


Java
Learn	The	Basic	In	3	Days

David	Chang
	



Contents
	

1.	 Fundamentals	of	Object	Oriented	Programming
1.1	Introduction	(OOP)
1.2	Objects	and	Classes
1.3	Data	Abstraction
1.4	Encapsulation
1.5	Polymorphism
1.6	Inheritance
	

2.	 Introduction	to	Java
2.1	History	of	Java
2.2	Basic	features	of	Java
2.3	Compiler	and	Interpreter
2.4	The	JVM
2.5	The	Java	Runtime	Environment	(JRE)
2.6	The	Java	Development	Kit	(JDK)
2.7	Reserved	Words
	

3.	 Data	Types	and	Tokens	in	Java
3.1	Data	Types
3.2	Java	Tokens
	

4.	 Operators	and	Expressions
4.1	Types	of	Operators
4.2	Expressions
	

5.	 Conditional	and	Decision	Making	Statement
5.1	Programming	by	using	assignment	statement
5.2	Programming	using	Streams
5.3	Declarations	while	using	streams
5.4	Decision	Making	In	Java
	

6.	 Looping
6.1	Looping	Structure
6.2	Types	of	Loops
	

7.	 Array
7.1	Types	of	Array
7.2	Declaration	of	an	Array
7.3	Passing	an	Array	to	a	Method
7.4	Basic	Operations	on	Java	:	Searching	and	Sorting



	
8.	 Classes,	Objects	and	Methods

8.1	Classes	in	Java
8.2	Creating	an	Object
8.3	Methods
8.4	Creating	Methods
8.5	Method	Calling
8.6	Method	Overloading	8.7	Method	Overriding
	

9.	 Interfaces	and	Packages
9.1	Interfaces
9.2	Packages	in	Java
9.3	Advantages	of	Java	Package
	

10.	 Constructors
10.1	Types	of	Constructors
	

11.	 Thread	and	Multithread	in	Java
11.1	Lifecycle	of	a	Thread
11.2	Commonly	used	methods	of	Thread	class
11.3	Creating	Thread
11.4	Multithreading
	

12.	 Handling	Exceptions	and	Errors
12.1	Exception	Handling	with	try-catch
12.2	Exception	Handling	with	throws	keyword
12.3	Advantages	of	Exception	Handling	in	Java
12.4	Errors
12.5	Difference	between	Errors	and	Exceptions
	

13.	 Some	Questions	and	Answers



Chapter	1	FUNDAMENTALS	OF	OBJECT	ORIENTED
PROGRAMMING
	
1.1	INTRODUCTION	(OOP)
	
Object	Oriented	Programming	(OOP)	is	an	approach	to	standardize	the	programs
by	creating	partitioned	memory	area	for	both	data	and	method.	It	has	been
developed	to	increase	the	programmer's	productivity	and	also	to	overcome	the
traditional	approach	of	programming.	The	different	Object	Oriented
Programming	languages	are	C++,	Java,	Simula-67,	etc.
	
An	Object	Oriented	Programming	(OOP)	allows	the	data	to	be	applied
within	designated	program	area.	It	gives	more	significance	to	data	rather
than	Methods	which	means	it	also	provides	the	reusability	feature	to
develop	productive	logic.
	
	
FEATURES	OF	OBJECT	ORIENTED	PROGRAMMING	(OOP)
	

The	objects	can	be	used	as	a	bridge	to	have	data	flow	from	one	method	to
another.
It	gives	importance	to	data	items	rather	than	methods.
It	makes	the	complete	program	simpler	by	dividing	it	into	a	number	of
objects.
Data	can	be	easily	modified	without	any	change	in	the	method.

	
	
PRINCIPLES	OF	(OOP)
	

Objects
Classes
Data	Abstraction
Encapsulation
Data	Hiding
Inheritance
Polymorphism

	



	
1.2	OBJECTS	AND	CLASSES
	
OBJECTS
	
Object	is	a	unique	entity	which	contains	data	and	methods	(characteristics	and
behavior)	together	in	an	Object	Oriented	Programming	(OOP)	Language.
	
	
Example:	Let	us	consider	the	real	world	objects,	which	are	visible	before	us.
	
Any	object	in	the	real	world	can	possess	the	following	characteristics:
	

It	is	visible.
It	can	be	described	easily.
	

You	can	observe	that	the	above	mentioned	criteria	has	unique	identity,			definite
state,	or	characteristics	and	behaviors.	For	example	consider	an	object	Bed:

	
It	has	the	following	characteristics:
	
It	has	four	legs.
It	has	a	plain	top.

	
						And	the	behaviors	are:
	

It	is	used	to	sleep.
It	is	used	to	sit.

	
In	Payroll	system,	an	employee	may	be	taken	as	an	example	of	object	where
characteristics	are	name,	designation,	basic	pay	and	behavior	as	calculating
gross	pay,	provident	fund,	printing	pay	slip,	etc.
	
	



CLASSES
	
Class	is	a	set	of	different	objects.	Class	can	contain	fields	and	methods	to
explain	about	the	behavior	of	an	object.	Each	object	of	a	class	possesses
same	attributes	and	behavior	defined	within	the	same	class.	Class	is	also
termed	as	Object	factory.
	
For	Example:	If	Rainbow	is	the	class	then	the	colors	in	the	rainbow	represent	the
different	objects	of	the	class	Rainbow.
	
Similarly,	we	can	consider	a	class	named	fruit	where	apple,	mango,	orange	are
members	of	the	class	fruit.

If	fruit	is	defined	as	a	class,	then	the	statement:
	
fruit	apple	=	new	fruit();	will	create	an	object	apple	belonging	to	the	class	fruit.
	
1.3	DATA	ABSTRACTION
	
Abstraction	refers	to	the	act	of	representing	essential	features	(relevant
data)	without	including	background	details	in	order	to	reduce	complexity
and	increase	efficiency.
	
Abstraction	is	the	absolute	property	of	a	class.	The	class	binds	the	data	items	and
functions	to	promote	abstraction.	The	data	members	are	accessed	only	through
the	related	methods.	A	class	uses	the	property	of	abstraction	called	as	abstract
data	type.
	
For	Example:	For	driving	a	car,	you	only	use	the	essential	features	without
knowing	in	details	the	internal	mechanism	of	the	system.	You	can	apply	brake	to
stop	the	car,	press	accelerator	to	speed	up	the	car	and	press	clutch	to	change	the
gears.
Do	you	ever	think	what	changes	are	taking	place	in	the	machinery	part	of	the
engine?	The	answer	is	simply	No.	This	act	of	driving	a	car	is	termed	as
abstraction.
	
1.4	ENCAPSULATION
	
Encapsulation	is	the	system	of	wrapping	up	of	data	and	functions	into	a



single	unit	(called	class).
	
For	Data	Hiding	Encapsulation	run	on	an	important	OOP	concept.	In	Object
Oriented	Programming	(OOP),	data	cannot	move	freely	from	method	to	method.
They	are	kept	in	the	corresponding	classes	in	such	a	way	that	they	will	not	be
accessible	to	the	outside	world	except	by	using	them	through	the	related
methods.
	
It	is	the	most	important	feature	of	a	class.	The	functions	used	in	a	class	can	only
access	the	data	items.	These	functions	provide	interface	between	data	items	of
the	objects	and	the	calling	program.
	
Such	insulation	of	data,	which	cannot	be	accessed	directly	outside	class	premises
although	they	are	available	in	the	same	program,	is	known	as	DATA	HIDING.
	
1.5	POLYMORPHISM
	
The	literal	meaning	of	Polymorphism	is	“available	in	many	forms”.	Suppose	you
have	developed	a	method	to	perform	the	addition	then	it	will	find	the	sum	of	two
numbers	passed	to	the	method.	In	case	the	passed	arguments	are	strings,	the
function	will	produce	the	concatenated	(joined)	string.
	
Hence,	Polymorphism	is	the	ability	of	different	objects	to	respond,	each	in
its	own	way,	to	identical	messages.	It	allows	the	use	of	different	internal
structure	of	the	object	by	keeping	the	same	external	interface.
	
1.6	INHERITANCE
	
Inheritance	can	be	defined	as	the	process	by	which	objects	of	one	class	can
link	and	share	some	common	properties	of	objects	from	another	class.
	
An	object	of	a	class	acquires	some	properties	from	the	objects	of	another	class.
Superclass	or	base	class	is	a	class	that	used	as	basis	for	inheritance.	Subclass	or
derived	class	is	known	as	a	class	that	inherits	from	a	superclass.
	
	
BENEFITS	OF	OBJECT	ORIENTED	PROGRAMMING	(OOP)
	
Some	benefits	of	OOP	are	as	listed	below:



	
You	can	create	different	modules	in	your	project	through	objects.
You	can	extend	the	use	of	existing	class	through	inheritance.
Using	the	concept	data	hiding	can	generate	secured	program.
It	is	highly	beneficial	to	solve	complex	problems.
It	is	easy	to	modify	and	maintain	software	complexity.

	
	



Chapter	2	INTRODUCTION	TO	JAVA
	
2.1	HISTORY	OF	JAVA
	
Java	programming	language	was	originally	developed	by	James	Gosling	at	Sun
Microsystems	(Broomfield,	Colorado,	USA)	and	released	in	1995	as	a	core
component	of	Sun	Microsystems'	Java	platform.	This	language	was	initially
called	Oak	(named	after	the	Oak	trees	outside	Gosling’s	office).The	platform
independence	is	one	of	the	most	significant	advantage	that	JAVA	has	over	other
languages.
	
JAVA	encapsulates	many	features	of	C++.	Originally	JAVA	was	designed	to
execute	applets,	downloaded	while	Web	browsing.	But	gradually,	the	language
has	been	gaining	wide	acceptance	as	a	programming	language,	very	often
replacing	C	or	C++.
	
