

Node Web Development

A practical introduction to Node, the exciting new
server-side JavaScript web development stack

David Herron

 BIRMINGHAM - MUMBAI

http://www.packtpub.com/authors/profiles/david-herron

Node Web Development

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Production Reference: 1020811

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849515-14-6

www.packtpub.com

Cover Image by David Lorenz Winston (david@davidlorenzwinston.com)

Credits

Author
David Herron

Reviewers
Blagovest Dachev

Matt Ranney

Acquisition Editor
Sarah Cullington

Development Editor
Pallavi Iyengar

Technical Editor
Joyslita D'Souza

Project Coordinator
Joel Goveya

Proofreader
Aaron Nash

Indexers
Hemangini Bari

Tejal Daruwale

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

David Herron has worked in the software industry, holding both developer and
quality engineering roles, in Silicon Valley for over 20 years. His most recent role was
at Yahoo! as an Architect of the Quality Engineering team for their new Node-based
web application platform.

While a Staff Engineer at Sun Microsystems, David worked as an Architect of the
Java SE Quality Engineering team, where he focused on test automation tools,
including the AWT Robot class that's now widely used in GUI test automation
software. He was involved with launching the OpenJDK project, the JDK-Distros
project, and ran the worldwide Mustang Regressions Contest asking the Java
developer community to find bugs in the Java 1.6 release.

Before Sun, he worked for VXtreme on the video streaming stack, which eventually
became Windows Media Player when Microsoft bought that company. At The
Wollongong Group, he worked on both e-mail client and server software and was
part of several IETF working groups improving e-mail-related protocols.

David is interested in electric vehicles, world energy supplies, climate change,
and environmental issues, and is a co-founder of Transition Silicon Valley. As an
online journalist on examiner.com he writes under the title Green Transportation
Examiner, he blogs about sustainability issues on 7gen.com, runs a large electric
vehicle discussion website on visforvoltage.org, and blogs about other topics
including Node.js, Drupal, and Doctor Who on davidherron.com.

Acknowledgement

There are many people I am grateful to.

I wish to thank my mother, Evelyn, for, well everything; my father, Jim; my sister,
Patti; and my brother, Ken. What would life be without all of you?

I wish to thank my girlfriend, Maggie, for being there and encouraging me, her belief
in me, her wisdom and humor, and kicks in the butt when needed. May we have
many more years of this.

I wish to thank Dr. Ken Kubota of the University of Kentucky, for believing in me,
and giving me my first job in computing. It was six years of learning not just the art
of computer system maintenance, but so much more.

I wish to thank my former employers, University of Kentucky Mathematical Sciences
Department, The Wollongong Group, MainSoft, VXtreme, Sun Microsystems, and
Yahoo!, and all the people I worked with in each company. I am grateful to my
ex-manager Tina Su, who kept pushing me towards public speaking and writing,
neither of which are natural for an introvert software engineer. I am especially
grateful to Yahoo, for giving me an opportunity to work on their internal Node.js
effort, and to accommodate the needs of writing this book.

I am grateful to Packt Publishing for giving me this opportunity to write a book, for
making me realize that my dream is to write books, and for their expert guidance
through the process.

I am grateful to Ryan Dahl, Isaac Schlueter, and the other Node core team members
for having the wisdom and vision needed to create such a joy-filled fluid software
development platform. Some platforms are just plain hard to work with, but not this
one, and that takes vision to implement it so well.

About the Reviewers

Blagovest Dachev has been writing software for the Web since 2002. He went
through the full spectrum of development by starting out with HTML, CSS, and
JavaScript, then moving into the server and database world. Blagovest was an
early adopter of Node.js and had contributed to several open source projects. He
is currently a software engineer for Dow Jones & Company, where he works on a
widget framework allowing third parties to search and display news on
their websites.

Blagovest attended the University of Massachusetts at Amherst where he
participated in information retrieval research, completed two consecutive Google
Summer of Code mandates, and co-authored several papers.

I would like to thank my mother Tatiana for her love, relentless
devotion, and strength, which has inspired me through the
years, and my father Jordan for all the happy memories from my
childhood.

Matt Ranney is an early adopter and contributor to Node.js. He is one of the
founders of Voxer, which uses Node on its backend servers.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt''s online
digital book library. Here, you can access, read and search across Packt''s entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: What is Node? 7

What can you do with Node? 8
Server-side JavaScript 9

Why should you use Node? 9
Architecture: Threads versus asynchronous event-driven 10
Performance and utilization 12
Server utilization, the bottom line, and green web hosting 14

Spelling: Node, Node.js, or Node.JS? 15
Summary 15

Chapter 2: Setting up Node 17
System requirements 17
Installation on POSIX-like systems (Linux, Solaris, Mac, and so on) 18

Installing prerequisites 18
Installing developer tools on Mac OS X 19

Installing in your home directory 19
What's the rationale for a home directory installation? 20

Installing in a system-wide directory 21
Installing on Mac OS X with MacPorts 22
Installing on Mac OS X with homebrew 22
Installing on Linux from package management systems 23
Maintaining multiple Node installs simultaneously 23

Run a few commands; test your installation 24
Node's command-line tools 24
Running a simple script with Node 26
Launching a server with Node 27

Installing npm—the Node package manager 28
Starting Node servers at system startup 29

Table of Contents

[ii]

Using all CPU cores on multi-core systems 33
Summary 36

Chapter 3: Node Modules 37
What's a module? 37

Node modules 38
How does Node resolve require('module')? 39

Module identifiers and path names 39
Local modules within your application 39
Bundling external dependencies with your application 41
System-wide modules in the require.paths directories 43
Complex modules—modules as directories 44

Node package Manager (npm) 45
npm package format 45
Finding npm packages 47
Using the npm commands 48

Getting help with npm 49
Viewing package information 49
Installing an npm package 50
Using installed packages 51
What packages are currently installed? 51
Package scripts 53
Editing and exploring installed package content 53
Updating outdated packages you've installed 54
Uninstalling an installed npm package 54
Developing and publishing npm packages 54
npm configuration settings 56

Package version strings and ranges 57
CommonJS modules 59

Demonstrating module encapsulation 60
Summary 61

Chapter 4: Variations on a Simple Application 63
Creating a Math Wizard 63

To use a web framework, or not 64
Implementing the Math Wizard with Node (no frameworks) 64

Routing requests in Node 64
Handling URL query parameters 66
Multiplying numbers 67
Calculating the other mathematical functions 69
Extending the Math Wizard 72
Long running calculations (fibonacci numbers) 73
What "complete web server" features are missing? 77
Using Connect to implement the Math Wizard 77
Installing Connect and other setup 78

Table of Contents

[iii]

Connecting with Connect 79
Using Express to implement the Math Wizard 81

Implementing the Express Math Wizard 82
Handling errors 88
Parameterized URLs and data services 88

Parametrized URLs in Express 89
The mathematics server (and client) 89
Refactoring Math Wizard to use math server 92

Summary 94
Chapter 5: A Simple Web Server, EventEmitters, and HTTP Clients 97

Sending and receiving events with EventEmitters 98
EventEmitter theory 99

HTTP Sniffer—listening to the HTTP conversation 100
Implementing a basic web server 103

The Basic Server implementation 104
Basic Server core (basicserver.js) 104
The Favicon handler (faviconHandler.js) 108
The static file handler (staticHandler.js) 109
A configuration for Basic Server (server.js) 110
Virtual host configuration with Basic Server 113
A shorturl module for Basic Server 113

MIME types and the MIME npm package 114
Cookie handling 116
Virtual hosts and request routing 117
Making HTTP Client requests 117
Summary 120

Chapter 6: Data Storage and Retrieval 121
Data storage engines for Node 121
SQLite3—Lightweight in-process SQL engine 122

Installation 122
Implementing the Notes application with SQLite3 122

Database abstraction module—notesdb-sqlite3.js 123
Initializing the database—setup.js 126
Display notes on the console—show.js 128
Putting together the Notes web application—app.js 129
Notes application templates 132
Running the SQLite3 Notes application 134
Handling and debugging errors 135

Using other SQL databases with Node 137
Mongoose—Node interface to MongoDB 138

Installing Mongoose 138
Implementing the Notes application with Mongoose 139

Database abstraction module—notesdb-mongoose.js 140

Table of Contents

[iv]

Initializing the database—setup.js 143
Display notes on the console—show.js 144
Putting it together in an application—app.js 144

Other MongoDB database support 146
A quick look at authenticating your users 146
Summary 149

Index 151

Preface
Welcome to the world of developing web software using Node (also known as Node.
js). Node is a newly-developed software platform that liberates JavaScript from the
web browser, enabling it to be used as a general software development platform
in server-side applications. It runs atop the ultra-fast JavaScript engine from the
Chrome browser, V8, and adds in a fast and robust library of asynchronous network
I/O modules. The primary focus of Node is on building high performance, highly
scalable server and client applications for the "Real Time Web".

The platform was developed by Ryan Dahl in 2009 after a couple of years of
experimenting with developing web server components in Ruby and other
languages. The exploration led him to the architectural choice of using asynchronous
event-driven systems rather than the traditional thread-based concurrency model.
This model was chosen because it's simpler (threaded systems are notoriously
difficult to develop), has lower overhead over maintaining a thread-per-connection,
and for speed. The goal of Node is to provide an "easy way to build scalable network
servers". The design is similar to and influenced by other systems such as Event
Machine (Ruby) and Twisted framework (Python).

This book, Node Web Development, focuses on building web applications using
Node. We will be taking a tour through the important concepts required to speed up
with Node. To do so we'll be writing real applications, dissecting them to scrutinize
how they work, and discussing how to apply the ideas to your own programs. We'll
install Node and npm, and learn how to install or develop npm packages and Node
modules. We'll develop several applications, ponder the effects of long-running
calculations on event loop responsiveness, look at a couple of ways to distribute
heavy workloads to other servers, work with the Express framework, and more.

