Making Everything Easier!

Learn to: F!-!!

- Create an Android program from start

to finish _j

'ﬂ
« Master basic Java development e o B
concepts and techniques P T P AR —
B ——
TarrLds
u public void onCreate(Bundle
= HEII'IdI'E Prl:lgril I'I'il'l'lll'lg '[hﬂ"E" HES Buper. onCreate(savedinatan \‘
aotContantView(R.layoat.ac
- Assemble the pieces and debug :'
}"ﬂl,.lf EPP Eoverride

public bogslesan cnCreatelptic
getMapuInflates().inflata]
reaturn trus)

SRS,
Barry Burd

Author of Java For Dummies i ————————nr,




Java® Programming for
Android”Developers
13038

DUMMIES

by Barry Burd

DUMMIES



Java® Programming for Android™ Developers For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774,
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
and may not be used without written permission. Java is a registered trademark of Oracle America,
Inc. Android is a trademark of Google, Inc. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations
or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation warranties of fitness for a
particular purpose. No warranty may be created or extended by sales or promotional materials.
The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or
other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Website is referred to in this work as a
citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations
it may make. Further, readers should be aware that Internet Websites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-
4002. For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at http://booksupport.wiley.com. For more
information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013948033
ISBN 978-1-118-50438-3 (pbk); ISBN 978-1-118-61212-5 (ebk); ISBN 978-1-118-61214-9 (ebk)



http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Manufactured in the United States of America
10987654321



Java Programming for Android Developers For

Dummies®

Visit
www.dummies.com/cheatsheet/javaprogrammingfc
to view this book's cheat sheet.

Table of Contents

Introduction

How to Use This Book

Conventions Used in This Book

What You Don’t Have to Read

Foolish Assumptions

How This Book Is Organized

Part I: Getting Started with Java Programming for Android Developers

Part IT: Writing Your Own Java Programs

Part I1I: Working with the Big Picture: Object-Oriented Programming

Part IV: Powering Android with Java Code

Part V: The Part of Tens

More on the web!

Icons Used in This Book

Beyond the Book

Where to Go from Here

Part I: Getting Started with Java Programming for Android Developers

Chapter 1: All about Java and Android

The Consumer Perspective

The Many Faces of Android

The Developer Perspective



http://www.dummies.com/cheatsheet/javaprogrammingforandroiddevelopers

—y

avad

>

L

Linux

From Development to Execution with Java

What is a compiler?

What is a virtual machine?

Java, Android, and Horticulture

Chapter 2: Getting the Tools That You Need

The Stuff You Need

If You Don’t Like Reading Instructions . . .

Getting This Book’s Sample Programs

Gathering Information

Are you running a 32-bit or 64-bit operating system?

If yvou’re a Mac user, which version of Mac OS X do you have?

Is a recent version of Java installed on your computer?

Setting Up Java
Setting Up the Android SDK

Running Eclipse for the First Time
Dude, where’s my Android SDK?

Eclipse, meet Java!

Importing this book’s sample programs

Creating an Android Virtual Device

Chapter 3: Running Standard Java Programs

Running a Canned Java Program
Typing and Running Your Own Code

Separating your programs from mine

Writing and running your program
What’s All That Stuff in the Eclipse Window?

Understanding the big picture

Views, editors, and other stuff

Looking inside a view or an editor

Returning to the big picture




Chapter 4: Creating an Android App

Creating Your First Android App

Creating an Android project

Running your project
What if . . .

Testing Apps on a Real Device

Examining an Android App

The src directory

The res directory

The gen directory

The Android 4.2 branch

The AndroidManifest.xml file

Part II: Writing Your Own Java Programs

Chapter 5: An Ode to Code

Examining a Standard Oracle Java Program

The Java class
The names of classes

Why Java methods are like meals at a restaurant

What does Mom’s Restaurant have to do with Java?

The main method in a standard Java program

Punctuating your code

Comments are yvour friends

What’s Barry’s excuse?

Another One-Line Method

More Java Methods

Using an import declaration

More method parameters

Fewer method parameters

Hello, Android

Where’s the main method?

Extending a class




Overriding methods

An activity’s workhorse methods

Chapter 6: Java’s Building Blocks

Info Is as Info Does

Variable names

Type names

Assignments and initializations

Expressions and literals

How to string characters together

Java’s primitive types

Things You Can Do with Types

Add letters to numbers (Huh?)

Java’s exotic assignment operators

True bit

Java isn’t like a game of horseshoes

Use Java’s logical operators

Parenthetically speaking . . .

Chapter 7: Though These Be Methods, Yet There Is Madness in’t

Practice Safe Typing

Widening is good: narrowing is bad

Incompatible types

Using a hammer to bang a peg into a hole

Calling a Method

Method parameters and Java types

Return types

The great void

Displaying numbers

Method overload without software bloat

Primitive Types and Pass-by Value

What’s a developer to do?

A final word



Chapter 8: What Java Does (and When)

Making Decisions

Testing for equality

Java if statements

A detour concerning Android screen densities

Choosing among many alternatives

Some formalities concerning Java switch statements

Repeating Instructions Over and Over Again

Check, and then repeat

Some formalities concerning Java while statements

Repeat, and then check

Some formalities concerning Java do statements

Count, count, count

Some formalities concerning Java for statements

What’s Next?

Part III: Working with the Big Picture:Object-Oriented Programming

Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Classes and Objects

What is a class, really?

What is an object?

Creating objects

Reusing names

Calling a constructor
More About Classes and Objects (Adding Methods to the Mix)

Constructors with parameters

The default constructor

This is it!

Giving an object more responsibility

Members of a class

Reference types

Pass by reference




Java’s Modifiers

Public classes and default-access classes

Access for fields and methods

Using getters and setters

What does static mean?

Knowing when to create a static member

What’s Next?

Chapter 10: Saving Time and Money: Reusing Existing Code

The Last Word on Emplovees — Or Is It?

Extending a class

Overriding methods

Java annotations

More about Java’s Modifiers

Keeping Things Simple

Using an interface

Creating a callback

How versatile is this interface?

Java’s super keyword

What Does This Have to Do with Android?

Part I'V: Powering Android with Java Code

Chapter 11: A Simple Android Example: Responding to a Button Click

The First Button-Click Example

Creating the Android app

Making a view available to your Java code

Casting, again

Introducing Inner Classes

No Publicity, Please!

Doing It the Easy Way

I warned vou to skip the rest of this chapter

The “no-hassle” way to click a button




Chapter 12: Dealing with a Bunch of Things at a Time

Creating a Collection Class

Java generics

Java’s wrapper classes

Stepping through a collection

A cautionary tale

Java’s many collection classes
Arrays

Java’s varargs

Using Collections in an Android App

The main activity’s initial layout

The app’s main activity

The app’s List Activity

The app’s AndroidManifest.xml file

Chapter 13: An Android Social Media App

The Twitter App’s Files

The Twitter4J API jar file

The manifest file

The main activity’s layout file

The twitter4j.properties file

Getting OAuth codes

The Application’s Main Activity

The onCreate method

The button listener methods

The trouble with threads

Android’s AsyncTask

My Twitter app’s AsyncTask classes

Cutting to the chase, at last

Java’s Exceptions

Catch clauses

A finally clause

Passing the buck




Chapter 14: Hungry Burds: A Simple Android Game

Introducing the Hungry Burds Game

The Project’s Files

The Main Activity

The code, all the code, and nothing but the code

Random

Measuring the display

Constructing a Burd

Android animation

Shared preferences

It’s Been Fun

Part V: The Part of Tens

Chapter 15: Ten Ways to Avoid Mistakes

Putting Capital Letters Where They Belong

Breaking Out of a switch Statement

Comparing Values with a Double Equal Sign

Adding Listeners to Handle Events

Defining the Required Constructors

Fixing Nonstatic References

Staying within Bounds in an Array

Anticipating Null Pointers

Using Permissions

The Activity Not Found

Chapter 16: Ten Websites for Developers

This Book’s Websites

The Horse’s Mouth

Finding News and Reviews

Evervone’s Favorite Sites

About the Author




Cheat Sheet

Connect with Dummies




Introduction

Android is everywhere. In mid-2013, Android ran on 53 percent of all smartphones in the United
States and on 80 percent of all smartphones worldwide.! In a study that spans the Americas,
Europe, Asia, and the Middle East, GlobalWebIndex reports that Android tablets outnumber iPads
by 34 million.? More than a million apps are available for download at the Google Play store
(double the number of apps that were available in May 2012).*> And more than 9 million developers
write code using Java, the language that powers Android devices.*

If you read this book in a public place (on a commuter train, at the beach, or on the dance floor at
the Coyote Ugly saloon, for example), you can read proudly, with a chip on your shoulder and with
your head held high. Android is hot stuff, and you’re cool because you’re reading about it.

ISee www. kantarworldpanel.com/global/News/news-articles/Samsung-nears-50-share-
across-Europe-as-Apple-powers-back-in-the-US and http://www.idc.com/getdoc.jsp?
containerId=prusS24257413.

2See www.globalwebindex.net/android-tablets-dominate-ql-mobile-market.

3See www.androidguys.com/2013/07/24/sundar-pichai-there-are-now-more-than-1-
million-android-apps.

4See www.java.com/en/about.

How to Use This Book

You can attack this book in either of two ways: go from cover to cover or poke around from one
chapter to another. You can even do both (start at the beginning, and then jump to a section that
particularly interests you). This book was designed so that the basic topics come first, and the
more-involved topics follow them. But you may already be comfortable with some basics, or you
may have specific goals that don’t require you to know about certain topics.

In general, my advice is this:

1~ 1f you already know something, don’t bother reading about it.

1~ 1f you’re curious, don’t be afraid to skip ahead. You can always sneak a peek at an earlier
chapter if you need to do so.

Conventions Used in This Book

Almost every technically themed book starts with a little typeface legend, and Java Programming
For Android Developers For Dummies is no exception. What follows is a brief explanation of the
typefaces used in this book:

1 New terms are set in italics.

1~ 1f you need to type something that’s mixed in with the regular text, the characters you type
appear in bold. For example: “Type MyNewProject in the text field.”


http://www.kantarworldpanel.com/global/News/news-articles/Samsung-nears-50-share-across-Europe-as-Apple-powers-back-in-the-US
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.globalwebindex.net/android-tablets-dominate-q1-mobile-market
http://www.androidguys.com/2013/07/24/sundar-pichai-there-are-now-more-than-1-million-android-apps
http://www.java.com/en/about

1 You also see this computerese font. I use computerese for Java code, filenames, onscreen

messages, and other such things. Also, if something you need to type is really long, it appears in
computerese font on its own line (or lines).

1 You may need to change certain things when you type them on your own computer keyboard.
For instance, I may ask you to type

public void Anyname

which means that you type public void and then a name that you make up on your own. Words
that you need to replace with your own words are set in italicized computerese.

What You Don’t Have to Read

Pick the first chapter or section that has material you don’t already know and start reading there. Of
course, you may hate making decisions as much as I do. If so, here are some guidelines you can
follow:

1~ 1If you already know what kind of an animal Java is and you don’t care what happens

behind the scenes when an Android app runs: Skip Chapter 1 and go straight to Chapter 2.
Believe me — I won’t mind.

1~ 1If you already know how to get an Android app running: Skip Part I and start with Part II.

1~ If you have experience writing computer programs in languages other than C and C++:
Start with Part II. You’ll probably find Part II to be easy reading. When you get to Part III, it’1l
be time to dive in.

1~ If you have experience writing computer programs in C or C++: Skim Part II and start
reading seriously in Part III. (Java is a bit different from C++ in the way it handles classes and
objects.)

1~ If you have experience writing Java programs: Come to my house and help me write Java
Programming For Android Developers For Dummies, 2nd Edition.

If you want to skip the sidebars and the paragraphs with Technical Stuff icons, please do. In fact, if
you want to skip anything at all, feel free.

Foolish Assumptions

In this book, I make a few assumptions about you, the reader. If one of these assumptions is
incorrect, you’re probably okay. If all these assumptions are incorrect . . . well, buy the book

anyway.

1~ 1 assume that you have access to a computer. Access to an Android device is helpful but not
absolutely necessary! All the software you need in order to test Android apps on a laptop or
desktop computer is freely available. You simply download, install, and get going.

1~ 1 assume that you can navigate your computer’s common menus and dialog boxes. You
don’t have to be a Windows, Linux, or Macintosh power user, but you should be able to start a
program, find a file, put a file into a certain directory — that sort of thing. Much of the time,



when you follow the instructions in this book, you’re typing code on the keyboard, not pointing
and clicking the mouse.

On those occasions when you need to drag and drop, cut and paste, or plug and play, I guide you
carefully through the steps. But your computer may be configured in any of several billion
ways, and my instructions may not quite fit your special situation. When you reach one of these
platform-specific tasks, try following the steps in this book. If the steps don’t quite fit, consult a
book with instructions tailored to your system. If you can’t find such a book, send me an e-mail.
(My address appears later in the Introduction.)

1~ 1 assume that you can think logically. That’s all there is to application development —
thinking logically. If you can think logically, you’ve got it made. If you don’t believe that you
can think logically, read on. You may be pleasantly surprised.

1~ 1 make very few assumptions about your computer programming experience (or your lack
of such experience). In writing this book, I’ve tried to do the impossible: make the book
interesting for experienced programmers yet accessible to people with little or no programming
experience. This means that I don’t assume any particular programming background on your
part. If you’ve never created a loop or indexed an array, that’s okay.

On the other hand, if you’ve done these things (maybe in Visual Basic, COBOL, or C++), you’ll
discover some interesting plot twists in Java. The creators of Java took the best ideas from
object-oriented programming, streamlined them, reworked them, and reorganized them into a
sleek, powerful way of thinking about problems. You’ll find many new, thought-provoking
features in Java. As you find out about these features, many of them will seem quite natural to
you. One way or another, you’ll feel good about using Java.

How This Book Is Organized

This book is divided into subsections, which are grouped into sections, which come together to
make chapters, which are lumped, finally, into five parts (like one of those Russian matryoshka
dolls). The parts of the book are described here.

Part I: Getting Started with Java Programming for Android

Developers

Part I covers all the nuts and bolts. It introduces you to the major ideas behind Java and Android
software development and walks you through the installation of the necessary software products.
You also run a few simple Java and Android programs.

The instructions in these chapters cover both Windows and Macintosh computers. They cover
many computer configurations, including some not-so-new operating system versions, the
differences between 32-bit systems and 64-bit systems, and situations in which you already have
some form of Java on your computer. But installing software is always tricky, and you might have
a few hurdles to overcome. If you do, check the end of this chapter for ways to reach me (the
author) and get some quick advice. (Yes, I answer e-mails, tweets, Facebook posts, and notes sent
by carrier pigeons.)

Part II: Writing Your Own Java Programs



Chapters 5 through 8 cover Java’s basic building blocks. These chapters describe the things you
need to know so that you can get your computer humming along.

If you’ve written programs in Visual Basic, C++, or in any another language, some of the material
in Part IT may be familiar to you. If so, you can skip some sections or read this stuff quickly. But
don’t read too quickly. Java is a little different from some other programming languages,
especially in the features I describe in Chapter 6.

Part II1: Working with the Big Picture: Object-Oriented

Programming

Part III has some of my favorite chapters. This part covers the all-important topic of object-
oriented programming. In these chapters, you find out how to map solutions to big problems. (Sure,
the examples in these chapters aren’t big, but the examples involve big ideas.) You discover, in
bite-worthy increments, how to design classes, reuse existing classes, and construct objects.

Have you read any of those books that explain object-oriented programming in vague, general
terms? I’m very proud to say that Java Programming for Android Developers For Dummies isn’t
like that. In this book, I illustrate each concept with a simple-yet-concrete program example.

Part IV: Powering Android with Java Code

If you’ve tasted some Java and want more, you can find what you need in this part of the book. This
part’s chapters are devoted to details — the things you don’t see when you first glance at the
material. This part includes some fully functional Android apps. So, after you read the earlier parts
and write some programs on your own, you can dive in a little deeper by reading Part IV.

Part V: The Part of Tens

In The Part of Tens, which is a little Java candy store, you can find lists — lists of tips for avoiding
mistakes, tracking down resources, and finding all kinds of interesting goodies.

More on the web!

You’ve read the Java Programming For Android Developers book, seen the Java Programming For
Android Developers movie, worn the Java Programming for Android Developers T-shirt, and eaten
the Java Programming for Android Developers candy. What more is there to do?

That's easy. Just visit this book's website: www.allmycode.com/Java4Android. There you can find
updates, comments, additional information, and answers to commonly asked questions from

readers. You can also find a small chat application for sending me quick questions when I'm online.
(When I'm not online, you can contact me in other ways. See the end of this chapter for more info.)

Icons Used in This Book

If you could watch me write this book, you’d see me sitting at my computer, talking to myself. I
say each sentence in my head. Most of the sentences I mutter several times. When I have an extra
thought, a side comment, or something else that doesn’t belong in the regular stream, I twist my
head a little bit. That way, whoever’s listening to me (usually nobody) knows that I’'m off on a
momentary tangent.


http://www.allmycode.com/Java4Android

Of course, in print, you can’t see me twisting my head. I need some other way to set a side thought
in a corner by itself. I do it with icons. When you see a Tip icon or a Remember icon, you know
that I’'m taking a quick detour.

Here’s a list of icons that I use in this book:

e

A tip is an extra piece of information — helpful advice that the other books may forget to
tell you.

NG/

O Everyone makes mistakes. Heaven knows that I’ve made a few in my time. Anyway, when
I think people are especially prone to make a mistake, I mark the text with a Warning icon.

wABER
SRR
&

')
7 Question: What’s stronger than a tip but not as strong as a warning?

Answer: A Remember icon.

SYEREL,
e

[\

&/ “If you don’t remember what such-and-such means, see blah-blah-blah,” or “For more
information, read blahbity-blah-blah.”

C.Fl’-fi"‘r,-m

-
This icon calls attention to useful material that you can find online. (You don’t have to wait
long to see one of these icons. I use one at the end of this introduction!)

Occasionally, I run across a technical tidbit. The tidbit may help you understand what the
people behind the scenes (the people who created Java) were thinking. You don’t have to read
it, but you may find it useful. You may also find the tidbit helpful if you plan to read other
(geekier) books about Java and Android.

Beyond the Book

We have written a lot of extra content that you won’t find in this book. Go online to find the
following:

+* Dummies.com online articles: Be sure to check out
www .dummies.com/extras/javaprogrammingforandroiddevelopers for additional online
content dealing with Java and Android app development. Here you'll find examples of
delightfully weird code, a disquisition on classes and objects, a quick look at using Android
Asset Studio, an additional Parts of Ten chapter, and much more. And, if we have to post any
updates to this edition of Java Programming for Android Developers For Dummies, here's where
you'd find them.



http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

1 The Cheat Sheet for this book is at
www . dummies.com/cheatsheet/javaprogrammingforandroiddevelopers

Where to Go from Here

If you’ve gotten this far, you’re ready to start reading about Java and Android application
development. Think of me (the author) as your guide, your host, your personal assistant. I do
everything I can to keep things interesting and, most importantly, to help you understand.

i you like what you read, send me a note. My e-mail address, which I created just for
comments and questions about this book, is java4android@allmycode.com. If e-mail and
chat aren't your favorites, you can reach me instead on Twitter (@allmycode) and on Facebook
(7allmycode). And don't forget — for the latest updates, visit this book's website. The site's
address is www.allmycode.com/java4android.



http://www.dummies.com/cheatsheet/javaprogrammingforandroiddevelopers
http://www.allmycode.com/java4android

Part |

Getting Started with Java Programming for
Android Developers

getting started
with

Java for

Android Dev



http://www.dummies.com

In this part. ..

