

Building Bots with Node.js

Automate workflow and internal communication processes
and provide customer service without apps using messaging
and interactive bots

Eduardo Freitas
Madan Bhintade

BIRMINGHAM - MUMBAI

Building Bots with Node.js

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1240117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-545-0

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Eduardo Freitas
Madan Bhintade

Copy Editor

Safis Editing

Reviewers

Allen O'Neill

Project Coordinator

Sheejal Shah

Commissioning Editor

David Barnes

Proofreader

Safis Editing

Acquisition Editor

Shweta Pant

Indexer

Mariammal Chettiyar

Content Development Editor

Parshva Sheth

Graphics

Abhinash Sahu

Technical Editor

Prashant Mishra

Production Coordinator

Melwyn Dsa

  

About the Authors
Eduardo Freitas currently works as a consultant on software development applied to
customer success, mostly related to financial process automation, accounts payable
processing, invoice data extraction and SAP integration.

He has provided consultancy services, engineered, advised and supported various projects
for global names such as Agfa, Coca Cola, Domestic & General, EY, Enel, Mango and the
Social Security Agency among many others. He’s also been invited to various companies
such as Shell, Capgemini, Cognizant and the European Space Agency. He was recently
involved in analyzing 1.6 billion rows of data using Redshift (Amazon Web Services) in
order to gather valuable insights on client patterns. He holds an M.S. in Computer Science.

He enjoys soccer, running, traveling, life hacking, learning and spending time with his
family. You can reach him at h t t p ://e d f r e i t a s . m e .

Many thanks to all the people who contributed to this book. All the lovely and amazing
team at Packt and also to Madan Bhintade for believing in the project and helping me
finalize it.

Madan Bhintade is an independent solution architect. He is also a developer with focus on
cloud based solutions. He enjoys development on AWS, Microsoft Azure & Office 365,
SharePoint Server, Angular, and Node.js. He has 16 years of experience building solutions
for insurance, financial & banking, and HR industries.

Madan is passionate about what he does and shares what he has learnt through his blog. He
also enjoys speaking on what he is exploring in technology area and helps others to adopt
the changes in technology. His typical interest areas include UX, Digital Technology
Platforms, and artificial intelligence.

He is a C# Corner MVP. His contribution towards C# Corner can be seen at h t t p ://w w w . c -

s h a r p c o r n e r . c o m /m e m b e r s /m a d a n - b h i n t a d e . He can be connected with via LinkedIn h t t p

s ://i n . l i n k e d i n . c o m /i n /m a d a n b h i n t a d e .

Currently he is working on his startup concept along with his consulting assignments. You
can reach Madan on his blog h t t p ://w w w . m a d a n b h i n t a d e . w o r d p r e s s . c o m and follow him
on Twitter at @madanbhintade.

http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://edfreitas.me
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
http://www.c-sharpcorner.com/members/madan-bhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
https://in.linkedin.com/in/madanbhintade
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com
http://www.madanbhintade.wordpress.com

About the Reviewer
Allen is a chartered engineer with a background in enterprise systems. He is a fellow of the
British Computing Society, a Microsoft Insider, and both a CodeProject and C-Sharp Corner
MVP. His core technology interests are big data and machine learning, in particular using
data science to create intelligent bots/agents for the web, and the Internet of Things. He is
also a ball throwing slave to his family dogs.

Allen writes regularly at: Code Project - h t t p s ://w w w . c o d e p r o j e c t . c o m /m e m b e r s /a j s o n

 and C-Sharp Corner - h t t p ://w w w . c - s h a r p c o r n e r . c o m /m e m b e r s /a l l e n - o n e i l l .

He can be contacted at www.blox.io or on twitter @ajsondev

https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
https://www.codeproject.com/members/ajson
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.c-sharpcorner.com/members/allen-oneill
http://www.blox.io

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously—that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help
others in the community to make an informed decision about the resources that they invest
in to learn. You can also review for us on a regular basis by joining our reviewers' club. If
you're interested in joining, or would like to learn more about the benefits we offer,
please contact us: customerreviews@packtpub.com.

Table of Contents
Preface 1

Chapter 1: The Rise of Bots – Getting the Message Across 6

Why bots matter and why you should get on the train 8
Why SMS still matters 10
Twilio as an SMS platform 11

Installing Twilio for Node.js 11
Setting up a Twilio account 17
Bare-bones Twilio Node.js template 20

Core bot functionality on Azure 22
Receiving SMS bot logic 29
Summary 32

Chapter 2: Getting Skype to Work for You 33

How a Skype bot works 34
Wiring up our Skype bot 35
Registering our Skype bot app 41
HR Skype bot agent 54

Azure table storage as a backend 54
HR agent guidelines 60
Accessing the Azure table through code 61
HR agent bot logic 63

Summary 69

Chapter 3: Twitter as a Flight Information Agent 70

How a Twitter bot works 71
 Creating a Twitter app 71
Posting to Twitter 78
Listening to tweets 80
Replying to who tweeted 82
Flight APIs 85

Flight status API 86
Route search API 87
Adding a REST client library 89

Making the bot a bit smarter 90
Summary 96

[ii]

Chapter 4: A Slack Quote Bot 97

Getting started 98
Registering a bot on Slack 98
Setting up our Node.js app 101
Slackbots library basics 103
The They Said So API 105
Summary 116

Chapter 5: Telegram-Powered Bots 117

How a Telegram bot works 118
Setting up a Telegram account 118
Setting up a bot account using a Telegram bot – @BotFather 120
What is sentiment analysis? 124
Creating a Telegram bot 124
Conversations with our basic Telegram bot 128
Building a sentiment analysis bot 131

Summary 137

Chapter 6: BotKit – Document Manager Agent for Slack 139

Setting up a Slack for your team 140
Setting up a Slack bot 145
Botkit and Slack 148
Creating our first Slack bot using Botkit and Node.js 148
Enhancing our DocMan bot 154

What is MongoDB? 154
MongoDB database for our DocMan bot 155

MongoDB shell 155
Create a database 156
Create a reference documents collection 156
Create data for our DocMan bot 156
Indexing for search 157
Search query 158

What is MongoJS? 158
Wiring up DocMan bot with MongoDB 158
Amazon S3 storage 161

Amazon S3 console 161
Create buckets 162
Store documents in the bucket 163

Mark documents as public 164
Update MongoDB data with Amazon S3 document links 165
Wiring it all up together 166
Code understanding 167

Summary 171

[iii]

Chapter 7: Facebook Messenger Bot, Who's Off – A Scheduler Bot for
Teams 172

Setting up our Facebook Messenger bot 173
The Facebook Page for our basic bot 173
Creating a Facebook app for our basic bot 175
Setting up our bot server in Azure 178

Setting up a local git repository for our bot server in Azure 181
Modifying our bot program for Facebook verification 183
Setting up a Webhook and Facebook verification of our bot program 185
Deploying a modified bot that returns an echo 188
Troubleshooting our bot in Azure 189

Enhancing our Who's Off bot 191
Building a conversational experience with the Who's Off bot 192

Setting up a Messenger greeting 193
Showing the initial options of what a bot can do 194

What is DocumentDB? 197
Setting up a DocumentDB for our Who's Off bot 197

Creating an account ID for the DocumentDB 197
Creating a collection and database 198

Wiring up DocumentDB, Moment.js, and Node.js 199
Utility functions and Node.js 200
Wiring it all up together 202

Running our bot – the Who's Off bot 216
Initial options 217
Scheduling a meeting 217
Whos Off When 219

Summary 220

Chapter 8: A Bug-Tracking Agent for Teams 222

IRC client and server 222
IRC web-based client 223

IRC bots 224
Creating our first IRC bot using IRC and Node.js 224
Code understanding of our basic bot 227
Enhancing our BugTrackerIRCBot 229

What is DocumentDB? 230
Setting up a DocumentDB for our BugTrackerIRCBot 230

Create account ID for DocumentDB 230
Create a collection and database 231
Create data for our BugTrackerIRCBot 232

Wiring up DocumentDB and Node.js 234
Wiring up all of this together 237
Code understanding 239

Running our enhanced BugTrackerIRCBot 241

[iv]

Summary 244

Chapter 9: A Kik Salesforce CRM Bot 245

What is Salesforce? 245
What is Force.com? 245
Kik mobile app 246
Kik bots 247
Our Kik bot 247

Creating our first Kik bot 247
Using the Kik dev platform on a browser 248
Using the Kik app from a mobile 248
Setting up our bot server in Azure 251
Kik bot configuration 252
Wiring up our bot server with the Kik platform 253

Understanding the code of our basic Kik bot 253
Running our basic Kik bot 254
Enhancing our Kik bot 255

Salesforce and our bot 256
Security token to access the Salesforce API 257

Wiring it up all together 257
Understanding the code 259

Running our enhanced Kik Salesforce bot 263
sforcebot for campaign management 264
Summary 265

Index 266

Preface
Bots everywhere! Conversational and chat-enabled apps are well positioned to become the
next big platform and how apps are developed. Advances in machine learning, natural
conversational APIs have taken off and many high tech and software giants are embracing
conversational bots and provide APIs that allow developers to create applications that
seamlessly integrate into these conversational platforms, enhancing user’s experience. This
book explores some of these platforms in and simple and intuitive way, allowing
developers to quickly come up to speed with them.

What this book covers
Chapter 1, The Rise of Bots – Getting the Message Across, introduces and explains the growing
importance of bots in today’s world and also teaches you how to create an SMS bot app
using the Twilio messaging platform.

Chapter 2, Getting Skype to Work for You, explains how to use the new Microsoft Bot
Framework in order to create a Skype bot.

Chapter 3, Twitter as a Flight Information Agent, teaches you how to create a Twitter bot
application that interacts with the Air France KLM API in order to retrieve flight details.

Chapter 4, A Slack Quote Bot, explains how to create a Slack bot application that sends
inspirational quotes to users.

Chapter 5, Telegram-Powered Bots, shows you how to develop a bot that will provide you
the sentiments of messages on Telegram using Telegram APIs.

Chapter 6, BotKit – Document Manager Agent for Slack, teaches you how to use Slack APIs
with BotKit to provide documents at the fingertips of team members collaborating in Slack.

Chapter 7, Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams, shows you how to
set up a Facebook Messenger Bot that can be used to schedule team meetings, or to see who
is off when with the help of the Microsoft Azure platform and services.

Chapter 8, A Bug-Tracking Agent for Teams, teaches you how to use the IRC platform and
DocumentDB for a bug-tracking bot.

Chapter 9, A Kik Salesforce CRM Bot, explores how to use Force.com API and a Kik to create
a Salesforce CRM Bot.

Preface

[2]

What you need for this book
The following requirements are recommended for maximum enjoyment:

A good Internet connection
A fairly modern computer or laptop (preferably Windows-based, but not
necessarily)
A fairly good dose of creativity, imagination, and willingness to learn and
explore new concepts

Pretty much all software and APIs mentioned in this book are free of charge and can be
downloaded from the Internet.

Who this book is for
This book is for anyone that knows some Node.js and would like to explore how a bot can
be written with the various existing conversational platforms available today. The book is
written in an easy-to-understand way that is suitable for developers of all kinds, from
novice to very experienced ones. Some know-how of Node.js is recommended.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
session object contains the information that Skype passes on to the bot app, which
describes the session data that has been received and from whom. Notice that the session
object contains properties such as message and text."

A block of code is set as follows:

bot.dialog('/', function (session) {
 if (session.message.text.toLowerCase().indexOf('hi') >= 0){
 session.send('Hi ' + session.message.user.name +
 ' thank you for your message: ' + session.message.text);
 } else{
 session.send('Sorry I dont understand you...');
 }
});

Preface

[3]

Any command-line input or output is written as follows:

mkdir telegrambot
cd telegrambot

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the Register a bot
option in order to create and register your Skype bot. Once you've done that, you'll see the
following screen:"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files from your account at h t t p ://w w w . p a c k t p u b . c o m

for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c o m /s u p p o r t and register to have the files
e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /B u i l d i n g - B o t s - w i t h - N o d e j s . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from: h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /B u i l d i n g B o t s w i t h N o d e j s _ C o l o r I m a g e s . p d f .

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/Building-Bots-with-Nodejs
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithNodejs_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
The Rise of Bots – Getting the

Message Across
Nowadays customers are demanding to communicate with brands, companies, and
organizations as casually as they talk to their friends, and they expect an immediate
response. Providing that level of service is quite impractical, if not rather logistically
impossible to achieve for most organizations, without using some form of automation.

Until recently, the limitations of automated technology meant compromising the seamless,
robust experience that's been proven to create loyal customers. Running a call center is an
expensive undertaking and yet in order to be able to provide that instant communication
channel with customers, most brands and companies opted to do this, in order to provide
that instant response.

With the advent of Artificial Intelligence (AI), Natural Language Processing (NLP),
Machine Learning (ML), and Sentiment Analysis APIs and frameworks, semi-automated or
fully automated agents known as bots are radically changing everything we know about
customer communication, initiating a revolution in the way customer interaction is done.

With fewer people using their phone to make phone calls anymore, but instead using their
phones for anything else but talking, messaging has become the de facto way to
communicate.

A great deal of smartphone owners use their devices to make calls, but most use them for
text-based communication (texting/SMS, messaging, or chat). The average adult spends a
total of 23 hours a week texting. Furthermore over a lifetime, the average Millennial will
spend an astonishing 12 years texting.

The Rise of Bots – Getting the Message Across

[7]

The reason for the rise of text messaging as a communication platform is that phone calls
are interruptive, inconvenient, and inefficient. They don't allow for multitasking–when
you're using your smartphone to make a call, it cannot be used for anything else. While in
the past we used to just pick up the phone to solve a problem, now we start with text-based
messages, and then escalate to voice.

Another significantly important reason for messaging adoption is that customers are
demanding interaction where they already are.

Messaging and chat-related apps are rapidly gaining popularity over SMS, especially
among younger people. Globally, 6 of the 10 top apps are messaging applications such as
Facebook Messenger, WhatsApp, Telegram, and WeChat.

The main reason for this increased usage of messaging apps is that these don't count against
monthly SMS limits, and if you're connected to Wi-Fi, these don't use up any data either.
Further to that, there's also an emotional component, which enhances the overall
conversation. Messaging has the feel of a real-time conversation. You know when your
friends are active in the app and even when they're typing a response, which makes it an
addictive and highly engaging medium to communicate with.

With this scenario in perspective, creating messaging bots that provide meaningful
interaction with customers provides a cutting-edge advantage to any business, by using
today's most common communication medium and also being where customers already
are, on their messaging apps.

In this book, we'll explore how we can write bots using various platforms, APIs, and SDKs
in order to tackle some of today's most interesting business problems, in steps that are easy
to follow and at the same time fun to implement. Specifically, this chapter will dig into:

Why bots matter and why you should get on the train
Why SMS still matters
Twilio as an SMS platform:

Installing Twilio for Node.js
Setting up a Twilio account
Bare-bones Twilio Node.js template

Core bot functionality on Azure
Receiving SMS bot logic

Let's not wait any further and get into the details. Have fun!

The Rise of Bots – Getting the Message Across

[8]

Why bots matter and why you should get on
the train
In the broad sense of its definition, a bot is a piece of software that leverages artificial
narrow intelligence to perform specific tasks in place of a human. Bots understand language
to a certain extent and not just commands. Ultimately, they could learn from their
interactions to get smarter and better.

In roughly two years time, 3.6 billion people (yes 3.6 billion) are projected to be using
messaging apps–that's 90% of total Internet users, which is more people than could ever be
served with a continuous thread of communication compared to more traditional platforms
such as e-mail. Refer to the following link for more
information: https://hbr.org/2016/09/messaging-apps-are-changing-how-companies-ta
lk-with-customers.

Worldwide, consumers are now demanding messaging as a customer service option. It's not
sufficient to have a customer service phone number where the customer can call you, but
it's becoming almost a must that customers should be able to reach you through some kind
of real-time messaging platform as well. Users are demanding fast-paced interaction and
quick answers.

Recent studies found that messaging and chat were the highest rated contact methods for
customer satisfaction. Refer
to https://onereach.com/blog/45-texting-statistics-that-prove-businesses-need-to
-start-taking-sms-seriously/.

According to recent polls
(http://customerthink.com/7-data-backed-reasons-why-you-should-let-customers-te
xt-customer-service/), almost two-thirds of consumers are likely to have a positive
perception of an organization that offers messaging or chat as a service channel.
Nevertheless, by the end of 2016, roughly 40% of customer service centers will still be
missing that opportunity to impress their customers. This translates not only into failing to
impress your customers, but also as a loss of business opportunities. Customers are likely to
be more loyal and stay with those organizations that are capable of interacting and
engaging with them in faster and smarter ways. Refer
to https://blog.kissmetrics.com/live-chat/.

https://hbr.org/2016/09/messaging-apps-are-changing-how-companies-talk-with-customers
https://hbr.org/2016/09/messaging-apps-are-changing-how-companies-talk-with-customers
https://onereach.com/blog/45-texting-statistics-that-prove-businesses-need-to-start-taking-sms-seriously/
https://onereach.com/blog/45-texting-statistics-that-prove-businesses-need-to-start-taking-sms-seriously/
http://customerthink.com/7-data-backed-reasons-why-you-should-let-customers-text-customer-service/
http://customerthink.com/7-data-backed-reasons-why-you-should-let-customers-text-customer-service/
https://blog.kissmetrics.com/live-chat/

The Rise of Bots – Getting the Message Across

[9]

Consider your organization (corporate) has a messaging app that allows your customers to
interact with you. Even though your app might be a great communication gateway, there's
still no room for that communication channel to be lost. Say, for instance, a user forgets to
turn on notifications or accidentally deletes the app. The ability to seamlessly and easily
communicate is suddenly gone.

However, using a personal messaging app (such as Skype, Facebook Messenger,
WhatsApp, and so on) eliminates most roadblocks, allowing for companies to become part
of the communication framework that users already know and love.

With messaging apps, there are no forms, no downloads, no new platforms. The customer
can use the interface that they are already familiar with to instantly engage with your
organization. The user can use natural language to purchase a ticket, download a boarding
pass, or ask a question. Moreover, given that the user is highly unlikely to stop using the
messaging app, your organization can follow up with updates, surveys, and other
notifications through the messaging app that the user already knows and loves.

In order to understand this better, say when a consumer asks a question, the bot should be
able to:

Use natural language processing to understand the intent of the question
Gather relevant details from the company's website, FAQs, or knowledge base, or
even trusted external sites
Sift through that information to find the most likely answer to the customer's
intent of the question
Respond back to the customer more or less in a similar way as a human would

There will surely be cases where bots might encounter situations that require the nuance
and analytical thinking of a human. When they do, they can escalate to an agent, passing
along the context they've gathered during the interaction to ensure a seamless customer
experience. In principle, this should be totally transparent for the end user.

As technology continues to advance, Gartner predicts that by 2018, bots should be able to
recognize customers by face and voice rather seamlessly.

Bots could also be able to:

Allow customers to make purchases without leaving the messaging app
Offer personalized product suggestions
Link users to relevant web pages such as customer product reviews
Initiate new interactions to re-engage users
Follow up with cart reminders and customer cases

The Rise of Bots – Getting the Message Across

[10]

Overall, help your organization to create an exceptional customer experience by
providing robust data and actionable insights

Why SMS still matters
Smart phones are becoming more important in today's world. Arguably, they are almost an
extension of yourself. If you lose your phone today, you are in trouble. Everything from e-
mails, calendar, messaging, banking, and even your wallet are somehow linked to your
phone.

In today's vibrant, dynamic, and always connected society, having access to vast amounts of
information at your fingertips through your phone can be a blessing, but it can also be a
curse.

Busy professionals nowadays have to deal with hundreds of e-mails on a daily or weekly
basis, plus also many messages and notifications from social networks such as Twitter and
LinkedIn. Keeping up with this sheer volume of messages can be overwhelming.

But what if phones could actually help us alleviate some of this information overload by
notifying us of important things or allowing us to perform custom actions based on SMS or
voice commands? Imagine if we were able to automate certain processes through
messaging or voice. Wouldn't that be awesome?

Before social networks took off, Short Message Service (SMS) was the most common way
to exchange short messages between people.

According to Wikipedia, even though SMS is still strong and growing, social networking
messaging services such as Facebook Messenger, WhatsApp, Skype, and Viber, available on
smart phones, are increasingly being used to exchange short messages.

Generally speaking, SMS and voice enabled solutions are platform specific and cannot be
customized; however, there's a platform that was designed from the ground up with
developers in mind, which allows anyone with development skills to create custom
messaging and voice enabled solutions. Welcome to Twilio! refer
to https://www.twilio.com/.

https://www.twilio.com/

The Rise of Bots – Getting the Message Across

[11]

Twilio as an SMS platform
Twilio is a messaging, voice, video, and authentication API for every application. It has
helper libraries or SDKs in many different programming languages that help developers
create apps that can leverage the power of voice and messaging.

Despite that, SMS is still very strong and widely used in enterprise development for things
such as marketing, Customer Relationship Management (CRM) automation, real-time
alert notifications, and two-step verification of a user's identify.

The significance of SMS usage in the business world is incredibly important given that the
technology is considered mature, widely spread, proven, and reliable.

Twilio's services are accessed over HTTP(S) through a RESTful API or helper libraries. Its
services are billed based on usage. The platform is based on Amazon Web Services (AWS)
to host its telephony infrastructure and provide connectivity between HTTP and the Public
Switched Telephone Network (PSTN), through its APIs.

Twilio has recently extended its API support to Facebook Messenger, which coincides with
the social networking company's introduction of support for bots on its Messenger
platform.

In this chapter, we'll explore how to interact with Twilio's REST API using the Node.js
helper library in order to build an SMS Messaging bot.

Installing Twilio for Node.js
Twilio provides a REST API, which allows developers to interact with its platform services,
such as SMS. Even though the REST API is a great way to interact with Twilio services,
there are official helper libraries for the most common programming languages of today,
such as: PHP, ASP.NET (C#), Ruby, Python, Java, Salesforce (Apex), and, last but not least,
Node.js.

The Twilio Node.js helper library can be obtained from
https://www.twilio.com/docs/libraries/node. In order to get started, let's get Node.js
installed.

Open your browser and navigate to https://nodejs.org and there on the main page you
can download the version of Node.js that corresponds to your platform.

https://www.twilio.com/docs/libraries/node
https://nodejs.org

The Rise of Bots – Getting the Message Across

[12]

The steps that follow will be based on installing Node.js on a Windows 64 Bit operating
system.

Once you have selected a version, just run the installer and follow the installation steps.
You'll first be presented with a Welcome screen and then you can click on the Next button.

The Rise of Bots – Getting the Message Across

[13]

You'll be requested to accept the license terms and then click on the Next button again.

Following that, the installer displays the default installation path, which you may opt to
change or not.

The Rise of Bots – Getting the Message Across

[14]

Once the installation path has been defined, simply click on the Next button. The next step
is to select what features will be installed.

It is highly recommended to leave all the features selected so everything can be installed.
The npm package manager will be later required in order to install the Twilio Node.js
helper library.

The Rise of Bots – Getting the Message Across

[15]

Finally, click on the Next button and then the Install button, in order to finalize the
installation process.

If there was a previous version of Node.js installed on your system, the installer will remove
previous older files and then update the system with the newest files.

The Rise of Bots – Getting the Message Across

[16]

Please note that on other platforms (https://nodejs.org/en/download/package-
manager/), the installation process and screens might differ (such as on a Mac); however, it
should be pretty straightforward and easy to follow along by going through the installation
steps.

Once Node.js has been installed, the next thing to do is to get the Twilio Node.js helper
library installed.

In order to do this, create a folder anywhere on your PC for this project, browse to this
folder, and then open the Command Prompt or shell and type this command:

npm init

Just follow the steps requested. This will create the package.json file (you can refer to
https://docs.npmjs.com/files/package.json) required for our project.

Once the package.json file has been created, type in the following command:

npm install twilio --save

https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://docs.npmjs.com/files/package.json

The Rise of Bots – Getting the Message Across

[17]

This will install the Twilio Node.js helper library and all its dependencies and save the
reference on our package.json file. The Twilio library will be installed under the
node_modules folder within the folder where your package.json file resides. We'll be
using the awesome Atom editor (https://atom.io/) throughout this book. You may use
any other editor of your choice, such as Sublime or Visual Studio Code.

With this in place, we can technically start writing code. However, we first need to sign up
for a Twilio account and get all set up with Twilio before we can send our first SMS. Let's
explore how we can get this done.

Setting up a Twilio account
In order to be able to send SMS using the Twilio API and Node.js helper library, we need to
get a Twilio account set up and also purchase a disposable Twilio number.

Twilio is a pay-as-you-go service, which means that you'll need to set up an account and
provide your credit card details in order to have enough credit, which will be used to pay
for every SMS you send.

You'll also need to purchase a Twilio number, which is a regular but disposable phone
number that will be used to send your messages.

Twilio numbers are available for many countries. They look like any other valid phone
number you can think of. They are real phone numbers that you can dispose of when you
no longer need them.

In order to set up a Twilio account, from your browser access the following site
https://www.twilio.com/. Then, click on the SIGN UP button.

https://atom.io/
https://www.twilio.com/

The Rise of Bots – Getting the Message Across

[18]

The sign-up process is fairly straightforward, and is super easy to follow and complete. Just
fill in a few fields that are required and you're done.

Once your Twilio account has funds, you'll need to purchase a disposable phone number.

You'll need to go to this location, https://www.twilio.com/user/billing, in order to add
funds to your account. In order to do that, click on the Ad Funds link in red. Make sure that
you have logged into Twilio before accessing this URL.

With funds in your account, let's set up a Twilio number. This will be a real phone number,
which you can delete at any moment. You may choose from which country and city your
number will belong to.

Then click on the Buy a Number button.

https://www.twilio.com/user/billing

The Rise of Bots – Getting the Message Across

[19]

Once you have clicked on the Buy a Number button, the following pop-up screen will be
shown:

On this screen, you have the option to choose which country you would like to get the
number from and also from which geographical location.

The number could be used for Voice, SMS, and even MMS. For now, we are simply
interested in making sure that the SMS option is ticked.

Once you have purchased your Twilio number, you will see the following screen:

With this in place, we are ready to start writing our Node.js code.

The Rise of Bots – Getting the Message Across

[20]

Bare-bones Twilio Node.js template
In order to start writing our code, let's create a new file in the same location as our
package.json file called app.js. You may create this new file directly from the editor you
are using.

Once the file has been created, we'll need to include a reference to the Twilio Node.js library
that we installed through npm:

var twilio = require("twilio");

In the Node.js world, this is the equivalent of an import in Java or using statements in C#.
Now let's move on to see how we can actually send an SMS using the Twilio Node.js helper
library:

var accountSid = '<< your twilio account sid >>';
// Your Account SID from www.twilio.com/console

var authToken = '<< your twilio auth token >>';
// Your Auth Token from www.twilio.com/console

We'll need two variables to store our Twilio Account SID and our Auth token. Both values
can be obtained when you log in to your Twilio account and browse to the developer
console: https://www.twilio.com/console.

https://www.twilio.com/console

The Rise of Bots – Getting the Message Across

[21]

Once we have provided the correct values to the accountSid and authToken variables,
we'll need to create an instance of the twilio.RestClient class in order to be able to send
an SMS:

var client = new twilio.RestClient(accountSid, authToken);

With our instance created, we can go ahead and send our SMS using Twilio:

client.messages.create({
 body: 'Greetings earthling, this is the TwilioSmsBot ;)',
 to: '+12345678901', // Number that receives the SMS
 from: '+12345678901' // Purchased Twilio number that send the SMS
},
function(err, message) {
 console.log(message.sid);
});

Basically, the SMS is sent by invoking the messages.create method from the Twilio
client instance.

This method expects an object that describes the properties of the SMS, such as the body,
to (receiver number), from (sender number), call back function which describes an error
err (if an error actually happens), and the contents of the posted message.

This is all that is required in order to send an SMS using Twilio. Let's have a look at all the
code now:

var twilio = require("node_modules/twilio/lib");

var accountSid = '<< your twilio account sid >>';
var authToken = '<< your twilio auth token >>';

var client = new twilio.RestClient(accountSid, authToken);

client.messages.create({
 body: 'Hello from Node',
 to: '+12345678901',
 from: '+12345678901'
},
function(err, message) {
 console.log(message.sid);
});

In order to execute this code, execute this command from the Command Prompt:

node app.js

The Rise of Bots – Getting the Message Across

[22]

This will send the SMS to the number indicated. We can see the message.sid of the SMS
sent (which was sent back as a response from the Twilio service) by looking at the
Command Prompt.

Please notice that if the destination number you will be messaging is an international (non-
US) number, you'll need to enable certain permissions to allow Twilio to perform that
action.

These permissions can be checked and configured at this URL:
https://www.twilio.com/console/voice/settings/geo-permissions.

Core bot functionality on Azure
Now that we've implemented and have a working Twilio Node.js template, which can send
SMS, let's have a look at expanding our code to do more.

We'll need to be able to somehow hook and listen to incoming SMS and have some very
basic Natural Language Processing (NLP), in order to send answers based on the input
received.

Listening to incoming SMS requires setting up in our Node.js app a URL that can be
configured within your Twilio account as a Request URL. This Request URL will be used by
Twilio to push incoming messages on your purchased Twilio number, to our Node.js bot
app.

To make our bot publicly available, we'll publish it on Azure websites. Let's create a REST
endpoint for our Node.js app, which we will use for listening to new messages. We'll be
using the Express framework (h t t p ://e x p r e s s j s . c o m /) to do this.

Express is a minimal and flexible Node.js web application framework that provides a robust
set of features for web and mobile applications. It provides a thin layer of fundamental web
application features such as routing and middleware.

https://www.twilio.com/console/voice/settings/geo-permissions
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/

The Rise of Bots – Getting the Message Across

[23]

Let's first install the Express framework by running this command from the command line
prompt:

npm install express --save

A handy utility to have installed is Nodemon (h t t p ://n o d e m o n . i o /). This allows you to
make changes to your code and it automatically restarts the Node.js app. You can install
Nodemon by running this command from the prompt:

npm install nodemon --save

Instead of running the app with the node, you can now run it as follows:

nodemon app.js

With the Express framework installed, let's expand our current code to create a REST
endpoint, which we can then use to hook up Twilio to push incoming messages:

var express = require('express');

var app = express();

app.get('/receive', function (req, res) {
 res.send('Hi, this is the TwilioBot listening endpoint!');
});

app.listen(8080, function () {
 console.log('TwilioBot listening on port 8080.');
});

Before we can hook up our bot app to Twilio in order to process incoming messages, let's
first get all the tooling wired up, so that we can publish our app as it is to Azure websites.

We'll need to install the Azure Command Line Interface (CLI) (h t t p s ://a z u r e . m i c r o s o f t

. c o m /e n - u s /d o c u m e n t a t i o n /a r t i c l e s /x p l a t - c l i - i n s t a l l /) in order to push our app to
Azure. We'll also need to sign up for Azure if we don't have an account.

http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/

The Rise of Bots – Getting the Message Across

[24]

You can do that by visiting: https://azure.microsoft.com .

Once you have your account set up with Azure, you may install the Azure CLI using the
respective installer for your platform or as an npm package following these instructions.

Using npm, the Azure CLI can be installed as follows:

npm install azure-cli -g

Once you have installed the Azure CLI, let's deploy the app as it is to Azure in order to
make sure all our tooling is correctly wired up.

In order to do that, run the Azure CLI and login to Azure:

azure login

https://azure.microsoft.com

The Rise of Bots – Getting the Message Across

[25]

Once the command has been executed, you'll see the following welcome message where
you'll be asked to enable data collection:

You may opt-in or not, the choice is yours and this doesn't affect your bot app development
or usage of Azure at all.

Once you've chosen your option, you'll be prompted to enter the code displayed on the
command line on this URL, http://aka.ms/devicelogin, and then authenticate with your
Microsoft Account, as follows:

http://aka.ms/devicelogin

The Rise of Bots – Getting the Message Across

[26]

In the preceding screenshot, I've blanked out the Azure subscription keys and information
that corresponds to my Azure account.

With this in place, your Azure CLI is all set. The next thing to do is to deploy the app to
Azure using the CLI. Let's see how this can be done.

Run this command in order to create the website on Azure. Make sure you're still in the root
directory of your app. Create the App Service app resource in Azure with a unique app
name with the next command. Your web app's URL will be
http://<appname>.azurewebsites.net.

In this case, we'll call our App Service app on Azure: NodeBotSite (you are free to choose
any other name if this has been taken). Let's enter the following command:

azure site create --git nodebotsite

You'll be prompted to select the Azure region where your site will be hosted on. Feel free to
choose the one closest to your location.

