celsius temperatures:\n";

for(i=0; i<v.size(); i++)

cout << v[i].get_temp() << " ";

return 0;

}

The output from this program is shown here. Your output may be slightly different
due to the use of the rand() function.

Fahrenheit temperatures:

70 62 70 76 67 75 85

Celsius temperatures:

21 16 21 24 19 23 29

Vectors offer great power, safety, and flexibility. But they are less efficient than
normal arrays. Thus, for most programming tasks, normal arrays will still be your
first choice, but watch for situations in which the benefits of using a vector outweigh
the costs.

Lists
The list class supports a bidirectional, linear list. Unlike a vector, which supports
random access, a list can be accessed sequentially only. Since lists are bidirectional,
they may be accessed front to back or back to front.

A list has this template specification

template <class T, class Allocator = allocator<T> > class list

826 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here, T is the type of data stored in the list. The allocator is specified by Allocator,
which defaults to the standard allocator. It has the following constructors.

explicit list(const Allocator &a = Allocator());

explicit list(size_type num, const T &val = T (),
const Allocator &a = Allocator());

list(const list<T, Allocator> &ob);

Member Description

reference back();
const_reference back() const;

Returns a reference to the last element in the list.

iterator begin();
const_iterator begin() const;

Returns an iterator to the first element in the list.

void clear(); Removes all elements from the list.

bool empty() const; Returns true if the invoking list is empty and false otherwise.

iterator end();
const_iterator end() const;

Returns an iterator to the end of the list.

iterator erase(iterator i); Removes the element pointed to by i. Returns an iterator to the
element after the one removed.

iterator erase(iterator start,
iterator end);

Removes the elements in the range start to end. Returns an iterator
to the element after the last element removed.

reference front();
const_reference front() const;

Returns a reference to the first element in the list.

iterator insert(iterator i,
const T &val);

Inserts val immediately before the element specified by i.
An iterator to the element is returned.

void insert(iterator i,
size_type num,
const T &val)

Inserts num copies of val immediately before the element
specified by i.

template <class InIter>
void insert(iterator i,

InIter start, InIter end);

Inserts the sequence defined by start and end immediately before
the element specified by i.

void merge(list<T,
Allocator> &ob);

template <class Comp>
void merge(<list<T,

Allocator> &ob,
Comp cmpfn);

Merges the ordered list contained in ob with the ordered invoking
list. The result is ordered. After the merge, the list contained in ob is
empty. In the second form, a comparison function can be specified
that determines when one element is less than another.

Table 27-3. Some Commonly Used list Member Functions

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 827
C

+
+

template <class InIter>list(InIter start, InIter end,
const Allocator &a = Allocator());

The first form constructs an empty list. The second form constructs a list that has num
elements with the value val, which can be allowed to default. The third form constructs
a list that contains the same elements as ob. The fourth form constructs a list that contains
the elements in the range specified by the iterators start and end.

The following comparison operators are defined for list:

==, <, <=, !=, >, >=

Some of the commonly used list member functions are shown in Table 27-3. Like a
vector, an element may be put into a list by using the push_back() function. You can
put an element on the front of the list by using push_front(). An element can also be
inserted into the middle of a list by using insert(). Two lists may be joined using splice().
One list may be merged into another using merge().

Member Description

void pop_back(); Removes the last element in the list.

void pop_front(); Removes the first element in the list.

void push_back(const T &val); Adds an element with the value specified by val to the end of
the list.

void push_front(const T &val); Adds an element with the value specified by val to the front of
the list.

void remove(const T &val); Removes elements with the value val from the list.

void reverse(); Reverses the invoking list.

size_type size() const; Returns the number of elements currently in the list.

void sort();
template <class Comp>

void sort(Comp cmpfn);

Sorts the list. The second form sorts the list using the comparison
function cmpfn to determine when one element is less than another.

void splice(iterator i,
list<T, Allocator> &ob);

The contents of ob are inserted into the invoking list at the location
pointed to by i. After the operation, ob is empty.

void splice(iterator i,
list<T, Allocator> &ob,
iterator el);

The element pointed to by el is removed from the list ob and stored
in the invoking list at the location pointed to by i.

void splice(iterator i,
list<T, Allocator> &ob,
iterator start, iterator end);

The range defined by start and end is removed from ob and stored
in the invoking list beginning at the location pointed to by i.

Table 27-3. Some Commonly Used list Member Functions (continued)

For maximum flexibility and portability, an object that will be held in a list should
define a default constructor. It should also define the various comparison operators.

Here is a simple example of a list.

// List basics.

#include <iostream>

#include <list>

using namespace std;

int main()

{

list<int> lst; // create an empty list

int i;

for(i=0; i<10; i++) lst.push_back(i);

cout << "Size = " << lst.size() << endl;

cout << "Contents: ";

list<int>::iterator p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

cout << "\n\n";

// change contents of list

p = lst.begin();

while(p != lst.end()) {

*p = *p + 100;

p++;

}

cout << "Contents modified: ";

p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

return 0;

}

828 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C
+

+

The output produced by this program is shown here.

Size = 10

Contents: 0 1 2 3 4 5 6 7 8 9

Contents modified: 100 101 102 103 104 105 106 107 108 109

This program creates a list of integers. First, an empty list object is created. Next,
ten integers are put into the list. This is accomplished using the push_back() function,
which puts each new value on the end of the existing list. Next, the size of the list and
the list, itself, are displayed. The list is displayed via an iterator, using the following code.

list<int>::iterator p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

Here, the iterator p is initialized to point to the start of the list. Each time through the loop,
p is incremented, causing it to point to the next element. The loop ends when p points
to the end of the list. This code is essentially the same as was used to cycle through a
vector using an iterator. Loops like this are common in STL code and the fact that the
same constructs can be used to access different types of containers is part of the power
of the STL.

Understanding end()
Now is a good time to explain a somewhat unexpected attribute of the end() container
function. end() does not return a pointer to the last element in a container. Instead, it
returns a pointer one past the last element. Thus, the last element in a container is pointed
to by end() – 1. This feature allows you to write very efficient algorithms that cycle through
all of the elements of a container, including the last one, using an iterator. When the
iterator has the same value as the one returned by end(), you know that all elements
have been accessed. However, you must keep this feature in mind, since it may seem
a bit counterintuitive. For example, consider the following program, which displays a
list forward and backward.

// Understanding end().

#include <iostream>

#include <list>

using namespace std;

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 829

830 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

int main()

{

list<int> lst; // create an empty list

int i;

for(i=0; i<10; i++) lst.push_back(i);

cout << "List printed forward:\n";

list<int>::iterator p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

cout << "\n\n";

cout << "List printed backward:\n";

p = lst.end();

while(p != lst.begin()) {

p--; // decrement pointer before using

cout << *p << " ";

}

return 0;

}

The output produced by this program is shown here.

List printed forward:

0 1 2 3 4 5 6 7 8 9

List printed backward:

9 8 7 6 5 4 3 2 1 0

The code that displays the list in the forward direction is the same as we have been using.
But pay special attention to the code that displays the list in reverse order. The iterator
p is initially set to the end of the list through the use of the end() function. Since end()
returns an iterator to an object that is one past the last object actually stored in the list,
p must be decremented before it is used. This is why p is decremented before the cout

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 831
C

+
+

statement inside the loop, rather than after. Remember: end() does not return a pointer
to the last object in the list; it returns a pointer that is one past the last value in the list.

push_front() Versus push_back()
You can build a list by adding elements either to the end of the list or to the start of
the list. So far, we have been adding elements to the end by using push_back(). To
add elements to the start, use push_front(). For example,

/* Demonstrating the difference between

push_back() and push_front(). */

#include <iostream>

#include <list>

using namespace std;

int main()

{

list<int> lst1, lst2;

int i;

for(i=0; i<10; i++) lst1.push_back(i);

for(i=0; i<10; i++) lst2.push_front(i);

list<int>::iterator p;

cout << "Contents of lst1:\n";

p = lst1.begin();

while(p != lst1.end()) {

cout << *p << " ";

p++;

}

cout << "\n\n";

cout << "Contents of lst2:\n";

p = lst2.begin();

while(p != lst2.end()) {

cout << *p << " ";

p++;

}

832 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

The output produced by this program is shown here.

Contents of lst1:

0 1 2 3 4 5 6 7 8 9

Contents of lst2:

9 8 7 6 5 4 3 2 1 0

Since lst2 is built by putting elements onto its front, the resulting list is in the reverse
order of lst1, which is built by putting elements onto its end.

Sort a List
A list can be sorted by calling the sort() member function. The following program
creates a list of random integers and then puts the list into sorted order.

// Sort a list.

#include <iostream>

#include <list>

#include <cstdlib>

using namespace std;

int main()

{

list<int> lst;

int i;

// create a list of random integers

for(i=0; i<10; i++)

lst.push_back(rand());

cout << "Original contents:\n";

list<int>::iterator p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

cout << endl << endl;

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 833
C

+
+

// sort the list

lst.sort();

cout << "Sorted contents:\n";

p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

return 0;

}

Here is sample output produced by the program.

Original contents:

41 18467 6334 26500 19169 15724 11478 29358 26962 24464

Sorted contents:

41 6334 11478 15724 18467 19169 24464 26500 26962 29358

Merging One List with Another
One ordered list can be merged with another. The result is an ordered list that contains
the contents of the two original lists. The new list is stored in the invoking list, and the
second list is left empty. The next example merges two lists. The first contains the even
numbers between 0 and 9. The second contains the odd numbers. These lists are then
merged to produce the sequence 0 1 2 3 4 5 6 7 8 9.

// Merge two lists.

#include <iostream>

#include <list>

using namespace std;

int main()

{

list<int> lst1, lst2;

int i;

for(i=0; i<10; i+=2) lst1.push_back(i);

for(i=1; i<11; i+=2) lst2.push_back(i);

cout << "Contents of lst1:\n";

list<int>::iterator p = lst1.begin();

while(p != lst1.end()) {

cout << *p << " ";

p++;

}

cout << endl << endl;

cout << "Contents of lst2:\n";

p = lst2.begin();

while(p != lst2.end()) {

cout << *p << " ";

p++;

}

cout << endl << endl;

// now, merge the two lists

lst1.merge(lst2);

if(lst2.empty())

cout << "lst2 is now empty\n";

cout << "Contents of lst1 after merge:\n";

p = lst1.begin();

while(p != lst1.end()) {

cout << *p << " ";

p++;

}

return 0;

}

The output produced by this program is shown here.

Contents of lst1:

0 2 4 6 8

Contents of lst2:

1 3 5 7 9

834 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 835
C

+
+

lst2 is now empty

Contents of lst1 after merge:

0 1 2 3 4 5 6 7 8 9

One other thing to notice about this example is the use of the empty() function.
It returns true if the invoking container is empty. Since merge() removes all of the
elements from the list being merged, it will be empty after the merge is completed,
as the program output confirms.

Storing Class Objects in a List
Here is an example that uses a list to store objects of type myclass. Notice that the <, >,
!=, and == are overloaded for objects of type myclass. The only one of these actually
required by this example is <. The others are implemented for the sake of illustration
(and to help ensure portability to other STL implementations). In general, the STL uses
these operators to determine the ordering and equality of objects in a container. Even
though a list is not an ordered container, it still needs a way to compare elements when
searching, sorting, or merging.

// Store class objects in a list.

#include <iostream>

#include <list>

#include <cstring>

using namespace std;

class myclass {

int a, b;

int sum;

public:

myclass() { a = b = 0; }

myclass(int i, int j) {

a = i;

b = j;

sum = a + b;

}

int getsum() { return sum; }

friend bool operator<(const myclass &o1,

const myclass &o2);

friend bool operator>(const myclass &o1,

const myclass &o2);

friend bool operator==(const myclass &o1,

const myclass &o2);

friend bool operator!=(const myclass &o1,

const myclass &o2);

};

bool operator<(const myclass &o1, const myclass &o2)

{

return o1.sum < o2.sum;

}

bool operator>(const myclass &o1, const myclass &o2)

{

return o1.sum > o2.sum;

}

bool operator==(const myclass &o1, const myclass &o2)

{

return o1.sum == o2.sum;

}

bool operator!=(const myclass &o1, const myclass &o2)

{

return o1.sum != o2.sum;

}

int main()

{

int i;

// create first list

list<myclass> lst1;

for(i=0; i<10; i++) lst1.push_back(myclass(i, i));

cout << "First list: ";

list<myclass>::iterator p = lst1.begin();

while(p != lst1.end()) {

cout << p->getsum() << " ";

p++;

}

cout << endl;

836 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 837
C

+
+

// create a second list

list<myclass> lst2;

for(i=0; i<10; i++) lst2.push_back(myclass(i*2, i*3));

cout << "Second list: ";

p = lst2.begin();

while(p != lst2.end()) {

cout << p->getsum() << " ";

p++;

}

cout << endl;

// now, merge lst1 and lst2

lst1.merge(lst2);

// display merged list

cout << "Merged list: ";

p = lst1.begin();

while(p != lst1.end()) {

cout << p->getsum() << " ";

p++;

}

return 0;

}

The program creates two lists of myclass objects and displays the contents of each
list. It then merges the two lists and displays the result. The output from this program
is shown here.

First list: 0 2 4 6 8 10 12 14 16 18

Second list: 0 5 10 15 20 25 30 35 40 45

Merged list: 0 0 2 4 5 6 8 10 10 12 14 15 16 18 20 25 30 35 40 45

Maps
The map class supports an associative container in which unique keys are mapped with
values. In essence, a key is simply a name that you give to a value. Once a value has
been stored, you can retrieve it by using its key. Thus, in its most general sense a map
is a list of key/value pairs. The power of a map is that you can look up a value given

838 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

its key. For example, you could define a map that uses a person’s name as its key and
stores that person’s telephone number as its value. Associative containers are becoming
more popular in programming.

As mentioned, a map can hold only unique keys. Duplicate keys are not allowed.
To create a map that allows nonunique keys, use multimap.

The map container has the following template specification.

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const Key, T> > > class map

Here, Key is the data type of the keys, T is the data type of the values being stored
(mapped), and Comp is a function that compares two keys. This defaults to the
standard less() utility function object. Allocator is the allocator (which defaults
to allocator).

A map has the following constructors.

explicit map(const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

map(const map<Key, T, Comp, Allocator> &ob);

template <class InIter> map(InIter start, InIter end,
const Comp &cmpfn = Comp(), const Allocator &a = Allocator());

The first form constructs an empty map. The second form constructs a map that
contains the same elements as ob. The third form constructs a map that contains the
elements in the range specified by the iterators start and end. The function specified
by cmpfn, if present, determines the ordering of the map.

In general, any object used as a key should define a default constructor and
overload any necessary comparison operators.

The following comparison operators are defined for map.

==, <, <=, !=, >, >=

Several of the map member functions are shown in Table 27-4. In the descriptions,
key_type is the type of the key, and value_type represents pair<Key, T>.

Key/value pairs are stored in a map as objects of type pair, which has this template
specification.

template <class Ktype, class Vtype> struct pair {

typedef Ktype first_type; // type of key

typedef Vtype second_type; // type of value

Ktype first; // contains the key

Vtype second; // contains the value

// constructors

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 839
C

+
+

pair();

pair(const Ktype &k, const Vtype &v);

template<class A, class B> pair(const<A, B> &ob);

Member Description

iterator begin();
const_iterator begin() const;

Returns an iterator to the first element in
the map.

void clear(); Removes all elements from the map.

size_type count(const key_
type &k) const;

Returns the number of times k occurs in the map
(1 or zero).

bool empty() const; Returns true if the invoking map is empty and
false otherwise.

iterator end();
const_iterator end() const;

Returns an iterator to the end of the list.

void erase(iterator i); Removes the element pointed to by i.

void erase(iterator start, iterator end); Removes the elements in the range start to end.

size_type erase(const key_type &k) Removes from the map elements that have keys
with the value k.

iterator find(const key_type &k);
const_iterator find

(const key_type &k) const;

Returns an iterator to the specified key. If the
key is not found, then an iterator to the end of
the map is returned.

iterator insert(iterator i,
const value_type &val);

Inserts val at or after the element specified by i.
An iterator to the element is returned.

template <class InIter>
void insert(InIter start, InIter end)

Inserts a range of elements.

pair<iterator, bool>
insert(const value_type &val);

Inserts val into the invoking map. An iterator
to the element is returned. The element is inserted
only if it does not already exist. If the element was
inserted, pair<iterator, true> is returned. Otherwise,
pair<iterator, false> is returned.

mapped_type& operator[]
(const key_type &i)

Returns a reference to the element specified by i.
If this element does not exist, it is inserted.

size_type size() const; Returns the number of elements currently in
the list.

Table 27-4. Several Commonly Used map Member Functions

~pair();

}

As the comments suggest, the value in first contains the key and the value in second
contains the value associated with that key.

You can construct a pair using one of pair’s constructors or by using make_pair(),
which constructs a pair object based upon the types of the data used as parameters.
make_pair() is a generic function that has this prototype.

template <class Ktype, class Vtype>
pair<Ktype, Vtype> make_pair(const Ktype &k, const Vtype &v);

As you can see, it returns a pair object consisting of values of the types specified by
Ktype and Vtype. The advantage of make_pair() is that the types of the objects being
stored are determined automatically by the compiler rather than being explicitly
specified by you.

The following program illustrates the basics of using a map. It stores key/value
pairs that show the mapping between the uppercase letters and their ASCII character
codes. Thus, the key is a character and the value is an integer. The key/value pairs
stored are

A 65

B 66

C 67

and so on. Once the pairs have been stored, you are prompted for a key (i.e., a letter
between A and Z) and the ASCII code for that letter is displayed.

// A simple map demonstration.

#include <iostream>

#include <map>

using namespace std;

int main()

{

map<char, int> m;

int i;

// put pairs into map

for(i=0; i<26; i++) {

m.insert(pair<char, int>('A'+i, 65+i));

840 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

}

char ch;

cout << "Enter key: ";

cin >> ch;

map<char, int>::iterator p;

// find value given key

p = m.find(ch);

if(p != m.end())

cout << "Its ASCII value is " << p->second;

else

cout << "Key not in map.\n";

return 0;

}

Notice the use of the pair template class to construct the key/value pairs. The data types
specified by pair must match those of the map into which the pairs are being inserted.

Once the map has been initialized with keys and values, you can search for a value
given its key by using the find() function. find() returns an iterator to the matching
element or to the end of the map if the key is not found. When a match is found, the
value associated with the key is contained in the second member of pair.

In the preceding example, key/value pairs were constructed explicitly, using
pair<char, int>. While there is nothing wrong with this approach, it is often easier
to use make_pair(), which constructs a pair object based upon the types of the data
used as parameters. For example, assuming the previous program, this line of code
will also insert key/value pairs into m.

m.insert(make_pair((char)('A'+i), 65+i));

Here, the cast to char is needed to override the automatic conversion to int when i is
added to 'A'. Otherwise, the type determination is automatic.

Storing Class Objects in a Map
As with all of the containers, you can use a map to store objects of types that you create.
For example, the next program creates a simple phone directory. That is, it creates a map
of names with their numbers. To do this, it creates two classes called name and number.
Since a map maintains a sorted list of keys, the program also defines the < operator for
objects of type name. In general, you must define the < operator for any classes that you

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 841
C

+
+

842 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

will use as the key. You may also need to implement other comparison operators,
depending upon what elements of the STL you will be using (and for maximum
portability).

// Use a map to create a phone directory.

#include <iostream>

#include <map>

#include <cstring>

using namespace std;

class name {

char str[40];

public:

name() { strcpy(str, ""); }

name(char *s) { strcpy(str, s); }

char *get() { return str; }

};

// Must define less than relative to name objects.

bool operator<(name a, name b)

{

return strcmp(a.get(), b.get()) < 0;

}

class phoneNum {

char str[80];

public:

phoneNum() { strcmp(str, ""); }

phoneNum(char *s) { strcpy(str, s); }

char *get() { return str; }

};

int main()

{

map<name, phoneNum> directory;

// put names and numbers into map

directory.insert(pair<name, phoneNum>(name("Tom"),

phoneNum("555-4533")));

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 843
C

+
+

directory.insert(pair<name, phoneNum>(name("Chris"),

phoneNum("555-9678")));

directory.insert(pair<name, phoneNum>(name("John"),

phoneNum("555-8195")));

directory.insert(pair<name, phoneNum>(name("Rachel"),

phoneNum("555-0809")));

// given a name, find number

char str[80];

cout << "Enter name: ";

cin >> str;

map<name, phoneNum>::iterator p;

p = directory.find(name(str));

if(p != directory.end())

cout << "Phone number: " << p->second.get();

else

cout << "Name not in directory.\n";

return 0;

}

Here is a sample run.

Enter name: Rachel

Phone number: 555-0809

In the program, each entry in the map is a character array that holds a null-
terminated string. Later in this chapter, you will see an easier way to write this
program that uses the standard string type.

Algorithms
As explained, algorithms act on containers. Although each container provides
support for its own basic operations, the standard algorithms provide more extended
or complex actions. They also allow you to work with two different types of containers
at the same time. To have access to the STL algorithms, you must include <algorithm>
in your program.

844 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Algorithm Purpose

adjacent_find Searches for adjacent matching elements within a sequence and returns
an iterator to the first match.

binary_search Performs a binary search on an ordered sequence

copy Copies a sequence.

copy_backward Same as copy except that it moves the elements from the end of the
sequence first.

count Returns the number of elements in the sequence.

count_if Returns the number of elements in the sequence that satisfy some
predicate.

equal Determines if two ranges are the same.

equal_range Returns a range in which an element can be inserted into a sequence
without disrupting the ordering of the sequence.

fill and fill_n Fills a range with the specified value.

find Searches a range for a value and returns an iterator to the first
occurrence of the element.

find_end Searches a range for a subsequence. It returns an iterator to the end of
the subsequence within the range.

find_first_of Finds the first element within a sequence that matches an element
within a range.

find_if Searches a range for an element for which a user-defined unary
predicate returns true.

for_each Applies a function to a range of elements.

generate and generate_n Assign elements in a range the values returned by a generator function.

includes Determines if one sequence includes all of the elements in
another sequence.

inplace_merge Merges a range with another range. Both ranges must be sorted in
increasing order. The resulting sequence is sorted.

iter_swap Exchanges the values pointed to by its two iterator arguments.

lexicographical_compare Alphabetically compares one sequence with another.

lower_bound Finds the first point in the sequence that is not less than a
specified value.

make_heap Constructs a heap from a sequence.

max Returns the maximum of two values.

max_element Returns an iterator to the maximum element within a range.

merge Merges two ordered sequences, placing the result into a third sequence.