Preface

[2]

What this book covers
Chapter 1, What is Node?, introduces you to the Node platform. We cover its uses, the
technological architectural choices in Node, its history, and the history of server-side
JavaScript, and why JavaScript should remain trapped in browsers.

Chapter 2, Setting up Node, goes over setting up a Node developer environment,
including several scenarios of compiling and installing from source code. We briefly
touch on Node deployment to production servers.

Chapter 3, Node Modules, explains that modules are the unit of modularity in
developing Node applications. We take a dive into understanding and developing
Node modules. We then take a close look at npm, the Node Package Manager,
and several scenarios using npm to manage installed packages, or to develop npm
packages and distribute them for others.

Chapter 4, Variations on a Simple Application, explains that with the fundamentals in
hand we begin exploring application development in Node. Specifically we develop
a simple application using Node itself, the Connect middleware framework, and
the Express application framework. While the application is simple, it gives us a
chance to explore the Node event loop, accommodating long running calculations,
asynchronous and synchronous algorithms, and pushing heavy calculations to a
backend server.

Chapter 5, A Simple Web Server, EventEmitters, and HTTP Clients, explains that in
Node the HTTP client and server objects are front and center. We take a close look
at both ends of the HTTP conversation by developing both HTTP client and server
applications.

Chapter 6, Data Storage and Retrieval, explains that most applications need some sort
of long-term reliable data storage. We look at implementing an application with both
SQL and MongoDB database engines. Along the way we cover user authentication
and presenting a better error page, using the Express framework.

What you need for this book
Today, we normally install Node from source, and it works best on Unix- or
POSIX-like systems. The requirements to begin using Node are modest, and
your most important tool is the one between your ears.

Installing from source requires a Unix-/POSIX-like system (Linux, Mac, FreeBSD,
OpenSolaris, and so on), modern C/C++ compiler, the OpenSSL libraries, and
Python version 2.4 or later.

Node programs can be edited with any text editor, but one that can handle
JavaScript, HTML, CSS, and so on will be useful.

Preface

[3]

While the book is about developing web applications, it does not require you to have
a web server. Node provides its own web server stack.

Who this book is for
This book was written for any software engineer who wants the adventure that
comes with a new software platform embodying a new programming paradigm.

Server-side engineers may find the concepts refreshing, giving you a different
perspective on web application development. JavaScript is a powerful language and
Node's asynchronous nature plays to JavaScript's strengths.

Developers experienced with JavaScript in the browser may find it fun to bring that
knowledge to a new territory, and to write in JavaScript without accessing the DOM.
(There's no browser, hence no DOM, unless you install JSDom.)

While the chapters build on each other, how you read this book is up to you.

We assume you already know how to write software, and have an understanding of
modern programming languages such as JavaScript.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The http object encapsulates the HTTP
protocol and its http.createServer method creates a whole web server, listening
on the port specified in the .listen method."

A block of code is set as follows:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8124, "127.0.0.1");
console.log('Server running at http://127.0.0.1:8124/');

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var util = require('util');
var A = "a different value A";

Preface

[4]

var B = "a different value B";
var m1 = require('./module1');
util.log('A='+A+' B='+B+' values='+util.inspect(m1.values()));

Any command-line input or output is written as follows:

$ sudo /usr/sbin/update-rc.d node defaults

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "A real
security system would have fields for at least a username and password. Instead
we'll skip this and just ask the user to click the Login button."

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com/
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

What is Node?
Node is an exciting new platform for developing web applications, application
servers, any sort of network server or client, and general purpose programming. It
is designed for extreme scalability in networked applications through an ingenious
combination of asynchronous I/O, server-side JavaScript, smart use of JavaScript
anonymous functions, and a single execution thread event-driven architecture.

The Node model is very different from common application server platforms that
scale using threads. The claim is that, because of the event-driven architecture,
memory footprint is low, throughput is high, and the programming model is
simpler. The Node platform is in a phase of rapid growth, and many are seeing it
as a compelling alternative to the traditional—Apache, PHP, Python, and so on—
approach to building web applications.

At heart it is a standalone JavaScript virtual machine, with extensions making it
suitable for general purpose programming, and with a clear focus on application
server development. The Node platform isn't directly comparable to programming
languages frequently used for developing web applications (PHP/Python/Ruby/
Java/ and so on), neither is it directly comparable to the containers which deliver
the HTTP protocol to web clients (Apache/Tomcat/Glassfish/ and so on). At the
same time, many regard it as potentially supplanting the traditional web applications
development stacks.

It is implemented around a non-blocking I/O event loop and a layer of file and
network I/O libraries, all built on top of the V8 JavaScript engine (from the Chrome
web browser). The I/O library is general enough to implement any sort of server
implementing any TCP or UDP protocol, whether it's DNS, HTTP, IRC, FTP, and
so on. While it supports developing servers or clients for any network protocol, the
biggest use case is regular websites where you're replacing things like an Apache/
PHP or Rails stack.

What is Node?

[8]

This book will give you an introduction to Node. We presume that you already
know how to write software, are familiar with JavaScript, and know something
about developing web applications in other languages. We will dive right into
developing working applications and recognize that often the best way to learn is by
rummaging around in working code.

What can you do with Node?
Node is a platform for writing JavaScript applications outside web browsers. This
is not the JavaScript we are familiar with in web browsers. There is no DOM built
into Node, nor any other browser capability. With the JavaScript language and the
asynchronous I/O framework, it is a powerful application development platform.

One thing Node cannot do is desktop GUI applications. Today, there is no equivalent
for Swing (or SWT if you prefer) built into Node, nor is there a Node add-on GUI
toolkit, nor can it be embedded in a web browser. If a GUI toolkit were available
Node could be used to build desktop applications. Some projects have begun to
create GTK bindings for Node, which would provide a cross-platform GUI toolkit.
The V8 engine used by Node brings along with it an extension API, allowing one
to incorporate C/C++ code, to extend JavaScript or to integrate with native code
libraries.

Beyond its native ability to execute JavaScript, the bundled modules provide
capabilities of this sort:

•	 Command-line tools (in shell script style)
•	 Interactive-TTY style of program (REPL or Read-Eval-Print Loop)
•	 Excellent process control functions to oversee child processes
•	 A Buffer object to deal with binary data
•	 TCP or UDP sockets with comprehensive event driven callbacks
•	 DNS lookup
•	 Layered on top of the TCP library is a HTTP and HTTPS client/server
•	 File system access
•	 Built-in rudimentary unit testing support through assertions

The network layer of Node is low level while being simple to use. For example, the
HTTP modules allow you to write an HTTP server (or client) in a few lines of code,
but that layer puts you, the programmer, very close to the protocol requests and
makes you implement precisely which HTTP headers will be returned in responding
to requests. Where a PHP programmer generally doesn't care about the headers, a
Node programmer does.

Chapter 1

[9]

In other words, it's very easy to write an HTTP server in Node, but the typical web
application developer doesn't need to work at that level of detail. For example,
PHP coders assume Apache is already there, and that they don't have to implement
the HTTP server portion of the stack. The Node community has developed a wide
range of web application frameworks like Connect, allowing developers to quickly
configure an HTTP server that provides all of the basics we've come to expect—
sessions, cookies, serving static files, logging, and so on—thus letting developers
focus on their business logic.

Server-side JavaScript
Quit scratching your head already. Of course you're doing it, scratching your head
and mumbling to yourself, "What's a browser language doing on the server?" In
truth, JavaScript has a long and largely unknown history outside the browser.
JavaScript is a programming language, just like any other language, and the better
question to ask is "Why should JavaScript remain trapped inside browsers?"

Back in the dawn of the Web age, the tools for writing web applications were at a
fledgling stage. Some were experimenting with Perl or TCL to write CGI scripts, the
PHP and Java languages had just been developed, and even JavaScript was being
used in the server side. One early web application server was Netscape's LiveWire
server, which used JavaScript. Some versions of Microsoft's ASP used JScript, their
version of JavaScript. A more recent server-side JavaScript project is the RingoJS
application framework in the Java universe. It is built on top of Rhino, a JavaScript
implementation written in Java.

Node brings to the table a combination never seen before. Namely, the coupling of
fast event-driven I/O and a fast JavaScript engine like V8, the ultra fast JavaScript
engine at the heart of Google's Chrome web browser.

Why should you use Node?
The JavaScript language is very popular due to its ubiquity in web browsers. It
compares favorably against other languages while having many modern advanced
language concepts. Thanks to its popularity there is a deep talent pool of experienced
JavaScript programmers out there.

It is a dynamic programming language with loosely typed and dynamically
extendable objects, that can be informally declared as needed. Functions are a first
class object routinely used as anonymous closures. This makes JavaScript more
powerful than some other languages commonly used for web applications. In theory
these features make developers more productive. To be fair, the debate between
dynamic and non-dynamic languages, or between statically typed and loosely typed,
is not settled and may never be settled.

What is Node?

[10]

One of the main disadvantages of JavaScript is the Global Object. All of the top-
level variables are tossed together in the Global Object, which can create an unruly
chaos when mixing modules together. Since web applications tend to have lot of
objects, probably coded by multiple organizations, one may think programming
in Node will be a minefield of conflicting global objects. Instead, Node uses the
CommonJS module system, meaning that variables local to a module are truly local
to the module, even if they look like global variables. This clean separation between
modules prevents the Global Object problem from being a problem.

Having the same programming language on server and client has been a long-time
dream on the Web. This dream dates back to the early days of Java, where Applets
were to be the frontend to server applications written in Java, and JavaScript was
originally envisioned as a lightweight scripting language for Applets. Something
fell down along the way, and we ended up with JavaScript as the principle in
browser client-side language, rather than Java. With Node we may finally be able to
implement that dream of the same programming language on client and server, with
JavaScript at both ends of the Web, in the browser and server.