»* Downloading the software
» Installing Java and Android

1 Testing Android apps on your computer



Chapter 1
All about Java and Android

In This Chapter

The consumer’s view of the Android ecosystem

The ten-cent tour of Java and Android technologies

Until the mid-2000s, the word android represented a mechanical, humanlike creature — a root’n-
toot’n officer of the law with built-in machine guns or a hyperlogical space traveler who can do
everything except speak using contractions. And then in 2005, Google purchased Android, Inc. — a
22-month old company creating software for mobile phones. That move changed everything.

In 2007, a group of 34 companies formed the Open Handset Alliance. Its task is “to accelerate
innovation in mobile and offer consumers a richer, less expensive, and better mobile experience”;
its primary project is Android, an open, free operating system based on the Linux operating system
kernel.

Though HTC released the first commercially available Android phone near the end of 2008, in the
United States the public’s awareness of Android and its potential didn’t surface until early 2010.

As I sit and write in mid-2013, Mobile Marketing Watch reports more than 50 billion downloads

from the Google Play app store.! Android developers earned more from their apps in the first half
of 2013 than in all of 2012. And according to Forbes, Google paid approximately $900 million to
Android developers during the 12-month period starting in mid-2012.2 The pace is accelerating.

ISee www.mobilemarketingwatch.com/google-play-tops-50-billion-app-downloads-
34516/.

2See www . forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/.

The Consumer Perspective

A consumer considers the alternatives:

1~ Possibility #1: No mobile phone.
Advantages: Inexpensive; no interruptions from callers.
Disadvantages: No instant contact with friends and family; no calls to services in case of
emergencies.

1~ Possibility #2: A feature phone.

This type of mobile phone isn’t a smartphone. Though no official rule defines the boundary
between feature phone and smartphone, a feature phone generally has an inflexible menu of
Home screen options compared with a smartphone’s “desktop” of downloaded apps.

Advantage: Less expensive than a smartphone.


http://www.mobilemarketingwatch.com/google-play-tops-50-billion-app-downloads-34516/
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/

Disadvantages: Less versatile than a smartphone, not nearly as cool as a smartphone, and
nowhere near as much fun as a smartphone.

1~ Possibility #3: An iPhone.
Advantages: Great-looking graphics.
Disadvantages: Little or no flexibility with the single-vendor iOS operating system; only a
handful of models to choose from.

1~ Possibility #4: A Windows phone, a BlackBerry, or another non-Android, non-Apple
smartphone
Advantage: Having a smartphone without having to belong to a crowd.
Disadvantage: The possibility of owning an orphan product when the smartphone wars come to
a climax.

1~ Possibility #5: An Android phone

Advantages: Using a popular, open platform with lots of industry support and powerful market
momentum; writing your own software and installing it on your own phone (without having to
post the software on a company’s website); publishing software without having to face a
challenging approval process.

Disadvantages: Security concerns when using an open platform; dismay when iPhone users
make fun of your phone.

For me, Android’s advantages far outweigh its possible disadvantages. And you’re reading a
paragraph from Java Programming For Android Developers For Dummies, so you’re likely to
agree with me.

The Many Faces of Android

Version numbers can be tricky. My PC’s model number is T420s. When I download the users’
guide, I download one guide for any laptop in the T400 series. (No guide specifically addresses the
T420, let alone the T420s.) But when I have driver problems, knowing that I have a T420s isn’t
good enough. I need drivers that are specific to my laptop’s seven-digit model number. The moral
to this story: What constitutes a “version number” depends on who’s asking for the number.

With that in mind, you can see a history of Android versions in Figure 1-1.
A few notes on Figure 1-1 are in order:

1 The platform number is of interest to the consumer and to the company that sells the
hardware.

If you’re buying a phone with Android 4.2.2, for example, you might want to know whether the
vendor will upgrade your phone to Android 4.3.



Platform APl Level Codename Features
2008 o '
Y
Ao ?
15 k! Cupcake
2003 1.6 4 Damut Maturing app market interface, battar vaice taols, 300480
fﬂ. 5 Better user interface, more SCreen SIZes, moreg camara
I ;U ; Eclai functionality, Blustaoth 2.1 support, multi-touch supporn
2010 . Better pertormance with just-in-time [JIT) compilar, U5H
. iz B Frayo tethering, 720p screen, ability 1o install apps to the 50 card
Y 23 | Gingerhread System-wide copy/paste, multi-tauch saft keyvboard, better
A 233 10 native code developmeant, concurrent garbage collection
30 1_1 E— Designed far tablets, new soft keyboard, tabbed browsing,
:? ]Ifi SR redesigned widgets, “holograghic U™, interface fragments
Y 4.0 147 Ice Cream Customizable launcher, screanshot capture, face unlack
4.0.3 15 | Sandwich Chrome broweser, near-field communication, Robato font
A
2 7 16
Expandable notifications, Google Now, smoother drawing,
Y 4z 17| Jelly Bean improved voice saarch
A
203 43 18
Y T KitKat T

Figure 1-1: Versions of Android.

1 The API level (also known as the SDK version) is of interest to the Android app developer.
For example, the word MATCH_PARENT has a specific meaning in Android API Levels 8 and
higher. You might type MATCH_PARENT in code that uses API Level 7. If you do (and if you
expect MATCH_PARENT to have that specific meaning), you'll get a nasty-looking error message.

SYEREL,

C.Fl’-fi"‘r,-m

2” You can read more about the Application Programming Interface (API) in Chapter 2.
For more information about the use of Android’s API levels (SDK versions) in your code, see

Chapter 4.
1 The code name is of interest to the creators of Android.

A code name refers to the work done by the creators of Android to bring Android to the next
level. Picture Google’s engineers working for months behind closed doors on Project Cupcake,
and you’ll be on the right track.

Ry
Cl
An Android version may have variations. For example, plain-old Android 2.2 has an
established set of features. To plain-old Android 2.2 you can add the Google APIs (thus adding
Google Maps functionality) and still be using platform 2.2. You can also add a special set of
features tailored for the Samsung Galaxy Tab.

As a developer, your job is to balance portability with feature-richness. When you create an app,
you specify a target Android version and a minimum Android version. (You can read more about
this topic in Chapter 4.) The higher the version, the more features your app can have. But on the
flip side, the higher the version, the fewer devices that can run your app.



The Developer Perspective

Android is a multifaceted beast. When you develop for the Android platform, you use many
toolsets. This section gives you a brief rundown.

Java

James Gosling of Sun Microsystems created the Java programming language in the mid-1990s.
(Sun Microsystems has since been bought by Oracle.) Java’s meteoric rise in use stemmed from
the elegance of the language and its well-conceived platform architecture. After a brief blaze of
glory with applets and the web, Java settled into being a solid, general-purpose language with a
special strength in servers and middleware.

In the meantime, Java was quietly seeping into embedded processors. Sun Microsystems was
developing Java Mobile Edition (Java ME) for creating small apps to run on mobile phones. Java
became a major technology in Blu-ray disc players. So the decision to make Java the primary
development language for Android apps is no big surprise.

An embedded processor is a computer chip that is hidden from the user as part of a special-
purpose device. The chips in cars are now embedded processors, and the silicon that powers
the photocopier at your workplace is an embedded processor. Pretty soon, the flower pots on
your windowsill will probably have embedded processors.

Figure 1-2 describes the development of new Java versions over time. Like Android, each Java
version has several names. The product version is an official name that’s used for the world in
general, and the developer version is a number that identifies versions so that programmers can
keep track of them. (In casual conversation, developers use all kinds of names for the various Java
versions.) The code name is a more playful name that identifies a version while it’s being created.

Year  Product Developer  Codename Features
Version Version
1955 (Beta)
1956 JODK® 1.0 1.0
1957 JOK 1.1 1.1 Inner classes, Java Beans, reflection
1988  J2SE*1.2 1.2 Playground Collections, Swing classes for creation of GUI interfaces
1889
2000 J2SE1.3 1.3 Kestrel Java Naming and Directory Interface {JNDI)
2001
2002 J2S5E1.4 14 Marlin New 10, reqular expressions, XML parsing
2003
2004 J2SES0* 15 Tiger Generic types, annotations, enum tpes, varargs, enhanced
2004 for statement, static imports, new concurrency classes
2006 Java SE*6 16 Mustang Scripting language suppors, performance enhancements
2007
2004
2009
2010
001 JavaSET 17 Duolghin Strings in switch statement, catching multiple exceplions
2012 try statement with resources, integration with JavaFx
23 JavaSEB 18 Lambda expressions



Figure 1-2: Versions of Java.

The asterisks in Figure 1-2 mark changes in the formulation of Java product-version names. Back
in 1996, the product versions were Java Development Kit 1.0 and Java Development Kit 1.1. In
1998, someone decided to christen the product Java 2 Standard Edition 1.2, which confuses
everyone to this day. At the time, anyone using the term Java Development Kit was asked to use
Software Development Kit (SDK) instead.

In 2004 the 1. business went away from the platform version name, and in 2006 Java platform
names lost the 2 and the .0.

By far the most significant changes for Java developers came about in 2004. With the release of
J2SE 5.0, the overseers of Java made changes to the language by adding new features — features
such as generic types, annotations, varargs, and the enhanced for statement.

SYEREL,
SERER,

Cﬁﬂ‘rm

-\

% To see Java annotations in action, go to Chapter 10. For examples of the use of generic
types, varargs, and the enhanced for statement, see Chapter 12.

Ry

%/ [f you compare Figures 1-1 and 1-2, you might notice that Android entered the scene when

Java was in version Java SE 6. As a result, Java is frozen at version 6 for Android developers.

When you develop an Android app, you can use J2SE 5.0 or Java SE 6. You cannot use Java

SE 7 with strings in its switch statements or use Java SE 8 with its lambda expressions. But

that's okay: As an Android developer, you probably won't miss these features.

XML

If you find View Source among your web browser’s options one day and decide to use it, you’ll see
a bunch of HyperText Markup Language (HTML) tags. A tag is some text, enclosed in angle
brackets, that describes something about its neighboring content.

For example, to create boldface type on a web page, a web designer writes
<b>Look at this!</b>

The b tags in angle brackets turn boldface type on and off.

The M in HTML stands for Markup — a general term describing any extra text that annotates a
document's content. When you annotate a document's content, you embed information about the
content into the document itself. For example, in the previous line of code, the content is Look at
this! The markup (information about the content) consists of the tags <b> and </b>.

The HTML standard is an outgrowth of Standard Generalized Markup Language (SGML), an all-
things-to-all-people technology for marking up documents for use by all kinds of computers
running all kinds of software and sold by all kinds of vendors.

In the mid-1990s, a working group of the World Wide Web Consortium (W3C) began developing
the eXtensible Markup Language, commonly known as XML. The working group’s goal was to
create a subset of SGML for use in transmitting data over the Internet. They succeeded. XML is



now a well-established standard for encoding information of all kinds.

SYEREL,
SERER,

Cﬁﬂ‘rm

. '\\I
j/ | For an overview of XML, see the sidebar that describes it in Chapter 4.

Java is good for describing step-by-step instructions, and XML is good for describing the way
things are (or the way they should be). A Java program says, “Do this and then do that.” In contrast,
an XML document says, “It’s this way and it’s that way.” Android uses XML for two purposes:

1 To describe an app’s data

An app’s XML documents describe the layout of the app’s screens, the translations of the app
into one or more languages, and other kinds of data.

1~ To describe the app itself

Every Android app has an AndroidManifest.xml file, an XML document that describe features
of the app. A device's operating system uses the AndroidManifest.xml document's contents to
manage the running of the app.

For example, an app's AndroidManifest.xml file describes code that the app makes available
for use by other apps. The same file describes the permissions that the app requests from the
system. When you begin installing a new app, Android displays these permissions and asks for
your permission to proceed with the installation. (I don't know about you, but I always read this
list of permissions carefully. Yeah, right!)

SYEREL,
SERER,

Cﬁﬂ‘rm

@- \
“72 For more information about the AndroidManifest .xml file, see Chapter 4.

Concerning XML, I have bad news and good news. The bad news is that XML isn’t always easy to
compose. At best, writing XML code is boring. At worst, writing XML code is downright
confusing. The good news is that automated software tools compose most the world’s XML code.
As an Android programmer, the software on your development computer composes much of your
app’s XML code. You often tweak the XML code, read part of the code for information from its
source, make minor changes, and compose brief additions. But you hardly ever create XML
documents from scratch.

Linux

An operating system is a big program that manages the overall running of a computer or a device.
Most operating systems are built in layers. An operating system’s outer layers are usually in the
user’s face. For example, both Windows and Macintosh OS X have standard desktops. From the
desktop, the user launches programs, manages windows, and does other important things.

An operating system’s inner layers are (for the most part) invisible to the user. While the user
plays Solitaire, for example, the operating system juggles processes, manages files, keeps an eye
on security, and generally does the kinds of things that the user shouldn’t have to micromanage.

At the deepest level of an operating system is the system’s kernel. The kernel runs directly on the
processor’s hardware and does the low-level work required to make the processor run. In a truly
layered system, higher layers accomplish work by making calls to lower layers. So an app with a



specific hardware request sends the request (directly or indirectly) through the kernel.

The best-known, best-loved general purpose operating systems are Windows, Macintosh OS X
(which is really Unix), and Linux. Both Windows and Mac OS X are the properties of their
respective companies. But Linux is open source. That’s one reason why your TiVo runs Linux and
why the creators of Android based their platform on the Linux kernel.

As a developer, your most intimate contact with the Android operating system is via the command
line, also known as the Linux shell. The shell uses commands such as cd to change to a directory,
1s to list a directory's files and subdirectories, rm to delete files, and many others.

Google’s Android Market has plenty of free terminal apps. A terminal app’s interface is a plain-
text screen on which you type Linux shell commands. And by using one of Android’s developer
tools, the Android Debug Bridge, you can issue shell commands to an Android device via your
development computer. If you like getting your virtual hands dirty, the Linux shell is for you.

From Development to Execution with Java

Before Java became popular, running a computer program involved one translation step. Someone
(or something) translated the code that a developer wrote into more cryptic code that a computer
could actually execute. But then Java came along and added an extra translation layer, and then
Android added another layer. This section describes all those layers.

What is a compiler?

A Java program (such as an Android application program) undergoes several translation steps
between the time you write the program and the time a processor runs the program. One of the
reasons is simple: Instructions that are convenient for processors to run are not convenient for
people to write.

People can write and comprehend the code in Listing 1-1.

HListing 1-1: Java Source Code

public void checkVacancy(View view) {

if (room.numGuests == 0) {
label.setText("Available");
} else {

label.setText("Taken :-(");

}
}

The Java code in Listing 1-1 checks for a vacancy in a hotel. You can’t run the code in this listing
without adding several additional lines. But here in Chapter 1, those additional lines aren’t
important. What’s important is that, by staring at the code, squinting a bit, and looking past all its
strange punctuation, you can see what the code is trying to do:

If the room has no guests in it,

then set the label's text to "Available".
Otherwise,

set the label's text to "Taken :-(".



The content of Listing 1-1 is Java source code.

The processors in computers, phones, and other devices don’t normally follow instructions like the
instructions in Listing 1-1. That is, processors don’t follow Java source code instructions. Instead,
processors follow cryptic instructions like the ones in Listing 1-2.

HListing 1-2: Java Bytecode

0 aload_0
1 getfield #19 <com/allmycode/samples/MyActivity/room
Lcom/allmycode/samples/Room; >
4 getfield #47 <com/allmycode/samples/Room/numGuests I>
7 ifne 22 (+15)
10 aload_0
11 getfield #41 <com/allmycode/samples/MyActivity/label
Landroid/widget/TextView;>
14 ldc #54 <Available>
16 invokevirtual #56
<android/widget/TextView/setText
(Ljava/lang/CharSequence; )V>
19 goto 31 (+12)
22 aload_0
23 getfield #41 <com/allmycode/samples/MyActivity/label
Landroid/widget/TextView;>
26 ldc #60 <Taken :-(>
28 invokevirtual #56
<android/widget/TextView/setText
(Ljava/lang/CharSequence; )V>
31 return

The instructions in Listing 1-2 aren’t Java source code instructions. They’re Java bytecode
instructions. When you write a Java program, you write source code instructions (refer to Listing
1-1). After writing the source code, you run a program (that is, you apply a tool) to the source code.
The program is a compiler: It translates your source code instructions into Java bytecode
instructions. In other words, the compiler translates code that you can write and understand (again,
refer to Listing 1-1) into code that a computer can execute (refer to Listing 1-2).

At this point, you might ask “What will I have to do to get the compiler running?” The one-word
answer to your question is “Eclipse.” All the translation steps described in this chapter come down
to using Eclipse — a piece of software that you download for free using the instructions in Chapter
2. So when you read in this chapter about compiling and other translation steps, don’t become
intimidated. You don’t have to repair an alternator in order to drive a car, and you won’t have to
understand how compilers work in order to use Eclipse.

gﬂ‘-BEJ‘ir

N\

"l

H/ No one (except for a few crazy developers in isolated labs in faraway places) writes Java
bytecode. You run software (a compiler) to create Java bytecode. The only reason to look at
Listing 1-2 is to understand what a hard worker your computer is.



If compiling is a good thing, compiling twice may be even better. In 2007, Dan Bornstein at Google
created Dalvik bytecode — another way to represent instructions for processors to follow. (To find
out where some of Bornstein’s ancestors come from, run your favorite map application and look
for Dalvik in Iceland.) Dalvik bytecode is optimized for the limited resources on a phone or a tablet
device.

Listing 1-3 contains sample Dalvik instructions.

* To see the code in Listing 1-3, I used the Dedexer program. See dedexer .sourceforge.net.

HListing 1-3: Dalvik Bytecode

.method public checkVacancy(Landroid/view/View; )V

.limit registers 4

; this: v2 (Lcom/allmycode/samples/MyActivity;)

; parameter[0] : v3 (Landroid/view/View;)

.line 30
iget-object
vO,v2,com/allmycode/samples/MyActivity.room
Lcom/allmycode/samples/Room;

; vO : Lcom/allmycode/samples/Room; , v2
Lcom/allmycode/samples/MyActivity;
iget vO,v0,com/allmycode/samples/Room.numGuests I

; vO : single-length , vO : single-length
if-nez vO, 14b4

; vO : single-length

.line 31
iget-object
vO,v2,com/allmycode/samples/MyActivity.label
Landroid/widget/TextView;

; vO : Landroid/widget/TextView; , v2
Lcom/allmycode/samples/MyActivity;
const-string vl, "Available"

; vl : Ljava/lang/String;
invoke-virtual
{vO,v1l},android/widget/TextView/setText
; setText(Ljava/lang/CharSequence; )V

; vO : Landroid/widget/TextView; , vl : Ljava/lang/String;

14b2:

.line 36
return-void

14b4:

.line 33
iget-object
vO,v2,com/allmycode/samples/MyActivity.label
Landroid/widget/TextView;

; vO : Landroid/widget/TextView; , v2
Lcom/allmycode/samples/MyActivity;
const-string vl, "Taken :-("

; vl : Ljava/lang/String;



http://www.dedexer.sourceforge.net

invoke-virtual
{v0O,v1l},android/widget/TextView/setText ;
setText(Ljava/lang/CharSequence; )V

; vO : Landroid/widget/TextView; , vl : Ljava/lang/String;
goto 14b2

.end method

When you create an Android app, Eclipse performs at least two compilations:

1 One compilation creates Java bytecode from your Java source files. The source filenames
have the . java extension; the Java bytecode filenames have the .class extension.