Table 27-5. The STL Algorithms

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 845
C

+
+

Algorithm Purpose

min Returns the minimum of two values.

min_element Returns an iterator to the minimum element within a range.

mismatch Finds the first mismatch between the elements in two sequences.
Iterators to the two elements are returned.

next_permutation Constructs the next permutation of a sequence.

nth_element Arranges a sequence such that all elements less than a specified
element E come before that element and all elements greater than
E come after it.

partial_sort Sorts a range.

partial_sort_copy Sorts a range and then copies as many elements as will fit into a
resulting sequence.

partition Arranges a sequence such that all elements for which a predicate
returns true come before those for which the predicate returns false.

pop_heap Exchanges the first and last–1 elements and then rebuilds the heap.

prev_permutation Constructs the previous permutation of a sequence.

push_heap Pushes an element onto the end of a heap.

random_shuffle Randomizes a sequence

remove, remove_if,
remove_copy, and
remove_copy_if

Removes elements from a specified range.

replace, replace_copy,
replace_if, and
replace_copy_if

Replaces elements within a range.

reverse and reverse_copy Reverses the order of a range.

rotate and rotate_copy Left-rotates the elements in a range.

search Searches for a subsequence within a sequence.

search_n Searches for a sequence of a specified number of similar elements.

set_difference Produces a sequence that contains the difference between two
ordered sets.

set_intersection Produces a sequence that contains the intersection of the two
ordered sets.

set_symmetric_difference Produces a sequence that contains the symmetric difference between
the two ordered sets.

set_union Produces a sequence that contains the union of the two ordered sets.

sort Sorts a range.

sort_heap Sorts a heap within a specified range.

Table 27-5. The STL Algorithms (continued)

846 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The STL defines a large number of algorithms, which are summarized in Table 27-5.
All of the algorithms are template functions. This means that they can be applied to any
type of container. The following sections demonstrate a representative sample.

Counting
One of the most basic operations that you can perform on a sequence is to count its
contents. To do this, you can use either count() or count_if(). Their general forms are
shown here.

template <class InIter, class T>
size_t count(InIter start, InIter end, const T &val);

template <class InIter, class UnPred>
size_t count_if(InIter start, InIter end, UnPred pfn);

The count() algorithm returns the number of elements in the sequence beginning at
start and ending at end that match val. The count_if() algorithm returns the number
of elements in the sequence beginning at start and ending at end for which the unary
predicate pfn returns true.

The following program demonstrates count().

Algorithm Purpose

stable_partition Arranges a sequence such that all elements for which a predicate
returns true come before those for which the predicate returns false.
The partitioning is stable. This means that the relative ordering of the
sequence is preserved.

stable_sort Sorts a range. The sort is stable. This means that equal elements are
not rearranged.

swap Exchanges two values.

swap_ranges Exchanges elements in a range.

transform Applies a function to a range of elements and stores the outcome in
a new sequence.

unique and unique_copy Eliminates duplicate elements from range.

upper_bound Finds the last point in a sequence that is not greater than some value.

Table 27-5. The STL Algorithms (continued)

// Demonstrate count().

#include <iostream>

#include <vector>

#include <cstdlib>

#include <algorithm>

using namespace std;

int main()

{

vector<bool> v;

unsigned int i;

for(i=0; i < 10; i++) {

if(rand() % 2) v.push_back(true);

else v.push_back(false);

}

cout << "Sequence:\n";

for(i=0; i<v.size(); i++)

cout << boolalpha << v[i] << " ";

cout << endl;

i = count(v.begin(), v.end(), true);

cout << i << " elements are true.\n";

return 0;

}

This program displays something similar to the following output.

Sequence:

true true false false true false false false false false

3 elements are true.

The program begins by creating a vector composed of randomly generated true and
false values. Next, count() is used to count the number of true values.

This next program demonstrates count_if(). It creates a vector containing the
numbers 1 through 19. It then counts those that are evenly divisible by 3. To do this,
it creates a unary predicate called dividesBy3(), which returns true if its argument
is evenly divisible by 3.

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 847
C

+
+

// Demonstrate count_if().

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

/* This is a unary predicate that determines

if number is divisible by 3. */

bool dividesBy3(int i)

{

if((i%3) == 0) return true;

return false;

}

int main()

{

vector<int> v;

unsigned int i;

for(i=1; i < 20; i++) v.push_back(i);

cout << "Sequence:\n";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl;

i = count_if(v.begin(), v.end(), dividesBy3);

cout << i << " numbers are divisible by 3.\n";

return 0;

}

This program produces the following output.

Sequence:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

6 numbers are divisible by 3.

Notice how the unary predicate dividesBy3() is coded. All unary predicates receive
as a parameter an object that is of the same type as that stored in the container upon
which the predicate is operating. The predicate must then return a true or false result
based upon this object.

848 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 849
C

+
+

Removing and Replacing Elements
Sometimes it is useful to generate a new sequence that consists of only certain items
from an original sequence. One algorithm that does this is remove_copy(). Its general
form is shown here.

template <class InIter, class OutIter, class T>
OutIter remove_copy(InIter start, InIter end,

OutIter result, const T &val);

The remove_copy() algorithm copies elements from the specified range, removing
those that are equal to val. It puts the result into the sequence pointed to by result and
returns an iterator to the end of the result. The output container must be large enough
to hold the result.

To replace one element in a sequence with another when a copy is made, use
replace_copy(). Its general form is shown here.

template <class InIter, class OutIter, class T>
OutIter replace_copy(InIter start, InIter end,

OutIter result, const T &old, const T &new);

The replace_copy() algorithm copies elements from the specified range, replacing elements
equal to old with new. It puts the result into the sequence pointed to by result and returns
an iterator to the end of the result. The output container must be large enough to hold
the result.

The following program demonstrates remove_copy() and replace_copy(). It creates
a sequence of characters. It then removes all of the spaces from the sequence. Next, it
replaces all spaces with colons.

// Demonstrate remove_copy and replace_copy.

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

char str[] = "The STL is power programming.";

vector<char> v, v2(30);

unsigned int i;

for(i=0; str[i]; i++) v.push_back(str[i]);

850 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

// **** demonstrate remove_copy ****

cout << "Input sequence:\n";

for(i=0; i<v.size(); i++) cout << v[i];

cout << endl;

// remove all spaces

remove_copy(v.begin(), v.end(), v2.begin(), ' ');

cout << "Result after removing spaces:\n";

for(i=0; i<v2.size(); i++) cout << v2[i];

cout << endl << endl;

// **** now, demonstrate replace_copy ****

cout << "Input sequence:\n";

for(i=0; i<v.size(); i++) cout << v[i];

cout << endl;

// replace spaces with colons

replace_copy(v.begin(), v.end(), v2.begin(), ' ', ':');

cout << "Result after replacing spaces with colons:\n";

for(i=0; i<v2.size(); i++) cout << v2[i];

cout << endl << endl;

return 0;

}

The output produced by this program is shown here.

Input sequence:

The STL is power programming.

Result after removing spaces:

TheSTLispowerprogramming.

Input sequence:

The STL is power programming.

Result after replacing spaces with colons:

The:STL:is:power:programming.

TE
AM
FL
Y

Team-Fly®

Reversing a Sequence
An often useful algorithm is reverse(), which reverses a sequence. Its general form is

template <class BiIter> void reverse(BiIter start, BiIter end);

The reverse() algorithm reverses the order of the range specified by start and end.
The following program demonstrates reverse().

// Demonstrate reverse.

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

vector<int> v;

unsigned int i;

for(i=0; i<10; i++) v.push_back(i);

cout << "Initial: ";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

reverse(v.begin(), v.end());

cout << "Reversed: ";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

return 0;

}

The output from this program is shown here.

Initial: 0 1 2 3 4 5 6 7 8 9

Reversed: 9 8 7 6 5 4 3 2 1 0

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 851
C

+
+

Transforming a Sequence
One of the more interesting algorithms is transform() because it modifies each element
in a range according to a function that you provide. The transform() algorithm has these
two general forms.

template <class InIter, class OutIter, class Func)
OutIter transform(InIter start, InIter end, OutIter result, Func unaryfunc);

template <class InItter1, class InIter2, class OutIter, class Func)
OutIter transform(InIter1 start1, InIter1 end1, InIter2 start2,

OutIter result, Func binaryfunc);

The transform() algorithm applies a function to a range of elements and stores the
outcome in result. In the first form, the range is specified by start and end. The function
to be applied is specified by unaryfunc. This function receives the value of an element
in its parameter and must return its transformation. In the second form, the transformation
is applied using a binary operator function that receives the value of an element from
the sequence to be transformed in its first parameter and a element from the second
sequence as its second parameter. Both versions return an iterator to the end of the
resulting sequence.

The following program uses a simple transformation function called reciprocal()
to transform the contents of a list of numbers into their reciprocals. Notice that the
resulting sequence is stored in the same list that provided the original sequence.

// An example of the transform algorithm.

#include <iostream>

#include <list>

#include <algorithm>

using namespace std;

// A simple transformation function.

double reciprocal(double i) {

return 1.0/i; // return reciprocal

}

int main()

{

list<double> vals;

int i;

// put values into list

for(i=1; i<10; i++) vals.push_back((double)i);

852 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 853
C

+
+

cout << "Original contents of vals:\n";

list<double>::iterator p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

cout << endl;

// transform vals

p = transform(vals.begin(), vals.end(),

vals.begin(), reciprocal);

cout << "Transformed contents of vals:\n";

p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

return 0;

}

The output produced by the program is shown here.

Original contents of vals:

1 2 3 4 5 6 7 8 9

Transformed contents of vals:

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111

As you can see, each element in vals has been transformed into its reciprocal.

Using Function Objects
As explained at the start of this chapter, the STL supports (and extensively utilizes)
function objects. Function objects are simply classes that define operator(). The STL
provides many built-in function objects, such as less, minus, etc. It also allows you to
define your own function objects. Frankly, it is beyond the scope of this book to fully
describe all of the issues surrounding the creation and use of function objects.
Fortunately, as the preceding examples have shown, you can make significant use of
the STL without ever creating a function object. However, since function objects are a
main ingredient of the STL, it is important to have a general understanding.

854 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Unary and Binary Function Objects
Just as there are unary and binary predicates, there are unary and binary function objects.
A unary function object requires one argument; a binary function object requires two. You
must use the type of object required. For example, if an algorithm is expecting a binary
function object, you must pass it a binary function object.

Using the Built-in Function Objects
The STL provides a rich assortment of built-in function objects. The binary function
objects are shown here.

plus minus multiplies divides modulus

equal_to not_equal_to greater greater_equal less

less_equal logical_and logical_or

Here are the unary function objects.

logical_not negate

The function objects perform the operations specified by their names. The only one that
may not be self-evident is negate(), which reverses the sign of its argument.

The built-in function objects are template classes that overload operator(), which
returns the result of the specified operation on whatever type of data you select. For
example, to invoke the binary function object plus(), use this syntax.

plus<float>()

The built-in function objects use the header <functional>.
Let’s begin with a simple example. The following program uses the transform()

algorithm (described in the preceding section) and the negate() function object to
reverse the sign of a list of values.

// Use a unary function object.

#include <iostream>

#include <list>

#include <functional>

#include <algorithm>

using namespace std;

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 855
C

+
+

int main()

{

list<double> vals;

int i;

// put values into list

for(i=1; i<10; i++) vals.push_back((double)i);

cout << "Original contents of vals:\n";

list<double>::iterator p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

cout << endl;

// use the negate function object

p = transform(vals.begin(), vals.end(),

vals.begin(),

negate<double>()); // call function object

cout << "Negated contents of vals:\n";

p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

return 0;

}

This program produces the following output.

Original contents of vals:

1 2 3 4 5 6 7 8 9

Negated contents of vals:

-1 -2 -3 -4 -5 -6 -7 -8 -9

In the program, notice how negate() is invoked. Since vals is a list of double values,
negate() is called using negate<double>(). The transform() algorithm automatically

856 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

calls negate() for each element in the sequence. Thus, the single parameter to negate()
receives, as its argument, an element from the sequence.

The next program demonstrates the use of the binary function object, divides(). It
creates two lists of double values and has one divide the other. This program uses the
binary form of the transform() algorithm.

// Use a binary function object.

#include <iostream>

#include <list>

#include <functional>

#include <algorithm>

using namespace std;

int main()

{

list<double> vals;

list<double> divisors;

int i;

// put values into list

for(i=10; i<100; i+=10) vals.push_back((double)i);

for(i=1; i<10; i++) divisors.push_back(3.0);

cout << "Original contents of vals:\n";

list<double>::iterator p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

cout << endl;

// transform vals

p = transform(vals.begin(), vals.end(),

divisors.begin(), vals.begin(),

divides<double>()); // call function object

cout << "Divided contents of vals:\n";

p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

return 0;

}

The output from this program is shown here.

Original contents of vals:

10 20 30 40 50 60 70 80 90

Divided contents of vals:

3.33333 6.66667 10 13.3333 16.6667 20 23.3333 26.6667 30

In this case, the binary function object divides() divides the elements from the first
sequence by their corresponding elements from the second sequence. Thus, divides()
receives arguments in this order:

divides(first, second)

This order can be generalized. Whenever a binary function object is used, its arguments
are ordered first, second.

Creating a Function Object
In addition to using the built-in function objects, you can create your own. To do so,
you will simply create a class that overloads the operator() function. However, for the
greatest flexibility, you will want to use one of the following classes defined by the STL
as a base class for your function objects.

template <class Argument, class Result> struct unary_function {

typedef Argument argument_type;

typedef Result result_type;

};

template <class Argument1, class Argument2, class Result>

struct binary_function {

typedef Argument1 first_argument_type;

typedef Argument2 second_argument_type;

typedef Result result_type;

};

C
+

+
C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 857

858 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

These template classes provide concrete type names for the generic data types used
by the function object. Although they are technically a convenience, they are almost
always used when creating function objects.

The following program demonstrates a custom function object. It converts the
reciprocal() function (used to demonstrate the transform() algorithm earlier) into
a function object.

// Create a reciprocal function object.

#include <iostream>

#include <list>

#include <functional>

#include <algorithm>

using namespace std;

// A simple function object.

class reciprocal: unary_function<double, double> {

public:

result_type operator()(argument_type i)

{

return (result_type) 1.0/i; // return reciprocal

}

};

int main()

{

list<double> vals;

int i;

// put values into list

for(i=1; i<10; i++) vals.push_back((double)i);

cout << "Original contents of vals:\n";

list<double>::iterator p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

cout << endl;

C
+

+

// use reciprocal function object

p = transform(vals.begin(), vals.end(),

vals.begin(),

reciprocal()); // call function object

cout << "Transformed contents of vals:\n";

p = vals.begin();

while(p != vals.end()) {

cout << *p << " ";

p++;

}

return 0;

}

Notice two important aspects of reciprocal(). First, it inherits the base class
unary_function. This gives it access to the argument_type and result_type types.
Second, it defines operator() such that it returns the reciprocal of its argument. In
general, to create a function object, simply inherit the proper base class and overload
operator() as required. It really is that easy.

Using Binders
When using a binary function object, it is possible to bind a value to one of the arguments.
This can be useful in many situations. For example, you may wish to remove all elements
from a sequence that are greater than some value, such as 8. To do this, you need some
way to bind 8 to the right-hand operand of the function object greater(). That is, you
want greater() to perform the following comparison

val > 8

for each element of the sequence. The STL provides a mechanism, called binders, that
accomplishes this.

There are two binders: bind1st() and bind2nd(). They take these general forms.

bind1st(binfunc_obj, value)

bind2nd(binfunc_obj, value)

Here, binfunc_obj is a binary function object. bind1st() returns a unary function object
that has binfunc_obj's left-hand operand bound to value. bind2nd() returns a unary function
object that has binfunc_obj’s right-hand operand bound to value. The bind2nd() binder

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 859

is by far the most commonly used. In either case, the outcome of a binder is a unary
function object that is bound to the value specified.

To demonstrate the use of a binder, we will use the remove_if() algorithm. It
removes elements from a sequence according to the outcome of a predicate. It has
this prototype.

template <class ForIter, class UnPred>
ForIter remove_if(ForIter start, ForIter end, UnPred func);

The algorithm removes elements from the sequence defined by start and end if the unary
predicate defined by func is true. The algorithm returns a pointer to the new end of the
sequence, which reflects the deletion of the elements.

The following program removes all values from a sequence that are greater than
the value 8. Since the predicate required by remove_if is unary, we cannot simply
use the greater() function object as-is, because greater() is a binary object. Instead,
we must bind the value 8 to the second argument of greater() using the bind2nd()
binder, as shown in the program.

// Demonstrate bind2nd().

#include <iostream>

#include <list>

#include <functional>

#include <algorithm>

using namespace std;

int main()

{

list<int> lst;

list<int>::iterator p, endp;

int i;

for(i=1; i < 20; i++) lst.push_back(i);

cout << "Original sequence:\n";

p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

cout << endl;

endp = remove_if(lst.begin(), lst.end(),

bind2nd(greater<int>(), 8));

860 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 861
C

+
+

cout << "Resulting sequence:\n";

p = lst.begin();

while(p != endp) {

cout << *p << " ";

p++;

}

return 0;

}

The output produced by the program is shown here.

Original sequence:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Resulting sequence:

1 2 3 4 5 6 7 8

You might want to experiment with this program, trying different function objects and
binding different values. As you will discover, binders expand the power of the STL in
very significant ways.

One last point: there is an object related to a binder, called a negator. The negators
are not1() and not2(). They return the negation (i.e., the complement of) whatever
predicate they modify. They have these general forms.

not1(unary_predicate)

not2(binary_predicate)

For example, if you substitute the line

endp = remove_if(lst.begin(), lst.end(),

not1(bind2nd(greater<int>(), 8)));

into the preceding program, then it will remove all elements from lst that are not
greater than 8.

The string Class
As you know, C++ does not support a built-in string type, per se. It does, however, provide
for two ways of handling strings. First, you may use the traditional, null-terminated
character array with which you are already familiar. This is sometimes referred to
as a C string. The second way is as a class object of type string, and this approach is
examined here.

Actually, the string class is a specialization of a more general template class called
basic_string. In fact, there are two specializations of basic_string: string, which supports
8-bit character strings, and wstring, which supports wide-character strings. Since 8-bit
characters are by far the most commonly used in normal programming, string is the
version of basic_string examined here.

Before looking at the string class, it is important to understand why it is part of the
C++ library. Standard classes have not been casually added to C++. In fact, a significant
amount of thought and debate has accompanied each new addition. Given that C++
already contains some support for strings as null-terminated character arrays, it may
at first seem that the inclusion of the string class is an exception to this rule. However,
this is actually far from the truth. Here is why: Null-terminated strings cannot be
manipulated by any of the standard C++ operators. Nor can they take part in normal
C++ expressions. For example, consider this fragment.

char s1[80], s2[80], s3[80];

s1 = "Alpha"; // can't do

s2 = "Beta"; // can't do

s3 = s1 + s2; // error, not allowed

As the comments show, in C++ it is not possible to use the assignment operator to give
a character array a new value (except during initialization), nor is it possible to use the
+ operator to concatenate two strings. These operations must be written using library
functions, as shown here.

strcpy(s1, "Alpha");

strcpy(s2, "Beta");

strcpy(s3, s1);

strcat(s3, s2);

Since null-terminated character arrays are not technically data types in their
own right, the C++ operators cannot be applied to them. This makes even the most
rudimentary string operations clumsy. More than anything else, it is the inability to
operate on null-terminated strings using the standard C++ operators that has driven
the development of a standard string class. Remember, when you define a class in C++,
you are defining a new data type that can be fully integrated into the C++ environment.
This, of course, means that the operators can be overloaded relative to the new class.
Therefore, by adding a standard string class, it becomes possible to manage strings in
the same way as any other type of data: through the use of operators.

There is, however, one other reason for the standard string class: safety. In the hands
of an inexperienced or careless programmer, it is very easy to overrun the end of an array
that holds a null-terminated string. For example, consider the standard string copy

862 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

function strcpy(). This function contains no provision for checking the boundary of the
target array. If the source array contains more characters than the target array can hold,
then a program error or system crash is possible (likely). As you will see, the standard
string class prevents such errors.

In the final analysis, there are three reasons for the inclusion of the standard string
class: consistency (a string now defines a data type), convenience (you can use the standard
C++ operators), and safety (array boundaries will not be overrun). Keep in mind that
there is no reason that you should abandon normal, null-terminated strings altogether.
They are still the most efficient way in which to implement strings. However, when speed
is not an overriding concern, using the new string class gives you access to a safe and
fully integrated way to manage strings.

Although not traditionally thought of as part of the STL, string is another container
class defined by C++. This means that it supports the algorithms described in the previous
section. However, strings have additional capabilities. To have access to the string class,
you must include <string> in your program.

The string class is very large, with many constructors and member functions. Also,
many member functions have multiple overloaded forms. For this reason, it is not possible
to look at the entire contents of string in this chapter. Instead, we will examine several
of its most commonly used features. Once you have a general understanding of how
string works, you will be able to easily explore the rest of it on your own.

The string class supports several constructors. The prototypes for three of its most
commonly used constructors are shown here.

string();

string(const char *str);

string(const string &str);

The first form creates an empty string object. The second creates a string object from
the null-terminated string pointed to by str. This form provides a conversion from null-
terminated strings to string objects. The third form creates a string from another string.

A number of operators that apply to strings are defined for string objects, including:

Operator Meaning

= Assignment

+ Concatenation

+= Concatenation assignment

== Equality

!= Inequality

< Less than

C
+

+
C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 863

864 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Operator Meaning

<= Less than or equal

> Greater than

>= Greater than or equal

[] Subscripting

<< Output

>> Input

These operators allow the use of string objects in normal expressions and eliminate
the need for calls to functions such as strcpy() or strcat(), for example. In general, you
can mix string objects with normal, null-terminated strings in expressions. For example,
a string object can be assigned a null-terminated string.