2.2	BASIC	FEATURES	OF	JAVA
	
JAVA	possesses	the	following	features:
	

Java	is	not	a	purely	Object	Oriented	Programming	language.
Java	programs	are	both	compiled	and	interpreted.
It	can	access	data	from	a	local	system	as	well	as	from	net.
Java	programming	is	written	within	a	class.	The	variables	and	functions
are	declared	and	defined	with	the	class.
Java	programs	can	create	Applets	(the	programs	which	run	on	Web-
browsers).
Java	is	case	sensitive	language.	It	distinguishes	the	upper	case	and	lower
case	letters.

	
2.3	COMPILER	AND	INTERPRETER
	
All	high	level	languages	need	to	be	converted	into	machine	code	so	that	the
computer	understands	the	program	after	taking	the	required	inputs.
	
The	conversion	of	high-level	language	to	machine-level	language	can	be	done	in
two	possible	ways.	It	can	be	done	either	by	using	a	Compiler	or	an	Interpreter.



	
The	software,	by	which	the	conversion	of	the	high	level	instructions	is
performed	line	by	line	to	machine	level	language,	is	known	as	an	Interpreter.	If
an	error	is	found	on	any	line,	further	execution	stops	till	it	is	corrected.	This
process	of	error	correction	is	much	easier	but	the	program	takes	longer	time	to
execute	successfully.	
	
SOURCE	CODE	->	COMPILER/INTERPRETER	->	MACHINE	CODE
	
However,	if	all	the	instructions	are	converted	to	machine	level	language	at	once
and	all	the	errors	are	listed	together,	then	the	software	is	known	as	Compiler.
This	process	is	much	faster	but	sometimes	it	becomes	difficult	to	debug	all	the
errors	together	in	a	program.
	
The	Java	source	code	and	Java	bytecodes	are	compiles	in	javac	command.
	
Compilation	Syntax:	javac	filename.java
	
	
2.4	THE	JVM
	
JAVA	is	a	high	level	language	(HLL)and	the	program	written	in	HLL	is	compiled
and	then	converted	to	an	intermediate	language	called	Byte	Code.	Byte	code
makes	a	Java	program	highly	portable	as	its	Bytes	code	can	easily	be	transferred
from	one	system	to	another.	When	this	Byte	code	is	to	be	run	on	any	other
system,	an	interpreter,	known	as	Java	Virtual	Machine	is	needed	which	translates
the	byte	code	to	machine	code.
	
	

	

	

	



	

	

Java	machine	code	varies	from	different	platforms	like	Windows	98,	Unix
System,	etc.	Hence,	JVM	acts	as	a	virtual	processor	and	converts	the	byte	code
to	the	machine	code	for	concerning	platform.	That	is	why	it	is	called	Java
Virtual	Machine.

Three	notions	of	JVM	are:	Implementation,	instance	and	specification.	The
specification	document	describes	what’s	required	of	JVM	implementation.
Single	specification	ensures	all	implementation	are	interoperable.
Implementation	program	meets	the	requirements	of	the	JVM	specification.	JVM
Instance	is	implementation	running	in	process	that	executes	a	program	compiled
into	Java	bytecode.

Thus,	the	Java	machine	uses	compiler	and	interpreter	too.

	

2.5	JAVA	RUNTIME	ENVIROMENT	(JRE)

Java	Runtime	Environment	is	used	to	provide	runtime	environment.	It	is	the
implementation	of	JVM.	It	contains	other	files	and	set	of	libraries	that	used	at
runtime	by	JVM.		It	is	a	software	package	that	contains	what	is	required	to	run	a
Java	program.	It	includes	together	Java	Class	Library	Implementation	and	Java
Virtual	Machine	implementation.	The	Oracle	Corporation,	which	owns	the
Java	trademark,	distributes	a	Java	Runtime	environment	with	their	Java	Virtual
Machine	called	HotSpot.

	

2.6	JAVA	DEVELOPMENT	KIT	(JDK)

Java	Development	Kit	(JDK)	contains	JRE	and	development	tools.	JDK	Tools
such	as	the	compilers	and	debuggers	are	necessary	for	developing	applications
and	applets.

Java	Libraries	in	JDK	1.3



Java	Development	Kit	(JDK)	contains	a	Java	Class	Library	for	different
purposes.	Some	useful	packages	in	it	are	mentioned	below:

java.io	:	to	support	classes	to	deal	with	input	&															output
statements.

java.lang	:	to	support	classes	containing	String,								Character,	Math,
Integer,Thread	etc.

java.net	:	to	support	classes	for	network	related	operations	and	dealing
with	URL	(Uniform	Resource	Locator)

java.txt	:	for	supporting	text	elements	such	as	date,	times	and	currency
etc.

java.math	:	to	support	mathematical	functional	such										as	square
roots	(integer	&	decimal	both)

java.applet	:	to	support	classes	to	generate	applet	–	specific
environment

java.awt	:	to	support	abstract	window	tool	kit	and	managing	GUI
(Graphic	User	Interface)

	

2.7	RESERVED	WORDS

Reserved	words	or	keywords	are	those	words	which	are	preserved	with	the
system.	These	words	cannot	be	applied	as	a	variable	name	in	any	program.	Java
also	has	reserved	words.	Some	of	the	reserved/key	words	are	listed	below:

		case 		switch 		int 		void 		default
		do 		break 		double 		import 		boolean
		try 		const 		long 		class 		char
		catch 		if 		new 		package 		goto
		for 		else 		byte 		static 		throws
		while 		short 		public 		private 		float
	

Comment	Statements	in	Java	Programming

There	are	some	cases	where	it	becomes	difficult	for	a	user	to	understand	the
logic	applied	in	a	program	particularly	when	any	other	person	has	developed	it.



In	such	cases,	the	programmer	keeps	mentioning	the	purpose	and	action	being
taken	in	different	steps	by	applying	comment	statement	in	the	program.

There	are	three	ways	to	give	a	comment	in	Java	programming.

1.	//																											:	used	for	single	line	comment

2.	/*	comments	to	be	written	*/	:	used	for	multi	line	comment

3.	/**	documenting	comment	*/

	
	



Output	Statement	in	Java	Programming
	
System.out.println()	and	System.out.print()	are	the	statements	that	are	used	to
get	the	output	of	the	program	or	to	display	messages	on	the	screen.
	
While	using	System.out.println()	statement,	the	cursor	skips	the	line	and	passes
to	the	next	line	after	displaying	the	required	result.
	
And,	when	you	use	System.out.print()	statement,	the	cursor	remains	on	the
same	line	after	displaying	the	result.
	
Syntax:	System.out.println(“Welcome	to	Java”);
								System.out.println(“The	product	of	two	numbers	is”	+a);
	
	
Note:
	

		The	message	is	to	be	written	within	double	quotes	(“		“)
enclosed																			within	braces.
		When	a	message	is	to	be	displayed	along	with	a	variable,	then	they	are

to	be	separated	with	‘+’	(plus)	sign.
	



Chapter	3	DATA	TYPE	AND	TOKENS	IN	JAVA
	
3.1	DATA	TYPES
	
Data	types	are	predefined	types	of	data,	which	are	supported	by	the
programming	language.	It	specifies	the	size	and	type	of	values	that	can	be	stored
in	a	variable.	In	Java	Programming	we	have	to	deal	with	various	types	of	data,
hence	it	becomes	necessary	for	a	programmer	to	select	an	appropriate	data	type
according	to	the	data	taken	in	a	program.
	
The	data	type	has	been	divided	into	two	types:
	
Primitive	Type
Non-Primitive	Type

	
	

Primitive	Data	Types
	

	

	

	

Primitive	data	types	are	pre-defined	or	built-in	data	types,	which	are	independent
of	any	other	type.	For	eg.	int,	long,	float,	double	etc.

Integer	Type	

Integer	types	can	hold	whole	numbers	such	as	123	and	−96.	The	values	size	can
depend	on	stored	integer	type	that	we	choose.	It	does	not	contain	decimal	point.
There	are	two	types	of	declarations	under	this	heading:



int		:	applied	for	short	integer	number.

						Bit	size	->	32	bits,	Format	->	int	a;	a=10;	or	int	a=10;

long	:	applied	for	large	integer	number.

						Bit	size	->	64	bits,	Format	->	long	b;	b=345678;	or

						long		b=345678;

Floating	Type

Floating	point	data	types	are	used	to	represent	numbers	with	a	fractional
part.	There	are	two	types	of	declarations	under	this	heading:

float		:	applied	for	small	range	of	decimal	values.

Bit	size	->	32	bits,	Format	->	float	m;	m=32.65;	or	float	m=32.65;

double	:	applied	for	wide	range	of	decimal	values.

Bit	size	->	64	bits,	Format	->	double	n;	n=0.0006547839;	or								double
n=0.0006547839;

	

Character	Type

It	stores	character	constants	in	the	memory	and	contains	a	single	character.
A	character	is	enclosed	in	single	quotes	(‘	‘).Strings	are	enclosed	in	double
quotes(“	“).	

The	character	types	in	Java	are	as	follows:

		Non	Numeric Character
type				

			Bit	Size 				Format

Single	character 				char 16	bits(2	bytes) char	c;	c=’A’;
char	d;	d=’*’;
char	c	=’A’;

More	than	one
character/a
word/a	sentence

				String More	than	16
bits

String	a;
a=”College”;

	

Boolean	Type

Boolean	data	types	are	used	to	store	values	with	two	states:	true	or	false.



These	are	non-figurative	constants.	You	can	use	Boolean	type	variable	to
set	true	or	false	in	order	to	ensure	whether	a	logical	condition	is	satisfied
or	not.	It	assumes	one	of	the	values	true	or	false	without	quotes.

For	Example:	boolean	flag=true;	or	boolean	flag=false;

Non-Primitive	Data	Type

	

	

	

	

Classes	

A	class,	in	the	context	of	Java,	are	templates	that	are	used	to	create
objects,	and	to	define	object	data	types	and	methods.	

For	Example:

public	class	MyFirstJavaProgram	{

/*

		This	is	my	first	java	program.

		This	will	print	‘Welcome’	as	the	output.