1~ Another compilation creates Dalvik bytecode from your Java bytecode files. Dalvik
bytecode file names have the . dex extension.

But that's not all! In addition to its Java code, an Android app has XML files, image files, and
possibly other elements. Before you install an app on a device, Eclipse combines all these elements
into a single file — one with the .apk extension. When you publish the app on an app store, you
copy that .apk file to the app store's servers. Then, to install your app, a user visits the app store
and downloads your . apk file.

SO STl
&y
£6a
= |

To perform the compilation from source code to Java bytecode, Eclipse uses a program
named javac, also known as the Java compiler. To perform the compilation from Java
bytecode to Dalvik code, Eclipse uses a program named dx (known affectionately as “the dx
tool”). To combine all your app’s files into one .apk file, Eclipse uses a program named
apkbuilder.

What is a virtual machine?

In the section “What is a compiler?” earlier in this chapter, I make a big fuss about phones and
other devices following instructions like the ones in Listing 1-3. As fusses go, it’s a nice fuss. But
if you don’t read every fussy word, you may be misguided. The exact wording is “. . . processors
follow cryptic instructions like the ones in Listing blah-blah-blah.” The instructions in Listing 1-3
are a lot like instructions that a phone or tablet can execute, but computers generally don’t execute
Java bytecode instructions, and phones don’t execute Dalvik bytecode instructions. Instead, each
kind of processor has its own set of executable instructions, and each operating system uses the
processor’s instructions in a slightly different way.

Imagine that you have two different devices: a smartphone and a tablet computer. The devices have
two different kinds of processors: The phone has an ARM processor, and the tablet has an Intel
Atom processor. (The acronym ARM once stood for Advanced RISC Machine. These days, ARM
simply stands for ARM Holdings, a company whose employees design processors.) On the ARM
processor, the multiply instruction is 000000. On an Intel processor, the multiply instructions are
D8, DC, F6, F7, and others. Many ARM instructions have no counterparts in the Atom architecture,
and many Atom instructions have no equivalents on an ARM processor. An ARM processor’s
instructions make no sense to your tablet’s Atom processor, and an Atom processor’s instructions
would give your phone’s ARM processor a virtual headache.



What’s a developer to do? Does a developer provide translations of every app into every
processor’s instruction set?

No. Virtual machines create order from all this chaos. Dalvik bytecode is similar to the code in
Listing 1-3, but Dalvik bytecode isn’t specific to a single kind of processor or to a single operating
system. Instead, a set of Dalvik bytecode instructions runs on any processor. If you write a Java
program and compile that Java program into Dalvik bytecode, your Android phone can run the
bytecode, your Android tablet can run the bytecode, and even your grandmother’s supercomputer
can run the bytecode. (To do this, your grandmother must install Android-x86, a special port of the
Android operating system, on her Intel-based machine.)

HEER
| wf\‘
) ~-__/ You never have to write or decipher Dalvik bytecode. Writing bytecode is the compiler’s
job. Deciphering bytecode is the virtual machine’s job.

Both Java bytecode and Dalvik bytecode have virtual machines. With the Dalvik virtual machine,
you can take a bytecode file that you created for one Android device, copy the bytecode to another
Android device, and then run the bytecode with no trouble. That’s one of the many reasons why
Android has become popular quickly. This outstanding feature, which lets you run code on many
different kinds of computers, is called portability.

Imagine that you’re the Intel representative to the United Nations Security Council, as shown in
Figure 1-3. The ARM representative is seated to your right, and the representative from Texas
Instruments is to your left. (Naturally, you don’t get along with either of these people. You’re
always cordial to one another, but you’re never sincere. What do you expect? It’s politics!) The
distinguished representative from Dalvik is at the podium. The Dalvik representative speaks in
Dalvik bytecode, and neither you nor your fellow ambassadors (ARM and Texas Instruments)
understand a word of Dalvik bytecode.

Dalvik virtual
machines

Java Dalvik
compiler dx tool / e
Java o
source | Java | .
] bytecode
code ;
"y :32,-
S ®
-t / )
& A
: /&
Dalvik \(\-:}

bytecode

Figure 1-3: An imaginary meeting of the UN Security Council.

But each of you has an interpreter. Your interpreter translates from Dalvik bytecode to Intel
instructions as the Dalvik representative speaks. Another interpreter translates from bytecode to
“ARM-ese.” And a third interpreter translates bytecode into “Texas Instruments-speak.”

Think of your interpreter as a virtual ambassador. The interpreter doesn’t really represent your



country, but the interpreter performs one important task that a real ambassador performs: It listens
to Dalvik bytecode on your behalf. The interpreter does what you would do if your native language
were Dalvik bytecode. The interpreter, pretending to be the Intel ambassador, endures the boring
bytecode speech, taking in every word and processing each one in some way or another.

You have an interpreter — a virtual ambassador. In the same way, an Intel processor runs its own
bytecode-interpreting software. That software is the Dalvik virtual machine — a proxy, an errand
boy, a go-between. The Dalvik virtual machine serves as an interpreter between Dalvik’s run-
anywhere bytecode and your device’s own system. As it runs, the virtual machine walks your
device through the execution of bytecode instructions. It examines your bytecode, bit by bit, and
carries out the instructions described in the bytecode. The virtual machine interprets bytecode for
your ARM processor, your Intel processor, your Texas Instruments chip, or whatever kind of
processor you’re using. That’s a good thing. It’s what makes Java code and Dalvik code more
portable than code written in any other language.

Java, Android, and Horticulture

“You don’t see the forest for the trees,” said my Uncle Harvey. To which my Aunt Clara said “You
don’t see the trees for the forest.” This argument went on until they were both too tired to discuss
the matter.

As an author, I like to present both the forest and the trees. The “forest” is the broad overview,
which helps you understand why you perform various steps. The “trees” are the steps themselves,
getting you from Point A to Point B until you complete a task.

This chapter shows you the forest. The rest of this book shows you the trees.



Chapter 2
Getting the Tools That You Need

In This Chapter

Installing Java
Downloading and installing the Android software tools
Checking your Eclipse configuration

Getting the code in this book’s examples

ergaliophile /31 g2 1i 2 fai 31/ noun 1. A lover of tools. 2. A person who visits garage sales for rusty
metal implements that might be useful someday but probably won’t. 3. A person whose computer
runs slowly because of the daily, indiscriminate installation of free software tools.

Several years ago, I found an enormous monkey wrench (more than a yard long and weighing 35
pounds) at a nearby garage sale. I wasn’t a good plumber, and to this day any pipe that I fix starts
leaking again immediately. But I couldn’t resist buying this fine piece of hardware. The only
problem was, my wife was sitting in the car about halfway down the street. She’s much more
sensible than I am about these matters, so I couldn’t bring the wrench back to the car. “Put it aside
and I’ll come back for it later,” I told the seller.

When I returned to the car empty-handed, my wife said, “I saw someone carrying the world’s
largest pipe wrench. I’m glad you weren’t the one who bought it.” And I agreed with her. “I don’t
need more junk like that.”

So of course I returned later that day to buy the monkey wrench, and to this day the wrench sits in
our attic, where no one ever sees it. If my wife ever reads this chapter, she’ll be either amused or
angry. [ hope she’s not angry, but I’m taking the risk because I enjoy the little drama. To add
excitement to my life, I’'m turning this trivial secret into a public announcement.

The Stuff You Need

This book tells you how to write Java programs, and before you can write them, you need some
software tools. Here’s a list of the tools you need:

1~ A Java virtual machine
Cool people refer to this item as the JVM or simply as Java.

1+ The Java code libraries

These code libraries are known affectionately as the Java Runtime Environment (JRE) or simply
as Java.

1 An integrated development environment
You can create Java programs using geeky, keyboard-only tools, but eventually you’ll tire of



typing and retyping commands. An integrated development environment (IDE), on the other
hand, is a little like a word processor: A word processor helps you compose documents (memos,

poems, and other works of fine literature); in contrast, an IDE helps you compose computer
programs.

For composing Java programs, I recommend using the Eclipse IDE.
You should also gather these extra goodies:

1~ Some sample Java programs to help you get started

All examples in this book are available for download from www.allmycode.com/Java4Android.

1 The Android Software Development Kit

The Android Software Development Kit (SDK) includes lots and lots of prewritten, reusable
Android code and a bunch of software tools for running and testing Android apps.

The prewritten Android code is the Android Application Programming Interface (API). The API
comes in several versions — versions 9 and 10 (both code-named Gingerbread), versions 11, 12,
and 13 (Honeycomb), versions 14 and 15 (Ice Cream Sandwich), and so on.

1 Android-oriented add-ons for the integrated development environment

By using add-ons, you customize the Eclipse IDE to help you compose, run, and test your

Android apps. The set of Eclipse add-ons for working with Android apps is the Android
Development Toolkit (ADT).

All these tools run on the development computer — the laptop or desktop computer you use to
develop Java programs and Android apps. After you create an Android app, you copy the app’s

code from the development computer to a target device — a phone, a tablet, or (someday soon) a
refrigerator that runs Android.

Here’s good news: You can download from the web all the software you need to run this book’s
examples for free. The software is separated into three downloads:

1 This book's website (www.allmycode.com/Java4Android) has a link to all code in the book.

1 When you visit www. java.com, you can click a button to install the Java virtual machine.

1 A button at the page http://developer.android.com/sdk gives you the big Android SDK
download. In spite of its name, it includes more than simply the Android code libraries. The
download includes all the ingredients you didn't already collect from www.allmycode.com or
www.java.com.

Ry
é
%’ The websites I describe in this chapter are always changing. The software programs you

download from these sites change, too. A specific instruction such as "Click the button in the
upper-right corner" becomes obsolete (and even misleading) in no time at all. So in this
chapter, I provide explicit steps, but I also describe the ideas behind them. Browse the
suggested sites and look for ways to get the software I describe. When a website offers you
several options, check the instructions in this chapter for hints on choosing the best option. If
your computer's Eclipse window doesn't ook quite like the one in this chapter's figures, scan


http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.java.com
http://developer.android.com/sdk
http://www.allmycode.com
http://www.java.com

your computer's window for whatever options I describe. If, after all that effort, you can't find
the elements you're looking for, check this book's website
(www.allmycode.com/Java4Android) or send an e-mail to me at

Java4Android@allmycode.com.

If You Don’t Like Reading Instructions . . .

I start this chapter with a brief (but useful) overview of the steps required in order to get the
software you need. If you’re an old hand at installing software, and if your computer isn’t quirky,
these steps will probably serve you well. If not, you can read the more detailed instructions in the
next several sections.

1. Visit www.allmycode.com/Java4Android and download a file containing all the program
examples in this book.

2. Visit www. java.com and download the Java Runtime Environment (if you don't already
have a recent version of Java on your computer).

Choose a version of the software that matches your operating system (Windows, Macintosh, or
whatever) and your operating system’s word length (32-bit or 64-bit).

3. Visit http://developer.android.com/sdk and download the Android Software
Development Kit (SDK).

The downloaded bundle is a . zip archive file.

4. Extract the contents of the downloaded archive file to your local hard drive.

On my Windows computer, I extract the .zip file's contents to a new folder, named
c:\Users\MyUserName\adt-bundle-windows-x86. So I have the folders shown in Figure 2-1.

J N T adt-bundle-vandows-xB6_s4 - B “
B e e v . @

T oo Local Disk (C5) » Users » Bary » adt-bundle-windoes xS 6 [:: v & Search adt-bundbe saind ¥

eclipse
sdk
SDE Managerexe

Figure 2-1: My Windows computer's adt-bundle folder.

On my Mac, I extract the .zip file's contents into my existing Applications folder, as shown in
Figure 2-2.


http://www.allmycode.com/Java4Android
mailto:BeginProg@allmycode.com
http://www.allmycode.com/Java4Android
http://www.java.com
http://developer.android.com/sdk

800 ] adt-bundle-mac-x86_64

| < | » | Lo l= | | B v || P2 | E-3ER
FAVORITES # adt-bundl...ac-x86_64 » [REEEIHE
= All My Files ¥ Alfred.app ] sdk
i =l App Store.app
] Desktop [ Appinventor '
{2} bburd & Automator.app
; S B Blast Utility.app

Calculator.app
% Calendar.app

Ei] Documents

Figure 2-2: My Mac's adt-bundle folder.

ANGS
SRR

£ 5

@ If the Android SDK . zip file contains more than one folder, don't separate the folders
when you extract the .zip file's contents. Extract all content inside the .zip file to the same
place on your hard drive.

5. Launch the Eclipse app.
The first time you run a fresh, new copy of Eclipse, the Welcome screen appears.
6. Dismiss the Welcome screen.

For most versions of Eclipse, you can dismiss the Welcome screen by clicking the little x icon
that appears on a tab above the screen.

7. Import the code that you downloaded in Step 1.

In Eclipse, choose File=Import=Existing Projects into Workspace. Then browse for this book's
sample code — the .zip file from Step 1. (If the web browser automatically expanded the .zip
archive, browse for the folder containing the files that were in the archive.)

8. Create an Android virtual device.

You can test Android programs on a phone or a tablet. But, for convenience, you might test on an
emulator — a program that behaves like a phone or a tablet but runs on the development
computer.

To run an emulator, you need an Android Virtual Device (AVD), which is a set of specs for a
device (processor type, screen size, screen resolution, and Android version, for example). In

Eclipse, you create an AVD by choosing Window=Android Virtual Device Manager and filling
in the blanks. For more info, see the later section “Creating an Android Virtual Device.”

For details about any of these topics, see the next several sections.

Those pesky filename extensions

The filenames displayed in My Computer or in a Finder window can be misleading. You may browse a directory and see the
name Mortgage. The file's real name might be Mortgage. java, Mortgage.class, Mortgage . somethingElse, Or plain old Mortgage.
Filename endings such as .zip, .java, and .class are filename extensions.

The ugly truth is that, by default, Windows and Macs hide many filename extensions. This awful feature tends to confuse
programmers. If you don’t want to be confused, change your computer’'s systemwide settings. Here's how to do it:

1 In Windows XP: Choose Start=>Control Panel=Appearance and Themes=Folder Options. Then skip to the fourth bullet.




L In Windows 7: Choose Start=>Control Panel=Appearance and Personalization=Folder Options. Then skip to the fourth
bullet.

1 In Windows 8: On the Charms bar, choose Settings=Control Panel. In the Control Panel, choose Appearance and
Personalization=Folder Options. Then proceed to the following bullet.

L In all versions of Windows (XP and newer): Follow the instructions in one of the preceding bullets. Then, in the Folder
Options dialog box, click the View tab. Look for the Hide File Extensions for Known File Types option. Make sure that this
check box is not selected.

1 In Mac OS X: In the Finder application’s menu, select Preferences. In the resulting dialog box, select the Advanced tab
and look for the Show All File Extensions option. Make sure that this check box is selected.

Getting This Book’s Sample Programs

To get copies of this book's sample programs, visit www.allmycode.com/Java4Android and click
the link to download the programs in this book. Save the download file
(Javad4Android_Programs.zip) to the computer's hard drive.

A

In some cases, you can click a download link all you want but the web browser doesn’t
offer you the option to save a file. If this happens to you, right-click the link (or control-click
on a Mac). From the resulting contextual menu, select Save Target As, Save Link As,
Download Linked File As, or a similarly labeled menu item.

Most web browsers save files to the bownloads directory on the computer's hard drive. But your
browser may be configured a bit differently. One way or another, make note of the folder
containing the downloaded Java4Android_Programs.zip file.

Compressed archive files

When you visit www.allmycode.com/Java4Android and you download this book's examples, you download a file named
Java4Android_Programs.zip. A zip file is a single file that encodes a bunch of smaller files and folders. For example, my
Java4Android_Programs.zip file encodes folders named e6-61, 06-62, and so on. The 06-62 folder contains subfolders, which
in turn contain files. (The folder named e6-62 contains the code in Listing 6-2 — the second listing in Chapter 6.)

A .zip file is an example of a compressed archive file. Other examples of compressed archives include .tar.gz files, .rar
files, and .cab files. When you uncompress a file, you extract the original files stored inside the larger archive file. (For a .zip
file, another word for uncompressing is unzipping.) Uncompressing normally re-creates the folder structure encoded in the
archive file. So after uncompressing my Java4Android_Programs.zip file, the hard drive has folders named 06-61, 06-02, with
subfolders named src and bin, which in turn contain files named Typebemo1. java, TypeDemoi.class, and so on.

When you download Java4Android_Programs.zip, the web browser may uncompress the file automatically for you. If not, you
can see the .zip file's contents by double-clicking the file's icon. (In fact, you can copy the file's contents and do other file
operations after double-clicking the file's icon.) One way or another, don't worry about uncompressing my
Java4Android_Programs.zip file. When you follow this chapter's instructions, you can import the contents of the file into the
Eclipse IDE. And behind the scenes, the Eclipse import process uncompresses the .zip file.



http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

Gathering Information

For many people (including some inexperienced people), the installations of Java and the Android
SDK are routine tasks. Visit a few websites, click some buttons, and then take a coffee break. But
as you follow this chapter’s instructions, you might have a question, experience a difficulty, or
encounter a fork in the road. In that case, it helps to know your computer — which entails jotting
down the answers to a few questions.

Are you running a 32-bit or 64-bit operating system?

In this chapter, you install Java and the Android SDK on your computer. Java comes in two flavors:
32-bit and 64-bit. The Android SDK comes in the same two flavors, and in order for the Android
SDK to work with Java, the Java flavor must match the Android SDK flavor. In this section, you
find out which flavor is best for your computer.

wABER
SRR
&

ul

H) The steps in this section are all optional. If you don't want to perform this section's fact-
finding missions, try visiting www. java.com and http://developer.android.com/sdk to
download whichever versions of Java and the Android SDK are offered to you by these two
websites. If either site makes you choose between 32-bit and 64-bit software, be consistent.
That is, get the 32-bit versions of both Java and the Android SDK, or get the 64-bit versions of
both Java and the Android SDK. (For Windows, the 32-bit versions are the safest choice. For
Mac, the 64-bit versions are the safest.)

For Windows 8, Windows 7, and Windows Vista:

1. Press the Windows key.

In Windows 8, the Start screen appears. In Windows 7 and Windows Vista, the Start menu
appears.

2. In Windows 8, type the words Control Panel, and then press Enter. In Windows 7 or
Windows Vista, click the Control Panel item on the Start menu.

The Control Panel appears.

3. In the Control Panel, select System and Security (Windows 8 and Windows 7) or System
and Maintenance (Windows Vista).

The System window appears. To recognize the System window, look for the words view basic
information about your computer near the top of the window.

4. In the System window, look for the words System type.
The system type is either 32-bit or 64-bit, as shown in Figure 2-3.


http://www.java.com
http://developer.android.com/sdk

LU

System type
Figure 2-3: Determining the system type.

For Windows XP
1. Press the Windows key.
The Start menu appears.
2. Click the My Computer item on the Start menu.
Windows Explorer opens.
3. In Windows Explorer, navigate to Drive C.
4. In Drive C, look for folders named Program Files and Program Files (x86).

If you find Program Files but not Program Files (x86) folders, you're running 32-bit
Windows. If you find both Program Files and Program Files (x86) folders, you're running
64-bit Windows.