The Rise of Bots – Getting the Message Across

[27]

Once you've selected the region, Azure will create your site and you'll see the following
details via the command line:

Change the port from 8080 within the app to process.env.port, as follows:

app.listen(process.env.port, function () {
 console.log('Hi, this is the TwilioBot listening endpoint!');
});

Nodemon doesn't seem to play too well with Azure; therefore, if you leave
Nodemon as a dependency on your package.json file, you might run
into problems when deploying the app to Azure. In light of this, remove
from your package.json file the dependency that references Nodemon,
before deploying to Azure.

Save your changes on both your package.json and app.js files, and then use the git
command to deploy your app to Azure, as follows:

git add .
git commit -m "TwilioNodeBot first commit"
git push azure master

After you type these commands, if you've never set up git/FTP deployment credentials for
your Azure subscription, you'll also be prompted to create them. You can also enter these
credentials on the Azure Portal.

The Rise of Bots – Getting the Message Across

[28]

Once the git push command has finished, your app will be published on Azure and it is
ready to be used.

In order to view it, open your browser and navigate to the site, receive this URL:
http://nodebotsite.azurewebsites.net/receive. You should then see this:

To make updates to your Node.js web app running on Azure, just run git add, git
commit, and git push like you did when you deployed it first.

http://nodebotsite.azurewebsites.net/receive

The Rise of Bots – Getting the Message Across

[29]

With Azure all wired up, the next step is to configure this URL:
https://www.twilio.com/console/phone-numbers/incoming, on your voice number's
dashboard within your Twilio account, and then click on your purchased Twilio number.
Edit the Messaging | Request URL for your Twilio number and click on the Save button.

Now your Twilio is tied to your Azure app, receive URL, which will be used to receive
incoming SMS.

With all these setup steps in place, we can now focus on adding the receive logic for our
Twilio bot app.

Receiving SMS bot logic
So far we've implemented the basic bare-bones template for our Twilio bot app and also
made all the necessary configurations in order to have our solution wired up with Twilio
and also easily deployable to Azure.

Let's now explore how we can make our bot reply to incoming messages. In order to do
this, we'll need to have a POST endpoint on our Node/Express app. Let's examine the
following code:

app.post('/receive', function (req, res) {
 var twiml = new twilio.TwimlResponse();
 twiml.message('Hi, this is TwilioBot');

 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
});

https://www.twilio.com/console/phone-numbers/incoming

The Rise of Bots – Getting the Message Across

[30]

We can see here that in order to reply, we create a TwiML response and send that as the
response of POST / receive the HTTP endpoint.

TwiML is an XML markup language, which is simply a set of instructions you can use to tell
Twilio what to do when you receive an incoming call or SMS.

Twilio makes HTTP requests to your application just like a regular web browser. By
including parameters and values in its requests, Twilio sends data to your application that
you can act upon before responding. This is what we are actually doing on this, receive
endpoint.

Twilio sends the following parameters with its request as POST parameters or URL query
parameters, depending on which HTTP method you've configured.

When we receive an SMS or a phone call on our Twilio number, Twilio will fetch the URL
associated with that phone number and perform an HTTP request to that URL. This URL
will contain an XML response with markup instructions, which indicate what tasks Twilio
needs to execute. Some of these tasks can be to record the call, play a message, prompt the
caller to enter some digits, and so on.

In this case, what our bot is doing is simply returning a one-line sentence. In short, the
preceding example code is simply returning this XML back to Twilio as a response, so that
Twilio can actually generate an SMS response out of it, and send it back to the sender's
phone:

<?xml version="1.0" encoding="UTF-8"?>
<Response>
<Say> Hi, this is TwilioBot.</Say>
</Response>

As you can see, it is super simple to tell Twilio to execute a specific action using TwiML.
The markup language is made up of verbs highlighted in blue, which represent actions that
Twilio will execute.

Some of the TwiML verbs available at the time of the writing are: Say, Play, Dial, Record,
Gather, Sms, Hangup, Queue, Redirect, Pause, Conference, Reject, and Message.

Complete details on how to use these TwiML verbs can be found here:
https://www.twilio.com/docs/api/twiml.

What we've done through the code is to use the Twilio Node.js helper library to generate
the TwiML as a response, without explicitly creating the XML response itself.

https://www.twilio.com/docs/api/twiml

The Rise of Bots – Getting the Message Across

[31]

So our bot starts to finally take shape. It can listen to messages and send a response back.
But, how does the bot know how to act to certain inputs? In order to achieve that, the bots
need to be able to understand the parameters of the incoming message and be able to act
upon it.

Twilio sends several parameters with its request as POST parameters or URL query
parameters, depending on which HTTP method you've configured on the Twilio number's
dashboard for incoming SMS. Please take a moment to go through and understand this list
thoroughly.

Here are some of the prominent properties that Twilio uses:

From: The phone number that sent this message.
To: The phone number of the recipient.
Body: The text body of the message. It can be up to 1,600 characters long.
MessageSid: A 34 character unique identifier for the message. It may be used to
later retrieve this message from the REST API.
SmsSid: The same value as MessageSid. It is deprecated and included for
backward compatibility.

The full list of parameters can be found here:
https://www.twilio.com/docs/api/twiml/sms/twilio_request.

So in order to write some logic that acts upon the input of the nature of the messages
received, it is necessary to inspect the value of the parameters that are received as part of
the request.body object. These parameters will have properties on this object.

So for instance, if we want to know from which number the message came from, we would
have to do something like this:

var from = req.body.From;

The actual received text message itself would be obtained as follows:

var body = req.body.Body;

Knowing from where the message originates and the actual contents, we can then build
some logic to internally give the bot some sense of what to do with the input received and
act upon it.

So, let's add some core functionality, which for now we will call BotBrain and we don't
really know what it will do. This will give us an answer based on the input we provide to it,
independently of which bot we will be building.

https://www.twilio.com/docs/api/twiml/sms/twilio_request

The Rise of Bots – Getting the Message Across

[32]

In the next chapter, we'll be creating the logic of this BotBrain, and throughout the
chapters keep adding subsequent and additional functionality to it, but for now, let's
assume this BotBrain gives the bot the answer required based on the input received:

app.post('/receive', function (req, res) {
 var twiml = new twilio.TwimlResponse();
 var feedback = BotBrains(req.body);
 twiml.message(feedback);

 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
});

As we can see now, the bot will respond to the incoming request based on the results the
BotBrains will determine, by analyzing the properties of the request.body object.

Summary
In this chapter, we've set the foundations on how our bot will be deployed, configured, and
set up. We've also created a bare-bones template that we will use throughout the rest of the
chapters in this book, in order to add more exciting functionalities.

We've also explored some of the key components that will make it work from an
infrastructure point of view and how we can host it on Azure, Microsoft's awesome cloud
platform.

Beyond this, we've explained why bots matter and why they are a key component for your
business to be aware of and considered in your strategy.

Further to that, we've explored the basics of Twilio as a messaging platform and started to
scratch the surface of what is possible to achieve with it.

In the chapters to follow, we'll be adding many more layers and interacting with other APIs
and services; however, we'll still use Twilio as a backup messaging provider by also using
SMS.

Hopefully you've got an idea of what to expect coming ahead and also this has gotten you
excited in our quest to add more layers and logic to our bot.

Thanks for reading!

2
Getting Skype to Work for You

Skype (http://www.skype.com) is an awesome piece of software and a reliable platform
that is used by millions of people worldwide in order to make calls, organize meetings, and
chat with each other. It is used for both personal communication as well as for business.

One of the great things about Skype is that it allows you make free peer-to-peer VoIP calls
with any other user that also has a Skype account. It also allows you to call phone numbers
at very cheap rates and even for free to some locations.

Besides that, Skype can also allow you to receive incoming calls on a real phone number or
divert them to become text messages. It also allows message forwarding, conferencing,
group chatting, file transferring, remote desktop presentation, viewing, and many other
features.

So far, it sounds like Skype is a great communication platform, and it is. But what about
using Skype as an automated agent that can help to get some work done and could
automate some business processes, in order to make our lives easier? Is this even possible?

The good news is that, indeed, it is possible. Skype is now part of Microsoft (h t t p s ://w w w . m

i c r o s o f t . c o m /e n - i n /) and, recently, at the build developer's event, a framework for
creating interactive bots with Skype was unveiled. Skype already has a set of cool and
extremely useful APIs, which make it relatively easy for developers to interact with the
service, and is great for all sorts of voice and chat-related applications. However, it does not
have an API that is solely focused on interactive messaging automation and this is where
the Bot Framework (https://dev.botframework.com) comes in to fill the void.

In this chapter, we'll explore how to use this framework in order to build a Skype bot that
acts like a virtual Human Resources (HR) assistant, which should be able to provide
information about vacation days, notice periods, and other HR-related queries.

Sounds like a lot of fun! Let's get started.

http://www.skype.com
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://www.microsoft.com/en-in
https://dev.botframework.com

Getting Skype to Work for You

[34]

How a Skype bot works
A Skype bot is, in essence, just another Skype contact; the difference is that, instead of
talking to another person, it's an automated process that knows how to reply to the input
you provide. Bots can do many things, such as fetch the news, check the weather, retrieve
photos or information from websites, start a game, or order food or a taxi for you.

Anything that can be turned into a service can be converted into an automated conversation
by using a bot. With Skype, bots can have interactive conversations on nearly every
platform, at any time, and from anywhere.

Users can send a Skype bot request, and your bot can send back meaningful feedback based
on the content received. A Skype bot can also be part of a group conversation and send
details to all the parties involved in that group.

The way a Skype bot technically works is that it connects and listens to the bot platform
using the Skype bot API directly, or using the C# or Node.js SDK. We'll obviously focus our
attention on the Node.js SDK.

When a user sends a message to your Skype bot, we route this activity to a Webhook
(https://en.wikipedia.org/wiki/Webhook) that is defined for the bot. The bot then sends
replies back to the bot platform, which passes them on to the user. The Webhooks (which
are valid public URLs-HTTP Messaging endpoints) will typically run on a cloud service
such as Microsoft Azure (https://azure.microsoft.com).

Webhooks are called with JSON-formatted requests. Every JSON object indicates some
update and looks like this:

[
{
 "activity" : "message",
 "from" : "awesomeskypebot",
 "to" : "28:2c967451-ee01-421f-92aa-1a80f9e163dc",
 "time" : "2016-03-30T09:50:01.123Z",
 "id" : "1443805282113",
 "content" : "Hello from a Bot!"
}
]

https://en.wikipedia.org/wiki/Webhook
https://azure.microsoft.com

Getting Skype to Work for You

[35]

In essence, a bot goes through various stages. Initially the bot can be added to a limited
number of users for development, which allows the bot details to be edited, and also allows
for previewing features such as group chat or calling. In the example we will build in this
chapter, we will focus on chatting (text interaction) and not calling, but it is useful to know
that this feature is also possible. Here are the stages:

Bot creation/editing (initial stage)
Bot review
Bot published

Following the creation or editing stage is the review stage, which is just before publishing
your bot. Once in review, you cannot edit the attributes of your bot on the portal (such as its
name and other properties). It is important to note that a bot cannot be submitted using
preview features such as group chat or calling.

Once the review of the bot has been accepted, it goes into the published stage. At this point
in time, the bot can be added by any number of users via the bot URL link or button.

Finally, soon after it has been published, the bot is then shown in the Skype bot directory.

Wiring up our Skype bot
With the theory behind us, let's now dig into the details of how we can start using the Bot
Framework with Node.js in order to create our Skype HR bot.

In the previous chapter, we saw how to get Node.js installed and also how to deploy our
Twilio example to Azure website. For our Skype bot, we'll follow a very similar process.

Let's first start by creating a folder in our local drive from the Command Prompt in order to
store our bot:

mkdir skypebot
cd skypebot

Assuming we have Node.js and npm installed (if not, please refer to the steps in Chapter 1,
The Rise of Bots – Getting the Message Across), let's create and initialize our package.json,
which will store our bot's dependencies and definitions:

npm init

Getting Skype to Work for You

[36]

When you go through the npm init options (which are very easy to follow), you'll see
something similar to this. In some cases you might get an index.js file created; however,
going forward, we'll instead use the name app.js as shown in the following screenshot:

In your project folder, you'll see the result, which is your package.json file:

Getting Skype to Work for You

[37]

Just like we did in our previous example, we will use Express (http://expressjs.com) as
our REST Node.js framework. We'll install it and save it to our package.json file, as
follows:

npm install express --save

Once Express has been installed, you should see something like this:

With Express set up, the next thing to do is to install the BotBuilder package, which
corresponds to the Microsoft Bot Framework Node.js library. Let's do that now.

In order to install it, run this npm command:

npm install --save botbuilder

http://expressjs.com

Getting Skype to Work for You

[38]

After BotBuilder has been installed, you should see in your command line a result similar
to the following screenshot:

Your package.json should then look similar to mine, as shown in the following
screenshot:

Getting Skype to Work for You

[39]

With our bot all wired up, we can then focus on creating the Express endpoints and core
logic.

Let's create our app.js file, which will be the entry point to our bot. You can create the
app.js file by using the applicable menu option in the editor of your choice.

Our Skype skeleton bot app.js should look like this:

var skype = require('botbuilder');
var express = require('express');

var app = express();

var botService = new skype.ChatConnector({
 appId: '',
 appPassword: ''
});

var bot = new skype.UniversalBot(botService);

app.post('/api/messages', botService.listen());

bot.dialog('/', function (session) {
 if (session.message.text.toLowerCase().indexOf('hi') >= 0){
 session.send('Hi ' + session.message.user.name +
 ' thank you for your message: ' + session.message.text);
 } else{
 session.send('Sorry I don't understand you...');
 }
});

app.get('/', function (req, res) {
 res.send('SkypeBot listening...');
});

app.listen(process.env.port, function () {
 console.log('SkypeBot listening...');
});

Getting Skype to Work for You

[40]

Now let's break this into smaller chunks. The first thing we do is to reference the Bot
Framework we previously installed using npm:

var skype = require('botbuilder');

Once we've indicated this, we need to reference the Express framework, as follows:

var express = require('express');

Once we have our references all set up, we can proceed to create the botService object
and wire it up an HTTP POST endpoint, hosted on Azure websites, which the Skype bot
service will push incoming messages to for our bot to reply to.

Please note that the botService object requires APP_ID and APP_SECRET variables that we
will get from the Bot Framework once we have registered it with on the bot developer
portal, for which we will go through the steps shortly.

The botService object is created as follows:

var APP_ID = '';
var APP_SECRET = '';

var botService = new skype.ChatConnector({
 appId: APP_ID,
 appPassword: APP_SECRET
});

var bot = new skype.UniversalBot(botService);

With the botService object created, it needs to be wired up so that the Skype bot knows
where to POST the incoming message requests, so they can be processed by the bot. This is
achieved by adding this to app.js, as shown in the following:

app.post('/api/messages', botService.listen())

This basically registers the botService object on the publicly accessible /api/messages
HTTP endpoint exposed through the Azure website where this Node.js will be running.

Getting Skype to Work for You

[41]

Finally, the Node.js app is exposed by listening on the port process.env.port as follows,
by adding this to app.js:

app.listen(process.env.port, function () {
 console.log('SkypeBot listening...');
});

Registering our Skype bot app
In order to for this to work, we'll need to register our bot within the Bot Framework
Developer Portal. In order to do this, sign in with your Microsoft account
at https://dev.botframework.com/. You'll be presented with this screen:

https://dev.botframework.com/

Getting Skype to Work for You

[42]

Click on the Register a bot option in order to create and register your Skype bot. Once
you've done that, you'll see the following screen:

As you can see, there are three basic fields that are mandatory. The first field represents the
bot's name, which will be used to identify the bot within the bot directory (if we later decide
to make it public). It cannot be longer than 35 characters.

The second field is the bot's handle, which will be used as part of the bot's public URL. It
only allows alphanumeric and underscore characters, and it cannot be changed after
registration.

The third field is the bot's description. The first 46 characters are displayed on the bot's card
on the bot directory and the rest of the description is displayed under the bot's details.

If we scroll down the page, we can see that we are also being asked to enter a Messaging
endpoint and an App ID. Let's add some details to our bot. Refer to the following
screenshot:

Getting Skype to Work for You

[43]

So far, we've added the three initial fields required for our bot. In this case, we'll use the
name NodeJsPacktSkypeBot; however, you can use any other unique name. I recommend
using the same name for both the Name and Bot handle fields.

So let's scroll down and carry on, in order to add the other required details:

Getting Skype to Work for You

[44]

Next we need to add the Messaging endpoint and add the App ID for our bot. So let's click
on the Create Microsoft App ID and password button in order to get the required App ID.

Once we do this, we get the following result:

The next thing we need to do is to click on the Generate an app password to continue
button. Once you do that, you'll see the following screen:

Immediately after, click on the Ok button, and this will take you back to the Generate App
ID and password screen. Once there, click on the Finish and go back to Bot Framework
button:

Getting Skype to Work for You

[45]

Once you have done that, you'll be back at the main registration screen. The only missing
details will be the Messaging endpoint and the Owners e-mail address fields, as shown in
the following screenshot:

For now, let's leave this as it is (we'll come back to this screen later) because, first, we need
to deploy our bot to Azure.

Getting Skype to Work for You

[46]

Just like we did in the previous chapter, we can deploy our solution to Azure websites and
host our messaging endpoint there. So, before we actually fill in the URL for our Messaging
endpoint, let's deploy and push our Skype bot code to Azure websites in order to get a
publicly accessible URL.

Assuming you have your Azure account set up and ready (if not please refer to Chapter 1,
The Rise of Bots – Getting the Message Across, for details on how to do this), log in to Azure by
executing the following instruction from the Command Prompt:

azure login

Once that has been done and the credentials provided, you will see a screen similar to the
following screenshot:

Open your browser and enter the URL mentioned on the console response. Then enter the
code you have been provided with. Once you have done that, you will see the following:

Getting Skype to Work for You

[47]

This means that you have successfully logged on to Azure using the command line.

The next thing to do is to actually create the Azure website service that will host the Skype
bot code; this can be done by running this command from the prompt:

azure site create --git nodeskypehrbotsite

When you execute this command, you will be asked to choose the Azure region to which
you wish to deploy the bot, as shown in the following screenshot:

Getting Skype to Work for You

[48]

Select the region that is closest to where you are located by typing in the appropriate
number. After this has been done, you'll see the following information, indicating that the
site has been successfully created:

Before deploying the bot's code to Azure, first log in to the Azure Portal
(http://portal.azure.com) with your account, and specify an FTP/deployment username
and password.

This can be done by going into All resources, selecting the nodeskypehrbotsite, then
opening the Deployment credentials blade, and, finally, entering the FTP/deployment
username and Password, as seen in the following screenshot:

Once the username and password have been entered, click on the Save button at the top of
the blade.

http://portal.azure.com

Getting Skype to Work for You

[49]

Once this has been done, wait for a couple of minutes. Then we can deploy the code to
Azure websites as follows:

git add .
git commit -m "SkypeNodeBot first commit"
git push azure master

Once these commands have been executed, the bot's code will be deployed to the Azure
website and you should see some responses similar to the following:

With our site deployed, we can finally get the publicly accessible URL, which in our case
will be https://nodeskypehrbotsite.azurewebsites.net/api/messages, given
that in our code we have defined a POST endpoint that our bot will be listening on.

This is the URL that we need to specify as the Messaging endpoint.

We can then go back to the bot Registration website screen where we recently entered the
bot's APP ID and we can now enter the Messaging endpoint, as shown in the following
screenshot:

Getting Skype to Work for You

[50]

Make sure to check the option for Privacy statement, Terms of use, and Code of conduct,
then click on the Register button, as shown in the following screenshot:

Once you have clicked on the Register button, you'll receive a popup dialog that will say
that the bot has been created, as shown in the following screenshot:

Click on the OK button in order to continue. Once you have clicked on OK, then you'll be
redirected to the following web page:

There, you can quickly test the connection to the bot by clicking on the Test button.

As we don't want to make the bot public, there is no need to Publish it to the Skype bot
directory.

Getting Skype to Work for You

[51]

If you scroll down a bit, you'll find the channels that are enabled by default. One of them is
Skype, as shown in the following screenshot:

Let's go ahead and click on the Add to Skype button in order to add the bot to our Skype
contact list. Once we do that, a new browser tab or window will open, and we'll be
presented with the following screen:

In order to add the bot to Skype, click on the Add to Contacts button. This will launch the
Skype application and add it to our contacts list.

If your Skype account is not the same as your Azure account (and if you are logged on with
your Azure account), then it will be requested that you sign out and then sign in with your
Skype account, in order to add the bot to your contacts list.

Getting Skype to Work for You

[52]

With all the setup behind us, let's modify our code in order to add our bot ID, Application
ID, and application secret. The bot ID and the Application ID that we'll need to add to our
code are the same, which is the one entered when registering the bot. Once we've done this,
we can re-publish it to Azure websites and test it.

Our Skype bot app.js should now look like this:

var skype = require('botbuilder');
var express = require('express');

var app = express();

var botService = new skype.ChatConnector({
 appId: '<< Your Application Id >>',
 appPassword: '<< Your Application Password >>'
});

var bot = new skype.UniversalBot(botService);

app.post('/api/messages', botService.listen());

bot.dialog('/', function (session) {
 if (session.message.text.toLowerCase().indexOf('hi') >= 0){
 session.send('Hi ' + session.message.user.name +
 ' thank you for your message: ' + session.message.text);
 } else{
 session.send('Sorry I don't understand you...');
 }
});

app.get('/', function (req, res) {
 res.send('SkypeBot listening...');
});

app.listen(process.env.port, function () {
 console.log('SkypeBot listening...');
});

If we publish the changes to Azure websites and have added our bot to our Skype contacts
list, using the URL indicated by the label Add to Skype, we should see the following when
we send a message to it.

Getting Skype to Work for You

[53]

The bot, for now, will reply with the same message that we provided as a response
wrapped up with a nice thank you appended to the original message.

Now, let's explore where the magic actually happens. Notice that 8:ef_remote is the name of
the actual Skype user that sent the message to our bot.

In our code, the part that is responsible for the magic is the bot.dialog event.

This event, as its name explicitly implies, gets triggered when Skype sends an HTTP POST
request when the bot receives a message. Take a look at the following code snippet:

bot.dialog('/', function (session) {
 if (session.message.text.toLowerCase().indexOf('hi') >= 0){
 session.send('Hi ' + session.message.user.name +
 ' thank you for your message: ' + session.message.text);
 } else{
 session.send('Sorry I don't understand you...');
 }
});

Getting Skype to Work for You

[54]

The session object contains the information that Skype passes on to the bot app, which
describes the session data that has been received and from whom. Notice that the session
object contains properties such as message and text.

HR Skype bot agent
So far, we've been able to create and deploy to Azure a basic Skype bot that essentially
responds to any message sent with the same text it received, with an appended thank you
message.

In the previous chapter, we briefly mentioned that we would add a BotBrain method that
will basically be responsible for giving an answer to a particular message input.

Let's now expand our Skype bot in order to create a basic Human Resources (HR) agent
that is capable of answering certain requests, such as checking how many holidays a person
has left or requesting a sick leave.

HR is an ample area that covers many topics and, obviously, much more logic could be
added to an automated HR agent. However, as the purpose is to illustrate some sort of
automated communication, we'll restrict ourselves to simply processing holidays and sick
leave requests.

As we are already using Azure, we'll use Table Storage
(https://azure.microsoft.com/en-us/documentation/articles/storage-introduction)
in order to define some data and some answers that our bot will provide, depending on the
type of message submitted and the type of request provided by the user.

Azure table storage as a backend
The Table Storage service uses a tabular format to store data. Each record represents an
entity, and the columns represent the various properties of that entity (fields within a table).

Every entity has a pair of keys (a PartitionKey and RowKey) to uniquely identify it. It also
has a timestamp column that the Table Storage service uses to know when the entity was
last updated (this happens automatically and the timestamp value cannot be overwritten; it
is internally controlled by the service itself).

https://azure.microsoft.com/en-us/documentation/articles/storage-introduction

Getting Skype to Work for You

[55]

Extensive documentation (https://docs.microsoft.com/en-us/azure/storage/) about
how the Storage and Table Storage services work can be found directly on the Azure
website. It is an invaluable resource that is definitely worthwhile checking in order to have
a better understanding of both services.

Nevertheless, we'll quickly explore how we can get up and running quickly with Azure
Table Storage.

In order to get started with a Storage instance on Microsoft Azure, you'll need to sign in to
the Azure Portal with a Microsoft account. You can do that by going to h t t p ://p o r t a l . a z u

r e . c o m . Refer to the following screenshot:

https://docs.microsoft.com/en-us/azure/storage/
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com
http://portal.azure.com

Getting Skype to Work for You

[56]

Once you've signed in to the Azure Portal, you can browse through the list of Azure
services and select Storage accounts (classic), as shown in the following screenshot:

Once you've selected Storage accounts (classic), you'll be presented with the following
screen, where you can add a new Storage account:

Getting Skype to Work for You

[57]

In order to add a new Storage accounts (classic), click on the Add button. This will then
present a screen where you may add the account's Name and select the Azure Location in
which the account will be hosted, as shown in the following screenshot:

Getting Skype to Work for You

[58]

Once you have chosen a name and selected the location nearest to you, click on the Create
button. Immediately after, Azure will create the Storage account. Once created, it will look
as follows. You'll need your access keys in order to interact with the service from your code
or any external tool. The keys can be found by clicking on the Keys setting, as shown in the
following screenshot:

With the Azure Storage account now ready, you can use an open source and very handy
tool called Azure Storage Explorer (https://azurestorageexplorer.codeplex.com), which
will allow you to easily connect to your Storage account and create, update, delete, and
view any storage tables and data:

https://azurestorageexplorer.codeplex.com

Getting Skype to Work for You

[59]

Once you've downloaded the ZIP file from CodePlex, after you unzip it, you'll find an
executable that you can run in order to install the tool.

The installation wizard is super easy to follow and self-explanatory, requiring just a few
clicks. Please note that the Azure Storage Explorer application only works on Windows.
Once installed, you'll see the following files:

Getting Skype to Work for You

[60]

In order to run the tool, double-click on the Azure Storage Explorer shortcut. Once the
application is running, you'll need to connect your Azure Storage account to it. This can be
done by clicking on the Add Account button:

Once you click on the Add Account button, it'll be requested that you add your Storage
account name and key, as follows:

After entering the requested details, you should click on the Test Access button in order to
check if the connection works. If that is successful, you may click on the Save button.

With these details stored, next time you open the Azure Storage Explorer application, you'll
be able to access your Storage account from the dropdown next to the Add Account button.

HR agent guidelines
Having set up our Azure Table Storage account and seen how to use Storage Explorer in
order to connect to it, let's now create a table with some data that our Skype bot will use in
order to interpret requests and function as an automated HR agent. Sounds exciting, so let's
roll up our sleeves and get started.

Getting Skype to Work for You

[61]

We'll create a table called HolidaysHRBot, which will contain as its PartitionKey the
name of the Skype user and as its RowKey the full name of the person in the form of
FirstName-LastName. Both the PartitionKey and RowKey fields are strings. It will also
have a third field called DaysLeft, which will be an integer and represent the number of
vacation days that a person has left to use.

Let's assume that DaysLeft will start with a value of 25 (representing 25 days of vacation
available to use). Finally, we can add another field that will indicate the number of sick days
used. Let's call this field DaysSick and define it as an integer, which will be initially set to
zero.

So, let's create the table using Storage Explorer and add some data. Refer to the following
screenshot:

The way the logic of our HR agent will work is that, once a user has been verified, and a
holiday or sick request has been placed, the bot will reply back with the option selected.

So, having defined these basic rules, let's develop the BotBrain method that can take care
of this. Looks like a lot of fun!

Accessing the Azure table through code
So, let's see how we can connect to Azure Table Storage through Node.js, read the
information on the database table, and, furthermore, update it.

In order to get started, the first thing to do is to add Azure Storage to our project as an
npm package. This can be done, as follows, from the command line:

npm install azure-storage --save

This will update our package.json file, adding a reference to the Azure Storage library.
Once the package has been installed, let's add a reference to it in our code:

var azure = require('azure-storage');

Getting Skype to Work for You

[62]

With the reference added, we can go ahead and create the tableSvc object that we will be
using to connect to and communicate with our HolidaysHRBot table. It is necessary to pass
the AZURE_ACCOUNT and ACCOUNT_KEY, which can be found on the Azure Portal.

var tableSvc = azure.createTableService(AZURE_ACCOUNT, AZURE_KEY);

Because we have manually added data to our table using Storage Explorer, in order to
retrieve data based on the PartitionKey and RowKey we'll need to use the
retrieveEntity method from the tableSvc object. Here's how:

tableSvc.retrieveEntity('HolidaysHRBot', 'Eduardo Freitas', 'Ed-Freitas',
 function(error, result, response){
 if(!error){
 // result contains the entity
 }
});

So, now let's create a small user verification method that takes the first message from the
user and checks on the Azure table if the user actually exists, and if so, the bot carries out
the rest of the interactive messaging process. This will be the entry point for our BotBrain
method. Take a look at the following code snippet:

userVerification = function(session) {
 session.send('Hey, let me verify your user id ' +
 userId + ' (' + userName + '), bear with me...');

 tableSvc.retrieveEntity(AZURE_TABLE, userId, userName, function
 entityQueried(error, entity) {
 if (!error) {
 authenticated = true;
 userEntity = entity;

 session.send('I have verified your id, how can I help you?' +
 ' Type a) for Holidays, b) for Sick Leave.');
 }
 else {
 session.send('Could not find: ' + userName +
 ', please make sure you use proper casing :)');
 }
 });
};

What we've done here is to basically wrap up the retrieveEntity function into a method
for which, depending on what result is fetched from the AZURE_TABLE, a given
session.send is sent back to the user.

Getting Skype to Work for You

[63]

If, for the user, there is a matching record for the userId (PartitionKey) and userName
(RowKey) specified, then the state is set to authenticated and the entity retrieved (record)
is copied to the userEntity object.

HR agent bot logic
Now let's close the loop and tie all this up by outlining the bot's full code, as follows:

var skype = require('botbuilder');
var express = require('express');
var azure = require('azure-storage');

var app = express();

var APP_ID = '<< Your App ID >>';
var APP_SECRET = '<< Your App Password >>';

var AZURE_ACCOUNT = '<< Your Azure Account ID >>';
var AZURE_KEY = '<< Your Azure Account Key >>';
var AZURE_TABLE = 'HolidaysHRBot';

var tableSvc = azure.createTableService(AZURE_ACCOUNT, AZURE_KEY);

var authenticated = false;
var holidays = false;
var sick = false;
var userId = '';
var userName = '';
var userEntity = undefined;

var botService = new skype.ChatConnector({
 appId: APP_ID,
 appPassword: APP_SECRET
});

var bot = new skype.UniversalBot(botService);

app.post('/api/messages', botService.listen());

userVerification = function(session) {
 session.send('Hey, let me verify your user id ' + userId + ' (' +
 userName + '), bear with me...');

 tableSvc.retrieveEntity(AZURE_TABLE, userId, userName,
 function entityQueried(error, entity) {
 if (!error) {

Getting Skype to Work for You

[64]

 authenticated = true;
 userEntity = entity;

 session.send('I have verified your id, how can I help you?' +
 ' Type a) for Holidays, b) for Sick Leave.');
 }
 else {
 session.send('Could not find: ' + userName +
 ', please make sure you use proper casing :)');
 }
 });
};

cleanUserId = function(userId) {
 var posi = userId.indexOf(':');
 return (posi > 0) ? userId.substring(posi + 1) : userId;
};

BotBrain = function(session) {
 var orig = session.message.text;
 var content = orig.toLowerCase();
 var from = session.message.user.name;
 if (authenticated) {
 if (content === 'a)') {
 holidays = true;
 session.send('Please indicate how many vacation days' +
 ' you will be requesting, i.e.: 3');
 }
 else if (content === 'b)') {
 sick = true;
 session.send('Please indicate how many sick days' +
 ' you will be requesting, i.e.: 2');
 }
 else if (content !== 'a)' && content !== 'b)') {
 if (holidays) {
 session.send(userName + '(' + userId + ')' +
 ', you have chosen to take ' + content +
 ' holiday(s). Session ended.');
 sick = false;
 authenticated = false;
 }
 else if (sick) {
 session.send(userName + '(' + userId + ')' +
 ', you have chosen to take ' + content +
 ' sick day(s). Session ended.');
 holidays = false;
 authenticated = false;
 }

Getting Skype to Work for You

[65]

 else if (!holidays && !sick) {
 session.send('I can only process vacation or sick leave requests.'
+
 ' Please try again.');
 }
 }
 }
 else {
 authenticated = false, holidays = false, sick = false;
 userId = '', userName = '', userEntity = undefined;

 if (content === 'hi') {
 session.send('Hello ' + cleanUserId(from) +
 ', I shall verify your identify...');
 session.send('Can you please your provide your FirstName-LastName?' +
 ' (please use the - between them)');
 }
 else if (content !== '') {
 userId = cleanUserId(from);
 userName = orig;

 if (userName.indexOf('-') > 1) {
 userVerification(session);
 }
 else {
 session.send('Hi, please provide your FirstName-LastName' +
 ' (please use the - between them) or say hi :)');
 }
 }
 }
};

bot.dialog('/', function (session) {
 BotBrain(session);
});

app.get('/', function (req, res) {
 res.send('SkypeBot listening...');
});

//app.listen(3979, function () {
app.listen(process.env.port, function () {
 console.log('SkypeBot listening...');
});

Getting Skype to Work for You

[66]

Given that we already explained some parts of the code when we went through the process
of registering the bot with Skype and we also reviewed how to hook up to the Skype API
events that allow the bot to receive incoming messages from users, we won't be covering
those parts further. Instead, we will focus on the BotBrain function and how the actual
process flows. Let's analyze this.