The + operator can be used to concatenate a string object with another string object
or a string object with a C-style string. That is, the following variations are supported.

string + string

string + C-string

C-string + string

The + operator can also be used to concatenate a character onto the end of a string.
The string class defines the constant npos, which is –1. This constant represents the

length of the longest possible string.
The C++ string classes make string handling extraordinarily easy. For example, using

string objects you can use the assignment operator to assign a quoted string to a string,
the + operator to concatenate strings, and the comparison operators to compare strings.
The following program illustrates these operations.

// A short string demonstration.

#include <iostream>

#include <string>

using namespace std;

int main()

{

string str1("Alpha");

string str2("Beta");

string str3("Omega");

string str4;

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 865
C

+
+

// assign a string

str4 = str1;

cout << str1 << "\n" << str3 << "\n";

// concatenate two strings

str4 = str1 + str2;

cout << str4 << "\n";

// concatenate a string with a C-string

str4 = str1 + " to " + str3;

cout << str4 << "\n";

// compare strings

if(str3 > str1) cout << "str3 > str1\n";

if(str3 == str1+str2)

cout << "str3 == str1+str2\n";

/* A string object can also be

assigned a normal string. */

str1 = "This is a null-terminated string.\n";

cout << str1;

// create a string object using another string object

string str5(str1);

cout << str5;

// input a string

cout << "Enter a string: ";

cin >> str5;

cout << str5;

return 0;

}

This program produces the following output.

Alpha

Omega

AlphaBeta

Alpha to Omega

str3 > str1

This is a null-terminated string.

This is a null-terminated string.

Enter a string: STL

STL

As you can see, objects of type string can be manipulated in ways similar to C++’s
built-in data types.

Notice the ease with which the string handling is accomplished. For example, the
+ is used to concatenate strings and the > is use to compare two strings. To accomplish
these operations using C-style, null-terminated strings, less convenient calls to the strcat()
and strcmp() functions would be required. Because C++ string objects can be freely mixed
with C-style null-terminated strings, there is no disadvantage to using them in your
program—and there are considerable benefits to be gained.

There is one other thing to notice in the preceding program: the sizes of the strings are
not specified. string objects are automatically sized to hold the string that they are given.
Thus, when assigning or concatenating strings, the target string will grow as needed to
accommodate the size of the new string. It is not possible to overrun the end of the string.
This dynamic aspect of string objects is one of the ways that they are better than standard
null-terminated strings (which are subject to boundary overruns).

Some string Member Functions
Although most simple string operations can be accomplished using the string operators,
more complex or subtle ones are accomplished using string member functions. While
string has far too many member functions to discuss them all, we will examine several
of the most common.

String manipulations
To assign one string to another, use the assign() function. Two of its forms are shown here.

string &assign(const string &strob, size_type start, size_type num);

string &assign(const char *str, size_type num);

In the first form, num characters from strob beginning at the index specified by start will
be assigned to the invoking object. In the second form, the first num characters of the
null-terminated string str are assigned to the invoking object. In each case, a reference
to the invoking object is returned. Of course, it is much easier to use the = to assign one
entire string to another. You will need to use the assign() function only when assigning
a partial string.

You can append part of one string to another using the append() member function.
Two of its forms are shown here.

string &append(const string &strob, size_type start, size_type num);

string &append(const char *str, size_type num);

866 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Here, num characters from strob beginning at the index specified by start will be appended
to the invoking object. In the second form, the first num characters of the null-terminated
string str are appended to the invoking object. In each case, a reference to the invoking
object is returned. Of course, it is much easier to use the + to append one entire string
to another. You will need to use the append() function only when appending a
partial string.

You can insert or replace characters within a string using insert() and replace().
The prototypes for their most common forms are shown here.

string &insert(size_type start, const string &strob);

string &insert(size_type start, const string &strob,
size_type insStart, size_type num);

string &replace(size_type start, size_type num, const string &strob);

string &replace(size_type start, size_type orgNum, const string &strob,
size_type replaceStart, size_type replaceNum);

The first form of insert() inserts strob into the invoking string at the index specified
by start. The second form of insert() inserts num characters from strob beginning at
insStart into the invoking string at the index specified by start.

Beginning at start, the first form of replace() replaces num characters from the invoking
string, with strob. The second form replaces orgNum characters, beginning at start, in the
invoking string with the replaceNum characters from the string specified by strob begin-
ning at replaceStart. In both cases, a reference to the invoking object is returned.

You can remove characters from a string using erase(). One of its forms is shown here.

string &erase(size_type start = 0, size_type num = npos);

It removes num characters from the invoking string beginning at start. A reference to
the invoking string is returned.

The following program demonstrates the insert(), erase(), and replace() functions.

// Demonstrate insert(), erase(), and replace().

#include <iostream>

#include <string>

using namespace std;

int main()

{

string str1("String handling C++ style.");

string str2("STL Power");

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 867
C

+
+

cout << "Initial strings:\n";

cout << "str1: " << str1 << endl;

cout << "str2: " << str2 << "\n\n";

// demonstrate insert()

cout << "Insert str2 into str1:\n";

str1.insert(6, str2);

cout << str1 << "\n\n";

// demonstrate erase()

cout << "Remove 9 characters from str1:\n";

str1.erase(6, 9);

cout << str1 <<"\n\n";

// demonstrate replace

cout << "Replace 8 characters in str1 with str2:\n";

str1.replace(7, 8, str2);

cout << str1 << endl;

return 0;

}

The output produced by this program is shown here.

Initial strings:

str1: String handling C++ style.

str2: STL Power

Insert str2 into str1:

StringSTL Power handling C++ style.

Remove 9 characters from str1:

String handling C++ style.

Replace 8 characters in str1 with str2:

String STL Power C++ style.

Searching a String
The string class provides several member functions that search a string, including
find() and rfind(). Here are the prototypes for the most common versions of
these functions.

868 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

size_type find(const string &strob, size_type start=0) const;

size_type rfind(const string &strob, size_type start=npos) const;

Beginning at start, find() searches the invoking string for the first occurrence of
the string contained in strob. If one is found, find() returns the index at which the
match occurs within the invoking string. If no match is found, then npos is returned.
rfind() is the opposite of find(). Beginning at start, it searches the invoking string
in the reverse direction for the first occurrence of the string contained in strob (i.e., it
finds the last occurrence of strob within the invoking string). If one is found, rfind()
returns the index at which the match occurs within the invoking string. If no match is
found, npos is returned.

Here is a short example that uses find() and rfind().

#include <iostream>

#include <string>

using namespace std;

int main()

{

unsigned int i;

string s1 =

"Quick of Mind, Strong of Body, Pure of Heart";

string s2;

i = s1.find("Quick");

if(i!=string::npos) {

cout << "Match found at " << i << endl;

cout << "Remaining string is:\n";

s2.assign(s1, i, s1.size());

cout << s2;

}

cout << "\n\n";

i = s1.find("Strong");

if(i!=string::npos) {

cout << "Match found at " << i << endl;

cout << "Remaining string is:\n";

s2.assign(s1, i, s1.size());

cout << s2;

}

cout << "\n\n";

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 869
C

+
+

i = s1.find("Pure");

if(i!=string::npos) {

cout << "Match found at " << i << endl;

cout << "Remaining string is:\n";

s2.assign(s1, i, s1.size());

cout << s2;

}

cout << "\n\n";

// find list "of"

i = s1.rfind("of");

if(i!=string::npos) {

cout << "Match found at " << i << endl;

cout << "Remaining string is:\n";

s2.assign(s1, i, s1.size());

cout << s2;

}

return 0;

}

The output produced by this program is shown here.

Match found at 0

Remaining string is:

Quick of Mind, Strong of Body, Pure of Heart

Match found at 15

Remaining string is:

Strong of Body, Pure of Heart

Match found at 31

Remaining string is:

Pure of Heart

Match found at 36

Remaining string is:

of Heart

870 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

C
+

+

Comparing Strings
To compare the entire contents of one string object to another, you will normally use the
overloaded relational operators described earlier. However, if you want to compare a
portion of one string to another, then you will need to use the compare() member function,
shown here.

int compare(size_type start, size_type num, const string &strob) const;

Here, num characters in strob, beginning at start, will be compared against the invoking
string. If the invoking string is less than strob, compare() will return less than zero. If
the invoking string is greater than strob, it will return greater than zero. If strob is equal
to the invoking string, compare() will return zero.

Obtaining a Null-Terminated String
Although string objects are useful in their own right, there will be times when you will
need to obtain a null-terminated character array version of the string. For example, you
might use a string object to construct a filename. However, when opening a file, you will
need to specify a pointer to a standard, null-terminated string. To solve this problem, the
member function c_str() is provided. Its prototype is shown here.

const char *c_str() const;

This function returns a pointer to a null-terminated version of the string contained in
the invoking string object. The null-terminated string must not be altered. It is also not
guaranteed to be valid after any other operations have taken place on the string object.

Strings Are Containers
The string class meets all of the basic requirements to be a container. Thus it supports the
common container functions, such as begin(), end(), and size(). It also supports iterators.
Thus, a string object can also be manipulated by the STL algorithms. Here is a
simple example.

// Strings as containers.

#include <iostream>

#include <string>

#include <algorithm>

using namespace std;

int main()

{

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 871

872 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

string str1("String handling is easy in C++");

string::iterator p;

unsigned int i;

// use size()

for(i=0; i<str1.size(); i++)

cout << str1[i];

cout << endl;

// use iterator

p = str1.begin();

while(p != str1.end())

cout << *p++;

cout << endl;

// use the count() algorithm

i = count(str1.begin(), str1.end(), 'i');

cout << "There are " << i << " i's in str1\n";

return 0;

}

Output from the program is shown here.

String handling is easy in C++

String handling is easy in C++

There are 4 i's in str1

Putting Strings into Other Containers
Even though string is a container, objects of type string are commonly held in other
STL containers, such as maps or lists. For example, here is a better way to write the
telephone directory program shown earlier. It uses a map of string objects, rather than
null-terminated strings, to hold the names and telephone numbers.

// Use a map of strings to create a phone directory.

#include <iostream>

#include <map>

#include <string>

using namespace std;

int main()

{

map<string, string> directory;

directory.insert(pair<string, string>("Tom", "555-4533"));

directory.insert(pair<string, string>("Chris", "555-9678"));

directory.insert(pair<string, string>("John", "555-8195"));

directory.insert(pair<string, string>("Rachel", "555-0809"));

string s;

cout << "Enter name: ";

cin >> s;

map<string, string>::iterator p;

p = directory.find(s);

if(p != directory.end())

cout << "Phone number: " << p->second;

else

cout << "Name not in directory.\n";

return 0;

}

Final Thoughts on the STL
The STL is now an important, integral part of the C++ language. Many programming
tasks can (and will) be framed in terms of it. The STL combines power with flexibility,
and while its syntax is a bit complex, its ease of use is remarkable. No C++ programmer
can afford to neglect the STL, because it will play an important role in the way future
programs are written.

C h a p t e r 2 7 : T h e S t a n d a r d T e m p l a t e L i b r a r y a n d t h e s t r i n g C l a s s 873
C

+
+

This page intentionally left blank.

Part IV
The C++ Builder Integrated
Development Environment

Part Four of this book covers the C++ Builder development

environment. This includes using the integrated development

environment (IDE), creating applications, and using the debugger.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Chapter 28
The Integrated
Development
Environment

877

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

878 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C++ Builder has two separate modes of operation. The first is called its integrated
development environment, or IDE. Using the IDE, editing, compilation, and
execution are controlled by single keystrokes, mouse clicks, and easy-to-use

menus. In fact, the IDE is so easy to use that its operation is almost intuitive. The other
method of operation uses the traditional command-line approach. When using the
command line, first you use an editor to create a program source file and then you compile
it, link it, and run it. Many programmers still favor the command-line method of program
development. However, most find that the conveniences offered by the IDE speed up and
simplify development.

This chapter provides an overview of the C++ Builder’s IDE. If you are new to C++
Builder and have never used an integrated development environment before, then you
will find this tour helpful. For detailed information about using the IDE, consult C++
Builder’s online help system.

The Four IDE Windows
When you first execute C++ Builder’s IDE, four windows appear, as shown in Figure 28-1.
(Most of the fourth window is actually hidden behind the Form1 window.) The IDE
consists of four windows that float. They are

� The Menu window

� The Object Inspector window

� The Form window

� The Code window

If you have used earlier versions of Borland’s C++ compiler, then it will be readily
apparent that the IDE has changed quite a bit from its predecessor. It has more options
and greater flexibility. The remainder of this chapter examines each of the windows
that compose the IDE.

The Menu Window
The top window, or menu window, is the main controlling window in the IDE. It
contains several menus that tell the IDE to do something, such as load a file, compile
a program, or set an option. It also contains all the toolbars that provide fast and easy
access to other key functions or shortcuts, such as saving the active window. Table 28-1
summarizes the purpose of each menu.

When you select a menu bar item, a pull-down menu is displayed that contains a
list of choices. Some choices produce another pull-down menu that displays additional
options relating to the first menu. Secondary pull-down menus operate just like
primary pull-down menus. When one menu will generate another, it is shown with

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 879

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 28-1. The C++ Builder IDE main windows

Item Purpose

File Creates new applications; forms, frames, loads, and saves
projects and files; handles printing; and exits the IDE.

Edit Performs standard editing functions and sets object layout
characteristics.

Search Performs various text searches and replacements.

View Accesses the Project Manager, object inspector, display units,
forms, toolbar management and debugging information.

Project Opens, closes, and builds projects.

Run Accesses program control and additional debugging functions.

Component Opens, closes, and inserts additional components, objects, and
ActiveX controls.

Table 28-1. Summary of the Menu Window Items

880 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

a dark arrow to its right. If a pull-down menu item is followed by three periods,
selecting this item will cause a dialog box to be displayed that relates to the item.

The menu window actually contains two areas. The first is the very top menu row,
which contains the standard menu items, File, Edit, and so forth. The second area holds
the various toolbars that can be configured and used by the IDE. By default, the IDE
shows all the toolbars on the menu window.

The following sections describe each entry in the main menu. The toolbars region is
also briefly examined.

File
Highlighting the File option activates the File pull-down menu, as shown in Figure 28-2.
Every menu item is organized into logical groupings. As you can see in the figure, the
File menu is further divided into six groups dealing with these topics: new, open, saving
and closing, including, printing, and exiting.

Selecting New opens the New Items dialog box, as shown in Figure 28-3. As you
can see, there are numerous items that can be created. Even more items can be created
by selecting one of the other four tabs, Project1, Forms, Dialogs, and Projects. Feel free
to explore these other tabs to see the available items that the IDE can manage.

There are three other New menu items that can be selected from the File menu.
These are the New Application, New Form, and New Frame items. These are shortcuts
to the most commonly used items.

The next section of the File menu handles opening or reopening of files and
projects. There are three items in this section, Open, Open Project, and Reopen. The
Open or Open Project option prompts you for a filename and then loads that file or
project into the IDE. If the file does not exist, you will be prompted to select the type of
file to open (form, unit, textfile) and it will be created. The Open option also displays a
list of files from which you can choose. Use the arrow keys to move the highlight until
it is on the file you want to load and press ENTER to load the file, or double-click the
desired filename. Note that the file type is not limited to a C or C++ source file. Make
files, bitmap images, project files, and resource files are some of the possible file types.
The Reopen option shows a list of previous items (history list) that have been worked
on in the IDE.

Item Purpose

Tools Manages configuration options for the environment, editor,
debugger, and images.

Help Accesses online help.

Table 28-1. Summary of the Menu Window Items (continued)

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 881

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 28-2. File pull-down menu

Figure 28-3. New Items dialog box

The next part of the File menu handles save and close functions. This area enables
you to save and close individual windows. The Save option saves the file in the active
window. The Save As option lets you save a file using a different filename. The Save
Project As option saves the current project using a different project name. The Save All
option saves all the files that are open. The Close option closes and removes the current
file and/or project. The Close All option closes all the windows.

The Include section enables you to insert #include statements into the current unit
in the editor.

The Print option opens the Print Form dialog box. This is where the printer settings
can be configured or modified before the file in the active window is printed.

Exit exits the IDE.

Edit
The Edit option performs several editor operations. Figure 28-4 shows the available
options.

882 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 28-4. Edit menu

While only two options are shown in the first section, there are actually three
available. The three options are Undelete, Undo, and Redo. If the active window is the
code editor, then Undo and Redo appear. Select Undo to undo the most recent mouse
or keystroke. Select Redo to redo the previous mouse or keystroke. If you are working
on a form, then Undelete and Redo appear. Select Undelete to undelete an object that
was just deleted. The Redo option works the same in the form window as it does on
the code window. The number of undo steps can be set by adjusting the Undo Limit
number in the Tools | Editor Options menu, under the General tab. This is where the
Group Undo option for block undo operations can be set as well.

The next section contains the standard editing options: Cut, Copy, Paste, Delete,
and Select All. These options function the same way in this IDE as in any Windows
application.

The last section in the Edit menu is available only in the form window. If the code
window is active, this section is grayed out or unavailable. Align To Grid aligns the
selected objects to the nearest grid point. The Bring To Front option moves the selected
object in front of all the other objects. Send To Back moves the selected object in back
of all the objects on the form. Align opens a dialog box that can be used to align the
selected objects in relation to each other. Alignment of the objects can be either horizontal
or vertical. Size opens a dialog box and controls the width and height of an object on
the form. The Scale option opens a dialog box where a percentage number can be
entered for proportionally resizing the objects. Tab Order opens a dialog box where
the controls on the form can be sequenced. The tab order is the order in which the
cursor moves when the tab key is pressed. The Creation Order option opens a dialog
box where you can specify the order in which nonvisual objects are created. These
nonvisual objects are placeholders, including a database connection component and a
system timer, to name two. Flip Children opens a submenu where either All or just the
Selected objects are flipped. The controls can flip from a right-to-left image or vice
versa. Lock Controls locks down all the objects in the current form. Once the objects
are locked, they cannot be moved or resized.

Search
The Search menu option performs various types of searches and search-and-replace
operations, as shown in Figure 28-5.

There are two sections in this menu. The top section deals with the searching or
replacing of items. The Find option opens a Find Text dialog box, as shown in Figure 28-6,
where the text to be searched can be entered. The dialog box allows searching for items
within files by selecting the Find In Files tab. The Find In Files option opens the Find In
Files tab, as shown in Figure 28-6, which allows you to search for text within files.

Replace opens a Replace Text dialog box. This dialog box looks very similar to the
Find Text dialog box. However, Replace has a field where new text can be entered.
Search Again repeats the preceding Replace or Find function. Incremental Search
performs a dynamic search by moving to the next occurrence of the letter that was

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 883

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

pressed. When this option is selected, the code window becomes active and the status
line changes to reflect Searching For. Every key that is pressed is searched for and the
next occurrence of that letter is found. For example, as you type “tform1,” the cursor

884 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 28-5. Search menu

Figure 28-6. Find Text dialog box

moves to the first t found in the code window. When the f is pressed, the search engine
locates the first instance of the combination tf and highlights that text. The Incremental
Search continues this way until it no longer finds an occurrence of the specified string.

The last section allows for direct access to either a line number or an address. Go
To Line Number allows a line number to be entered, and then the code on that line is
shown. Go To Address shows a dialog box where an address in hexadecimal or decimal
can be entered. You can also enter a function name directly. This option is available only
in debug mode.

View
Highlighting the View option activates the View pull-down menu. As seen in Figure 28-7,
this menu item allows you to display various windows. The first section deals with
viewing other IDE components as described in the text that follows.

The Project Manager option displays all the files that make up the current project.
This includes any forms and source code, as well as objects. It shows the name of the
unit and the file location. The Object Inspector option will either reopen the Object
Inspector window, if it was closed, or toggle between the Object Inspector window and
the other opened windows. The Alignment Palette, as shown in Figure 28-8, shows the

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 885

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 28-7. View pull-down menu

886 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

various ways that the objects on the form can be arranged or aligned. This menu item
makes it very easy to organize and align all objects on a form.

The Component List option displays a scrollable list box where you can select a
component or object to be added to a form. The Window List displays a list of all the
opened windows.

The Debug Windows selection provides options for seeing all the various debug
windows. These windows include: Breakpoints, Call Stack, Watches, Threads, and
CPU. Breakpoints list all breakpoints. (Breakpoints are used when debugging.) The
Call Stack displays the current call stack, which is useful when debugging. Watches
are used during debugging activities to obtain the current values of any watched
expressions. Threads lets you see the current thread, state, status, and location. CPU
presents low-level debugging information.

The Desktops option lets you manage the IDE desktop windows and layouts. You
can save layouts, delete layouts, and configure a specific layout, a feature that is used
only during debugging.

The next section of the View menu allows access to the different unit and form
windows. As with any project, it does not take long before a multitude of windows
have been opened. It becomes very easy to lose windows behind other windows. The
next three options, Toggle Form/Unit, Units, and Forms, all provide a method for
getting to the window of your choice.

The next section lets you create a New Edit Window (code window).
The last section on the View menu toggles the various toolbars on (visible) or off.

These other toolbars include: Standard, View, Debug, Custom, Component Palette,
and the Desktop. These additional toolbars can be customized via the Customize
option. These additional toolbars are covered briefly, later in this chapter.

Project
Highlighting the Project option activates the Project pull-down menu. There are five
sections under this option, as shown in Figure 28-9.

The first section handles adding or removing items from the current project. Add to
Project adds additional items into the existing project. Remove from Project removes
items. The Import Type Library displays the registered type libraries on your computer

Figure 28-8. Align window

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 887

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

so that a registered type can be imported into a project. Add to Repository lets you create
templates to add into the repository. View Source brings the source code window to the
forefront. Edit Option Source lets you display/edit the project options file (.bpr) file for
the current project. This file is shown in XML format. It is recommended that this file not
be edited directly. The Export Makefile option creates a makefile for the current project.
This makefile can then be used at the command line.

The next section of the Project menu deals with adding and modifying existing
projects. There are two items here. Add New Project lets you create a new project of
your choosing, and Add Existing Project loads an existing project.