For Macintosh OS X
1. Choose Apple=About This Mac.
The About This Mac window appears.

How many bits does your computer have?

As you follow this chapter’s instructions, you may be prompted to choose between two versions of a piece of software — the
32-bit version and the 64-hit version. What's the difference, and why do you care?

A bit is the smallest piece of information that you can store on a computer. Most people think of a bit as either a zero or a
one, and that depiction is quite useful. To represent almost any number, you pile several bits next to one another and do
some fancy things with powers of two. The numbering system’s details aren’t showstoppers. The important thing to
remember is that each piece of circuitry inside the computer stores the same number of bits. (Well, some circuits inside the
computer are outliers with their own particular numbers of bits, but that’s not a big deal.)

In an older computer, each piece of circuitry stores 32 bits. In a newer computer, each piece of circuitry stores 64 bits. This
number of bits (either 32 or 64) is the computer’s word length. In a newer computer, a word is 64 bits long.

“Great!” you say. “l bought my computer last week. It must be a 64-bit computer.” Well, the story may not be that simple. In
addition to a computer’s circuitry having a word length, the operating system on it also has a word length. An operating
system’s instructions work with a particular number of bits. An operating system with 32-bit instructions can run on either a




32-hit computer or a 64-bit computer, but an operating system with 64-bit instructions can run only on a 64-bit computer. And
to make things even more complicated, each program that you run (a web browser, a word processor, or one of your own
Java programs) is either a 32-bit program or a 64-bit program. You may run a 32-bit web browser on a 64-bit operating
system running on a 64-bit computer. Alternatively, you may run a 32-bit browser on a 32-bit operating system on a 64-bit
computer. (See the figure that accompanies this sidebar.)

When a website makes you choose between 32-bit and 64-bit software versions, the main consideration is the word length of
the operating system, not the word length of the computer’s circuitry. You can run a 32-bit word processor on a 64-bit
operating system, but you can’t run a 64-bit word processor on a 32-hit operating system (no matter what word length the
computer’s circuitry has). Choosing 64-bit software has one primary advantage: 64-bit software can access more than 3
gigabytes of a computer’s fast random access memory. And in my experience, more memory means faster processing.

How does all this information about word lengths affect Java and Android SDK downloads? Here's the story:
L |f you run a 32-bit operating system, you run only 32-bit software.

L |f you run a 64-bit operating system, you probably run some 32-bit software and some 64-bit software. Most 32-bit
software runs fine on a 64-bit operating system.

L** On a 64-bit operating system, you might have two versions of the same program. For example, on my Windows
computer, | have two versions of Internet Explorer: a 32-bit version and a 64-bit version.

Normally, Windows stores 32-bit programs in its Program Files (x86) directory and stores 64-bit programs in its Program
Files directory.

L** A chain of word lengths is as strong as its weakest link. For example, when | visit www. iava.com and click the site's Do |
Have Java? link, the answer depends on the match between my computer's Java version and the web browser that I'm
running. With only 64-bit Java installed on my computer, the Do | Have Java? link in my 32-bit Firefox browser answers,
No working Java was detected on your system. Butthe same link in my 64-bit Internet Explorer answers, You have the
recommended Java installed.

L** Here's the most important thing to remember about word lengths: When you follow this chapter's instructions, you install
Java software and Android SDK software on the computer. The Java software's word length must match the Android
SDK's word length. In other words, 32-bit Android SDK software runs with 32-bit Java, and 64-bit Android SDK runs with
64-bit Java. | haven't tried all possible combinations, but when | try to run the 32-bit Android SDK with 64-bit Java, | see
the misleading error message No Java virtual machine was found.

— 32-bit computer

— J2-hit pperating system -

32-hit software

G4-Dit computer
32-bit operating system
— 32-bit software

f4-hit computer
G4-hit pperating system

~ 32-hit software — -~ Bd-hit software

2. In the About This Mac window, look for the word Processor.
If your processor is an Intel Core Solo or Intel Core Duo, you have a 32-bit Mac. All other Intel



http://www.java.com

processors, including Intel Core 2 Duo, are 64-bit Macs. (See Figure 2-4.)

2 Nere About This Mac

\ N

Mac OS X

Version 10.6.8

./ \.
[ Software Update... )

Processor 2.4 GHz Intel Core 2 Duo
Memory 1 CB&67 MHz DDR2 SDRAM

Startup Disk Macintosh HD

r Y
(. More Info...

TM and & 1983-2011 Apple Inc.
All Rights Reserved.

Figure 2-4: Displaying the Mac processor type.

Here's an alternative (geeky) way to find out whether your Mac is a 32-bit or 64-bit
operating system: In the Spotlight, type the word Terminal, and then press Enter. Then when
the Terminal app opens, type uname -a and press Enter. If the Mac's response includes 1386,
you have a 32-bit system. If the Mac's response includes x86_64 instead, you have a 64-bit
system.

If you’re a Mac user, which version of Mac OS X do you have?
To answer a burning question about the Macintosh operating system, follow these steps:

1. Choose Apple=About This Mac.
The About This Mac window appears.

2. In the About This Mac window, look for the word Version.

You see Version 10.8 (or something like that) in very light gray text. (Refer to Figure 2-4.)

&ﬁﬁ?‘f"‘@{

O The Android development software for the Mac requires OS X 10.5.8 or later, and an Intel
processor. If the About This Mac window reports that you have a PowerPC processor or that
your version of OS X is older than OS X 10.5, you’ll have a hard time developing Android
apps. (For versions such as OS X 10.5.1, you can try updating the system to version 10.5.8. For
systems before OS X 10.5, and for systems running on PowerPC processors, you can search

the web for hacks and workarounds. Of course, if you use hacks and workarounds, I make no
promises.)



"

If you don't regularly apply software updates, choose Software Update from the Apple
menu. In the resulting window, look for OS X updates and for items with the word Java in
them. Select the relevant items, and then click the appropriate Install or Update button (or
buttons). In addition, you can follow the instructions in the next section to find out whether
the www. java.com website recommends updates.

Is a recent version of Java installed on your computer?

Android development requires Java 5.0 or later. Java 6 is recommended (but not absolutely
required). Java 7 and beyond are overkill.

You might see Java 1.5 and Java 1.6 rather than Java 5.0 and Java 6. Some people
understand the differences these names make, but few people care. (If you’re one of the people
who care, see Chapter 1.)

Follow these steps to check for a recent version of Java on your computer:

1. Visit www. java.com.

2. On the main page at www. java.com, click the Do I Have Java? link.

3. On the Do I Have Java? page, click the Verify Java Version button.

After a brief pause, the java.com site reports that you have Java Version 7 Update 9, or something
like that.

1~ 1f you have Java version 6 or higher, you’re good to go. You don’t have to install any other Java
version. You can skip this chapter’s later section “Setting Up Java.”

1~ 1f the java.com site doesn’t report that you have Java 6 or later, don’t fret. The java.com site
might be wrong|!

After all, a 32-bit web browser can’t detect a 64-bit version of Java, and (as of early 2013) no
browser running in Windows 8 mode can even detect Java. The potential pitfalls are endless.

Anyway, if java.com doesn’t report that you have Java 6 or later, I suggest following the
instructions in the section “Setting Up Java.” If you accidentally install a second version of Java
(or a third or fourth version of Java), you’ll probably be okay.

Setting Up Java

You can get the latest, greatest version of Java by visiting www. java.com. The site offers several
alternatives.

1 (Recommended) Click the big Free Java Download button on the site’s main page.

For most computers, clicking this Free Java Download button gives you all the Java you need
for this book's examples. So if you're unsure what to do when you visit www. java.com, click the

Free Java Download button and move to the section "Setting Up the Android SDK," later in this
chapter.



http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com

G
S5
@ If you’re running Mac OS X 10.6 or earlier (or if you’re running OS X 10.7 and you
haven’t upgraded to OS X 10.7.3 or later), clicking the Free Java Download button opens a
“Sorry, Charlie!” page that tells you to download Java directly from Apple. Follow the

instructions on that page to install Java on your computer.

1~ (Optional) Follow the Do I Have Java? link.

When you follow this link, the web browser scans the computer for Java installations. For this
book's examples, I recommend Java 6 (also known as Java 1.6) or later (Java 7, Java 8, or
whatever). If your version of Java is older than Java 6 (or if the scan doesn't find Java on the
computer), I recommend clicking one of the Download buttons at www. java.com.

1~ (Optional) Pick and choose among Java versions.

If you click the All Java Downloads link at www. java.com, you can pick and choose from
among several versions of Java — 32-bit and 64-bit versions for Windows, Mac, Linux, and
Solaris computers.

This alternative is useful for overriding the default Free Java Download button's choice. For
example, you want the 64-bit version of Java even though the Free Java Download button gives
you the 32-bit version. (See the sidebar "How many bits does your computer have?" earlier in
this chapter.) Later, you might visit www. java.com with a Windows computer to download Java
for your Macintosh.

1~ (Optional) Cleanse your computer of all but the latest version of Java.

At www . java.com, the Remove Older Versions link promises to clean up any Java clutter you've
collected over time. I've had some good luck and some bad luck in keeping multiple Java
versions on a computer. In my opinion, this Remove Older Versions step is optional.

Visit the Remove Older Versions link if you’re having trouble that you suspect is Java related.
But if you’ve read several chapters of this book and the examples are running nicely, don’t
worry about an impending disaster from not having followed the Remove Older Versions link.

Setting Up the Android SDK

In this section, you get four useful tools in one download. Here’s how:

1. Visit http://developer.android.com/sdk.
2. Click the Download button on the web page.
3. Agree to all the legal mumbo-jumbo.
4. Choose between the 32-bit and 64-bit downloads.
For sage advice, see the earlier section “Are you running a 32-bit or 64-bit operating system?”

After you make a choice, one last Download button appears. (At least, that’s what happens early
in 2013.)

5. Click the last Download button and save the download to the local hard drive.
The downloaded file is one big . zip archive.


http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com
http://developer.android.com/sdk

6. Extract the contents of the downloaded archive file to the local hard drive.

On my Windows computer, I extract the .zip file's contents to the new folder
c:\Users\MyUserName\adt-bundle-windows-x86. On my Mac, I extract the .zip file's
contents to my existing Applications folder. (Refer to Figures 2-1 and 2-2.)

In Windows, the blank space in the name Program Files confuses some Java software. |
don't think any of this book's software presents this problem, but I can't guarantee it. If you
want, extract the .zip file's contents to the C:\Program Files or C:\Program Files (x86)
folder. But make a mental note about your choice (in case you run into any trouble later).

The .zip archive that you download from http://developer.android.com/sdk contains these
two components:

1 The eclipse component: It contains a customized version of the popular Eclipse integrated
development environment (IDE). You can compose, run, and debug Java applications in the
Eclipse environment. This customized version of Eclipse includes the Android Development
Toolkit (ADT) — extra plug-ins for working with Android apps.

1~ The sdk component: (Yes, only half of the large Android SDK download is the SDK
component. If the names are misleading, don’t blame me.) The SDK component contains the
Android software library (one or more versions of the Android API). This component also
contains a bunch of software tools for running and testing Android apps.

While you're still in the mood to follow my advice, note the location on the hard drive where the
sdk component lands. (For example, in Figure 2-1, the SDK folder is c:\Users\Barry\adk-
bundle-windows-x86_64\sdk.) I have a name for this location: the ANDROID_HOME folder.

Running Eclipse for the First Time

The first time you launch Eclipse, you perform a few extra steps. To get Eclipse running, follow
these steps:

1. Launch Eclipse.

In Windows, the Start menu may not have an Eclipse icon. In that case, look in Windows
Explorer (it's File Explorer in Windows 8) for the folder containing the extracted Eclipse files.
Double-click the icon representing the eclipse.exe file. (If you see an eclipse file but no
eclipse.exe file, check the sidebar "Those pesky filename extensions," earlier in this chapter.)

On the Mac, go to the Spotlight and type Eclipse in the search field. When Eclipse appears as the
Top Hit in the Spotlight’s list, press Enter.

When you launch Eclipse, you see the Workspace Launcher dialog box, as shown in Figure 2-5.
The dialog box asks where, on the computer’s hard drive, you want to store the code that you will
create using Eclipse.


http://developer.android.com/sdk

2. In the Workspace Launcher dialog box, click OK to accept the default (or don’t accept the
default).

One way or another, it’s no big deal.

Because this is your first time using a particular Eclipse workspace, Eclipse starts with a
Welcome screen, as shown in Figure 2-6.

= ] Workspace Launcher ﬂ

Select a workspace
Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Warkspace: [ Ci\Users\bamfworkspace vl Browse...

[T Use this as the default and do not ask again

QK h Cancel
Figure 2-5: The Eclipse Workspace Launcher.
o lava - ADT - o IEN|
File Ed& Refactor Bom  Hedgate Segech Project Window Help
P — =
T i
Cloie | i
Welcome!

The Androld Developer Teols provide a frst-Class development eraonment for buslkding Android apps. This inlegrabed
development emvironment 5 sl up with the Labes] version of the Androwd platiorm and sysbem Emage S0 you can immeafialely begin
EuEiging appd and runining 1hem on Thi: Andeoed emulator

To S5 2 iiw ANdeckd 209 project

1. Click File > New > Andraid Application Project
(17 your donT see thes oplon, chck File > New > Other, hen open the Androdd foider and select Androld Application Project )
2. Follow M wizan 10 Sel up your new Andecsd app project

Fof @ compiele walkineough that Shows Row 19 CREase 3 new projict and Duild a Simeie 3pp. nead Busdng Your Fest App.

To ol up A feal Andngid dovios rnneslmg your app, nepd Laing Mardwan: Devices ir o SonT have 3 device and noed b use e
emrailabor, read Managing Vietual Devices
PJ'.W your Andrgdd S0E already inciudes the labes! wersion of the platfom and system HTBGE, YOu mary Laler want b0 install other
Anaroid versions of packages such a5 the Andiokl Suppor Library, For hitlp installing dodtional packages, nead Adding Plllonms
3] PRBCgEs
Build Your First App » Design Your App » Test Your App »
I yourne neew R Andngid, Sollkow this: Bafong you b':gﬂ m'u:hp:ng','wr Thit Andnokd Maemewonk prowvses
chass 10 ke the fundamental Apg, B Sune you unGerstand the 100k Thart Pl yiou 1est eviry aspedt )
Androd APIS for crealing ayger | desion pattens Mal Androsdusers | Of vOUr A0 1o De sure Bhehaves s |

0 TIM of OGN [+]

Figure 2-6: The Welcome screen for Android’s customized version of Eclipse.

3. Dismiss the Welcome screen.

In most versions of Eclipse, you can dismiss the Welcome screen by clicking the little x icon that
appears on a tab above the screen.

A view of the main screen, after opening Eclipse with a brand-new workspace, is shown in Figure
2-7.



Ede Edt Bun  Sowrce Hwagebe Seaech  Preject Befector Window Haelp

Pk S T DOy B E k|

I Packuge Exploter - - Bl TaskList

) Connact Mylyn

FLM peshi g

nnegt b your task aed
ceate &

local tash
&= Outling

B cuthet i ot Foadable

- Java - Echipse i n

Figure 2-7: The Eclipse workbench with a brand-new workspace.

Dude, where’s my Android SDK?

When you launch Eclipse, the Eclipse IDE looks on the hard drive for the prewritten, reusable
Android code files. (After all, Eclipse uses these files to help you write and run Android apps.) If
Eclipse has trouble finding these files, you see a nasty-looking Could Not Find SDK Folder
message. To tell Eclipse where to install the Android SDK files, follow these steps:

1. In Windows, in the Eclipse main menu, choose Window=Preferences. On the Mac, in the

Eclipse main menu, choose Eclipse=Preferences.
The Eclipse Preferences dialog box opens.

2. In the tree list on the left side of the Preferences dialog box, select Android.
Don’t expand the Android branch of the tree. Simply click the word Android.
The SDK Location field appears in the main body of the Preferences dialog box, as shown in

Figure 2-8.



¥ Preferences o [HEN |
type filter text Android oo - -
.Gm”fl Android Preferences
| Android |
Ant SDK Location: | CiUsers\Barnadt-bundle-windows-86_63%sdik [:grcmlse...
CfCes Mote: The list of SDE Targets below is only reloaded once you hit ‘Apply’ or '0E",
Help
Install/Update Target Mame Vendor Platfarrn APl ...
dawva Android 4.2 Android Open Source Project 4.2 17
Run/Debug
Tearn
Walidation
XML
Restore Defaults Apphy
/?, QK . Cancel

Figure 2-8: Telling Eclipse about the location of the Android SDK.

3. Click the Browse button and (of course) browse to the ANDROID_HOME directory.

For example, in Figure 2-1, the ANDROID_HOME directory is c:\Users\Barry\adt-bundle-
windows-x86_64\sdKk.

4. Click Apply and OK, and all those good things to return to the main Eclipse workbench.

"

Look again at Figure 2-8 and notice the text box in the window’s upper-left corner — the
box containing the words type filter text. The text box is for filtering the names of Eclipse
preferences. Figure 2-8 displays only 11 preferences (such as General, Android, Ant, and
C++). But this list of preferences expands to a tree with approximately 150 branches. Each
branch refers to its own set of choices in the main body of the Preferences window. If you
want to see a bunch of Eclipse preferences related to font (for example), type font in the little
text box. Eclipse then displays only branches of the tree containing the word font.

Eclipse, meet Java!

Eclipse normally looks on the computer for Java installations and selects an installed version of
Java to use for running your Java programs. The computer may have more than one version of Java,
so double-check Eclipse’s Java version selection. The steps in this section show you how.

@EH'.BEH
S
')
__/ The steps in this section are optional. Follow them only if you suspect that Eclipse isn’t
using your computer’s favorite version of Java.
1. In Windows: From the Eclipse main menu, choose Window=Preferences. On the Mac: From
the Eclipse main menu, choose Eclipse=Preferences.

As aresult, the Eclipse Preferences dialog box appears. (You can follow along in Figure 2-9.)



) Preferences - 0B “

type filter et Installed JREs =R XiLW

| !
i Add, remove or edit JRE definitions, By default, the checked JRE is added to the build path

Android of newly created Java projects.
Ant

CfC++ Installed JRE::

Help

MName Location Type Add... h

Install/Update .
v B jdk180  CAProgram Files\avabjdk1L.EB0  Standard Wi

4 Java
Appearance
Build Path
Code She
Cormnpiler
Debug Search...
Editar
Installed JRE:

JUnit
Properties Files Editor
Run/Debug
Tearn
Walidation
XML

'i?\ 0Ok Cancel

Figure 2-9: The Installed JREs page of the Eclipse Preferences dialog box.

2. In the tree on the left side of the Preferences dialog box, expand the Java branch.
3. Within the Java branch, select the Installed JREs subbranch.

4. Look at the list of Java versions (Installed JREs) in the main body of the Preferences dialog
box.

In the list, each version of Java has a check box. Eclipse uses the version whose box is checked. If
the checked version isn’t your preferred version (for example, if it isn’t version 6 or later), you
have to make changes.

5. If your preferred version of Java appears in the Installed JRE:s list, select that version’s
check box.

6. If your preferred version of Java doesn’t appear in the Installed JRE:s list, click the Add
button.

When you click the Add button, the JRE Type dialog box appears, as shown in Figure 2-10.



w Add JRE

JRE Type
Select the type of JRE to add to the workspace,

|
a
b H

Installed JRE Types:

Execution Ervironment Description
Standard 1.1 WM

Standard Wh

@ % Back Mext = L\} Finish Cancel

Figure 2-10: The JRE Type dialog box.