The first thing to notice is that, when the bot.Dialog event gets triggered, the BotBrain
function is invoked:

bot.dialog('/', function (session) {
 BotBrain(session);
});

Another important part is that somehow we need to keep the state in order to be able to
determine what stage of the conversation our bot is at with the user.

A relatively simple way to do this is by using variables that keep the state of the
conversation or apply it to some parts.

We'll need to know when the user has been authenticated, which basically means that their
Skype Id and name have been checked against the data contained within the AZURE_TABLE.
Further to that, we'll also need to keep the userId, userName, and userEntity
(representing the record on the table) for the authenticated user.

It is also important to know if the user has sent a holidays request or a sick leave request.
With these variables, we can keep the state in a very simple way.

Ideally, for multiple users requesting interaction with the bot at the same time, the state
should be kept individually for each user logged on or authenticated. However, this is far
beyond the scope of this example and we shall not cover this. Take a look at the following
code snippet:

var authenticated = false;
var holidays = false;
var sick = false;
var userId = '';
var userName = '';
var userEntity = undefined;

With the problem of managing the state covered, let's now focus on the internals of the
BotBrain function. Let's dissect it into smaller chunks.

Getting Skype to Work for You

[67]

There are basically two main parts that are important. One is whether the user has already
been authenticated (the user has been verified to exist on the AZURE_TABLE) and the other is
where the user has yet not been authenticated, which corresponds to the initial stage of the
conversation:

authenticated = false, holidays = false, sick = false;
userId = '', userName = '', userEntity = undefined;

if (content === 'hi') {
 session.send('Hello ' + cleanUserId(from) +
 ', I shall verify your identify...');
 session.send('Can you please your provide your FirstName-LastName?' +
 ' (please use the - between them)');
}
else if (content !== '') {
 userId = cleanUserId(from);
 userName = orig;

 if (userName.indexOf('-') > 1) {
 userVerification(session);
 }
 else {
 session.send('Hi, please provide your FirstName-LastName' +
 ' (please use the - between them) or say hi :)');
 }
}

Here we can see that, in order to start the conversation, the user must write a message
including the word hi. Following that, the bot responds and requests that the user enters
their name in the form of FirstName-LastName (proper casing should be used).

FirstName-LastName will be used in order to query the RowKey of the AZURE_TABLE and
verify if the userId (the user's Skype Id) corresponds to the record that also contains the
value specified by FirstName-LastName. This is done within the userVerification
function.

Once the user's identity has been verified, then authenticated is set to true and therefore
the bot can ask what type of action the user wants to carry out. Let's check this:

if (content === 'a)') {
 holidays = true;
 session.send('Please indicate how many vacation days' +
 ' you will be requesting, i.e.: 3');
}
else if (content === 'b)') {
 sick = true;

Getting Skype to Work for You

[68]

 session.send('Please indicate how many sick days' +
 ' you will be requesting, i.e.: 2');
}
else if (content !== 'a)' && content !== 'b)') {
 if (holidays) {
 session.send(userName + '(' + userId + ')' +
 ', you have chosen to take ' + content +
 ' holiday(s). Session ended.');
 sick = false;
 authenticated = false;
 }
 else if (sick) {
 session.send(userName + '(' + userId + ')' +
 ', you have chosen to take ' + content +
 ' sick day(s). Session ended.');
 holidays = false;
 authenticated = false;
 }
 else if (!holidays && !sick) {
 session.send('I can only process vacation or sick leave requests.' +
 ' Please try again.');
 }
}

Once the user has been verified and the bot's state has been authenticated, the bot then
requests that the user chooses if he or she wants to request some vacation days or sick leave
days. Once the user responds, each state is then stored using Boolean variables called
holidays and sick, which are then used by the bot to send back a reply asking how many
days the user wants to book. Take a look at the following screenshot:

Getting Skype to Work for You

[69]

When the user provides the number of days, the bot then replies back confirming the
request. The output can be seen as follows:

It's important to note that there's room to add additional logic and perform more
operations, such as actually changing the values on the AZURE_TABLE once the days request
has been entered, so there's plenty of opportunity to keep exploring and expanding the
functionality of the bot.

Summary
It's been an interesting journey on how to connect and interact with Skype services, and
how to create a bot to leverage some basic but interesting and interactive functionality.

We've see how to get our bot all set up with Skype, how to install the related npm packages,
and implement the basic skeleton and structure for our app.

Further to this, you've also learned how to create the bot's brains in order to perform certain
tasks and send the right response based on the input received.

If you'd like to expand on this a bit further, something interesting to think about is how to
keep the state for multiple users simultaneously and also add more interactive
functionality.

Hopefully, this has given you some inspiration, food for thought, and an eagerness to
continue exploring many more possibilities for implementing Skype bots. Thanks so much
for reading.

3
Twitter as a Flight Information

Agent
Twitter is an online social networking service that enables users to send and read short 140
character messages called tweets, and has become one of the most prominent ways for
people to exchange news and information all over the world.

Twitter's popularity has exploded since its creation, and now it is used for all sorts of
things, such as customer service, marketing, news coverage, and many others. It is one of
the most popular websites that exist, and it is considered to be the SMS gateway of the
Internet.

One of Twitter's main uses is for companies to communicate information to their followers.
For example, airlines usually tweet about events that are related to the company, as well as
those that could affect passengers or their plans.

In this chapter, we'll focus our attention on creating a Twitter bot that is able to provide
flight information to passengers, acting like an automated flight information agent.

The examples should be a lot of fun, as well as easy to follow, so let's not wait any longer
and get started!

Twitter as a Flight Information Agent

[71]

How a Twitter bot works
Just like any other bot, a Twitter bot is, in essence, just another Twitter user account–the
difference is that, instead of being manned by another person, the account is controlled by
an automated process that knows how to reply to the input you provide. This is possible
because Twitter provides an API that allows you to interact programmatically with the
service through code.

In essence, anything that can be turned into a service could be converted into an automated
conversation by using a bot, and Twitter is no different. Bots can have interactive
conversations on nearly every platform, at any time, and from anywhere.

A Twitter bot is typically an application that you write that listens for something to happen
on Twitter and then does something in response. In our case, we'll be listening for someone
to tweet with a certain hashtag and then tweeting something when that happens. That
hashtag will be a flight number, and the bot will be able to provide some feedback based on
it.

So, let's get our feet on the ground and get started in building our Twitter bot.

 Creating a Twitter app
The first and foremost step in creating a Twitter bot is to actually create a Twitter
application. The bot is just a designation we'll be using, but in reality it's really a Twitter
application behind the scenes that is able to interact with the Twitter API.

In order to be able to interact with the Twitter API, it is necessary to have a registered
Twitter account. Go to the Twitter web page and sign up if you don't have an account. If
you have one, sign in.

Once you are signed in, navigate to https://apps.twitter.com/. This is where we will
register our Twitter application. You'll then see the Twitter Application Management
welcome page which has a button to create a new application.

https://apps.twitter.com/

Twitter as a Flight Information Agent

[72]

To create the Twitter bot, click on the Create New App button. Refer to the following
screenshot:

Having done that, the following screen will appear:

Twitter as a Flight Information Agent

[73]

Fill in the required information. Give the application a distinctive name and a description.
You are also required to enter a website that will be used as the bot's publicly accessible
home page. Once you have entered this data, scroll down and accept the Twitter Developer
Agreement:

Once you've read the developer agreement, you can click on the Create your Twitter
application in order to proceed. This will allow Twitter to create your application, and
you'll be presented with the following screen once the creation process has finalized:

Twitter as a Flight Information Agent

[74]

If you scroll a bit, there are also application settings provided that will be needed as soon as
we start coding. With the Twitter app created, let's focus on writing some code. So far
throughout this book we've been using the Atom editor; however, you are free to use any
other editor that you might be comfortable with.

Open the editor and create a new app.js file inside a FlightBot folder anywhere on your
drive. For now, simply add this instruction:

console.log('Hi, this is FlightBot');

Assuming we have Node.js and npm installed (if not, please refer to the steps in Chapter 1,
The Rise of Bots – Getting the Message Across), let's get some necessary dependencies installed.

Now let's copy the package.json (that we used in the previous chapter) and place it in the
FlightBot folder. Then let's modify it as follows:

Now let's get the dependencies installed, so we can start coding within the app.js file:

npm install twitter --save

Twitter as a Flight Information Agent

[75]

This will install the Twitter Node.js SDK, which we will be using to write our app. This will
be installed on the FlightBot folder as shown in the following screenshot:

You'll see the updated package.json file in your project folder:

Twitter as a Flight Information Agent

[76]

We are now ready to start adding some code in our app.js file:

var TwitterPackage = require('twitter');

What we've done here is to load and import the Twitter package. First, let's get these
consumer keys and tokens from the Twitter Application Management screen:

Note how the Consumer Key and Consumer Secret are available by default, but not the
Your Access Tokens.

Twitter as a Flight Information Agent

[77]

In order to get the Your Access Tokens, click on the Create my access token button at the
bottom of the screen. Once you've done that, you'll see the following screen:

With this done, you can now add the consumer and access tokens to the secret object
variable in the code.

We can do this by defining an object variable that will contain the consumer key and secret
object, along with the access tokens, as shown in the following code snippet:

var secret = {
 consumer_key: 'PUT YOURS',
 consumer_secret: 'PUT YOURS',
 access_token_key: 'PUT YOURS',
 access_token_secret: 'PUT YOURS'
}

var Twitter = new TwitterPackage(secret);

Later, we'll store these in a separate .json file, but for now let's keep them within our
app.js file. These will be required in order to authenticate to Twitter.

Twitter as a Flight Information Agent

[78]

So at this point, we've pretty much created the app on Twitter and have a very basic
structure with tokens and access codes that we can use to authenticate to the Twitter service
and start using the API.

With this out of the way, let's move on and start adding some logic to our application.

Posting to Twitter
In order to add our own custom logic, we'll need to make use of Twitter's REST API, which
will allow us to do several things. One of the things it can do is allow us to post a tweet.

This can be achieved as follows:

Twitter.post('statuses/update', {status: 'This is a sample automated
Tweet'}, function(error, tweet, response){
 if(error){
 console.log(error);
 }
 console.log(tweet); // Tweet body.
 console.log(response); // Raw response object.
});

So let's take a moment to examine this. Twitter.post means that we are calling the post
function in the Twitter object. We pass the post function several
things–'statuses/update' means we want to post a status update (a tweet).

{status: 'This is a sample automated Tweet'} is a JavaScript object that we are
passing in to this function where we set the status of the tweet being sent out.

Although this contains just the text of the tweet we want to send, there are a whole bunch of
other options to set depending on what we want to post to Twitter (such as images,
location, and so on). In this case, we are just interested in posting a simple status just so we
are familiar with setting the status property.

The last thing we pass in is a function. In JavaScript, you can actually pass functions in to
other functions; it is one of the things that makes JavaScript a functional programming
language.

Twitter as a Flight Information Agent

[79]

In the Twitter.post function, you're expected to pass a function in that will be executed
after Twitter tries to post the tweet. This is what is known as a callback function. In that
function, you'll notice three parameters:

error: This indicates whether there's an error in the process of posting the tweet,
in which case this variable will contain an object with information about the error
that occurred
tweet: An object that contains all the tweet data
response: An object of the actual response Twitter sends back when you post a
tweet

In our code, we'll just post our tweet and then print it out in the console. Now go ahead and
remove the 'Hi, this is FlightBot' line. We don't need it any longer.

Now, save the modified app.js file. It should look like this:

var TwitterPackage = require('twitter');

var secret = {
 consumer_key: 'PUT YOURS',
 consumer_secret: 'PUT YOURS',
 access_token_key: 'PUT YOURS',
 access_token_secret: 'PUT YOURS'
}

var Twitter = new TwitterPackage(secret);

Twitter.post('statuses/update', {status: 'This is a sample automated
Tweet'}, function(error, tweet, response){
 if(error){
 console.log(error);
 }
 console.log(tweet); // Tweet body.
 console.log(response); // Raw response object.
});

Now let's go and run the app:

node app.js

This will produce the following result on the command line console:

Twitter as a Flight Information Agent

[80]

If we then inspect Twitter itself, we can see the following:

Really cool! We now have a way to send automatic tweets. However, we don't have a full
blown bot yet. Let's explore how we can achieve that.

Listening to tweets
In order to create a functional Twitter bot, it is not enough to be able to simply post
something to Twitter. We also need to be able to listen to what gets posted on Twitter.

Twitter has a very useful API called Streaming which gives us information about tweets in
real time. In other words, when someone tweets something that we care about, we get all
the data about that tweet. This is both really useful and really awesome.

Twitter as a Flight Information Agent

[81]

So let's re-implement a bit of our code as follows:

Twitter.stream('statuses/filter', {track: '#FlightBot'}, function(stream) {
 stream.on('data', function(tweet) {
 console.log(tweet.text);
 });

 stream.on('error', function(error) {
 console.log(error);
 });
});

Let's analyze this. The Twitter.stream function takes in three parameters:

The first parameter is a string that tells Twitter that we want to listen for statuses
with a certain filter. In this case, we are filtering by using a hashtag.
The second parameter is where we define that filter with an object. That object
contains the property track which lets us define a word, hashtag, or phrase that
we care to listen for. For this, we will be tracking when someone tweets with the
hashtag '#FlightBot'.
The last parameter is a function that gets called when Twitter is done setting up
our stream. When it's done setting up our stream, it then passes that stream object
in to the function. Within this function, we can set up what happens when we
receive a tweet, along with other things, such as error handling, and so on.

Now let's take a closer look at what happens when we receive data:

stream.on('data', function(tweet) {
 console.log(tweet.text);
});

So, using the stream object, it calls the on function. Now, with the on function, you pass in
a string and a function. This means that when a tweet occurs, we call this function with that
data. At the moment, we just print out tweet.text, which is how you access the actual text
of the tweet that was received that used the hashtag '#FlightBot'.

Let's now go ahead and comment the Twitter.post code so we don't post the same tweet
twice. Then, if we save the app.js file and then call node app.js in the command line,
you'll notice that the command line no longer shows you a prompt.

This is because it's running and listening for some sort of data to come in from that stream.
If you need to stop it, press Ctrl + C a few times to return to the prompt.

Twitter as a Flight Information Agent

[82]

In order to test this, go to Twitter and tweet something with '#FlightBot', as shown in
the following screenshot:

Now check your running command line. You should see the text of your tweet printed out:

Awesome! We've now implemented a mechanism that can listen to tweets.

The update app.js code now looks like this:

var TwitterPackage = require('twitter');

var secret = {
 consumer_key: 'PUT YOURS',
 consumer_secret: 'PUT YOURS',
 access_token_key: 'PUT YOURS',
 access_token_secret: 'PUT YOURS'
}

var Twitter = new TwitterPackage(secret);

Twitter.stream('statuses/filter', {track: '#FlightBot'}, function(stream) {
 stream.on('data', function(tweet) {
 console.log(tweet.text);
 });

 stream.on('error', function(error) {
 console.log(error);
 });
});

Replying to who tweeted
So far, we've managed to write some code that posts a tweet and we've also written code
that acts on tweets that have been written. So what's next?

Twitter as a Flight Information Agent

[83]

The next thing to do is to basically combine both parts together into a single code base, as
this will be the basic layer of our bot.

One of the things you might want to do is to give the bot the ability to reply to the person
who tweeted with your hashtag. To do this, the bot needs to mention them.

You can access the username of the person who tweeted with your hashtag by using
 tweet.user.screen_name.

In order to mention them, concatenate a '@' symbol at the beginning by doing this:

var mentionString = '@' + tweet.user.screen_name;

Then just concatenate that to the string you want to tweet out. We're now replying to the
person who tweeted. Cool!

So, let's now look at the complete source code to get a full picture:

var TwitterPackage = require('twitter');

var secret = {
 consumer_key: 'PUT YOURS',
 consumer_secret: 'PUT YOURS',
 access_token_key: 'PUT YOURS',
 access_token_secret: 'PUT YOURS'
}

var Twitter = new TwitterPackage(secret);

Twitter.stream('statuses/filter', {track: '#FlightBot'}, function(stream) {
 stream.on('data', function(tweet) {
 console.log(tweet.text);
 var statusObj = {status: "Hi @" +
 tweet.user.screen_name + ", Thanks for reaching out. How are you?"}

 Twitter.post('statuses/update', statusObj, function(error,
 tweetReply, response){

 if(error){
 console.log(error);
 }

 console.log(tweetReply.text);
 });
 });

 stream.on('error', function(error) {

Twitter as a Flight Information Agent

[84]

 //print out the error
 console.log(error);
 });
});

If we now execute the app with node app.js, we should be able to pick up any hashtags
with the keyword '#FlightBot'. Let's have a look:

We now get the following result:

This is really awesome. With just a few lines of code we were able to create a simple Twitter
bot. But we are still not done. We haven't added any logic on how to provide basic flight
details or data yet .

But before we do that, let's put the secret variable object into a secret.json file, so we
can avoid having the access codes and tokens within our code.

Create a new secret.json file and save it in the same folder as the app.js file. The
secret.json file should now look like this:

{
 "consumer_key": "PUT YOURS",
 "consumer_secret": "PUT YOURS",
 "access_token_key": "PUT YOURS",
 "access_token_secret": "PUT YOURS"
}

This secret.json file is then referenced from the code, and it now looks as follows:

var TwitterPackage = require('twitter');
var secret = require("./secret");
var Twitter = new TwitterPackage(secret);

Twitter.stream('statuses/filter', {track: '#FlightBot'}, function(stream) {

 stream.on('data', function(tweet) {

Twitter as a Flight Information Agent

[85]

 console.log(tweet.text);
 var statusObj = {status: "Hi @" + tweet.user.screen_name +
 ", Thanks for reaching out. How are you?"}

 Twitter.post('statuses/update', statusObj,
 function(error, tweetReply, response){
 if(error){
 console.log(error);
 }
 console.log(tweetReply.text);
 });
 });

 stream.on('error', function(error) {
 console.log(error);
 });
});

Now that we have the updated code, let's add the necessary logic to send information about
flights statuses and information.

Flight APIs
In order to get some flight information, we'll have to rely on a flight API. One that is free
and really useful is the one from Air France-KLM, which is available at
https://developer.airfranceklm.com/.

https://developer.airfranceklm.com/

Twitter as a Flight Information Agent

[86]

So let's sign up and register an account. There are several APIs (found at
https://developer.airfranceklm.com/Our_Apis) provided by Air France-KLM such as
Reservations, Order, Flight Offer, Flight Status, Location, Contact Information, Ancillary
Shop, and Check-in.

We are interested in using the Flight Status API
(https://developer.airfranceklm.com/page/Flight_status_API), which will provided
up-to-date and accurate information about specific flight numbers. Let's explore this API a
bit.

The Flight Status API provides flight status information–such as scheduled and actual
arrival and departure times–of KLM-operated flights, or Delta and Air France-operated
flights with a KLM codeshare, flying to and from the Air France-KLM hub in Amsterdam.

The API supports operational decision making, such as notification in case of exceptional
situations, like extreme weather conditions.

The great thing about this API is that it doesn't require API keys, and it is available for free.
The catch is that it only returns data from the day that you execute the query-that is, it only
returns today's data and doesn't return any past flight status information.

There are two ways to search with this API. One is to search using a flight number and the
other is to use a route.

Flight status API
When searching using a flight number, the REST endpoint will provide the flight status for a
given flight, and you must specify the day's date; for example, flight KL1699 on September
16, 2016. The request would look like this:

http://fox.klm.com/fox/json/flightstatuses?flightNumber=KL1699&departureDate=20
16-09-16

This would return the following JSON response:

{ "flights" : [{ "@type" : "OperatingFlight",
 "aircraft" : { "registrationCode" : "PH-BGT" },
 "carrier" : { "code" : "KL" },
 "flightNumber" : "1699",
 "marketingFlights" : [{ "carrier" : { "code" : "KQ" },
 "flightNumber" : "1699"
 },
 { "carrier" : { "code" : "DL" },
 "flightNumber" : "9605"

https://developer.airfranceklm.com/Our_Apis
https://developer.airfranceklm.com/page/Flight_status_API
http://fox.klm.com/fox/json/flightstatuses?flightNumber=KL1699&departureDate=2016-09-16
http://fox.klm.com/fox/json/flightstatuses?flightNumber=KL1699&departureDate=2016-09-16

Twitter as a Flight Information Agent

[87]

 }
],
 "operatingFlightLeg" : { "arrivesOn" : { "@type" : "Airport",
 "IATACode" : "MAD"
 },
 "departsFrom" : { "@type" : "Airport",
 "IATACode" : "AMS"
 },
 "flightStatus" : "ARRIVED",
 "legs" : [{ "actualArrivalDateTime" :
"2016-09-16T09:26+02:00",
 "actualDepartureDateTime" : "2016-09-16T06:59+02:00",
 "arrivesOn" : { "@type" : "Airport",
 "IATACode" : "MAD"
 },
 "departsFrom" : { "@type" : "Airport",
 "IATACode" : "AMS"
 },
 "scheduledArrivalDateTime" : "2016-09-16T09:35+02:00",
 "scheduledDepartureDateTime" : "2016-09-16T07:00+02:00",
 "status" : "ARRIVED"
 }],
 "scheduledArrivalDateTime" : "2016-09-16T09:35+02:00",
 "scheduledDepartureDateTime" : "2016-09-16T07:00+02:00"
 },
 "remainingFlyTime" : "PT0.000S"
 }]
}

That was easy and fun! Now let's explore the route search API.

Route search API
The Route Search REST endpoint provides a summary of flight statuses for all applicable
flights in a given route, such as Amsterdam (AMS) and Paris Charles de Gaulle (CDG).

The request would look like this:

http://fox.klm.com/fox/json/flightstatuses?originAirportCode=AMS&destinationAir
portCode=CDG

http://fox.klm.com/fox/json/flightstatuses?originAirportCode=AMS&destinationAirportCode=CDG
http://fox.klm.com/fox/json/flightstatuses?originAirportCode=AMS&destinationAirportCode=CDG

Twitter as a Flight Information Agent

[88]

The JSON result would be as follows.

{ "flights" : [{ "@type" : "OperatingFlight",
 "_links" : { "detailedInfoLink" :
"http://fox.klm.com/fox/json/flightstatuses
flightNumber=KL1223&departureDate=2016-09-15&originAirport=AMS&destinationA
irport=CDG" },
 "carrier" : { "code" : "KL" },
 "flightNumber" : "1223",
 "operatingFlightLeg" : { "arrivesOn" : { "@type" : "Airport",
 "IATACode" : "CDG"
 },
 "departsFrom" : { "@type" : "Airport",
 "IATACode" : "AMS"
 },
 "flightStatus" : "ARRIVED",
 "scheduledArrivalDateTime" : "2016-09-15T08:00+02:00",
 "scheduledDepartureDateTime" : "2016-09-15T06:45+02:00"
 }
 },
 { "@type" : "OperatingFlight",
 "_links" : { "detailedInfoLink" :
"http://fox.klm.com/fox/json/flightstatuses?flightNumber=KL1227&departureDa
te=2016-09-16&originAirport=AMS&destinationAirport=CDG" },
 "carrier" : { "code" : "KL" },
 "flightNumber" : "1227",
 "operatingFlightLeg" : { "arrivesOn" : { "@type" : "Airport",
 "IATACode" : "CDG"
 },
 "departsFrom" : { "@type" : "Airport",
 "IATACode" : "AMS"
 },
 "flightStatus" : "ARRIVED",
 "scheduledArrivalDateTime" : "2016-09-16T08:40+02:00",
 "scheduledDepartureDateTime" : "2016-09-16T07:15+02:00"
 }
 },
 { "@type" : "OperatingFlight",
 "_links" : { "detailedInfoLink" :
"http://fox.klm.com/fox/json/flightstatuses?flightNumber=GA9240&departureDa
te=2016-09-16&originAirport=AMS&destinationAirport=CDG" },
 "carrier" : { "code" : "GA" },
 "flightNumber" : "9240",
 "operatingFlightLeg" : { "arrivesOn" : { "@type" : "Airport",
 "IATACode" : "CDG"
 },
 "departsFrom" : { "@type" : "Airport",
 "IATACode" : "AMS"

Twitter as a Flight Information Agent

[89]

 },
 "flightStatus" : "ARRIVED",
 "scheduledArrivalDateTime" : "2016-09-16T09:25+02:00",
 "scheduledDepartureDateTime" : "2016-09-16T07:55+02:00"
 }
 }
]
}

The response includes the following information–Scheduled Departure Date Time,
Scheduled Arrival Date Time, Flight Status, Marketing Flights, Remaining Fly Time,
Arrival, and Departure information.

So now that we have an API to query, let's make our bot a bit smarter and allow it to
retrieve flight status and route details.

Adding a REST client library
Using the code we already have, which is able to respond back to the person that actually
tweeted the '#FlightBot' hashtag, let's make some modifications so that it can provide
status details about flights and routes using the Air France-KLM APIs.

The first thing that we need to do in order to communicate to the Air France-KLM
endpoints is to include a REST client library for Node.js in our app.

There are various Node.js REST client libraries out there, and you can choose whichever
makes you feel more comfortable. For our example, however, we'll be using the library
found at https://www.npmjs.com/package/request.

The first thing we need to do is to install it. We can do this from the command line by
executing this instruction:

npm install request --save

https://www.npmjs.com/package/request

Twitter as a Flight Information Agent

[90]

After doing this, our package.json file will be updated as follows:

Note how a reference to request has been added. This is because we have used the save
option when executing the previous instruction.

Making the bot a bit smarter
Now that we have added a REST client library, it's time to add some logic to our application
in order to interact with the Air France-KLM APIs.

Our bot should be able to provide feedback about flights and routes using the API
endpoints previously described.

Let's make some changes to our code to accommodate this. In order to do that, let's add
some logic to make sure that the bot is able to process not only the Twitter hashtag but also
a flight number.

So we will essentially automate the call to this REST endpoint and parse the response
associated with it, returning just some essential bits of that data, but not all of it. Sounds
exciting, so let's get started.

We need to automate this endpoint through a REST call. We need to make sure that, besides
the hashtag, a flight number is also passed as part of the message:

http://fox.klm.com/fox/json/flightstatuses?flightNumber=KL1699&departureDate=20
16-09-16

http://fox.klm.com/fox/json/flightstatuses?flightNumber=KL1699&departureDate=2016-09-16
http://fox.klm.com/fox/json/flightstatuses?flightNumber=KL1699&departureDate=2016-09-16

Twitter as a Flight Information Agent

[91]

Here's the full updated code. Let's have a complete look at it and then dissect it bit by bit to
understand the changes that were made:

var TwitterPackage = require('twitter');
var secret = require("./secret");
var Twitter = new TwitterPackage(secret);
var request = require('request');

padLeft = function (str, paddingChar, length) {
 var s = new String(str);

 if ((str.length < length) && (paddingChar.toString().length > 0))
 {
 for (var i = 0; i < (length - str.length) ; i++)
 s = paddingChar.toString().charAt(0).concat(s);
 }

 return s;
};

GetDate = function() {
 var dateObj = new Date();
 var month = dateObj.getUTCMonth() + 1; //months from 1-12
 var day = dateObj.getUTCDate();
 var year = dateObj.getUTCFullYear();

 return year + '-' + padLeft(month.toString(), '0', 2) + '-' +
 padLeft(day.toString(), '0', 2);
};

FlightNumberOk = function(str) {
 var posi = str.indexOf('KL');
 var fn = str.substring(posi);
 return (posi >= 0 && fn.length === 6) ? fn : '';
};

var fd = '';

GetFlightDetails = function(fn) {
 var dt = GetDate();
 var rq = 'http://fox.klm.com/fox/json/flightstatuses?flightNumber=' + fn
+
 '&departureDate=' + dt;

 request(rq, function (error, response, body) {
 if (!error && response.statusCode == 200) {
 fd = body;
 }

Twitter as a Flight Information Agent

[92]

 })
};

Twitter.stream('statuses/filter', {track: '#FlightBot'}, function(stream) {

 stream.on('data', function(tweet) {
 var statusObj = {status: "Hi @" + tweet.user.screen_name +
 ", Thanks for reaching out. We are missing the flight number."};

 var fn = FlightNumberOk(tweet.text);

 if (fn !== '') {
 GetFlightDetails(fn);
 }

 setTimeout(function() {
 console.log ('fd: ' + fd);

 if (fd !== undefined) {
 var ff = JSON.parse(fd);
 statusObj = {status: "scheduledArrivalDateTime: " +
 ff.flights[0].operatingFlightLeg.scheduledArrivalDateTime};
 }

 Twitter.post('statuses/update', statusObj, function(error,
tweetReply,
 response) {
 if (error){
 console.log(error);
 }
 console.log(tweetReply.text);
 });
 }, 1500);
 });

 stream.on('error', function(error) {
 console.log(error);
 });
});

OK, so there are some changes. The first one is that we have added a reference to the
request library which we will be using to make the requests to the REST API:

var request = require('request');

Twitter as a Flight Information Agent

[93]

Following that, we've added a GetDate function which will return today's date so it can be
passed onto the REST endpoint as the departureDate parameter:

GetDate = function() {
 var dateObj = new Date();
 var month = dateObj.getUTCMonth() + 1; //months from 1-12
 var day = dateObj.getUTCDate();
 var year = dateObj.getUTCFullYear();

 return year + '-' + padLeft(month.toString(), '0', 2) + '-' +
 padLeft(day.toString(), '0', 2);
};

This GetDate function uses a padLeft function that is responsible for correctly formatting
each of the parts of the date as shown in the following code snippet:

padLeft = function (str, paddingChar, length) {
 var s = new String(str);

 if ((str.length < length) && (paddingChar.toString().length > 0))
 {
 for (var i = 0; i < (length - str.length) ; i++)
 s = paddingChar.toString().charAt(0).concat(s);
 }

 return s;
};

These two functions cover the departureDate part of the REST endpoint. So now let's
focus on the flightNumber part.

For this, we've written a function called FlightNumberOk, which does a quick check to
ensure that the flight number is correct:

FlightNumberOk = function(str) {
 var posi = str.indexOf('KL');
 var fn = str.substring(posi);
 return (posi >= 0 && fn.length === 6) ? fn : '';
};

With the flight number correct, we can then use another function called
GetFlightDetails to actually perform the call to the REST endpoint. The JSON response
is represented by the variable body, which is then assigned to the fd variable, which is later
used to tweet a response back to the user. Refer to the following code:

GetFlightDetails = function(fn) {
 var dt = GetDate();

Twitter as a Flight Information Agent

[94]

 var rq = 'http://fox.klm.com/fox/json/flightstatuses?flightNumber=' + fn
+
 '&departureDate=' + dt;

 request(rq, function (error, response, body) {
 if (!error && response.statusCode == 200) {
 fd = body;
 }
 })
};

Because the GetFlightDetails uses the request library to perform an asynchronous
request to the REST endpoint, we cannot tweet the response until the JSON response is
obtained, and to ensure that, the tweet response is executed within a setTimeout
JavaScript function 1,500 milliseconds after the execution of the GetFlightDetails takes
place.