A common language for frontend and backend offers several potential wins:

•	 The same programming staff can work on both ends of the wire
•	 Code can be migrated between server and client more easily
•	 Common data formats (JSON) between server and client
•	 Common software tools for server and client
•	 Common testing or quality reporting tools for server and client
•	 When writing web applications, view templates can be used on both sides
•	 Similar languaging between server and client teams

Node facilitates implementing all these positive benefits (and more) with a
compelling platform and development community.

Architecture: Threads versus asynchronous
event-driven
The asynchronous event-driven architecture of Node is said to be the cause of
its blistering performance. Well, that and the V8 JavaScript engine. The normal
application server model uses blocking I/O and threads for concurrency. Blocking
I/O causes threads to wait, causing churn between threads as they are forced to wait
on I/O while the application server handles requests.

Chapter 1

[11]

Node has a single execution thread with no waiting on I/O or context switching.
Instead, I/O calls set up request handling functions that work with the event loop
to dispatch events when some things becomes available. The event loop and event
handler model is common, such as JavaScript execution in a web browser. Program
execution is expected to quickly return to the event loop for dispatching the next
immediately runnable task.

To help us wrap our heads around this, Ryan Dahl (in his "Cinco de Node"
presentation) asked us what happens while executing a code like this:

result = query('SELECT * from db');

Of course, the program pauses at that point while the database layer sends the query
to the database, which determines the result, and returns the data. Depending on
the query that pause can be quite long. This is bad because while the entire thread
is idling another request might come in, and if all the threads are busy (remember
computers have finite resources) it will be dropped. Looks like quite a waste. Context
switching is not free either, the more threads we use the more time the CPU spends
in storing and restoring the state. Furthermore, the execution stack for each thread
takes up memory. Simply by using asynchronous, event-driven I/O, Node removes
most of this overhead while introducing very little on its own.

Frequently the implementation of concurrency with threads comes with admonitions
like these: "expensive and error-prone", "the error-prone synchronization primitives
of Java", or "designing concurrent software can be complex and error-prone" (actual
quotes from actual search engine results). The complexity comes from the access to
shared variables and various strategies to avoid deadlock and competition between
threads. The "synchronization primitives of Java" are an example of such a strategy,
and obviously many programmers find them hard to use; and then there's the
tendency to create frameworks like java.util.concurrent to tame the complexity
of threaded concurrency, but some might argue that papering over complexity does
not make things simpler.

Node asks us to think differently about concurrency. Callbacks fired asynchronously
from an event loop are a much simpler concurrency model, simpler to understand,
and simpler to implement.

Ryan Dahl points to the relative access time of objects to understand the need for
asynchronous I/O. Objects in memory are more quickly accessed (on the order of
nanoseconds) than objects on disk or objects retrieved over the network (milliseconds
or seconds). The longer access time for external objects is measured in the zillions
of clock cycles, which can be an eternity when your customer is sitting at their web
browser ready to be bored and move on if it takes longer than two seconds to load
the page.

What is Node?

[12]

In Node, the query discussed previously would read like the following:

query('SELECT * from db', function (result) {
 // operate on result
});

This code makes the same query written earlier. The difference is that the query
result is not the result of the function call, but is provided to a callback function
that will be called later. What happens is that this will return almost immediately
to the event loop, and the server can go on to servicing other requests. One of those
requests will be the response to the query and it will invoke the callback function.
This model of quickly returning to the event loop ensures higher server utilization.
That's great for the owner of the server, but there's an even bigger gain which might
help the user to experience more quickly constructing page content.

Commonly web pages bring together data from dozens of sources. Each one has a
query and response as discussed earlier. By using asynchronous queries each one
can happen in parallel, where the page construction function can fire off dozens of
queries—no waiting, each with their own callback—then go back to the event loop,
invoking the callbacks as each is done. Because it's in parallel the data can be collected
much more quickly than if these queries were done synchronously one at a time. Now
the reader on their web browser is happier because the page loads more quickly.

Performance and utilization
Some of the excitement over Node is due to its throughput (requests per second it
can serve). Comparative benchmarks of similar applications, for example, Apache
and Node, show it having tremendous performance gains.

One benchmark going around is this simple HTTP server, which simply returns a
"Hello World" message, directly from memory:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8124, "127.0.0.1");
console.log('Server running at http://127.0.0.1:8124/');

This is one of the simpler web servers one can build with Node. The http object
encapsulates the HTTP protocol and its http.createServer method creates a whole
web server, listening on the port specified in the .listen method. Every request
(whether a GET or PUT on any URL) on that web server calls the provided function.
It is very simple and lightweight. In this case, regardless of the URL, it returns a
simple text/plain "Hello World" response.

Chapter 1

[13]

Because of its minimal nature, this simple application should demonstrate the
maximum request throughput of Node. Indeed many have published benchmark
studies starting from this simplest of HTTP servers.

Ryan Dahl (Node's original author) showed a simple benchmark (http://nodejs.
org/cinco_de_node.pdf) which returned a 1 megabyte binary buffer; Node gave
822 req/sec, while nginx gave 708 req/sec. He also noted that nginx peaked at 4
megabytes memory, while Node peaked at 64 megabytes.

Dustin McQuay (http://www.synchrosinteractive.com/blog/9-nodejs/22-
nodejs-has-a-bright-future) showed what he claimed were similar Node and
PHP/Apache programs:

•	 PHP/Apache 3187 requests/second
•	 Node.js 5569 requests/second

Hannes Wallnöfer, the author of RingoJS, wrote a blog post in which he cautioned
against making important decisions based on benchmarks (http://hns.github.
com/2010/09/21/benchmark.html), and then went on to use benchmarks to
compare RingoJS with Node. RingoJS is an app server built around the Rhino
JavaScript engine for Java. Depending on the scenario, the performance of RingoJS
and Node is not so far apart. The findings show that on applications with rapid
buffer or string allocation, Node performs worse than RingoJS. In a later blog post
(http://hns.github.com/2010/09/29/benchmark2.html) he used a JSON string
parsing workload to simulate a common task, and found RingoJS to be much better.

Mikito Takada blogged about benchmarking and performance improvements in a
"48 hour hackathon" application he built (http://blog.mixu.net/2011/01/17/
performance-benchmarking-the-node-js-backend-of-our-48h-product-
wehearvoices-net/) comparing Node with what he claims is a similar application
written with Django. The unoptimized Node version is quite a bit slower (response
time) than the Django version but a few optimizations (MySQL connection pooling,
caching, and so on) made drastic performance improvements handily beating out
Django. The final performance graph shows achieving nearly the requests/second
rate of the simple "Hello World" benchmark discussed earlier.

A key realization about Node performance is the need to quickly return to the event
loop. We go over this in Chapter 4, Variations on a Simple Application in more detail,
but if a callback handler takes "too long" to execute, it will prevent Node from being
the blistering fast server it was designed to be. In one of Ryan Dahl's earliest blog
posts about the Node project (http://four.livejournal.com/963421.html) he
discussed a requirement that event handlers execute within 5ms. Most of the ideas
in that post were never implemented, but Alex Payne wrote an intriguing blog post
on this, (http://al3x.net/2010/07/27/node.html) drawing a distinction between
"scaling in the small" and "scaling in the large".

http://nodejs.org/cinco_de_node.pdf
http://www.synchrosinteractive.com/blog/9-nodejs/22-nodejs-has-a-bright-future
http://www.synchrosinteractive.com/blog/9-nodejs/22-nodejs-has-a-bright-future
http://hns.github.com/2010/09/21/benchmark.html
http://hns.github.com/2010/09/29/benchmark2.html
http://hns.github.com/2010/09/29/benchmark2.html
http://blog.mixu.net/2011/01/17/performance-benchmarking-the-node-js-backend-of-our-48h-product-wehearvoices-net/
http://blog.mixu.net/2011/01/17/performance-benchmarking-the-node-js-backend-of-our-48h-product-wehearvoices-net/
http://four.livejournal.com/963421.html
http://four.livejournal.com/963421.html
http://al3x.net/2010/07/27/node.html
http://al3x.net/2010/07/27/node.html

What is Node?

[14]

Small-scale web applications ("scaling in the small") should have performance and
implementation advantages when written for Node instead of the 'P' languages (Perl,
PHP, Python, and so on) normally used. JavaScript is a powerful language, and the
Node environment with its modern fast virtual machine design offers performance
and concurrency advantages over interpreted languages like PHP.

He goes on to argue that "scaling in the large", enterprise-level applications, will always
be hard and complex. One typically throws in load balancers, caching servers, multiple
redundant machines, in geographically dispersed locations, to serve zillions of users
from around the world with a fast web browsing experience. Perhaps the application
development platform isn't so important as the whole system.

We won't know how well Node really fits in until it sees real long-term deployment
in significant production environments.

Server utilization, the bottom line, and green
web hosting
The striving for optimal efficiency (handling more requests/second) is not just about
the geeky satisfaction that comes from optimization. There are real business and
environmental benefits. Handling more requests per second, as Node servers can do,
means the difference between buying lots of servers and buying only a few servers.
Essentially the advantage is in doing more with less.

Roughly speaking, the more servers one buys, the greater the cost, and the greater
the environmental impact, and likewise buying fewer servers means lower cost and
lower environmental impact. There's a whole field of expertise around reducing
cost and environmental impact of running web server facilities, which that rough
guideline doesn't do justice to. The goal is fairly obvious, fewer servers, lower costs,
and lower environmental impact.

Intel's paper "Increasing Data Center Efficiency with Server Power Measurements"
(http://download.intel.com/it/pdf/Server_Power_Measurement_final.
pdf) gives an objective framework for understanding efficiency and data center
costs. There are many factors such as building, cooling system, and computer
system design. Efficient building design, efficient cooling systems, and efficient
computer systems (Datacenter Efficiency, Datacenter Density, and Storage Density)
can decrease costs and environmental impact. But you can destroy those gains by
deploying an inefficient software stack which compels you to buy more servers than
if you had an efficient software stack, or you can amplify gains from datacenter
efficiency with an efficient software stack.