The third section deals with compiling and building projects. Compile Unit
compiles the code that is in the active window. Make Project compiles and links the
current project, but only the items that have changed since the last build or make.
Build Project rebuilds the entire project regardless of whether the files or forms have
changed. The Information for option shows the program compilation and status of
your project.

The next section is for making or building all the projects that are opened. There are
two options here, Make All Projects and Build All Projects. The make all and build all
options work the same as those for making and building the current project, except that
these work on all the projects, not just the current one.

Figure 28-9. Project pull-down menu

888 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The last item is Options. When Options is selected, a dialog box opens. Figure 28-10
contains several tabs that enable you to fully configure the project.

Run
Highlighting the Run option activates the Run pull-down menu, as shown in Figure 28-11.
The first section runs the current project and sets any command-line parameters. Run
executes the current project. If there were any changes made to the source files, this option
will first compile and link the project before executing. Parameters allow you to pass
command-line parameters to the program when it executes.

The next section steps through the project in debug mode. Step Over starts the
project in debug mode. Each time it is selected, it executes the next line in the code. If
the next line calls a function, it executes the entire function as a single unit. Trace Into
does the same as Step Over, except that it will follow the execution into functions one
line at a time. Trace To Next Source Line stops the execution on the next source line of
the application. Run To Cursor executes the application up to the point at which the
cursor is located in the code window. Run Until Return executes the application until
it returns from the current function. Show Execution Point places the cursor at the line
in the code that is to be executed next. Program Pause pauses the execution of the
application, and Program Reset stops the current application and frees up any memory.

Figure 28-10. Project Options dialog box

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 889

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

The last section evaluates variables. Evaluate/Modify displays a dialog box where
you can see or change a variable. Add Watch opens a dialog box where you can create
an expression to watch or change an existing one. Add Breakpoint allows you to add a
breakpoint into your code.

Component
The Component pull-down menu offers ways for managing components that are to be
added to your project. Figure 28-12 shows the menu under the Component option.

The first section creates or manages components for your project. New Component
opens a dialog box where you can create new components to be added into your project.
Install Component lets you choose a predefined component to add into your project.
Import ActiveX Control displays a dialog box, as shown in Figure 28-13, where you
can select a registered control to be added to the active project.

The next item is Create Component Template. The Create Component Template
item allows you to create template components that can be configured with specific
values and added to your project.

The last section manages packages and configuration palettes. The Install Packages
option allows a package or component to be selected. It displays a dialog box as shown
in Figure 28-14.

Figure 28-11. Run pull-down menu

This dialog shows which packages have been installed and allows you to select other
packages or remove an existing one. The Configure Palette option is a shortcut to the
Tools | Environment Options item with the Palette tab opened. As shown in Figure 28-15,
the Configure Palette option is for changing the way the component palette looks when it
is opened. You can add, reorder, and remove pages and components from this option.

Tools
The Tools pull-down menu provides a convenient way to manage the IDE. The first
section from the Tools menu edits the main components of the IDE. The Environment
Options dialog box is shown in Figure 28-16. This dialog box configures the settings for
the IDE. There are four tabs, Preferences, Library, Palette, and C++ Builder Direct, which
can be configured and set for customizing the IDE. See the C++ Builder help files for
more details on these tabs and their options.

The Editor Options menu item opens the Editor Properties dialog box. There are
several tabs on this dialog box, as shown in Figure 28-17. These tabs provide a way to
configure the IDE functions. Explore these options and the C++ Builder help files for
more details.

890 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 28-12. Component pull-down menu

TE
AM
FL
Y

Team-Fly®

The Debugger Options item opens the Debugger Options dialog box as shown in
Figure 28-18. This menu item customizes the debugger options.

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 891

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 28-13. Import ActiveX dialog box

Figure 28-14. Install Packages dialog box

892 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 28-15. Configure Palette dialog box

Figure 28-16. Environment Options dialog box

C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 893

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 28-17. Editor Options dialog box

Figure 28-18. Debugger Options dialog box

The Repository adds, removes, and renames pages in the Object Repository. This
setting affects how C++ Builder functions or behaves when starting a new project or
creating a new form. The Configure Tools option opens the Tool Option dialog box.
You can configure which tools appear on the Tools menu.

The last section on the Tools menu contains the Image Editor. C++ Builder comes
with its own image editor for manipulating icons, bitmaps, resource files, and cursor
files, as well as the component resource files.

Help
Highlighting the Help entry activates the Help pull-down menu. The top section of
this menu accesses the built-in help files that come with C++ Builder. The C++ Builder
Help option displays a standard help file with more details about C++ Builder. The
C++ Builder Tools option opens up a specific help file dealing with tools that are built
into the IDE. This file focuses on the Image Editor; depending on your version of C++
Builder, however, it may contain other items as well. The Windows SDK option opens
the Windows Win32 Developer’s Reference help file.

The next section has additional help that is obtained from the Internet. These are
links to Borland Home Page, Borland Community Page, C++ Builder Home Page,
C++ Builder Developer Support, and C++ Builder Direct. If you have an Internet
connection, you can use these Internet links to obtain additional help.

The last item is the About option, which displays the version of C++ Builder.

Toolbars
The row of icons immediately below the menu bar is the toolbar. There are several
toolbars, as shown in Figure 28-19.

If you look closely at the figure, you will notice that there are two vertical bars that
are used for separating the various toolbars. If you right-click in the area of the toolbars,
it displays a pop-up menu of the different toolbars that are available. As you can
see in Figure 28-20, there are six available toolbars: Standard, View, Debug, Custom,
Component Palette, and Desktops. You can customize the toolbars by selecting
Customize from the pop-up menu.

894 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 28-19. Toolbars

Object Inspector Window
The Object Inspector window is a detailed look at the properties associated with the
active object. This window is the connection between the appearance of the application
and the code that runs. This is where design-time properties for any object or component
are set or modified. Events can also be added or modified. The drop-down selector at
the top of this window contains a list of the individual components that are on the active
form and shows the object type of the selected component.

The Object Inspector window contains two tabs: Properties and Events. The
Properties tab displays a list of available properties and their associated values. This list
will change dynamically for each object as the object is selected. For instance, a list box
and a text box will have different properties. The Events tab, like the Properties tab, is
tied directly to the selected object. This list contains the available events that the selected
object can trigger. The list of events will change depending on the object chosen.

Form Window
This window is the artist’s canvas. It starts when the IDE starts and presents a blank
form. All objects are placed on a form. You can drag and drop objects on this form to
build an application. Most of the components used for building an application exist on
the Component Palette toolbar. As you can see in Figure 28-21, there are a lot of available
components. Many are discussed in Chapter 29.

Code (Unit) Window
When the IDE first starts, this window is almost entirely hidden behind the form
window. You can bring this window forward by either selecting the bottom portion

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T
C h a p t e r 2 8 : T h e I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t 895

Figure 28-20. Toolbars

of the window, which contains the status bar, or by View | Window List and select the
unit window. This window is a text file window. All program coding is done in this
window. Unit windows are also called code windows.

Using Speed Menus
C++ Builder includes special menus called SpeedMenus that are activated by pressing
the right mouse button when it is over certain items. SpeedMenus are also called
context menus. These menus can be activated when using any of the main windows
defined by the IDE. For example, if you are in the Form window and you press the
right mouse button, a SpeedMenu appears giving you more options for the form.
SpeedMenus save several keystrokes and are generally quite useful.

Using Context-Sensitive Help
The IDE contains context-sensitive help that allows you to obtain information about
any feature of C++ Builder by simply pressing the F1 key. This means it displays help
information that relates to what you are doing at the time. More specifically, it displays
information that relates to the current focus of activity. For example, if you highlight
Save under the File option in the menu bar and then activate the help system by
pressing F1, you will see information about the Save option. Also, if the cursor is
positioned over the name of a library function, keyword, or preprocessor directive,
pressing F1 gives you information about that item.

Before moving on, you might want to try the context-sensitive help feature on your
own. As you will see, it is a powerful aid.

896 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 28-21. Component Palette

Chapter 29
Developing Applications
Using the IDE

897

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

898 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

As explained in Chapter 28, C++ Builder’s IDE (integrated development
environment) is designed to streamline the development of applications.
In this regard, it succeeds admirably. Using the IDE, you can design, construct,

manage, and maintain all types of applications, be they large or small. Frankly, C++
Builder’s IDE is one of the best there is.

Although logically organized, its power and sophistication can make the IDE seem
quite intimidating to newcomers. If you have never used it before, it can be hard to
know where to start or what to do next. To solve this problem, this chapter walks
through the creation of two projects. The first is a console-based program, such as those
shown throughout this book. The second is a Windows application. Of the two, the
Windows application is the more challenging.

The IDE discussed here is the IDE that comes with the Standard Edition of C++
Builder. There is a Professional Edition available as well that offers the same functionality
but a wider variety of components and objects for developing specialized applications.
Most applications can be managed and created using the Standard Edition.

Before creating either application, we will begin by taking a close look at the types
of projects that C++ Builder can support, and the various components that can be
incorporated into a project. To follow along, start C++ Builder now.

Types of Applications
Several types of applications can be created with the IDE. To create an application,
you will first select File | New. Doing so activates the New Items dialog box shown
in Figure 29-1. There are five tabs that can be selected, and each tab offers different
projects or other objects that you can create using the IDE. Let’s examine the contents
of each tab now.

New
The New tab is shown by default. Table 29-1 shows a list of the applications in this tab.

When you are creating or adding new files to an existing project, the IDE keeps all
the code windows together within one main window. Tabs separate the individual
code windows, as shown in Figure 29-2. The main window in this figure has four text
files opened. Clicking a tab brings that code window forward. That the IDE keeps
similar items together makes it easy to handle multiple code units.

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 899

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 29-1. The New Items dialog box

Application Creates a new Windows application. An application
consists of a form, code windows, and a project file.
Any .c, .cpp, .h, or .hpp files are called units. The project
file will have an extension of .bpr.

Batch File Creates a batch file.

Table 29-1. Applications Created with the IDE

900 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Project1
The next tab in the New Items dialog box is the Project1 tab. This window shows the
forms that are part of the current project.

C File Creates a new .c file.

Component Creates a new component or object.

Console Wizard Creates a new DOS-based console application.
This wizard will be used later in this chapter
to help develop a console application.

CPP File Creates a new .cpp file.

Data Module Creates a data module. This is a special form for
organizing different data modules within one tool.

DLL Wizard Creates a DLL file or application.

Form Creates a blank form for the current project.

Frame Creates a new frame for the current project.

Header File Creates a new .h or .hpp file.

Library Creates a library file or .lib file.

Package Creates a new package and adds it to the project.

Project Group Creates a super project group that groups related projects
together. By having multiple projects together in one super
group, you can create all the projects with one command.

Text Creates a new text file.

Thread Object Creates a new threaded object.

Unit Creates and adds a new unit to the project. A unit is made
up of both the .cpp file and its header file.

Table 29-1. Applications Created with the IDE (continued)

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 901

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 29-2. The main code window, showing multiple files being edited

Figure 29-3. The Dual List dialog box

902 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Forms
The Forms tab contains three forms that can be included in a project. Table 29-2 lists
these available forms.

Dialogs
The Dialogs tab contains five items, which are summarized in Table 29-3.

Projects
The Projects tab contains four types of projects. These projects are summarized in
Table 29-4.

Dialog With Help
(Horizontal)

A basic dialog box that contains the OK, Cancel, and Help
buttons at the bottom of the dialog box.

Dialog With Help
(Vertical)

A basic dialog box that contains the OK, Cancel, and Help
buttons along the right side of the dialog box.

Password Dialog A basic dialog box for handling passwords. Text typed in
is shown as asterisks or hidden.

Standard Dialog
(Horizontal)

A basic dialog box that contains the OK and Cancel buttons
along the bottom of the dialog box.

Standard Dialog
(Vertical)

A basic dialog box that contains the OK and Cancel buttons
along the right side of the dialog box.

Table 29-3. Available Dialog Boxes

About Box Creates an About box for the project. This dialog box contains
all the basic items that appear in a normal About box.

Dual List Box Creates a dual list box, as shown in Figure 29-3. Again, all the
basic information items or components are created for you;
they just need to be configured.

Tabbed Pages Creates a prebuilt dialog box for handling multiple tabs at the top.

Table 29-2. Forms Tab New Items

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

The Component Palette
Once you have selected the type of application to develop, you will populate it with
items selected from the Component Palette. These are the items that are available for
building Windows applications. (You won’t use the Component Palette for console
applications.) The objects in the Component Palette support the Windows graphical
user interface (GUI) portion of an application. As you will see, to use a component,
you simply drag and drop it to the main form of your project. The Component Palette
is shown in Figure 29-4.

To see the name of each component, move the mouse cursor over an icon and wait
a few seconds. A tool tip appears showing the name of the component. The following
sections present a brief overview of the components.

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 903

MDI Application This is a standard multiple document interface
(MDI) application. These applications are
complex and require more designing or
planning because they can spawn separate
client windows within the main window
of the application.

SDI Application This is a single document interface or SDI
application. This application shows only a
single window.

Win2000 Client Application Creates a client application for Windows 2000.

Win95/98 Logo Application Creates an application that meets the
minimum requirements for a computer
running Windows 95 or 98.

Table 29-4. Preconfigured Projects for the IDE

Figure 29-4. The Component Palette toolbar

904 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Standard Components
The Standard Component tab is shown in Figure 29-4. It contains Windows control
components (shown left to right in the order that they appear on the tab).

Pointer This pointer is part of all the other tabs as well. You select this
component when you want to select components on the form.

Frames Displays a dialog box with a list of frames that are in the project.

MainMenu This component creates a main menu bar. This item adds a main
menu to your application.

PopupMenu Similar to the MainMenu component, this creates a pop-up
menu with a list of functions.

Label Creates a label control.

Edit Creates a text editing box.

Memo Creates a larger editing area. Similar to the Edit component;
however, this component allows for multiple lines.

Button Creates a push button component, also known as a command
button.

CheckBox Creates a check box button.

RadioButton Creates a radio button option.

ListBox Creates a list box of choices

ComboBox Creates a combo box, which is like a list box and an edit box.
Data can be typed into this box, or a selection can be made from
the drop-down list.

ScrollBar Creates a scrollbar component for scrolling through a range of
values.

GroupBox Creates a container for grouping similar items on a form.

RadioGroup Creates a container for grouping radio option boxes together.

Panel Creates a panel for holding other objects, such as toolbars and
a status bar.

ActionList Creates a collection of actions that your program can use in
responding to user events.

Additional Components
The Additional Component tab contains specialized windows controls, as shown in
Figure 29-5.

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 905

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

The components are explained here:

BitBtn Creates a button with an icon as the face.

SpeedButton Creates a button that graphically displays its state,
such as selected, unselected, on, or off.

MaskEdit Creates a maskable edit box. This type of edit box
allows a mask to be set that enforces a special format,
such as phone numbers or social security numbers.

StringGrid Creates a grid that displays strings in a
spreadsheet-like manner.

DrawGrid Creates a grid that displays data in a
spreadsheet-like manner.

Image Creates a graphic component that holds a bitmap,
icon, or metafile.

Shape Creates a component that allows drawing of
geometric shapes.

Bevel A three-dimensional line or box.

ScrollBox A container that displays resizable scrollbars.

CheckListBox This is a list box that contains a check box next to
each item.

Splitter Creates a splitter, a line that allows you to resize
controls at run time.

StaticText A text box, like the Label component, that has its
own handle.

ControlBar Creates a layout tabbed area for docking toolbars.

ApplicationEvents Creates an association between events and forms.

Win32 Components
The Win32 tab shows the user interface controls, as shown in Figure 29-6.

Figure 29-5. Additional components

These components are briefly explained here.

TabControl Creates a tabbed page or notebook-like component.

PageControl Creates multiple dialog box components.

ImageList Creates an image collection list. Helps organize and manage all
your images for your project in one location.

RichEdit Creates a rich text memo component. This type of edit box
supports more text properties, such as fonts, typeface, size,
and colors.

TrackBar Creates a vertical or horizontal track bar. A track bar is used as
an adjuster-type control such as a zoom bar for zooming in and
out of images and other items.

ProgressBar Creates a progress bar. Most installation programs use this type
of bar for showing progress of the installation activity.

UpDown Creates an up and down button for incrementing and
decrementing values.

HotKey Creates a hotkey attachment to any component. Hotkeys are key
combinations like CTRL-C, which is used for copying the selected
item to the clipboard.

Animate Displays an animation control window for managing and
displaying AVI files.

DateTimePicker Creates a list box for entering dates or times.

MonthCalendar Creates a month calendar for showing and handling months.

TreeView Creates a control that is indented and displayed in a tree fashion.
Windows Explorer is an example of a tree view.

ListView Creates a component that displays lists in a column.

HeaderControl Creates a header above columns object.

906 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 29-6. The Win32 components

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 907

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

StatusBar Creates a status bar component that is usually displayed at the
bottom of a window.

ToolBar Creates a component that lets you manage buttons and other
objects. This is usually placed right below the main menu bar.

CoolBar Creates a bar that contains controls that can be moved and resized.

PageScroller Creates a component that holds other components in a client
area. These components can be scrolled either vertically or
horizontally.

System Components
The System tab contains system control objects, as shown in Figure 29-7.

The components are briefly explained here:

Timer Creates a nonvisual timer component. A nonvisual component
is one that does not display anything when the application
runs. This component can trigger events according to the
system timer.

PaintBox Creates a rectangle area with boundaries for painting.

MediaPlayer Creates a VCR-style panel for handling multimedia files.

OleContainer Creates an Object Linking and Embedding (OLE) area.

DdeClientConv Creates an object where the application can connect to
DDE servers.

DdeClientItem Creates an object that contains the data for the DDE client
to send to the server.

DdeServerConv Creates a DDE server connection to a DDE client.

DdeServerItem Creates the DDE server data to send during a DDE connection.

Figure 29-7. System components

908 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Dialogs Components
The Dialogs tab contains Windows' common dialog boxes, like Open and Save As, as
shown in Figure 29-8.

The components are briefly explained here.

OpenDialog Displays the Open dialog box.

SaveDialog Displays the Save dialog box.

OpenPictureDialog This component is identical to the OpenDialog component,
except that it shows only graphic files in the open box
and an area for previewing the image.

SavePictureDialog This component is identical to the SaveDialog
component, except that it saves graphic files. It also has
an area for previewing the image.

FontDialog Displays the font dialog box, where the font type, size,
and style information are selected.

ColorDialog Displays the color dialog box, where color information
can be selected.

PrintDialog Displays the print dialog box, where printing
information is selected, such as a range of pages.

PrinterSetupDialog Displays the printer setup dialog box for changing
printer settings.

FindDialog Displays the find dialog box for searching for a string.

ReplaceDialog Displays the replace dialog box for finding and
replacing strings.

Figure 29-8. The Dialogs components

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 909

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Win 3.1 Components
The Win 3.1 tab contains components that allow for backward compatibility with
Windows 3.1 systems; they are shown in Figure 29-9.

The components are briefly explained here.

TabSet Creates a component that contains tabs, like a notebook.

Outline Creates a component that shows data in outline format.

TabbedNotebook Creates a notebook-type tabbed page. The page contains
multiple tabs, each with its own set of controls.

Notebook Creates a multiple page notebook.

Header Creates a multisection area for showing data. Each region
or section can be resized.

FileListBox Creates a scrolling list box of available files in the current
directory.

DirectoryListBox Creates a scrollable list of the available directories in a tree
format for the current drive.

DriveComboBox Creates a scrolling list box showing the available drives.

FilterComboBox Creates a filter box where the file types can be specified,
like the All Files (*.*) filter that is commonly seen.

Samples Components
The Samples tab contains customized, prebuilt components. These sample components
can be added into the Component Palette as another tab. C++ Builder includes the
source code for these samples on the C++ Builder CD. The sample control components
are shown in Figure 29-10.

Figure 29-9. The Win 3.1 components

910 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

These components are, for the most part, self-explanatory. For more details on
these sample components, see the source code under the \CBuilder5\Examples\
Controls\Source directory.

Pie Creates a pie chart.

TrayIcon Creates a tray icon application.

Performance Graph Creates a performance graph chart.

CSpinButton CSpinButton component example.

CSpinEdit CSpin edit control.

CColorGrid Color Grid example.

CGauge Gauge sample.

CDirectoryOutline Directory outline example.

CCalendar Calendar example.

ActiveX Components
The ActiveX tab contains ActiveX objects, as shown in Figure 29-11.

The components are briefly explained here.

Chartfx Helps create charts.

VSSpell Helps create a spell checker program.

F1Book Helps create a spreadsheet.

VtChart Helps create 3D charts.

Figure 29-10. Samples components

Figure 29-11. ActiveX Objects

TE
AM
FL
Y

Team-Fly®

Internet Components
The Internet tab contains components that help create Web server applications; it is
shown in Figure 29-12.

The components are briefly explained here.

ClientSocket Creates a TCP/IP client. This component allows you to set the
connection and manage it.

ServerSocket Creates a TCP/IP server application. This application will listen
for requests from other machines.

Servers Components
The Servers tab contains the Visual Component Library (VCL) wrappers for COM
servers. These components are shown in Figure 29-13.

These components are self-explanatory based on their icons. As you can see, there
are numerous wrappers available for various Microsoft Word objects, Microsoft Excel
objects, and Microsoft Powerpoint objects, just to name a few. When a component is
executed, the Microsoft application associated with it is executed.

Creating a Console Application
As explained, there are two general categories of programs that C++ Builder can create:
console applications and Windows applications. Here you will learn to create, compile,
and run console applications. (A Windows application is developed later in this chapter.)

Throughout this book, the code examples have been console applications. A
console application does not use the Windows graphical user interface. Instead, a console
application runs in a DOS session. Prior to the creation of Windows several years ago,
all applications were console programs. Today, most commercial programs are Windows
applications. However, console applications are still widely used for three main reasons.
First, they make excellent teaching examples. As you may know, a Windows program
contains a large amount of code that handles the interface to Windows. Such a program
could not be used to demonstrate the essentials of a programming language. Second,
many utility programs, such as file filters, are still coded as console applications because
they do not benefit from a GUI environment. Finally, sometimes a console program is

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 911

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 29-12. The Internet components

used to prototype the non-GUI portion of an application. Whatever the reason, nearly
all programmers today still use and create console-based programs.