7. In the JRE Type dialog box, double-click Standard VM.

As a result, the JRE Definition dialog box appears, as shown in Figure 2-11. What you do next
depends on a few different factors.



@ Add JRE

JRE Definition
Specify attributes for a JRE

IRE homme: ChProgram Files (BB awvatjre?
IRE narme: jre’

Default Wk Srgurments: Yariables...

JRE systern libraries:

+ le C\Prograrm Files (B8 avaljreMlibhresources jar A || Add External J&Rs..,
: ChProgram Files CoBE avatyjre Mlibhrt jar
- fmg C\Program Files GBEN avayjreTlibyjsse jar Javadoc Lacation...
. g ChProgram Files GBEP avabjre Mlibyjce jar

: : . : Source Attachment..,
o [mg CPrograrm Files GoBEJavaljreMlibhcharsets jar

o ChProgram Files GaBBY W avatjre Mlibyjfrjar Rermowve

- fms C\Program Files (B8N avayjreTibtesthaccess-bridge-3;

- [ma C\Program Files GBEN avayjre Tyibextydnsns jar Up

o ChProgram Files GBB) avatjreMlibhexthjaccess jar Do

- (g ChProgram Files G860\ Javaljre Mlibhexthlocaledata jar -, =
< : > Restore Default
'f:?:} < Back Mext = Einish l}, Cancel

Figure 2-11: The JRE Definition dialog box (after you've followed Steps 8 and 9).

8. Fill in the JRE Home field in the dialog box.
How you do this depends on the operating system:

* In Windows: Browse to the directory in which you've installed your preferred Java version.
On my many Windows computers, the directory is either C:\Program Files\Java\jre7,
C:\Program Files\Java\jdk1.7.0,C:\Program Files (x86)\Java\jre8, or something
of that sort.

* On the Mac: Use the Finder to browse to the directory in which you’ve installed your
preferred Java version. Type the name of the directory in the dialog box’s JRE home field.

My Mac has one Java directory, named /System/Library/Java/Java Virtual
Machines/1.6.0jdk/Contents/Home, and another Java directory named
/Library/Java/JavaVirtualMachines/JDK 1.7.0.jdk/Contents/Home.

"

Directories such as /System and /Library don't normally appear in the Mac's Finder
window. To browse to one of these directories (to the /Library directory, for example)
choose Go=Go to Folder on the Finder's menu bar. In the resulting dialog box, type /Library
and then press Go.



"

As you navigate toward the directory containing your preferred Java version, you
might encounter a JDK 1.7.0.jdk icon, or another item whose extension is . jdk. To see the
contents of this item, control-click the item's icon and then select Show Package Contents.

You might have one more thing to do back in the JRE Definition dialog box.

9. Look at the JRE Name field in the JRE Definition dialog box; if Eclipse hasn’t filled in a
name automatically, type a name (almost any text) in the JRE Name field.

10. Dismiss the JRE Definition dialog box by clicking Finish.

The Preferences dialog box in Eclipse returns to the foreground. Its Installed JREs list contains
the newly added version of Java.

11. Select the check box next to the newly added version of Java.
You’re almost done. (You have a few more steps to follow.)

12. Within the Java branch on the left side of the Preferences dialog box, select the Compiler
subbranch.

In the main body of the Preferences dialog box, you see the Compiler Compliance Level drop-
down list, as shown in Figure 2-12.

& Preferences - o HEN]
type filter text Compiler =R v -
bl Configure Project Specific Ssttings.., &
Snid JDK Compl|
Ant ampliance .
CiC++ Compiler compliance level: 1.6 W
Help (] Use default compliance settings I:}
Install/Update
4 Java
Appearance 1.6
Build Path
Code She
Comnpiler e
Debug
Editar Classfile Generation
Installed JRE: (] &dd variable attributes to generated class files (used by the debuggen)
JUnit o i (] Add line nurmber attributes to generated class files (used by the debugaen)
R ;E;T mgﬂ e e (W] &dd source file name to generated class file (used by the debuggen)
Ui u
Tearn [ Priserve unused (never read) local variables
Walidation o Inline finzlky blocks (larger class files, but improved performance)
XML
W
'i?\ . 0Ok Cancel

Figure 2-12: Setting the compiler compliance level.

13. In the Compiler Compliance Level drop-down list, select 1.5 or 1.6.
Android works with only Java 1.5 or 1.6.
14. Whew! Click the Preferences dialog box’s OK button to return to the Eclipse workbench.



Importing this book’s sample programs
This import business can be tricky. As you move from one dialog box to the next, you see that
many of the options have similar names. That’s because Eclipse offers many different ways to
import many different kinds of items. Anyway, if you follow these instructions, you’ll be okay:
1. Follow the steps in this chapter’s earlier section “Getting This Book’s Sample Programs.”
2. On the Eclipse main menu, choose File=Import, as shown in Figure 2-13.

As aresult, Eclipse displays the Import dialog box.
3. In the tree in the Import dialog box, expand the General branch.

4. In the General branch, double-click the Existing Projects into Workspace subbranch, as
shown in Figure 2-14.

As a result, the Import Projects dialog box appears.

5. In the Import Projects dialog box, choose the Select Root Directory or the Select Archive
File radio button, as shown in Figure 2-15.

()]

File | Edit Refactor Bun  Source  Mawvigate Search
[ ey Alt+5hift+M » a
Open File..,

Close Chrl +40
Close Al Crl + Shift +4if
Sawve Chrl+5
Save A,

Save Al Ctrl +Shift+5
Fewert

Pl o,

Fename... F2

#1  Refresh F5
Cornwvert Line Delimiters To k
Print... Ctrl+P
Sweitch Miforkspace J
Festart

f2g  Import..

i Export..

Properties Alt+Enter
Exit

Figure 2-13: Starting to import this book’s code.



() Import = =
Select
Create new projects from an archive file or directony, IE - 5 I

select an import source:

type filter text

4 [~ General
@'—J Archive File
|[§ Existing Projects into Waorkspace
[, File System
El Preferences

¢ = Android

y e CAC++

= Install

» = Run/Debug

2= Teamn

» = HML

J?"\ -
. bac Rle Flnls ance
@ < Back Next> Finish Cancel

Figure 2-14: Among all the options, select Existing Projects into Workspace.



W Import =

Import Projects ey
Select a directory to search for existing Eclipse projects, / /
-
() Select root directany: Browese..,

(®) Select archive file: Cibook_1_Javaddndroidiavaddndroid_Prograr] | Browse...

Projects:
03-01 (03-01) ~ Select Al
03-04 (03-04) %
03-05 {03_05} EESE'EEt Il
03-06 (03-06) Refresh

04-02 (04-02)

04-03 (04-03)

0404 (04- 04

04-05 (04-05)

Feniy v

| Copy projects into workspace
Working sets

[ Add project to working sets
Select...

=
L‘?_,.’ < Back Mext = Cancel

Figure 2-15: The Import Projects dialog box.

This book's code lives in a folder named Java4Android_Programs or in an archive file named
Java4Android_Programs.zip.

SYEREL,

Cﬁﬂ‘rm

-\

% Safari on a Mac generally uncompresses . zip archives automatically, and Windows
browsers (Internet Explorer, Firefox, Chrome, and others) do not uncompress .zip archives
automatically. For the complete scoop on archive files, see the earlier sidebar "Compressed
archive files."

6. Click the Browse button to find the Java4Android_Programs.zip file or the
Java4Android_Programs folder on the computer's hard drive.
If you're unsure where to find these items, look first in a folder named Downloads.
After you find Java4Android_Programs, the Import Projects dialog box in Eclipse displays the
names of the projects inside the file. (Refer to Figure 2-15.)

7. Click the Select All button.
This book’s examples are so exciting that you’ll want to import all of them!



8. Click the Finish button.

As a result, the main Eclipse workbench reappears. The left side of the workbench displays the
names of this book’s Java projects, as shown in Figure 2-16.

i Mo - ADHT - =
Ble [de Refebar Bun  Seuser agreh  Preject Y- Hrip

103 of THIRI i

Listing of Java projects

Figure 2-16: Eclipse displays a bunch of Java projects.

After importing the code from this book, you may see lots of red error markers indicating trouble
with the book's projects. If you do, stay calm. The markers might disappear after several seconds.
If they don't, check the lower area of the Eclipse workspace for a message similar to Unable to
resolve target 'android-15"'.

If you see such a message, it means that my book’s code insists on an API level that you haven’t
installed on your computer. To fix the problem, do the following:
1. On the Eclipse main menu, choose Window=Android SDK Manager.

As a result, the computer displays the Android SDK Manager. (No surprise here!)

2. Select the check box labeled Android 4.0.3 (API 15) or in whichever box is labeled with the
missing API level number.

3. Click the Install button in the lower-right corner of the Android SDK Manager window.
4. Wait for installation to finish.

5. Close the Android SDK Manager.

6. Restart Eclipse.

When Eclipse restarts, you see the red error markers for a few seconds. But after a brief (and
possibly tense) waiting period, the error markers go away. You’re ready to roll.

Creating an Android Virtual Device

You might be itching to run some code, but first you must have something that can run an Android
program. By something, I mean either an Android device (a phone, a tablet, an Android-enabled
toaster — whatever) or a virtual device. An Android Virtual Device (AVD) is a test bed for Android
code on the development computer.

The Android SDK comes with its own emulator — a program that behaves like a phone or a tablet



but runs on the development computer. The emulator translates Android code into code that the
development computer can execute. But the emulator doesn’t display a particular phone or tablet
device on the screen. The emulator doesn’t know what kind of device you want to display. Do you
want a camera phone with 800-x-480-pixel resolution, or have you opted for a tablet device with its
own built-in accelerometer and gyroscope? All these choices belong to a particular AVD. An AVD
is simply a bunch of settings, telling the emulator all the details about the device to be emulated.

Before you can run Android apps on your computer, you must first create at least one AVD. In fact,
you can create several AVDs and use one of them to run a particular Android app.

To create an AVD, follow these steps:

1. In the Eclipse main menu, choose Window=Android Virtual Device Manager.
The Android Virtual Device Manager window opens.

2. In the Android Virtual Device Manager window, click New, as shown in Figure 2-17.
The Create New Android Virtual Device (AVD) window opens. That’s nice!

3. In the AVD Name field, type a new name for the virtual device.

You can name your device My Sweet Petunia, but in Figure 2-18, I name my device
Nexus7_Android4.2. The name serves to remind me of this device's capabilities.

4. In the Device drop-down menu, select a device type.
In Figure 2-18, I select Nexus 7 (7.27", 800 x 1280: tvdpi).
5. Determine the kind of secure digital (SD) card your device has.

In Figure 2-18, I choose an SD card with a modest 1000 MiB, which is roughly 1 gigabyte.
Alternatively, I could have selected the File radio button and specified the name of a file on my
hard drive. That file would be storing information as though it were a real SD card on a real
device.

— - B
i 2] Androwd Vimual Device Manager e n

Furdiied Wirtasl Devdted | Descs Defintions
i & lra | B bDME
Lirk of wairting Andrcsd Vitusd Dedcer locsted a8 Clser\Baend androidiarad
1 Package Byl FTF Maer Taeget Myrmie Pl A Lol CPLLAAR P T 1]/ 2 dutiene
v W outhne i not railable

Refeezh
[ ] w Awalid Andrgid Victusl Device B repaingble Android Virtusl Device, T
o2 0604 ¥ An Anadroid Virtusd Desice that faded to load, Ohck Detad’ 1 pon the amar. =

o 00 . - - r =t deleted. o
ol 0% [2003=01=17 D1:45:59 SDE Ramagee) Delecing f£ile C:\lsera)Bace moid) avd) Androld 412
vod g [2083-01-17 01;45: 5% - 30K ager] Delacing folder Cih\Users) Baccyh .androddisyed) ndroid §1

5 [2003=01=17 01:;4%:39 = DK ! ages] ANVD 'J.r.-!:n'.{l_i'..'_l.l".'-' i '.I'u_u'.H'.:'n:ﬂ-JI.-'JJf:.'.' deleted,

= - w || €

1012 ELLEE e ] 1+

Figure 2-17: The Android Virtual Device Manager.



Recently, my department hired a new person. We offered a salary of $50K, which (we
thought) meant $50,000 per year. Little did we know that the new person expected to be paid
$51,200 each year. Computer scientists use the letter K (or the prefix Kilo) to mean 1,024 because
1,024 is a power of 2 (and powers of 2 are quite handy in computer science). The trouble is, the
formal meaning of Kilo in the metric system is 1,000, not 1,024. To help clear things up (and to
have fun creating new words), a commission of engineers created the Kibibyte (KiB) meaning
1,024 bytes, the Mebibyte (MiB) which is 1,048,576 bytes, and the Gibibyte (GiB), meaning
1,073,741,824 bytes. Most people (computer scientists included) don’t know about KiBs or MiBs,
and they don’t worry about the difference between MiBs and ordinary megabytes. I’m surprised
that the creators of the Android Virtual Device Manager thought about this issue.

6. Leave the other choices at their defaults (or don’t, if you don’t want to) and click the Create
AVD button.

The computer returns you to the Android Virtual Device Manager window, where you see a
brand-new AVD in the list, as shown in Figure 2-19.

And that does it! You’re ready to run your first Android app. I don’t know about you, but I’'m
excited. (Sure, I’m not watching you read this book, but I’'m excited on your behalf.) Chapter 3

guides you through the run of a standard Oracle Java program, and Chapter 4 does the same for an
Android application. Go for it!



h)] Create new Android Virtual Device (AVD) “
AND Mame: Mexus?_Androidd.?
Dewice; Mexus 7 (727", 800 = 1280: tudpi) [ w
Target: Android 4,2 - AP| Lewel 17 “
CPUSARI AR (armmeabi-wra)
Keyboard: Hardware keyboard present
Skine [#] Display a skin with hardurare contrals
Front Carera: Mane "
Back Carnera: Marne
e et BT 1024 Wi Heap: | 32
Internal Storage: 200 MIB v
5D Card:
(®) Size: | 1000 MiB
I File: Browese...
Ermulation Options: DSnapsth []Use Hast GPU
Drverride the existing 8WD with the same name
OKI}, Cancel
Figure 2-18: Creating a new Android virtual device.
£ Android Virtual Device Manager

Android Virtual Devices | Device Definitions

List of existing Android Virtual Devices located at ChUsers\Barn androidyawd

AVD Marne Target MNarme Platform AP Level
s MexusT_Andr.. Android 4.2 4.2 17

CPU/AEI

v B yalid Android Virtual Desice, =0 A repairable Android Virtual Device,
¥ A&n &ndroid Virtual Device that failed to load. Click 'Details’ to see the error.

ARM (armeabi-..,

Refresh




Figure 2-19: You've created an Android virtual device.



Chapter 3
Running Standard Java Programs

In This Chapter
Compiling and running a program
Working with a workspace

Editing your own Java code

If you’re a programming newbie, running a program probably means, for you, clicking the mouse.
You want to run Internet Explorer, so you double-click the Internet Explorer icon. That’s all there
is to it. As far as you’re concerned, Internet Explorer is a black box. How the program does
whatever it does is none of your concern.

But when you create your own program, the situation is a bit different. You start with no icon to
click, and possibly no well-defined notion of what the program should (and should not) do.

So how do you create a brand-new Java program? Where do you click? How do you save your
work? How do you get the program to run? What do you do if, at first, the program doesn’t run
correctly?

This chapter tells you what you need to know.
WEER
The example in this chapter is a standard Oracle Java program. A standard Oracle Java
program runs only on a desktop or laptop computer. The example cannot run on an Android
device. For an example that runs on Android devices, see Chapter 4.

Running a Canned Java Program

The best way to get to know Java is to “do Java,” by writing, testing, and running your own Java
programs. This section prepares you by describing how to run and test a program. Rather than write
your own program, you run one that I’ve already written for you. The program calculates the
monthly payments on a home mortgage loan, as shown in Figure 3-1.

Mortgage Payment Calculator — 5
Prntigal § 100000 00

Rabe (%) 815

Paymentd  552.20

Figure 3-1: A run of the mortgage program in this chapter.

Here’s how to run the mortgage program:

1. First, follow the instructions in Chapter 2 for installing Java, installing and configuring



Eclipse, and downloading this book’s sample programs.
Thank goodness! You don’t have to follow those instructions more than once.
2. Launch Eclipse.
The Workspace Launcher dialog box in Eclipse appears, as shown in Figure 3-2.

] Workspace Launcher “

Select a workspace
Eclipse stores your projects in a folder called a workspace.
Choose aworkspace folder to use for this session,

Workspace: | Chllsers\bamwvorkspace W Browse...

(1 Use this as the default and do not ask again

QK I} Cancel

Figure 3-2: The Workspace Launcher in Eclipse.

SYEREL,

Cﬁﬂ‘rm

F. \\I
j/ " For a complete how-to on launching Eclipse, see Chapter 2.

A workspace is a folder on the computer’s hard drive. Eclipse stores Java programs in one or
more workspace folders. Along with these Java programs, each workspace folder contains some
Eclipse settings. These settings store information such as the version of Java that you’re using,
the colors you prefer for words in the editor, the size of the editor area when you drag the area’s
edges, and other preferences. You can have several workspaces with different programs and
different settings in each workspace.

By default, the Workspace Launcher offers to open whatever workspace you opened the last time
you ran Eclipse. In this example, you open the workspace that you use in Chapter 2, so don’t
modify anything in the Workspace field.

3. In the Workspace Launcher dialog box, click OK.

The big Eclipse workbench stares at you from the computer screen, as shown in Figure 3-3.



Hirgage

REQIRRAFTF

Figure 3-3: The Eclipse workbench.

In Figure 3-3, the leftmost part of the workbench is the Eclipse Package Explorer, which contains
numbers such as 03-01, 04-01, and so on. Each number is the name of an Eclipse project, which
is, formally, a collection of files and folders inside a workspace. Intuitively, a project is a basic
work unit. For example, a self-contained collection of Java program files to manage a CD
collection (along with the files containing the data) may constitute a single Eclipse project.

Looking again at the Package Explorer in Figure 3-3, you see projects named 03-01, 04-01, and
so on. My project 83-01 holds the code in Listing 3-1. Project 84-01 contains the Android app
whose code begins in Listing 4-1 (the first code listing in Chapter 4 of this book). Project 05-03
contains the code in Listing 5-3. The project named 03-Mortgage is a slight anomaly because
the code for this chapter's Mortgage example isn't in any of the listings.
Eclipse project names can include letters, digits, blank spaces, and other characters; for the
names of this book’s examples, I stick with digits and dashes.
To read more about topics such as the Eclipse Package Explorer, see the later section “What’s All
That Stuff in the Eclipse Window?”

NG
S

&3
@ When you launch Eclipse, you may see different elements than the ones shown in Figure
3-3. You may see the Eclipse Welcome screen with only a few icons in an otherwise barren
window. You may also see a workbench like the one shown in Figure 3-3, but with no list of
numbers (03-01, 04-01, and so on) in the Package Explorer. If so, you may have missed some
instructions in Chapter 2 for configuring Eclipse. Alternatively, you may have modified the
workspace name in the Eclipse Workspace Launcher dialog box.
In any case, make sure that you see numbers like 03-01 and 04-01 in the Package Explorer.
Seeing these numbers ensures that Eclipse is ready to run the sample programs from this book.