*/

public	static	void	main	(String[]	args){

System.out.println(“Welcome”);	//	prints	Welcome

}

				}	
Let's	look	at	how	to	save	the	file,	compile,	and	run	the	program−

	Open	notepad	and	add	the	code	as	above.



	Save	the	file	as:	MyFirstJavaProgram.java.

	Open	a	 command	prompt	window	and	go	 to	 the	directory	where	you
saved	the	class.	Assume	it's	C:\.

	Type	'javac	MyFirstJavaProgram.java'	and	press	enter	to	compile	your
code.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 If	no	errors	 in	code	then	command	prompt	will
process	 to	 next	 line.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Then,	 type	 '	 java
MyFirstJavaProgram	'	and	press	enter	to	run	your	program.

	You	will	be	able	to	see	'	Welcome	'	printed	on	the	window.

We	will	study	later	about	Arrays	in	chapter	7

3.2	JAVA	TOKENS

Each	individual	character	used	in	a	java	statement	is	known	as	Java	Token.

Types	of	Java	Tokens

Literals

Identifiers

Assignments

Punctuators

Operators

Literals	(Constants)

These	 are	 the	 constants	 used	 in	 a	 Java	 program.	 Java	 uses	 the	 literals
classified	in	the	following	ways:

Integer	Literals	 :	These	are	 the	whole	numbers	having	positive	or	negative
values.	e.g.	15,	256,etc.

Real	 Literals	 :	 They	 represent	 numbers	 with	 decimal	 points.	 e.g.	 24.6,
0.0045,	etc.

Character	 Literals	 :	 The	 constants	 which	 are	 alphanumeric	 in	 nature	 are
called	character	literals.	e.g.	‘A’,	‘b’,	‘1’,	‘*’	etc.

String	Literals	:	String	is	a	set	of	alphanumeric	characters.

e.g.	“Year	2017”,	etc.



Identifiers	(Variables)

Identifiers	 are	 also	 called	 variables	 in	 Java	 programming.	 A	 variable	 is	 a
named	memory	 location,	which	contains	a	value.	A	variable	can	be	 treated
by	any	combination	of	letters	without	spaces.	We	can	declare	more	than	one
variables	of	the	same	type	in	a	statement.

Syntax:	datatype	variable	name;

e.g.	int	a;	float	a,b,c;

Assignments

Assignment	 token	 assigns	 the	 value	 on	 its	 right	 to	 the	 operand	 on	 its	 left.
To	assign	object	references	operator	can	also	be	used.

e.g.	int	speed	=	0;	int	gear	=	1;

Punctuators

Punctuators	are	the	punctuation	signs	used	in	Java.	Some	punctuators	are	:	;	,
?	etc.

Separators

These	are	special	characters	that	are	used	in	Java	to	separate	the	characters
or	variables.

e.g.	(,),{,},[,]	etc.

	

Operators

The	 operators	 are	 the	 symbols	 used	 to	 perform	 arithmetical	 or	 logical
operations	in	Java	programming.	e.g.	+,-,*,/,||,&&,<,>	etc.

	

Note:	We	have	Detail	Explain	about	Operators	in	Next	Chapter



Chapter	4	OPERATORS	AND	EXPRESSIONS
An	 operator	 is	 basically	 a	 symbol	 or	 token,	 which	 performs	 logical	 or
arithmetical	 operations	 and	 gives	meaningful	 result.	 The	 values	which	 are
involved	in	the	operation,	are	termed	as	operands.

For	 example	 :[	 a	 +	 b	 *	 c]	where	 a	 b	 and	 c	 are	 operands,	 +	 and	 *	 are	 the
operators.

4.1	TYPES	OF	OPERATORS

Basically,	there	are	three	types	of	operators	in	Java	which	are	as	follows:

Arithmetical

Relational

Logical

ARITHMETICAL	OPERATORS

The	operators,	which	are	applied	to	perform	arithmetical	calculations	in
a	program,	are	known	as	arithmetical	operators	like	+,-,*,etc.

Arithmetical	Expression:

An	arithmetical	expression	may	contain	variables,	constants	and	arithmetical
operators	together	to	produce	a	meaningful	result.

e.g.	a+b,x-10,b*b-4*a*c	etc.

Arithmetical	Statement:

If	an	arithmetical	expression	is	assigned	to	a	variable	then	it	is	known	as	an
arithmetical	statement.

Syntax:	Variable	=	Arithmetical	Expression;

e.g.	x	=	a	+	b,	z=b*b-4*a*c

Types	of	Arithmetical	Operators

Unary	Operator

Binary	Operator

Ternary	Operator



Unary	Operator

Unary	 operator	 can	 also	 be	 known	 as	 arithmetical	 operator	 which	 can	 be
applied	with	a	single	operand.		e.g.	+,-,++	etc.

Unary	Increment	and	Decrement	Operators:

Unary	 Increment	 Operator	 (++)	 increases	 the	 value	 of	 an	 operand	 by	 one
whereas	Unary	Decrement	Operator	 (--)	decreases	 the	value	of	an	operand
by	one.

Example:

1.	 i	=	i	+	1

By	applying	increment	operator	it	can	be	written	as	i++	or	++i

2.	 j	=	j	–	1

By	applying	decrement	operator	it	can	be	written	as	j--	or	--j

Unary	Increment/Decrement	Operators:

Prefix

Postfix

Prefix

When	increment	or	decrement	operators	are	applied	before	the	operand,	it	is
known	as	prefix	operators.	This	operator	works	on	the	principle	‘CHANGE
BEFORE	ACTION’.	It	means	the	value	of	the	variable	changes	before	the
action	takes	place.

Example	:	p	=	5;

p	 =	 ++p	 *	 4;	 gives	 the	 result	 24	 as	 p	 increases	 by	 1	 before	 the	 operation
performed.

p	=	--p	*	4;	gives	 the	result	16	as	p	decreases	by	1	before	 the	operation	 is
being	performed.

Postfix

When	increment	or	decrement	operators	are	applied	after	 the	operand,	 it	 is
known	as	postfix	operators.	This	operator	works	on	the	principle	‘CHANGE
AFTER	THE	ACTION’.	 It	means	 the	value	of	 the	variable	changes	after



performing	the	operation.

Example	:	p	=	5;

p	 =	 p++	 *	 4;	 gives	 the	 result	 20	 as	 p	 increases	 by	 1	 after	 the	 operation
performed.

p	 =	 p--	 *	 4;	 gives	 the	 result	 20	 as	 p	 decreases	 by	 1	 after	 the	 operation	 is
being	performed.

Binary	Arithmetic	Operators

An	arithmetic	operator,	which	deals	with	two	operands	is	known	as	Binary
Arithmetic	Operators.	e.g	a	+	b,	a	–	b,	etc.

Ternary	Operators	(Conditional	Operator)

Ternary	Operators	takes	three	operands.	It	is	also	called	conditional	operator
because	the	value	assigned	to	a	variable	depends	upon	a	logical	expression.

Syntax:	variable	=	(test	expression)?	Expression	1:Expression	2;

The	variable	contains	 the	result	of	expression	1	 if	 the	 test	condition	 is	 true
otherwise	expression	2.

e.g.	a	=	4;	b	=	2;

max	=	(a>b)?	a:b;

Here,	the	condition	is	true	so	the	output	will	be	4	as	the	value	of	a	is	4.

Nested	Ternary	Operator

You	can	use	ternary	operator	in	nested	form	as	shown	below	:

e.g.	Program	to	find	maximum	among	three	numbers:

					int	a	=	4,	b	=	10,	c	=	2;

max	=	(a>b)?			(a>c)?	a:b						:	(b>c)?	b:c;

	

Test	condition			Expression	1					Expression	2

Since,	the	test	condition	is	false,	it	will	operate	expression	2	which	enables
value	12	to	be	stored	in	max.	Hence,	max	=	12.



RELATIONAL	OPERATORS

Relational	operators	compare	the	values	of	the	variables	and	return	a	boolean
value	 in	 terms	 of	 ‘True’	 or	 ‘False’	 (i.e.	 0	 or	 1).	 Java	 has	 six	 relational
operators	that	are	<	,	>	,	<=	,	>=	,	==	,	and	!=	.

LOGICAL	OPERATORS

Java	 uses	 logical	 operators	AND(&&),	OR(||)	 or	NOT(!).	 These	 operators
yield	1	or	0	depending	upon	the	output	of	different	expressions.

e.g.	(a>b)&&(a>c),!(a==b)

	

Note:	 If	 a	 statement	 contains	 all	 the	 three	 logical	 operators	 then	 NOT
operator	will	perform	first.

BITWISE	OPERATORS

Bitwise	operators	use	byte,	short,	int	and	long	type	operands.	However,	float
and	double	types	are	not	allowed.

e.g.	&	-	Bitwise	AND

					|	-	Bitwise	OR

					^	-	Bitwise	XOR

					<<	-	Left	Shift

					>>	-	Left	Shift

4.2	EXPRESSIONS

When	 you	 write	 a	 program	 in	 Java,	 it	 is	 necessary	 to	 represent	 the
arithmetical	expressions	into	Java	expressions.

Mixed	Expression

An	expression	which	includes	different	types	of	variables	or	values	to	yield	a
result	is	called	as	Mixed	Expression.

e.g.	int	a;	float	b;	double	c;

					double	z	=	a	+	b	*	c;

Implicit	Type	Conversion



In	mixed	expression,	the	data	type	of	the	result	gets	converted	automatically
into	its	higher	type	without	intervention	of	the	user.	This	type	conversion	is
known	as	Implicit	Type	Conversion.

Explicit	Type	Conversion

When	the	data	type	gets	converted	to	another	type	after	user	intervention,	the
type	conversion	is	known	as	Explicit	Type	Conversion.