So basically our Twitter.stream function now looks like this:

Twitter.stream('statuses/filter', {track: '#FlightBot'}, function(stream) {
 stream.on('data', function(tweet) {
 var statusObj = {status: "Hi @" + tweet.user.screen_name + ", Thanks
for
 reaching out. We are missing the flight number."};

 var fn = FlightNumberOk(tweet.text);

 if (fn !== '') {
 GetFlightDetails(fn);
 }

 setTimeout(function() {
 console.log ('fd: ' + fd);

 if (fd !== undefined) {
 var ff = JSON.parse(fd);
 statusObj = {status: "scheduledArrivalDateTime: " +
 ff.flights[0].operatingFlightLeg.scheduledArrivalDateTime};
 }

 Twitter.post('statuses/update', statusObj, function(error,
tweetReply,
 response) {
 if (error){
 console.log(error);
 }
 console.log(tweetReply.text);

Twitter as a Flight Information Agent

[95]

 });
 }, 1500);
 });

 stream.on('error', function(error) {
 console.log(error);
 });
});

Note how FlightNumberOk and GetFlightDetails are called before the Twitter.Post
is called by the setTimeout function. This is done to ensure that the flight number is OK,
and that the JSON response containing the flight details exists, before sending out the tweet
to the user.

The tweet response basically sends out scheduledArrivalDateTime, which is obtained
by parsing the JSON response using JSON.parse. This is accessed as follows:

ff.flights[0].operatingFlightLeg.scheduledArrivalDateTime

If we execute the program now and tweet #FlightBot KL1699, we'll get the following:

So that's cool, isn't it? Really cool!

Twitter as a Flight Information Agent

[96]

Summary
Throughout this chapter, we've seen how to interact with Twitter and also how to query the
Air France-KLM API in order to retrieve flight details and respond to tweets.

We've barely scratched the surface of what can be done with these APIs; the possibilities
are, frankly, quite endless. All you need is time and a good dose of imagination!

You are encouraged to keep exploring both the Twitter and also the Air France-KLM APIs,
as well as other flight data APIs out there. It's definitely an interesting area, and one worth
exploring further.

I hope you have enjoyed following these examples. The next chapters will look at other
fascinating topics. Have fun!

4
A Slack Quote Bot

If you haven't been living isolated in a galaxy very far away, eons from Earth with no
Internet connection during the last year or so, I am sure you have already heard about Slack
(https://slack.com/), the famous real-time messaging app and collaboration suite for
teams.

Slack has been built from the ground up to be easy and fun to use. It offers a broad set of
APIs that allows developers to extend its capabilities to make it even more useful.

One of the features I most enjoy from Slack is the Slackbot. It is a friendly bot available in
every Slack team to guide users to create their profiles and to explain to them how Slack
works.

If you think Slackbot sounds cool, what you'll really love even more is the possibility to
build your own custom bots, which can act as automated users that can respond to specific
events and help your team do useful things.

Throughout this chapter, we'll explore how we can use the Slack Real Time Messaging API
in order to create our own custom Slackbot. We'll walk through the whole process so you
can get a really good idea of what is possible.

By the end of this chapter, you should feel right at home with creating your own Slackbot
and know a bit more about Slack and how it could help your team and you.

Overall, the process should be a lot of fun and easy to follow, so let's not wait any longer
and get started!

https://slack.com/

A Slack Quote Bot

[98]

Getting started
We are going to be building a bot that gives quotes as responses to the general channel. The
idea is to have a bot that inspires your team during their daily activities, and quotes are
definitely a great way to get inspired.

The first thing we need to do is to set up our bot with Slack and register it in order to use
the Slack API.

In order to do this, we'll be using the Slack Real Time Messaging API
(https://api.slack.com/rtm), which is a WebSocket-based API that allows us to receive
events in real time and send messages to channels, private groups, and users.

The API is really well constructed and the documentation is easy to follow. We won't be
using WebSockets directly, but instead a Node.js module
(https://www.npmjs.com/package/slackbots) that makes development much easier, using
JavaScript.

We need to configure our channel extensions and create the new bot. This way we will
obtain the API token that is required to authenticate to Slack and get started. So, let's roll up
our sleeves and get moving!

Registering a bot on Slack
In order to add the bot into your Slack organization, we'll need to register it at the following
URL: https://yourorganization.slack.com/services/new/bot.

Notice that you will need to change your organization with the name of your company or
team, which you used when registering your Slack account. Once you open up the URL in
your browser, you will be redirected to the following screen:

https://api.slack.com/rtm
https://www.npmjs.com/package/slackbots
https://yourorganization.slack.com/services/new/bot

A Slack Quote Bot

[99]

We'll be calling our bot, quotebot. This is the value we will fill in our username. Notice
how Slack requires that all bot names are all written in lowercase.

Once the name has been entered in the Username field, click on the Add bot integration
button.

A Slack Quote Bot

[100]

Once that has been done, you will be presented with a screen where the bot can be further
customized and features can be added, such as a picture or emoji. This is what this screen
looks like:

There are further options that are available and can be customized, but they don't fit in a
single screenshot, so you'll see them once you reach the end of this screen. Nothing too
complicated.

This screen also contains the API Token, which we will need to reference in our code.

Once you've done the necessary configuration adjustments and changes, click on the Save
Integration button.

A Slack Quote Bot

[101]

Setting up our Node.js app
Now that we've registered our bot on Slack we are ready to set up our Node.js project in
order to start coding.

Let's go ahead and create our package.json file. Open the Command Prompt and type the
following command:

npm init

After you have done this, follow the guided configuration procedure, which should look
similar to the following screenshot:

Once you have finished with this configuration, it is time to install the dependencies we will
need in order to write our bot.

But before we install any dependencies, let's quickly brainstorm what our bot should do. In
short, our bot must be able to retrieve a quote and reply back to the general channel.

A Slack Quote Bot

[102]

There's an awesome site called They Said So (https://theysaidso.com/), which is a service
that provides Quotes-as-a-Service (QAAS). Quotes from multiple authors can be obtained
through an easy-to-use REST API.

As we'll need to access this service using REST, let's include a REST client library for
Node.js in our app. Just like we did in the previous chapter, we'll be using this one.

In order to get this library installed, execute this instruction from the command line:

npm install request --save

Now that this has been done, the next step is to install a library called slackbots
(https://www.npmjs.com/package/slackbots) that will act as an abstraction layer to deal
with the Slack Real Time Messaging API:

npm install slackbots --save

After doing this, our package.json file will be updated as follows:

With our Node.js bot settings all wired up, we are now ready to start writing some code.

https://theysaidso.com/
https://www.npmjs.com/package/slackbots
https://www.npmjs.com/package/slackbots

A Slack Quote Bot

[103]

Slackbots library basics
As mentioned earlier, in order to interact with the Slack Real Time Messaging API, we'll be
using a Node.js library (npm package) called slackbots
(https://www.npmjs.com/package/slackbots).

Before we write any code, let's have a look at the main functions offered by this module by
looking at the following short example:

var Bot = require('slackbots');

var settings = {
 token: 'API TOKEN',
 name: 'quotebot'
};

var bot = new Bot(settings);

bot.on('start', function() {
 bot.postMessageToChannel('channel-name', 'Hi channel.');
 bot.postMessageToUser('a-username', 'Hi user.');
 bot.postMessageToGroup('a-private-group', 'Hi private group.');
});

Before you run this code, please substitute the strings channel-name, a-username and a-
private-group with your own values, taken from your Slack organization.

You'll also need to replace the API TOKEN string with the quotebot token you were given
when the bot was created. The code should now look similar to this:

var Bot = require('slackbots');

var settings = {
 token: 'xoxb-.........-R7VVJ1FI5Hzfcyt.........',
 name: 'quotebot'
};

var bot = new Bot(settings);

bot.on('start', function() {
 bot.postMessageToChannel('general', 'Hi channel.');
 bot.postMessageToUser('radkiddo', 'Hi user.');
 bot.postMessageToGroup('tisdoksend', 'Hi private group.');
});

https://www.npmjs.com/package/slackbots

A Slack Quote Bot

[104]

Once you have replaced those values, you can run the app from the command line as
follows:

Node app.js

If you log in to Slack and open your team's page, you should be able to see this when you
browse to the #general channel:

Awesome, our quotebot just came to life with its first ever message! Now let's break the
code down into pieces in order to understand it a bit better:

var Bot = require('slackbots');

As you can see from the preceding code, the first thing we need to do is to require the
Slackbot constructor. From there we can instantiate a new Bot object and add callbacks to
specific events.

On this code, we use the start event that is triggered when the bot connects successfully to
the Slack server:

bot.on('start', function() {
 bot.postMessageToChannel('general', 'Hi channel.');
 bot.postMessageToUser('radkiddo', 'Hi user.');
 bot.postMessageToGroup('tisdoksend', 'Hi private group.');
});

A Slack Quote Bot

[105]

Then we can use the methods offered by the library to post a message in a channel using the
postMessageToChannel method, to a user as a private message using
postMessageToUser, or in a private group conversation by calling postMessageToGroup.

With these fundamentals covered, we can move on to explore the They Said So API, which
is necessary in order to for us to build our bot.

The They Said So API
The They Said So service has a huge collection of quotes in their database and the Quotes
API is a great and convenient way to access this data. In order to consume the Quotes API,
you'll first need to sign up for the service via this URL: https://theysaidso.com/register.

https://theysaidso.com/
https://theysaidso.com/register

A Slack Quote Bot

[106]

Once you have entered your details and have registered, you will receive an automated
verification e-mail, which will look like this:

When you receive this, simply click on the Verify button in order to validate your newly
registered account and start enjoying the service.

Once you've done that, you will shortly receive this e-mail:

The next step is to subscribe to the Quotes API in order to start consuming it. This can be
done by visiting the following URL: https://theysaidso.com/api/#subscribe or
alternatively clicking on the Create a great App using our API link from the e-mail
received.

https://theysaidso.com/api/#subscribe

A Slack Quote Bot

[107]

When you open this, scroll to the very bottom of the page and you will see the following
API subscription plans on the screen.

In our case, because we are building a demo application, we won't sign up for any specific
paid plan, but instead we'll consume the API through
Mashape (https://market.mashape.com/orthosie/they-said-so-say-it-with-style/).

Mashape is a service that helps developers deliver better APIs and microservices. Many
third-party APIs are provided through Mashape or similar services.

However, if you wish to get a paid plan, you may Sign Up for any of the paid API options
that the service offers. The advantage of doing this is that you won't need to sign on to
Mashape in order to consume the API.

So when we use the API through Mashape, we can click on the Consume API button at the
bottom of the screen.

https://market.mashape.com/orthosie/they-said-so-say-it-with-style/

A Slack Quote Bot

[108]

When we click on that button, the next thing we'll see is the following screenshot. Once
there, click on the PRICING tab.

On the PRICING tab, under the BASIC plan, click on the SUBSCRIBE button.

A Slack Quote Bot

[109]

When you click on the SUBSCRIBE button, you'll see the following pop-up screen:

If you have a GitHub or Mashape account, you can simply subscribe to the API by logging
into the service with any of those accounts. Otherwise you will have to create an account on
Mashape.

The process anyway is very easy and straightforward. Once that's been done, we are ready
to start exploring the API and consuming it. You'll see this on your screen:

A Slack Quote Bot

[110]

Simply click on the Explore public APIs button and then hit the back button on your
browser or navigate to this URL:
https://market.mashape.com/orthosie/they-said-so-say-it-with-style/ to start
exploring the API. So let's do that.

From the API, we are interested in the quotes section. We can look at this by clicking on the
GET Quote link on the left side of the screen.

This will take us to the following page, where we can see how to construct an API call in
order to get a quote:

There are also multiple examples in various programming languages, including Node.js,
which uses the Unirest library (http://unirest.io/) to make HTTP requests. In our
application, we'll be using the Request library instead
(https://www.npmjs.com/package/request).

https://market.mashape.com/orthosie/they-said-so-say-it-with-style/
http://unirest.io/
https://www.npmjs.com/package/request

A Slack Quote Bot

[111]

Notice how on all the sample code, including the Node.js one mentioned on the GET Quote
documentation page, the API Token key is passed on the header of the HTTP request as the
value of the X-Mashape-Key parameter.

So let's see how we would be able to write a small example on how to retrieve a quote using
the Request library.

Let's create a new file called TestRequest.js so we don't mix up this test code with the
main quotebot code that we have started to write using App.js:

var rq = require('request');

var token = 'Your They Said So API Key';

GetQuote = function() {
 var options = {
 url: 'https://theysaidso.p.mashape.com/quote?query=software',
 headers: {
 'User-Agent': 'request',
 'X-Mashape-Key': token
 }
 };

 rq(options, function (error, response, body) {
 if (!error && response.statusCode == 200) {
 console.log(body);
 }
 })
};

GetQuote();

Before you can run this, make sure you are subscribed to the BASIC plan, which includes
five calls per day. You will still have to enter a credit card number, which will be billed if
you go over five requests per day.

A Slack Quote Bot

[112]

You can always unsubscribe on this URL:
https://market.mashape.com/orthosie/they-said-so-say-it-with-style/pricing by
clicking on the Unsubscribe link under the BASIC plan.

Now you may run this script from the command line as follows:

Node TestRequest.js

This produces the following result:

Now that we know how to interact both APIs, we can expand the basic code we initially
wrote in order to create a full blown quotebot.

In our previous code snippet, we used the start event. Going forward, we'll also need the
message event, which will be used to intercept an incoming message and based on that
reply back.

https://market.mashape.com/orthosie/they-said-so-say-it-with-style/pricing

A Slack Quote Bot

[113]

We need to have a function that will intercept every real-time API message that is readable
by our bot. This includes pretty much every chat message in any channel where the bot has
been installed, and also private messages directed to the bot or other real-time notifications,
such as a user typing in a channel, edited or deleted messages, users joining or leaving the
channel, and so on.

Real-time API messages are not just chat messages, but any kind of event that occurs within
our Slack organization. This is important to keep in mind.

Ideally, we would like the bot to filter all these events to detect public messages in channels
that mention getquote or the name of the bot, and then we want to react to this message by
replying with a random quote, fetched from the API we have subscribed using Mashape.

Ideally, we want to divide all these checks in a list of operations; this is exactly what we
need to do. These are:

Verify if the event represents a chat message
Verify if the message comes from a user that is different from quotebot (to
circular references and loops)
Verify if the message mentions getquote

The code would look as follows:

onMessage = function (msg) {
 if (isChatMsg(msg) &&
 !isFromQuoteBot(msg) &&
 isMentioningQuote(msg)) {
 replyWithRandomQuote(bot, msg);
 }
};

The onMessage function receives an msg object as a parameter. The msg contains all the
information that describes the real-time event received through the Slack Real Time API.

Now let's look at each helper function, one by one:

isChatMsg = function (msg) {
 return msg.type === 'message';
};

A Slack Quote Bot

[114]

This function verifies if a real-time event corresponds to an msg sent by a user. With our
first helper function in place, let's have a look at the second one:

isFromQuoteBot = function (msg) {
 return msg.username === 'quotebot';
};

This helper function allows us to see if the msg comes from a user who is not the quotebot
itself.

Last but not least, our final helper function checks if messages contain the string getquote.
Without this verification we could potentially end up with an infinite loop of quotes:

isMentioningQuote = function (msg) {
 return msg.text.toLowerCase().indexOf('getquote') > -1;
};

With all the helper verification functions done, our random quote reply back method would
look like this:

replyWithRandomQuote = function (bot, oMsg) {
 var options = {
 url: 'https://theysaidso.p.mashape.com/quote?query=software',
 headers: {
 'User-Agent': 'request',
 'X-Mashape-Key': token
 }
 };
 rq(options, function (error, response, body) {
 if (!error && response.statusCode == 200) {
 bot.postMessageToChannel(bot.channels[0].name, body);
 }
 })
};

Finally, we tie it all together by passing the onMessage callback to the listening event as
follows:

bot.on('message', onMessage);

The full code looks like this.

var Bot = require('slackbots');
var rq = require('request');

var token = ' YOUR MASHAPE API TOKEN ';

var settings = {

A Slack Quote Bot

[115]

 token: 'YOUR SLACK API TOKEN',
 name: 'quotebot'
};

var bot = new Bot(settings);

isChatMsg = function (msg) {
 return msg.type === 'message';
};

isFromQuoteBot = function (msg) {
 return msg.username === 'quotebot';
};

isMentioningQuote = function (msg) {
 return msg.text.toLowerCase().indexOf('getquote') > -1;
};

replyWithRandomQuote = function (bot, oMsg) {
 var options = {
 url: 'https://theysaidso.p.mashape.com/quote?query=software',
 headers: {
 'User-Agent': 'request',
 'X-Mashape-Key': token
 }
 };
 rq(options, function (error, response, body) {
 if (!error && response.statusCode == 200) {
 bot.postMessageToChannel(bot.channels[0].name, body);
 }
 })
};

bot.on('message', function (msg) {
 if (isChatMsg(msg) &&
 !isFromQuoteBot(msg) &&
 isMentioningQuote(msg)) {
 replyWithRandomQuote(bot, msg);
 }
});

In order to see this in action, simply message quotebot with the text getquote on Slack:

A Slack Quote Bot

[116]

Once you do that, you will receive the following feedback on the #general channel:

That's awesome! Notice, however, that we have returned the full body response.

This could be further optimized and you could eventually parse the body response and just
output the quote and the author, without any of the other details.

This is totally up to you and a nice exercise in order to improve this code. Further to this,
you could also add additional code in order to process natural language, interpret more
commands, and also to respond to different channels.

The possibilities are frankly endless and all that is needed is time, imagination, and
dedication. We leave the challenge open for you to further expand and explore.

Summary
We've seen briefly how Slack is a great collaboration platform and also how incredibly easy
it is to interact with its real-time API.

In a matter of minutes, you can have a small demo bot up and running.

In the following chapters, we'll explore other interesting platforms that are also quite
popular nowadays and this should also be a lot of fun to play around with.

I hope you have enjoyed following these examples and the upcoming chapters will touch
upon other fascinating topics. Keep having fun!

5
Telegram-Powered Bots

Telegram (https://telegram.org/) is a free, cloud-based mobile and desktop messaging
app. Telegram takes us into a new era of messaging, which focuses primarily on security
and the speed of the message delivery.

Telegram has clients for platforms including Windows, OS X, Linux 64 bit, and Linux 32 bit.
The Telegram messaging app is available for use as a web version too. When it comes to
mobile devices, Telegram has native apps for Android, iOS, and Windows Phone.

With Telegram, you can send messages, photos, videos, and files of any type (doc, zip, mp3,
and many more); and you can create groups for up to 5,000 people, or channels for
broadcasting your messages and media.

One of the great things about Telegram is that Telegram messages are encrypted and can be
set to self-destruct. While chatting or messaging, for those who want more privacy and
secrecy, Telegram has secret chats. This means only you and the recipient can see these
messages; nobody else can see them, including Telegram. Such messages from this secret
chat cannot be forwarded and, more importantly, when you delete such messages from
your side, Telegram secret chat also deletes the messages from the other side as well.

In this chapter, we'll explore how to use Telegram. Also, we'll look at how we can build a
Telegram powered bot that will act like a virtual assistant for us. This virtual assistant will
provide information about the sentiments of our Telegram messages.

Sounds great!! Let's get started.

https://telegram.org/

Telegram-Powered Bots

[118]

How a Telegram bot works
A Telegram bot is a special account that does not require an additional phone number to be
set up. Users can interact with these bots in two ways:

Send messages and commands to bots by opening a chat with them, or by adding
them to groups. This means of communication is used for typical chat bots.
Send requests directly from the input field by typing the bot's username and a
query. These are called inline bots.

Such bots can enhance Telegram chats with content from external sources, can alert or
notify you about news and translations, and can provide relevant information to you. Bots
can even connect like-minded people looking for conversation partners within Telegram.

Technically, Telegram bots are third-party applications running inside Telegram. When a
user sends a message to a Telegram bot, Telegram's intermediary server takes care of the
encryption and communication with the help of Telegram bot APIs.

In this chapter, we will focus on chatting conversations (text interaction) by opening a chat
with our bot and not calling it, with our Telegram bot.

Setting up a Telegram account
So far, we are just talking about Telegram and bots within it. In this section, we will actually
start setting up our own Telegram account, followed by an account for our Telegram chat
bot.

I am using the web version of Telegram to create my own account first. Open the browser
window and enter the URL https://web.telegram.org/#/login. This will launch a Sign in
screen, as shown in the following screenshot:

https://web.telegram.org/#/login

Telegram-Powered Bots

[119]

Provide your Country, Code, and Phone number. Click on the Next > link in the top-right
corner to launch the next step, as shown in the following screenshot:

Telegram-Powered Bots

[120]

Enter the SMS code you have received, in the space provided, and you are set for your own
account for Telegram. Once you enter your profile details, you can start messaging with the
help of the following screen:

With this, we have now set up our own Telegram account. You can start messaging your
colleagues, and search for them as well. In the next section, we will start building Telegram
powered bots.

Setting up a bot account using a Telegram bot –
@BotFather
Sounds confusing! But this is the easiest way to start with Telegram bots. As I mentioned,
Telegram bots are special accounts and, to set up these accounts, we will be using another
Telegram bot named BotFather.

Telegram-Powered Bots

[121]

This is the awesome technique that Telegram has specially provided for developers to
create their own bots. Here, we can see the capability of one bot that helps us in creating
other bots.

Let's search for @Botfather and add it for our conversations, or you can directly open the
URL https://telegram.me/botfather to start conversations with BotFather. To start,
BotFather will introduce itself and will display a START button at the bottom for the user.

https://telegram.me/botfather

Telegram-Powered Bots

[122]

Once you click on the START button, BotFather will provide you with all the commands
that can be used for creating a new bot, as shown in the following screenshot:

Now, let's click on link /newbot from our conversation with BotFather. With this command,
BotFather will ask us to choose a name for our bot.

Let me choose the name MadansNewTelegramBot. BotFather internally validates whether
the name is available. If it is available, BotFather asks for a username for the newly created
bot. I have provided a username for my bot. Refer to the following conversations for the
same:

Telegram-Powered Bots

[123]

With this, BotFather has created our bot and has also provided a token for our bot. This
token will be used while wiring up our bot with Telegram bot APIs.

Now we can use this bot for conversations using the URL telegram.me/MadansNewBot or by
searching for the name of the bot in the search field, as shown in the following screenshot:

After searching once, you select the bot for further conversations.

To summarize the steps carried out so far, we've created our own account at Telegram and
also created a basic Telegram bot using BotFather. Our first Telegram bot will be a no-brain
bot as there is no intelligence built within it.

http://telegram.me/MadansNewBot

Telegram-Powered Bots

[124]

In the next section, we will actually build some basic intelligence with the help of Node.js
We will build a bot that will tell us the sentiments of our messages. But what is sentiment
analysis? Let's spend some time in understanding sentiment analysis.

What is sentiment analysis?
In simple words, sentiment analysis is simply classifying a given term or a sentence as
positive, negative, or neutral. This is also known as opinion mining or deriving the attitude
of the person who is writing or speaking.

In relation to Telegram, sentiment analysis can be extremely useful for media monitoring
and extracting opinions on some public topics.

Sentiment analysis can be achieved with approaches such as knowledge-based techniques,
statistical methods, and a combination of both. Knowledge-based techniques classify text
based on words' affinity to particular emotions, such as happy, sad, and so on. Statistical
methods leverage elements of machine learning.

When representing the sentiments of a term or a sentence, words having a negative, neutral
or positive sentiment to them are given an associated number on a scale of -10 to +10, and
the level of sentiment or the score is determined at term or at sentence level.

Considering the scope of this book, we are keeping the sentiment analysis topic quite short.

Creating a Telegram bot
Now, let's see how we can use Node.js and Telegram bot APIs in order to create our basic
Telegram bot. In the previous chapter we've seen how to get Node.js installed. For our
Telegram bot, we'll follow a very similar process.

Let's start by creating a folder in our local drive from the command prompt in order to store
our bot:

mkdir telegrambot
cd telegrambot

Telegram-Powered Bots

[125]

Assuming we have Node.js and npm installed (if not, please refer to the steps in Chapter 1,
The Rise of Bots – Getting the Message Across), let's create and initialize our package.json,
which will store our bot's dependencies and definitions:

npm init

Once you have gone through the npm init options (which are very easy to follow), you'll
see something similar to this:

In your project folder, you'll see the result, which is your package.json file.

Just like we did in our previous example, we will use Express (http://expressjs.com) as
our REST Node.js framework. We'll install it and save it to our package.json file as
follows:

npm install express --save

http://expressjs.com

Telegram-Powered Bots

[126]

Once Express has been installed, you should see something like this:

With Express setup, the next thing to do is to install the node-telegram-bot-api
package. This can be located at https://www.npmjs.com/package/telegram-bot-api.

In order to install it, run this npm command:

npm install node-telegram-bot-api --save

You should then see something similar to this:

https://www.npmjs.com/package/telegram-bot-api

Telegram-Powered Bots

[127]

Having done this, the next thing to do is to update your package.json in order to include
the "engines" attribute. Open the package.json file with a text editor and update it as
follows:

"engines": {
 "node": ">=5.6.0"
}

Your package.json should then look like this:

With our bot all wired up, we can then focus on creating the core logic for our conversations
with the bot. Let's create our app.js file, which will be the entry point to our bot.

Our app.js should like this:

var telegramBot = require('node-telegram-bot-api');

var token ='267449059:AAGzHJFlDkzOG5SxyOJJT2yHsiC06Ut6ySE';

var api = new telegramBot(token, {polling: true});

api.onText(/\/help/, function(msg, match) {
 var fromId = msg.from.id;
 api.sendMessage(fromId, "I can help you in getting the sentiments of any
text you send to me.");
});

api.onText(/\/start/, function(msg, match) {
 var fromId = msg.from.id;
 api.sendMessage(fromId, "They call me MadansFirstTelegramBot. " +
 "I can help you in getting the sentiments of any text you send to me."+
 "To help you i just have few commands.\n/help\n/start\n/sentiments");

Telegram-Powered Bots

[128]

});

console.log("MadansFirstTelegramBot has started. Start conversations in
your Telegram.");

Now let's look at the code snippet line by line. The first thing we do is to reference the node
package we previously installed using npm.

var telegramBot = require('node-telegram-bot-api');

Once we have our reference set up, we are now connected to our bot. Remember, BotFather
has provided a token to our bot for accessing Telegram bot APIs; we will be referring to the
same token here, as shown in the following screenshot:

var token ='267449059:AAGzHJFlDkzOG5SxyOJJT2yHsiC06Ut6ySE';
var api = new telegramBot(token, {polling: true});
});

Now we have a handle to interact with our bot, through the token and bot APIs. Let's see
how we can start the conversation with our bot. To start a bot, Telegram bots use the
command /start. On entering the start command, my bot should introduce itself and also
ask us how he can help us. This is achieved using the following code snippet:

api.onText(/\/start/, function(msg, match) {
 var fromId = msg.from.id;
 api.sendMessage(fromId, "They call me MadansFirstTelegramBot. " +
 "I can help you in getting the sentiments of any text you send to me."+
 "To help you i just have few commands.\n/help\n/start\n/sentiments");
});

This basically tells our bot that if a user sends the command /start, our bot will send
message in response to that with the help of api.onText()method.

Now let's run our Node.js program to start our conversation with the bot.

Now let's launch the Telegram web version for your own account.

Telegram-Powered Bots

[129]

Conversations with our basic Telegram bot
Search our newly created and Node.js wired bot using its name, as shown in the following
screenshot:

Telegram-Powered Bots

[130]

Click on the START button, and the /start command will be sent to our bot to start the
conversation. Once you've done that, you'll see our bot has responded to the /start
command. Refer to the following screen:

So, whatever we have written for the /start command in our app.js has executed and,
through the Telegram bot APIs, the response is shown to us.

Now let's click on the /help command or type in /help for our bot. Our bot will respond to
the /help command with following response, which we have wired into our Node.js
program.

Telegram-Powered Bots

[131]

Since our Node.js program from app.js is running behind the scenes, our bot is
responding to our commands based on what has been programmed in app.js.

Building a sentiment analysis bot
Having built a very basic Telegram bot, let's build a sentiment analysis bot for Telegram.
Within the context of Telegram, bots would be useful for content or media monitoring. Bots
can actually classify terms or sentences that Telegram users are sharing with others.
Knowing this, we will build a sentiment analysis bot using Node.js.

For sentiment analysis, we will be using the sentiment package for Node.js. Sentiment is a
Node.js module that uses the AFINN-111 wordlist to perform sentiment analysis on an
input text. This package can be located at https://www.npmjs.com/package/sentiment.

In order to install it, let's determine our code location:

cd C:\Users\Owner\NodeJS_Bots_Packt\telegrambot

And then run this npm command:

npm install sentiment --save

You should then see something similar to this:

https://www.npmjs.com/package/sentiment

Telegram-Powered Bots

[132]

With this, we are ready to wire up our Node.js code to use the sentiment analysis package.
Let's open our Node.js code and include the following code line:

var sentiment = require('sentiment');

As we know, our bot has many commands, such as /start and /help; on similar lines, we
have an additional command for doing sentiment analysis. This command is /sentiments.

The idea here is that, once you send the command /sentiments to our bot, the bot will
confirm your intentions and will ask you to send a term or a sentence. Upon receiving a
term or a sentence, the bot will carry out sentiment analysis with the help of the sentiment
package that is wired up in our Node.js program. Then bot will reply with the sentiment
analysis score.

Our updated app.js should look like this:

var telegramBot = require('node-telegram-bot-api');
var sentiment = require('sentiment');

var token ='267449059:AAGzHJFlDkzOG5SxyOJJT2yHsiC06Ut6ySE';

var api = new telegramBot(token, {polling: true});

api.onText(/\/help/, function(msg, match) {
 var fromId = msg.from.id;
 api.sendMessage(fromId, "I can help you in getting the sentiments of any
text you send to me.");
});

api.onText(/\/start/, function(msg, match) {
 var fromId = msg.from.id;
 api.sendMessage(fromId, "They call me MadansFirstTelegramBot. " +
 "I can help you in getting the sentiments of any text you send to me."+
 "To help you i just have few commands.\n/help\n/start\n/sentiments");
});

var opts = {
 reply_markup: JSON.stringify(
 {
 force_reply: true
 }
)};

//sentiment command execution is added here
api.onText(/\/sentiments/, function(msg, match) {
 var fromId = msg.from.id;
 api.sendMessage(fromId, "Alright! So you need sentiments of a text from

Telegram-Powered Bots

[133]

me. "+
 "I can help you in that. Just send me the text.", opts)
 .then(function (sended) {
 var chatId = sended.chat.id;
 var messageId = sended.message_id;
 api.onReplyToMessage(chatId, messageId, function (message) {
 //call a function to get sentiments here...
 var sentival = sentiment(message.text);
 api.sendMessage(fromId,"So sentiments for your text are, Score:" +
sentival.score +" Comparative:"+sentival.comparative);
 });
 });
});

console.log("MadansFirstTelegramBot has started. Start conversations in
your Telegram.");

Now let's look at the updated app.js code.

Firstly, we have added a reference to the sentiment package in our basic bot code as follows:

var sentiment = require('sentiment');

We also modified the /start command to include the new command /sentiments.

Then we added the actual logic of what should happen when the /sentiments command
is sent to the bot. Upon firing up this command, the bot will confirm the intention and will
ask you to send some text, a term or a sentence using the following code line:

api.sendMessage(fromId, "Alright! So you need sentiments of a text from me.
"+
 "I can help you in that. Just send me the text.", opts)

Once we send some text to a bot, the bot will reply to our message with the sentiment
analysis of the text that has been sent. This particular logic is as follows:

 api.onReplyToMessage(chatId, messageId, function (message) {
 //call a function to get sentiments here...
 var sentival = sentiment(message.text);
 api.sendMessage(fromId,"So sentiments for your text are, Score:" +
 sentival.score +" Comparative:"+sentival.comparative);
 });

In the preceding code, once the bot receives a text, a call to the sentiment()function is
made and text is passed as message.text to get the sentiment.

Telegram-Powered Bots

[134]

Sentiments are returned in an object called sentival. This sentival object has both score
and comparative values for the sentiment of the text that has been passed. These values are
returned to the user using the following code lines:

api.sendMessage(fromId,"So sentiments for your text are, Score:" +
sentival.score +" Comparative:"+sentival.comparative);

Now let's run our Node.js program to start our conversation with the bot.

Now our updated code is running, let me also start my Telegram web version and start a
conversation with my updated bot.

I have already searched for and added my bot. The screen should look like this:

Telegram-Powered Bots

[135]

Click on the START button, and the /start command will be sent to our bot to start the
conversation. Once you've done that, you'll see our bot has responded to the /start
command. The /start command's response is also updated with a mention of the newly
added command /sentiments. Refer to the following screen:

Click on the /sentiments link from the response from the /start command. This will send
a /sentiments command to our bot and the bot will respond as follows:

Telegram-Powered Bots

[136]

So, here, the bot is asking the user to send text as a message; in response to that, the bot will
share the sentiment of the message sent by the user. Now let's write the message Bots are
awesome! in Write a message…, and hit enter or click SEND. Do not close the message
from the bot, which is shown as a small popup with a close button.