There are two ways of creating and building console applications: using the IDE
or using the command line compiler. Even though this chapter is about the IDE, both
methods are described because many (perhaps most) programmers use the command
line compiler to compile console-based programs.

One last point: The instructions for compiling a console application given here can
be used to compile any of the example programs shown earlier in this book. Just follow
the instructions, substituting the program that you want to compile.

Using the IDE to Create a Console Application
When compiling console programs, such as those shown in Parts One, Two, and Three
of this book, you will use the Console Wizard to set up C++ Builder to create console
applications. This is necessary because by default, C++ Builder is set up to create
Windows applications.

To start the Console Wizard, select File | New and then double-click the Console
Wizard icon, as shown in Figure 29-14. This wizard helps configure the console
application. The Console Wizard dialog box appears, as shown in Figure 29-15.

Let’s take a look at the options. Source Type has two options, C or C++. The Source
Type option sets the source code for the main module of the application. For this
example, you will use C++. The other options available are Use VCL, Multi Threaded,
and Console Application.

The Use VCL option enables the application to use objects from the Visual
Component Library (VCL). This option can be used only in C++ applications. If chosen,
it will include the vcl.h include file and will adjust the startup code and linker to use
VCL objects.

The Multi Threaded option is for more than one thread of execution. This option
must be specified if the Use VCL option is checked.

The Console Application option tells the IDE to create a console program.
The Specify project source option lets you select an existing source file, C or C++,

to be used for the console application. As you will see, this option is useful for compiling
the sample programs shown in this book.

912 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 29-13. Servers components

Select the C++ option and the Console Application check box. Click OK to create a
skeleton console application.

Figure 29-16 shows what the IDE looks like with the skeleton console application.
As you can see, the Object Inspector window is blank and the only other window
opened is the code window, labeled Unit1.cpp.

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 913

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 29-14. Start the Console Wizard

Figure 29-15. Console Wizard dialog box

914 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The code window should look familiar to you. It is just a text editor with the basic
C++ skeleton. Two lines of code have been added with which you are probably unfamiliar.
The first is

#pragma hdrstop

which stops the list of header files available for precompiling. All include files listed
above this line are eligible to be precompiled. (Precompiled headers save compilation
time.) In the sample program, you will put other headers above this line. The line

#pragma argsused

disables a sometimes annoying compiler warning message. This message is generated
when a variable is used in the code but not assigned any value. This #pragma disables
this warning message:

Parameter name is never used in function func-name

Figure 29-16. The console application in the IDE

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T
C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 915

It affects only the function that it precedes. It is included by C++ Builder to prevent a
warning message if the parameters to main() are not used.

At this point, the console application is ready for code. Like all first-time projects, it
will just display a message. Since you are building a C++ program, you will use C++
coding syntax and language. Add the lines shown in bold into the code window.

//--

#include <iostream>

#pragma hdrstop

using namespace std;

//--

#pragma argsused

int main(int argc, char* argv[])

{

cout << "My first console application!" << endl;

return 0;

}

//--

Once those three lines have been added, save the program. Do this by selecting
File | Save All. As with all projects, you should have a folder in which to store the
project files. Browse to the location or folder where you want these files placed. If
you need to create a new folder, right-click an empty spot inside the Save As dialog
box and select New | Folder from the pop-up menu. Just remember where you put the
project. You will need to locate the .exe file in order to execute the application. Name
the source code Firstcon.cpp and the project Firstcon.bpr. These are the only two files
saved. You are now ready to build this application.

You can run the program directly from the IDE by selecting Run | Run; since this
application is small, however, the file will compile and execute too quickly to see the
results. The best approach is to select Project | Build. The IDE compiles and links the
code to create an executable.

To execute the console application, go to a command prompt and then to the folder
where the project was saved. There you will find a Firstcon.exe file. Type Firstcon at
the command line and you will see this result:

My first console application!

While this is a very simple example, the process of using the wizard and entering
source code in the code window will be the same no matter how large the console
application.

916 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Compiling the Sample Programs in This Book
In the preceding example, you entered the program code by hand into a console-based
skeleton provided by C++ Builder. However, often you will want to compile a file that
is already existent, without having to type it in again. This is especially important if you
are using the program files that accompany this book. These files can be downloaded
from www.osborne.com.

To compile an already existent C++ file, simply create a console project as just
shown. When the Console Wizard appears, select either C or C++ for the source type,
depending upon the type of the program. Then, check Specify project source and then
enter the name of the file in the edit box. This causes the file to loaded and made into
the source file for the project. To try the program, compile and run it as described in
the preceding section.

If you are working your way through the examples in this book, there is no reason
to create a new console project for each one. Instead, when you are done with one example,
just remove its source file from the project and then add the next program. To remove a
source file, select the Project main menu entry and then select Remove from Project.
You will see the Remove from Project dialog box. Simply highlight the file you want to
remove and then click OK.

To add the new source file, select Project | Add to Project. This activates the Add
to Project dialog box, which lets you select the file that you want to add. Once you have
selected the desired file, you can compile and run the program. Thus, if you are working
through the examples in a chapter, you can simply use the same project to run them by
deleting the one you are through with and adding the next.

Using the Command Line Compiler
As mentioned, when working with console-based programs, it is often easier to use
the command line compiler provided by C++ Builder. To execute the command line
compiler, first open any DOS window and enter bcc32 on the command line. The
syntax for using the command line compiler is

bcc32 [options] sourcefile [sourcefile2 ... sourcefileN]

where sourcefile is the name of the file you are compiling and options are special options
that affect how the compiler compiles your code. For instance, the –c option causes the
compiler to just compile the source code. It will not link or create an executable. This
option is useful if you want to check for syntax errors. To see a complete list of the
available options, type bcc32 at the command line. This lists all the options and
provides a brief description of each.

The source file can be either a C or a C++ file. Thus, it can use either a .c extension
or a .cpp extension. If no extension is given, the compiler first looks at the source file in

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 917

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

the existing directory and if the file is found and the extension is .cpp, the compiler
compiles it as a .cpp file. If the extension is anything other than .cpp, the compiler
treats the file as if it had a .c extension. The sourcefile2 ... sourcefileN arguments are
optional and are used when compiling multiple source files. In general, it is best to
explicitly specify the extension to avoid confusion. Also, as explained in Part One, C
programs must be compiled as C programs, so be sure to use the proper file extension.

Here is an example. To compile the file Firtscon.cpp created earlier, go to the
directory in which the file is stored and enter in the following line:

bcc32 firstcon.cpp

The command line compiler displays the following information:

Borland C++ 5.5.1 for Win32 Copyright (c) 1993, 2000 Borland

Firstcon.cpp:

Turbo Incremental Link 5.00 Copyright (c) 1997, 2000 Borland

The compiler generates a Firstcon.exe file that can be executed by typing Firstcon on
the command line.

The command line compiler can also compile multiple source files. For example,
this line compiles and links the files file1.cpp, file2.cpp, and file3.cpp:

bcc32 file1.cpp file2.cpp file3.cpp

All the files on the preceding line are compiled first. If there are no errors, the compiler
then links the object files together to create the executable. When multiple filenames are
listed, the first filename in the list, file1 in this example, is the name that is used for the
executable. In this example, the executable is named file1.exe. If you want to change
the executable name generated by the compiler, use the –e option. For instance, the
preceding example would be rewritten like this:

bcc32 -enewname file1.cpp file2.cpp file3.cpp

When the compiler is done, the executable file will be named newname.exe.
Today, with the dominance of Microsoft Windows, most applications are written

for a window environment and not for the command line. This brings us to the next
sample application, a small address book Windows application.

918 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Creating a Simple Windows Application
Although you can use the IDE to create console applications, as just described, its main
use is to develop Windows applications. As you may know, Windows is a challenging
programming environment. Windows programs tend to be large, contain many files,
and use many resources. The main role of the IDE is to manage this complexity. As
you will see, C++ Builder makes the sometimes difficult task of creating a Windows
application as easy as possible.

Windows programming is a very large topic. A complete description of Windows
would fill several books. Thus, it is not possible to teach Windows programming in
this book. What we will do, though, is describe how to use the IDE to build a Windows
application. Because the IDE provides a “point and click” interface to Windows
programming, you can follow along even if you are a novice Windows programmer.
Of course, to develop your own Windows applications, you will need a thorough
understanding of Windows programming.

In this section, you will build a simple Windows application that allows you to
enter in the name and address of a person. This is a simple Windows application that
demonstrates these window elements:

Menus Dialog Boxes Toolbars

Images Labels Edit Boxes

These are the core elements that are part of nearly every Windows program.
The following sections work through the creation of the address book application,

one step at a time. Because each step depends upon the preceding one, don’t try to
jump ahead. Just work through the example in the order presented.

Preliminary Steps
Before starting to work, it will be useful to see what the final goal looks like. This will
help make sense of the various steps that you will be performing. Figure 29-17 shows
the final outcome of the sample application. Although this application looks fairly
sophisticated, the IDE does most of the work, and it is easier to create than you might
at first suspect. You will use three easy-to-use tools to build the address book
application: the MainMenu, ActionList, and ImageList components. These are the
three critical pieces that streamline the design and development.

Whenever creating applications, it is a good idea to create a folder where you can
save all your project files. So before beginning, use Windows Explorer to locate a place
to store the project. Create a folder, and call it AddressBook.

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 919

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Let’s begin by defining the functionality incorporated into the address book. Its
elements are shown here (not in any particular order).

Action Description and Usage

Exit Exits program.

New Clears all fields and gets ready for a new data record.

Cut Cuts text.

Copy Copies text to the clipboard.

Paste Pastes text from the clipboard into the fields.

Help | About Every application should show its name and version.

Add In a real application, this function should add the record
into a database, but for this example, it will just display
the information entered into a message box.

Clear Empties the data fields.

Figure 29-17. Address book application

Create the Application
Start the IDE. The IDE begins with a blank project that you will use as the starting
point for the address book application. The first thing you should do is save the
default project files. By saving the blank project, you establish the project’s path to the
appropriate folder you created earlier, and you make it possible to save the project by
just clicking the Save icon. This way, as you make progress you can use the shortcut
key, CTRL-S, to quickly save new changes. In general, when developing a project using
the IDE, it is a good idea to save your work frequently.

Next, select File | Save All. Before clicking the default name given to the unit
or source file, browse to the appropriate folder that was created earlier. If you are
following along, browse to the AddressBook folder. Once there, use the default name
shown for the .cpp file, Unit1.cpp, and click Save. This step, shown in Figure 29-18,
saves the source file. The next dialog box asks for a project name. It offers a default
name; however, you should use the project name, so enter AddressBook.bpr and click
Save. After making these changes, you can use the shortcut method CTRL-S to quickly
save any changes.

Building the GUI Form
Now that the foundation of the application is ready, you can begin to create the form.
Resize the application to match Figure 29-17. The title of the form is Form1 by default.

920 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 29-18. Saving the Unit file

TE
AM
FL
Y

Team-Fly®

Let’s change the title to AddressBook, which reflects the name of the application. You
will use the Object Inspector, shown in Figure 29-19, to change properties of objects.

The Object Inspector contains the property settings for the selected object. In this
case, the main form is the only selected item. The left column of the Object Inspector
shows the property name, and the right column shows the values for each property.
Change the Caption value from Form1 to Address Book. To do so, select the value field
to the right of the Caption. Enter the new form name and watch the form change the
title to your new name.

Now let’s add the fields to the form. Everything you need to build the basic form is
located on the Standard tab on the toolbar. Locate the Label component. There are two
ways of getting a component onto the form. One way is to double-click the component.
When you do this, a default component is placed on the form. You can then drag this
component anywhere you like and change its property with the Object Inspector. The
other method for getting components onto the form is to select the component by
single-clicking it. This activates the component. Now move the mouse to a location
on the form. Click and hold down the left mouse button. While holding down the left
mouse button, drag the mouse out; it creates an enlarged area that grows as the mouse
moves. When you release the mouse button, a component is created. Use whatever
method you feel comfortable using.

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T
C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 921

Figure 29-19. Object Inspector

Adding Label and Edit Components
Now, add the labels and edit components required by the application. It does not really
matter how these get entered, just as long as they match Figure 29-17. Here is a list of
the items to add to the form along with their properties. When adding these items, you
will need to change their properties to the values shown here. (The tab order will need
to be set only if the labels and edit boxes are not laid out in the order shown.)

Component Property Value

Label Caption First name:

Name lblFirstName

Edit Name txtFirstName

Text (erase default value)

TabOrder 0

Label Caption Last Name:

Name lblLastName

Edit Name txtLastName

Text (erase default value)

TabOrder 1

Label Caption Address:

Name lblAddress

Edit Name txtAddress

Text (erase default value)

TabOrder 2

Label Caption City:

Name lblCity

922 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Component Property Value

Edit Name txtCity

Text (erase default value)

TabOrder 3

Label Caption State:

Name lblState

Edit Name txtState

Text (erase default value)

TabOrder 4

Label Caption Zip Code:

Name lblZipCode

Edit Name txtZipCode

Text (erase default value)

TabOrder 5

Add all the preceding components to your form. The Edit component is the box
that is white; it is where data will be entered. The Edit boxes should always go to the
right of the Label. To arrange the components more easily, you can select multiple
items by holding down the SHIFT key while you click the component. You can then use
Edit | Align to help align the items.

Let’s examine these properties before going forward.

Label Components
The Label component has many properties. However, in most cases, the only property
of concern is the Caption property. The value of this property is shown when the
application runs. When a Label component is added to a form, it has a default caption
Label1 or LabelN, where N is the next number in the labeling scheme. For example, the
first label component added will be Label1, the next label component will be Label2,
and so forth. So for each label component, the caption property will need to be changed

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 923

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

to match the prompt string. Also, you will notice in the preceding list that the Name
property is changed. The Name property is the internal variable name that the application
uses to access this property and its value. While Label components do not generally
change, giving them an internal name makes it easier to identify them later in the
project. In the example, all Label component names begin with the prefix of lbl (short
for label) followed by the name.

Edit Components
The Edit component handles user input. Like the Label component, this object also
has many properties. Most of the default properties for an Edit component are okay
to use. The three properties that will change for the program are the Name, Text, and
TabOrder properties.

The Name property is the internal name of the item that the program will need
to know in order to retrieve the information. In this example, Edit component names
begins with txt (short for Text field). For example, the First name box will have an edit
box that is named txtFirstName.

The Text property, by default, displays whatever is in the Name value. Since you
want the box to be empty, you will need to remove these values. Just click the value
box beside the Text property and delete the characters in the box.

TabOrder reflects the order in which the Edit components were added to the form.
If the Edit components were added to the form in the order indicated previously, then
the TabOrder property will be fine. Be sure to check this, though.

Once all the fields have been entered on the form and aligned the way you want
them, save the project. Then, try the application by selecting Run | Run. After the
project compiles, you should see a simple window displayed with your components
on it. Try the TAB key to see how the cursor moves. This tests the TabOrder property to
make sure the cursor will tab to the correct fields. Next, type information into the edit
boxes. They should work too. Now, exit the application.

Using the ActionList and ImageList Components
Two of the most powerful components of the IDE are the ActionList and ImageList
components. These two items add a great deal of flexibility to the application. They
also contribute to the ability to create this application quickly.

ActionList Component
The ActionList component is on the Standard tab. It is the last item to the far right. If
you are not sure which one it is, move the mouse cursor over the last icon and let it sit
for a few seconds. A tool tip will appear to let you know the component’s name. To
add an ActionList component to the form, double-click it. It does not matter where this
component is placed on the form. This is a nonvisual component, which means that when
the application executes, this component does not display anything or is not visible.

924 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

The ActionList is a component that stores all the available actions that you want to use
in the application. Once the actions are placed in this list, they can be selected easily and
used in multiple events. The key is to place the actions you want in one location and
then apply the action as needed to any object that accepts actions.

To add actions into the ActionList, double-click the ActionList component. This
action brings up the form and the action list window, as shown in Figure 29-20.

The Editing Form1->ActionList1 window shows two columns. The left column
shows the categories that you will create, and the right window shows the actions
associated with each category.

There are two types of actions that can be added into this window, New Action and
New Standard Action. The New Action creates your own action. The New Standard
Action uses existing prebuilt actions, like Cut, Copy, and Paste, to name a few. These
are standard window functions that everyone has come to expect in any Windows
application.

The actions that you are going to add will be tied to an item on the menu bar and
an icon on the toolbar. For this example, you will implement the actions as shown in
the Table 29-5.

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 925

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 29-20. ActionList window

926 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

To add the actions, right-click the ActionList window and select New Action from
the pop-up menu. In the Object Inspector window, set these properties:

Caption &New This is what will be shown as the action
name. The & character causes the next
character to be underlined.

Category File Puts the New action under File.

Hint Create new Tip that will appear when mouse is
over item.

ImageIndex 0 Ties Image # 0 to this action item.

Name FileNew This is the internal variable name. It is always
best to combine the menu names so that you
will know that this is New function from the
File menu.

Once these properties have been set, your screen will look similar to Figure 29-21.
Next, add the rest of the items. The information you need is shown in the list that

follows. To start the process, right-click in the Editing Form1->ActionList1 window
and select New Action. Add the following:

Caption E&xit

Category File

Hint Exit program

ImageIndex 1

Name FileExit

Action Description

File | New Presents a new or empty window.

File | Exit Exits the application.

Edit | Cut Standard Windows Cut function.

Edit | Copy Standard Windows Copy function.

Edit | Paste Standard Windows Paste function.

Help | About Standard Windows About box.

Table 29-5. List of Actions

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 927

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Now is a good time to save your application.
The next three items, Edit | Cut, Edit | Copy, and Edit | Paste, are standard

Windows functions. These can be added easily to the Editing Form1->ActionList1
window. Right-click in the Editing Form1->ActionList1 window and select New
Standard Action from the pop-up menu. The Standard Actions dialog box appears,
as shown in Figure 29-22. There are quite a few standard actions that can be used. For
this application, you will use the TEditCut, TEditCopy, and TEditPaste action items.
To expedite the selection of all three items, simply hold down the CTRL key as you click
each of the three edit controls. Then click OK to transfer all three into the ActionList
window. By default, all the standard action items have their properties preconfigured.
The only property you will need to change is the ImageIndex so that you can tie it
to an icon. Select the EditCut1 action and change its ImageIndex to 2, change the
EditCopy1 ImageIndex to 3, and finally change the EditPaste1 ImageIndex to 4.

Figure 29-21. ActionList window after FileNew was added

928 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

There is one more action item that needs to be defined, Help | About. Right-click
in the Editing Form1->ActionList1 window and select New Action from the pop-up
menu. Change the following properties:

Caption &About

Category Help

Name HelpAbout

This completes the list of action items. You can leave the ActionList open for now,
as you will use it again later.

ImageList Component
It’s now time to add images for the application to use. To begin, add an ImageList
object which is located on the Win32 tab. Double-click it to add it to the form. This
component is a nonvisual component as well, so it doesn’t matter where it is placed
on the form. However, a good programming habit is to keep all the nonvisual
components together, out of the way of other fields or visual components. It makes
it easier to find them.

Double-click the ImageList component to open the Form1->ImageList1 ImageList
window, as shown in Figure 29-23. This window helps manage icons that will be used

Figure 29-22. Standard Actions supplied by the IDE

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 929

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

on the toolbar. Now is the time to add the icons. C++ Builder supplies over 160 different
images that you can use. For the application, you will need the following images:

Filename Use or Description

Filenew.bmp File | New function

Doorshut.bmp File | Exit function

Cut.bmp Edit | Cut function

Copy.bmp Edit | Copy function

Paste.bmp Edit | Paste function

These images are located in the directory

\Program Files\Common Files\Borland Shared\Images\Buttons

If you don’t have these images, they may not have been installed on your computer.
(Check the C++ Builder CD and install them if necessary.)

To add icons, click Add and browse to the preceding directory. Select the icons in the
order that they are shown. Recall that the File | New property ImageIndex is assigned

Figure 29-23. ImageList window

930 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

the value 0. File | Exit’s property is assigned 1, Edit | Cut is assigned 2, Edit | Copy
is assigned 3, and Edit | Paste is assigned 4. Find the file Filenew.bmp and click Open.
A message appears asking if you want to split this image into two separate bitmaps.
Answer Yes for each of the icons. Both the active and inactive icons appear in the
image list editor as shown in Figure 29-24.

Each icon is maintained as a pair. The first part of the pair is the active icon, and the
second part is the grayed-out icon. By splitting them into two separate bitmaps, you
can choose which icon to use, the active icon or the grayed-out, inactive one.

Delete the inactive icon by selecting the grayed-out icon and clicking Delete. Now
add these icons, in the order shown:

Doorshut.bmp
Cut.bmp
Copy.bmp
Paste.bmp

Each time, answer Yes to the two separate bitmap questions. Remember to delete the
grayed-out icons as they are separated and added. As these icons are added, you

Figure 29-24. ImageList window showing active and inactive icons

TE
AM
FL
Y

Team-Fly®

should notice that they are given unique numbers. These numbers match the ImageIndex
numbers that were given to the corresponding functions. For instance, the File | New
function has an index of 0, which ties it to the icon of 0 or the Filenew.bmp file. If the
icons are out of order, you can rearrange them by dragging them into the correct positions.
Once all the icons have been added to the list, click OK to close the image list editor.
Now you need to tie these images to the action list. To do this, single-click the ActionList
component on the form and change the Images property value to ImageList1. Now
would be another good time to save the changes that you have made. Once the changes
have been saved, you can build the menu for the application.

Building a Basic Menu
The menu bar contains three top-level items, File, Edit, and Help. To build a menu,
you first need to include the MainMenu component in the form. This component is
located on the Standard tab. Double-click it to add it to the form. This component is
also a nonvisual component and should be placed near the other nonvisual components.

The first thing is to tie the icons to the main menu component. To do this, select the
MainMenu component on the form and change the Images property to ImageList1.
Next, open the Form1->MainMenu1 window (menu designer window) by double-clicking
the MainMenu component. The menu designer window looks like Figure 29-25.