Chapter 1

[15]

Spelling: Node, Node.js, or Node.JS?
The name of the platform is Node.js but throughout this book we are spelling it as
Node because we are following a cue from the nodejs.org website, which says the
trademark is Node.js (lower case .js) but throughout the site they spell it as Node.
We are doing the same in this book.

Summary
We've learned a lot in this chapter, specifically:

•	 That JavaScript has a life outside web browsers
•	 The difference between asynchronous and blocking I/O
•	 A look at Node
•	 Node performance

Now that we've had this introduction to Node we're ready to dive in and start using
it. In Chapter 2, Setting up Node we'll go over setting up a Node environment, so let's
get started.

Setting up Node
Before getting started with using Node you must set up your development
environment. In the following chapters we'll be using this for development, and for
non-production deployment.

In this chapter we shall:

•	 See how to install Node from source on Linux or Mac
•	 See how to install the npm package manager, and some popular tools
•	 Learn a bit about the Node module system

So let's get on with it.

System requirements
Node runs best on the POSIX-like operating systems. These are the various UNIX
derivatives (Solaris, and so on) or workalikes (Linux, Mac OS X, and so on). Indeed
many of the Node built-in functions are direct corollaries to POSIX system calls.

More mature language platforms (such as Perl or Python) have a stable feature
set and API and are routinely bundled into operating system distributions. Since
Node is still in rapid development, it would be premature for OS distributions to
prepackage binary builds of Node. This means the preferred method is to install
Node from the source.

Installing from source requires having a C compiler (such as GCC), and Python 2.4
(or later). If you plan to use encryption in your networking code you will also need
the OpenSSL cryptographic library. The modern UNIX derivatives almost certainly
come with these, and Node's configure script (see later when we download and
configure the source) will detect their presence. If you should have to install them,
Python is available at http://python.org and OpenSSL is at http://openssl.org.

http://python.org/
http://openssl.org/

Setting up Node

[18]

While Windows is not POSIX compatible, Node can be built on it either using
POSIX compatibility environments (in Node 0.4.x and earlier). In 0.6.x and later, the
Node team intends for it to be buildable natively on Windows. The instructions for
building Node on Windows is changing too rapidly to print in a book, and up-to-
date instructions are at https://github.com/ry/node/wiki/Installation. Step
3b discusses building on Windows using either Cygwin or MinGW. The steps, once
either Cygwin or MinGW is installed, are similar to the ones for POSIX-like systems.

Installation on POSIX-like systems
(Linux, Solaris, Mac, and so on)
Now that you have the high-level view, let's get our hands dirty mucking around
in some build scripts. The general process follows the usual configure, make, make
install routine that you may already have performed with other software.

The official installation instructions are in the Node wiki at:

https://github.com/ry/node/wiki/Installation

Installing prerequisites
As noted a minute ago there are three prerequisites, a C compiler, Python, and the
OpenSSL libraries. The Node installation process checks for their presence and will
fail if the C compiler or Python is not present. The specific method of installing these
is dependent on your operating system.

These commands will check for their presence:

$ cc --version

i686-apple-darwin10-gcc-4.2.1 (GCC) 4.2.1 (Apple Inc. build 5666) (dot 3)

Copyright (C) 2007 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is
NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

$ python

Python 2.6.6 (r266:84292, Feb 15 2011, 01:35:25)

[GCC 4.2.1 (Apple Inc. build 5664)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

https://github.com/ry/node/wiki/Installation
https://github.com/ry/node/wiki/Installation
https://github.com/ry/node/wiki/Installation

Chapter 2

[19]

Installing developer tools on Mac OS X
The developer tools (such as GCC) are an optional installation on Mac OS X. There
are two ways to get those tools, both of which are free. On the OS X, installing DVD
is a directory labeled "Optional Installs", in which there is a package installer
for—among other things—the developer tools, including Xcode:

The other method is to download the latest copy of Xcode (for free) from:
http://developer.apple.com/xcode/

Installing in your home directory
It used to be preferred for developers to install Node in their home directory for
developing applications. Recent changes with Node 0.4.x and more, especially npm
1.0, have made it less necessary to do so. You may prefer to install Node in a system-
wide directory, which we cover in the next section, or you may prefer to have local
Node installs for testing or development.

Let's see how to do a local Node install:

1. First, download the source from http://nodejs.org/#download. One way
to do this is with your browser, and another way is as follows:
$ mkdir src

$ cd src

$ wget http://nodejs.org/dist/node-v0.4.8.tar.gz

$ tar xvfz node-v0.4.8.tar.gz

$ cd node-v0.4.8

2. The next step is to configure the source so that it can be built. It includes
the typical sort of configure script and you can see its long list of options by
running ./configure –help. To cause the installation to land in your home
directory run it this way:
$./configure --prefix=$HOME/node/0.4.8

Checking for program g++ or c++ : /usr/bin/g++

Checking for program cpp : /usr/bin/cpp

Checking for program ar : /usr/bin/ar

Checking for program ranlib : /usr/bin/ranlib

...

After a moment it'll stop and more likely successfully configure the source
tree for installation in your chosen directory. If this doesn't succeed it will
print a message about something that needs to be fixed. Once the configure
script is satisfied you can go on to the next step.

http://nodejs.org/#download
http://nodejs.org/dist/node-v0.4.8.tar.gz
http://nodejs.org/dist/node-v0.4.8.tar.gz

Setting up Node

[20]

3. With the configure script satisfied, you compile the software:
$ make

.. a long log of compiler output is printed

$ make install

4. Once installed you should make sure to add the installation directory to your
PATH variable as follows:

$ echo 'export PATH=$HOME/node/0.4.8/bin:${PATH}' >>~/.bashrc

$. ~/.bashrc

Or for csh users:

$ echo 'setenv PATH $HOME/node/0.4.8/bin:${PATH}' >>~/.cshrc

$ source ~/.cshrc

This should result in some directories like this:

$ ls ~/node/0.4.8/

bin include lib share

$ ls ~/node/0.4.8/bin

node node-waf

Once this is done you can skip ahead to the Run a few commands; test your
installation section.

What's the rationale for a home directory
installation?
There are two reasons to consider installing Node in your home directory:

•	 Testing and development
•	 Security considerations

First, developers may want to experiment with customized Node instances, test their
application against several Node versions, or even hack on Node itself. In these (and
other) cases, a home directory installation is preferred.

The security considerations issue may not be so obvious, so let's walk through it.

One version of this is those times when you're using a Unix-like system, have no
administrator privileges, and want to use Node. A home directory Node install is
easy to set up.

Chapter 2

[21]

Another sort of security consideration is the downloading and executing of scripts
while installing Node, or its associated tools (such as the Node Package Manager,
npm). Can you trust the author of those tools? Maybe a 0.1.x or 0.2.x version number
didn't carry with it a sense of stability or security. Whatever the reason, older
versions of npm made scary noises whenever used under sudo, and a fairly rational
reason was given.

Before npm 1.0, all modules had to be installed inside the Node instance. This might
seem innocuous except for cases where Node is installed in a system-wide directory;
this requires root privileges, and there are certain scripts that often run during
package installation for package setup. You might not have root privileges, or your
local security policies might prohibit willy-nilly downloading software to run as
root. By installing Node in your home directory, any damage which might occur is
limited to your home directory. Lucky you.

With Node 0.4.x and npm 1.0.x, the normal practice is now to install packages local
to your application, rather than installing them within the Node instance. This can be
done without requiring root privileges.

Because of this it is possible today to have an administrator controlled Node instance
in a system-wide directory, and still install any desired package local to your
application because of a flexible package discovery algorithm. We'll go over this in
depth in the next chapter.

Installing in a system-wide directory
For normal use, you would install Node in a system-wide directory. Some
reasons are:

•	 It's a normal everyday best practice
•	 It enables sharing the Node install between different applications or people
•	 It prevents inadvertently overwriting files in the Node install
•	 It allows you to launch Node servers at system boot time

Installing in a system-wide directory is almost identical to a home directory
installation, with just two differences:

•	 The first difference is selecting the installation directory. We do this with the
configure script, and by default (with no–prefix= option) it will install in /
usr/local:
$./configure # for /usr/local

$./configure –prefix=/usr/local/node/0.4.8

Setting up Node

[22]

Basically, choose your directory and use configure to do it.

•	 The second difference is the make install step. Since system-wide
directories are almost always protected against regular users writing files in
them, you will need to do the install with root privileges as follows:

$ sudo make install

You should note that if you install Node in a directory already in your PATH
variable, you won't need to change it.

Installing on Mac OS X with MacPorts
You can of course install Node on Mac OS X using the previously described
methods. They work perfectly thanks to it being a UNIX compatible system.

The MacPorts project (http://www.macports.org/) has for years been packaging
a long list of open source software packages for Mac OS X, and they have packaged
Node. After you have installed MacPorts using the installer on their website,
installing Node is pretty much this simple:

$ sudo port search nodejs

nodejs @0.4.8 (devel, net)

 Evented I/O for V8 JavaScript

$ sudo port install nodejs

.. long log of downloading and installing prerequisites and Node

However, npm is not available to be installed this way.

Installing on Mac OS X with homebrew
Homebrew is another open source software package manager for Mac OS X, which
some say is the perfect replacement for MacPorts. It is available through their home
page at http://mxcl.github.com/homebrew/. After installing homebrew using the
instructions on their website, using it to install Node is as simple as this:

$ brew search node

leafnode node

$ brew install node

==> Downloading http://nodejs.org/dist/node-v0.4.8.tar.gz

100.0%

==> ./configure --prefix=/usr/local/Cellar/node/0.4.8

==> make install

http://www.macports.org/
http://www.macports.org/
http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/

Chapter 2

[23]

.. etc

$ brew search npm

npm can be installed thusly by following the instructions at

 http://npmjs.org/

Installing on Linux from package management
systems
While it's still premature for Linux distros or other operating systems to pre-package
Node with their OS, that doesn't mean you cannot install it using the package
managers. Instructions on the Node wiki currently list packaged versions of Node
for Debian, Ubuntu, OpenSUSE, and Arch Linux.