4. In the Package Explorer, click the 03-Mortgage branch.
As aresult, the 03-Mortgage project appears highlighted.



"

To see a sneak preview of the Java program you're running in Project 03-Mortgage,
expand the 63-Mortgage branch in the Package Explorer. Inside the 83-Mortgage branch, you
find the src branch, which in turn contains a (default package) branch. Inside the (default
package) branch, you find the Mortgagewindow. java branch. This Mortgagewindow. java
branch represents my Java program. Double-clicking the Mortgagewindow. java branch makes
my code appear in the Eclipse editor, as shown in Figure 3-4.

T iy — |

clasm Epframs extends Frame implesests TexcLiscenst |

Figure 3-4: Java code in the Eclipse editor.

5. Choose Run=Run As=Java Application from the main menu, as shown in Figure 3-5.

When you choose Run As=Java Application, the computer runs the project’s code. (In this
example, the computer runs a Java program that I wrote.) The program displays the Mortgage
Payment Calculator window on the screen, as shown in Figure 3-6.

[ ¥ 1 b Bpplet Bt o S, A
R Conlijurafient T Tl bgplipen  MueThen )

-
o) hMngage Cubrusg Histary
-

BEET. 3. _ LEES oy o arercam LT ]

Figure 3-5: One way to run the code in Project 03-Mortgage.

£ Mortgage Payment Calculator = ':'

Principal § |n.nn

Rate (%) 0.o0
Years ]
Payment §

Figure 3-6: The Mortgage Payment Calculator begins its run.

6. Type numbers into the fields in the Mortgage Payment Calculator window. (Refer to Figure
3-1.)



&ﬁl"@:’.

O When you type a principal amount in Step 6, don't include the country's currency symbol
and don't group the digits. (U.S. residents: Omit dollar signs and commas.) For the percentage
rate, omit the % symbol. For the number of years, don't use a decimal point. If you break any of
these rules, the Java code can't read your number, and my Java program displays nothing in the
Payment row.

Disclaimer: Your local mortgage company charges more (a lot more) than the amount that my
Java program calculates.

If you follow this section’s instructions and you don’t see the results I describe, you can try these
three strategies, listed in order from best to worst:

1 Double-check all steps to make sure that you followed them correctly.

1 Contact me at Java4Android@allmycode.com via e-mail, @al1lmycode on Twitter, or
/allmycode on Facebook If you describe what happened, I can probably figure out what went
wrong and tell you how to correct the problem.

1 Panic.

Typing and Running Your Own Code

The earlier section “Running a Canned Java Program” is all about running someone else’s Java
code (code that you download from this book’s website). But, eventually, you’ll write code on your
own. This section shows you how to create code by using the Eclipse IDE.

Separating your programs from mine
You can separate your code from this book’s examples by creating a separate workspace. Here are
two (distinct) ways to do it:

1 When you launch Eclipse, type a new folder name in the Workspace field of the Workspace
Launcher dialog box in Eclipse.
If the folder doesn’t already exist, Eclipse creates the folder. If the folder already exists, the
Eclipse Package Explorer lists any projects that the folder contains.

+* In the main menu in the Eclipse workbench, choose File=Switch Workspace, as shown in
Figure 3-7.



New Ak« Thift« Pl ¥

Drpn File

Morve...
= Rename.. F2
Refresh F5

Correert Lire Delrniters To

Saatch Werkspace C\Users\bamwerkrpaced

Restart Chpurgevaorkzpacel
CAmune ks

Day |insgpoet. CApurgevesek spaced
Export... CApurgevwarkspace

E.

CWber\barryvwark ipuce
Properties Alt+Enter

Bat [

Figure 3-7: Switching to a different Eclipse workspace.

When you choose File=Switch Workspace, Eclipse offers you a few of your previously opened
workspace folders. If your choice of folder isn’t in the list, select the Other option. In response,
Eclipse reopens its Workspace Launcher dialog box.

Writing and running your program

Here’s how to create a new Java project:

1. Launch Eclipse.

2. From the Eclipse menu bar, choose File=New=Java Project.
The Create a Java Project dialog box appears.

3. In the Create a Java Project dialog box, type a name for the project and then click Finish.
In Figure 3-8, I type the name MyFirstProject.



Mew Java Project

Create a Java Project
Create a lawa project in the workspace or in an external location,

U

Project narne: | MyFirstProject
Browvse..,

[#] Use default lacation
ChlsershBarndvarkspace hyFirstProject
W

lavwasE-1.6

IRE
(®) Use an execution environrment IRE:
jred

() Use a project specific JRE:
() Use default JRE {currently 'jre8"

Configure default

Project layout
) Use praject falder as root far sources and class files

I.-
(®) Create separate falders for sources and class files

Select,..

Working sets
[ Add project to working sets
EarlyCode

Cancel

% Back Mext = Finish L}

Figure 3-8: Getting Eclipse to create a new project.

SEIBER
)
__/ If you click Next instead of Finish, you see other options that you don’t need right now.

To avoid confusion, just click Finish.

Explorer, as shown in Figure 3-9.

|
Clicking Finish returns you to the Eclipse workbench, with MyFirstProject in the Package



File Edit Refactor Zource Mawigate Search  Project  Bun Window
o E AE M iR Qo

2 Package Explorer 52 = <}==;'>| =y

4 M},-'Firstl:'ru:ujglct
2 src

- B, JRE Systern Library [Jawa=E-1.6]
4 ‘,%,J- SormeQtherProject

[ src
. B, JRE Systern Library [Jawa=E-1.6]

Figure 3-9: Your project appears in the Package Explorer in Eclipse.

The next step is to create a new Java source code file.
4. Select the newly created project in the Package Explorer.

To create Figure 3-9, I selected MyFirstProject instead of SomeOtherProject.
5. In the Eclipse main menu, choose File=New=~Class.

The Eclipse Java Class dialog box appears, as shown in Figure 3-10.



Mew lava Class

L]

Jawva Class

A
Create a new Jawva class, '\a el g.'

Source folder: hlyFirstProjectfsrc Browse..

Package: arg.allyourcode.rmyfirstproject Browse..,

[ Enclosing type: Browese,.,

Marme: kyFirstlawvaClass

kodifiers: (®) public () default private protected

[ Jabstract [ ]final static

Superclass: java.lang Ohbject Browse..,

Interfaces: ' Add...
Rermowe

Which rmethod stubs would you like to create?
public static woid rmain(String[] args)
[ ] Constructars from superclass
Inherited abstract methods
Do you want to add cormments? (Configure termplates and defaultvalue here)

DGenerate comiments

@) Finish L} Cancel

Figure 3-10: Getting Eclipse to create a new Java class.

"

Like every other windowed environment, Eclipse provides many ways to accomplish the
same task. Rather than choose File=New=Class, you can right-click MyFirstProject in the
Package Explorer in Windows (or control-click MyFirstProject in the Package Explorer on a
Mac). In the resulting context menu, choose New=Class. You can also start by pressing Alt-
Shift+N in Windows (or Option-Command-N on a Mac). The choice of clicks and keystrokes is
up to you.

6. In the Name field in the Java Class dialog box, type the name of the new class.
In this example, I use the name MyFirstJavaClass, with no blank spaces between the words in
the name. (Refer to Figure 3-10.)

Ry
@

%’ The name in the Java Class dialog box cannot have blank spaces, and the only allowable
punctuation symbol is the underscore character (_). You can name the class MyFirstJavaClass
or My_First_Java_Class, but you can't name it My First Java Class, and you can't name it



JavaClass, MyFirst. Finally, you can't start a class name with a digit. For example, you can
name the class Go4It but not 2borNot2b.

7. In the Package field in the Java Class dialog box, type a package name. (Refer to Figure 3-
10.)
In Java, you group code into bunches called packages. And in the Android world, each app comes
in its own package.
Don't worry much about making up package names. If you have your own domain name
(allyourcode.org, for example), you should reverse the domain name (resulting in
org.allyourcode) and then add a descriptive word. For example,
org.allyourcode.myfirstproject is a good package name. If you don't have a domain name,
any words (separated from one another by dots) will work.

SEIBER
u)

%/ The package name contains one or more words. Each word can be any combination of
letters, digits, and underscores (_) as long as the word doesn't start with a digit. A package name
is a bunch of these words, separated from one another by dots. For example,
org.allyourcode.Go4It is a valid package name, but org.allyourcode. 2bOrNot2b is not.
(You can't start the third part of the package name with the digit 2. For that matter, you can't start
any of the three words in a name like org.allyourcode.myfirstproject with a digit.)

8. Put a check mark in the public static void main(String[] args) check box.
The check mark tells Eclipse to create some boilerplate Java code.

9. Accept the defaults for everything else in the Java Class dialog box. (In other words, click
Finish.)
Clicking Finish brings you back to the Eclipse workbench. Now MyFirstProject contains a file

named MyFirstJavaClass.java. For your convenience, the MyFirstJavaClass.java file
already has some code in it. The Eclipse editor displays the Java code, as shown in Figure 3-11.

[J] MyFirstlavaClass.java 32 = B8

1 package org.allyourcode.myfirstproject;
A

3 public class MyFirstJdavaClass |

4

5 II."**

] & args

7 w

=] public static void wain(3tring[] args) 4

= b huto-generated method stub E=
]

Figure 3-11: Eclipse writes some code in the editor.



10. Replace an existing line of code in the new Java program.
Type a line of code in the Eclipse editor. Replace the line
// TODO Auto-generated method stub

with these lines:
javax.swing.JOptionPane.showMessageDialog
(null, "Hello");

WiINGs
&

/ I \\

6/ Any program containing these lines of code runs only on a desktop (or laptop) computer.
The code javax.swing.JOptionPane.showMessageDialog belongs to standard Oracle Java, but
not to Android Java.

Copy the new lines of code exactly as you see them in Listing 3-1.
* Spell each word exactly the way I spell it in Listing 3-1.
» Capitalize each word exactly the way I do in Listing 3-1.
* Include all the punctuation symbols — the dots, the quotation marks, the semicolon —
everything.
When you’re done, the code in the Eclipse editor should look exactly like the code in Listing 3-1.

Do | see formatting in my Java program?

When you use the Eclipse editor to write a Java program, you see words in various colors. Certain words are always in blue.
Other words are always in black. You even see some bold and italic phrases. You may think you see formatting, but you
don't. Instead, what you see is syntax coloring or syntax highlighting.

No matter what you call it, the issue is this:

* In Microsoft Word, elements such as bold formatting are marked inside a document. When you save
MyPersonalDiary.doc, the instructions to make the words love and hate bold are recorded inside the MmyPersonalbiary.doc
file.

L In a Java program editor, elements such as bold and coloring aren’'t marked inside the Java program file. Instead, the
editor displays each word in a way that makes the Java program easy to read.

For example, in a Java program, certain words (such as class, public, and void) have their own, special meanings. So the
Eclipse editor displays class, public, and void in bold, reddish letters. When | save my Java program file, the computer
stores nothing about bold, colored letters in my Java program file. But the editor uses its discretion to highlight special words
with reddish coloring.

Another editor may display the same words in a blue font. Another editor (such as Windows Notepad) displays all words in
plain, old black.

HListing 3-1: A Program to Display a Greeting

public class MyFirstJavaClass {

/**
* @param args




*/
public static void main(String[] args) {
javax.swing.JOptionPane.showMessageDialog
(null, "Hello");

}

(SN
& ‘\\
h/ Java is case-sensitive, which means that Showmessagedialog isn't the same as
showMessageDialog. If yOu tyPe Showmessagedialog, your progrAm won't worK. Be sUre to
cAPItalize your codE eXactLy as it is shown in Listing 3-1.

Some people notice the difference between "curly" quotation marks and "straight™" quotation
marks. Is the distinction between the two types useful? (Do you see the difference?) Is it even
appropriate to use the words curly and straight for the two kinds of quotation marks? In a Java
program, a word like "Hello" (surrounded by straight quotation marks) stands for a string of
characters. In fact, the code in Listing 3-1 makes the letters Hello appear on the user's screen.
Here's the rule:

In Java, to denote a string of characters, always use straight quotation marks; never curly
quotation marks.

In practice, if you copy code from a Kindle or from another electronic medium, you’re probably
copying curly quotation marks, and the code is incorrect. Fortunately, when you use the computer
keyboard to type code in the Eclipse editor, you automatically type straight quotation marks.
That’s nice.

Q?.;ﬁ."&

s

=1 ~
W
ok Ao
31

In a Java program, almost none of the spacing and indentation matters. In Listing 3-1, I
don't need all the blank spaces before (null, "Hello"), but the blank spaces help me to
remember that (null, "Hello") is a continuation of the showMessageDialog stuff. In other
words, all the characters between the word javax and the word "Hello" are part of one big Java
command. I separate the command into two lines because if I didn't, the command would run off
the edge of the page.

If you type everything correctly, you see the information shown in Figure 3-12.

J] WFirsllavaClass jova

ﬁmq-lmqr oEg.allyourcods  myLiratprojece

public class HyFiracJavaClass

public static void main(Stringl] acgs) i
javax . swing.JOprionPase . showMess agelialoy

[mall, "Hella®]:




Figure 3-12: A Java program in the Eclipse editor.

If you don’t type your part of the code exactly as it’s shown in Listing 3-1, you may see jagged
red underlines, tiny rectangles with X-like markings inside them, or other red marks in the
Editor, as shown in Figure 3-13.

The red marks in the Eclipse editor refer to compile-time errors in the Java code. A compile-time
error (also known as a compiler error) is an error that prevents the computer from translating the
code. (See the talk about code translation in Chapter 1.)

i MyFirstlavaClass java &2 = 5

1 package org.allyourcode.myfirstproject; u
A
public class MNyFirstJavaClass |

,-"'**
& args
7
public static void wain(3tring[] args) 4
javax.swing.JoptionPane.shollmESsacedillog =
(mall, "Hello™):

R I i I n I w R I VR ) QY -

Figure 3-13: A Java program, typed incorrectly.

"

Here, the error markers in Figure 3-13 appear on line 9 of the Java program. Line
numbers are designed to appear in the editor’s left margin, but they do not appear by default. To
make the Eclipse editor display line numbers, choose Window="Preferences (in Windows) or
Eclipse=Preferences (on a Mac). Then choose General=Editors=Text Editors. Finally, add a
check mark in the Show Line Numbers check box.

To fix compile-time errors, you must become a dedicated detective and join the elite squad
known as Law & Order: JPU (Java Programming Unit). You seldom find easy answers. Instead,
comb the evidence slowly and carefully for clues. Compare everything you see in the editor,
character by character, with my code in Listing 3-1. Don’t miss a single detail, including
spelling, punctuation, and uppercase versus lowercase.

Eclipse has a few nice features to help you find the source of a compile-time error. For example,
you can hover over the jagged red underline. When you do, you see a brief explanation of the
error along with suggestions for repairing the error — some quick fixes, in other words. See

Figure 3-14.
In Figure 3-14, a pop-up message tells you that Java doesn't know what the word
shoWmESsaGediAlog means — that is, showmESsaGediAlog is "undefined." Near the bottom of



the figure, one quick-fix option is to repair the incorrect capitalization by changing
showWmESsaGediAlog to showMessageDialog.

& WyFirstlavatlass java & =B [E] TaskList 23
[ 1 package org.allyourcode .myfiractproject; L] T - | [ % w B8

public class HyFirscJavaclass |
) b AL ¢ Actiabe,
(L) Connect Mylyn 8
Connect to your task and ALM tools
public static void main(String(] args) | or greate a local task,
a9 Javax . swing. JOprionPans . shoWmESsaGedi i log
0 The method shoWmESsaGediflog(null, 3tnng) is undefined for the type J0ptionPane
3 quick froes available:
¥ & Char to "shiy f-p.rl’::;l:g{ ¥

& Char "5 bl vt e 2

B kb E
» v [»

& Char

Figure 3-14: Eclipse offers helpful suggestions.

When you click the Change to 'showMessageDialog' (..) option, the Eclipse editor replaces
shoWwmESsaGediAlog with showMessageDialog. The editor's error markers disappear, and the
incorrect code shown in Figure 3-13 changes to the correct code shown in Figure 3-12.

11. Make any changes or corrections to the code in the Eclipse editor.

When at last you see no jagged underlines or blotches in the editor, you’re ready to try running
the program.

12. Select MyFirstJavaClass either by clicking inside the editor or by clicking the
MyFirstProject branch in the Package Explorer.

13. In the Eclipse main menu, choose Run=Run As=Java Application.

That does the trick. The new Java program runs, and you see the Hello message shown in Figure
3-15. It's like being in heaven!

Message “

F.
1

—
I} Hello
1

I\

Figure 3-15: Running the program shown in Listing 3-1.

What can possibly go wrong?

Ridding the editor of jagged underlines is cause for celebration. Eclipse likes the look of your code, so from that point on, it's
smooth sailing. Right?

Well, it ain’'t necessarily so. In addition to some conspicuous compile-time errors, the code can have other, less obvious
errors.

Imagine someone telling you to “go to the intersection, and then rurn tight.” You notice immediately that the speaker has




made a mistake, and you respond with a polite “Huh?” The nonsensical rurn tight phrase is like a compile-time error. Your
“Huh?” is like the jagged underlines in the Eclipse editor. As a human being who listens, you may be able to guess what rurn
tight means, but the Eclipse editor never dares to fix the mistakes in your code.

In addition to compile-time errors, other kinds of gremlins can hide inside a Java program:

L Unchecked runtime exceptions: You see no compile-time errors, but when you run the program, the run ends
prematurely. Somewhere in the middle of the run, the instructions tell Java to do something that can't be done. For
example, while you're running the Mortgage program in the earlier section "Running a Canned Java Program," you type
1,000, 000.00 instead of 1600000.00. Java doesn't like the commas in the number, so the program crashes and Eclipse
displays a nasty-looking message, as shown in the first figure.

1. Probhems Jweadoc | Declaration < Seanch B Consoln

MuartgageWindew [ Appliestien] CABragram

This example shows an unchecked runtime exception — the equivalent of someone telling you to turn right at the
intersection when the only thing to the right is a big, brick wall. The Eclipse editor doesn’t warn you about an unchecked
runtime exception because, until you run the program, the computer can't predict that the exception will occur.

L Logic errors: You see no error markers in the Eclipse editor, and when you run the code, the program runs to
completion. But the answer isn't correct. Instead of $552.20 in the second figure, the payment amount is
$551,518,260.38. The program incorrectly tells you to pay thousands of times what your house is worth and tells you to
pay this amount each month! It's the equivalent of being told to turn right rather than turn left. You can drive in the wrong
direction for quite a long time.

£ Mortgage Payment Calculator — © | x :

Principal § |1nnnnn.nn

Rate (%)  |5.25

Years 30

Payment § a514518260.38

Logic errors are the most challenging errors to find and to fix. And worst of all, logic errors often go unnoticed. In March
1985, | got a monthly home heating bill for $1,328,932.21. Clearly, a computer had printed the incorrect amount. When |
called the gas company to complain, the telephone service representative said, “Don’t be upset. Pay only half that
amount.”

L Compile-time warnings: A warning isn't as severe as an error message. So when Eclipse notices suspicious behavior
in a program, the editor displays a jagged yellow underline, an exclamation point enclosed in a tiny yellow icon, and a few
other not-so-intrusive clues.

For example, in the third figure, you can see that, on Line 9, | added material related to amount = 16 to the code from
Listing 3-1. The problem is, | never make use of the amount or of the number 10 anywhere in my program. With its faint,
yellow markings, Eclipse effectively tells me "Your amount = 10 code isn't bad enough to be a showstopper. Eclipse can
still manage to run the program. But are you sure you want amount = 10 (this material that seems to serve no purpose) in
your program?"