	

e.g.	int	a,	b;

float	x	=	(float)	(a+b);



Chapter	 5	 CONDITIONAL	 AND	 DECISION	 MAKING
STATEMENTS
In	 the	 first	 part	 of	 the	 chapter,	 we	 will	 discuss	 about	 unconditional
statements,	 which	 will	 help	 to	 give	 a	 detailed	 idea	 of	 writing	 Java
instructions	in	a	program.

In	order	to	perform	a	specified	task	in	a	program	you	need	to	provide	some
values,	which	can	be	used	during	execution	of	the	program.	The	statement,
which	accepts	 the	values	from	the	users,	 is	known	as	 input	statement.	Java
provides	various	ways	to	use	input	statements	in	programming.	They	are	as
follows:

By	assigning	the	values

By	using	input	streams

By	using	Command	line	arguments

5.1	PROGRAMMING	BY	USING	ASSIGNMENT	STATEMENT

By	using	assignment	statement,	you	can	take	values	of	data	of	your	own	or
mentioned	in	the	program.

Example:	A	program	in	Java	to	find	the	sum	of	two	numbers	using

									assignment	statement.

									public	class	sum

								{

									public	static	void	main	(String	args[])

								{

								int	a,b,c;	c=0;

								a=15;b=45;

								c=a+b;

							System.out.println(“The	sum	of	the	two	numbers	=”+c);

							}



							}

Output:

The	sum	of	the	two	numbers	=	60.

5.2	PROGRAMMING	USING	STREAMS

Package	in	Java	is	basically	a	collection	of	classes.	Each	package	includes
related	 built-in	 functions,	 which	 may	 be	 used	 while	 developing
programming	logic.	

Buffer

CPU	 or	 processor	 is	 the	 fastest	 device	 in	 a	 computer.	 Other	 peripheral
devices	are	comparatively	slower	then	processor.	Due	to	speed	differences	it
becomes	 difficult	 to	 have	 data	 communication	 between	 processor	 and
peripheral	 devices.	 Hence,	 a	 high	 speed	 memory	 is	 applied	 between	 I/O
devices	 and	 processor	 used	 as	 a	 bridge	 to	 synchronize	 their	 speeds.	 This
high-speed	temporary	storage	(cache	memory)	is	termed	as	Buffer.	You	need
to	activate	the	buffer	before	any	input/output	operation.

Activating	Buffer	in	Java

InputStreamReader	 <object	 name1>	 =	 new	 InputStreamReader
(System.in);

BufferedReader	 <object	 name2>	 =	 new	 BufferedReader	 (<object
name1>)

																									OR

DataInputStream<object	name>	=	new	DataInputStream(System.in);

	

Main	function

The	next	step	is	to	declare	a	main	function	as	given	below:

public	static	void	main	(string	args[])throws	IOException

The	 main	 function	 is	 issued	 to	 execute	 a	 program.	 Thereafter,	 throws
IOException	eliminates	I/O	errors	in	the	program(if	any).	It	passes	a	report
on	I/O	errors	to	the	exception	handler	of	Java	System.

5.3	DECLARATIONS	WHILE	USING	STREAMS



1.	 At	first	Java	library	package	needs	to	be	defined.

			Syntax:	import	java.io.*;	or

											import	java.io.lang	or	may	be	both	the	packages

2.	 Two	statements	are	essentially	needed,	when	you	are	using	Input	stream
to	activate	buffer.

								DataInputStream	in	=	new	DataInputStream(System.in);

																											OR

								public	static	void	main(String	args[])throws	IOException

								InputStreamReader	read	=	new	InputStreamReader(System.in);

								BufferedReader	in	=	new	BufferedReader(read);

3.	 A	message	 is	 to	 be	 displayed	 before	 Input	 statement	 in	 order	 to	 enable
input	editor.

			Syntax:	System.out.println(“Enter	your	name”);

4.	 The	Syntax	of	Input	statement	in	Java	programming:

			n	=	Integer.parseInt(in.readLine());

This	statement	will	accept	only	integer	from	the	user	whereas	:

			n	=	Float.parseFloat(in.readLine());

will	accept	fractional	numbers	from	the	user.

Example:	A	Java	program	to	accept	perpendicular	and	base	of	a	Right	angled
triangle

calculating	and	displaying	the	hypotenuse	and	area	of	the	triangle.

import	java.io.*;

public	class	Triangle

{

public	static	void	main(String	args[])throws	IOException

{

float	p,b;



double	area=0,hyp=0;

InputStreamReader	read	=	new	InputStreamReader(System.in);

BufferedReader	in	=	new	BufferedReader(read);

System.out.println(“Enter	perpendicular	and	base”);

p=Float.parseFloat(in.readLine());

b=Float.parseFloat(in.readLine());

hyp=Math.sqrt(p*p+b*b);

area=(float)1/2*p*b;

System.out.println(“Hypotenuse	=”+hyp);

System.out.println(“Area	=”+area);

}

}

5.4	DECISION	MAKING	IN	JAVA

Sometimes	our	program	needs	to	take	a	decision	based	on	whether	a	particular
condition	has	occurred	or	not.		Then	our	program	will	execute	certain	statements
based	on	this	decision.
Decision	making	in	Java	can	be	achieved	using	any	of	the	following	statements:

if	statement
switch	statement
conditional	operator	statement

if	statement

You	can	use	if	statement	to	check	a	specified	condition.	It	performs	a	course	of
action	if	the	condition	is	true	otherwise,	the	action	is	ignored.

Syntax:	if(condition)													



								{
								Statement	1
								Statement	2

								}	 				Yes

			 No

				

	

If	 the	 statement	 is	 true	 the	 statements	 (statement	 1	 and	 statement	 2)	 are
executed.	 If	 the	 condition	 is	 false	 the	 control	 ignores	 the	 statements	 and
passes	to	the	next	line	of	the	program.

Example:

			public	class	IfStatement
			{

			public	static	void	main(String	args[])
					{
									//Declaring	a	variable	"test"	and	initializing	it	with	a	value	10
									



									int	test=10;
	
									//Checking	if	"test"	is	greater	than	5
											if(test>5)

	
										{
													//This	block	will	be	executed	only	if	"test"	is	greater	than	5
													System.out.println("Success");
									}

	
									//The	if	block	ends.
									System.out.println("Executed	successfully");
					}
}

	
Output:	Executed	successfully

if-else	statement

Here	 if	 the	 condition	 is	 true,	 the	 code	 which	 is	 written	 inside	 the	 curly
brackets	 {}	 of	 the	 if	 block	will	 be	 executed.	 	 If	 the	 condition	 is	 false,	 the
code	which	is	written	inside	the	curly	brackets	{}	of	 the	else	block	will	be
executed.
Syntax:

	if(condition)
{
		Statements	which	will	be	executed	if	the	condition	is	true
}
else
{
		Statements	which	will	be	executed	if	the	condition	is	false
}
Statements	that	need	to	be	executed	always

Example:	public	class	IfElseStatement
									{

									public	static	void	main(String	args[])
									{
									//Declaring	a	variable	"test"	and	initializing	it	with	a	value	10

									int	test=10;



	
									//Checking	if	"test"	is	greater	than	5
									if(test>5)
									{
									//This	block	will	be	executed	only	if	"test"	is	greater	than	5
													System.out.println("Success");
									}
									else
									{
										//This	block	will	be	executed	only	if	"test"	is	not	greater	than	5
													System.out.println("Failure");

	
									}

	
									//The	if	else	blocks	ends.
									System.out.println("Executed	successfully");
					}
}

	

Output:	Success

								Executed	successfully

if	else-if	ladder

Conditions	are	calculated	from	top.	1st		if(	condition-x)		will	evaluate	and	if	it’s
true,	the	code	inside	the	if	block	will	execute	else	if(condition-x)	is	false	then
else	if	(condition-y)	will	evaluate	and		If(condition-y)	is	true,	then	code	inside
that	else-if	block	will	execute	or	else	If(condition-y)	is	false	then	else
if(condition-z)		will	evaluate.	This	will	go	on	like	this.
If	none	of	the	conditions	are	true,	the	code	inside	the	else	block	will	execute.
Example:

if(condition-x)
{
		Statements	execute	if	condition-x	is	true
}
	

else	if	(condition-y)
{
		Statements	execute	if	condition-y	is	true
}	
.



.

.
else	if(condition-z)
{
		Statements	execute	if	condition-z	is	true
}	
else
{
		Statements	execute	if	none	of	the	conditions	in			condition-x,	conditiony,…
condition-z	are	true.
}
Statements	execute	always

Example:

			public	class	IfElseIfLadder
			{

			public	static	void	main(String	args[])
			{
									//Declaring	a	variable	"test"	and	initializing	it	with	a	value	2

									int	test=2;
	
									if(test==1)
									{
													//This	block	will	be	executed	only	if	"test"	is	equal	to	1
													System.out.println("Hello");
									}

									else	if(test==2)
									{
													//This	block	will	be	executed	only	if	"test"	is	equal	to	2
													System.out.println("Hi");

	
									}

									else	if(test==3)
									{
													//This	block	will	be	executed	only	if	"test"	is	equal	to	3
													System.out.println("Good");
									}
									else
									{
													System.out.println("No	Match	Found");
									}
					}
}



Output:	Hi

	

	Nested	if…else	statement

When	you	combine	multiple	if	/	if-else	/if-else-if	ladders	then	lot	sequence
decisions	are	involved.	You	have	to	take	care	of	program	executes,	instructions
when	sequence	conditions	are	encountered.
Example:
public	class	NestedIf
{
				public	static	void	main(String	args[])
				{
								//Declaring	a	variable	a	and	initializing	it	with	a	value	5
								int	a=3;
								//Declaring	a	variable	b	and	initializing	it	with	a	value	3
								int	b=3;
	
								if(a==5)
								{
												//This	block	will	be	executed	only	if	"a"	is	equal	to	5
												if(b==3)
												{
																/*This	block	will	be	executed	only	if
																	a	is	equal	to	5				and	b	is	equal	to	3	*/
																System.out.println("Hi,	a	is	5	and	b	is	3");
	