See: https://github.com/joyent/node/wiki/Installing-Node.js-via-
package-manager

For example on Debian:

echo deb http://ftp.us.debian.org/debian/ sid main > /etc/apt/sources.
list.d/sid.list

apt-get update

apt-get install nodejs # Documentation is great.

And on Ubuntu:

sudo apt-get install python-software-properties

sudo add-apt-repository ppa:jerome-etienne/neoip

sudo apt-get update

sudo apt-get install nodejs

We can expect in due course that the Linux distros and other operating systems will
be routinely bundling Node into the OS like they do with other languages today.

Maintaining multiple Node installs
simultaneously
Normally you won't have multiple versions of Node installed and doing so adds
complexity to your system. But if you are hacking on Node itself, or are testing
against different Node releases, or any of several similar situations, you may want to
have multiple Node installations. The method to do so is a simple variation on what
we've already discussed.

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Setting up Node

[24]

If you noticed during the instructions discussed earlier, the –prefix option was used
in a way that directly supports installing several Node versions side-by-side in the
same directory:

$./configure --prefix=$HOME/node/0.4.8

And:

$./configure --prefix=/usr/local/node/0.4.8

This initial step determines the install directory. Clearly when version 0.4.9 or
version 0.6.1 or whichever version is released, you can change the install prefix to
have the new version installed side-by-side with previous versions.

To switch between Node versions is simply a matter of changing the PATH variable
(on POSIX systems), as follows:

$ export PATH=/usr/local/node/0.6.1/bin:${PATH}

It starts to be a little tedious to maintain this after a while. For each release, you
have to set up Node, npm, and any third-party modules you desire in your Node
install; also the command shown to change your PATH is not quite optimal.
Inventive programmers have created several version managers to make this easier by
automatically setting up not only Node, but npm also, and providing commands to
change your PATH the smart way:

•	 https://github.com/visionmedia/n – Node version manager
•	 https://github.com/kuno/neco – Nodejs Ecosystem COordinator

Run a few commands; test your
installation
Now that you've installed Node we want to do two things, verify that the installation
was successful, and familiarize you with the command-line tools.

Node's command-line tools
The basic install of Node includes two commands, node and node-waf. We've
already seen node in action. It's used either for running command-line scripts, or
server processes. The other, node-waf, is a build tool for Node native extensions.
Since it's for building native extensions we will not cover it in this book and you
should consult the online documentation at nodejs.org.

https://github.com/visionmedia/n
https://github.com/visionmedia/n
https://github.com/kuno/neco

Chapter 2

[25]

The easiest way to verify your Node installation works is also the best way to get
help with Node. Type the following:

$ node –-help

Usage: node [options] script.js [arguments]

Options:

 -v, --version print node's version

 --debug[=port] enable remote debugging via given TCP port

 without stopping the execution

 --debug-brk[=port] as above, but break in script.js and

 wait for remote debugger to connect

 --v8-options print v8 command line options

 --vars print various compiled-in variables

 --max-stack-size=val set max v8 stack size (bytes)

Enviromental variables:

NODE_PATH ':'-separated list of directories

 prefixed to the module search path,

 require.paths.

NODE_DEBUG Print additional debugging output.

NODE_MODULE_CONTEXTS Set to 1 to load modules in their own

 global contexts.

NODE_DISABLE_COLORS Set to 1 to disable colors in the REPL

Documentation can be found at http://nodejs.org/ or with 'man node'

It prints the USAGE message giving you the command-line options.

Notice that there are options for both Node and V8 (not shown in the previous
command line). Remember that Node is built on top of V8; it has its own universe
of options that largely focus on details of bytecode compilation or the garbage
collection and heap algorithms. Enter node --v8-options to see the full list of them.

On the command line you can specify options, a single script file, and a list of
arguments to that script. We'll discuss script arguments further in the next section.

Running Node with no arguments plops you in an interactive JavaScript shell:

$ node

> console.log('Hello, world!');

Hello, world!

> console.log(JSON.stringify(require.paths));

["/Users/davidherron/.node_libraries","/opt/local/lib/node"]

Setting up Node

[26]

Any code you can write in a Node script can be written here. The command
interpreter gives a good terminal-orientated user experience and is useful for
interactively playing with your code. You do play with your code, don't you? Good!

Running a simple script with Node
Now let's see how to run scripts with Node. It's quite simple and let's start by
referring back to the help message:

$ node –-help

Usage: node [options] script.js [arguments]

It's just a script filename and some script arguments, which should be familiar for
anyone who has written scripts in other languages.

First create a text file named ls.js with the following content:
var fs = require('fs');
var files = fs.readdirSync('.');
for (fn in files) {
 console.log(files[fn]);
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Next run it by typing the command:

$ node ls.js

app.js

ls.js

This is a pale cheap imitation of the Unix ls command (as if you couldn't figure
that out from the name). The readdirSync function is a close analogue to the Unix
readdir system call (type man 3 readdir to learn more) and is used to list the files
in a directory.

The script arguments land in a global array named process.argv and you can
modify ls.js as follows to see how this array works:

var fs = require('fs');
var dir = '.';
if (process.argv[2]) dir = process.argv[2];
var files = fs.readdirSync(dir);

http://www.PacktPub.com/
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 2

[27]

for (fn in files) {
 console.log(files[fn]);
}

And you can run it as follows:

$ node ls2.js ../0.4.8/bin

node

node-waf

Launching a server with Node
Many scripts that you'll run are server processes. We'll be running lots of these
scripts later on. Since we're still in the dual mode of verifying the installation and
familiarizing you with using Node, we want to run a simple HTTP server. Let's
borrow the simple server script on the Node home page (http://nodejs.org).

Create a file named app.js containing:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello, World!\n');
}).listen(8124, '127.0.0.1');
console.log('Server running at http://127.0.0.1:8124');

And run it this way:

$ node app.js

Server running at http://127.0.0.1:8124

This is the simplest of web servers you can build with Node. If you're interested
in how it works flip forward to Chapters 4-6. At the moment just visit
http://127.0.0.1:8124 in your browser to see the following:

http://nodejs.org/
http://127.0.0.1:8124/
http://127.0.0.1:8124/
http://127.0.0.1:8124/

Setting up Node

[28]

A question to ponder is why did this script not exit, when ls.js did exit. In both
cases execution of the script reaches the end of the script; in app.js the Node process
does not exist, while in ls.js it does. The reason is the presence of active event
listeners. Node always starts up an event loop, and in app.js the .listen function
creates an event listener which implements the HTTP protocol. This event listener
keeps app.js running until you do something like type Control-C in the terminal
window. In ls.js there is nothing which creates a long-running event listener, so
when ls.js reaches the end of its script Node will exit.

Installing npm—the Node package
manager
Node by itself is a pretty basic system, being a JavaScript interpreter with a few
interesting asynchronous I/O libraries. One of the things which makes Node
interesting is the rapidly growing ecosystem of third party modules for Node. At
the center of that ecosystem is npm. The modules can be downloaded as source and
assembled manually for use with Node programs. npm gives us a simpler way; npm is
the de-facto standard package manager for Node and it greatly simplifies downloading
and using these modules. We will talk about npm at length in the next chapter.

To install npm, type this command shown on the npmjs.org home page:

$ curl http://npmjs.org/install.sh | sh

This downloads and executes a shell script on your system, and maybe you should
consider first typing this command to see if you're comfortable with the shell script:

$ curl http://npmjs.org/install.sh | less

This installs the npm script and package inside a Node installation tree. This means
you need to take some care in two situations to do this correctly.

If you've had to set the PATH variable to run Node, then make sure PATH is set
correctly when running the npm installer as follows:

$ export PATH=/path/to/node/0.n.y/bin:${PATH}

$ curl http://npmjs.org/install.sh | sh

The next consideration is if Node is installed in a system-wide directory which
required installation with sudo make install. If so, the installation should be done
this way:

$ curl http://npmjs.org/install.sh | sudo sh

http://npmjs.org/install.sh
http://npmjs.org/install.sh
http://npmjs.org/install.sh
http://npmjs.org/install.sh

Chapter 2

[29]

Using sudo sh means the process that's doing the work to install npm (/bin/sh) is
run with root privileges under sudo.

Now that we have npm installed let's take it for a quick spin:

$ npm install -g hexy

/home/david/node/0.4.7/bin/hexy -> /home/david/node/0.4.7/lib/node_
modules/hexy/bin/hexy_cmd.js

hexy@0.2.1 /home/david/node/0.4.7/lib/node_modules/hexy

$ hexy --width 12 ls.js

00000000: 7661 7220 6673 203d 2072 6571 var.fs.=.req

0000000c: 7569 7265 2827 6673 2729 3b0a uire('fs');.

00000018: 7661 7220 6669 6c65 7320 3d20 var.files.=.

00000024: 6673 2e72 6561 6464 6972 5379 fs.readdirSy

00000030: 6e63 2827 2e27 293b 0a66 6f72 nc('.');.for

0000003c: 2028 666e 2069 6e20 6669 6c65 .(fn.in.file

00000048: 7329 207b 0a20 2063 6f6e 736f s).{...conso

00000054: 6c65 2e6c 6f67 2866 696c 6573 le.log(files

00000060: 5b66 6e5d 293b 0a7d 0a [fn]);.}.

Again, we'll be doing a deep dive into npm in the next chapter. The hexy utility is
both a Node library and a script for printing out these old style hex dumps.

Starting Node servers at system startup
Earlier we started a Node server from the command line. While this is useful for
testing and development, it's not useful for deploying an application in any normal
sense. There are normal practices for starting server processes, which differ for each
operating system. Implementing a Node server means starting it similarly to the
other background processes (sshd, apache, mysql, and so on) using, for example,
start/stop scripts.