A subtle hint
I WFirstlavaClass |ava
packayge org.allyourcods . myficstprojeccy -~

public class HEyFirstJavaclass |

public static vold main|Sceing] azgal |
int amount = 10;
javax . swing.JOptlonPane . showMess apelial oy

[rall, "Hella"j:

Imagine being told, “Turn when you reach the intersection.” The direction may be just fine. But if you're suspicious, you
ask, “Which way should | turn? Left or right?”

When you're sure that you know what you're doing, you can ignore warnings and worry about them later. But a warning
can be an indicator that the code has a more serious problem. My sweeping recommendation is this: Pay attention to
warnings. But if you can't figure out why you're seeing a particular warning, don't let the warning prevent you from moving
forward.

Icon yellow?
Your code is mellow.
Icon red?

Your code is dead!

What’s All That Stuff in the Eclipse Window?

Believe it or not, an editor once rejected one of my book proposals. In the margin, the editor
scribbled “This is not a word” next to text such as can’t, it’s, and I’ve. To this day, I still do not
know what this editor did not like about contractions. My own opinion is that language always
needs to expand. Where would we be without a few new words — words such as dotcom,
infomercial, and vaporware?

Even the Oxford English Dictionary (the last word in any argument about words) grows by more
than 4,000 entries each year. That’s an increase of more than 1 percent per year — about 11 new
words per day!

The fact is, human thought resembles a high-rise building: You can’t build the 50th floor until
you’ve built at least part of the 49th. You can’t talk about spam until you have a word such as e-
mail. In these fast-paced, changing times, you need verbal building blocks. That’s why this section
contains a bunch of new terms.

In this section, each newly defined term describes an aspect of the Eclipse IDE. Before you read all
this Eclipse terminology, I provide these disclaimers:

1~ This section is optional reading. Refer to this section if you have trouble understanding some
of this book’s instructions. But if you have no trouble navigating the Eclipse IDE, don’t
complicate things by fussing over the terminology in this section.

1~ This section provides explanations of terms, not formal definitions of terms. Yes, my
explanations are fairly precise; but no, they’re not airtight. Almost every description in this



section has hidden exceptions, omissions, exemptions, and exclusions. Take the paragraphs in
this section as friendly reminders, not as legal contracts.

1~ Eclipse is a useful tool. But Eclipse isn’t officially part of the Java ecosystem. Although I
don’t describe details in this book, you can write Java programs without ever using Eclipse.

Understanding the big picture

Your tour of Eclipse begins with the big Burd’s-eye view:

1 Workbench: The Eclipse desktop (refer to Figure 3-3). The workbench is the environment in
which you develop code.

1~ Area: A section of the workbench. The workbench shown in Figure 3-3 contains five areas. To
illustrate the point, I’ve drawn borders around each area, as shown in Figure 3-16.

1~ Window: A copy of the Eclipse workbench. In Eclipse, you can have several copies of the
workbench open at a time. Each copy appears in its own window.

"

To open a second window, go to the main Eclipse menu bar and choose Window=New
Window.

1~ Action: A choice that’s offered to you, typically when you click something. For example, when
you choose File=New from the Eclipse main menu bar, you see a list of new elements you can
create. The list usually includes Project, Folder, File, and Other, but it may also include items
such as Package, Class, and Interface. Each of these things (each item on the menu) is an action.

3 Marvd - Echgde - B n
Bde Edr Bom Source Heagale Sepsch Project Refacter Window Melp
Bl W AR it Q-0 = wigh @ =i ] - - -
B & v
2 Parkest Exploms - 3 * 0 Bl Task List
AR A S
5| oA b e
(I Connct Mylyn
Connegt o your tuk snd
ALM reali g freate
el Bush
gl
i isthenee s 0T Fndabie
o Prodlared
Derms
Deserption . Resgurce Path Lacation Type
n [~ = |
- 2 I

Figure 3-16: The workbench is divided into areas.

Views, editors, and other stuff



The next bunch of terms deals with things called views, editors, and tabs.

e

You may have difficulty understanding the difference between views and editors. (A view
is like an editor, which is like a view, or something like that.) If views and editors seem the
same to you, and you’re not sure whether you can tell which is which, don’t be upset. When
you’re an ordinary Eclipse user, the distinction between views and editors comes naturally as
you gain experience using the workbench. You rarely have to decide whether the thing you’re
using is a view or an editor.

Anyway, if you ever have to distinguish between a view and an editor, here’s what you need to
know:

1 View: A part of the Eclipse workbench that displays information for you to browse. In the
simplest case, a view fills up an area in the workbench. For example, in Figure 3-3, earlier in
this chapter, the Package Explorer view fills up the leftmost area.

Many views display information as lists or trees. For example, in Figure 3-9, the Package
Explorer view contains a tree.

You can use a view to make changes. For example, to delete MyFirstProject in Figure 3-9,
right-click the MyFirstProject branch in the Package Explorer view. (On a Mac, control-click
the MyFirstProject branch.) Then on the resulting context menu, choose Delete.

Ry
u)

%’ When you use a view to change something, the change takes place immediately. For
example, when you choose Delete in the Package Explorer’s context menu, whatever item
you’ve selected is deleted immediately. In a way, this behavior is nothing new. The same kind
of thing happens when you recycle a file using Windows Explorer or trash a file using the
Macintosh Finder.

1~ Editor: A part of the Eclipse workbench that displays information for you to modify. A typical
editor displays information in the form of text. This text can be the contents of a file. For
example, an editor in Figure 3-11 displays the contents of the MyFirstJavaClass. java file.

Ry

u)

4% When you use an editor to change something, the change doesn't take place
immediately. For example, look at the editor shown in Figure 3-11. This editor displays the
contents of the MyFirstJavacClass. java file. You can type all kinds of things in the editor.
Nothing happens to MyFirstJavaClass.java until you choose File=Save from the Eclipse
menu bar. Of course, this behavior is nothing new. The same kind of thing happens when you
work in Microsoft Word or in any other word processing program.

Like other authors, I occasionally become lazy and use the word view when I mean view
or editor instead. I also write “the Eclipse editor” when I should write “an Eclipse editor” or
“the Editor area of the Eclipse workbench.” When you catch me blurring the terminology this
way, just shake your head and move onward. When I’m being careful, I use the official Eclipse



terminology. I refer to views and editors as parts of the Eclipse workbench. Unfortunately, this
“parts” terminology doesn’t stick in peoples’ minds.

An area of the Eclipse workbench might contain several views or several editors. Most Eclipse
users get along fine without giving this “several views” business a second thought (or even a first
thought). But if you care about the terminology surrounding tabs and active views, here’s the
scoop:

1~ Tab: Something that’s impossible to describe except by calling it a “tab.” That which we call a
tab by any other name would move us as well from one view to another or from one editor to
another. The important thing is, views can be stacked on top of one another. Eclipse displays
stacked views as though they’re pages in a tabbed notebook. For example, Figure 3-17 displays
one area of the Eclipse workbench. The area contains six views (Problems view, Javadoc view,
Declaration view, Search view, Console view, and LogCat view). Each view has its own tab.

I arch (& Console 2 ED LogCat X K #BD~5-= 0O
Android
[2013=01=18 15:19:03 = RandomColorGlowAPIL0] HOME i= up on device 'emulator=-S554' -
[2013=01=13 15:19:03 - RandomColorGlowAFIL0] Uploading RandomColorGlowAPIlO0.apk onto devic
[2013-01-18 153:19:03 - RandomColorGlowAPIL0] Inscalling RandomColorGlowAPIl0.apk...
[2013-01-18 15:19:20 - RandomColorGlowAPIi0] Success!

[2013-D1-18 15:19:20 - RandomColorGlowAPIlD] Starting activity com.allmycode. randomsolorgl
[2013-01-18 15:19:21 - RandomColorGlowAPILl0] ActivityManmger: Starting: Intent { act=andro

W

< >

Figure 3-17: An area containing several views.

"

The Console view is shown in Figure 3-17, but it doesn’t always appear as part of the
Java perspective. Normally, the Console view appears automatically whenever the program
crashes. If you want to force the Console view to appear, choose Window=Show View=Other.
In the resulting Show View dialog box, expand the General branch. Finally, within that General
branch, double-click the Console item.

A bunch of stacked views is a tab group. To bring a view in the stack to the forefront, you click
that view’s tab.

By the way, all this information about tabs and views holds true for tabs and editors. The only
interesting thing is the way Eclipse uses the word editor. In Eclipse, each tabbed page of the
Editor area is an individual editor. For example, the Editor area shown in Figure 3-18 contains
three editors (not three tabs belonging to a single editor). The three editors display the contents
of three files: MyFirstJavaClass.java, MortgageWindow.java, and activity_main.xml.



W WFinstlavaClass jaa A1 Morigagetindow java Ac1ry_reain amil

package org.allyourcode. syfiratprojece;: b

publie clasa MyFizstJavaClass |

public static void main(String[] acgs) |
Javnx . swing. JOprionPane . showsess ageli ol oy
(null, "H=1llo™);:

Figure 3-18: The Editor area contains three editors.

1~ Active view or active editor: In a tab group, the active view or editor refers to the view or
editor that’s in front.

In Figure 3-18, the MyFirstJavaClass. java editor is the active editor. The
MortgageWindow.java and activity_main.xml editors are inactive. (The activity_main.xml

looks as though it's active, but that's because, in Figure 3-18, I'm hovering the mouse over that
editor's tab.)

Looking inside a view or an editor
The terms in this section deal with individual views, individual editors, and individual areas:

1~ Toolbar: The bar of buttons (and other little items) at the top of a view, as shown in Figure 3-

19.
£ Package Explorer 53 - = [J] MyFirstlavaClass java
g ~ 1 package org.q
C i 401 N -1 PE
> ij 05-01 Collapse All (Ctrl+Shift+ Numpad_Divide) A==
v o7
. 4 05-02 e
N
G 14-01
ﬁ | —_—
. 524 15-06 ¥
P N R B

Figure 3-19: The toolbar in the Package Explorer view.

1 Menu button: A downward-pointing arrow on the toolbar. When you click the menu button, a

drop-down list of actions appears, as shown in Figure 3-20. Which actions you see in the list
vary from one view to another.



[E Package Explorer 52

Sh-4
- 04-01
- e 05-01
e 05-02
- 14-01
. 124 15-06
4 12 Android-01
» [ src
. G@ gen [Generated lava Files)
. By Android 4.2
- B, Android Dependencies
G@ assets
. &= bin
- &2 libs
a &2 res
- [= drawable-hdpi
[= drawahble-ldpi
- [= drawable-mdpi
» = drawable-xhdpi

{ e |

-
N

oF of

i&i

& [&]

Ill MyFirstlavaClass.java &3 Martga

1 package org.allyourcode.

Top Lewvel Elernents |
=

Select Working Set...
Deselect Warking Set
Edit Active Warking Set.., _
= 1]

1 Window Working Set -

2 EarlyCode
3 MyFirstProjectQnly

Filters...

Package Presentation J

Showe 'Referenced Libraries' Mode

Link with Editor

Focus on Active Task

Figure 3-20: Clicking the menu button in the Package Explorer view.

1~ Close button: A button that eliminates a particular view or editor, as shown in Figure 3-21.

[J] MyFirstlavaClass java B3

1 package org.al

5 Cloze

3
4
5

,-"I**

Martgadg

public class MyFirstJavs

ode .,

Figure 3-21: An editor’s Close button.

1# Chevron: A double arrow indicating that other tabs should appear in a particular area (but that
the area is too narrow). The chevron shown in Figure 3-22 has a little number 2 beside it. The 2
tells you that, in addition to the two visible tabs, two tabs are invisible. Clicking the chevron
opens a hover tip containing the labels of all the tabs. (See Figure 3-22.)

] MyFirstlavaC.. 52 [J] Morgageiind..

1 ackage org.allyourcode.myfi k - t:
r o el it it Shu:-r'-.- List

public class MNyFirstJavaClass |

W L [

o)

> 2 — E

Figure 3-22: The chevron indicates that two editors are hidden.

1~ Marker bar: The vertical ruler on the left edge of the editor area. Eclipse displays tiny alert
icons, called markers, inside the marker bar. (Refer to Figure 3-13.)

Returning to the big picture

The two terms in this section deal with the overall look and feel of Eclipse:

1~ Layout: An arrangement of certain views. The layout shown in Figure 3-3, for example, has



seven views, four of which are active:
* Package Explorer view: You see it on the far left side.

* Task List view and Outline views: They’re on the far right side.

* Problems, Javadoc, Declaration, and Console views: They’re near the bottom. In this area of
the workspace, the Problems view is the active view.

Along with all these views, the layout contains a single editor area. Any and all open editors
appear inside this editor area.

1~ Perspective: A useful layout. If a particular layout is truly useful, someone gives that layout a
name. And if a layout has a name, you can use the layout whenever you want. For example, the
workbench shown in Figure 3-3 displays Eclipse’s Java perspective. By default, the Java
perspective contains six views in an arrangement much like the arrangement shown in Figure 3-
3.

Along with all these views, the Java perspective contains an editor area. (Sure, the editor area
has several tabs, but the number of tabs has nothing to do with the Java perspective.)

You can switch among perspectives by choosing Window=0pen Perspective on the Eclipse
main menu bar. This book focuses almost exclusively on Eclipse’s Java perspective. But if you
like poking around, visit some of the other perspectives to get a glimpse of the power and
versatility of Eclipse.



Chapter 4
Creating an Android App

In This Chapter
Creating an elementary Android app
Troubleshooting troublesome apps
Testing an app on an emulator or a mobile device

Dissecting an app

Chapter 3 describes the writing and running of a dirt-simple Java program. Like many Java
programs, the one in Chapter 3 runs on a plain-old desktop or laptop computer. Behind the scenes,
the code in Chapter 3 uses the powerful features of standard Oracle Java. But the two kinds of Java
(standard Oracle Java for desktops and laptops, and Android’s Java for mobile devices) are slightly
different animals, for these reasons:

1~ Standard Java uses the power and speed of desktop and laptop computers.
Android Java is streamlined to run on smaller devices with less memory.

1~ Standard Java uses some features that aren’t available in Android Java.
For example, the javax.swing.JOptionPane.showMessageDialog call in the program in
Chapter 3 isn't available in Android Java.

1 Android Java uses some features that aren’t available in standard Java.
For example, the Activity class in this chapter's program isn't available in standard Java.

1~ Creating a basic Android app requires more steps than creating a basic standard Java app.

This chapter covers the steps that are required in order to create a basic Android app, though the
app doesn’t do much. (In fact, you might argue that it does nothing.) But the example shows you
how to create and run a new Android project.

Creating Your First Android App

A gadget typically comes supplied with a manual. The manual’s first sentence is “Read all 37
safety warnings before attempting to install this product.” Don’t you love it? You can’t get to the
pertinent material without wading through the preliminaries.

Well, nothing in this chapter can set your house on fire or even break your electronic device. But
before you follow this chapter’s instructions, you need a bunch of software on your development
computer. To make sure you have this software, and that it’s properly configured, see Chapter 2.
(Do not pass Go; do not collect $200.)

When at last you have all the software you need, you’re ready to start Eclipse and create a real, live
Android app.



Creating an Android project
To create your first Android application, follow these steps:

1. Launch Eclipse.

SVEREA,

S

E/ For details on launching Eclipse, see Chapter 2.

CRa,

2. From the main menu in Eclipse, choose File=New=Android Application Project.
As aresult, Eclipse fires up its New Android Application dialog box, as shown in Figure 4-1.

3. In the Application Name field, type a name for the app.

In Figure 4-1, I type the boring words My First Android App. Ordinary folks such as Joe and
Jane User, however, will see this name under the app's icon on the Android launcher screen. If
you're planning to market your app, make the name short, sweet, and descriptive. You can even

include blank spaces in the name.

The next several steps involve lots of clicking, but you primarily accept the default settings.
4. (Optional) In the Project Name and Package Name fields, change the name of the project

and the name of the Java package containing the project.

Eclipse automatically fills in the Project Name and Package Name fields (guided by whatever
text you type in the Application Name field). In Figure 4-1, Eclipse creates the project name
MyFirstAndroidApp and the package name com.example.myfirstandroidapp. Eclipse uses the

project name to label this app's branch in the Package Explorer tree.

& New Android Application =i C “

Mew Android Application
1y The prefix 'com.example.’ is meant 33 3 placeholder and should not be used !

Application Name: 0| by First Android lepl
Project Marme: O MyFirstdndroidApp

Package Marme:&| com.example.myfirstandroidapp

Minirum Regquired SDK:9 | API & Android 2.2 (Froyo) v
Target SDK:0 AP 16 Android 4.1 (lelly Bean) W

Cornpile With: @ API 17: Android 4.2 (Jelly Bean) v

Therne: 3 Holo Light with Dark Action Bar W

y  The application narme is shown in the Play Store, as well 35 in the Manage &pplication list in Settings.

(7 < Bacl MNext = L\;' Cancel

Figure 4-1: The first New Android Application dialog box.



For practice apps, you can cheat by using the package name that Eclipse creates. But if you plan
to publish an app, give the app its own package name, using the rules described in Chapter 3.

@gﬂafﬂ

le \

b/ In Android, a package name belongs to only one app. You can put the first app in the
package org.allyourcode.firstapp and put the second app in the package
org.allyourcode.secondapp. But you can't put more than one app in an
org.allyourcode.mystuff package.

SVEREA,
S

CROg,

72 For the lowdown on Java packages and package names, see Chapter 5.
5. (Optional) Choose values from the drop-down boxes in the dialog box.

To find out what you’re promising when you select Minimum Required SDK API 8 and Target
SDK API 16, see the nearby sidebar, “Using Android versions.”

In Figure 4-1, T accept the defaults offered to me — API 8, API 16, and API 17. You can select
any values from the drop-down boxes as long as you’ve created an Android Virtual Device
(AVD) that can run the target’s projects. (For example, an Android 2.3.3 AVD can run projects
targeted to earlier versions of Android, such as Android 2.3.1, Android 2.2, and Android 1.6. The
project target doesn’t have to be an exact match with an existing AVD.)

Using Android versions

Android has a few different uses for version numbers. For example, in Figure 4-1, the minimum required SDK is API 8 and
the target SDK is API 16. What's the difference?

You design an Android app to run on a range of API versions. You can think informally of the minimum SDK version as the
lowest version in the range, and the target version as the highest. So if you select API 8 as the minimum SDK and select API
16 as the target, you design an app to run on API levels 8 through 16.

But the lowest-to-highest-version idea needs refining. The official Android documentation reports that “ . . . new versions of
the platform are fully backward-compatible.” So an app that runs correctly on API 8 should run correctly on all versions
higher than API 8. (I write “should run correctly” because, in practice, full backward compatibility is difficult to achieve.
Anyway, if the Android team is willing to promise full backward compatibility, I'm willing to take my chances.)

The target version (it's API 16 in Figure 4-1) is the version for which you test the app. When you run this chapter's example,
Eclipse opens an emulator with API 16 or higher installed. (For example, if you've created an AVD whose APl is level 17 but
you have no AVD whose API is level 16, Eclipse opens the emulator with API 17.) To the extent that your app passes your
testing, the app runs correctly on devices that run API 16 (also known as Android 4.1). What about devices that run other
versions of Android? This list provides an explanation:

1 The app’s target version is API 16, but the app uses only features that are available in API 8 and earlier: In that case, you
can safely enter the number 8 in the Minimum Required SDK field in Eclipse.