												}
												else
												{
																/*This	block	will	be	executed	only	if
																	a	is	equal	to	5	and	b	is	some	value	other	than	3	*/
System.out.println("Hi,	a	is	5	and	b	is	some	value	other	than	3");
												}



								}
								else	if(a==4)
								{
												//This	block	will	be	executed	only	if	a	is	4
												System.out.println("Hi,	a	is	4");
	
								}
								else	if(a==3)
								{
												//This	block	will	be	executed	only	if	"a"	is	3
	
												if(b==3)
												{
		/*This	block	will	be	executed	only	if	a	is	equal	to	3	and	b	is	equal			to	3	*/
						System.out.println("Hi,	a	is	3	and	b	is	3");
												}
												else	if(b==2)
												{
																/*This	block	will	be	executed	only	if
																	a	is	equal	to	3	and	b	is	equal	to	2	*/
																System.out.println("Hi,	a	is	3	and	b	is	2");
												}
	
								}
								else
								{
												/*This	block	will	be	executed	only	if
													a	is	some	value	other	than	5,4,3*/
	
System.out.println("Hi,	a	is	some	value	other	than	5,4,3");
								}
				}



}
Output:	Hi,	a	is	3	and	b	is	3
	
Switch	case	statement
Switch	case	statement	is	a	multiple	branching	statement.	In	this	system	the
control	jumps	to	perform	a	particular	action	out	of	a	number	of	actions
depending	upon	a	switch	value.	A	switch	statement	is	associated	with	a	number
of	blocks.	Each	block	is	defined	under	a	specific	case.	The	control	gets
transferred	to	a	particular	case,	which	matches	with	the	given	switch	value.	Each
case	ends	with	a	break	statement,	which	can	be	used	as	a	case	terminator.	Break
statement	passes	the	control	out	of	the	switch	block.
					You	can	use	a	special	case	called	default	case	which	is	automatically
followed	if	no	case	matches	with	the	given	switch	value.
	
Example:	A	Java	program	to	accept	two	numbers	and	find	the	sum,	difference	or
product	according	to	user’s	choice.
import	java.io.*;
public	class	choice
{
public	static	void	main(String	args[])throws	IOException
{
int	a,b,ch;
InputStreamReader	read	=	new	InputStreamReader(System.in);
BufferedReader	in	=	new	BufferedReader(read);
System.out.println(“Enter	two	numbers”);
a=Integer.parseInt(in.readLine());
b=Integer.parseInt(in.readLine());
System.out.println(“Enter	1	to	add,2	to	sub.,3	to	mult”);
System.out.println(“Enter	your	choice”);
ch=Integer.parseInt(in.readLine());
switch(ch)
{
case	1:



System.out.println(“The	sum	of	two	nos.=”+(a+b));
break;
case	2:
System.out.println(“The	diff.	of	two	nos.=”+(a-b));
break;
case	3:
System.out.println(“The	product	of	two	nos.=”+(a*b);
break;
default:
System.out.println(“It	is	a	wrong	choice”);
}
}
}
	



Chapter	6	LOOPING
	
6.1	LOOPING	STRUCTURE
	
A	looping	structure	contains	the	following	parts:

Control	Variable
Body	of	the	loop
Test	Condition
Step	Value

	
6.2	TYPES	OF	LOOPS
	
Types	of	Loops	in	Java:

for	loop
while	loop
do	while	loop

	
for	loop
We	can	perform	any	conditional	repetitive	type	of	flow	very	easily	with	the
help	of	for	loop.	It	is	used	for	a	fixed	number	of	iterations.
Syntax:	for(initial	value;	final	value;	step	value)
{
task	to	be	performed
}
Example:	A	Java	program	to	print	all	natural	numbers	from	1	to	5.
public	class	num
{
public	static	void	main(String	args[])
{
int	a;



for(a=1;a<=5;a++)
{
System.out.println(a);
}
}
Output:	1
								2
								3
								4
								5

Nested	for	loop
When	you	apply	a	for	loop	within	another	for	loop,	the	structure	is	termed	as
nested	for	loop.
Example:	A	Java	program	to	display	the	given	pattern	using	for	loop.
									1
									1	2
									1	2	3
public	class	pattern
{
public	static	void	main(String	args[])
{
int	a;
for(a=1;a<=3;a++)
{
for(b=1;b<=a;b++)
{
System.out.print(b);
System.out.println();
}
}
}
	



while	loop
while	loop	repeats	a	statement	or	group	of	statements	while	a	given	condition	is
true.	It	tests	the	condition	before	executing	the	loop	body.	The	loop	will	continue
executing	till	the	test	condition	is	true.
Syntax:	while(condition)
							{
								Statements	to	execute
							}
Example:	A	program	in	Java	to	display	a	message	on	the	screen	10	times	by			
using	while	statement.
public	class	msg
{
public	static	void	main(String	args[])
{
int	i=1;
while(i<=10)
{
System.out.println(“Welcome	to	Java	Programming.”);
i++;
}
}
Infinite	while	loop
In	a	while	loop,	if	a	user	does	not	provide	increment/decrement	expression	it
becomes	infinite	loop.	The	loop	repeats	infinitely	as	the	test	condition	always
remains	true.
int	i=1;
while(i<=10)
{
s=s+i;
}
	
Nested	while	loop
Nested	while	loop	can	be	known	as	while	loop	used	within	another	while



loop.
Example:	A	Java	program	to	display	the	given	pattern	using	while	loop.
									1
									1	2
									1	2	3
	
public	class	pattern
{
public	static	void	main(String	args[])
{
a=1;
while(a<=3)
{
b=1;
while(b<=a)
{
System.out.print(b);
b++;
}
System.out.println();
a++;
}
	
Do-while	loop
Do-while	loop	is	used	in	a	program	where	number	of	iterations	is	not	fixed.	In
this	system,	the	control	enters	the	loop	without	checking	any	condition,	executes
the	given	steps	and	then	checks	the	condition	for	further	continuation	of	the
loop.
Thus,	this	type	of	loop	executes	the	tasks	at	least	once.	If	the	condition	is	not
satisfied,	then	the	control	exits	from	the	loop.
Syntax:	do
							{
								task	to	do



							}
							while(condition);
	
Example:	A	Java	program	to	find	the	factorial	of	10.
public	class	factorial
{
public	static	void	main(String	args[])
{
int	i,f;i=1;f=1;
do
{
f=f*i;
i++;
}
while(i<=10);
Sytem.out.println(“The	factorial	of	10	=”	+f);
}
}
	
Use	of	break	statement
Sometimes,	it	is	needed	to	stop	a	loop	suddenly	when	a	condition	is	satisfied.	A
break	statement	is	used	for	unusual	termination	of	a	loop.
Syntax:	while(condition)
							{
								execution	continues
								if(another	condition	is	true)
								break;
								------;
								------;
				}
Use	of	continue	statement
The	statement	continue,	is	just	the	opposite	of	break	statement.	As	soon	as	the



continue	statement	is	executed	in	a	loop,	the	control	skips	rest	of	the	statement
for	that	value	and	resumes	for	the	next	iteration.
Syntax:	while(condition)
								{
									Statement	1
									------;
									------;
								if(another	condition)
								continue;
								Statement	2
								-------;
								-------;
								}



Chapter	7	ARRAY
	
Arrays
In	Java	programming,	you	may	need	to	structure	the	memory	to	store	numerous
data	items	by	applying	minimum	set	of	variables	and	by	using	optimum	memory
space.	It	becomes	necessary	to	store	data	within	the	memory	in	the	most
convenient	and	economical	way.
Java	array	is	an	object	that	contains	elements	of	similar	data	type.	It	is	a	data
structure	where	we	store	similar	elements.	We	can	store	only	fixed	set	of
elements	in	a	java	array.
Index	based	Array	is	in	java,
Array	First	element	is	stored	at	0	index.

First	index
		 		 		 		 		 		 		 		 		 	
		0 		1 		2 		3 		4 		5 		6 		7 		8 		9
	

																	
																																Array	length	is	10
	
7.1	TYPES	OF	ARRAY
	
•	Single	Dimensional	Array
•	Double	Dimensional	Array
	
Single	Dimensional	Array
Single	Dimensional	Array	is	also	known	when	the	elements	are	specified	by	a
single	subscript,	
Syntax	to	Declare	Single	Dimensional	Array
•	dataType[]	arr;	(or)
•	dataType	[]arr;	(or)
•	dataType	arr[];
	



7.2	DECLARATION	OF	AN	ARRAY	IN	JAVA
	
Array	in	java	can	be	Declare	like:
arrayVar=	new	datatype[size];
	
Example	of	Single	Dimensional	Java	Array
	
1. class	TestSingleArray{	
2. public	static	void	main(String	args[]){	
3. 	
4. int	a[]=new	int[5];	//declaration	and	instantiation	of	int
5. a[0]=10;	//initialization	a[?]	with	numbers
6. a[1]=20;	
7. a[2]=70;	
8. a[3]=40;	
9. a[4]=50;	
10. 	
11. //printing	array	
12. for(int	i=0;i<a.length;i++)//length	is	the	property	of	array	
13. System.out.println(a[i]);	
14. 	
15. }}
	
	
Output:	10
							20
							70
							40
							50
	
Instantiate	and	initializing	the	java	array	together	can	be	declared	as:
	



1. class	Test1Instantiateandinitializating{	
2. public	static	void	main(String	args[]){	
3. 	
4. int	a[]={33,3,4,5};	//declaration,	instantiation	and	initialization		int
5. 	
6. //printing	array	
7. for(int	i=0;i<a.length;i++)	//length	is	the	property	of	array	
8. System.out.println(a[i]);	
9. 	
10. }}	
	
	
Output:
								33
								3
								4
								5
	
7.3	PASSING	AN	ARRAY	TO	METHOD
	
We	can	pass	the	java	array	to	method	so	that	we	can	reuse	the	same	logic	on	any
array.
	