Immediately, the bot will respond with the score and the comparative value for the
sentiment of your text, as follows:

So, we entered the text Bots are awesome! and, in response to that, the bot sent us a
sentiment Score:4 and Comparative:1.33. For the text sent to the bot, with the score value
coming in as positive, the bot is showing us a positive opinion.

Telegram-Powered Bots

[137]

Now to get the sentiment for a new term, again send a /sentiments command to our bot.

The bot will again confirm the intentions, and will ask us to share some text. Now let's send
the text The food was very bad. and see what bot returns.

We entered the text The food was very bad. In response to that, the bot sent us a
sentiment with Score:-3 and Comparative:-0.6. This way, the bot is showing us a negative
opinion here from the text.

Summary
We have had an interesting journey learning how to build a Telegram bot and how we can
have a great conversational experience with the intelligence built in to it.

To summarize, we have seen how to create a Telegram account if you are new to Telegram.
Further to that, we have also used an interesting way to create our own bot, using
BotFather. BotFather is a Telegram bot that rules all the other Telegram bots.

After creating our bot, we wired it in to the Node.js program using the npm package and
built some basic intelligence for our bot chat.

Telegram-Powered Bots

[138]

Finally, we wanted our bot to provide sentiment analysis, so we looked at the very basics of
sentiment analysis. To carry out sentiment analysis, we used the npm package for sentiment
analysis and enriched our basic bot to provide us with sentiment analysis. Our bot is mainly
of the type that needs a chat session opening and then leverages the bot functionalities by
sending it commands. There is also another Telegram bot type, which is the inline bot.
Exploring Telegram inline bots further is left with the reader.

Hopefully, this chapter has given you some insight on Telegram bots, and how we can
enhance them using Node.js and Telegram bot APIs to provide an enhanced conversational
experience within Telegram. In the next chapter, we will explore how to build a Slack bot.
For those who do not know Slack, Slack is simply a real-time messaging app specifically for
team collaboration. We will actually be building a bot for Slack, which will help us to locate
documents in the document repository based on the user's request.

Keep exploring further.

6
BotKit – Document Manager

Agent for Slack
In Chapter 4, A Slack Quote Bot, we saw how Slack is a great collaboration platform. While
collaborating, teams can get the inspirational quotes from They Said So services right in their
Slack channels. In this chapter, we will see a use case for Slack that's a little more complex
than just getting quotes. Here, we will be building a Slack bot called DocMan bot with the
help of Howdy BotKit. DocMan bot should be able to search document(s) and also provide
a link to download them, based on team members' requests.

Our Slack bot, DocMan, will be built using MongoDB for data storage and Amazon S3 for
research document or file storage. Details about MongoDB and Amazon S3 storage will be
detailed in the following sections of this chapter.

Awesome!! Let's Slack now.

BotKit – Document Manager Agent for Slack

[140]

Setting up a Slack for your team
In this section, we will start setting up Slack for a team.

Open the browser window and enter the URL–https://slack.com. This will launch the
Slack home page as shown in the following screenshot:

For users who are accessing Slack for the first time, you will first have to create your Slack
account and then you can create your team. Users who are already on Slack can click on the
Sign in link. Let's look at how to create our own account.

Provide your e-mail address at Email address. Click on the Create New Team link to
launch the next step, as shown in the following screenshot. Slack will send a confirmation
code to your e-mail id. Enter the received code.

https://slack.com

BotKit – Document Manager Agent for Slack

[141]

Enter your confirmation code. The code will be verified by Slack and then the following
screen will be launched:

Provide your name and username in the fields Your name and Username, and click on the
Continue to Password button to launch the following screen:

BotKit – Document Manager Agent for Slack

[142]

Provide your password at Password and click on the Continue to Team Info button to
launch the following screen:

Choose the options that match your team's purposes and intentions in the What will your
team use Slack for? and How big is your shared interest group? dropdowns. Click on the
Continue to Group Name button to launch the following screen:

BotKit – Document Manager Agent for Slack

[143]

I wanted to name my team Bot Researchers, so I entered the name as Bot Researchers in the
Group Name entry field and clicked on the Continue to Team Domain button to launch
the following screen:

Slack verifies the domain name availability for your team. If it is available, then it shows a
message saying so, as shown in the preceding screenshot. Now click on the Create Team
button.

BotKit – Document Manager Agent for Slack

[144]

The next screen is Send Invitations, which I will be skipping for now, going straight to the
welcome screen for the Bot Researchers Slack team. The screen will appear as shown in the
following screenshot:

In the preceding screenshot, you might have noticed the name slackbot. Slack uses a bot
named slackbot to greet us and help us in case of any questions. This is a wonderful use of
bots to educate users in the chatting window itself.

We have now signed up with Slack and created our own team. Now we will develop our
bot for this team.

BotKit – Document Manager Agent for Slack

[145]

Setting up a Slack bot
As a botresearcher group member, I would like my bot to provide information about all
bot-related documents. This bot is called DocMan. Now, to create a new bot in Slack, just
visit the website found at https://botresearchers.slack.com/services/new/bot.

Make sure you are already logged in to your Slack group. Here I have logged in to my
group, https://botresearchers.slack.com. Since you are already logged in, this will
navigate to the Bots | New Configuration screen, as shown in the following screenshot:

https://botresearchers.slack.com/services/new/bot
https://botresearchers.slack.com

BotKit – Document Manager Agent for Slack

[146]

Let's enter the Username as @docman and then click on the Add bot integration button.
Slack will ask for additional configuration information for this bot, as shown in the
following screenshot:

Look at the API Token section, under Integration Settings. Our bot will use this token to
communicate with APIs.

The bot user token can connect to real-time streaming APIs and can perform activities, such
as posting messages, so the distribution of this token should be avoided in public code
repositories.

Refer to the following screenshot. You can enter the parameters of this bot's behavior within
Slack channels in the What this bot does entry field:

BotKit – Document Manager Agent for Slack

[147]

Here, I have entered Provides Information and Documents about Bot Research.

Now click the Save Integration button to save the configuration information of our bot. The
information will be saved and the user will be notified at the top of the screen.

Now let's go back to our group by using the URL
https://botresearchers.slack.com/messages. You will see docman under the DIRECT
MESSAGES section. Click on the name docman to see a chat message screen, as shown in
the following screenshot:

https://botresearchers.slack.com/messages

BotKit – Document Manager Agent for Slack

[148]

Now, our bot is showing its username as @docman and the description as Provides
Information and Documents about Bot Research. We provided this information during its
configuration. At the moment, this bot will not respond to any of our messages as it is not
programmed yet. Also, the status of the bot is set to away.

To summarize so far, we have created our own Slack group and created our own Slack bot.
We also looked at how to configure this bot. In the next section, we will see how we can
wire up some intelligence to our bare bones bot.

Botkit and Slack
Botkit is a free to use, open source toolkit from Howdy (h t t p s ://h o w d y . a i /b o t k i t) for
integrating bots with messaging platforms such as Slack. Botkit comes with lots of features
that help developers build both types of bot integrations, for individual teams as well as for
other teams using Slack Button.

Creating our first Slack bot using Botkit and
Node.js
Let's start wiring up our bot in Node.js by first installing Botkit.

Let's start by creating a folder in our local drive in order to store our Bot from the
Command Prompt:

mkdir slackbot
cd slackbot

Assuming we have Node.js and NPM installed, let's create and initialize our
package.json, which will store our Bot's dependencies and definitions:

npm init

https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit
https://howdy.ai/botkit

BotKit – Document Manager Agent for Slack

[149]

Once you go through the npm init options (which are very easy to follow), you'll see
something similar to the following screenshot:

You'll see the result in your project folder; this is your package.json file:

Let's install the botkit package from NPM. This can be located at
https://www.npmjs.com/package/botkit.

In order to install it, run this npm command:

npm install --save botkit

https://www.npmjs.com/package/botkit

BotKit – Document Manager Agent for Slack

[150]

You should then see something similar to this:

Having done this, the next thing to do is to update your package.json in order to include
the "engines" attribute. Open the package.json file with a text editor and update it as
follows:

"engines": {
 "node": ">=5.6.0"
}

BotKit – Document Manager Agent for Slack

[151]

Your package.json should then look like this:

Let's create our app.js file, which will be the entry point for our bot, as mentioned while
setting up our node package.

Our app.js should like the following code snippet:

var Botkit = require('Botkit');
var os = require('os');

var controller = Botkit.slackbot({
 debug: false,
});

var bot = controller.spawn({
 token: "<SLACK_BOT_TOKEN>"
}).startRTM();

controller.hears('hello',['direct_message','direct_mention','mention'],func
tion(bot,message) {
 bot.reply(message,'Hello there!');
});

Remember, our bot DocMan is still not active, and its status is away, which we have seen in
our Slack group.

BotKit – Document Manager Agent for Slack

[152]

Now let's run our Node.js program to see how it looks in Slack, and start our basic
conversations with our bot:

Now, if you look at the console, you will see, with the help of the token, that our bot has
started communicating with Real-Time Messaging APIs through a websocket.

Let's look at our Slack group now. Our Slack group will now show our bot @docman under
DIRECT MESSAGES with an active status, as shown in the following screenshot:

BotKit – Document Manager Agent for Slack

[153]

Now our bot is ready for conversation. Let's say Hello to our bot and see what it says:

Our bot has responded to our message with Hello there! So the wiring up of our bot within
Node.js and Botkit with Real-Time Messaging APIs has worked.

Now I want my bot to be part of the #general channel, which is the default for our group.
Enter the name @docman in the messaging box and hit enter. Immediately slackbot will
guide us to invite @docman in the #general channel, as shown in the following screenshot:

Click on the invite them to join link to join our bot in this channel. On the popup, just click
on the Yes, invite them button. Refer to the following screenshot:

BotKit – Document Manager Agent for Slack

[154]

After inviting them, the Slack channel #general will show a notification that our bot has
joined the group, as shown in the following screenshot:

This way you can invite our bot to any of the channels, and you can also start conversations
with our bot in that channel just by mentioning the name of our bot. I mentioned the name
of our bot with a message reading @docman Hello in the #general channel. Our bot's reply
can be seen as follows:

Enhancing our DocMan bot
Having built a very basic Slack bot, let's enhance our DocMan bot. Say that, following a
team member's request, DocMan bot should be able to search a particular document and
also be able to provide a link to download.

Let me explain how this will work. The Bot Researchers Slack team members will be
communicating within their respective Slack channels. Now let's assume that one of them
needs information about a research planning checklist document. The team member will
enter some keywords like Research Planning or Checklist or Template by mentioning
our bot's name. DocMan will do a keyword search within the MongoDB database and will
present the searched documents. MongoDB will only have links to these documents and
other metadata or attributes for the documents that will be searched. Actual documents will
be stored in Amazon S3 storage.

Before going into the details, let me explain a little about MongoDB and Amazon S3 storage.

BotKit – Document Manager Agent for Slack

[155]

What is MongoDB?
Day by day, the use of NoSQLs is skyrocketing. MongoDB is one such NoSQL. There are
various NoSQL database types, such as Document Store, Key-Value Store, Column
Store, and Graph Store, to name but a few,.

MongoDB is of the Document Store type of NoSQLs, where data is stored in JSON
documents. In short, MongoDB is an open source, highly scalable, high-performance
NoSQL database.

The reason I am using MongoDB is because I wanted to show you how we can use a
NoSQL database like MongoDB to search and store the document links using their
metadata or attribute values. However, don't get confused between the documents or files
that we are searching and the material that MongoDB is storing. What MongoDB is storing
is just like a single record which is in JSON format. Just like our relational databases where
data is stored in tables and records, MongoDB stores data in collections and JSON
documents. Actual documents or files will be stored on Amazon S3, and only the link will
be stored in MongoDB.

For our DocMan bot's enhancements, make sure you have installed MongoDB on your
machine based on your machine's version (32 bit or 64 bit). Detailed installation steps can be
obtained from https://docs.mongodb.com/manual/administration/install-community/.

MongoDB database for our DocMan bot
Assuming you have MongoDB up and running on your machine, let's set up a database
with sample data for our bot using the following steps.

MongoDB shell
Locate the bin directory of your MongoDB installation using the Command Prompt and
run the MongoDB shell using mongo.exe. If everything goes well, you will see the
following screen:

https://docs.mongodb.com/manual/administration/install-community/

BotKit – Document Manager Agent for Slack

[156]

Create a database
Let's create a new database called BotDB using the command shown in the following
screenshot:

Now, to verify whether or not the database has been created, use the show dbs command.
You will see the name BotDB in the list, as shown in the following screenshot:

Create a reference documents collection
To store documents, metadata, and attributes, let's create a collection called
ReferenceDocuments using the following command:

db.createCollection("ReferenceDocuments")

You can verify a newly created collection with the help of the show collections
command, as shown in the following screenshot:

Create data for our DocMan bot
Our BotResearcher group needs some documents and templates for their day to day use.
These documents can be seen in the following screenshot:

BotKit – Document Manager Agent for Slack

[157]

As a sample, I will use the Research Planning Checklist to show how we will store
the metadata for this document in a MongoDB collection. Refer to the following JSON code
for the metadata of this document:

{
 "title": "Research Planning Checklist",
 "description": "This excel sheet provides guidelines for better research
plan...",
 "version": "1.1",
 "url": "<Document URL goes here...>",
 "keywords": ["Plan","Research Plan","Checklist","SWOT"]
}

We will be storing the title, description, version, url, and keywords in our
ReferenceDocuments collection using the following command:

>db.ReferenceDocuments.insert({ "title": "Research Planning
Checklist","description": "This excel sheet provides guidelines for better
research plan...","version": "1.1","url": "<Document URL goes
here...>","keywords": ["Plan","Research Plan","Checklist","SWOT"] })

After inserting the preceding record, you will see the following message as
WriteResult({"nInserted":1}):

This way, we can create all the records in MongoDB for all our documents.

Indexing for search
Since a document can be searched using multiple keywords, we are storing keywords in an
array for a document. When team members search documents, they will use keywords. We
will apply an index to these keywords using the following command:

>db.ReferenceDocuments.createIndex({keywords:"text"})

After running a command, you will see the following output:

BotKit – Document Manager Agent for Slack

[158]

Search query
Once our index has been created, let's verify whether or not our search is working based on
the keywords we enter. Let's fire the following command on the MongoDB shell:

 db.ReferenceDocuments.find({$text:{$search:"template"}},{limit:3})

After executing the search query, you should see the following result:

To summarize, we created a new database for our bot to store the metadata of the
documents that it searches. We added a new collection and added some sample documents.
We also applied a text index to the keywords column so as to enable a search using
keywords.

Now let's look at how we can wire up our database with Node.js.

What is MongoJS?
MongoJS is a Node.JS library used to connect to MongoDB APIs. Using this library, we will
establish a connection with our MongoDB database and query documents based on input
keywords.

Wiring up DocMan bot with MongoDB
Let's go back to our Slackbot directory and install the mongojs package from NPM. This
can be located at https://www.npmjs.com/package/mongojs.

In order to install it, run this npm command:

npm install mongojs

https://www.npmjs.com/package/mongojs

BotKit – Document Manager Agent for Slack

[159]

You should then see something similar to this:

Let's modify our app.js file so that we can access MongoDB APIs through the Mongojs
library.

Our app.js should be like this:

var Botkit = require('Botkit');
var os = require('os');

var mongojs = require('mongojs');
var db = mongojs('127.0.0.1:27017/BotDB',['ReferenceDocuments']);

var controller = Botkit.slackbot({
 debug: false
});

var bot = controller.spawn({
 token: "<SLACK_BOT_TOKEN>"
}).startRTM();

controller.hears('hello',['direct_message','direct_mention','mention'],func
tion(bot,message) {
 bot.reply(message,'Hello there!');

 db.ReferenceDocuments.find({title:"Newsletter Template"},function (err,
docs) {
 bot.reply(message,'I have a document with title:'+ docs[0].title);
 })
});

Let's look at this basic code with mongojs wired up as shown in the preceding code
snippet. We connect to the MongoDB database through mongojs using the following lines:

var mongojs = require('mongojs');
var db = mongojs('127.0.0.1:27017/BotDB',['ReferenceDocuments']);

BotKit – Document Manager Agent for Slack

[160]

Here, MongoDB is hosted locally on my machine, so the host used is named as 127.0.0.1
and it listens to port 27017. This IP address and port can be different for your machine, so
while implementing your bots, make sure you use your machine's IP address and port for
MongoDB. Within MongoDB, we connect to the BotDB database and a collection called
ReferenceDocuments.

To query one of the documents from ReferenceDocuments, the following code is used:

db.ReferenceDocuments.find({title:"Newsletter Template"},function (err,
docs) {
 bot.reply(message,'I have a document with title:'+ docs[0].title);
 })

Let's run the modified code:

Go back to our Bot Researchers Slack group and say hello to our modified docman using
direct messaging. You can also send mentions to docman as well, but this time I will use
direct messaging.

When I messaged the hello directly to docman, docman queried the BotDB database and
returned the title of one of the documents from the ReferenceDocuments collection. Refer
to the following screenshot for further details:

This shows how we can establish a MongoDB connectivity and query the data using
mongojs.

BotKit – Document Manager Agent for Slack

[161]

Amazon S3 storage
Amazon Simple Storage Service (Amazon S3) is a cloud-based data storage system from
Amazon Web Services (AWS). We can use Amazon S3 to store any amount of data.
Amazon S3 stores data as objects within buckets. An object can be a document or a file. In
our DocMan context, all the actual documents or files that are searched by Bot Researchers
team members are stored in Amazon S3. In future, these files or documents can be of any
types, such as media or office files of any size. Also, every bucket can have access control to
decide who can access, delete, and create objects from the buckets. Given these
requirements, Amazon S3 is suitable for our DocMan documents storage.

Amazon S3 console
I have my Amazon AWS account. Using that account, I have logged in to my Amazon S3
console. This console can be seen in the following screenshot:

Those who are new to AWS can refer to the information at https://aws.amazon.com/.

https://aws.amazon.com/

BotKit – Document Manager Agent for Slack

[162]

Create buckets
From the preceding Amazon S3 console, click on the Create Bucket button to launch a
Create a Bucket screen, as shown in the following screenshot:

In creating my bucket, I have given the Bucket Name as botdocuments and selected the
Region as Oregon. Make sure you are entering the Bucket Name in lowercase letters. Click
on the Create button to create your bucket.

Your bucket will be shown under the All Buckets table:

Now click on the bucket name shown under the Name column so that we can display a
bucket view to upload and manage documents inside this bucket.

BotKit – Document Manager Agent for Slack

[163]

Store documents in the bucket
Once you select the bucket name from the All Buckets view, you will see the following
screen:

Now, to upload documents in this bucket, click on the Upload button and upload
documents with the help of the following screenshot:

I will use the drag and drop function to upload my files. Once you have dragged and
dropped all the files that you want to upload, click on Start Upload to upload your files.
Once all the files are uploaded, the bucket will show all the files as follows:

BotKit – Document Manager Agent for Slack

[164]

Mark documents as public
Just for demonstration purposes, we will be marking these documents as public.

This way, our BotResearchers group can access and download these documents from
Amazon S3 storage easily. Let's go through the following steps to mark one of these
documents as public. .

Select a document and, from Actions, select the Make Public option in the menu:

This option will mark the selected document as public. Now we need a public URL so that
we can update this URL in our MongoDB database for this document. To get the public
URL again, select a document and, from the Actions menu, select the Properties menu item.

This will bring up all the properties for the selected document, as shown in the following
screenshot:

BotKit – Document Manager Agent for Slack

[165]

From the properties, refer to the Link property. This is our public URL for the document.

In this way, mark all the documents as public and copy their URLs. Update these URLs to
our MongoDB database.

Update MongoDB data with Amazon S3 document links
Let's open up our Mongo shell again and select BotDB again using the following command:

 Use BotDB
 db.ReferenceDocuments.update(
 { title: "Competitive analysis using SWOT"},
 { $set:
 {
 url: "<YOUR AMAZON S3 URL FOR THIS DOCUMENT>"
 }
 }
)

Once successfully updated, you will see the number of records updated on the mongo shell.
Follow the same steps to update all the rest of your documents' URL columns for their
Amazon S3 public URLs. With this, we are all set with our bot docman, from a backend
data perspective.

BotKit – Document Manager Agent for Slack

[166]

Wiring it all up together
To wire all the things up together, let's modify our earlier app.js as shown in the following
code snippet:

var Botkit = require('Botkit');
var os = require('os');

var mongojs = require('mongojs');
var db = mongojs('127.0.0.1:27017/BotDB',['ReferenceDocuments']);

var controller = Botkit.slackbot({
 debug: false
});

var bot = controller.spawn({
 token: "<SLACK_BOT_TOKEN>"
}).startRTM();

controller.hears('hello',['direct_message','direct_mention','mention'],func
tion(bot,message) {
 bot.reply(message,'Hello there!');
});

controller.hears(['docs','template','research documentation','documents'],
['direct_message','direct_mention','mention'],function(bot,message) {
 bot.startConversation(message, askForKeywords);
});

askForKeywords = function(response, convo) {
 convo.ask("Pl. type the word or keywords for document search.",
function(response, convo) {
 convo.say("Awesome! Wait for a moment. Will search documents for
word(s) *" + response.text +"*");
 searchDocuments(response, convo);
 convo.next();
 });
}

searchDocuments = function(response, convo) {
var qtext ="""+response.text+""";
db.ReferenceDocuments.find({$text:{$search:qtext}},{},{limit:3},function
(err, docs) {
 var attachments = [];
 docs.forEach(function(d) {
 var attachment= {
 "title": d.title,

BotKit – Document Manager Agent for Slack

[167]

 "title_link": d.url,
 "text": d.description,
 "color": '#3AA3E3',
 "footer": "From Amazon S3 | Version " +d.version
 };
 attachments.push(attachment);
 });
 convo.say({
 text: '*Document(s):*',
 attachments: attachments,
 })
 });
}
db.on('error', function (err) {
 console.log('Database error', err)
})
db.on('connect', function () {
 console.log('Database connected')
})

Code understanding
I have already explained how we can connect to MongoDB using mongojs. Now let's focus
on how we have implemented the conversational experience within docman:

controller.hears(['docs','template','research documentation','documents'],
['direct_message','direct_mention','mention'],function(bot,message) {
 bot.startConversation(message, askForKeywords);
});

In the preceding code snippet, the user can start the conversations with docman using the
keywords 'docs','template','research documentation', and 'documents'.

Upon receiving a direct message or mention, the bot will start a conversation using
bot.startConversation(). This function will call a related conversation sub-function
askForKeywords().

The bot will ask us to provide keywords based on which documents need to be searched,
and will also call the sub-function to actually search the document within MongoDB. The
implementation for askForKeywords() can be seen as shown in the following code
snippet:

askForKeywords = function(response, convo) {
 convo.ask("Pl. type the word or keywords for document search.",
function(response, convo) {
 convo.say("Awesome! Wait for a moment. Will search documents for

BotKit – Document Manager Agent for Slack

[168]

word(s) *" + response.text +"*");
 searchDocuments(response, convo);
 convo.next();
 });
}

In the preceding code, the convo.next()function tells our called bot to continue the
conversation. This step is required, or, our conversation will hang.

There is a final sub-function searchDocuments() that actually does the searching of
documents within MongoDB and returns the top three documents as a part of the
conversation.

Refer to the following code implementation for searchDocuments():

searchDocuments = function(response, convo) {
var qtext ="""+response.text+""";
db.ReferenceDocuments.find({$text:{$search:qtext}},{},{limit:3},function
(err, docs) {
 var attachments = [];
 docs.forEach(function(d) {
 var attachment= {
 "title": d.title,
 "title_link": d.url,
 "text": d.description,
 "color": '#3AA3E3',
 "footer": "From Amazon S3 | Version " +d.version
 };
 attachments.push(attachment);
 });
 convo.say({
 text: '*Document(s):*',
 attachments: attachments,
 })
 });
}

In the preceding code, once the search query returns data, there can be single or multiple
documents, so we are iterating the results and then combining them into a JSON format.
Once JSON formatting is done, the bot calls the convo.say() function to send the message
along with the searched documents.

Slack has some guidelines concerning the composing of messages and attachments. These
guidelines can be referred to at https://api.slack.com/docs/messages.

Now let's begin our great conversation experience with our enhanced Slack bot, docman.

https://api.slack.com/docs/messages

BotKit – Document Manager Agent for Slack

[169]

Firstly, start a communication in the # general channel by mentioning @docman, and type
the word docs as shown in the following screenshot:

Once we entered docs, docman asked to type the word or keywords for the document
search.

Enter the word as template and see what docman returns:

When I entered the template keyword, docman replied saying:

BotKit – Document Manager Agent for Slack

[170]

It also replied with the searched documents in a nice elegant format using the Slack
messaging guidelines shown in the following screenshot:

Now, select one of the documents from the search results–I selected a document titled
Timeline Document, and Timeline+Document.docx was downloaded through our
docman bot.

Refer to the following screenshot to see the downloaded document:

BotKit – Document Manager Agent for Slack

[171]

Summary
So, with Slack, we built a bot and enhanced our team's collaborative experience by building
intelligence into it.

To summarize, we saw how to create a Slack group from scratch. We also created a basic
bot wired up in Node.js using Botkit, and had a basic conversation as a direct message as
well as within a group by inviting the bot.

Finally, we made our bot search some of the documents based on keywords, and also
provided a link to download the same document.

Our DocMan bot used MongoDB to store document attributes along with keywords with
which the document can be searched. Also, DocMan retrieved actual documents from
Amazon S3 storage upon a user's request to download them.

Hopefully this chapter has given you an end-to-end solution overview of how your bot
searches and locates documents, as well as how it downloads them from storage locations
or document repositories. You should now be aware of NoSQL technologies like MongoDB
and how we can utilize them for keyword searches, and how we can wire up with storage
locations like Amazon S3 in Node.js. Above all, you should now be fully aware of how we
can bring everything together in messaging platforms like Slack.

Amazing!

In the next chapter, we will explore how to develop IRC bots and how we can wire up
within Node.js and help our developers use it for bug tracking purposes.

7
Facebook Messenger Bot,

Who's Off – A Scheduler Bot for
Teams

Facebook has launched its own messaging platform (h t t p s ://d e v e l o p e r s . f a c e b o o k . c o m

/d o c s /m e s s e n g e r - p l a t f o r m /p r o d u c t - o v e r v i e w), which enables us to enrich our
conversation experience with other users on a messengers. Companies, apart from just
showing information, can now provide new ways of conversational experience using
custom bots. These bots can be integrated with the company's Facebook Page. With this,
customers or employees of that company can easily look for information on the page and
also chat at the same time on Facebook Messenger itself.

The Facebook Messenger platform's APIs can be used not only to send messages, but also to
send links, photos, videos, files, and images. Facebook Messenger has a feature called secret
messages or conversations. These secret conversations are currently available only in the
Messenger app, downloaded on iOS and Android devices. With these conversations, we
can only send messages, pictures, and stickers. Group messages, videos, GIFs, video calling,
and payments are not supported in secret conversations.

Recently, I read about Domino's pizzas getting ordered from Facebook Messenger! So just
by chatting, you can now select your pizza, order it, and process the payment as well. Here,
users are provided with a seamless experience during the chat itself.

In this chapter, we'll build a Facebook Messenger bot and enhance it to schedule off-hours.
Our bot will also help us discover who and when a person will take off; this will all be done
through an elegant calendar-based user interface.

Awesome! Let's start now.

https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview
https://developers.facebook.com/docs/messenger-platform/product-overview

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[173]

Setting up our Facebook Messenger bot
Facebook has great documentation on how to set up a bot. You can also refer to the steps
mentioned at h t t p s ://d e v e l o p e r s . f a c e b o o k . c o m /d o c s /m e s s e n g e r - p l a t f o r m /g u i d e s /q u

i c k - s t a r t .

We will be using the following steps to build a basic bot:

Create a Facebook Page for our bot
Create an app within Facebook
Create a basic Facebook Messenger bot in Node.js, specifically in Microsoft Azure
Wire up the Facebook app and the basic bot

Let's start working on these steps one by one.

The Facebook Page for our basic bot
First of all, log in to Facebook. You can use the existing pages or create a new page.

We will implement our bot in a way that it will tell users who would be off and when. Let's
create a page called Who's Off by navigating to h t t p s ://w w w . f a c e b o o k . c o m /p a g e s /c r e a t e

/.

Once you hit the URL, you will see the following screen:

https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://developers.facebook.com/docs/messenger-platform/guides/quick-start
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[174]

Choose the page type as Company, Organization or Institution. This will show the
following input screen:

Provide information on this page, such as the type and name of the company.

Select Internet Company and set the name as Who's Off. Then click on the Get Started
button. This will open up a wizard to set up all the other properties for your company, such
as the profile information:

You can skip this wizard or directly go to the last tab, 4. Preferred Page Audience, to save
the information.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[175]

This creates a Facebook Page for our bot. This will appear as follows:

Creating a Facebook app for our basic bot
After creating a page, now let's create a Facebook app for our bot via h t t p s ://d e v e l o p e r s .

f a c e b o o k . c o m /q u i c k s t a r t s /. This will lead us to a screen where we can configure our app
as follows:

https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/
https://developers.facebook.com/quickstarts/

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[176]

Click on basic setup to open a popup and enter the following information:

While creating the app ID, security check will be done as follows:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[177]

Please respond to Security Check and click on Submit to set up your Facebook app by
following the instructions on this screen:

Since we want to set up a messenger, click on the Get Started button available in
Messenger. This will lead you to the following screen:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[178]

Now locate the section called Token Generation in the page and select the Facebook Page
created earlier. This will generate a token for the selected page, as follows:

This page token will be used while communicating with the APIs.

To receive messages from users, our Facebook app needs the Webhooks integration. Before
we set up Webhooks, let's create a Node.js Facebook Messenger app. The Facebook
Webhook integration needs our bot app to be accessible over HTTPs. So we will need to do
this using Microsoft Azure.

Setting up our bot server in Azure
As mentioned, we need an HTTPs-enabled bot server so that we can integrate it in
Facebook. We will build our bot server in Microsoft Azure.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[179]

Let's log in to the Azure portal and locate App Services to create a Node.js-based bot server.
Refer to the following screen:

Click on the Add link to open the following screen. Then, select the Web + Mobile option
and search for an empty Node.js-based web app template, as follows:

After selecting the template as Node JS Empty Web App, click on the Create button to
create the Node.js-based site. The next screen will ask you to input the name of your site
and resources:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[180]

Provide the required information and click on the Create button at the bottom to create a
site called whosoffchatbotsite.azurewebsites.net.

Once created, you should see the following properties of the site using the Overview menu
option from the App Services selected site:

Click on http://whosoffchatbotsite.azurewebsites.net to check how our initial
Node.js site looks or whether there are any issues:

With this, we were able to create and run Node.js from Microsoft Azure.

In Chapter 2, Getting Skype to Work for You, we looked at how to create a Node.js site using
the Azure command-line interface. In this chapter, we have so far created a Node.js site in
Azure itself; now, we will modify the basic Node.js site for our bot.

To modify the basic bot program, first we will clone the template on our local file system
using git commands. Then, we will modify and deploy it to Microsoft Azure.

Let's start by creating a folder in our local drive in order to store our bot program from the
Command Prompt:

mkdir whosoffchatbot
cd whosoffchatbot

Now go to the newly created directory and run the following command:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[181]

This command will clone our site from a remote URL to a local file system. Once the site is
cloned, move to the NodeJS-EmptySiteTemplate directory and run server.js as
follows:

Once the cloning is successful, you should see the bot program in Node.js running, as
follows:

So far, we have used a template from a remote git repository and cloned it to a local file
system. Now we'll set our own git location for the bot program. The reason is that,
whenever we make a change in server.js, which is our bot program, we would also like
the changes to be deployed to Azure; we can do this using git commands. So we will be
setting up a local git repository for our bot program in Azure itself.

Setting up a local git repository for our bot server in
Azure
First, disconnect the remote git library of our program using the Disconnect menu option:

Once disconnected, use the Setup option to set up a code repository for our program, as
follows:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[182]

Once you click on Setup, the Deployment Source screen will be launched, as shown in the
following screenshot.

Choose the Local Git Repository option to set up a git-based repository for the site.