The Node project does not include start/stop scripts for any operating system. It
can be argued that it would be out of place for Node to include such scripts. Instead,
Node server applications should include such scripts. The traditional way is that
the init daemon manages background processes using scripts in the /etc/init.d
directory. On Fedora and Redhat that's still the process, but other operating systems
use other daemon managers such as Upstart or launchd.

Setting up Node

[30]

Writing these start/stop scripts is only part of what's required. Web servers have
to be reliable (for example auto-restarting on crashes), manageable (integrate well
with system management practices), observable (saving STDOUT to logfiles), and
so on. Node is more like a construction kit with the pieces and parts for building
servers, and is not a complete polished server itself. Implementing a complete web
server based on Node means scripting to integrate with the background process
management on your OS, implementing the logging features you need, the security
practices or defenses against bad behavior such as denial of service attacks, and
much more.

Here are several tools or methods for integrating Node servers with background
process management on several operating systems, to implement continuous server
presence beginning at system start-up. In a moment we'll also do a brief walkthrough
of using Forever on a Debian server. The following is a list of ways to run Node as a
background daemon on different platforms:

•	 nodejs-autorestart (https://github.com/shimondoodkin/nodejs-
autorestart) manages a Node instance on Linux which uses Upstart
(Ubuntu, Debian, and so on).

•	 fugue (https://github.com/pgte/fugue) watches a Node server, restarting
it if it crashes.

•	 forever (https://github.com/indexzero/forever) is a small command-
line Node script which ensures a script will run "forever". For a definition of
"forever", Charlie Robbins wrote a blog post (http://blog.nodejitsu.com/
keep-a-nodejs-server-up-with-forever) about its use.

•	 node-init (https://github.com/frodwith/node-init) is a Node script
which turns your Node application into a LSB-compliant init script. LSB
being a specification of Linux compatibility.

•	 Debian's launchtool (http://people.debian.org/~enrico/launchtool.
html) is a system command for supervising the launch of any command,
including running it as a daemon.

•	 Ubuntu's Upstart tool (http://upstart.ubuntu.com/) can be used alone
(http://caolanmcmahon.com/posts/deploying_node_js_with_upstart)
or along with monit (http://howtonode.org/deploying-node-upstart-
monit) to manage a Node server.

•	 On Mac OS X one writes a launchd script. Apple has published a guide on
implementing launchd scripts at http://developer.apple.com/library/
mac/documentation/MacOSX/Conceptual/BPSystemStartup/Articles/
LaunchOnDemandDaemons.html.

https://github.com/shimondoodkin/nodejs-autorestart
https://github.com/shimondoodkin/nodejs-autorestart
https://github.com/pgte/fugue
https://github.com/indexzero/forever
http://blog.nodejitsu.com/keep-a-nodejs-server-up-with-forever
http://blog.nodejitsu.com/keep-a-nodejs-server-up-with-forever
https://github.com/frodwith/node-init
http://people.debian.org/~enrico/launchtool.html
http://upstart.ubuntu.com/
http://caolanmcmahon.com/posts/deploying_node_js_with_upstart
http://caolanmcmahon.com/posts/deploying_node_js_with_upstart
http://howtonode.org/deploying-node-upstart-monit
http://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Articles/LaunchOnDemandDaemons.html
http://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Articles/LaunchOnDemandDaemons.html
http://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Articles/LaunchOnDemandDaemons.html

Chapter 2

[31]

To demonstrate a little bit of what's involved let's use the forever tool, along with an
LSB-style init script, to implement a little Node server process. The server is a Debian
based VPS with Node and npm installed in /usr/local/node/0.4.8. The following
server script is in /usr/local/app.js (not the most correct place to install the app,
but useful for this demo):

#!/usr/bin/env node
var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337);

Note the first line of the script carefully. It is a little bit of Unix/POSIX magic that
helps to make the script executable.

The forever tool is installed as follows:

$ sudo npm install -g forever

Forever manages background processes. It can restart them on crashes, send the
standard output and error streams to log files, and has several other useful features.
It's worth exploring.

The final bit is a script, /etc/init.d/node, modified from another /etc/init.d
script:

#! /bin/sh -e
set -e
PATH=/usr/local/node/0.4.8/bin:/bin:/usr/bin:/sbin:/usr/sbin
DAEMON=/usr/local/app.js
case "$1" in
 start) forever start $DAEMON ;;
 stop) forever stop $DAEMON ;;
 force-reload|restart)
 forever restart $DAEMON ;;
 *) echo "Usage: /etc/init.d/node {start|stop|restart|force-reload}"
 exit 1
 ;;
esac
exit 0

On Debian you set up an init script with this command:

$ sudo /usr/sbin/update-rc.d node defaults

Setting up Node

[32]

This configures your system so that /etc/init.d/node is invoked on reboot and
shutdown to start or stop the background process. During boot-up or shutdown each
init script is executed, and its first argument is either start or stop. Therefore, when
our init script is executed during boot-up or shutdown one of these two lines will be
executed:

start) forever start $DAEMON ;;
stop) forever stop $DAEMON ;;

We can run the init script manually:

$ sudo /etc/init.d/node start

info: Running action: start

info: Forever processing file: /usr/local/app.js

Because our init script uses the forever tool, we can ask forever the status of all
processes it has started:

$ sudo forever list

info: Running action: list

info: Forever processes running

 [0] node /usr/local/app.js [16666, 16664] /home/me/.forever/7rd6.log
0:0:1:24.817

With the server process running on your server you can open it in a browser
window:

Chapter 2

[33]

With the server still running and managed by forever we have these processes:

$ ps ax | grep node

16664 ? Ssl 0:00 node /usr/local/node/0.4.8/bin/forever start /usr/local/
app.js

16666 ? S 0:00 node /usr/local/app.js

When you're done playing with this you can shut it down this way:

$ sudo /etc/init.d/node stop

info: Running action: stop

info: Forever processing file: /usr/local/app.js

info: Forever stopped process:

 [0] node /usr/local/app.js [5712, 5711] /home/me/.forever/Gtex.log
0:0:0:28.777

$ sudo forever list

info: Running action: list

info: No forever processes running

Using all CPU cores on multi-core systems
V8 is a single thread JavaScript engine. This is good enough for the Chrome browser
but it means a Node based server on that shiny new 16 core server will have one
CPU core going flat out, and 15 CPU cores sitting idle. Your manager may want an
explanation for this.

A single thread process will only use one core. That's a fact of life. Using multiple
cores in a single process requires multi-threaded software. But Node's no threads
design paradigm, while keeping the programming model simple, also means
that Node does not make use of multiple cores. What are you to do? Or more
importantly, how are you to keep your manager happy?

Several projects are working on multi-process Node configurations for greater
reliability and to also use all the cores in multi-core server hardware.

The basic idea is to start multiple Node processes, sharing request traffic between
them. With a cluster of single thread processes you can use all the cores, and keep
your manager happy about the server investment.

Setting up Node

[34]

One of the multi-process Node server projects, Cluster (https://github.com/
LearnBoost/cluster), is an "extensible multi-core server manager for Node.js". It
starts up a configurable set of child processes, restarting them if they crash, and has
extensive logging, command-line control utilities, and statistics. The older Spark
project has closed itself in favor of the Cluster project.

The Cluster project includes a few example server configurations that shows what it
can do. Let's install it and use one of the examples to see how it works:

$ sudo npm install cluster

cluster@0.6.4 ./node_modules/cluster

└── log@1.2.0

Using one of the examples (reload.js) as a model, we'll modify app.js to create
cluster-app.js containing the following:

#!/usr/bin/env node
var http = require('http');
var cluster = require('cluster');
var server = http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
})
cluster(server).set('workers', 2).use(cluster.reload())
 .listen(1337);

This cluster configuration creates two worker processes for sharing the load, and will
automatically reload modified files. You can read the documentation on the Cluster
project site for more details.

It can be run as node cluster-app.js, but let's modify /etc/init.d/node to run it
instead. It's done simply by setting the DAEMON variable to this value:

DAEMON=/usr/local/cluster-app.js

Then:

$ sudo /etc/init.d/node start

info: Running action: start

info: Forever processing file: /usr/local/cluster-app.js

$ sudo forever list

info: Running action: list

info: Forever processes running

 [0] node /usr/local/cluster-app.js [6522, 6521]

$ ps ax | grep node

https://github.com/LearnBoost/cluster

Chapter 2

[35]

 6521 ? Ssl 0:00 node /usr/local/node/0.4.8/bin/forever start /usr/local/
cluster-app.js

 6522 ? Sl 0:15 node /usr/local/cluster-app.js

 6541 ? S 0:00 /usr/local/node/0.4.8/bin/node /usr/local/cluster-app.
js

 6542 ? S 0:00 /usr/local/node/0.4.8/bin/node /usr/local/cluster-app.js

Now you have a multi-process Node server running. We see the two processes with
ps, and you can verify it's running by visiting the http://example.com:1337/ URL
in your browser to see the "Hello, World" message. But because it's using Cluster's
auto-reload feature you can then make a suitable modification to cluster-app.js:
click reload in the browser (no need to restart the server) and you will see something
like this:

http://example.com:1337/

Setting up Node

[36]

Summary
We learned a lot in this chapter, about installing Node, using its command-line
tools, and how to run a Node server. We also breezed past a lot of details that will be
covered later in the book, so be patient.

Specifically, we covered:

•	 Downloading and compiling the Node source code
•	 Installing Node either for development use in your home directory, or for

deployment in system directories
•	 Installing npm, the de-facto standard Node Package Manager
•	 Running Node scripts or Node servers
•	 What's required to use Node for a reliable background process
•	 Using multiple processes to use all CPU cores

Now that we've seen how to set up the basic system, we're ready to start working on
implementing applications with Node. First we must learn the basic building block
of Node applications, modules, which is the topic of the next chapter.

Node Modules
Before writing Node applications we must learn about Node modules and packages.
Modules and packages are the building blocks for breaking down your application
into smaller pieces.

In this chapter we shall:

•	 Learn what a module is
•	 Learn about the CommonJS module specification
•	 Learn how Node finds modules
•	 Learn about the npm package management system

So let's get on with it.