1. class	Test2PassingMethod{	
2. static	void	min(int	arr[]){	
3. int	min=arr[0];	
4. for(int	i=1;i<arr.length;i++)	
5. 	if(min>arr[i])	
6. 		min=arr[i];	
7. 	
8. System.out.println(min);	
9. }	



10. 	
11. public	static	void	main(String	args[]){	
12. 	
13. int	a[]={33,2,4,5};	
14. min(a);//passing	array	to	method
15. }}
	
						Output:2
	
Double	Dimensional	Array
In	such	case,	data	is	stored	in	row	and	column	based	index	(also	known	as	matrix	form).

Syntax	:			dataType[][]	arrayRefVar;	(or)		
									dataType	[][]arrayRefVar;	(or)		
									dataType	arrayRefVar[][];	(or)		
									dataType	[]arrayRefVar[];		
	
Example	to	instantiate	2-dimensional	array:
int[][]	arr	=	new	int[3][3];//3	row	and	3	column	
	
Example	to	initialize	2-dimensional	array:
arr[0][0]=1;	
arr[0][1]=2;		
arr[0][2]=3;		
arr[1][0]=4;		
arr[1][1]=5;		
arr[1][2]=6;		
arr[2][0]=7;		
arr[2][1]=8;		
arr[2][2]=9;
	
Example	of	2-dimensional	array:

1.																											class	Testarray3Dimensional{		
2.																											public	static	void	main(String	args[]){		
3.																													
4.																											//declaring	and	initializing	2D	array		
5.																											int	arr[][]={{1,2,3},{2,4,5},{4,4,5}};		
6.																													



7.																											//printing	2D	array		
8.																											for(int	i=0;i<3;i++){		
9.																												for(int	j=0;j<3;j++){		
10.																										System.out.print(arr[i][j]+"	");		
11.																								}		
12.																								System.out.println();		
13.																							}		
14.																									
15.																							}}		

	
Output:	1	2	3
								2	4	5
								4	4	5
	
7.4	BASIC	OPERATIONS	ON	JAVA
Arrays	provide	the	following	basic	operations:

Searching
Sorting
Insertion
Deletion
Merging

	
Search
It	 is	a	process	to	determine	whether	a	given	item	is	present	in	the	array	or	not.
This	can	be	done	by	two	ways:
	

Linear	Search
Binary	Search

	
Linear	Search
It	is	one	of	the	simplest	technique	in	which	the	searching	of	an	item	begins	at	the
start	of	an	array(i.e.	0th	position	of	the	array).	The	process	continues	one	another,
where	 each	 element	 of	 the	 array	 is	 checked	 	 and	 compared	with	 a	 given	 data
item	till	 the	end	of	 the	array	 location	 is	 reached.	This	process	 is	also	called	as
Sequential	Search.
	
Binary	Search
It	 is	 the	 another	 technique	 to	 search	 an	 element	 in	 the	 given	 array	 by	 using
minimum	 possible	 time.	 Searching	 takes	 place	 in	 either	 half	 of	 the	 array	 by



		18 		32 		50 		56 		65 		79 		88
0th 1st 2nd 3rd 4th 5th 6th

further	dividing	it	into	two	halves.
However,	 the	 binary	 search	 can	 be	 applied	 only	 when	 the	 array	 elements	 are
sorted	into	a	sequence(ascending/descending).It	always	compares	the	element	to
be	searched	with	the	middle	element	of	the	sorted	array.	If	the	middle	member	is
smaller	 then,	 the	 search	 is	 carried	 out	 in	 upper	 half,	 otherwise	 the	 search
continues	 in	 the	 lower	half.	The	middle	element	of	 the	either	half	 is	compared
with	the	search	item.	This	process	is	repeated	till	the	search	terminates.
	
	

	
	

	
									First								 																			Mid 							Last
	
Step	1:	First=0,Last=6,Mid=(First+Last)/2=(0+6)/2=3
Step	2:	num[Mid]=num[3]=55
									55>31
Since,	55	is	greater	therefore	search	will	take	place	in	the	first	half	of	the	array.
Step	3:	Last=Mid-1	=	3-1=2
(In	case,	the	number	to	be	searched	is	greater	than	the	mid	value	then,	
First=Mid+1).
Mid=(First+Last)/2	=	(0+2)/2=1
Num[Mid]=	num[1]=31

		18 32 50

	0th 	1st 	2nd
	

	First									Mid										Last
	
Sorting
It	is	a	process	of	arranging	data	in	a	specified	order	which	may	be	either
ascending	or	descending.

Selection	Sort
Bubble	Sort



	
Selection	Sort
This	is	one	of	the	techniques	to	sort	the	given	data	item	in	a	specified
order(ascending/descending).
Suppose	you	have	to	arrange	numbers	in	ascending	orders	from	unsorted	data.
	
Step	1:	At	first,	the	smallest	number	is	selected	through	iteration	from	the
unsorted	data	list.	This	number	is	interchanged	with	the	number	at	0th	position
(i.e.	16	comes	from	6th	position	to	0th	position	and	45	goes	to	6th	position	from	0th
position).
	

45 98 50 57 90 28 16 78
0th 1st 2nd 3rd 4th 5th 6th 7th

	
Step	2:	Find	the	next	smallest	element	from	1st	position	onward(i.e.28).
Interchange	it	with	1st	position	element.
	

		16 98 50 		57 90 28 45 78
0th 1st 2nd 3rd 4th 5th 6th 7th

	
Step	3:	Find	the	next	smallest	element	from	2nd	position
onward(i.e.45).Interchange	it	with	2nd	position	element.
	

		16 		28 50 		57 90 98 		45 78
		0th 		1st 	2nd 3rd 4th 5th 	6th 7th

	
Step	4:	Find	the	next	smallest	element	from	3rd	position



onward(i.e.50).Interchange	it	with	3rd	position	element.
	

16 28 		45 		57 		90 		98 		50 		78
0th 1st 		2nd 	3rd 4th 		5th 		6th 		7th

	

Step	5:	Find	the	next	smaller	element	from	4th	position	onward(i.e.57).
Interchange	it	with	4th	position	element.
	

		16 28 45 50 90 98 57 78
		0th 1st 2nd 3rd 4th 5th 6th 7th

	
	
	
Step	6:	Find	the	next	smaller	element	from	5th	position	onward(i.e.78).
Interchange	it	with	5th	position	element.
	
	

		16 28 45 50 57 98 90 78
		0th 1st 2nd 3rd 4th 5th 6th 7th

	
	
	
Step	7:	Find	the	next	smaller	element	from	6th	position	onward(i.e.90).
Interchange	it	with	6th	position	element.
	

		16 28 45 50 57 78 90 98



		0th 1st 2nd 3rd 4th 5th 6th 7th

	
Thus,	the	numbers	are	arranged	in	ascending	order	using	Selection	Sort.
	
Bubble	Sort
This	technique	is	most	widely	used	for	sorting	elements	in	a	single	dimensional
array.	In	this	technique,	array	is	sequentially	scanned	several	times	and	during
each	iteration	the	pairs	of	consecutive	elements	are	compared	and	interchanged
into	a	specific	order(ascending/descending).	It	is	an	easy	technique	but
consumes	lot	of	time	when	the	number	of	exchanges	is	much	high.
Technique	to	sort	the	numbers	using	bubble	sort
Arranging	the	elements	in	ascending	order:

10 		7 25 		4 12
0th 1st 2nd 3rd 4th

	
Elements	10	and	7	are	compared.	Both	are	interchanged	as	10>7.
	

7 		10 25 		4 12
0th 1st 2nd 3rd 4th

	
Elements	10	and	25	are	compared	but	not	interchanged	as	10<25.
	
	

		7 		10 25 		4 12
0th 1st 2nd 3rd 4th

	



Elements	25	and	4	are	compared	and	interchanged	as	25>4.
	
	

10 		7 4 		25 12
0th 1st 2nd 3rd 4th

	
Elements	25	and	12	are	compared	and	interchanged	as	25>12.
	
Thus,	the	numbers	are	arranged	in	ascending	order	using	Bubble	Sort.
	
Insertion
	
To	perform	an	insertion	sort,	begin	at	the	left-most	element	of	the	array	and
invoke	Insert	to	insert	each	element	encountered	into	its	correct	position.	The
ordered	sequence	into	which	the	element	is	inserted	is	stored	at	the	beginning	of
the	array	in	the	set	of	indices	already	examined.
	
	
	



Chapter	8	CLASSES,	OBJECTS	AND	METHODS
8.1	CLASSES	IN	JAVA
A	class	is	a	blueprint	from	which	individual	objects	are	created.

Example:	public	class	boy
									{

				String	name;
									int	age;
									void	study(){
									}
									void	hungry(){
									}
									void	sleeping(){
									}
									}
A	class	contain	any	following	variables	type.

	 Local	 variables	 −	 Local	 variables	 can	 be	 defined	 inside	 methods,
constructors	or	blocks.

	Instance	variables	−	Variables	declare	within	a	class	but	outside	any
method	and	Variables	 initialized	within	class	are	 instantiated	 is	 Instance
variables.	Variables	can	accessed	from	inside	of	any	method,	constructor
or	blocks	of	particular	class.

	Class	variables	 −	With	 the	 static	 keyword,	within	 a	 class	 or	 outside
any	method	are	Class	variables.

8.2	CREATING	AN	OBJECT
An	 object	 is	 created	 from	 a	 class	 and	 new	 keyword	 is	 used	 to	 create	 new
objects.

Creating	an	object	from	a	class	there	are	three	steps−

	Declaration	−	A	variable	name	with	an	object	type.

	Instantiation	−	'new'	keyword	used	to	create	an	object.

	 Initialization	 −	 'new'	 keyword	 followed	 by	 constructor.	 This	 call



initializes	new	object.

Example:	public	class	Boy{

									public	boy(String	name){

									System.out.println(“Name	is:”	+name);

									}

									public	static	void	main(String	args[]){

									Boy	obj	=	new	Boy(“Ram”);

									}

									}

								Output:

								Name	is:	Ram

8.3	METHODS

A	program	module	used	simultaneously	at	different	instances	in	the	program
is	known	as	Methods.