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 931

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 29-25. Menu designer window

Create the top-level items manually. You can pull the submenu items from the
ActionList component. In the Object Inspector window, change the Caption property
to &File and press ENTER. Now in the menu designer window, select the File item just
added. You should see an empty item below it; select the empty menu item. In the Object
Inspector window, select the Action property and click the down arrow. A drop-down
list appears, as in Figure 29-26, which shows the available actions created earlier.

Select FileNew for this empty menu slot. Immediately, the menu item New appears
in the menu designer window. You may have noticed that Windows applications
usually have a separator line between the file submenu items and the exit program
item. While the address book application really does not need one, it is easy to add a
separator. Select the empty slot below the New item and in the Caption property type
a hyphen and press ENTER. By doing this one little step, you have created a separator
line on the menu. Now select the empty slot below the separator line and change its
Action property to FileExit. This completes the File menu item and its submenu. Now
let’s add the Edit menu.

Select the empty slot right next to the File menu name and, in the Caption property
value, type &Edit. Select the Edit item to open an empty slot below it and select the
empty slot. In the Action property, select EditCut1. Notice that not only does it put the

932 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 29-26. Available actions for tying to the menu

action item in the menu, it also adds the appropriate shortcut key. Now select the
empty slot below the cut item and add the copy action item. Do the same thing for the
paste function as well.

There is one more top-level menu item to add, Help. Select the empty slot just to
the right of Edit menu item and type &Help for the Caption property value. Select the
Help menu item, and select the empty slot below it. Now select the HelpAbout action
item from the Action property. This now completes the menu. Close the menu
designer window.

Now, save the project and execute the program. As you can see, even though you
have added no code of your own, the application executes and displays the form and
menu. If you look through the menu, you will see the icons and action items. Most of
these items will be grayed out or inactive, but the standard window objects, like Cut,
Copy, and Paste, are active.

Creating a Toolbar
The toolbar is the bar that appears right below the main menu and shows icons to
represent functions, such as open a file, save a file, print, cut, copy, and paste, to name
a few. You will need to include FileExit, FileNew, EditCut1, EditCopy1, and
EditPaste1 on the toolbar.

The toolbar component is located under the Win32 tab. It is the third item from the
right. Double-click this component to add it to the form, right below the main menu, as
shown in Figure 29-27.

You need to change the following properties:

Property Value Description

Images ImageList1 Hooks the images into this toolbar.

Indent 10 Indents the toolbar 10 pixels. (This is a bit much,
but it enables you to see how the indent works.
Most of the time, a value between 3 and 5 works
best.)

ShowHint True Shows tool tip hints—these are the hints that you
created as part of the action list items.

Now add the icons to the toolbar. Right-click the toolbar and select New Button from
the pop-up menu. The first icon to appear is the FileNew icon, which is maintained
in the image list. Right-click and select New Button again and the FileExit icon appears.
Next, add a separator to organize the icons by function. Right-click the toolbar and select
New Separator. Now you are ready to add the Cut, Copy, and Paste icons. Right-click
and choose New Button, three more times. The toolbar is almost complete. If you do
not like how the icons are arranged, you can move the icons by using your mouse
to drag and drop them where you want them. Move the exit icon (the closed door)

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 933

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

to the far left, making it the first icon. Visually, the toolbar is complete. However, the
icons don’t do anything, yet. In order to make the icons functional, you need to tie each
icon to an action from the ActionList component.

To set the following icon’s Action property, first click the icon, and then set its
action property as shown here:

Icon Value

Door FileExit (selected from drop-down action list)

New FileNew

Cut EditCut1

Copy EditCopy1

Paste EditPaste1

If the icons disappear or appear out of order, select an icon and change its ImageIndex
to match the preceding list.

934 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 29-27. New toolbar component added to the application

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 935

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

The toolbar is complete, and the standard Windows functions will now work when
the application is executed. You can see how easy this can be once you have an
ImageList component built. This is a good time to save the changes that you have made.

To see how the application is progressing, compile and run the application by selecting
Run | Run. Try the toolbar, particularly the Cut, Copy, and Paste functions. All three
work, and without you writing a single line of code. This shows the power of the IDE.

Building Command Buttons
Windows applications usually contain at least one push button or what is sometimes
referred to as a command button. For the application you need two buttons: an Add and
a Clear.

Add, in this application, will just pop up a message box showing the information
entered into each field. (On your own, you might want to try tying this button to code
that saves the information to a file, or a database product, like Microsoft SQL Server.)
The Clear button will clear all the fields, just as the FileNew action item will do.

Begin by adding a Button component to the form. The Button component is located
on the Standard tab; it is the one that looks like a button. Double-clicking the
component will add it to the form. Drag the button to where you want it. Change these
properties:

Property Value

Caption &Add

Name cmdAdd

The Name property is the internal variable name that you will use when you add code
to cause this button to function. Since buttons are sometimes known as command
buttons, their names begin with the cmd prefix.

Now let’s add the second button. Double-click the Button component. Again, drag
this button over next to the Add button. Change these properties:

Property Value

Caption &Clear

Name cmdClear

There is one more visual component that needs to be added to the project, and that is
the Help | About dialog box. All Windows applications include an About box to show
basic information about the program. You will include one in the application as well.

Adding a Help | About Dialog Box
The action list already has a HelpAbout item that you can use to activate an About
box. To include an About box, you need to select File | New. Select the Forms tab and
double-click the About Box form. The About window appears, as shown in Figure 29-28.

All the basic information is contained in this box. You just need to change or add
information to complete the About box. Make the following changes:

Select item Property Value

Form Caption About Address Book (The easiest way to
select the form is by clicking the grid.)

Product Name Caption Address Book

Version Caption Version 1.0

Copyright Caption Copyright 2001

Comments Caption Created by place your name here.

936 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 29-28. About box window

You may have to stretch the Comments label component out in order to show the
complete Caption. You are done visually altering the About box. Close the About box.
When you do this, the Save Unit2 As dialog box appears. Save it as About.cpp. Now
you need to tie it into the application. This is done by including the About unit into
the source code file. To do this, select View | Units, from the View Unit dialog box
select Unit1, and click OK. This brings the Unit1.cpp code window forward. You
need to include the About box unit into the main form window. You do this by
selecting File | Include Unit Hdr. The Use Unit dialog box opens. It only has the
About item listed. Select the About item and click OK. You can now close the About
Address Book window.

You now need to create an event that will activate this About box. To do this, go
back to the form and double-click the ActionList component. The action list editor
window appears. Select Help from the Categories column and then double-click the
HelpAbout action item, in the right column. The code window appears and creates
a skeleton function. Right where the cursor is located, enter this line of code:

AboutBox->ShowModal();

This code will open the About box when the Help | About is selected from the
application. The ShowModal() function means that nothing else can be done until
the OK button is selected on the About box. Your code window should like similar
to Figure 29-29.

This completes the About box. Now, save the application and then compile and
execute it. Try the Help | About menu item. You will see that it works and displays
the About Address Book dialog window. Close the application.

Let’s wrap up this project by adding the rest of the code. You will be pleasantly
surprised to see that it does not take much code to make this a fully functional
Windows application.

Adding Code and Finishing the Application
Now that the visual interface of the application is all done, you can concentrate on
adding code to tie all the buttons and icons to events. Events represent actions, such
as selecting a menu item or clicking a button. Open the ActionList component by
double-clicking it. From the action list editor, select File from the Categories column
and double-click the FileNew action. This opens the Unit1.cpp source file.

Now add the following lines of code into this function.

// Need to clear each edit boxes on the form.

txtFirstName->Text = "";

txtLastName->Text = "";

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T
C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 937

938 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

txtAddress->Text = "";

txtCity->Text = "";

txtState->Text = "";

txtZipCode->Text = "";

This takes care of the File | New selection. You still need to tie this code to the
Clear button. To do this, double-click the Clear button on the form. This opens the
code window and places the cursor inside the cmdClearClick event. Add the following:

FileNewExecute(Sender);

Figure 29-29. Unit1.cpp code window showing the About box code

C h a p t e r 2 9 : D e v e l o p i n g A p p l i c a t i o n s U s i n g t h e I D E 939

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Since you have already taken the time to clear all the fields using the File | New
function, you can call that function from here. This way you can reuse the code instead
of duplicating it again in this function.

Next, save your application and execute it. Fill in the fields and then try the File |
New menu item, the New icon on the toolbar, and the Clear button. They each perform
the same function, which is to clear all the fields. Close the application so that you can
continue building the application.

It’s time to add code for the Add command button. In a real application, the Add
command would do a lot more, like add the data into a database, but that is beyond the
scope of this book. Double-click Add to place the cursor in the code window inside the
add button event. Add the following lines of code.

ShowMessage("First name = " + txtFirstName->Text + "\n" +

"Last name = " + txtLastName->Text + "\n" +

"Address = " + txtAddress->Text + "\n" +

"City = " + txtCity->Text + "\n" +

"State = " + txtState->Text + "\n" +

"Zip Code = " + txtZipCode->Text);

Now every button and event has been accommodated except for one of the most
important: the one that exits the application. So you need to add the File | Exit event
and tie it to the icon of the closed door on the toolbar, too.

To do this, double-click the ActionList on the form. Select File (categories) and then
double-click the FileExit action. This brings the code window forward and places the
cursor inside the function. Add this line of code:

Close();

This completes the address book application. Save the changes and try it out by
selecting Run | Run. Experiment with all the fields, icons, and buttons.

The very last step is to build or create the final executable. To do this, select Project
| Build AddressBook to build the final code. That’s it; the application is complete.

As you have seen, C++ Builder’s IDE streamlines the creation of Windows
applications. It does most of the work for you, allowing you to drag and drop objects
onto a form. Before moving on, you might want to try adding additional functionality
to the address book. For example, try adding a Sort button (which doesn’t have to
actually do anything). Also, try creating your own application from scratch. The best
way to get adept at using the IDE is to create several small projects.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Chapter 30
Using C++ Builder’s
Integrated Debugging
Environment

941

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

942 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C++ Builder includes a built-in source-level debugger in its integrated
development environment. This chapter introduces the debugger and explores
some of its most important features.

Preparing Your Programs for Debugging
Although C++ Builder’s debugger is available for use at the press of a key, you must
make sure that your programs are compiled for a debugging session. This means that
you must compile and link your program with debugging information. By default, this
is automatically the case. But if you need to turn on these options, here is how.

To add debugging information to your project, choose Project, then Options. Next,
open the Linker page by selecting the Linker tab. In the Linking section, select the check
box labeled Create debug information. Click OK to close the Project Options dialog box.

What Is a Source-Level Debugger?
To understand what a source-level debugger is and why it is so valuable, it is best
to compare it to an old-style, traditional debugger. A traditional debugger is designed
to provide object-code debugging, in which you monitor the contents of the CPU’s
registers or memory. To use a traditional debugger, the linker generates a symbol table
that shows the memory address of each function and variable. To debug a program,
you use this symbol table and begin executing your program, monitoring the contents
of various registers and memory locations. Most debuggers allow you to step through
your program one instruction at a time, and to set breakpoints in the object code.
However, the biggest drawback to a traditional debugger is that the object code of your
program bears little resemblance to the source code. This makes it difficult, even with
the use of a symbol table, to know exactly what is happening.

A source-level debugger offers a vast improvement over the older approach in that
it allows you to debug your program using the original source code. The debugger
automatically links the compiled object code associated with each line in your program
with its corresponding source code. You no longer need to use a symbol table. You
can control the execution of your program by setting breakpoints in the source code.
You can watch the values of various variables using the variables’ names. You can step
through your program one statement at a time and watch the contents of the program’s
call stack. Also, communication with C++ Builder’s debugger is accomplished using
C/C++-like expressions, so there is nothing new to learn.

Debugger Basics
This section introduces the most common debugging commands. To follow along, you
need to create a new project. When the New Items dialog box is displayed, double-click
Console Wizard. When the Console Wizard dialog box appears, set Source Type to

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T
C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 943

C++, and check the box next to the Console Application. Remove any other checks.
Click OK to continue. The wizard generates a code window or editor window labeled
Unit1.cpp. Save the project, File | Save, and call the project test. In the editor window,
enter the boldfaced code that follows.

//---

#include <iostream>

#pragma hdrstop

using namespace std;

//---

void sqr_it(int n);

#pragma argsused

int main(int argc, char* argv[])

{

int i;

char ch[1]; //Use in cin to stop console app in window

for(i=0; i<10; i++) {

cout << i << " ";

sqr_it(i);

}

cin.getline(ch,1); //Pauses window until Enter is pressed

return 0;

}

//---

void sqr_it(int n)

{

cout << n*n << " ";

}

After you have entered the program, compile and run it to make sure that you
entered it correctly. It prints the values 0 through 9 along with their squares. Press
the ENTER key to close the console window and return to the IDE.

Single-Stepping
Single-stepping is the process by which you execute your program one statement at
a time. The two commands that accomplish this are Step Over and Trace Into, which
are both found in the Run menu. To begin a debugging session, select Step Over. After

starting the debugging session, you can also use Trace Into to single-step through your
program. In addition to using the Run menu, the Step Over command can be activated
by pressing F8 or by pressing Step Over on the toolbar, and the Trace Into command
can be activated by pressing F7 or by pressing Trace Into on the toolbar.

You can also use Trace Into to begin the debugging session, but it creates a rather
complicated window, containing a mix of assembly language and C++ code, as shown
in Figure 30-1. To avoid this, start by using Step Over. Also, since this is a console
application, a console window opens upon starting the program.

Notice that the line containing the main() function declaration is highlighted.
This is where your program begins execution. Note also that all the #include lines,
the #pragma lines, and the sqr_it()’s prototype are skipped over. Statements that do
not generate code, such as the preprocessor directives, obviously cannot be executed,
so the debugger automatically skips them. Variable declaration statements without
initializers are also skipped when single-stepping, as they are not action statements
that can be traced.

Press F7 several times. Notice how the highlight moves from line to line. Also notice
that when the function sqr_it() is called, the highlight moves into the function and
then returns from it. The F7 key causes the execution of your program to be traced into
function calls.

944 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 30-1. Start of a debugging session activated by Trace Into

C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 945

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

There can be times when you only want to watch the performance of the code
within one function, and not follow execution into any other functions. To accomplish
this, use the F8 (step over) key. Each time this key is pressed, another statement is
executed, but calls to functions are not traced. Experiment with the F8 key at this time.
Notice that the highlight never enters the sqr_it() function.

Figure 30-2 shows the appearance of the edit window SpeedMenu. It provides
numerous debugging functions, including the ability to run the program to where the
cursor is as well as to toggle breakpoints.

Breakpoints
As useful as single-stepping is, it can be very tedious in a large program—especially if
the piece of code that you want to debug is deep in the program. Instead of pressing F7
or F8 repeatedly to get to the section you want to debug, it is easier to set a breakpoint
at the beginning of the critical section. A breakpoint is, as the name implies, a break in
the execution of your program. When execution reaches the breakpoint, your program
stops running before that line is executed. Control returns to the debugger, allowing
you to check the value of certain variables or to begin single-stepping the routine.

Figure 30-2. Edit window SpeedMenu

The C++ Builder debugger allows you to define the various different types of
breakpoints shown here.

Type Operation

Source Stops execution when a line in your source code is executed.

Address Stops execution when the machine instruction at a specified
address is executed.

Data Breakpoint Stops execution when the data at a specified location is changed.

Module Load Stops execution when a specified dynamic link library (DLL)
is loaded.

Here we will examine only the source breakpoint, because it is the most important and
frequently used. (After understanding source breakpoints, you can easily explore the
others on your own.)

There are two basic flavors of breakpoints: conditional and unconditional. Each is
examined next.

Setting Unconditional Source Breakpoints
An unconditional source breakpoint always stops execution each time it is encountered.
There are several ways to add this type of breakpoint. Position your cursor at the line
where you want to place the breakpoint. Then, you may do any of the following:

� Press F5.

� Select the Toggle breakpoint option in the Debug menu of the edit window’s
SpeedMenu.

� Click the left margin of the edit window at the line where you want to add a
breakpoint.

The line of code at which the breakpoint is set is highlighted. You can have several
active breakpoints in a program.

Once you have defined one or more breakpoints, execute your program by choosing
Run from the Run menu. Your program runs until it encounters the first breakpoint. As
an example, set a breakpoint at the line

cout << n*n << " ";

inside sqr_it(), and then run the program. As you can see, execution stops at that line.
Figure 30-3 shows both the editor and Breakpoint List windows in the IDE. You may
select Breakpoints from the View | Debug Windows menu to obtain this display. The

946 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 947

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Breakpoint List window lists all of the breakpoints and also indicates which of these
was the last encountered.

There are several ways to remove a breakpoint. You may do any one of the following:

� Press F5.

� Select the Toggle breakpoint option in the Debug menu of the edit window’s
SpeedMenu.

� Highlight a breakpoint entry in the Breakpoint List window and then press
the DEL key.

Setting Conditional Source Breakpoints
A conditional source breakpoint allows you to specify the conditions under which a
breakpoint stops execution and the actions that occur when it does. Let’s look at an
example, using the program from the preceding section. To add a conditional source
breakpoint, position your cursor in the editor window at the line where you want to
establish the breakpoint. For example, position it in the main() function at the line
where the sqr_it() function is called. Choose Source Breakpoint from the Run | Add
Breakpoint menu. This action causes the dialog box shown in Figure 30-4 to appear.

Figure 30-3. The Breakpoint List window

Now click Advanced in the lower-right corner of this dialog box. This activates the
dialog box shown in Figure 30-5.

Sometimes you will want to establish a breakpoint so that it stops execution only
after a specified number of iterations through a loop. This threshold is defined by
setting the Pass Count field equal to the number of iterations that you wish to ignore.
For this example, enter 4.

948 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 30-4. Add Source Breakpoint dialog box

Figure 30-5. Advanced Add Source Breakpoint dialog box

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

To see the conditional breakpoint in action, choose Run in the Run menu. The
program begins execution and the breakpoint does not take effect until the sqr_it()
function has been executed three times and is ready to begin its fourth call, at which
point it stops on the breakpoint.

Watching Variables
While debugging, you commonly need to see the value of one or more variables as
your program executes. Using C++ Builder’s debugger, this is easily accomplished.
There are two methods for watching variables. The first is very quick and just shows
the value of a variable; the second method involves using watches.

To quickly see the value of a variable, simply move the mouse cursor over the variable
name in the edit window. Let the mouse cursor sit on the variable for just a few seconds
and a little window will pop up showing the current value of the variable in question.
The preferred method of watching variables is by using the Watch List Window.

First, activate the Watch List window by selecting Watches from the View |
Debug Windows menu. To add a watch, first activate the Add Watch dialog box.
Here are two ways you may do this.

� Press CTRL-F5.

� Right-click in the Watch List window and select Add Watch from the SpeedMenu.

Once the Watch Properties dialog box is displayed, enter the name of the variable
you want to watch. The debugger automatically displays the value of the variable in the
Watches window as the program executes. If the variable is global, its value is always
available. However, if the variable is local, its value is reported only when the function
containing that variable is being executed. When execution moves to a different function,
the variable’s value is unknown. Keep in mind that if two functions both use the same
name for a variable, the value displayed relates to the function currently executing.

As an example, activate the Watch Properties dialog box and enter i. If you are not
currently running the program or if execution has been stopped inside the sqr_it()
function, you will first see the message

i: [process not accessible]'

However, when execution is inside the main() function, the value of i is displayed.
Figure 30-6 shows the appearance of the editor, part of the console window, and

the Watch List window when execution is suspended at a breakpoint. Notice that the
editor window indicates the location of the breakpoints and the Watch List window
indicates the value of any watched variables.

You are not limited to watching only the contents of variables. You can watch any
valid C/C++ expression involving variables. However, the expression cannot use any
#define values or variables that are not in the scope of the function that is being executed.

C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 949

Watched-Expression Formats
C++ Builder’s debugger allows you to format the output of a watched expression
by selecting a format in the Watch Properties window. Table 30-1 gives a brief
description of each format. If you don’t specify a format, the debugger automatically
provides a default format.

You can display integers in either decimal or hexadecimal. The debugger
automatically knows the difference between long and short integers because it has
access to the source code.

When specifying a floating-point format, you can tell the debugger to show a
certain number of significant digits in the Digits field. By default the debugger will
show up to 18 digits.

When a structure or a union is displayed, the values associated with each field
are shown using an appropriate format. By selecting the Record/Structure format
command, the name of each field is also shown. To see an example, close the existing
test console program and create a new console application. Call the project test2. The
complete listing follows. Try watching sample, using both the Default format and the
Record/Structure format. You can include the variable, sample, as many times as you
wish with each instance having its own format.

950 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 30-6. Watching a variable

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 951

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

//---

#include <cstring>

#pragma hdrstop

using namespace std;

//---

struct inventory {

char item[10];

int count;

float cost;

} sample;

#pragma argsused

int main(int argc, char* argv[])

{

strcpy(sample.item, "hammer");

sample.count = 100;

sample.cost = 3.95;

return 0;

Format Meaning

Character Display as a character with no translation.

Decimal Display in decimal.

Floating point Display in floating point.

Hexadecimal Display in hexadecimal.

Memory Dump Show memory.

Pointer Display as a pointer.

Record/Structure Display class, structure, or union member names and values.

String Display as a character with appropriate character translations.

Default Display a format that matches the data type of the variable.

Table 30-1. Debugger Formats

}

//---

After the three assignments have taken place, the output shown in the Watch List
window looks like this:

sample: {"hammer\0\0\0\0", 100, 3.95}

sample: {item:"hammer\0\0\0\0", count:100, cost:3.95}

The first line uses the Default format, and the second line uses the Record/Structure
format. As you might expect, you can also watch an object of a class. When you watch an
object, you are shown the current value of any data that is contained within the object. As
with structures and unions, if you use the Record/Structure format specifier, the names of
each data item are also displayed. When you are watching an object of a class, all private,
protected, and public data is displayed. For example, if the previous program is changed
as shown here:

//---

#include <cstring>

#pragma hdrstop

using namespace std;

//---

class inventory {

int i; // private data

public:

inventory() {i=100;}

char item[10];

int count;

float cost;

} sample;

#pragma argsused

int main(int argc, char* argv[])

{

strcpy(sample.item, "hammer");

sample.count = 100;

sample.cost = 3.95;

952 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

return 0;

}

//---

the following output is obtained when watching sample using Record/Structure:

sample: {i:100,item:"hammer\0\0\0\0",count:100,cost:3.95}

As you can see, even though i is private to inventory, for the purposes of debugging, it
is accessible to the debugger.