What's a module?
Modules are the basic building block of constructing Node applications. We have
already seen modules in action; every JavaScript file we use in Node is itself a
module. It's time to see what they are and how they work.

In the ls.js example in Chapter 2, Setting up Node, we wrote the following code to
pull in the fs module, giving us access to its functions:

var fs = require('fs');

The require function searches for modules, and loads the module definition into the
Node runtime, making its functions available. The fs object (in this case) contains the
code (and data) exported by the fs module.

Let's look at a brief example of this before we start diving into the details. Ponder
over this module, simple.js:

var count = 0;
exports.next = function() { return count++; }

Node Modules

[38]

This defines an exported function and a local variable. Now let's use it:

The object returned from require('./simple') is the same object, exports, we
assigned a function to inside simple.js. Each call to s.next calls the function
next in simple.js, which returns (and increments) the value of the count variable,
explaining why s.next returns progressively bigger numbers.

The rule is that, anything (functions, objects) assigned as a field of exports is
exported from the module, and objects inside the module but not assigned to
exports are not visible to any code outside the module. This is an example of
encapsulation.

Now that we've got a taste of modules, let's take a deeper look.

Node modules
Node's module implementation is strongly inspired by, but not identical to,
the CommonJS module specification (described at the end of this chapter). The
differences between them might only be important if you need to share code
between Node and other CommonJS systems. A quick scan of the Modules/1.1.1
spec indicates that the differences are minor, and for our purposes it's enough to
just get on with the task of learning to use Node without dwelling too long on the
differences.

Chapter 3

[39]

How does Node resolve require('module')?
In Node, modules are stored in files, one module per file. There are several ways to
specify module names, and several ways to organize the deployment of modules
in the file system. It's quite flexible, especially when used with npm, the de-facto
standard package manager for Node.

Module identifiers and path names
Generally speaking the module name is a path name, but with the file extension
removed. That is, when we wrote require('./simple') earlier, Node knew to add
.js to the file name and load in simple.js.

Modules whose file names end in .js are of course expected to be written in
JavaScript. Node also supports binary code native libraries as Node modules.
In this case the file name extension to use is .node. It's outside our scope to
discuss implementation of a native code Node module, but this gives you enough
knowledge to recognize them when you come across them.

Some Node modules are not files in the file system, but are baked into the Node
executable. These are the Core modules, the ones documented on nodejs.org. Their
original existence is as files in the Node source tree but the build process compiles
them into the binary Node executable.

There are three types of module identifiers: relative, absolute, and top-level.

Relative module identifiers begin with "./" or "../" and absolute identifiers begin
with "/". These are identical with POSIX file system semantics with path names being
relative to the file being executed.

Absolute module identifiers obviously are relative to the root of the file system.

Top-level module identifiers do not begin with "." , "..", or "/" and instead are
simply the module name. These modules are stored in one of several directories,
such as a node_modules directory, or those directories listed in the array require.
paths, designated by Node to hold these modules. These are discussed later.

Local modules within your application
The universe of all possible modules is split neatly into two kinds, those modules
that are part of a specific application, and those modules that aren't. Hopefully the
modules that aren't part of a specific application were written to serve a generalized
purpose. Let's begin with implementation of modules used within your application.

Node Modules

[40]

Typically your application will have a directory structure of module files sitting next to
each other in the source control system, and then deployed to servers. These modules
will know the relative path to their sibling modules within the application, and should
use that knowledge to refer to each other using relative module identifiers.

For example, to help us understand this, let's look at the structure of an existing
Node package, the Express web application framework. It includes several modules
structured in a hierarchy that the Express developers found to be useful. You can
imagine creating a similar hierarchy for applications reaching a certain level of
complexity, subdividing the application into chunks larger than a module but
smaller than an application. Unfortunately there isn't a word to describe this, in
Node, so we're left with a clumsy phrase like "subdivide into chunks larger than a
module". Each subdivided chunk would be implemented as a directory with a few
modules in it.

Chapter 3

[41]

In this example, the most likely relative module reference is to utils.js. Depending
on the source file which wants to use utils.js it would use one of the following
require statements:

var utils = require('./lib/utils');
var utils = require('./utils');
var utils = require('../utils');

Bundling external dependencies with your
application
Modules placed in a node_modules directory are required using a top-level module
identifier such as:

var express = require('express');

Node searches the node_modules directories to find modules. There is not just one
node_modules directory, but several that are searched for by Node. Node starts at
the directory of the current module, appends node_modules, and searches there for
the module being requested. If not found in that node_modules directory it moves
to the parent directory and tries again, repeatedly moving to parent directories until
reaching the root of the file system.

In the previous example, you'll notice a node_modules directory within which is a
directory named qs. By being situated in that location, the qs module is available to
any module inside Express with this code utterance:

var qs = require('qs');

Node Modules

[42]

What if you want to use the Express framework in your application? That's simple,
make a node_modules directory inside the directory structure of your application,
and install the Express framework there:

We can see this in a hypothetical application shown here, drawapp. With the
node_modules directory situated where it is any module within drawapp can access
express with the code:

var express = require('express');

But those same modules cannot access the qs module stashed inside the node_
modules directory within the express module. The search for node_modules
directories containing the desired module goes upward in the filesystem hierarchy,
and not into child directories.

Likewise a module could be installed in lib/node_modules and be accessible from
draw.js or svg.js and not accessible from index.js. The search for node_modules
directories goes upward, and not into child directories.

Chapter 3

[43]

Node searches upward for node_modules directories, stopping at the first place it
finds the module it's searching for. A module reference from draw.js or svg.js
would search this list of directories:

•	 /home/david/projects/drawapp/lib/node_modules

•	 /home/david/projects/drawapp/node_modules

•	 /home/david/projects/node_modules

•	 /home/david/node_modules

•	 /home/node_modules

•	 /node_modules

The node_modules directory plays a key role in keeping the Node package
management from disappearing into a maze of conflicting package versions. Rather
than having one place to put modules, and descend into confusion as dependencies
on conflicting module versions slowly drive you nuts, multiple node_modules
directories let you have specific versions of modules in specific places, if needed.
Different versions of the same module can live in different node_modules directories,
and they won't conflict with each other, so long as the node_modules directories are
situated correctly.

For example, if you've written an application using the forms module (https://
github.com/caolan/forms) to help build the forms in your application and
after writing hundreds of different forms, the authors of the forms module make
incompatible changes. With hundreds of forms to convert and test on their new API
you might not want to do it all at once, but spread out the effort. To do so would
require two directories within your application, each with its own node_modules
directory, with a different version of the forms module in each. Then as you convert
a form to the new forms module, move its code into the directory where the new
forms module lives.

System-wide modules in the require.paths
directories
The algorithm Node uses to find the node_modules directories extends beyond your
application source tree. It goes to the root of the file system, and you could have a /
node_modules directory with a global module repository to satisfy any search
for modules.

Node provides an additional mechanism with the require.paths variable. This is
an array of directory names where we can search for modules.

https://github.com/caolan/forms

Node Modules

[44]

An example is:

$ node

> require.paths;

["/home/david/.node_modules","/home/david/.node_libraries","/usr/local/
lib/node"]

The NODE_PATH environment variable can add directories to the require.paths
array:

$ export NODE_PATH=/usr/lib/node

$ node

> require.paths;

["/usr/lib/node","/home/david/.node_libraries","/usr/local/lib/node"]

>

It used to be a common idiom for Node programs to add directories into require.
paths variable as follows: require.paths.push(__dirname). However, this is no
longer recommended because in practice it was found to be a troublesome source of
confusion. While you can still do this, and while there are still modules in existence
using this idiom, it's sternly frowned upon. The results are unpredictable when
multiple modules push directories into require.paths.

The recommended practice is, in most cases, to install modules in node_modules
directories.

Complex modules—modules as directories
A complex module might include several internal modules, data files, template
files, documentation, tests, or more. These can be stashed inside a carefully
constructed directory structure,which Node will treat as a module satisfying a
require('moduleName') request. To do so, you place one of the two files in a
directory, either a module file named index.js, or a file named package.json.
The package.json file will contain data describing the module, in a format nearly
identical to the package.json format defined by the npm package manager
(described later). The two are compatible with Node using a very small subset of the
tags that npm recognizes.

Specifically, Node recognizes these fields in package.json:

{ name: "myAwesomeLibrary",
 main: "./lib/awesome.js" }

Chapter 3

[45]

With that package.json, the code require('myAwesomeLibrary') would find this
directory, and load the file:

/path/to/node_modules/myAwesomeLibrary/lib/awesome.js

If there were no package.json file then Node will instead look for index.js, which
would load the file:

/path/to/node_modules/myAwesomeLibrary/index.js

Under either scenario (index.js or package.json), the complex module with
internal modules and other assets is easy to implement. Referring back to the Express
package structure we looked at earlier, some of the modules will use relative module
identifiers to reference other modules inside the package, and you can use a node_
modules directory to integrate modules developed elsewhere.

Node package Manager (npm)
As described in Chapter 2, Setting up Node, npm is a package management and
distribution system for Node. It has become the de-facto standard for distributing
modules (packages) for use with Node. Conceptually it's similar to tools like apt-get
(Debian), rpm/yum (Redhat/Fedora), MacPorts (Mac OS X), CPAN (Perl), or PEAR
(PHP). It's purpose is publishing and distributing Node packages over the Internet
using a simple command-line interface. With npm you can quickly find packages to
serve specific purposes, download them, install them, and manage packages you've
already installed.

npm defines a package format for Node largely based on the CommonJS
Package spec.

npm package format
An npm package is a directory structure with a package.json file describing the
package. This is exactly what we just referred to as a Complex Module, except
npm recognizes many more package.json tags than does Node. The starting
point for npm's package.json is the CommonJS Packages/1.0 specification. The
documentation for npm's package.json implementation is accessed with the
following command:

$ npm help json

A basic package.json file is as follows:

{ name: "packageName",
 version: "1.0",
 main: "mainModuleName",

Node Modules

[46]

 modules: {
 "mod1": "lib/mod1",
 "mod2": "lib/mod2"
 }
}

The file is in JSON format which, as a JavaScript programmer, you should already
have seen a few hundred times.