	
	
8.4	CREATING	METHOD
Syntax:	public	static	int	user(int	a,int	b){
											//body

											}

Here,

	public	static	−	modifier

	int	−	return	type

	user	−	name	of	the	method

	a,	b	−	formal	parameters



	int	a,	int	b	−	list	of	parameters

Example:	public	static	int	max(int	a,int	b){

									int	max;

									if(a>b){

									max=a;

									}

								else{

								max=b;

								}

							return	max;

							}

‘this’	keyword	in	Java

Sometimes,	in	a	member	method	it	is	needed	to	use	the	object	on	which	the
method	is	called.	Java	system	uses	it	with	this	keyword.	The	object	on	which
the	method	is	called	can	be	reffered	in	the	method	with	this.

Example:	class	keyword

									{

									int	a,b;

									void	getvalue(int	p,int	q)

								{

								a=p;

								b=q;

								}

							void	sum(keyword	x,	keyword	y)

							{

							this.a=x.a+y.a;



							this.b=x.b+y.b;

							}

						void	display()

						{

						System.out.println(“sum	of	a”+a);

						System.out.println(“sum	of	b”+b);

						}

						}

					class	calculate

					{

					public	static	void	main(String	args[])

					{

					keyword	ob1	=	new	keyword();

					keyword	ob2	=	new	keyword();

					keyword	ob3	=	new	keyword();

			ob1.getvalue(2,3);

			ob2.getvalue(4,6);

			ob3.sum(ob1,ob2);

			ob3.display();

			}

			}

	
8.5	METHOD	CALLING
There	are	two	ways	of	a	method	calling.

Method	returns	a	value
Returning	nothing	(no	return	value).

	



Method	 calling	 process	 is	 simple.	 When	 program	 invokes	 method,	 program
control	 moved	 to	 called	 method.	 Then	 called	 method	 returns	 control	 to	 the
caller	in	two	conditions.

First	when	return	statement	is	execute,	and
Second	when	reached	to	method	ending	closing	brace.
	

The	 void	 Keyword:	It	 allows	 us	 to	 create	 methods	 which	 do	 not	 return	 a
value.	

8.6	METHOD	OVERLOADING
It	is	known	when	a	class	has	two	or	more	methods	with	the	same	name	but	with
different	parameters.	

Example:	public	class	MethodOverloading{

									public	static	void	main(String[]	args){

									int	w=10;

									int	x=5;

									double	y=6.3;

									double	z=8.4;

									int	value1=	miniVal	(w,	x);

									double	value2=	miniVal(y,	z);

									//	same	type	of	function	name	with	different	parameters

									System.out.println(“Minimum	value	=”	+value1);

									System.out.println(“Minimum	value	=”	+value2);

									}

									//	for	integer	type

									public	static	int	miniVal(int	x1,	int	x2){

									int	mini;

									if(x1>x2){

									mini=n2;



									}

								else{

								mini=x1;

								}

							return	mini;

								}

							//	for	value	function

							public	static	double	miniVal	(double	x1,	double	x2){

							double	mini;

							if(x1>x2){

							mini=x2;

							}

							else{

							mini=x1;

							}

							double	mini;

							}

							}

8.7	METHOD	OVERRIDING

Method	 overriding	 in	 java	 can	 be	 Know	 If	 child	 class	 (subclass)	 has	 same
method	as	declared	in	the	parent	class.

Example:	class	schoolclass{		

											void	run(){System.out.println("school	is	running");}		
													}		
											class	classroom2	extends	schoolclass{		
											void	run(){System.out.println("class	room	is	running");}		
											public	static	void	main(String	args[]){		
												classroom2	obj	=	new	classroom2();		



												obj.run();		
												}		
	

Can	we	override	static	method?
No,	 static	 method	 cannot	 be	 overridden	 because	 static	 method	 is	 bound	 with
class	whereas	instance	method	is	bound	with	object.	Static	belongs	to	class	area
and	 instance	 belongs	 to	 heap	 area.	 We	 cannot	 override	 java	 main	 method
because	main	is	a	static	method.



Chapter	9	INTERFACES	AND	PACKAGES
9.1	INTERFACES

Interfaces	are	syntactically	similar	to	classes,	but	you	cannot	create	instance	of
an	Interface	and	their	methods	are	declared	without	any	body.	Interface	is	used
to	achieve	complete	abstraction	in	Java.	

Syntax	:	interface	interface_name{}

While,	 implementing	 interface	 in	 class,	 the	word	 ‘implement’	 should	 be	 used
and	 the	 methods	 can	 have	 different	 statements	 inside	 them.	 A	 class	 can
implement	 more	 than	 one	 interface.Whatever	 the	 methods	 is	 in	 interface,	 it
should	be	used	in	the	class	otherwise,	while	compilation,	error	will	occur.

Example:	interface	UseInterface

{

int	a=20;

void	use();

}

class	Value	implements	UseInterface

{

public	void	use()

{

System.out.println(“The	value	of	a=”+a);

}

public	static	void	main(String	args[])

{

Value	v	=	new	Value();

v.use();

}



}

Output:	The	value	of	a=20

9.2	PACKAGES	IN	JAVA

A	package	is	a	group	of	classes,	which	can	be	imported	to	a	program	so	that	the
user	may	exercise	the	implicit	facility	available	in	it.

A	package	in	java	program	can	be	included	by	using	import	command.

E.g.	import	java.util.data

					The	util	function	is	imported	to	utilize	its	in-built	data	class.

					import	java.util.*;

It	allows	all	the	classes	of	java.util	package	to	be	included.

Some	 basic	 packages	 which	 can	 be	 imported	 for	 various	 fundamental
operations	are:

java.io

java.util

java.awt

java.net

Java	packages	for	Mathematical	Calculations

For	the	mathematical	functions,	we	can	include	import.java.lang.Math;

	

	

Some	of	the	functions	are	mentioned	below:

		Function 						Description 			Format
		sqrt(a) Returns	 the	 square	 root	 of	 a

positive	number
Math.sqrt(a);

		min(a,b) Returns	 the	 smaller	 number
between	a	and	b

Math.min(a,b);

		max(a,b) Returns	 the	 greater	 number
between	a	and	b

Math.max(a,b);



		abs(a) Returns	 the	 absolute	 value	 of	 any
numeric

Math.abs(a);

round(a) Returns	the	rounded	value	upto	the
nearest	integer

Math.round(a);

exp(a) Returns	an	exponent	value Math.exp(a);
ceil(a) Returns	 the	 rounded	 value	 to	 the

higher	integer
Math.ceil(a);

	

User	defined	packages

Till	now,	we	have	discussed	built	in	java	packages.	A	package	may	be	defined
by	the	users	to	be	used	in	various	programming	logic.	These	are	known	as	user
defined	packages.

e.g.	Package	area;

					Class	Rectangle

					{

					}

					Class	square

				{

				}

The	 package	 name	 is	 area.	All	 the	 classes	within	 it	 are	 the	members	 of	 area
package.

9.3	ADVANTAGES	OF	JAVA	PACKAGE

1)	It	is	used	to	classify	the	interfaces	and	classes,	so	they	can	be	maintain	easily.

2)	It	is	responsible	for	access	protection.

3)	Naming	collision	is	removed.

4)	It	provides	reusability	of	code.

5)	You	can	create	your	own	Package	or	extend	already	available	Package.

	



	



Chapter	10	Constructors
A	constructor	 is	 a	member	 function	with	 a	 name	 as	 same	 as	 that	 of	 the	 class
name	used	to	initialize	the	instant	variables	of	the	objects.

10.1	TYPES	OF	CONSTRUCTOR

Default	Constructor

Parameterized	Constructor

Copy	Constructor

Default	Constructor

A	constructor	which	initializes	instant	variables	of	an	object	with	definite	values
is	known	as	Default	Constructor.

Example:	class	Book{

									/*This	is	my	default	constructor	having	no	return	type	and	name

											same	as	class	name.*/

											Book(){

											System.out.println(“Default	constructor”);

											}

											public	void	mymethod()

											{

											System.out.println(“void		method	of	the	class”);

											}

											public	static	void	main(String	args[]){

											Book	obj	=	new	Book();

										obj.mymethod();

										}

										}



Output:	Default	Constructor

								void		method	of	the	class

Parameterized	Constructor

A	 constructor	 which	 is	 used	 to	 initialize	 the	 object	 variables	 by	 passing
parametric	 values	 at	 the	 time	 of	 its	 creation	 is	 known	 as	 Parameterized
constructor.

Example:	class	pconst{

	 int	a,b;

										pconst(int	x,int	y){

										a=x;

										b=y;

										}

									void	display(){

									System.out.println(“The	value	of	a=”	+a);

									System.out.println(“The	value	of	b=”	+b);

	

									}

									}

	

Copy	Constructor

Copy	Constructor	copies	the	values	of	instant	variables	of	an	object	to	another
instant	variables	object.

Example:	class	copycon{

									//class	using	parameterized	and	copy	constructors;

									int	a,b;

									copycon(int	x,int	y){

									a=x;



									b=y;

									}

									}

								class	abc{

							public	static	void	main(String	args[]){

							copycon	ob=new	copycon(5,8);

							copycon	ob1=ob;

							}

							}

	



Chapter	11	THREAD	AND	MULTITHREAD	IN	JAVA

	
THREAD
Thread	 is	 a	 single	 process	 to	 activate	multiple	 processes	 running	 in
background.	 It	makes	 process	 simple	 to	 execute	 and	 look	 into	 files
sequence	based	as	coded.
11.1	LIFE	CYCLE	OF	A	THREAD

	

																								
	
	
	
	

1.														New	:	A	thread	begins	its	life	cycle	in	the	new	state.	It	remains	in	this
state	until	the	start()	method	is	called	on	it.
2.														Runnable	:	After	invocation	of	start()	method	on	new	thread,	the
thread	becomes	runable.
3.														Running	:	A	method	is	in	running	thread	if	the	thread	scheduler	has
selected	it.
4.														Waiting	:	A	thread	is	waiting	for	another	thread	to	perform	a	task.	In
this	stage	the	thread	is	still	alive.
5.														Terminated	:	A	thread	enter	the	terminated	state	when	it	complete	its
task.