Now if you look at the website properties, you will see that a git URL as well as an FTP
account has been set up. We can deploy our site to Azure using either git commands or
FTP. Refer to the following screenshot for the newly updated properties:

So we have set up a git repository in Azure, but the site we cloned from a local file system
earlier is still pointing to a remote URL. Let's point our local git configurations to the newly
created Azure clone repository using the following command:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[183]

Modifying our bot program for Facebook verification
When we cloned bot program code within server.js, the following is auto-generated:

var http = require('http');

http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.end('Hello, world!');
}).listen(process.env.PORT || 8080);

Now let's start modifying our code. But before that, we need to install some node modules;
we can do this using the following command:

npm install express body-parser request --save

The body-parser npm module helps in parsing the incoming requests available under
req.body.

Now let's open our server.js and modify it as follows:

var express = require('express');
var bodyParser = require('body-parser');
var request = require('request');
var app = express();
app.use(bodyParser.urlencoded({extended: false}));
app.use(bodyParser.json());
app.get('/', function (req, res) {
 res.send('This is my Facebook Messenger Bot - Whos Off Bot Server');
});
app.get('/webhook', function (req, res) {
 if (req.query['hub.verify_token'] === 'whosoffbot_verify_token') {
 res.status(200).send(req.query['hub.challenge']);
 } else {
 res.status(403).send('Invalid verify token');
 }
});

app.listen((process.env.PORT || 8080));

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[184]

Let's run our bot program using the following command:

Then open a browser window and hit http://localhost:8080:

This will show us that our Node.js program is working fine. Now let's deploy this code to
Azure using git commands. This time, all our node modules, which are marked as a
dependent using --save, will also be pushed to Azure. Sometimes, you may encounter a
timeout error while pushing the code. But again, try to push the code; it should get
deployed.

The git commands that we need to execute are as follows:

git add .
git commit -m "First Change to server.js"
git push origin master

Once the code is deployed to Azure, browse the site and check whether it reflects the latest
changes, as follows:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[185]

Setting up a Webhook and Facebook verification of our
bot program
Now let's go back to our Facebook app; we had stopped at token generation. Let's set up
Webhooks in our Facebook app, as follows:

A few important things to note here:

Callback URL has to be accessible from Facebook and should be on HTTPS.
Callback URL with Webhook should return a token, as mentioned at Verify
token. Verify that the token is the same as the one we referred to in server.js,
as follows:

if (req.query['hub.verify_token'] === 'whosoffbot_verify_token') {

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[186]

The token 'whosoffbot_verify_token, provided in the code should match the token on
Facebook.

Once your token is verified, you should see the following screen:

So Webhook is verified and set, but we need a page to subscribe to this Webhook. Refer to
the following screen and subscribe to the Who's Off page, which we created at the
beginning:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[187]

This is how we linked our basic bot to a Facebook Page. Now let's open our Who's Off page
from Facebook and click on the Message button to make our bot active. You should see
a green dot before the bot name indicating it is active. Refer to the following screenshot for
details:

If you try to post anything to this bot, it will not do anything as we have not programmed
Webhooks in relation to posting commands. Now let's ask our bot to echo what the user is
saying in a chat window. To achieve this, let's include the following code snippet in our
server.js:

app.post('/webhook', function (req, res) {
 var events = req.body.entry[0].messaging;
 for (i = 0; i < events.length; i++) {
 var event = events[i];
 if (event.message && event.message.text) {
 sendMessage(event.sender.id, {text: "Echo: " +
event.message.text});
 }
 }

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[188]

 res.sendStatus(200);
});
function sendMessage(recipientId, message) {
 request({
 url: 'h t t p s ://g r a p h . f a c e b o o k . c o m /v 2. 6/m e /m e s s a g e s ',
 qs: {access_token: <PAGE_ACCESS_TOKEN>},
 method: 'POST',
 json: {
 recipient: {id: recipientId},
 message: message,
 }
 }, function(error, response, body) {
 if (error) {
 console.log('Error sending message: ', error);
 } else if (response.body.error) {
 console.log('Error: ', response.body.error);
 }
 });
};

Let me explain the code snippet here. When the data is posted from a page that is
subscribing to the Webhook, app.post('/webhook',function(req,res){}) will get
called. This will parse the incoming messages, and bot will form an echo message and will
call the sendMessage() function to send the message to the same recipient with the help of
a page access token.

Deploying a modified bot that returns an echo
Let's use git commands to deploy the modified code and check whether the bot would echo
what we say:

https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages
https://graph.facebook.com/v2.6/me/messages

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[189]

Once you deploy the updated code, hit the Facebook Page again, and the Messenger and
post data as follows:

We have made multiple posts to our bot, but it is not yet doing anything. Let's see what's
happening at the Azure end, that is, whether there are any errors at the application level.

Troubleshooting our bot in Azure
To troubleshoot the problem of bot not echoing anything, let's turn to Diagnostics logs for
our site and also start Log stream. Log stream will show us whether there are any errors in
our program:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[190]

Now let's enter or post anything to our bot from the Facebook Page and refer to the log
streams. You will get to see the line number and the error we will get, as follows:

So our code is failing to parse the input, resulting into an error. To fix this, let's make a small
change while parsing. Use bodyParser before the urlencoded call, as follows:

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: false}));

Again, deploy the modified code to Azure using git commands and try to post something to
our bot. The code will run successfully and echo out what a user would post in the chat
window, as follows:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[191]

Wow! So far, we have been able to wire up our bot with the Facebook Page and Messenger
as well. We have also looked at how to use Azure diagnostics for logging into our site
if there are issues with our bot program; we also understood how to trace and fix the
problem. Now let's look at the core functionality we are trying to build for our Who's Off
bot.

Enhancing our Who's Off bot
Having built a very basic Facebook Messenger bot, let's enhance our Who's Off bot.

Assume our team members are collaborating over Facebook Messenger. Our bot should be
able to help this team schedule a meeting and should also be able to show who is busy on a
particular day before setting up the meeting.

Now let me show you, what we will be building in Facebook Messenger for our bot:

Let's dive into the flow and then look into the code implementation one by one.

When a user starts a conversation with our bot with hi, as shown in the preceding
screenshot, then the Who's Off bot will show the first three options: Schedule a Meeting,
Whos Off When, and My Schedule.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[192]

Depending upon the option the user chooses, the bot will prompt options for when they
would like to carry out the mentioned operation, such as scheduling a meeting, seeing who
is off when, or checking out their own meetings. Refer to the following screenshot for the
operation's flow:

These operations will be done using options such as Today and Tomorrow. Based on what
you choose, the bot will display the meeting details or will ask for it to schedule the
meeting. In the preceding screenshot, it shows the meeting for the Whos Off When option
selected in Facebook Messenger is scheduled today.

So at a higher level, we will be:

Enhancing our basic bot program for a better conversational experience within
Facebook Messenger by leveraging message templates; for more information,
refer to
https://developers.facebook.com/docs/messenger-platform/send-api-refer
ence/templates

Storing meeting's information in the NoSQL database-DocumentDB
Wiring up DocumentDB APIs and Messenger platform APIs

Building a conversational experience with the Who's Off
bot
We have already seen how users will arrive at our bot's Facebook Page and then start a
conversation with our bot.

https://developers.facebook.com/docs/messenger-platform/send-api-reference/templates
https://developers.facebook.com/docs/messenger-platform/send-api-reference/templates

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[193]

Setting up a Messenger greeting
Let's enhance the conversational experience of this bot now. We'll begin by adding a
greeting message whenever a user starts a conversation. Follow these steps:

Locate your bot page on Facebook and click on the Settings option:1.

On the Settings page, locate the Messaging menu on the left-hand side, as2.
follows:

Choose the option Yes for Show a Messenger Greeting, as follows:3.

Provide the greeting text and click on the Save button to save the text:4.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[194]

Go back to the bot's Facebook Page and start messaging. The first time you start a5.
conversation, the Who's Off bot will greet you like this:

Showing the initial options of what a bot can do
At the start of a conversation, our bot will display the tasks it can perform. The user can
then choose which operation he or she wants to perform. To achieve this, let's modify
server.js as follows:

var express = require('express');
var bodyParser = require('body-parser');
var request = require('request');
var app = express();

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

app.get('/', function (req, res) {
 res.send('This is my Facebook Messenger Bot - Whos Off Bot Server');
});

// for facebook verification
app.get('/webhook', function (req, res) {
 if (req.query['hub.verify_token'] === 'whosoffbot_verify_token') {
 res.status(200).send(req.query['hub.challenge']);
 } else {
 res.status(403).send('Invalid verify token');
 }
});

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[195]

app.post('/webhook', function (req, res) {
 var events = req.body.entry[0].messaging;
 for (i = 0; i < events.length; i++) {
 var event = events[i];

 if (event.message && event.message.text) {
 if (event.message.text.indexOf('hi') > -1) {
 sendMessageWithInitialOptions(event.sender.id);
 }
 }
 }
 res.sendStatus(200);
});

function sendMessageWithInitialOptions(recipientId) {
 messageData = {
 'attachment': {
 'type': 'template',
 'payload': {
 'template_type': 'button',
 'text': 'Pl. Select your options',
 'buttons': [{
 'type': 'postback',
 'title': 'Schedule a Meetting',
 'payload': 'SCHEDULE A MEETING'
 }, {
 'type': 'postback',
 'title': 'Whos Off When',
 'payload': 'WHOS OFF WHEN',
 }, {
 'type': 'postback',
 'title': 'My Schedule',
 'payload': 'MY SCHEDULE'
 }]
 }
 }
 };
 sendMessage(recipientId, messageData);
};

function sendMessage(recipientId, message) {
 request({
 url: 'https://graph.facebook.com/v2.6/me/messages',
 qs: { access_token: 'PAGE_ACCESS_TOKEN' },
 method: 'POST',
 json: {
 recipient: { id: recipientId },
 message: message,

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[196]

 }
 }, function (error, response, body) {
 if (error) {
 console.log('Error sending message: ', error);
 } else if (response.body.error) {
 console.log('Error: ', response.body.error);
 }
 });
};

app.listen((process.env.PORT || 8080));

Use git commands to push the preceding code changes to Azure. Once deployed
successfully, start a conversation with the bot by saying hi. The Who's Off bot will respond
with what it can do for you, as follows:

After checking out how our bot will respond, let's look at the code now.

The app.post('/webhook') function captures all the messages that come to our bot. So
when a user says hi, there is a pattern-matching done and bot responds with the initial
options for operations that it can perform. This is done using the following lines of code:

if (event.message.text.indexOf('hi') > -1) {
 sendMessageWithInitialOptions(event.sender.id);
}

The sendMessageWithInitialOptions() function actually prepares a formatted
message using structured messaging templates. Since we would like to display operations
that the user can choose from, we use template_type as button. Every button is of the
postback type, and when a user clicks on one of these buttons, we can capture what the
user has selected and respond to the selection.

This structured message is then returned to a sender using the sendMessage() function.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[197]

Based on what a user selects, the bot will respond in a button-type display. This is done to
avoid wasting the end user's time in typing messages or entering keywords.

So far, we have seen how a basic conversation can happen between an end user and a bot.
This same pattern will be used to further enhance our bot.

I hope you now have a little idea about how to build and enhance a conversational
experience. Now let's look at how to store meeting-related information. We will use
DocumentDB to store this information. Let's quickly see how we can set this up on the
Azure platform.

What is DocumentDB?
In Chapter 6, BotKit – Document Manager Agent for Slack, I explained NoSQLs. DocumentDB
is also a NoSQL where data is stored in JSON documents and offered by the Microsoft
Azure platform.

For further details on DocumentDB, refer to
https://azure.microsoft.com/en-in/services/documentdb/.

Setting up a DocumentDB for our Who's Off bot
Assuming you already have a Microsoft Azure subscription, follow the ensuing steps to
configure a DocumentDB for your bot.

Creating an account ID for the DocumentDB
Let's create a new account called botdb using the following screen from the Azure portal.
Select DocumentDB as the NoSQL API. Select the appropriate subscription and resources.
Let's use existing resources for this account. You can also create a new dedicated resource.
Once you enter all of the required information, hit the Create button at the bottom to create
a new account for the DocumentDB:

https://azure.microsoft.com/en-in/services/documentdb/

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[198]

A newly created account called botdb will appear, as follows:

Creating a collection and database
Select a botdb account from the account list shown in the preceding screenshot. It will
show various menu options, such as Properties, Settings, Collections, and so on.

Under this account, we need to create a collection to store meetings or event data. To create
a new collection, click on the Add Collection option, as shown in the following screenshot:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[199]

As per the preceding screenshot, we are creating a new database along with our new
collection called Events. This new database will be named EventsDB. Now we can
integrate this storage using the DocumentDB APIs in our Node.js program.

Wiring up DocumentDB, Moment.js, and Node.js
Let's go back to our whosoffchatbot directory and install the documentdb package from
npm. This is nothing but the Node.js SDK for Microsoft Azure's DocumentDB. It can be
located at https://www.npmjs.com/package/documentdb.

In order to install it, run this npm command:

npm install documentdb -save

While storing the meetings, we will consider the following JSON:

{
 "id": "8eeeb00d-5ae8-b01f-4054-cc8c3dda67f2",
 "ownerid": "<SenderId>",
 "owner": "<Facebook User Name>",
 "startdatetime": 1479376800,
 "enddatetime": 1479380400,
 "title": "<Meeting Title>"
}

https://www.npmjs.com/package/documentdb

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[200]

So when the meetings get added, it'll be great if you generate a unique ID for each meeting,
and the meeting information should get stored in DocumentDB. To generate these unique
IDs, we will use the guid package. This can be located at
https://www.npmjs.com/package/guid. Let's install the guid package by using the
following command:

npm install guid -save

Also, all the timings for the meetings will be stored in Unix epoch or Unix time. This is done
to simplify our storing process as well as query a meeting or event data with DocumentDB.
So, to enable the conversion of dates to Unix epoch, we will use the npm package moment:

npm install moment -save

Utility functions and Node.js
Considering the functionalities to be developed for this bot, I have decided to move some of
the functionalities to be helper functions. These functions can be grouped under utils.js.
Later, these functions will be called in our main Node.js file.

Refer to the following code for utils.js:

var moment = require('moment');
var https = require('https');

function isvalidateInput(str) {
 var pattern = /^\w+[a-z A-
Z_]+?\@[0-9]{1,2}\:[0-9]{1,2}\w[to][0-9]{1,2}:[0-9]{1,2}$/;
 if (str.match(pattern) == null) {
 return false;
 } else {
 return true;
 }

};
exports.isvalidateInput = isvalidateInput;

function getFormattedTime(tsfrom, tsto) {
 var timeString = moment.unix(tsfrom).format("HH:mm") + ' - ' +
moment.unix(tsto).format("HH:mm")
 return timeString;
};
exports.getFormattedTime =getFormattedTime;

function getFormattedDay(tsfrom) {
 var dateString = moment.unix(tsfrom).format("MMM, DD");

https://www.npmjs.com/package/guid

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[201]

 return dateString;
};
exports.getFormattedDay =getFormattedDay;

function
meeting(id,recipientId,ownername,strstartdatetime,strenddatetime,strtitle){
 this.id=id;
 this.ownerid=recipientId;
 this.owner=ownername;
 this.startdatetime=strstartdatetime;
 this.enddatetime=strenddatetime;
 this.title=strtitle;
};
exports.meeting =meeting;

function getUserName(uid,callback){
 https.get("https://graph.facebook.com/v2.6/" + uid +
"?fields=first_name,last_name&access_token=<PAGE_ACCESS_TOKEN> ",
function(res) {
 var d = '';
 var i;
 arr = [];
 res.on('data', function(chunk) {
 d += chunk;
 });
 res.on('end', function() {
 var e = JSON.parse(d);
 callback(e.first_name);
 });
 });
};
exports.getUserName =getUserName;

Looking at the preceding code, you may notice that the isvalidateInput() function
mainly validates whether the user has entered the intended meeting information or not. If
not, then the bot will help by providing sample meeting information while scheduling the
meeting. This function mainly validates user input against the Team
Meeting@10:00to11:00 pattern.

The functions getFormattedTime() and getFormattedDay() convert Unix epoch to
human-readable date formats.

The function meeting() is the constructor used during the creation of a new meeting based
on the user's option.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[202]

The getUserName() function helps in getting the Facebook user's name, based on the
recipient ID or the user ID passed to the function. When we store meetings, we will also
store the recipient ID as well as the meeting owner's name with the help of this function and
the meeting()function.

Wiring it all up together
Now that we have our utility or helper functions and the required Node.js packages in
place, we are ready to finally integrate our bot in the right sense. Let's start with the
breakdown of the code.

First, we will refer to all the npm modules and their instantiation for this bot
implementation. This can be seen in the following code snippet:

var express = require('express');
var bodyParser = require('body-parser');
var request = require('request');
var moment = require('moment');
var Guid = require('guid');
var utils = require('./utils.js');

var app = express();

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

We will also establish a connection to the DocumentDB database from Azure using the
following code snippet:

var DocumentClient = require('documentdb').DocumentClient;
var host = "https://botdb.documents.azure.com:443/";
var masterKey = "PRIMARY KEY"
var docclient = new DocumentClient(host, { masterKey: masterKey });

We have a Webhook set up in Facebook, and upon receiving a call to our Webhook, our bot
should capture and send us the initial options. This can be achieved using the
sendMessageWithInitialOptions() function from the following code snippet:

app.post('/webhook', function (req, res) {
 var tday;
 var events = req.body.entry[0].messaging;
 for (i = 0; i < events.length; i++) {
 var event = events[i];

 if (event.message && event.message.text) {
 if (event.message.text.indexOf('hi') > -1) {

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[203]

 sendMessageWithInitialOptions(event.sender.id);
 }

So here, whenever a user posts hi, he or she will see the initial options to proceed further.

While scheduling a meeting as well, we expect the user to provide the meeting details in a
specific format. Based on what the user has sent, we will validate the input and process it
further with the help of the processMeetingDetails() function. This is achieved using
the following code snippet:

else if (event.message.text.indexOf('@') > -1) {
 if (utils.isvalidateInput(event.message.text)) {
 sendMessage(event.sender.id, { 'text': 'Sure! Let me
set up your meeting for '+payloadm });
 if (payloadm=='Today'){
 tday = moment().format("MM/DD/YYYY");
 }
 else if (payloadm=='Tomorrow'){
 tday = moment().add(1, 'day').format("MM/DD/YYYY");
 }
 processMeetingDetails(event.message.text, tday + ' ',
event.sender.id);
 }
 else {
 console.log('Invalid format!');
 sendMessage(event.sender.id, { 'text': 'Pl. input
meeting details e.g. Team Meeting@10:00to11:00' });
 }
 }

Based on the options shown to the user, when they respond, the response is captured in
event.postback.payload. Based on what the user has selected to proceed further, we'll
execute the next options. This is done using the following code snippet:

else if (event.postback && event.postback.payload) {
 payload = event.postback.payload;
 // Handle a payload from this sender
 console.log(JSON.stringify(payload));
 if (payload == 'SCHEDULE A MEETING') {
 sendMessageWithScheduleOptions(event.sender.id);
 }
 else if (payload == 'SCHEDULETODAY') {
 payloadm='Today';
 sendMessage(event.sender.id, { 'text': 'Pl. provide meeting
details e.g. Team Meeting@10:00to11:00' });
 }
 else if (payload == 'SCHEDULETOMORROW') {

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[204]

 payloadm='Tomorrow';
 sendMessage(event.sender.id, { 'text': 'Pl. provide
meeting details e.g. Team Meeting@10:00to11:00' });
 }
 else if (payload=='WHOS OFF WHEN'){
 sendMessageWithAllScheduleOptions(event.sender.id);
 }
 else if (payload == 'ALLSCHEDULETODAY') {
 sendMessage(event.sender.id, 'Meeting(s) Scheduled for
Today as..');
 var tilltonight = moment().add(1,
'day').startOf('day').unix();
 var startnow = moment().unix();
 showWhosIsBusyWhen(event.sender.id, startnow, tilltonight);
 }
 else if (payload == 'ALLSCHEDULETOMORROW') {
 sendMessage(event.sender.id, 'Meeting(s) Scheduled for
tomorrow as..');
 var tilltomnight = moment().add(2,
'day').startOf('day').unix();
 var starttonight = moment().endOf('day').unix();
 showWhosIsBusyWhen(event.sender.id, starttonight,
tilltomnight);
 }
 }

If you look at the preceding code lines, you will see payloads captured as SCHEDULE A
MEETING, SCHEDULETODAY, and so on. So when a user selects these options from the
Messenger screen, a post back or a call goes to our Webhook and we get what the user has
selected. The function sendMessageWithScheduleOptions() shows options to the user
for scheduling a meeting either today or tomorrow.

When a user responds to an option, Whos Off When, the Webhook is called and the
function sendMessageWithAllScheduleOptions() gets executed to show the options to
choose the day for which you would like to see who is busy and when. This again shows
the options Today or Tomorrow to the end user on the screen. Based on the option selected
by the user, the function showWhosIsBusyWhen() gets called with appropriate parameters
to get the details of who is busy and when, meaning whose meetings are scheduled when.

While building this bot, we are not asking the user to key in or type in options; instead, we
are showing options to choose from the screen. These options are nothing but structured
message templates. We are using a button template and list template while showing the
options and data to the end user.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[205]

One of the templates we are using in the function sendMessageWithInitialOptions() is
as follows:

function sendMessageWithInitialOptions(recipientId) {
 messageData = {
 'attachment': {
 'type': 'template',
 'payload': {
 'template_type': 'button',
 'text': 'Pl. Select your options',
 'buttons': [{
 'type': 'postback',
 'title': 'Schedule a Meetting',
 'payload': 'SCHEDULE A MEETING'
 }, {
 'type': 'postback',
 'title': 'Whos Off When',
 'payload': 'WHOS OFF WHEN',
 }, {
 'type': 'postback',
 'title': 'My Schedule',
 'payload': 'MY SCHEDULE'
 }]
 }
 }
 };
 sendMessage(recipientId, messageData);
};

The preceding function generates a structured message with the help of a button template
and using function sendMessage(), message with initial options are shown to end user.

On similar lines, we have the function sendMessageWithScheduleOptions(). This
generates a structured message to show the options Today and Tomorrow so as to select
when to schedule a meeting:

function sendMessageWithScheduleOptions(recipientId) {
 messageData = {
 'attachment': {
 'type': 'template',
 'payload': {
 'template_type': 'button',
 'text': 'Select day to schedule a meeting',
 'buttons': [{
 'type': 'postback',
 'title': 'Today',
 'payload': 'SCHEDULETODAY'

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[206]

 }, {
 'type': 'postback',
 'title': 'Tomorrow',
 'payload': 'SCHEDULETOMORROW',
 }]
 }
 }
 };
 sendMessage(recipientId, messageData);
};

To process meeting data and check whether there are any conflicts, the following function is
used:

function processMeetingDetails(str, todaysdate, recipientId) {
 var title, stime, etime, starttime, endtime, ownername

 //parsing input provided for extracting meeting information
 title = str.substring(0, str.indexOf('@'));
 stime = str.substring(title.length + 1, str.indexOf('to')) + ':00';
 etime = str.substring(str.indexOf('to') + 2, str.length) + ':00';

 starttime = moment(todaysdate + stime).unix();
 endtime = moment(todaysdate + etime).unix();

 console.log(starttime + ' to ' + endtime + ' title' + title);
 //function to get Fb User Name
 utils.getUserName(recipientId, function (d) {
 ownername = d;
 var objMeeting = new utils.meeting(Guid.raw(), recipientId,
ownername, starttime, endtime, title)
 CheckMeetingsIfExistsOrInsert(objMeeting);
 });
}

The preceding function extracts the meeting details and passes them to check whether there
are any conflicts. This function uses the utility function from Utils.js to get the username
of the current user and check whether there are any meeting conflicts in relation to the
current user. If there are no conflicts, then the meeting is scheduled with the help of the
CheckMeetingsIfExistsOrInsert() function:

function CheckMeetingsIfExistsOrInsert(objMeeting) {
 var querySpec = {
 query: 'SELECT * FROM Events b WHERE (b.ownerid= @id) and (@start
between b.startdatetime and b.enddatetime)',
 parameters: [
 {

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[207]

 name: '@id',
 value: objMeeting.ownerid
 },
 {
 name: '@start',
 value: objMeeting.startdatetime
 }
]
 };

 docclient.queryDocuments('dbs/EventsDB/colls/Events',
querySpec).toArray(function (err, results) {
 console.log(objMeeting.title);
 if (results.length === 0) {
 console.log('No data found' + objMeeting.title);
 var documentDefinition = {
 'id': objMeeting.id,
 'ownerid': objMeeting.ownerid,
 'owner': objMeeting.owner,
 'startdatetime': objMeeting.startdatetime,
 'enddatetime': objMeeting.enddatetime,
 'title': objMeeting.title
 };
 docclient.createDocument('dbs/EventsDB/colls/Events',
documentDefinition, function (err, document) {
 if (err) return console.log(err);
 console.log('Created A Meeting with id : ', document.id);
 sendMessage(objMeeting.ownerid, { 'text': 'Meeting has been
scheduled.' });
 });
 } else {
 console.log('Data found');
 sendMessage(objMeeting.ownerid, { 'text': 'Meeting exists for
this schedule. Pl. schedule another time.' });
 }
 });
}

This function queries our DocumentDB-based database and checks whether any meeting is
scheduled for that duration with the help of the docclient.queryDocuments() function.

If there are no meetings for the said duration, a new meeting is created using the
docclient.createDocument() function. For a newly created meeting, the user who is
scheduling a meeting is made the meeting owner by default.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[208]

When a user selects an option for Whos Off When, the showWhosIsBusyWhen() function
gets invoked and displays the information of all the meetings scheduled along with their
owners and time slots:

function showWhosIsBusyWhen(recipientId,start, end) {
 var querySpec = {
 query: 'SELECT * FROM Events b WHERE b.startdatetime<= @end and
b.startdatetime>= @start ORDER BY b.startdatetime',
 parameters: [
 {
 name: '@end',
 value: end
 },
 {
 name: '@start',
 value: start
 }
]
 };
 docclient.queryDocuments('dbs/EventsDB/colls/Events',
querySpec).toArray(function (err, results) {
 if (results.length > 0) {
 sendMessageWithMeetingsOwnerInList(recipientId, results)
 }
 });
}

Based on the passed dates, the scheduled meeting's details are shown in a list along with
their owners using the sendMessageWithMeetingsOwnerInList() function:

function sendMessageWithMeetingsOwnerInList(recipientId, results) {
 var card;
 var cards = [];
 var messageData;

 messageData = {
 attachment: {
 type: 'template',
 payload: {
 template_type: 'generic',
 elements: []
 }
 }
 };

 for (i = 0; i < results.length; i++) {
 card = {
 title: results[i].title,

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[209]

 item_url: 'https://myorgmeetings.com/' + results[i].id,
 image_url: '',
 subtitle: 'Your confirmed meeting.',
 buttons: [
 {
 type: 'web_url',
 url: 'https://myorgmeetings.com/' + results[i].id,
 title: utils.getFormattedDay(results[i].startdatetime)
 },
 {
 type: 'web_url',
 url: 'https://myorgmeetings.com/' + results[i].id,
 title: results[i].owner
 },
 {
 type: 'web_url',
 url: 'https://myorgmeetings.com/' + results[i].id,
 title: utils.getFormattedTime(results[i].startdatetime,
results[i].enddatetime)
 }
]
 };
 cards.push(card);
 }

 messageData.attachment.payload.elements = cards;
 sendMessage(recipientId, messageData);
};

The preceding function generates a list of meetings using a generic template and displays
them as cards.

I hope you now have an overall understanding of the code implementations we have done
for this bot. Our final server.js should look as follows:

var express = require('express');
var bodyParser = require('body-parser');
var request = require('request');
var moment = require('moment');
var Guid = require('guid');
var utils = require('./utils.js');

var app = express();

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

var DocumentClient = require('documentdb').DocumentClient;

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[210]

var host = "https://botdb.documents.azure.com:443/";
var masterKey = "PRIMARY KEY"
var docclient = new DocumentClient(host, { masterKey: masterKey });

var payloadm;

app.get('/', function (req, res) {
 res.send('This is my Facebook Messenger Bot - Whos Off Bot Server');
});

// for facebook verification
app.get('/webhook', function (req, res) {
 if (req.query['hub.verify_token'] === 'whosoffbot_verify_token') {
 res.status(200).send(req.query['hub.challenge']);
 } else {
 res.status(403).send('Invalid verify token');
 }
});

app.post('/webhook', function (req, res) {
 var tday;
 var events = req.body.entry[0].messaging;
 for (i = 0; i < events.length; i++) {
 var event = events[i];

 if (event.message && event.message.text) {
 if (event.message.text.indexOf('hi') > -1) {
 sendMessageWithInitialOptions(event.sender.id);
 }
 else if (event.message.text.indexOf('@') > -1) {
 if (utils.isvalidateInput(event.message.text)) {
 sendMessage(event.sender.id, { 'text': 'Sure! Let me
set up your meeting for '+payloadm });
 if (payloadm=='Today'){
 tday = moment().format("MM/DD/YYYY");
 }
 else if (payloadm=='Tomorrow'){
 tday = moment().add(1, 'day').format("MM/DD/YYYY");
 }
 processMeetingDetails(event.message.text, tday + ' ',
event.sender.id);
 }
 else {
 console.log('Invalid format!');
 sendMessage(event.sender.id, { 'text': 'Pl. input
meeting details e.g. Team Meeting@10:00to11:00' });
 }
 }

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[211]

 }
 else if (event.postback && event.postback.payload) {
 payload = event.postback.payload;
 // Handle a payload from this sender
 console.log(JSON.stringify(payload));
 if (payload == 'SCHEDULE A MEETING') {
 sendMessageWithScheduleOptions(event.sender.id);
 }
 else if (payload == 'SCHEDULETODAY') {
 payloadm='Today';
 sendMessage(event.sender.id, { 'text': 'Pl. provide meeting
details e.g. Team Meeting@10:00to11:00' });
 }
 else if (payload == 'SCHEDULETOMORROW') {
 payloadm='Tomorrow';
 sendMessage(event.sender.id, { 'text': 'Pl. provide
meeting details e.g. Team Meeting@10:00to11:00' });
 }
 else if (payload=='WHOS OFF WHEN'){
 sendMessageWithAllScheduleOptions(event.sender.id);
 }
 else if (payload == 'ALLSCHEDULETODAY') {
 sendMessage(event.sender.id, 'Meeting(s) Scheduled for
Today as..');
 var tilltonight = moment().add(1,
'day').startOf('day').unix();
 var startnow = moment().unix();
 showWhosIsBusyWhen(event.sender.id, startnow, tilltonight);
 }
 else if (payload == 'ALLSCHEDULETOMORROW') {
 sendMessage(event.sender.id, 'Meeting(s) Scheduled for
tomorrow as..');
 var tilltomnight = moment().add(2,
'day').startOf('day').unix();
 var starttonight = moment().endOf('day').unix();
 showWhosIsBusyWhen(event.sender.id, starttonight,
tilltomnight);
 }
 }

 }
 res.sendStatus(200);
});

function sendMessageWithInitialOptions(recipientId) {
 messageData = {
 'attachment': {
 'type': 'template',

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[212]

 'payload': {
 'template_type': 'button',
 'text': 'Pl. Select your options',
 'buttons': [{
 'type': 'postback',
 'title': 'Schedule a Meetting',
 'payload': 'SCHEDULE A MEETING'
 }, {
 'type': 'postback',
 'title': 'Whos Off When',
 'payload': 'WHOS OFF WHEN',
 }, {
 'type': 'postback',
 'title': 'My Schedule',
 'payload': 'MY SCHEDULE'
 }]
 }
 }
 };
 sendMessage(recipientId, messageData);
};

function sendMessageWithScheduleOptions(recipientId) {
 messageData = {
 'attachment': {
 'type': 'template',
 'payload': {
 'template_type': 'button',
 'text': 'Select day to schedule a meeting',
 'buttons': [{
 'type': 'postback',
 'title': 'Today',
 'payload': 'SCHEDULETODAY'
 }, {
 'type': 'postback',
 'title': 'Tomorrow',
 'payload': 'SCHEDULETOMORROW',
 }]
 }
 }
 };
 sendMessage(recipientId, messageData);
};

function processMeetingDetails(str, todaysdate, recipientId) {
 var title, stime, etime, starttime, endtime, ownername