Figure 30-7 shows the options that are available via the SpeedMenu of the Watch
List window. As indicated, you may modify, add, remove, or disable watches.

Qualifying a Variable’s Name
You can watch the value of a local variable no matter what function is currently
executing by qualifying its name using this format:

filename.function-name.variable-name;

The filename is optional in single-file programs, and the function-name is optional when
there is only one variable by the specified name.

C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 953

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 30-7. Watches Window SpeedMenu

954 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

As an example, assume that you want to watch both the count in f1() and the count
in f2(), given this fragment:

void f1()

{

int count;

...

}

void f2()

{

int count;

...

}

To specify these variables, use

f1.count

f2.count

Watching the Stack
During the execution of your program, you can display the contents of the call stack by:

� Selecting the Call Stack option in View | Debug Windows menu.

� Pressing CTRL-F3.

This option displays the order in which the various functions in your program are
called. It also displays the values of any function parameters at the time of the call.

To see how this feature works, create a new console application and enter this program:

//---

#include <iostream>

#pragma hdrstop

using namespace std;

//---

void f1(), f2(int i);

#pragma argsused

int main(int argc, char* argv[])

{

f1();

return 0;

}

//---

void f1()

{

int i;

for(i=0; i<10; i++) f2(i);

}

void f2(int i)

{

cout << "in f2, value is " << i << " ";

}

Set a breakpoint at the line containing the cout statement in f2(), and then inspect
the call stack. The first time the breakpoint is reached, the call stack looks like that
shown in Figure 30-8.

Evaluating an Expression
You can evaluate any legal C/C++ expression by using the Evaluate/Modify window.
This is shown in Figure 30-9. To obtain this window, you may do one of the following:

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T
C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 955

Figure 30-8. The Call Stack window

� Press CTRL-F7.

� Select Evaluate/Modify under the Debug menu in the edit window’s SpeedMenu.

� Select Evaluate/Modify from the Run menu.

To evaluate an expression, enter it in the Expression field. You will see its value
in the Result field. Expressions can contain constants and variables defined in the
program you are debugging. They may also call functions. However, you cannot use
any #define value.

Pausing a Program
You may pause a program by choosing the Program Pause option in the Run menu.
Execution of your program is suspended and you may then use any of the facilities
that have already been discussed to troubleshoot a problem. To resume execution,
select Run in the Run menu.

Using the CPU Window
One final debugging tool at your disposal is the CPU window. If you select CPU from
the View | Debug Windows menu, the window shown in Figure 30-10 appears. This
is divided into five separate panes:

� The disassembly pane shows how your source code maps to assembly code.

� The memory dump pane shows the contents of the memory available to
your program.

956 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Figure 30-9. The Evaluate/Modify window

� The machine stack pane shows the contents of the program stack in
hexadecimal.

� The registers pane shows the current values of the CPU registers.

� The flags pane shows the current values of the CPU flags.

To make good use of the CPU window requires an intimate knowledge of assembly
language programming and the architecture of your machine. However, for those
really difficult bugs, careful analysis of the CPU window may be your only resort.

A Debugging Tip
Before concluding this chapter, one piece of advice must be offered: Don’t rely too
heavily on the debugger. While great debuggers, such as that provided with C++
Builder, are an indispensable part of any programmer’s arsenal, they should never
be a substitute for good design and good coding practices. If you are using the
debugger on a daily basis, then you are probably using it too much. Frankly, a poor
implementation that is “fixed” through extensive debugging is almost always inferior.

C h a p t e r 3 0 : U s i n g C + + B u i l d e r ’ s I n t e g r a t e d D e b u g g i n g E n v i r o n m e n t 957

TH
E

C
++

B
U

ILD
ER

IN
TEG

R
A

TED
D

EVELO
PM

EN
T

EN
VIR

O
N

M
EN

T

Figure 30-10. CPU window

This page intentionally left blank.

Index

&
bitwise operator, 40, 41-42
pointer operator, 45-47, 141-143, 642
reference parameter, 637, 638

&&, 39, 40
< >, 240, 241
<, 39, 40
<<

left shift operator, 41, 43-44
output operator, 557, 558, 692-696

<=, 39, 40
>, 39, 40
>=, 39, 40
>>

input operator, 558, 692-693,
696-698

right shift operator, 41, 43-44

*
multiplication operator, 35, 36
pointer operator, 45-47, 141-143,

637, 638, 642
printf() placeholder, 209

|, 40, 41, 42
||, 39, 40
^

bitwise operator, 40-41, 42
used in scanset, 214, 323

:, 561
::, 562, 631, 771, 773, 777, 798
, (comma operator), 48
{ }, 7, 20, 56, 81, 84
. (dot operator), 48-49, 166, 179, 183, 184,

562, 563, 610, 631
.* (pointer-to-member operator), 631,

784-786

959
Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

960 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

!, 39, 40
!=, 39, 40
=, 31
==, 39, 40
–, 35, 36
–> (arrow operator), 48-49, 177, 179, 183,

184, 610
–>* (pointer-to-member operator),

773-775
– –, 36, 37-38, 628, 630
(), 49, 53
%, 35, 36
+, 35, 36
++, 36, 37-38, 628-631
#

preprocessor directive, 236, 251
preprocessor operator, 252
printf() modifier, 208, 209

##, preprocessor operator, 252-253
? ternary operator, 44-45, 56, 60-63,

627, 631
; (semicolon), 81, 165
/, 35, 36
/* */, 255-256, 557
//, 256, 557
[], 49, 213, 646-649
~, 40, 41, 43, 573

A
abort(), 196, 472, 732, 734, 745
abs(), 506-507
Access

declaration (C++), 791-794
modifiers (C), 19
specifiers in C++, 658-663

access(), 266-267
acos(), 380-381
acosl(), 380-381
ActionList IDE component, 924-928,

934, 937
Adaptors, 813
adjustfield format flag, 698, 699
<algorithm> header, 843

Algorithms, STL, 810, 811, 815, 843-853
table of, 844-846

alignment directive, 248
alloca(), 440-441
allocator class, 812
Allocators, 812
<alloc.h> header, 440
AND

& bitwise operator, 40, 41-42
&& logical operator, 39, 40

anon_struct directive, 248
ANSI /ISO

C standard, 2, 4
standard for C++, 2, 552-553

append(), 866-867
argc, 95, 98-101
argsused directive, 248
Arguments, function, 22, 84, 88-101

arrays as, 91-95
and call by reference, 88-91, 637
and call by value, 88-89, 636
default, 590-594, 621
to main(), 95-101
variable number of, 106

argv, 95-101, 154
Arithmetic operators, 35-38

precedence of, 38
Array(s), 116-138

access with pointers, 128-129,
150-151

bounds checking on, 5, 95, 117, 342
of characters, pointers to, 151-152
dynamically allocated, 129-131,

758-759
to functions, passing, 91-95,

118-119, 122-123, 127
generating pointer to, 117
indexing versus pointer arithmetic,

128, 150-151
initialization, 131-134
multidimensional, 127
of objects, 605-610
of pointers, 111-112, 153-154,

157, 160

TE
AM
FL
Y

Team-Fly®

single dimension, 116-117, 118-121
of strings, 125-127
of structures, 168-174
within structures, 181
two-dimensional, 121-127
unsized, 133-134

Arrow (->) operator, 48-49, 177, 179, 183,
184, 610

ASCII characters, 16
asctime(), 403-404
asin(), 381-382
asinl(), 381-382
asm, 782
Assembly language, 4

C used in place of, 8
in program using asm,

embedding, 782
assert(), 507
<assert.h> header, 507
assign(), 866
Assignment

compound, 53-63
functions used in, 31, 86, 640-641
multiple, 30
object, 605
pointer, 130, 143
shorthand notation for, 53-54
statements, 31-33
structure, 167
type conversion in, 31-33

atan(), 382
atanl(), 382
atan2(), 383
atan2l(), 383
atexit(), 473
atof(), 508
atoi(), 97, 509
atol(), 509-510
_atold(), 508
auto keyword, 20, 21

B
bad_alloc, 756, 763
Base class

access control, 660-663
constructors, passing parameters

to, 669-671
definition of, 568, 658
general form for inheriting, 660
pointers to derived class objects,

671-673, 674, 677
virtual, 775-779

basefield format flag, 698, 699
basic_fstream class, 692
basic_ifstream class, 692
basic_ios class, 691-692
basic_iostream class, 692
basic_istream class, 692
basic_ofstream class, 692
basic_ostream class, 692
basic_streambuf class, 692
basic_string class, 862
before(), 749
begin(), 815, 816-817
_beginthread(), 474-476
_beginthreadex(), 474-476
_beginthreadNT(), 474-476
BiIter, 812
Binary code, 8
binary_function STL class, 857
bind1st() binder, 859-860
bind2nd() binder, 859-861
Binders, 813, 859-861
BinPred, 812
Bit-fields, 164, 182-183
bitset container, 814
<bitset> header, 814
Bitwise operators, 40-44
Block statements, 56, 81
bool data type, 577
boolalpha format flag, 698, 699
break statement, 56, 63, 64-65, 75-76

I n d e x 961

Broken-down time, 402
bsearch(), 510-512
Buffer, 196

C
C

origins of, 4
overview of, 4-13
standard, ANSI/ISO, 2, 4

C Programming Language, The (Kernighan
and Ritchie), 4

C++
differences between C and, 807
origins of, 552-553
Standard, 2, 4, 552-553

C89, 4
C99, 4, 5, 17
cabs(), 383-384
cabsl(), 383-384
Calendar time, 402
Call by reference, 88-91, 89-90, 637
Call by value, 88-89, 91, 93, 636
calloc(), 440, 441-442
case statement, 56, 63-65
Case sensitivity in C, 9, 16
Cast, 51-52

used in pointer assignments, 130, 148
Casting operators, 720, 750-753
catch statement, 731-732

and derived class exceptions,
739-740

using multiple, 738-739
catch(...) statement, 741-742
ceil(), 384-385
ceill(), 384-385
cerr predefined stream, 691
_cexit(), 476
_c_exit(), 476
cgets(), 488-489
char data type, 16, 18
Character(s)

in C console I/O, 197-199, 203, 211
in C file I/O, 220-221

constants, 33, 34
functions, 342

Character translations
in C I/O streams, 195, 218
in C++ file I/O, 709, 712

chdir(), 454
_chdrive(), 454
checkoption directive, 248
chmod(), 267-268
chsize(), 268
cin predefined stream, 558, 691
Class(es)

abstract, 686
base. See Base class
declaration, general form of, 562
derived. See Derived class
forward reference to, 586
generic, 720, 726-731
libraries, 679
overview of, 558-564
polymorphic, 674, 749-750
string, developing a, 650-655
structures and, 594-596
unions and, 596-597

class keyword, 558
_clear87(), 512
clearerr(), 269-270
CLK_TCK macro, 614
clock(), 404, 614
clock_t type, 402
clog predefined stream, 691
close(), 270-271, 710
closedir(), 455
clreol(), 489-490
clrscr(), 180, 489-490
<cmath> header, 560
Code

blocks, 7, 20
compartmentalization of, 6, 24
object, 9, 13
relocatable, 261
source, 9, 13

codeseg directive, 248

962 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Comma operator, 48
Command line arguments, 95-100
comment directive, 248
Comments

C-style, 255-256, 557
C++ single-line, 256, 557

Comp, 812
compare(), 871
Compilation

conditional,241-245
separate, 11-12

Compile time, 11-12, 13, 686
Compiler(s), 9, 260-261

compiling C programs with C++
Builder, 2, 558

compiling C++ programs with C++
Builder, 558

Compound statements, 56, 81
<conio.h> header, 180, 198, 266, 488
const keyword, 19, 149, 150
Constants

backslash character (in C), 34-35
definition of, 33

const_cast, 750-751
Constructor functions, 572-576

copy, 604, 615, 788-791
and default arguments, 563-564
execution order for, 663-669
explicit, 805-806
overloading, 610, 614-615, 617-619
parameterized, 580-585
passing parameters to base class,

669-671
Containers, 810-811

defined by the STL, table of, 814
and the string class, 871-873
typdefed type names for, 813

continue statement, 56, 78-79
_control87(), 512-513
Copy constructor, 604, 615, 788-791
cos(), 385
cosh(), 386
coshl(), 386
cosl(), 385

count() algorithm, 844, 846-847
count_if() algorithm, 844, 846, 847-848
cout predefined stream, 557, 691
_ _cplusplus predicate macro, 253, 254
cprintf(), 490-491
cputs(), 491-492
_creat(), 271-273
creatnew(), 271-273
creattemp(), 271-273
cscanf(), 492-493
c_str(), 871
<cstring> header, 560
ctime(), 405
<ctype.h> header, 230, 342

D
Data, compartmentalization of, 6, 24
Data type(s), 5, 16-17

table of C, 18
creating custom, 164
modifiers, 17-19
See also Type

_ _DATE_ _ predefined macro, 253, 254
Date. See Time and date functions
date structure, 402
Debugger, C++ Builder source-level,

942-957
and the CPU window, 956-957
setting breakpoints in, 945-949
and single-stepping, 943-945
versus traditional debugger, 942
and watching the stack, 954-955
and watching variables, 949-954

dec format flag, 698
Decrement operator, 36, 37-38

overloading for prefix and postfix,
628, 630

default statement, 56, 63
#define directive, 236-240

and function-like macros, 238-240
and preprocessor operators # and

##, 252-253
defined compile-time operator, 246-247

I n d e x 963

defineonoption directive, 248
delete, 756-770

overloading, 763-770
delline(), 493-494
deque container, 810, 814
<deque> header, 814
Derived class

constructors and destructors in,
663-669

definition of, 568, 658
inheriting multiple base classes,

667-669
objects, base class pointers to,

671-673, 674, 677
Destructor functions, 573-576

execution order for, 663-669
dfree structure, 425
difftime(), 406
<direct.h> header, 454
Directory manipulation functions, 454-470
dirent structure, 455
<dirent.h> header, 455
<dir.h> header, 454
disable(), 407
_disable(), 407
diskfree_t structure, 410
div(), 506, 513
divides() function object, 854, 856-857
div_t structure, 506, 513
do/while loop, 56, 74-75
_dos_close(), 407
_dos_creatnew(), 408
_dos_creat(), 408
dosdate_t structure, 409, 417
_dos_findfirst(), 456-457
_dos_findnext(), 456-457
_dos_getdate(), 409-410
_dos_getdiskfree(), 410-411
_dos_getdrive(), 411
_dos_getfileattr(), 412
_dos_getftime(), 413-414
_dos_gettime(), 409-410
<dos.h> header, 402, 403

_dos_open(), 414-415
_dos_read(), 416
_dos_setdate(), 417-418
_dos_setdrive(), 418
_dos_setfileattr(), 418-419
_dos_setftime(), 419-421
_dos_settime(), 417-418
dostime_t structure, 409, 417
dostounix(), 421
_dos_write(), 422
Dot (.) operator, 48-49, 166, 179, 183, 184,

562, 563, 610, 631
double data type, 16, 18
dup(), 273
dup2(), 273
Dynamic allocation

functions, 440-452
using new and delete, 756-770

dynamic_cast operator, 750-753

E
Early binding, 686-687
ecvt(), 514
EDOM macro, 380
#elif directive, 236, 243-244, 245
else, 57, 58-60
#else directive, 236, 242-243, 244, 245
_ _emit_ _(), 514
empty(), 835
enable(), 422
_enable(), 422
Encapsulation, 554

how to achieve, 561
end(), 815, 816-817, 829-831
#endif, 236, 242-244
_endthread(), 477
_endthreadex(), 477
enum keyword, 186

for declaring enumeration
variables, 189

Enumerations, 164, 186-189
env, 99-100

964 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

Environmental strings, 99-101
eof(), 274, 715
EOF macro, 198, 217
ERANGE macro, 380
erase(), 815, 818, 821-823, 867-868
errno global variable, 266, 380
<errno.h> header, 266
#error directive, 236, 240
Escape sequences, 34
Exception handling in C++, 720, 731-748
<exception> header, 745, 746
exec...() functions, 477-479
exit(), 77-78, 87, 148, 196, 479-480, 734
_exit(), 479-480
exit directive, 248, 249
EXIT_FAILURE macro, 77, 480, 506
EXIT_SUCCESS macro, 77, 480, 506
exp(), 387
expl(), 387
explicit keyword, 805-806
export keyword, 806
Expression statements, 56, 81
Expressions, 16, 50-54

type conversion in, 50-51, 52
extern storage class specifier, 24, 25-26,

590, 783
Extractors, 692, 696-698

F
fabs(), 387-388
fabsl(), 387-388
false, 577
fclose(), 196, 217, 221-223, 275
_fcloseall(), 275
<fcntl.h> header, 218, 414
fcvt(), 515
fdopen(), 276
feof(), 217, 223-224, 276-277
ferror(), 217, 231-232, 277
ffblk structure, 457-458
fflush(), 217, 278
fgetc(), 217, 220, 278-279

fgetchar(), 279
fgetpos(), 279-280
fgets(), 200, 224-225, 281
File(s), C

in C I/O system, 195, 196-197, 216
checking for EOF in binary, 223-224
closing, 196, 221
erasing, 231
opening, 218-220
pointer, 217-218

File(s), C++
detecting EOF in, 715
get and put pointers, 716
opening and closing, 708-710
pointer position, obtaining, 718
random access to, 716-718
reading and writing binary,

712-715
reading and writing text, 710-712

FILE data type, 197, 216, 218
File position indicator, 196, 227, 232
_ _FILE_ _ predefined macro, 247, 253, 254
filelength(), 282
fileno(), 282
fill(), 701-702
find(), 815, 841, 868-870
findfirst(), 457-459
findnext(), 457-459
find_t structure, 456
fixed format flag, 698, 699
flags(), 700-701
float data type, 16, 18
<float.h> header, 512
floatfield format flag, 698, 699
floor(), 388
floorl(), 388
_flushall(), 283
fmod(), 388-389
_fmode global variable, 218
fmodl(), 388-389
fmtflags enumeration, 698
fnmerge(), 459-460
fnsplit(), 459-460

I n d e x 965

fopen(), 218-220, 221-223, 283-285
FOPEN_MAX macro, 217
for loops, 56, 66-71
ForIter, 812
Forward reference, class, 586
fpos_t data type, 216
_fpreset(), 515
fprintf(), 217, 230-231, 285-286
fputc(), 217, 220, 286-287
fputchar(), 287
fputs(), 224-225, 288
fread(), 225-227, 288-289
free(), 130, 147-148, 440, 442-443
freopen(), 289-290
frexp(), 389
frexpl(), 389
Friend functions, 585-590, 623
friend keyword, 585
fscanf(), 217, 230-231, 290-291
fseek(), 217, 227-230, 291-292
fsetpos(), 292-293
_fsopen(), 294
fstat(), 295
fstream class, 692, 708, 709-710
<fstream> header, 708
ftell(), 296
ftime structure, 426, 431
ftime(), 423
_fullpath(), 461
Function(s), 7, 10

address of, obtaining, 109-110
arguments. See Arguments,

function
comparison, 812
conversion, creating, 786-788
formal parameters of. See

Parameters, formal
general form of, 84
general-purpose, 112
generic, 720-726
in-line code versus, 113
inline. See Inline functions
main(). See main()

member. See Member functions
passing arrays to, 91-95, 118-119,

122-123, 127
passing entire structures to, 176
passing objects to, 601-604
passing structure members to, 175
pointers to, 109-112, 157-160
predicate, 812
prototypes, 101-105, 559, 807
recursive, 108-109
returning from, 84-85
returning objects from, 604-605
returning pointers from, 106-107
returning values from, 85-87
scope, 87-88
used in assignment statement,

640-641
virtual. See Virtual functions

Function objects, 812-813, 853-861
creating, 857-859
predefined, list of, 813, 854

Function overloading, 565-567, 614-623
and ambiguity, 619-621
and constructor functions, 614-615,

617-619
and default arguments, 621
and function pointers, 622-623
versus overriding, 677

<functional> header, 812-813, 854
fwrite(), 86, 225-227, 296-297

G
gcount(), 715
gcvt(), 516
Generic class, 720, 726-731
Generic functions, 720-726
geninterrupt(), 424
get(), 712-714
Get pointer, 716
getc(), 217, 220-221, 222-223, 227,

297-298
getch(), 199, 201, 298-299

966 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

getchar(), 197, 198-199, 200, 201, 299
getche(), 197-198, 201, 298-299
getcurdir(), 461-462
getcwd(), 462-463
_getcwd(), 463-464
getdate(), 424-425
getdfree(), 425-426
getdisk(), 464
_getdrive(), 464-465
getenv(), 516
getftime(), 426-427
getline(), 718
getpass(), 517
getpid(), 480-481, 517-518
gets(), 94, 95, 200, 224, 225, 300-301
gettext(), 494
gettextinfo(), 494-495
gettime(), 424-425
getw(), 301-302
gmtime(), 427-428
goto, 6, 56, 80, 87
gotoxy(), 180, 201-202, 591
Graphical user interface (GUI), 197, 488
greater() function object, 854, 859, 860-861

H
hdrfile directive, 249
hdrstop directive, 249
Headers, 103, 262-264

commonly used C/C++, table of,
263-264

C++-style, 556, 559-560
Heap, 12, 130, 147-148, 440
heapcheck(), 443-444
heapcheckfree(), 444
heapchecknode(), 445-446
_heapchk(), 446
heapfillfree(), 446-447
heapinfo structure, 448
_heapinfo structure, 449
_heapmin(), 447
_heapset(), 448

heapwalk(), 448-450
hex format flag, 698
highvideo(), 496
Hoare, C.A.R., 529
HUGE_VAL macro, 380
hypot(), 390
hypotl(), 390

I
IDE (Integrated Development

Environment), application
development using the, 898-939

Component Palette for Windows,
903-911

console, 911-915
possible type of applications for,

table of, 899-900
Windows, 918-939

IDE menu window, 878-894
Component option, 889-890
Edit option, 882-883
File option, 880-882
Help option, 894
items, table of, 879-880
Project option, 886-888
Run option, 888-889
Search option, 883-885
Tools option, 890-894
View option, 885-886

IDE overview, 878-896
code (unit) window, 895
context-sensitive help, 896
form window, 895
menu window. See IDE menu

window
Object Inspector window, 895
SpeedMenus, 896

Identifiers, 16
#if directive, 236, 242-244, 246
if-else-if ladder, 59-60
if statement, 56-63
#ifdef directive, 236, 244-245

I n d e x 967

#ifndef directive, 236, 244-245
ifstream class, 692, 708, 709-710
ImageList IDE component, 924,

928-931, 935
#import directive, 251
#include directive, 236, 240-241, 560
Increment operator, 36, 37-38

overloading for prefix and postfix,
628-631

Inheritance, 555, 568-572, 658-673
access specifiers and, 658-663
constructors, destructors, and,

663-669
multiple base class, 667-669

InIter, 812
In-line assembly code, 249
In-line code, 113

using function-like macros, 238-240
inline

modifier, 598-599
#pragma directive, 249

Inline functions, 598-601
generating, 250
within a class, creating, 600-601

Inline Intrinsic Function option (IDE), 250
Input operator (>>), 558, 692-693,

696-698
insert(), 815, 817-818, 821-823, 827,

867-868
Inserters, 692-696
insline(), 496-497
int data type, 16, 18

as default function return type, 105
int rule, implicit, 105-106, 807
Integers, signed and unsigned, 17-18
Integral promotion, 50, 807
Integrated Development Environment.