	

11.2	MOSTLY	USED	METHODS	OF	THREAD	CLASS



1.																			run():	Perform	action	for	a	thread.
2.																			start():	Starts	execution	of	thread	by	calling	run()
method.
3.																			stop()	:	Stop’s	the	thread.
4.																			sleep():	For	a	specified	time	suspend	thread.
5.																			getPriority():	Priority	of	the	thread	returns.
6.																			setPriority():	Priority	of	the	thread	changes.
7.																			getName():	Name	of	the	thread	returns.
8.																			setName():	Name	of	the	thread	changes.
9.																			getId():	Id	of	the	thread	returns.
10.															suspend()	:	Suspend	the	thread.
11.															resume()	:	Resume	the	suspended	thread.
12.															stop()	:	Stop	the	thread.

	
11.3	CREATING	A	THREAD

				There	are	two	ways	to	create	a	thread:
1.	 Extending	Thread	class
2.	 Implementing	Runnable	interface.
Example	by	extending	thread	class
class	MyThread	extends	Thread
{
public	void	run()
{
System.out.println(“Concurrent	thread	started	running..”);
}
}
class	MyThreadDemo
{
public	static	void	main(String	args[])
{
MyThread	th	=	new	MyThread();
th.start();



}
}
	

Output:	Concurrent	thread	started	running..

Example	by	implementing	Runnable	interface

class	Test	implements	Runnable{		
public	void	run(){		
System.out.println("Concurrent	thread	started	running..");		
}		
		
public	static	void	main(String	args[]){		
Test	x=new	x();		
Thread	y	=new	Thread(y);		
y1.start();		
	}		
}	
	
Output:	Concurrent	thread	started	running..

	
11.4	MULTITHREADING

The	Word	Multithreading	Mean,	program	contains	 two	or	more	 than	 two
thread	 which	 runs	 parallel.	 Multithreading	 used	 because	 threads	 share	 a
common	 memory	 area	 without	 allocating	 separate	 memory	 area	 to	 save
more	and	also	it	takes	less	time	than	previous	process.



Chapter	12	HANDLING	EXCEPTIONS	AND	ERRORS
An	exception	is	a	problem	that	arises	during	the	execution	of	a	program.	When
an	Exception	 occurs	 the	 normal	 flow	 of	 the	 program	 is	 disrupted	 and	 the
program	 terminates	 abnormally,	 which	 is	 not	 recommended,	 therefore,	 these
exceptions	are	to	be	handled.

Following	are	some	scenarios	where	an	exception	occurs.

	When	a	user	has	entered	an	invalid	data.

	When	file	cannot	be	found.

	When	network	connection	 is	 lost	 in	middle	of	communications	or	 the
Java	Virtual	Machine	runs	out	of	memory.

These	 exceptions	 are	 caused	 by	 user,	 programmer	 and	 by	 physical	 resources
that	have	failed	in	some	method.
12.1	EXCEPTION	HANDLING	WITH	TRY-CATCH

Try	 keyword	 contains	 a	 block	 of	 statements	 to	 perform.	 Any	 exception
occurring	within	the	try	block	is	trapped.	Hence,	it	is	an	error	trapper.	Further	a
report	 is	 to	 be	 passed	 to	 the	 exception	 handler	 about	 the	 error,	which	 can	 be
done	by	catch	block.

The	finally	block	contains	the	statements	which	are	executed	any	way.

Syntax	to	use	try-catch	exception	handler:

try

{

Set	of	statements

}

catch(exception(e)){

}

finally

{



Statement	to	execute	any	way

}

Example:	import	java.io.*;

									public	class	Test{

									public	static	void	main(String	args[]){

									try{

									int	a[]=new	int[2];

									System.out.println(“Access	element	three	:”	+a[3]);

									}catch(ArrayIndexOutOfBoundsException	e){

									System.out.println(“Exception	thrown	:”	+e);

									}

								System.out.println(“Out	of	the	block”);

									}

									}

Output:	java.lang.ArrayIndexOutOfBoundsException:	3

								Out	of	the	block

	

12.2	EXCEPTION	HANDLING	WITH	THROWS	KEYWORD

If	 you	want	 that	 the	 system	 is	 to	be	 reported	 for	 an	 error	 then	you	can	apply
throws	keyword.	A	throws	keyword	is	applied	with	function	signature.

Example:	public	void	getdata()	throws	IOException

This	indicates,	if	an	error	occurs	in	the	function	related	to	I/O	operation	a	report
may	be	passed	to	the	error	handler.

Checked	Exception
The	classes	that	extend	Throwable	class	except	RuntimeException	and	Error	are
known	 as	 checked	 exceptions	 e.g.IOException,	 SQLException	 etc.	 Checked
exceptions	are	checked	at	compile-time.



Unchecked	Exception
The	classes	 that	extend	RuntimeException	are	known	as	unchecked	exceptions
e.g.ArithmeticException,NullPointerException,ArrayIndexOutOfBoundsException
etc.	 Unchecked	 exceptions	 are	 not	 checked	 at	 compile-time	 rather	 they	 are
checked	at	runtime.
	

12.3	JAVA	EXCEPTION	HANDLING	ADVANTAGES

Exception	 handling	 is	 Helpful	 in	 the	 Separation	 of	 results	 for	 less
complex	and	readable	code.	It	is	also	more	capable,	in	the	logic	that	the
testing	of	errors	in	the	normal	implementation	path	is	not	needed.

Logical	error	types	Exceptions	can	be	group	together	with	errors	that	are
connected.	 It	 enables	 us	 to	 handle	 associated	 exceptions	 using	 single
exception	handler.	An	exception	handler	can	catch	exceptions	of	the	class
or	any	sub-class	specified	by	its	parameter.

Exception	handling	allows	 related	 information	 to	be	caught	at	where	an
error	occurs	and	to	show	it	where	it	can	be	successfully	controlled.

	

12.4	ERROR
Error	is	irrecoverable	e.g.	OutOfMemoryError,	VirtualMachineError,	etc.
	
Common	Coding	Errors:

Syntax	 Error	 –	 Syntax	 errors	 are	 errors	 occurred	 in	 the	 syntax	 of	 a
particular	sequence	of	characters	of	a	program.

	
Logical	Errors	–	Logical	errors	occur	when	there	is	a	design	flaw	in	your
program.

	
Runtime	 Errors	 –	 Runtime	 errors	 occur	 during	 the	 execution	 of	 the
program.
	

	
12.5	DIFFERENCE	BETWEEN	ERROR	AND	EXCEPTIONS



																									ERRORS 																									EXCEPTIONS
	Errors	at	 run	 time	cannot	be	known
to	compiler

Checked	exception	can	be	known	and
Uncheck	 cannot	 be	 known	 at	 run
time

Error	 Occurs	 or	 caused	 when	 an
application	runs

Exceptions	Occurs	by	the	application
itself

Errors	 in	 java	 are	 Mostly	 Uncheck
type

	Check	and	Uncheck	are	Two	type	of
exceptions	in	Java

	



Chapter	13	SOME	QUESTIONS	AND	ANSWERS:
	

QUESTIONS
1.	 A	program	of	Java	that	can	be	developed	and	executed	by	the	users,	is	known	as

a>					Application					 b>	Applet

c>					Object d>	none
	

2.	 Java	Virtual	Machine	(JVM)	is	an

a>					Interpreter b>	Interpreter

c>					Machine	code d>	Byte	code
	

3.	 To	find	the	square	root	of	a	number	which	of	the	following	package	is	required?

a>					java.txt b>	java.math

c>					java.lang d>	java.net
	

4.	 Which	of	the	following	is	not	a	Java	reserved	word?

a>					private b>	public

c>					break d>	character
	

5.	 The	term	used	to	correct	the	error	in	a	program,	is	known	as

a>					bug	 b>	debugging

c>					error	removing d>	none
	
	
	

6.	 A	constant	which	gives	the	exact	representation	of	data	is	called

a>					Variable	 b>	Literal

c>					Identifier d>	Character
	

7.	 The	statement	n++	is	equivalent	to

a>					++n b>	n=n+1

c>					n+1 d>	none
	



8.	 What	will	be	the	output	of	a	&	b,	if	int	a,b;	a=10;b=++a?

a>					10,10	 b>	10,11

c>					11,10 d>	11,11
	

9.	 What	will	be	the	output	of	a++;	int	a=-1?

a>					1 b>	-1

c>					0 d>	none
	

10.	 if	condition	is	essentially	formed	by	using

a>					Arithmetic	operators b>	Relational	operators

c>					Logical	operators d>	ternary	operators
	

11.	 If(a!=b){
				c=a;
				}
				else
		{
			c=b;
		}
		can	be	written	as

a>					c=(b!=a)?a:b; b>	c=(a!=b)?a:b;

c>					c=(a!=b)?b:a; d>	both	a	&	b
	

12.	 Which	element	is	represented	with	a[10]

a>					10th	 b>	9th

c>	11th	 d>	none
	
13.	 The	statement	:	int	code[]={26,38,39,43};

a>					Assign	38	to	code[1] b>	Assign	26	to	code[1]

c>					Assign	39	to	code[3] d>	none
	

14.	 A	function	with	many	definitions	is	known	as

a>					multiple	function	 b>	function	overloading

c>					floating	function d>	none
	

15.	 A	function	is	invoked	through	a	class	type-

a>					object	 b>	system



c>					parameter d>	none

ANSWERS:
1.	 a 2.		a 3.		b	 4.	d	 5.	b
6.	 b		 7.		b 8.		b									 9.	c	 10.	b
11.	 d 12.	c 13.	a 14.	b	 							15.	a