 //parsing input provided for extracting meeting information

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[213]

 title = str.substring(0, str.indexOf('@'));
 stime = str.substring(title.length + 1, str.indexOf('to')) + ':00';
 etime = str.substring(str.indexOf('to') + 2, str.length) + ':00';

 starttime = moment(todaysdate + stime).unix();
 endtime = moment(todaysdate + etime).unix();

 console.log(starttime + ' to ' + endtime + ' title' + title);
 //function to get Fb User Name
 utils.getUserName(recipientId, function (d) {
 ownername = d;
 var objMeeting = new utils.meeting(Guid.raw(), recipientId,
ownername, starttime, endtime, title)
 CheckMeetingsIfExistsOrInsert(objMeeting);
 });
}

function CheckMeetingsIfExistsOrInsert(objMeeting) {
 var querySpec = {
 query: 'SELECT * FROM Events b WHERE (b.ownerid= @id) and (@start
between b.startdatetime and b.enddatetime)',
 parameters: [
 {
 name: '@id',
 value: objMeeting.ownerid
 },
 {
 name: '@start',
 value: objMeeting.startdatetime
 }
]
 };

 docclient.queryDocuments('dbs/EventsDB/colls/Events',
querySpec).toArray(function (err, results) {
 console.log(objMeeting.title);
 if (results.length === 0) {
 console.log('No data found' + objMeeting.title);
 var documentDefinition = {
 'id': objMeeting.id,
 'ownerid': objMeeting.ownerid,
 'owner': objMeeting.owner,
 'startdatetime': objMeeting.startdatetime,
 'enddatetime': objMeeting.enddatetime,
 'title': objMeeting.title
 };
 docclient.createDocument('dbs/EventsDB/colls/Events',
documentDefinition, function (err, document) {

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[214]

 if (err) return console.log(err);
 console.log('Created A Meeting with id : ', document.id);
 sendMessage(objMeeting.ownerid, { 'text': 'Meeting has been
scheduled.' });
 });
 } else {
 console.log('Data found');
 sendMessage(objMeeting.ownerid, { 'text': 'Meeting exists for
this schedule. Pl. schedule another time.' });
 }
 });
}

function sendMessageWithAllScheduleOptions(recipientId) {
 messageData = {
 'attachment': {
 'type': 'template',
 'payload': {
 'template_type': 'button',
 'text': 'Select your schedule for',
 'buttons': [{
 'type': 'postback',
 'title': 'Today',
 'payload': 'ALLSCHEDULETODAY'
 }, {
 'type': 'postback',
 'title': 'Tomorrow',
 'payload': 'ALLSCHEDULETOMORROW',
 }]
 }
 }
 };
 sendMessage(recipientId, messageData);
};

function showWhosIsBusyWhen(recipientId,start, end) {
 var querySpec = {
 query: 'SELECT * FROM Events b WHERE b.startdatetime<= @end and
b.startdatetime>= @start ORDER BY b.startdatetime',
 parameters: [
 {
 name: '@end',
 value: end
 },
 {
 name: '@start',
 value: start
 }

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[215]

]
 };
 docclient.queryDocuments('dbs/EventsDB/colls/Events',
querySpec).toArray(function (err, results) {
 if (results.length > 0) {
 sendMessageWithMeetingsOwnerInList(recipientId, results)
 }
 });
}

function sendMessageWithMeetingsOwnerInList(recipientId, results) {
 var card;
 var cards = [];
 var messageData;

 messageData = {
 attachment: {
 type: 'template',
 payload: {
 template_type: 'generic',
 elements: []
 }
 }
 };

 for (i = 0; i < results.length; i++) {
 card = {
 title: results[i].title,
 item_url: 'https://myorgmeetings.com/' + results[i].id,
 image_url: '',
 subtitle: 'Your confirmed meeting.',
 buttons: [
 {
 type: 'web_url',
 url: 'https://myorgmeetings.com/' + results[i].id,
 title: utils.getFormattedDay(results[i].startdatetime)
 },
 {
 type: 'web_url',
 url: 'https://myorgmeetings.com/' + results[i].id,
 title: results[i].owner
 },
 {
 type: 'web_url',
 url: 'https://myorgmeetings.com/' + results[i].id,
 title: utils.getFormattedTime(results[i].startdatetime,
results[i].enddatetime)
 }

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[216]

]
 };
 cards.push(card);
 }

 messageData.attachment.payload.elements = cards;
 sendMessage(recipientId, messageData);
};

function sendMessage(recipientId, message) {
 request({
 url: 'https://graph.facebook.com/v2.6/me/messages',
 qs: { access_token: 'PAGE_ACCESS_TOEKN' },
 method: 'POST',
 json: {
 recipient: { id: recipientId },
 message: message,
 }
 }, function (error, response, body) {
 if (error) {
 console.log('Error sending message: ', error);
 } else if (response.body.error) {
 console.log('Error: ', response.body.error);
 }
 });
};

app.listen((process.env.PORT || 8080));

Running our bot – the Who's Off bot
Having understood the code implementation and assuming our final code is up and
running on Microsoft Azure, let's look at how our bot is executed from the end user's
perspective.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[217]

Initial options
Here are some initial options as in the following screenshot:

Scheduling a meeting
When a user clicks on Schedule a Meeting, two options are sent by our bot, as follows:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[218]

Now when the user clicks on Tomorrow, our bot will respond with some guiding text to the
end user as Pl. provide meeting details e.g. Team Meeting@10:00to11:00:

After receiving the guiding text, the user would enter the meeting details as Team
Meeting@10:00to11:00:

The bot checks for conflicts, and if no conflicts are found, the meeting is scheduled and the
bot responds with the message Meeting has been scheduled., as shown in the preceding
screenshot.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[219]

Whos Off When
When the user selects an option for Whos Off When, the following screen shows the
options from which days, Today or Tomorrow, you would like to see who is off when.

If the user selects the option Today, the meetings for that day are shown as follows:

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[220]

The arrow on the right-hand side shows there are multiple meetings. Just scroll to the left to
see the meetings, as follows:

This way, we are showing who is busy when, based on the meetings scheduled by
individual members.

So we have implemented our bot in a way that it can schedule our meetings and also show
all our scheduled meetings in an elegant way within the Facebook Messenger interface.
There is one more operation left: My Schedule. I will leave the implementation of this
operation to you now.

Summary
So with Facebook, we built a bot and enhanced our team's collaborative experience. With
this bot, our team can just send the meeting details on a chat window to our bot, such as the
name and start and end date, and the bot will take care of rest.

To summarize, we learned how to create a Facebook Page and app. We also created a basic
bot wired up in Node.js and deployed this basic bot to Microsoft Azure. We did this as
Facebook Messenger needs an HTTPS-based Webhooks integration. Then, we subscribed to
a page within Webhooks so that the messages that come from our bot pages could be
accepted by our Node.js bot.

Finally, we enhanced our bot to display information, such as who is off when, and
displayed it within a Facebook Messenger interface.

We saw that the Who's Off bot with its little intelligence can check for a conflict and then
scheduled a meeting accordingly. It can also present us with a team's schedule in a
Facebook-compatible Messenger template format.

Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams

[221]

Further, if you would really like to develop intelligent bots, then it's worth taking a look at
https://wit.ai/ and h t t p s ://a p i . a i /. These platforms enable us to develop chat bots
that can understand humans in a better way.

Hopefully, this chapter has given you an amazing experience of building Facebook
Messenger bots!

In the next chapter, we will explore how to develop IRC bots and how we can wire them up
within Node.js and help our developers use it for bug-tracking purposes.

https://wit.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/

8
A Bug-Tracking Agent for

Teams
InternetRelayChat (IRC) enables us to communicate in real time in the form of text. This
chat runs on a TCP protocol in a client-server model. IRC supports group messaging, which
is called as channels, and also supports private messaging.

IRC is organized into many networks with different audiences. IRC being a client server,
users need IRC clients to connect to IRC servers. IRC client software comes as packaged
software, as well as web-based clients. Some browsers are also providing IRC clients as
add-ons. Users can either install them on their systems, and then they can be used to
connect to IRC servers or networks. While connecting to these IRC servers, users will have
to provide a unique nickname and choose an existing channel for communication, or users
can start a new channel while connecting to these servers.

In this chapter, we are going to develop one such IRC bot for bug-tracking purposes. This
bug-tracking bot will provide information about bugs as well as details about a particular
bug. All this will be done seamlessly within the IRC channel itself. It's going to be one
window operation for a team, when it comes to knowing about their bugs or defects.

Great!!

IRC client and server
As mentioned in the introduction, to initiate an IRC communication, we need an IRC client,
and a server or a network to which our client will be connected. We will be using a freenode
network for our client to connect to. Freenode is the largest free, open source, software-
focused IRC network.

A Bug-Tracking Agent for Teams

[223]

IRC web-based client
We will be using the IRC web-based client through a URL (h t t p s ://w e b c h a t . f r e e n o d e . n e

t /). After opening the URL, you will see the following screen:

As mentioned earlier, while connecting, we need to provide Nickname: and Channels:.

I have provided Nickname: as Madan and at Channels: as #BugsChannel. In IRC, channels
are always identified by a #, so I used # to begin the name of my bugs channel. This is the
new channel that we will be starting for communication. All the developers or team
members can similarly provide their nicknames and this channel name to join the
communication. Now let's prove Humanity: by selecting I'm not a robot and clicking the
Connect button.

https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/
https://webchat.freenode.net/

A Bug-Tracking Agent for Teams

[224]

Once connected, you will see the following screen:

With this, our IRC client is connected to the freenode network. You can also see the
username on the right-hand side is @Madan, and within this #BugsChannel. Whoever joins
this channel, using this channel name and a network, will be shown on the right-hand side.

In the next section, we will ask our bot to join this channel and the same network, and will
see how it appears within the channel.

IRC bots
IRC bot is a program that connects to IRC as one of the clients and appears as one of the
users in the IRC channels. These IRC bots are used to provide IRC services or to host chat-
based custom implementations that will help teams to efficiently collaborate.

Creating our first IRC bot using IRC and Node.js
Let's start by creating a folder on our local drive, in order to store our bot program, from the
Command Prompt:

mkdir ircbot
cd ircbot

A Bug-Tracking Agent for Teams

[225]

Assuming we have Node.js and npm installed, let's create and initialize our package.json,
which will store our bot's dependencies and definitions:

npm init

Once you have gone through the npm init options (which are very easy to follow), you'll
see something similar to this:

In your project folder, you'll see the result, which is your package.json file:

Let's install the irc package from npm. This can be located at
https://www.npmjs.com/package/irc.

In order to install it, run this npm command.

npm install --save irc

https://www.npmjs.com/package/irc

A Bug-Tracking Agent for Teams

[226]

You should then see something similar to this:

Having done this, the next thing to do is to update your package.json in order to include
the "engines" attribute. Open the package.json file with a text editor and update it as
follows:

"engines": {
 "node": ">=5.6.0"
}

Your package.json should then look like this:

Let's create our app.js file, which will be the entry point to our bot, as mentioned while
setting up our node package.

Our app.js should look like this:

var irc = require('irc');
var client = new irc.Client('irc.freenode.net', 'BugTrackerIRCBot', {
 autoConnect: false
});
client.connect(5, function(serverReply) {
 console.log("Connected!\n", serverReply);

A Bug-Tracking Agent for Teams

[227]

 client.join('#BugsChannel', function(input) {
 console.log("Joined #BugsChannel");
 client.say('#BugsChannel', "Hi, there. I am an IRC Bot which track bugs
or defects for your team.\n I can help you using following commands.\n
BUGREPORT \n BUG # <BUG. NO>");
 });
});

Now let's run our Node.js program and see how our console looks. If everything works
well, our console should show our bot as being connected to the required network and also
joined to a channel. The console can be seen to be the following:

Now, if you look at our channel #BugsChannel in our web client, you should see our bot
has joined it and also sent a welcome message as well. Refer to the following screen:

If you look at the the preceding screen, our bot program has executed successfully. Our bot
BugTrackerIRCBot has joined the channel #BugsChannel, and also the bot has sent an
introduction message to all who are on the channel. If you look at the right side of the
screen under usernames, we see BugTrackerIRCBot below @Madan.

A Bug-Tracking Agent for Teams

[228]

Code understanding of our basic bot
After seeing how our bot looks in IRC client, let's look at the basic code implementation
from app.js.

We used irc library with the following line:

var irc = require('irc');

Using irc library, we instantiated the client to connect to one of the IRC networks using the
following code snippet:

var client = new irc.Client('irc.freenode.net', 'BugTrackerIRCBot', {
 autoConnect: false
});

Here, we connected to network irc.freenode.net and provided a nickname of
BugTrackerIRCBot. This name has been given because I would like my bot to track and
report any bugs found in the future. Now, we ask the client to connect and join a specific
channel using the following code snippet:

client.connect(5, function(serverReply) {
 console.log("Connected!\n", serverReply);
 client.join('#BugsChannel', function(input) {
 console.log("Joined #BugsChannel");
 client.say('#BugsChannel', "Hi, there. I am an IRC Bot which track bugs
or defects for your team.\n I can help you using following commands.\n
BUGREPORT \n BUG # <BUG. NO>");
 });
});

In the preceding code snippet, once the client is connected, we get a reply from the server.
This reply is shown on a console. Once successfully connected, we ask the bot to join a
channel using the following code line:

client.join('#BugsChannel', function(input) {

Remember, #BugsChannel is what we have joined to from the web client at the start. Now,
using client.join(), I am asking my bot to join the same channel. Once the bot has
joined, the bot gives a welcome message in the same channel using the function
client.say().

Hopefully, this has given you some basic understanding of our bot and it's code
implementations.

A Bug-Tracking Agent for Teams

[229]

In the next section, we will enhance our bot so that our teams can have an effective
communication experience while chatting.

Enhancing our BugTrackerIRCBot
Having built a very basic IRC bot, let's enhance our BugTrackerIRCBot.

As developers, we would always like to know how our programs or a system is
functioning. To do this, typically, our testing teams carry out testing of a system or a
program, and log the bugs or defects in a bug-tracking software package or system. We
developers can later take a look at those bugs and address them as part of our development
life cycle. During this journey, developers will collaborate and communicate over
messaging platforms such as IRC. We would like to provide a unique experience during
their development by leveraging IRC bots.

So, this is exactly what we are doing. We are creating a channel for communication; all the
team members will be joined to it and our bot will also be there. In this channel, bugs will
be reported and communicated based on developers' requests. Also, if developers need
some additional information about a bug, the chat bot can help them by providing a URL
from the bug-tracking system.

Awesome!!

But, before going into detail, let me summarize how we are going to do this using the
following steps:

Enhance our basic bot program for a more conversational experience
Create a bug-tracking system or bug storage where bugs will be stored and
tracked for developers

Here we mention a bug storage system. In this chapter, I would like to explain
DocumentDB, which is a NoSQL JSON-based cloud storage system. In earlier chapters we
looked at MongoDB. Now we will look at DocumentDB for our bug system.

A Bug-Tracking Agent for Teams

[230]

What is DocumentDB?
In an earlier chapter, I have already explained NoSQLs. DocumentDB is one such NoSQL,
in which data is stored in JSON documents, and is offered on the Microsoft Azure platform.

Details of DocumentDB can be referred to at
https://azure.microsoft.com/en-in/services/documentdb/.

Setting up a DocumentDB for our BugTrackerIRCBot
Assuming you already have a Microsoft Azure subscription, follow these steps to configure
DocumentDB for your bot.

Create account ID for DocumentDB
Let's create a new account called botdb using the following screenshot from the Azure
portal. Select NoSQL API as DocumentDB. Select an appropriate subscription and
resources. I am using the existing resources for this account. You can also create a new
dedicated resource for this account. Once you enter all the required information, hit the
Create button at the bottom to create the new account for DocumentDB.

https://azure.microsoft.com/en-in/services/documentdb/

A Bug-Tracking Agent for Teams

[231]

The newly created account, botdb, can be seen as follows:

Create a collection and database
Select a botdb account from the account lists shown previously. This will show various
menu options such as Properties, Settings, Collections, etc.

Under this account, we need to create a collection to store the bug data. To create a new
collection, click on the Add Collection option, as shown in the following screenshot:

On clicking on the Add Collection option, the following screen will be shown on the right
side of the screen. Please enter the details as shown in the following screenshot:

A Bug-Tracking Agent for Teams

[232]

In the preceding screen, we are creating a new database along with our new collection,
Bugs. This new database will be named BugDB. Once this database has been created, we can
add other bug-related collections in future to the same database. This can be done using the
option Use existing from the preceding screen. Once you have entered all the relevant data,
click OK to create the database as well as the collection. Refer to the following screenshot:

From the preceding screen, the COLLECTION ID and DATABASE shown will be used
while enhancing our bot.

Create data for our BugTrackerIRCBot
Now we have the BugsDB with the bugs collection, which will hold all the data for bugs.
Let's add some data into our collection. To add a data item, let's use the menu option
Document Explorer shown in the following screenshot:

A Bug-Tracking Agent for Teams

[233]

This will open up a screen showing the list of Databases and Collections created so far.
Select our database of BugDB and the collection of Bugs from the available list. Refer to the
following screenshot:

To create a JSON document for our bugs collection, click on the Create option. This will
open up a New Document screen to enter the JSON-based data. Please enter a data item as
per the following screenshot:

We will be storing id, status, title, description, priority,assignedto, and url
attributes for our single bug document, which will be stored in the bugs collection. To save
the JSON document in our collection, click the Save button. Refer to the following
screenshot:

A Bug-Tracking Agent for Teams

[234]

This way we can create sample records in the bugs collection, which will later be wired up
in a Node.js program. A sample list of bugs can be seen in the following screenshot:

To summarize the section so far, we have determined how to use DocumentDB from
Microsoft Azure. Using DocumentDB, we created a new collection along with new database
to store bug data. We also added some sample JSON documents in the bugs collection.

Now let's look at how we can wire up our DocumentDB with Node.js.

Wiring up DocumentDB and Node.js
Let's go back to our ircbot directory and install the documentdb package from npm. This
is simply Node.js SDK for Microsoft Azure DocumentDB. This is located at URL
https://www.npmjs.com/package/documentdb.

In order to install it, run this npm command:

npm install documentdb --save

https://www.npmjs.com/package/documentdb

A Bug-Tracking Agent for Teams

[235]

You should then see something similar to this:

Let's modify our app.js file so that we can access DocumentDB-based data using
DocumentDB APIs.

To wire up DocumentDB with Node.js, we will use the following code:

var DocumentClient = require('documentdb').DocumentClient;
var host = "https://botdb.documents.azure.com:443/";
var masterKey = "<YOUR PRIMARY KEY>";
var docclient = new DocumentClient(host, {masterKey: masterKey});

docclient.readDocuments('dbs/BugDB/colls/Bugs').toArray(function (err,
docs) {
 console.log(docs.length + ' Documents found');
});

In the the preceding code, we are trying to read documents from our DocumentDB. Now, to
instantiate DocumentClient, we need the host and masterkey of our DocumentDB
account. Refer to the following screenshot to locate host, which is only a URl and
masterkey is only a PRIMARY KEY.

A Bug-Tracking Agent for Teams

[236]

To read all the documents from our collection, we use the following code lines:

docclient.readDocuments('dbs/BugDB/colls/Bugs').toArray(function (err,
docs) {
 console.log(docs.length + ' Documents found');
});

readDocuments() needs an argument of collection link. This collection link is simply the
path to our collection. This is given as the following:

dbs/<Your Database>/colls/<Your Collection ID>

Our app.js now should look like this:

var irc = require('irc');
var client = new irc.Client('irc.freenode.net', 'BugTrackerIRCBot', {
 autoConnect: false
});
client.connect(5, function(serverReply) {
 console.log("Connected!\n", serverReply);
 client.join('#BugsChannel', function(input) {
 console.log("Joined #BugsChannel");
 client.say('#BugsChannel', "Hi, there. I am an IRC bot which track bugs
or defects for your team.\n I can help you using following commands.\n
BUGREPORT \n BUG # <BUG. NO>");
 });
});

var DocumentClient = require('documentdb').DocumentClient;
var host = "https://botdb.documents.azure.com:443/";
var masterKey = "<YOUR PRIMARY KEY>";
var docclient = new DocumentClient(host, {masterKey: masterKey});

docclient.readDocuments('dbs/BugDB/colls/Bugs').toArray(function (err,
docs) {
 console.log(docs.length + ' Documents found');
});

Let's go back to our ircbot directory with a Command Prompt and run our node program.
Once you run this, the program will connect to our collection using Microsoft Azure
DocumentDB Node.js SDK. After reading the documents, on the Command Prompt we will
see the number of documents read. For details, please refer the following screenshot:

A Bug-Tracking Agent for Teams

[237]

Since our IRC client is connecting asynchronously, we will see a reply from IRC Server once
received. In this case, we got the response from DocumentDB early, so we see 6
Documents found on the console.

So far, we are able to connect to DocumentDB and able to retrieve documents from the
same. Now, in the next and final section, we will wire up all of this together and we will
also enhance the conversational experience of our bot.

Wiring up all of this together
To wire up all the things together, let's modify our earlier app.js to be the following:

var irc = require('irc');

var client = new irc.Client('irc.freenode.net', 'BugTrackerIRCBot', {
 autoConnect: false
});

client.connect(5, function(serverReply) {
 console.log("Connected!\n", serverReply);
 client.join('#BugsChannel', function(input) {
 console.log("Joined #BugsChannel");
 client.say('#BugsChannel', "Hi, there. I am an IRC Bot which track
bugs or defects for your team.\n I can help you using following commands.\n
BUGREPORT \n BUG # <BUG. NO>");
 });
});

var DocumentClient = require('documentdb').DocumentClient;
var host = "https://botdb.documents.azure.com:443/";
var masterKey = "<PRIMARY KEY>";
var docclient = new DocumentClient(host, {masterKey: masterKey});

client.addListener('message', function (from, to, text) {
 var str = text;
 if (str.indexOf('BUGREPORT') === -1){
 if (str.indexOf('BUG #') === -1){
 client.say('#BugsChannel', "I could not get that!\n Send me
commands like,\n BUGREPORT \n BUG # <BUG. NO>");
 }
 else {
 client.say('#BugsChannel', "So you need info about "+text);
 client.say('#BugsChannel', "Wait for a moment!");
 var t= text.substring(6,text.length);
 var temp = t.trim();
 var querySpec = {

A Bug-Tracking Agent for Teams

[238]

 query: 'SELECT * FROM Bugs b WHERE b.id= @id',
 parameters: [
 {
 name: '@id',
 value: temp
 }
]
 };
 docclient.queryDocuments('dbs/BugDB/colls/Bugs',
querySpec).toArray(function (err, results) {
 if (results.length>0){
 client.say('#BugsChannel', "["+ results[0].url+"]
[Status]: "+results[0].status+" [Title]:"+results[0].title);
 }
 else{
 client.say('#BugsChannel', 'No bugs found.');
 }
 });
 }
 }
 else{
 client.say('#BugsChannel', "So you need a Bug Report!");
 client.say('#BugsChannel', "Wait for a moment!");
 var querySpec = {
 query: 'SELECT * FROM Bugs b WHERE b.status= @status',
 parameters: [
 {
 name: '@status',
 value: 'Open'
 }
]
 };
 docclient.queryDocuments('dbs/BugDB/colls/Bugs',
querySpec).toArray(function (err, results) {
 client.say('#BugsChannel','Total Open Bugs:'+results.length);
 });
 var querySpec = {
 query: 'SELECT * FROM Bugs b WHERE b.status= @status',
 parameters: [
 {
 name: '@status',
 value: 'Closed'
 }
]
 };

 docclient.queryDocuments('dbs/BugDB/colls/Bugs',
querySpec).toArray(function (err, results) {

A Bug-Tracking Agent for Teams

[239]

 client.say('#BugsChannel','Total Closed Bugs:'+results.length);
 });
 }
});

Code understanding
I have already explained how we can connect to DocumentDB using URI and PRIMARY
KEY. Now let's focus on how we have implemented the conversational experience and how
we are getting bug information based on that within our BugTrackerIRCBot.

client.addListener('message', function (from, to, text) {
 var str = text;
 if (str.indexOf('BUGREPORT') === -1){
 if (str.indexOf('BUG #') === -1){
 client.say('#BugsChannel', "I could not get that!\n Send me
commands like,\n BUGREPORT \n BUG # <BUG. NO>");
 }

In the the preceding code, our IRC client has been added with a listener that listens to all the
messages within the channel. So, as our bot joins channel, the bot mentions which
commands can be used. These commands are BUGREPORT and BUG # <BUG NO.>.

Knowing this, when our incoming message contains words like BUGREPORT and BUG # then
our bot BugTrackerIRCBot gathers information based on those commands. If the message
does not match, then the bot replies with a proper message and also provides usable
commands.

Let's assume one of the developers is looking for the total number of defects and so the
developer enters the command BUGREPORT, then our bot will query the DocumentDB
database and will get the report for open and closed bugs from our bugs collection. This
code is as follows:

client.say('#BugsChannel', "So you need a Bug Report!");
client.say('#BugsChannel', "Wait for a moment!");
var querySpec = {
 query: 'SELECT * FROM Bugs b WHERE b.status= @status',
 parameters: [
 {
 name: '@status',
 value: 'Open'
 }
]
};
docclient.queryDocuments('dbs/BugDB/colls/Bugs',

A Bug-Tracking Agent for Teams

[240]

querySpec).toArray(function (err, results) {
 client.say('#BugsChannel','Total Open Bugs:'+results.length);
});

In the the preceding code, once the developer's intention of getting a report is clear, our bot
replies with confirmation using the client.say() function. The bot interactively asks the
developer to wait for a moment and in the mean time queries DocumentDB using the
function docclient.queryDocuments(). Once the data is received, again the bot uses the
client.say() function and returns the information in a chat window. In the preceding
code, the bot first returns Total Open Bugs and then Total Closed Bugs.

Now you may ask why two different calls are made for Open and Closed bugs; the reason
is that, currently, there is no native support for AGGREGATE functions in DocumentDB.
We need to know only the Open and Closed numbers of bugs, so we use the
docclient.queryDocuments() function twice to get the data.

BugTrackerIRCBot can also give us information about individual bugs using the command
BUG #. The implementation for the same can be seen in the following code snippet:

client.say('#BugsChannel', "So you need info about "+text);
client.say('#BugsChannel', "Wait for a moment!");
var t= text.substring(6,text.length);
var temp = t.trim();
var querySpec = {
 query: 'SELECT * FROM Bugs b WHERE b.id= @id',
 parameters: [
 {
 name: '@id',
 value: temp
 }
]
};
docclient.queryDocuments('dbs/BugDB/colls/Bugs',
querySpec).toArray(function (err, results) {
 if (results.length>0){
 client.say('#BugsChannel', "["+ results[0].url+"] [Status]:
"+results[0].status+" [Title]:"+results[0].title);
 }
 else{
 client.say('#BugsChannel', 'No bugs found.');
 }
});

A Bug-Tracking Agent for Teams

[241]

In the the preceding code, when the developer gives the BUG # command while chatting,
our code will extract only the bug number after the symbol #.Then our bot will reply with
which bug details will be retrieved from the database. If the records are not found, our bot
will reply with an appropriate message as well.

The variable querySpec will formulate a query with the parameter of the bug number
entered by the developer in a chat window and then will be processed using the function
docclient.queryDocuments(). Once the function retrieves the data for a specified bug
number, our bot will formulate the following response:

client.say('#BugsChannel', '[http://mybugsystem.net/'+ results[0].id +"]
[Status]: "+results[0].status+" [Title]:"+results[0].title);

To the end user or a developer, we show the URL of a bug from the bug-tracking system, as
well as status of the bug and a title.

Lots of code to understand so far!!

Let's run our bot now, and see how it interacts and provides us with a great conversational
experience.

Running our enhanced BugTrackerIRCBot
Let's go back to our ircbot directory, on a Command Prompt, and run our modified
app.js. Once the code has run successfully, you should see the following at the Command
Prompt:

A Bug-Tracking Agent for Teams

[242]

This is assuming that you have already connected to the IRC client, as stated earlier. Now
let's look at our channel #BugsChannel from an IRC client. We should see our bot as the
following:

In the the preceding screenshot, you can see the bot has joined the channel and has also
introduced itself to us with usable commands.

Let's enter the command BUGREPORT and see what the bot replies to us. Here, the bot is
getting the bug report, as explained earlier in the code description. The reply seen is as
follows:

A Bug-Tracking Agent for Teams

[243]

Now let's ensure our other command also works. So, now we are interested in information
about an individual bug, enter the command BUG # 125 and see what our bot replies:

The bot replied with the URL of the bug-tracking system for a bug, and also Status and
Title information.

Let's cross check in DocumentDB whether the bot is providing the correct information or
not.

In DocumentDB, for Bug # 125, the following data can be seen:

If you enter a bug number that does not exist in DocumentDB, then the bot replies
accordingly; refer to the following screenshot:

Here I entered BUG # 12345 and the bot searched and could not find the bug, so it
responded No bugs found.

A Bug-Tracking Agent for Teams

[244]

So, we are able to extend our bot to meet our requirements. BugTrackerIRCBot can be
further extended to assign bugs or even to create a new bug using appropriate commands
such as ASSIGNBUG, NEWBUG, etc. I will leave it up to the users to extend our
BugTrackerIRCBot that way.

Hopefully, you now have enough insight on how we can leverage IRC bots during
development, and how we can provide an effective and efficient conversational experience
to developers who are collaborating and communicating through IRC clients.

Summary
Every development team needs bug-tracking and reporting tools. There are typically needs
for bug reporting and bug assignment. In the case of critical projects, these needs become
very critical for project timelines. This chapter has showed us how we can provide a
seamless experience to developers while they are communicating with peers within a
channel.

Firstly, we created a very simple IRC bot in Node.js and verified how it can communicate
within a channel using the IRC web-based client. Then, we extended our basic bot such that,
based on a user's request, the bot will give us information quickly and easily while chatting
itself. We also leveraged Azure-based cloud storage to store the bug database. This time we
used DocumentDB – a NoSQL JSON database from the Microsoft Azure platform. We
wired up DocumentDB libraries and IRC libraries in Node.js for our bot to function and had
a great conversational experience.

In today's world of collaboration, development teams that use such integrations and
automations will be efficient and effective while delivering their quality products.

In the next chapter, you will learn how to integrate Salesforce APIs and Kik's chat platform
for the Salesforce CRM bot.

9
A Kik Salesforce CRM Bot

Kik Messenger, or simply Kik, is a free mobile messenger app. This is available on iOS,
Android, and Windows Phone. Using this instant messenger app, users can send or receive
messages, photos, videos, and so on.

Kik is mainly famous because it does not verify user information upon registration. This
helps users to maintain their anonymity.

Kik users have their own code. Using these codes, users can connect with their friends
quickly and easily. Users can scan the code of a user and start chatting right away. This is
also applicable to Kik groups. Users can scan Kik codes for groups and join them easily.

The simplicity and ease of establishing a chat communication and, mainly, the anonymity,
have made Kik a very popular chat platform among young people.

In this chapter, we will learn about how to create a basic Kik bot and how to enhance the
same by integrating it with Salesforce CRM.

But before going into the details, let's understand more about Salesforce CRM.

What is Salesforce?
Salesforce is a cloud-based customer relationship management (CRM) software solution
for sales, service, marketing, analytics, and collaboration. All these software solutions are
prebuilt and run on a cloud platform. Salesforce does not need any IT person to set it up or
manage. CRM users just need to log in to start using this platform.

Details of Salesforce can be found at https://www.salesforce.com.

https://www.salesforce.com

A Kik Salesforce CRM Bot

[246]

What is Force.com?
Force.com is a platform as a service (PaaS). This platform consists of underlying
components such as database, code, and user interface, on which developers can create and
deliver powerful enterprise apps. With this platform, developers can deliver powerful apps
just by using a few clicks or code. Even business users can develop and deliver app
workflows just by dragging and dropping.

In short, Salesforce, with its products and solutions, is a customer success platform which
changes the way people connect with their customers.

Kik mobile app
As mentioned in the introduction, Kik is a free mobile messenger app. This can be
downloaded from the App Store
(https://itunes.apple.com/ca/app/kik/id357218860?mt=8) or Google Play Store
(https://play.google.com/store/apps/details?id=kik.android&hl=en).

For this chapter, I am assuming the Kik mobile app has already been downloaded and
installed from the App Store or Google Play Store.

I have already installed the Kik app from the Google Play Store and also created my
account on the Kik app. The following screenshot shows what the Kik mobile app looks
like:

https://itunes.apple.com/ca/app/kik/id357218860?mt=8
https://play.google.com/store/apps/details?id=kik.android&hl=en

A Kik Salesforce CRM Bot

[247]

Kik does not have a web or desktop version for messaging so we will be using the Kik app
from a mobile.