See IDE
internal format flag, 698
Interpreters, 9
intrinsic directive, 250
I/O, ANSI/ISO Standard C, 194, 266
I/O, C console, 197-216

basic functions for, table of, 201

character, 197-199, 203, 211
connection with file I/O, 232-233
formatted, 201-216
strings, 200-201, 203, 212

I/O, C file, 216-233
and blocks of data, 225-227
and characters, 220-221
common functions for, table of, 217
connection with console I/O,

232-233
formatted with fprintf() and

fscanf(), 230-241
random access, 227-230
and strings, 224-225

See also Streams
See also File(s), C

I/O, C++, 194-195, 690-718
formatted, 698-707
manipulators. See Manipulators
operators. See Operators, I/O
standard streams, 691
template stream classes, 691-692

I/O, C++ file, 708-718
random access, 716-718

See also File(s), C++
I/O redirection, 197, 557, 691
I/O, UNIX-like, 194, 266
<io.h> header, 266
<iomanip> header, 702
ios class, 692

formatted I/O using members of,
698-702

ios::app, 708, 709
ios::ate, 708, 709
ios::beg, 716
ios::binary, 708, 709, 712
ios::cur, 716
ios::end, 716
ios::in, 708, 709
ios::out, 708, 709
ios::trunc, 708, 709
ios_base class, 691-692
iostream class, 692
<iostream> header, 556, 690, 691

968 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

<iostream.h> header, 690
is_open(), 710
isalnum(), 342-343
isalpha(), 343-344
isascii(), 344
isatty(), 302
iscntrl(), 344-345
isdigit(), 345-346
isgraph(), 346-347
islower(), 347
isprint(), 230, 348
ispunct(), 348-349
isspace(), 349-350
istream class, 692
isupper(), 350
isxdigit(), 351
itoa(), 518
Iteration statements, 56, 66-75
iterator type, 811, 821
Iterators, 810, 811-812, 819-821

J
jmp_buf data type, 524
Jump statements, 56, 75-79

K
kbhit(), 76, 428
Kernighan, Brian, 4
Keywords, C, 5, 9

C++ Builder, table of, 11
Keywords, table of Standard C++, 576-577

L
Label

identifier for goto statement, 80
statements, 56

labs(), 519
Late binding, 686-687
lconv structure, 522-523
ldexp(), 390-391

ldexpl(), 390-391
ldiv(), 506, 519-520
ldiv_t structure, 506, 519
left format flag, 698
lfind(), 520-522
_LHUGE_VAL macro, 380
Library

C standard, 10, 262
C++ I/O class, 690
C++ Standard Template Library.

See Standard Template
Library (STL)

creating class, 679
definition of, 13
files versus object files, 261
headers and functions, 103, 262-264

#line directive, 236, 247
_ _LINE_ _ predefined macro, 247, 253, 254
link directive, 250
Linkage specification, 783
Linker, 11, 13, 260-261
list container, 810, 814, 821-837

member functions, table of, 826-827
<list> header, 814
Literals, 33
localeconv(), 522-523
localtime(), 428-429
lock(), 302-303
locking(), 303-304
log(), 391
Logical operators, 38-40
logl(), 391
log10(), 392
log10l(), 392
long modifier, 17
longjmp(), 523-524, 748
Loops

do/while, 56, 74-75
for, 56, 66-71
infinite, 70-71
and structured languages, 6
time delay, 71
while, 56, 72-73

I n d e x 969

with no bodies, 71
lowvideo(), 497
_lrotl(), 526
_lrotr(), 526
lsearch(), 520-522
lseek(), 304-306
ltoa(), 525

M
Machine code, 9
Macro names, predefined, 253-255
main(), 10, 557, 564, 807

arguments to, 95-101
prototypes and, 102
returning value from, 87

MainMenu IDE component, 918, 931-933
make_pair(), 840, 841
_makepath(), 465-466
malloc(), 130-131, 147-148, 440, 450-451
<malloc.h> header, 440
Manipulators

creating custom, 705-707
table of standard, 703-704
using standard, 698, 702-705

map container, 811, 814, 837-843
member functions, table of, 839

<map> header, 814
Mathematical functions, 380-400
_matherr(), 392-393
_matherrl(), 392-393
<math.h> header, 380
max(), 526-527
MB_CUR_MAX macro, 506
mblen(), 527
mbstowcs(), 527-528
mbtowc(), 528
Member functions, 561, 563, 564

const and volatile, 780-782
of generic classes, 727
and scope resolution operator, 562
static, 772-775
volatile, 782

Member variables, 561, 563
mutable, 781-782
static, 771-772, 773-775

memccpy(), 351-352
memchr(), 352-353
memcmp(), 353-354
memcpy(), 354-355
<mem.h> header, 342
memicmp(), 353-354
memmove(), 355
Memory

handling functions, 342
map, C program, 12, 147
See also Dynamic allocation

memset(), 356
merge(), 827, 833-835
message directive, 250
min(), 526-527
mkdir(), 466
mktemp(), 467
mktime(), 429-430
modf(), 394
modfl(), 394
movetext(), 498
movmem(), 356
multimap container, 814, 838
multiset container, 814
mutable keyword, 781-782

N
name(), 749
Namespace(s), 556, 560, 794-805

unnamed, 800-801
namespace statement, 794, 795
negate() function object, 854-856
Negators, 813, 861
new, 756-770

nothrow option for, 762
overloading, 763-770

<new> header, 756, 762
nopushoptwarn directive, 251
normvideo(), 498-499

970 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

TE
AM
FL
Y

Team-Fly®

NOT
! logical operator, 39, 40
~ bitwise operator (one's

complement), 40, 41, 43
not1() negator, 861
not2() negator, 861
nothrow, 762
npos constant, 864
Null

definition of, 119
statement, 81

NULL macro, 148, 217, 506

O
O_BINARY, 218
Object(s)

allocating, 759-761
arrays of, 605-610
assignment, 605
base class pointers to derived class,

671-673, 674, 677
using class name, creating, 561
definition of, 554
function. See Function objects
to functions, passing, 601-604
from functions, returning, 604-605
initialization, 572-573, 617-619
passing references to, 639-640
pointers to, 610-612

Object code, 9, 13
Object-oriented programming (OOP),

553-555
obsolete directive, 251
oct format flag, 698
off_type type, 716
ofstream class, 692, 708, 709-710
–Oi command line switch, 250
One's complement operator (~), 40, 41, 43
OOP. See Object-oriented programming

(OOP)
open(), 306-308, 708-709, 710
opendir(), 455

openmode enumeration, 708
Operator(s)

arithmetic, 35-38
arrow (–>), 48-49, 177, 179, 183,

184, 610
assignment, 31
bitwise, 40-44
casting, 720, 750-753
comma (,), 48
dot (.), 48-49, 166, 179, 183, 184, 562,

563, 610, 631
pointer, 45-47, 141-143
pointer-to-member (.* and –>*),

631, 784-786
precedence summary table of C, 50
relational and logical, 38-40
scope resolution (::), 562, 631, 771,

773, 777, 798
ternary, 44-45, 56, 60-63, 627, 631

Operator, compile time
defined, 246-247
sizeof, 47-48, 189-191, 244, 506

operator functions
creating member, 624-631
using friend, 631-635, 643-646

Operator overloading, 568, 624-655
[], 646-649
increment and decrement, 628-631
restrictions, 631
references and unary, 643-646

operator(), 812, 853, 854, 857, 859
Operators, I/O (<< and >>), 557, 558

overloading, 692-698
option directive, 251
OR

| bitwise operator, 40, 41, 42
|| logical operator, 39, 40

ostream class, 692
O_TEXT, 218
OutIter, 812
Output operator (<<), 557, 558, 692-696
Overloading functions. See Function

overloading

I n d e x 971

Overloading operators. See Operator
overloading

Overriding versus function
overloading, 677

P
pack directive, 251
package directive, 251
pair template class, 812, 838-840
Parameters, formal, 22, 84, 88-91

array, 91-92
declarations, classic versus

modern, 104-105
pointer, 90, 149-150
reference, 91, 636-638
variable length list of, 106

PATH string, 100
perror(), 308-309
plus() function object, 854
Pointer(s), 140-161

accessing arrays with, 128-129,
150-151

arithmetic, 106, 144-145
arrays of, 111-112, 153-154, 157, 160
assignments, 130, 143
base type of, 46, 141, 144
C file, 217-218
to character arrays, 151-153
comparisons, 145-147
const, 149-150
definition of, 45, 140
to derived class objects, base class,

671-673
dynamic allocation and, 147-148
to functions, 109-112, 157-160,

622-623
to functions, passing, 89-91
indexing, 92, 127-128
initializing, 156-157, 160-161
to member operators, 784-786
multiple indirection with, 154-156
null, 131, 156

to objects, 610-612
operators, 45-47, 141-143, 642-643
problems with, 160-161
returned from functions, 106-107
structure, 177-180
this, 623-624, 627, 631, 633, 643

poly(), 394-395
polyl(), 394-395
Polymorphism, 554-555, 572, 658

through function overloading,
565-567

through operator overloading, 568
through virtual functions and

derived types, run time, 674,
677, 679-686

pop_back(), 815
pop_front(), 815
Portability

C code and, 5, 8
using sizeof to ensure, 189-191
using typedef to aid, 191-192

pos_type type, 718
pow(), 395-396
pow10(), 396
pow10l(), 396
powl(), 395-396
#pragma directive, 236, 247-251
precision(), 701-702
Predicate functions, 812
Preprocessor directives, 236-251
Preprocessor operators, 252-253
printf(), 86, 103, 201-209, 309-312, 557

format specifiers, table of, 202, 310
return value of, 202

priority_queue container, 814
private access specifier, 569, 658-663
Process control functions, 472-485
<process.h> header, 472
Programming

object-oriented, 553-555
structured, 6-7, 553

protected access specifier, 569, 658-663
Prototypes, function, 101-105, 559, 807

972 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

public access specifier, 561, 569, 658-663
push_back(), 815, 817, 827, 831-832
push_front(), 815, 827, 831-832
put(), 712-714
Put pointer, 716
putc(), 217, 220, 221-222, 227, 312
putch(), 313
putchar(), 197, 198, 201, 313
putenv(), 529
puts(), 150, 200-201, 224, 314
puttext(), 499
putw(), 314-315

Q
qsort(), 529-530
<queue> header, 814
Quicksort algorithm, 109, 529, 720

R
raise(), 531-532
rand(), 86, 532
RandIter, 812
RAND_MAX macro, 506
random(), 533
randomize(), 533
read(), 315-316, 714-715
readdir(), 455
realloc(), 440, 451-452
Recursion, 108-109
Reference(s), 636-646

base class, 673, 674, 676, 677
independent, 641-642
to objects, passing, 639-640
to overload unary operator,

643-646
parameters, 636-638
restrictions on, 638
returning, 640-641

register storage class specifier, 24, 30
reinterpret_cast, 750-751, 753
Relational operators, 38-40

Relocatable code, 11, 261
remove(), 217, 231, 316-317
remove_copy() algorithm, 845, 849-850
remove_if() algorithm, 845, 860-861
rename(), 317-318
replace(), 867-868
replace_copy() algorithm, 845, 849-850
resource directive, 251
return statement, 56, 75, 84-87
reverse() algorithm, 845, 851
rewind(), 217, 232, 318
rewinddir(), 455
rfind(), 868-870
Richards, Martin, 4
right format flag, 698
Ritchie, Dennis, 4
rmdir(), 467-468
_rotl(), 533-534
_rotr(), 533-534
_rtl_chmod(), 319
_rtl_close(), 270-271
_rtl_creat(), 271-273
_rtl_heapwalk(), 448-450
_rtl_open(), 306-308
_rtl_read(), 315-316
_rtl_write(), 338-339
Run time, 9, 13, 686-687
Run-time type identification (RTTI), 720,

748-750

S
scanf(), 201, 209-216, 319-323, 558

format specifiers, table of, 210, 321
Scanset, 213-214, 322-323
scientific format flag, 698, 699
Scope resolution operator (::), 562, 631,

771, 773, 777, 798
Scope, 87-88
_searchenv(), 536-537
searchpath(), 468
Sector (disk), 196
SECURITY_ATTRIBUTES structure, 474

I n d e x 973

SEEK_CUR macro, 217, 227-228
seekdir enumeration, 716
SEEK_END macro, 217, 227-228
seekg(), 716-717, 718
seekp(), 716-717, 718
SEEK_SET macro, 217, 227-228
Selection statements, 56-66
set container, 814
<set> header, 814
setbuf(), 324
_setcursortype(), 534-535
setdate(), 430
setdisk(), 469
setf(), 699-700
setftime(), 431
setjmp(), 535-536, 748
<setjmp.h> header, 523, 524, 536
setlocale(), 537
setmem(), 357
setmode(), 324
set_new_handler(), 538
set_terminate(), 732, 745-747
settime(), 430
set_unexpected(), 742, 746-747
setvbuf(), 325
short modifier, 17
showbase format flag, 698, 699
showpoint format flag, 698, 411
showpos format flag, 698, 699
Sign flag, 17
signal(), 538-539
<signal.h> signals, 531, 538-539
signed modifier, 17
sin(), 86, 397
sinh(), 397-398
sinhl(), 397-398
sinl(), 397
size(), 816
sizeof operator, 47-48, 189-191, 244, 506
size_t data type, 130, 148, 216, 342, 506
skipws format flag, 698
sleep(), 432
sopen(), 325-328

sort(), 832-833
Source code, 9, 13
spawn...() functions, 481-484
splice(), 827
_splitpath(), 469-470
sprintf(), 328
sqrt(), 86, 398
sqrtl(), 398
srand(), 86, 539-540
sscanf(), 328-329
Stack, 12, 147

and local variables, 22
and recursive functions, 109

stack container, 814
<stack> header, 814
Standard Template Library (STL), 552,

810-861
elements of, 810-814
general theory of operation,

814-815
startup directive, 248-249
stat(), 329-330
Statements, program control, 56-81
static storage class specifier, 24, 26-29, 590
static_cast, 750-751
_status87(), 540
std namespace, 556, 560, 690, 794,

803-805
<stdarg.h> header, 546
stdaux stream, 196-197, 232
_ _STDC_ _ predefined macro, 253, 254
stderr standard stream, 196-197, 232
stdin standard stream. 196-197, 232-233
<stdio.h> header, 103, 194, 216, 266
<stdlib.h> header, 130, 148, 440, 472, 506
stdout standard stream, 196-197, 232-233
stdprn stream, 196-197, 232
Stepanov, Alexander, 552
stime(), 432
STL. See Standard Template Library (STL)
Storage class specifiers, 24-30
stpcpy(), 357-358
strcat(), 120, 358

974 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

strchr(), 120, 359
strcmp(), 69, 120-121, 151-153, 359-360
strcmpi(), 363-364
strcoll(), 360
strcpy(), 120, 360-361
strcspn(), 361
_strdate(), 433
strdup(), 362
Stream(s), 195-207

binary, 195
C++ standard, 691
for C++ file I/O, 708-710
classes, 691-692
predefined text, 196-197, 232-233
text, 195

streambuf class, 692
streamsize type, 701, 714
strerror(), 363
_strerror(), 362-363
strftime(), 434
stricmp(), 363-364
String(s)

as array, 116, 119-121
arrays of, 125-127
in console I/O, 200-201, 203, 212
constants, 33
environmental, 99-101
in file I/O, 224-225
functions, 120, 342
table, 157

string class, 861-873
advantages of, 862-863
and containers, 871-873
dynamic aspect of, 866
member functions, 866-871
operators defined for, 863-864

<string> header, 863
<string.h> header, 120, 342
strlen(), 73, 120, 364-365
strlwr(), 365
strncat(), 365-366
strncmp(), 367-368

strncmpi(), 367-368
strncpy(), 368
strnicmp(), 367-368
strnset(), 369
Stroustrup, Bjarne, 552
strpbrk(), 369-370
strrchr(), 370
strrev(), 371
strset(), 371-372
strspn(), 372
strstr(), 100-101, 120, 373
_strtime(), 433
strtod(), 540-541
strtok(), 373-374
strtol(), 542
_strtold(), 540-541
strtoul(), 542
struct keyword, 164

for declaring structure variables, 189
Structure(s), 164-181

accessing, 166-167
arrays and structures within, 181
arrays of, 168-174
assignments, 167
and classes, 594-596
declaration, 166
file control, 197
to functions, passing entire, 176
to functions, passing members of, 175
pointers, 177-180

Structured languages, 6-7
strupr(), 375
strxfrm(), 375-376
swab(), 543
switch statement, 56, 63-66

versus function pointer array, 157
<sys\locking.h> header, 303
<sys\stat.h> header, 267, 295, 329
system(), 543
Systems program, 8
<sys\timeb.h> header, 423

I n d e x 975

T
Tag, structure, 165. 166
tan(), 399
tanh(), 399-400
tanhl(), 399-400
tanl(), 399
tell(), 330
tellg(), 718
tellp(), 718
template keyword, 720, 724, 727
Template(s), 691, 720-721, 731

classes, 726-731
functions, 720-726

terminate(), 732, 742, 745-747
terminate_handler type, 745
Ternary operator (?), 44-45, 56, 60-63,

627, 631
Text functions, screen-based, 488-504
textattr(), 499-500
textbackground(), 500-501
textcolor(), 501-502
text_info structure, 494-495
textmode(), 502-503
this pointer, 623-624, 627, 631, 633, 643
Thompson, Ken, 4
throw, 731-737

clause, restricting exceptions
thrown with, 742-743

to rethrow, using, 744-745
time(), 434-436
Time and date functions, 402-403
Time delay loops, 71
_ _TIME_ _ predefined macro, 253, 254
time structure, 402-403
timeb structure, 423
<time.h> header, 402, 614
time_t type, 402
tm structure, 402
tmpfile(), 330-331
tmpnam(), 331-332
toascii(), 544
tolower(), 376

_tolower(), 376
toupper(), 376-377
_toupper(), 376-377
transform() algorithm, 846, 852-853,

854-857
true, 577
True and false in C, 38, 56
try block, 731-737
Two's complement, 17
Type

cast, 51-52, 130
checking and prototypes, 101
conversion, 31-33, 50-51, 52, 619-621
conversion functions, 786-788

typedef, 164, 191-192
typeid, 748-750
type_info class, 748-749
<typeinfo.h> header, 748
typename keyword, 806
tzset(), 436

U
ultoa(), 525
umask(), 544
unary_function STL class, 857, 859
uncaught_exception(), 747
#undef directive, 236, 245-246
undefineonoption directive, 248
unexpected(), 742-743, 745
unexpected_handler type, 746
ungetc(), 332-333
ungetch(), 333
union keyword used in declaring

variables, 189
Unions, 164, 184-186, 191

anonymous, 597-598
and classes, 596-598

unitbuf format flag, 698, 699
unixtodos(), 436-437
unlink(), 334
unlock(), 334-335

976 B o r l a n d C + + B u i l d e r : T h e C o m p l e t e R e f e r e n c e

UnPred, 812
unsetf(), 700-701
unsigned modifier, 17
uppercase format flag, 698, 699
using statement, 556, 792, 798-800,

804-805
<utility> header, 812
utimbuf structure, 545
<utime.h> header, 545
utime(), 545-546

V
va_arg(), 546-547
va_end(), 546-547
Variable declaration, 19-20

differences between C and C++,
573, 616-617

versus definition, 25
Variables, 19-30

access modifiers for, 19
automatic, 20
initializing, 33, 553
member. See Member variables
pointer, 45, 141
register, 807
storage class specifiers for, 24-30

Variables, global, 6, 12, 22-24
extern used with, 25-26
static, 28-29

Variables, local, 6, 20-22, 24
differences between C and C++,

declaring, 616-617, 807
static, 26-28, 29

va_start(),546-547
vector container, 810, 814, 815-825

member functions, table of, 817
<vector> header, 814
vfprintf(), 335-336

vfscanf(), 336-337
Virtual functions, 674-687

and class libraries, 679
overloading versus overriding, 677
pure, 684-686

virtual keyword, 674, 775, 779
void data type, 16

in parameter list, 84, 557, 807
volatile, 19, 751
vprintf(), 335-336
vscanf(), 335-336
vsprintf(), 335-336
vsscanf(), 336-337

W
wait(), 484-485
warn directive, 251
wchar_t data type, 506, 577, 712
wcstombs(), 548
wctomb(), 548
wherex(), 503, 591
wherey(), 503, 591
while loop, 56, 72-73
Wide-character-based I/O classes, 691, 692
width(), 701-702
WILDARGS.OBJ, 98-99
Window, screen-based text functions

and the, 488
window(), 504
Windows I/O, 197
write(), 338-339, 714-715
wstring class, 862

X
XOR (exclusive OR) bitwise operator (^),

40-41, 42

I n d e x 977

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