1 The app uses some features available only in API 16 and later, but the app contains workarounds for devices that run
API 8: (The app’s code can detect a device’s Android version and contains alternative code for different versions.) In that
case, you can safely put the number 8 in the Minimum Required SDK field.

L* The app’s target version is APl 16: In 2019, someone installs your app on a device running API 99 (code-named Zucchini
Bread). Because of backward compatibility, the app runs awkwardly but correctly on the API 99 device. Then the app’s
target version (API 16) isn't truly the upper limit.

When you select a target version and a minimum SDK version, Android stores these numbers in the project's
AndroidManifest.xml file. You can see the AndroidManifest.xml file in the project's tree in the Package Explorer in Eclipse.




e
If you mistakenly select a target for which you have no AVD, Eclipse hollers at you when

you try to run the project. (Though Eclipse hollers, it also offers to help you create the necessary

AVD, so everything turns out just fine.)

C.Fl’-fi'_r

a&‘f“ﬁ?‘ff
E«/ For help with creating an AVD, see Chapter 2.

6. Click Next.
As a result, the New Android Application dialog box reappears. (See Figure 4-2 — okay,

originality in naming dialog boxes may not be Eclipse’s strong suit.)

_—) |

& New Android Application
New Android Application 6

Configure Project

] Create activity

[ hark this project as a library

[#] Create Project in ‘Workspace
ChUsers\BarnsorkspaceBhyFirstdndroidapp

Warking sets
[[]Add project to working sets

MFirstProjectOnly

Cancel

< Back Mext =

Figure 4-2: The second New Android Application dialog box.

7. (Optional) Tweak the settings in the latest incarnation of the New Android Application

dialog box.
For a practice app, I recommend deselecting the Create Custom Launcher Icon check box and
leaving untouched the other settings in this New Android Application dialog box. In particular,

keep the Create Activity option selected.

8. Click Next.
As aresult, the Create Activity dialog box appears, as shown in Figure 4-3.



FERE,
SR

CRg,

227 For the truth about activities in Android, see Chapter 5.

9. Click Next again. (In other words, accept the defaults in the Create Activity dialog box.)
The next box in the sequence is the New Blank Activity dialog box, as shown in Figure 4-4.

& MNew Android Application

Create Activity

I '
Selectwhether to create an activity, and if so, what kind of activity. @

[W] Create Activity

Fullscreendctivity
Logindctivity
Ml asterDetailFlow

ety == 1

New Blank Activity

Creates a new blank activity, with optional inner navigation.

@

Cancel

< Back Mext = Fimish
N

Figure 4-3: Creating a new activity.



MNew Android Application = = “
New Blank Activity m

Creates a new blank activity, with optional inner navigation.

Activity Name®| MainActivity

Layaut Nameﬂ: ackivity_rmain

MNavigation Typeﬂ: MNone

L The name of the activity class to create

@

< Back Bext =

Einish h | [Rcancal

Figure 4-4: Creating a blank activity.

10. Click Finish. (That is, accept the defaults.)

As aresult, the New Blank Activity dialog box closes, and the Eclipse workbench moves to the

foreground. The Package Explorer tree in Eclipse has a new branch. The branch’s label is the
name of the new project, as shown in Figure 4-5.

Your new Android project

Jrvd - progirelapoutfactivity, manaml - Edipse
B ot Bofuctor  Jousce Hwagets Sapch Peapct Ben Wedow [Help
B == L T - T » B S R e i i e e |
3 Pasicage Explaser Rl == 0 schy_main ol
e WyFrdnsceddop . Paletie s
'u_._-* = Pibvme - | [ Mt v @ v gy dppThams v | @ Mendchay v
B g [Gmarvtesd bren | - e
B A A e | HE) O@- KD
[Ty ——— e L e a2 |
s vsem Ban et
i ben R Y TR T—
e [T,
alam
G drpmabie: hip —
& ety Liipe
Lh drpmabie mdp
6 gy
2 i ot L
@ mana Layoarts
5 wakati
. N pdie
& valunal -
@ i R A
1 Ardeasdbundast aml _ Tams & Date
[ proguind propeits Tt
L @ propcipeaperar Ackesnced
i MigF oo
3 TovemRaspE LR
Camiem B e oy Views |
T el Lyt | ] ity sl

B Pesblarea 12 s
1 arvors, T wwmings, O oS Filtas mak
Dusérpten

- - B
D s 1080 o WE wrra)
& Wasmangs (7% )

bord 176 of Eb itnmnch

c RRD a0 |



Figure 4-5: A new MyFirstAndroidApp branch.
Congratulations — you’ve created an Android application.

Running your project
To kick your new app’s tires and take your app around the block, do the following:

1. Select the app’s branch in the Package Explorer in Eclipse.
(Refer to Figure 4-5.)
2. In the main menu, choose Run=Run As=Android Application.

As a result, the Console view displays several lines of text. Among them, you might find the
phrases Launching a new emulator,Waiting for HOME, and (as shown in Figure 4-6) my
personal favorite, Success'!

Success!

Figure 4-6: The Console view during the successful launch of an app.

SYEREL,

CR.a-'l‘.r

g/ If you don’t see the Console view, you have to coax it out of hiding. For details, see
Chapter 3.

"

In the lingo of general app development, a console is a text-only window that displays the
output of a running program. A console might also accept commands from the user (in this case,
the app developer). A single Android run might create several consoles at a time, so the Console
view in Eclipse can display several consoles at a time. If the material you see in the Console view
in Eclipse is nothing like the text shown in Figure 4-6, the Console view may be displaying the
wrong console. To fix this problem, look for a button showing a picture of a computer terminal in
the upper-right corner of the Console view, as shown in Figure 4-7. Click the arrow to the right of
the button. In the resulting drop-down list, choose Android.



Computer Terminal icon

Daclarston < Sawch B Conpots 11 XD Loglet H| = =R

Figure 4-7: Choosing a console.

3. Wait for the Android emulator to display the Device Locked screen, a Home screen, or an
app’s screen.

First you see the word ANDROID as though it's part of a scene from The Matrix, as shown in Figure
4-8. Then you see the word ANDROID in shimmering, silvery letters, as shown in Figure 4-9.
Finally, you see the Device Locked screen, a Home screen, or an app's screen, as shown in Figure
4-10.

ANDROILD _

Figure 4-8: The emulator starts running.



Figure 4-9: Android starts running on the emulator.

4.1 can’t overemphasize this point: Wait for the Android emulator to display the Device
Locked screen, a Home screen, or an app’s screen.

The Android emulator takes a long time to start. For example, on my 2 GHz processor with 4GB
of RAM, the emulator takes a few minutes to mimic a fully booted Android device. You need lots
of patience when you deal with the emulator.

5. Keep waiting.
While you’re waiting, you can search the web for the phrase Android emulator speed up. Lots of
people have posted advice, workarounds, and other hints.



5:29..

Saturday, January 19
€ Charging (50%)

Figure 4-10: The Device Locked screen in Android 2.3.3 appears.

Oh! I see that the emulator is finally displaying the Device Locked screen. It’s time to proceed. . .

6. If the emulator displays the Device Locked screen, do whatever you normally do to unlock
an Android device.
Usually, you unlock the device by sliding something from one part of the screen to another.

7. See the app on the emulator’s screen.

Figure 4-11 shows the running of the Hello World app in Android. (The screen even displays
Hello World!) Eclipse creates this tiny app when you create a new Android project.

The Hello World app in Android has no widgets for the user to push, and the app doesn’t do
anything interesting. But the appearance of an app on the Android screen is a good start.

Following the steps in this chapter, you can start creating many exciting apps.
SEMBER

)

N\ Don’t close an Android emulator unless you know that you won’t be using it for a while.
The emulator is fairly reliable after it gets going. (It’s sluggish, but reliable.) While the
emulator runs, you can modify the Android code and choose Run=Run As=Android



Application again. When you do, Android reinstalls the app on the running emulator. The
process isn’t speedy, but you don’t have to wait for the emulator to start. (Actually, if you run
a different app — an app whose minimum required SDK is higher than the running emulator
can handle — Android fires up a second emulator. But in many developer scenarios, jumping
between emulators is the exception rather than the rule.)

= il # 541

My First Android App

Hello world!

Figure 4-11: The Hello World app in action.

What if . . .

You try to run your first Android app. If your effort stalls, don’t despair. This section has some
troubleshooting tips.

Error message: R cannot be resolved

Every Android app has an R. java file. The Android development tools generate this file
automatically, so normally you don't have to worry about R. java. Occasionally, the file takes
longer than average to be generated. In this case, Eclipse finds references to the R class in the rest
of the project's code and complains that the project has no R class. My advice is to wait.



If one minute of waiting doesn’t bring good results, follow these steps to double-check the project
settings:
1. Highlight the project in the Package Explorer in Eclipse.
2. From the main menu, choose Project.
A list of submenu items appears.
3. Look for a check mark next to the Build Automatically menu subitem.
4. If you don’t see a check mark, select the Build Automatically subitem to add one.
With any luck, the R. java file appears almost immediately.

If the project is set to Build Automatically and you still don't have an R. java file, try these steps:

1. Highlight the project in the Package Explorer.

2. From the main menu, choose Project.
A list of submenu items appears.

3. In the Clean dialog box in Eclipse, select the project that’s giving you trouble along with the
Clean Projects Selected Below radio button.

4. Click OK.

Cleaning the project should fix the problem. But if the problem persists, close Eclipse and then
restart it. (Eclipse occasionally becomes “confused” and has to be restarted.)

e

After copying Java code from one Android project to another, you might see the annoying
message Import cannot be resolved near the top of the program. If so, you might have
inadvertently told one project to fetch material from another project's R. java file. If the
offending line of code is import somethingorother .R, try deleting that line of code. Who
knows? Your deletion might just fix the problem.

Error message: No compatible targets were found

When you see this message, it probably means that you haven’t created an Android Virtual Device
(AVD) capable of running your project. If Eclipse offers to help you create a new AVD, accept it.
Otherwise, choose Window=Android Virtual Device Manager to create a new AVD.

SYEREL,
SERER,

Cﬁﬂ‘rm

. '\\I
/?/ | For information about Android Virtual Devices, see Chapter 2.

The emulator stalls during start-up

After five minutes or so, you don’t see the Device Locked screen or the Android Home screen. Try
these solutions:

1 Close the emulator and launch the application again. (Or lather, rinse, repeat.)

Sometimes, the second or third time’s a charm. On rare occasions, my first three attempts fail
but my fourth attempt succeeds.

1~ Start the emulator independently.



That is, start the emulator without trying to run an Android project. Follow these four steps:
a. From the Eclipse main menu, choose Window=>Android Virtual Device Manager.
The Android Virtual Device Manager window opens. It contains a list of AVDs that you’ve
already created.

SYEREL,
SERER,

Cﬁﬂ‘rm

-\
% For help creating an AVD, see Chapter 2.
b. In the Android Virtual Device Manager, select the AVD that you want to start.
c. On the right side of the Android Virtual Device Manager, click Start.

As aresult, Eclipse displays the Launch Options dialog box.
d. In the Launch Options dialog box, click Launch.

In other words, accept the default options and fire up the emulator.

When, at last, you see the new emulator’s Device Locked screen or Home screen, follow Steps
1, 2, 6, and 7 in the earlier section “Running your project.”

-
If you try the tricks in this section but the stubborn Android emulator still doesn't start,
visit this book's website (http://allmycode.com/Java4Android) for more strategies to try.

1 Run the app on a phone, a tablet, or another real Android device.

Testing a brand-new app on a real device makes me queasy. But the Android sandbox is fairly
safe for apps to play in. Besides, apps load quickly and easily on phones and tablets.

For instructions on installing apps to Android devices, see the section “Testing Apps on a Real
Device,” later in this chapter.

Error message: The user data image is used by another emulator
If you see this message, a tangle involving the emulator prevents Android from doing its job. First
try closing and restarting the emulator.

If a simple restart doesn’t work, try these steps:

1. Close the emulator.
2. From the main menu in Eclipse, choose Window=Android Virtual Device Manager.

SYEREL,
SERER,

Cﬁﬂ‘rm

F. '\\I
j/ ' To read about the Android Virtual Device Manager, see Chapter 2.
3. In the list of virtual devices, select an AVD that’s appropriate to the project and click Start.

4. In the resulting Launch Options dialog box, select the Wipe User Data check box and click
Launch.

As aresult, Eclipse launches a new copy of the emulator — this time, with a clean slate.

ik w Ex

P

If you follow the steps in this section but you still see the message User data image is


http://allmycode.com/Java4Android

used by another emulator, visit this book's website (http://allmycode.com/Javad4Android)
for more help with this problem.

Error message: Unknown virtual device name

Android looks for AVDs in the home directory's .android/avd subdirectory, and occasionally the
search goes awry. For example, one of my Windows computers lists my home directory on an i
drive. My AVDs are in i:\Users\barry\.android\avd. But Android ignores the computer's home
directory advice and instead looks in c:\Users\Barry. When Android doesn't find any AVDs, it
complains.

You can devise fancy solutions to this problem by using either junctions or symbolic links. But
solutions of this kind require special handling of their own. To keep it simple, I copy the contents
of my i:\Users\barry\.android directory to c:\Users\barry\.android to fix the problem.

Error message: INSTALL_PARSE_FAILED INCONSISTENT_CERTIFICATE

This error message indicates that an app you previously installed conflicts with the app you’re
trying to install. So, on the emulator screen, navigate to the list of installed applications (which is
usually an option on the Settings screen). In the list of applications, delete any apps that you
installed previously.

EWER
T
% Occasionally, you might have trouble finding previously installed apps from the

Settings= Applications menus in the emulator. If you do, visit this book's website
(http://allmycode.com/Java4Android) for a geeky workaround solution.

The app starts, but the emulator displays the Force Close or Wait dialog box

The formal name of the Force Close or Wait dialog box is Application Not Responding (ANR).
Android displays the ANR dialog box whenever an app takes too long to do whatever it’s supposed
to do. When the app runs on a real device (a phone or a tablet), the app shouldn’t make Android
display the ANR dialog box.

But on a slow emulator, seeing a few Force Close or Wait messages is par for the course. When I
see the ANR dialog box in an emulator, I usually select Wait. Within about ten seconds, the dialog
box disappears and the app continues to run.

Changes to your app don’t appear in the emulator

Your app runs and you want to make a few improvements. So, with theemulator still running, you
modify the app’s code. But after choosing Run=Run As=Android Application, the app’s behavior
in the emulator remains unchanged.

When this happens, something is clogged up. Close and restart the emulator. If necessary, use the
Wipe User Data trick that I describe in the earlier section “Error message: The user data image is
used by another emulator.”

The emulator’s screen is too big

Sometimes, the development computer’s screen resolution isn’t high enough. (Maybe your
eyesight isn’t what it used to be.) This symptom isn’t a deal breaker, but if you can’t see the
emulator’s lower buttons, you can’t easily test the app. You can change the development


http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

computer’s screen resolution, though adjusting the emulator window is less invasive.
To change the emulator window size, follow these steps:

1. Close the emulator.

2. From the Eclipse main menu, choose Window=Android Virtual Device Manager.

3. In the list of virtual devices, select an AVD that’s appropriate to the project and click Start.
4. In the resulting Launch Options dialog box, select the Scale Display to Real Size check box.
5. Lower the value in the Screen Size field.

As you change the Screen Size value, the value in the Scale field changes automatically. The
smaller the Scale value, the smaller the emulator appears on the development computer’s screen.
6. Click Launch.

As aresult, Eclipse launches a new copy of the emulator — this time, with a smaller emulator
window.

Testing Apps on a Real Device

You can bypass emulators and test apps on a phone, a tablet, or maybe an Android-enabled trash
compactor. To do so, you have to prepare the device, prepare the development computer, and then
hook the two together. This section describes the process.

To test an app on a real Android device, follow these steps:

1. On the Android device, turn on USB debugging.

Various Android versions have their own ways of enabling (or disabling) USB debugging. You
can poke around for the debugging option on your own device or visit this site for the procedures
on some representative Android versions:

www . teamandroid.com/2012/06/25/how-to-enable-usb-debugging-in-android-phones

On my device, I keep USB debugging on all the time. But if you’re nervous about security, turn
off USB debugging when you aren’t using the device to develop apps.

2. In your project's branch of the Package Explorer, double-click the AndroidManifest.xml
file.

Eclipse offers several ways to examine and edit this file.

3. At the bottom of the Eclipse editor, click the Application tab.
Eclipse displays a form like the one shown in Figure 4-12.

4. In the Debuggable drop-down list, choose True. (Refer to Figure 4-12.)
When Debuggable is set to True, Android tools can monitor the run of the app.

,@E'.-ﬂ'_a t.-ﬂ

a7
;' nf\ﬁ
H/ The ability to debug is the ability to hack. Debugging also slows down an app. Never
distribute an app to the public with Debuggable set to True.

5. Choose File=Save to store the new AndroidManifest.xml file.

6. Set up the development computer to communicate with the device.


http://www.teamandroid.com/2012/06/25/how-to-enable-usb-debugging-in-android-phones 

* On Windows: Visit http://developer.android.com/sdk/oem-usb.html to download the
device's Windows USB driver. Install the driver on the development computer.

* On a Mac: /* Do nothing. It just works. */

) MyFirstAndroidApp Manifest 23 = =
Android Manifest Application =

» Application Toggle

= Application Attributes

Defines the attributes specific to the application,
Marmne Browse.., | Whd
Therne @ stylefSppTherne Browese,., | Han
Label Dstringfapp_narme Browese.., | Mar
lcon @drawablefic_launcher Browvse.., | &llo
Logo Browese,., | Test
Description Browse,,, | Bac
Permission v | Allo
Process Browvse.., | Kill:
Task affinity Browese,., | Rest
Allowy task reparenting v | Rest
Has code W | Mew
Persistent v | Larc
Enabled v | Ulo
Debuggahble I v-i Sup
Application MNodes |false T

£ >

=] Manifest | [A] Application | [P] Permissions | *%

Figure 4-12: The Application tab of a project's AndroidManfest.xml file.

7. Using a USB cable, connect the device to the development computer.

For ways to verify that the device is connected to the development computer, visit this
book's website at http://allmycode.com/Java4Android.

8. In Eclipse, run the project.

A connected device trumps a running emulator. So, if the Android version on the device can
handle the project’s minimum SDK version, choosing Run=Run As=Android Application
installs the app on the connected device.

Eventually, you'll disconnect the device from the development computer. If you're a Windows user,
you may dread reading windows can't stop your device because a program is still


http://developer.android.com/sdk/oem-usb.html
http://allmycode.com/Java4Android

using it. To disconnect the device safely, do the following:

1. Open the Command Prompt window.
On Windows 7 or earlier: Choose Start=All Programs=Accessories=Command Prompt.
On Windows 8: First press Windows+Q. Then type Command Prompt and press Enter.

2. In the Command Prompt window, navigate to the ANDROID_HOME/platform-tools directory.
For example, if the ANDROID_HOME directory is

C:\Users\yourName\adt-bundle-windows-x86 64\sdk

type this command:

cd C:\Users\yourName\adt-bundle-windows-x86 64\sdk\platform-tools

3. In the Command Prompt window, type adb kill-server and then press Enter.

The adb kill-server command stops communication between the development computer and
any Android devices, real or virtual. In particular,

» The development computer no longer talks to the device at the end of the USB cable.
* The development computer no longer talks to any emulators it’s running.
After issuin