Kik bots
Kik bots are just programs that provide users with an automated conversational experience
with the help of Kik APIs. Users can chat to these bots for fun, for any help, or for seeking
information for entertainment. Kik has recently released a Bot Shop. Users can discover bots
and connect them easily.

Our Kik bot
Our Kik bot will be based on the Salesforce and Force.com platforms, which I explained
previously. At a high level, we will be following the following steps for our bot:

Developing a basic Kik bot1.
Enhancing our basic bot program for a more conversational experience as per Kik2.
guidelines
Establishing a connection between CRM and our basic bot3.
Based on the user's requirements, getting CRM data from Salesforce and4.
presenting the user data in the Kik app

Creating our first Kik bot
Just like Slack, Kik also helps us to create our bot using an automated agent, Botsworth.
Let's follow the steps to create our first Kik bot.

A Kik Salesforce CRM Bot

[248]

Using the Kik dev platform on a browser
Visit h t t p s ://d e v . k i k . c o m /#/h o m e , as shown in the following screenshot:

The URL opens the Kik developer platform, which helps us to create and configure our Kik
bot. This screen shows a Kik code for creating a bot. This code needs to be scanned using
the Kik app, which we have already installed and configured with our Kik account as well.

Using the Kik app from a mobile
Open the Kik app on a device and pull down from the top of your main chat list to open the
scanner, as shown in the following screenshot:

https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home

A Kik Salesforce CRM Bot

[249]

Using the scanner, scan the Kik code from h t t p s ://d e v . k i k . c o m /#/h o m e .

This scanner can also be located from the Kik app's settings menu (a small gear icon on the
top right) by selecting your Kik Code page from the menu items.

After scanning, Kik's trusty bot, Botsworth, will send a message, as shown in the following
screenshot, on our app:

Now provide a unique bot name to Botsworth in the chat window itself.

https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home
https://dev.kik.com/#/home

A Kik Salesforce CRM Bot

[250]

Botsworth will create our bot and will also notify us of the same, as shown in the following
screenshot:

Now let's go back to our browser, where the https://dev.kik.com/#/home page is open.
You will notice that the newly configured bot account has logged in to the platform and is
showing bot properties such as Display Name, Admins, and API Key, as shown in the
following screenshot:

https://dev.kik.com/#/home

A Kik Salesforce CRM Bot

[251]

The bot name, sforcebot, and API Key will be used to wire up Kik APIs while building a
conversational experience later.

To receive messages from users, our bot needs Webhooks integration. Before we set up
Webhooks, let's create a Node.js server app for our bot on Azure in the next section.

Setting up our bot server in Azure
Let's log in to the Azure portal and locate App Services to create a Node.js-based bot server
as thesfbotsite. This server app is based on the Node JS Empty Web App template.
Refer to the following screenshot:

This will provision our thesfbotsite.azurewebsites.net server app in Azure.

To modify the basic bot program, first we will clone the template on our local filesystem
using git commands. Then we will modify it and then deploy it to Microsoft Azure.

Let's start by creating a folder in our local drive in order to store our bot program from the
Command Prompt:

mkdir thesfbot
cd thesfbot

Now clone the template to the local filesystem and change the remote git repository as well
for this bot.

A Kik Salesforce CRM Bot

[252]

Detailed steps of how to clone the template to the local filesystem and how to change the
remote git repository can be found in the Setting up our bot server in Azure section in
Chapter 7, Facebook Messenger Bot Who's Off – A Scheduler Bot for Teams.

Kik bot configuration
Before our bot can start interacting with users, it needs configuration. To configure our bot,
we will be making a POST request with a Webhook URL to which messages will be
delivered. Also, any additional features for read receipts and receive typing can also be
configured here.

This can be done by firing a URL command or by writing a JavaScript with the following
code in a simple Node.js program:

request.post({
 url: "https://api.kik.com/v1/config",
 auth: {
 'user' : 'sforcebot',
 'pass' : '<YOUR BOT API KEY>'
 },
 json:{"webhook": "https://thesfbotsite.azurewebsites.net/incoming",
 "features": {
 "receiveReadReceipts": false,
 "receiveIsTyping": false,
 "manuallySendReadReceipts": false,
 "receiveDeliveryReceipts": false
 }
 }
}, function(error, response, body){
 if(error) {
 console.log(error);
 } else {
 console.log(response.statusCode, body);
 }
});

This code sets the webhook for our bot to the newly created site in Azure at the path
/incoming.

Details of these configurations can be found at
https://dev.kik.com/#/docs/messaging#configuration.

https://dev.kik.com/#/docs/messaging#configuration

A Kik Salesforce CRM Bot

[253]

Wiring up our bot server with the Kik platform
In order for our bot to interact with the Kik platform, we will be using the Kik Node API
library. This can be found at h t t p s ://w w w . n p m j s . c o m /p a c k a g e /@k i k i n t e r a c t i v e /k i k .

Let's install the Kik API library and other libraries using the following command:

npm install @kikinteractive/kik http util --save

Let's update our server.js file as follows:

var util = require('util');
var http = require('http');
var Bot = require('@kikinteractive/kik');
var request = require('request');

// Configure the bot
var bot = new Bot({
 username: 'sforcebot',
 apiKey: '<YOUR BOT API KEY>'
});

bot.send(Bot.Message.text('The SForceBot Started... '), 'mbhintade');

bot.onTextMessage(/^hi|hello|how|hey$/i, (incoming, next) => {
 incoming.reply('Hello,I am the SForce Bot. I provide your CRM
information just by chatting.');
 });

// Set up your server and start listening
var server = http
 .createServer(bot.incoming())
 .listen(process.env.PORT || 8080);

Understanding the code of our basic Kik bot
Let's look at basic code implementation from server.js.

We used the @kikinteractive/kik library with the following line:

var Bot = require('@kikinteractive/kik');

https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik
https://www.npmjs.com/package/@kikinteractive/kik

A Kik Salesforce CRM Bot

[254]

Using this library, we instantiated our bot by providing username and apikey:

var bot = new Bot({
 username: 'sforcebot',
 apiKey: '<YOUR BOT API KEY>'
});

When our bot is wired up successfully, this will show up in the Kik app. Also, our bot will
notify the user mbhintade with the help of the following code:

bot.send(Bot.Message.text('The SForceBot Started... '), 'mbhintade');

When we say hi or hello to our bot, the bot will reply to us using the following code lines:

bot.onTextMessage(/^hi|hello|how|hey$/i, (incoming, next) => {
 incoming.reply('Hello,I am the SForce Bot. I provide your CRM
information just by chatting.');
 });

In the preceding code snippet, we are using the regular expression
/^hi|hello|how|hey$/i to find out what user is messaging. The regular expression used
precedingly can be described as follows:

Character Description

/ Regular expression

^ Matches character hi and not from any character group

| Matches any single word between two characters

$ Matches the end of the input

I hope this has given some basic understanding of our Kik bot and its code implementation.
Now let's run our bot and see how it looks in the Kik mobile app.

Running our basic Kik bot
Let's deploy our modified server.js and installed Node packages using the following git
commands:

git add .
git commit -m "First Change to server.js"
git push origin master

A Kik Salesforce CRM Bot

[255]

Once the code is deployed to Azure, hit the URL
https://thesfbotsite.azurewebsites.net and see if there are any errors in the Azure log
stream. If the code is successful, then the bot server will start and our bot will be shown in
Kik chats with active status.

When the bot started, it showed us the message, The SForceBot Started…

When I greeted it by saying Hi, the bot replied with the message Hello, I am the SForce
Bot. I provide your CRM information just by chatting.

Refer to the following screenshot:

In the next section, we will enhance our bot for an interesting use case.

Enhancing our Kik bot
Having built a very basic Kik bot, sforcebot, let's enhance our Kik bot.

Typically, sales and marketing business users always need to keep track of their sales and
marketing activities. They need to track their own leads and opportunities, and maintain
campaigns. Now, to track these activities, they rely on CRM systems.

https://thesfbotsite.azurewebsites.net

A Kik Salesforce CRM Bot

[256]

In the next section, we will actually look at how a bot can be effective in such business use
cases. Our bot will be now integrated with a CRM system and will provide all the required
information to the business users at their fingertips.

Let's assume you are one of the business users who work in sales and marketing. Now, you
would like to see upcoming business opportunities quickly and easily. It is assumed that
your organization is already on a cloud-based CRM. So you will be interacting with the Kik
bot named sforcebot. During the interaction, you will request upcoming opportunities for
the current month. The bot knows who you are and will look for opportunities owned by
you for the current month. sforcebot will gather the information and will present
opportunities in a nice readable format within a chat window.

Awesome!!

Salesforce and our bot
Let's assume we have our business opportunities data in Salesforce and we have already
logged in to the Saleforce platform. Now, from our bot perspective, we are interested in
showing opportunity data for the current month and the next month. In Salesforce, we get
these views preconfigured for us.

Opportunities closing this month can be seen as in the following screenshot:

Opportunities closing next month can be seen as in the following screenshot:

A Kik Salesforce CRM Bot

[257]

In our bot, we will be pulling the same data based on users' requests for information. So it's
time to prepare for Saleforce and our bot integration.

Security token to access the Salesforce API
To access information from Salesforce, we need a security token. This token is a case-
sensitive alphanumeric code which is associated with your password. Whenever we change
our password, this security token is also reset.

Let's get our security token for our Salesforce API access, using the Reset Security Token
menu option from Salesforce as follows:

To quickly locate the Reset Security Token option, you can use the Quick Find/Search
option from the left corner of menu options from Salesforce. In the preceding screenshot, I
entered the words Security Token and searched for the option, Reset Security Token.

Click on the Reset Security Token button to get the fresh token for accessing Salesforce
APIs. The new token will be sent to your registered e-mail ID.

Wiring it up all together
To wire up Salesforce and Node.js, we will be using the Salesforce API library JSforce. This
can be located at https://www.npmjs.com/package/jsforce.

Let's install the JSforce library using the following command:

npm install jsforce --save

https://www.npmjs.com/package/jsforce

A Kik Salesforce CRM Bot

[258]

To wire up all the things together, let's modify our earlier server.js as follows:

var util = require('util');
var http = require('http');
var Bot = require('@kikinteractive/kik');
var request = require('request');

var username = "<SALESFORCE_USERNAME>";
var password = "<SALESFORCE_PASSWORD>";
var accesstoken = password + '<SALESFORCE_SECURITY_TOKEN>';

var fromUserName;

// Configure the bot
var bot = new Bot({
 username: 'sforcebot',
 apiKey: '<YOUR BOT API KEY>'
});

var jsforce = require('jsforce');
var conn = new jsforce.Connection();

bot.onTextMessage(/^hi|hello|how|hey$/i, (incoming, next) => {
 bot.getUserProfile(incoming.from)
 .then((user) => {
 fromUserName = user.username;
 incoming.reply('Hello,I am the SForce Bot. I provide your CRM
information just by chatting.');

 bot.send(Bot.Message.text('Select any option...')
 .addResponseKeyboard(['Closing This Month', 'Closing Next Month'])
 , fromUserName);
 });
});

bot.onTextMessage(/^Closing This Month/i, (incoming, next) => {
 incoming.reply('Opportunities for this month...!');
 conn.login(username, accesstoken, function (err, res) {
 if (err) { return console.error(err); }
 console.log(res.id);
 var records = [];
 var qry = "SELECT Account.Name,Name,Amount FROM Opportunity WHERE
CloseDate = THIS_MONTH ORDER BY AMOUNT DESC"
 conn.query(qry, function (err, result) {
 if (err) { return console.error(err); }
 rec = result.records;

A Kik Salesforce CRM Bot

[259]

 rec.forEach(function (d) {
 bot.send(Bot.Message.text(d.Name + ' for ' + d.Account.Name + '
worth ' + d.Amount.toLocaleString('en-US', { style: 'currency', currency:
'USD' }))
 .addResponseKeyboard(['Closing This Month', 'Closing Next
Month']), fromUserName);
 });
 });
 });
});

bot.onTextMessage(/^Closing Next Month/i, (incoming, next) => {
 incoming.reply('Finding your opportunities for next month...!');
 conn.login(username, accesstoken, function (err, res) {
 if (err) { return console.error(err); }
 console.log(res.id);
 var records = [];
 var qry = "SELECT Account.Name,Name,Amount FROM Opportunity WHERE
CloseDate = NEXT_MONTH ORDER BY AMOUNT DESC"
 conn.query(qry, function (err, result) {
 if (err) { return console.error(err); }
 rec = result.records;
 rec.forEach(function (d) {
 bot.send(Bot.Message.text(d.Name + ' for ' + d.Account.Name + '
worth ' + d.Amount.toLocaleString('en-US', { style: 'currency', currency:
'USD' }))
 .addResponseKeyboard(['Closing This Month', 'Closing Next
Month']), fromUserName);
 });
 });
 });
});

// Set up your server and start listening
var server = http
 .createServer(bot.incoming())
 .listen(process.env.PORT || 8080);

Understanding the code
We already have a code understanding for the basic bot. Let's look at the code step by step
from a Salesforce integration perspective:

var username = "<SALESFORCE_USERNAME>";
var password = "<SALESFORCE_PASSWORD>";
var accesstoken = password + '<SALESFORCE_SECURITY_TOKEN>';
var fromUserName;

A Kik Salesforce CRM Bot

[260]

We have declared variables for the Salesforce username and password. We have also
declared a variable, accesstoken. This is needed while accessing Salesforce APIs.
The fromUserNam variable is declared for storing the username. This is used while replying
to messages from the user who has started the conversation.

Now let's look at how we are wiring up Salesforce for our bot:

var jsforce = require('jsforce');
var conn = new jsforce.Connection();

These code lines use the npm package, jsforce, for connecting Salesforce.

Now let's see how we are enhancing the conversation experience for our bot. The following
code lines help to guide the end user with possible input options:

bot.onTextMessage(/^hi|hello|how|hey$/i, (incoming, next) => {
 bot.getUserProfile(incoming.from)
 .then((user) => {
 fromUserName = user.username;
 incoming.reply('Hello,I am the SForce Bot. I provide your CRM
information just by chatting.');

 bot.send(Bot.Message.text('Select any option...')
 .addResponseKeyboard(['Closing This Month', 'Closing Next Month'])
 , fromUserName);
 });
});

In the preceding code, whenever the end user says hi or hello or how or hey, the
bot.onTextMessage() function is called and bot gets the username from an incoming
message with the help of the bot.getUserProfile()function.

Once the name of user who is chatting is retrieved, the bot replies with an introduction to
the user using the incoming.reply() function.

Along with this reply, sforcebot also shows a keyboard with suggested responses. This type
of keyboard response is generated using the addResponseKeyboard() method with an
array of suggestions such as (['Closing This Month', 'Closing Next Month']).

A Kik Salesforce CRM Bot

[261]

To understand this in a better way, let me show you how the suggested responses can be
seen in the Kik app in our case:

Closing This Month and Closing Next Month are appearing as possible suggested
responses which the user can consider. This is really intuitive and helps the user to easily
select options rather than entering keywords for further communication. The user can still
enter these keywords and continue, but showing such a keyboard saves a lot of time for
users. This also guides the user during the conversations.

In the next section, we will see code implementations for querying data from Salesforce.

Let's assume now the user has selected one of the options, Closing This Month. Our bot
quickly captures with the help of the bot.onTextMessage(/^Closing This Month/i,
(incoming, next) function and starts responding. There is a regex pattern matching
done to understand what the user is selecting. Refer to the following code snippet:

bot.onTextMessage(/^Closing This Month/i, (incoming, next) => {
 incoming.reply('Opportunities for this month...!');
 conn.login(username, accesstoken, function (err, res) {
 if (err) { return console.error(err); }
 console.log(res.id);
 var records = [];
 var qry = "SELECT Account.Name,Name,Amount FROM Opportunity WHERE
CloseDate = THIS_MONTH ORDER BY AMOUNT DESC"
 conn.query(qry, function (err, result) {

A Kik Salesforce CRM Bot

[262]

 if (err) { return console.error(err); }
 rec = result.records;
 rec.forEach(function (d) {
 bot.send(Bot.Message.text(d.Name + ' for ' + d.Account.Name + '
worth ' + d.Amount.toLocaleString('en-US', { style: 'currency', currency:
'USD' }))
 .addResponseKeyboard(['Closing This Month', 'Closing Next
Month']), fromUserName);
 });
 });
 });
});

Since the user has selected the option to see opportunities closing this month, the bot will
log in to Salesforce and query the data with the help of the conn.login()and
conn.query() functions.

While logging in to Salesforce, JSforce uses the SOAP login API, so we are using username
and accesstoken. Once login is established, we execute the query on Salesforce and get
the data. We iterate the results and formulate the message to be sent to the user identified
by the fromUserName variable.

If you notice, the qry variable is the Salesforce Object Query Language (SOQL). You can
find further details of SOQL at h t t p s ://d e v e l o p e r . s a l e s f o r c e . c o m /d o c s /a t l a s . e n - u s .

s o q l _ s o s l . m e t a /s o q l _ s o s l /s f o r c e _ a p i _ c a l l s _ s o q l _ s o s l _ i n t r o . h t m .

In our query, SOQL has made it simpler for date operations. For getting opportunities for
the current month from Salesforce, we just need to apply a filter using THIS_MONTH and
NEXT_MONTH. This really made my life simpler while building these two use cases. SOQL is
great!

Once this response is set to the user, the user might be interested in opportunities for the
next month as well, so we are again sending suggested responses at the end.

The code implementation for Closing Next Month is on similar lines to Closing This
Month. I have kept both the implementations in separate functions. This can be further
optimized. I will leave this task to the readers.

Let's run our bot now and see how it interacts and provides us with a great conversational
experience.

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm

A Kik Salesforce CRM Bot

[263]

Running our enhanced Kik Salesforce bot
Deploy the updated code to Azure and start our sforcebot server. After successfully starting
a bot, it will be shown in Kik. Or you can search by name and then add it for chatting. Once
added, just say Hi and see how the bot is responding to us, as shown in the following
screenshot:

On selecting the option, Closing This Month:

A Kik Salesforce CRM Bot

[264]

Hopefully, you have now enough insight on how we can leverage the Kik platform and Kik
bots for better connection with your employees, users, and partners.

sforcebot for campaign management
So far, we have been retrieving opportunities data in messaging platforms; we can also
retrieve Salesforce campaigns data. Assume that one of the universities is using Salesforce
for their campaign management. This university would like to spread its campaigns across
its students and to ensure there is a better connection and engagement between students
and the university while running various campaigns.

Knowing students' presence on the Kik platform, this becomes a very effective way for
connecting to students. Using the same sforcebot, this can be easily achieved. Instead of
opportunities, now the data will be coming from campaigns. I am just illustrating this use
case using the following screenshots:

In the preceding screenshots, just by passing the Campaign keyword, sforcebot is
displaying active campaigns from Salesforce. Since these are campaigns, we are not only
showing text messages, but we are also showing pictures about these campaigns and their
start date and end date.

This way, universities can establish a connection with students and improve their
engagement and participation for such events.

A Kik Salesforce CRM Bot

[265]

Summary
Every enterprise would like to connect to their customers, employees, and partners.
Knowing users' increasing engagement with chat platforms, these enterprises can leverage
Kik-like messaging platforms for better connection.

In this chapter, we implemented the Kik bot sforcebot, assuming users' engagement with
the Kik messaging platform. Sales and marketing users can collaborate as well as seeking
the right information at the right time and tracking their sales and marketing activities
easily and effectively.

Firstly, we created a basic sforcebot by scanning a code and implemented it in Node.js. Then
we extended our sforcebot and wired it up with Salesforce. Now, based on the user's
request, sforcebot provided information on the user's opportunities in the chatting interface
itself.

We also saw a small example of how universities can use the Kik platform and Salesforce to
connect to their graduating students. This way, universities can connect to their graduates
and spread the word about campaigns they are running, during their academics.

I hope you had a nice Kik around with this chapter.

Index

A
Air France-KLM
 URL 85
Amazon Simple Storage Service (Amazon S3)

storage
 about 161
 buckets, creating 162
 console 161
 document, storing in bucket 163
 documents, marking as public 164, 165
 MongoDB data, updating with document links

165

Amazon Web Services (AWS)
 about 11, 161
 URL 161
Artificial Intelligence (AI) 6
Atom
 URL 17
Azure CLI
 URL 23
Azure Portal
 URL 48
Azure Storage Explorer
 URL 58
Azure
 bot functionality 22, 24, 26, 27, 29
 bot program, modifying for Facebook verification

183, 184
 Facebook Messenger bot, troubleshooting 189,

191

 Facebook verification, setting up 185, 187, 188
 local git repository, setting up 181, 182
 server, setting up for Facebook Messenger bot

178, 180, 181
 server, setting up for Kik bot 251, 252
 URL 24, 55, 255
 Webhook, setting up 185, 187, 188

B
Bot Framework
 URL 33, 41
botkit package
 URL 149
Botkit
 about 148
 and Node.js, used for creating DocMan bot 148,

150, 151, 153, 154
 URL 148
botresearcher group
 URL 145, 147
bots
 need for 8
 registering, on Slack 98, 100
Botsworth 247
BugTrackerIRCBot
 account ID, creating for DocumentDB 230, 231
 coding 239, 241
 collection, creating 231, 232
 data, creating 232, 233, 234
 database, creating 231, 232
 DocumentDB, setting up 230
 DocumentDB, wiring up with Node.js 234, 235,

236

 enhancing 229
 executing 241, 242, 243, 244
 implementing 237

C
campaign management
 with sforcebot 264
Command Line Interface (CLI) 23
Customer Relationship Management (CRM) 11,

245

[267]

D
DocMan bot
 coding 167, 168, 170
 creating, with Botkit and Node.js 148, 149, 151,

153, 154
 enhancing 154
 enhancing, with Amazon S3 storage 161
 enhancing, with MongoDB 155
 enhancing, with MongoJS 158
 implementing 166
 MongoDB database, creating 155
 setting up 145, 146, 148
 wiring up, with MongoDB 158, 160
documentdb package
 URL 199, 234
DocumentDB
 about 197, 229, 230
 account ID, creating 197, 198
 collection, creating 198
 database, creating 198
 setting up, for BugTrackerIRCBot 230
 setting up, for Who's Off bot 197
 URL 197, 230

E
Express
 URL 22, 37, 125

F
Facebook Messenger bot
 app, creating 175, 176, 177, 178
 deploying 188
 Facebook verification, setting up 185, 187, 188
 page, creating 173, 174, 175
 server, setting up in Azure 178, 180, 181
 setting up 173
 troubleshooting, in Azure 189, 191
Facebook Messenger
 reference link 173
 URL 172
flight API
 Flight Status API, using 86
 REST client library, adding 89, 90
 Route Search API, using 87, 89

 URL 86
 using 85, 86
Flight Status API
 flight number, searching 86
 URL 86
Force.com 246

G
guid package
 URL 200

H
Howdy BotKit 139
Human Resources (HR) 33, 54

I
InternetRelayChat (IRC) 222
IRC bot
 about 224
 BugTrackerIRCBot, enhancing 229
 coding 228, 229
 creating, with IRC and Node.js 224, 225, 226
IRC client 222
irc package
 URL 225
IRC server 222
IRC web-based client
 about 223, 224
 URL 223

J
JSforce library
 URL 257

K
Kik bot
 about 247
 building 247
 code, executing 253
 coding 259, 262
 configuration 252
 creating 247
 enhanced Kik Salesforce bot, executing 263,

264

[268]

 enhancing 255
 enhancing, with Salesforce 256
 executing 254
 Kik app, using from mobile 248, 250
 Kik dev platform, using from browser 250
 Kik dev platform, using on browser 248
 Node.js, wiring up 257
 Salesforce, wiring up 257
 server, setting in Azure 251, 252
 server, wiring up with Kik platform 253
Kik Node API library
 URL 253
Kik
 about 245
 downloading 246
 installing 246
 URL 246, 249, 250

M
Machine Learning (ML) 6
Mashape
 URL 107
message templates
 URL 192
messaging apps
 statistics, URL 8
Microsoft Azure
 URL 34
MongoDB
 about 155
 data, creating for DocMan bot 156
 database, creating 156
 database, creating for DocMan bot 155
 DocMan bot, wiring up 158, 160
 index, applying for search 157
 MongoDB shell, executing 155
 reference documents collection, creating 156
 search query, executing 158
 URL 155
MongoJS 158
mongojs package
 URL 158

N
Natural Language Processing (NLP) 6, 22
node-telegram-bot-api package
 URL 126
Node.js app
 setting up 101, 102
Node.js module
 URL 98
Node.js
 and Botkit, used for creating DocMan bot 148,

149, 151, 153, 154
 and IRC, used for creating IRC bot 224, 225,

226

 Twilio, installing 11, 12, 13, 15, 16, 17
 URL 11
 utility functions, using 200
 wiring up, with Who's Off bot 199
Nodemon
 URL 23

P
package manager
 URL 16
package.json file
 URL 16
PartitionKey 54
platform as a service (PaaS) 246
Public Switched Telephone Network (PSTN) 11

Q
Quotes API 105
Quotes-as-a-Service (QAAS) 102

R
Request library
 URL 110
REST client library
 adding 89, 90
 URL 89
REST Node.js framework 37, 125
Route Search API
 URL 87
 using 87, 88
RowKey 54

[269]

S
Salesforce Object Query Language (SOQL)
 URL 262
Salesforce
 about 245
 accessing, with security token 257
 Kik bot, enhancing 256
 URL 245
sentiment analysis 124
sentiment analysis bot
 building 131, 132, 133, 135, 136, 137
sentiment package
 URL 131
sforcebot
 using, for campaign management 264
Short Message Service (SMS)
 importance 10
Skype bot
 about 34, 35
 HR Skype bot agent, creating 54
 registering 2, 41, 42, 44, 46, 47, 48, 49, 52, 53,

54

 wiring up 35, 36, 37, 38, 39, 40
Skype
 about 33
 URL 33
Slack quote bot
 building 98
Slack Real Time Messaging API
 about 98
 URL 98
Slack
 about 97
 Botkit 148
 bots, registering 98, 100
 DocMan bot, setting up 145, 146, 148
 setting up 140, 141, 142, 144
 URL 97, 140
 URL, for guidelines 168
slackbots library
 about 103
 URL 103
 using 103, 104, 105
SMS bot logic
 receiving 29, 30, 32

T
Table Storage
 accessing 61, 63
 HR agent bot, coding 63, 66, 67, 69
 HR agent, defining 60, 61
 URL 54, 55
 used, as backend 54, 55, 56, 57, 58, 60
Telegram bot
 @BotFather bot account, setting up 120, 122,

123

 about 118
 conversations, starting 129, 130
 creating 124, 125, 127, 128
 sentiment analysis 124
 Telegram account, setting up 118, 120
Telegram
 about 117
 sentiment analysis bot, building 131, 132, 133,

135, 136, 137
 URL 117, 118
They Said So API
 about 105
 URL 102, 105
 using 105, 106, 107, 109, 110, 111, 112, 113,

114, 116
tweets 70
Twilio Node.js helper library
 URL 11
Twilio, as SMS platform
 creating 11
 Twilio account, setting up 17, 19
 Twilio Node.js template, creating 20, 21, 22
Twilio
 account, setting up 17, 19
 installing, for Node.js 11, 12, 13, 14, 16, 17
 URL 10, 17, 20
twilio_request, properties
 Body 31
 From 31
 MessageSid 31
 SmsSid 31
 To 31
 URL 31
TwiML verbs
 URL 30

Twitter 70
Twitter app
 creating 71, 72, 73, 75, 76, 77
 tweet, posting 78, 79, 80
 URL 71
Twitter bot
 about 71
 interacting, with Air France-KLM APIs 90, 93, 95
 tweets, listening 80, 82
 tweets, replying 82, 84, 85

U
Unirest library
 URL 110

W
Webhook
 setting up, for Facebook Messenger bot 185,

187

 URL 34
Who's Off bot
 conversation, starting 192
 documentdb package, installing 199
 DocumentDB, setting up 197
 enhancing 191, 192
 executing 216
 guid package, installing 200
 initial options 217
 initial options, displaying 194, 196, 197
 integrating 202, 203, 204, 206, 209
 meet, scheduling 217, 218
 Messenger greeting, setting up 193, 194
 moment package, installing 200
 Node.js, wiring up 199
 utility functions, using in Node.js 200
 Whos Off When option, selecting 219, 220

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: The Rise of Bots – Getting the Message Across
	Why bots matter and why you should get on the train
	Why SMS still matters
	Twilio as an SMS platform
	Installing Twilio for Node.js
	Setting up a Twilio account
	Bare-bones Twilio Node.js template

	Core bot functionality on Azure
	Receiving SMS bot logic
	Summary

	Chapter 2: Getting Skype to Work for You
	How a Skype bot works
	Wiring up our Skype bot
	Registering our Skype bot app
	HR Skype bot agent

	Azure table storage as a backend
	HR agent guidelines
	Accessing the Azure table through code
	HR agent bot logic

	Summary

	Chapter 3: Twitter as a Flight Information Agent
	How a Twitter bot works
	 Creating a Twitter app
	Posting to Twitter
	Listening to tweets
	Replying to who tweeted
	Flight APIs
	Flight status API
	Route search API
	Adding a REST client library

	Making the bot a bit smarter
	Summary

	Chapter 4: A Slack Quote Bot
	Getting started
	Registering a bot on Slack
	Setting up our Node.js app
	Slackbots library basics
	The They Said So API
	Summary

	Chapter 5: Telegram-Powered Bots
	How a Telegram bot works
	Setting up a Telegram account
	Setting up a bot account using a Telegram bot – @BotFather
	What is sentiment analysis?
	Creating a Telegram bot
	Conversations with our basic Telegram bot
	Building a sentiment analysis bot

	Summary

	Chapter 6: BotKit – Document Manager Agent for Slack
	Setting up a Slack for your team
	Setting up a Slack bot
	Botkit and Slack
	Creating our first Slack bot using Botkit and Node.js
	Enhancing our DocMan bot
	What is MongoDB?
	MongoDB database for our DocMan bot
	MongoDB shell
	Create a database
	Create a reference documents collection
	Create data for our DocMan bot
	Indexing for search
	Search query

	What is MongoJS?
	Wiring up DocMan bot with MongoDB
	Amazon S3 storage
	Amazon S3 console
	Create buckets
	Store documents in the bucket

	Mark documents as public
	Update MongoDB data with Amazon S3 document links
	Wiring it all up together
	Code understanding

	Summary

	Chapter 7: Facebook Messenger Bot, Who's Off – A Scheduler Bot for Teams
	Setting up our Facebook Messenger bot
	The Facebook Page for our basic bot
	Creating a Facebook app for our basic bot
	Setting up our bot server in Azure
	Setting up a local git repository for our bot server in Azure
	Modifying our bot program for Facebook verification
	Setting up a Webhook and Facebook verification of our bot program
	Deploying a modified bot that returns an echo
	Troubleshooting our bot in Azure

	Enhancing our Who's Off bot
	Building a conversational experience with the Who's Off bot
	Setting up a Messenger greeting
	Showing the initial options of what a bot can do

	What is DocumentDB?
	Setting up a DocumentDB for our Who's Off bot
	Creating an account ID for the DocumentDB
	Creating a collection and database

	Wiring up DocumentDB, Moment.js, and Node.js
	Utility functions and Node.js
	Wiring it all up together

	Running our bot – the Who's Off bot
	Initial options
	Scheduling a meeting
	Whos Off When

	Summary

	Chapter 8: A Bug-Tracking Agent for Teams
	IRC client and server
	IRC web-based client

	IRC bots
	Creating our first IRC bot using IRC and Node.js
	Code understanding of our basic bot
	Enhancing our BugTrackerIRCBot
	What is DocumentDB?
	Setting up a DocumentDB for our BugTrackerIRCBot
	Create account ID for DocumentDB
	Create a collection and database
	Create data for our BugTrackerIRCBot

	Wiring up DocumentDB and Node.js
	Wiring up all of this together
	Code understanding

	Running our enhanced BugTrackerIRCBot

	Summary

	Chapter 9: A Kik Salesforce CRM Bot
	What is Salesforce?
	What is Force.com?
	Kik mobile app
	Kik bots
	Our Kik bot
	Creating our first Kik bot
	Using the Kik dev platform on a browser
	Using the Kik app from a mobile
	Setting up our bot server in Azure
	Kik bot configuration
	Wiring up our bot server with the Kik platform

	Understanding the code of our basic Kik bot
	Running our basic Kik bot
	Enhancing our Kik bot
	Salesforce and our bot
	Security token to access the Salesforce API

	Wiring it up all together
	Understanding the code

	Running our enhanced Kik Salesforce bot

	sforcebot for campaign management
	Summary

	Index