The most important tags are name and version. The name will appear in URLs
and command names, so choose one that's safe for both. If you desire to publish
a package in the public npm repository it's helpful to check and see if a particular
name is already being used, at http://search.npmjs.org or with the following
command:

$ npm search packageName

The main tag is treated the same as we discussed in the previous section on
complex modules. It references the module that will be returned when invoking
require('packageName'). Packages can contain many modules within themselves,
and those can be listed in the modules list.

Packages can be bundled as tar-gzip tarballs, especially to send them over the
Internet.

A package can declare dependencies on other packages. That way npm can
automatically install other modules required by the module being installed.
Dependencies are declared as follows:

"dependencies":
 { "foo" : "1.0.0 - 2.9999.9999"
 , "bar" : ">=1.0.2 <2.1.2"
 }

The description and keywords fields help people to find the package when searching
in an npm repository (http://search.npmjs.org). Ownership of a package can be
documented in the homepage, author, or contributors fields:

 "description": "My wonderful packages walks dogs",
 "homepage": "http://npm.dogs.org/dogwalker/",
 "author": dogwhisperer@dogs.org

Some npm packages provide executable programs meant to be in the user's PATH.
These are declared using the bin tag. It's a map of command names to the script
which implements that command. The command scripts are installed into the
directory containing the node executable using the name given.

http://search.npmjs.org/
http://search.npmjs.org/
http://npm.dogs.org/dogwalker/

Chapter 3

[47]

bin: {
 'nodeload.js': './nodeload.js',
 'nl.js': './nl.js'
},

The directories tag documents the package directory structure. The lib directory
is automatically scanned for modules to load. There are other directory tags for
binaries, manuals, and documentation.

directories: { lib: './lib', bin: './bin' },

The script tags are script commands run at various events in the lifecycle of the
package. These events include install, activate, uninstall, update, and more.
For more information about script commands, use the following command:

$ npm help scripts

This was only a taste of the npm package format; see the documentation (npm help
json) for more.

Finding npm packages
By default npm modules are retrieved over the Internet from the public package
registry maintained on http://npmjs.org. If you know the module name it can be
installed simply by typing the following:

$ npm install moduleName

But what if you don't know the module name? How do you discover the interesting
modules?

The website http://npmjs.org publishes an index of the modules in that registry,
and the http://search.npmjs.org site lets you search that index.

npm also has a command-line search function to consult the same index:

$ npm search mp3

mediatags Tools extracting for media meta-data tags =coolaj86 util m4a
aac mp3 id3 jpeg exiv xmp

node3p An Amazon MP3 downloader for NodeJS. =ncb000gt

Of course upon finding a module it's installed as follows:

$ npm install mediatags

http://npmjs.org/
http://npmjs.org/
http://search.npmjs.org/

Node Modules

[48]

After installing a module one may want to see the documentation, which would
be on the module's website. The homepage tag in the package.json lists that URL.
The easiest way to look at the package.json file is with the npm view command, as
follows:

$ npm view zombie

...

{ name: 'zombie',

 description: 'Insanely fast, full-stack, headless browser testing using
Node.js',

…

 version: '0.9.4',

 homepage: 'http://zombie.labnotes.org/',

…

npm ok

You can use npm view to extract any tag from package.json, like the following
which lets you view just the homepage tag:

$ npm view zombie homepage

http://zombie.labnotes.org/

Using the npm commands
The main npm command has a long list of sub-commands for specific package
management operations. These cover every aspect of the lifecycle of publishing
packages (as a package author), and downloading, using, or removing packages (as
an npm consumer).

http://zombie.labnotes.org/
http://zombie.labnotes.org/

Chapter 3

[49]

Getting help with npm
Perhaps the most important thing is to learn where to turn to get help. The main help
is delivered along with the npm command accessed as follows:

For most of the commands you can access the help text for that command by typing
the following:

$ npm help <command>

The npm website (http://npmjs.org/) has a FAQ that is also delivered with the
npm software. Perhaps the most important question (and answer) is: Why does npm
hate me? npm is not capable of hatred. It loves everyone, even you.

Viewing package information
The npm view command treats the package.json file as data, letting you query that
data using a dot-notation for JSON tags such as viewing the package dependencies:

$ npm view google-openid dependencies

{ express: '>= 0.0.1',

 openid: '>= 0.1.1 <= 0.1.1' }

The package.json file can include the package repository URL. Therefore, if you
just want to retrieve the package source, use the following:

$ npm view openid repository.url

git://github.com/havard/node-openid.git

$ git clone git://github.com/havard/node-openid.git

Cloning into node-openid...

http://npmjs.org/

Node Modules

[50]

remote: Counting objects: 253, done.

remote: Compressing objects: 100% (253/253), done.

remote: Total 253 (delta 148), reused 0 (delta 0)

Receiving objects: 100% (253/253), 63.29 KiB, done.

Resolving deltas: 100% (148/148), done.

What version of Node is required for a package?

$ npm view openid engines

node >= 0.4.1

Installing an npm package
The npm install command makes it easy to install packages upon finding the one
of your dreams as follows:

$ npm install openid

openid@0.1.6 ./node_modules/openid

$ ls node_modules/

openid

Notice that the package is installed in a local node_modules directory. Packages can
be installed in other locations either by changing the current directory, or by telling
npm to make a global install.For example, the following will set up a directory, /
var/www, where /var/www/node_modules stores modules to be shared among
several websites:

$ cd /var/www

$ npm install openid

openid@0.1.6 ./node_modules/openid

npm makes a distinction between global mode and local mode. Normally it operates
in local mode and installs packages into a local node_modules directory next to
your application code. In global mode packages are installed globally, meaning that
they're installed into the Node installation (directories in require.paths) rather
than a local node_modules directory.

The first method to install packages in global mode is to use the -g flag as follows:

$ npm install -g openid

openid@0.1.6 /usr/local/node/0.4.7/lib/node_modules/openid

$ which node

/usr/local/node/0.4.7/bin/node

Chapter 3

[51]

The installation directory in global mode is based on where Node is installed for you.

The second method for global mode installation is to change npm configuration
settings. There are many configuration settings, which we'll discuss in some time,
and the relevant one for now is as follows:

$ npm set global=true

$ npm get global

true

$ npm install openid

openid@0.1.6 /usr/local/node/0.4.7/lib/node_modules/openid

To learn about all the folders npm uses enter the following command:

$ npm help folders

Using installed packages
The point of installing a package is to enable a Node program to access the
module like the following:

var openid = require('openid');

What npm does is to help you set up conditions for this to work smoothly.

Some packages include inner modules that could themselves be useful to other
software. For example, the current version of this openid module we've been
picking on includes a base64 encode/decode module that could be useful for other
software:

var base64 = require('openid/lib/base64').base64;

This runs a risk the openid module could change its implementation of its base64
encode/decode function, breaking your application. Some packages structured
themselves to provide a family of related sub-modules accessed this way, and
provide some guarantee of a stable API for the exposed sub-modules.

What packages are currently installed?
The npm list command lists the installed packages, based on a search from the
current directory. Remember that Node searches for modules starting at the current
directory of the code being executed. Therefore, the installed packages are relatively
based on your current directory, depending on the content of node_modules
directories above the current directory.

Node Modules

[52]

For example, notice how the listed modules changes based on which directory
you are in:

By default the list is shown in a tree structure, that isn't terribly useful as data to
other commands as shown in the previous screenshot. The parseable configuration
setting can make the output usable as data as follows:

$ npm set parseable=true

$ npm list

/home/david/Node/chap06

/home/david/Node/chap06/node_modules/ejs

/home/david/Node/chap06/node_modules/express

/home/david/Node/chap06/node_modules/express/node_modules/connect

/home/david/Node/chap06/node_modules/express/node_modules/mime

/home/david/Node/chap06/node_modules/express/node_modules/qs

/home/david/Node/chap06/node_modules/mongodb

/home/david/Node/chap06/node_modules/mongoose

/home/david/Node/chap06/node_modules/sqlite3

Chapter 3

[53]

Package scripts
npm allows for package scripts to automatically run at various times in the package
lifecycle. Currently there are four lifecycle events: test, start, stop, and restart.

An npm package can include tests which are run as follows:

$ npm test <packageName>

The start, stop, and restart lifecycle events don't have a defined meaning. An
obvious use is starting or stopping daemon processes associated with the package.

Editing and exploring installed package content
npm includes a pair of commands to let you look at or change package content. For
example, you could use this during development to read the package source (say,
to understand what it's doing), look in the package examples directory, or make
modifications to test patches.

For example:

As the command output implies, the explore command spawns a sub-shell whose
current directory is the location where the module is installed. Typing exit or
control-D ends the sub-shell returning you to your login shell.

You can edit files while browsing the package, if you like. If you do, the package may
need to be rebuilt as follows:

$ npm rebuild mongoose

mongoose@1.3.3 /home/david/Node/chap06/node_modules/mongoose

Node Modules

[54]

Updating outdated packages you've installed
The coder codes, updating their package, leaving you in their dust unless you
keep up.

To find out if your installed packages are out of date use the following command:

$ npm outdated

express@2.3.6 ./node_modules/express current=2.3.3

mongoose@1.3.6 ./node_modules/mongoose current=1.3.3

This shows the current installed version as well as the current version in the npm
repository. Updating the outdated packages is very simple:

$ npm update express

connect@1.4.1 ./node_modules/express/node_modules/connect

mime@1.2.2 ./node_modules/express/node_modules/mime

qs@0.1.0 ./node_modules/express/node_modules/qs

express@2.3.6 ./node_modules/express

Uninstalling an installed npm package
It may come to pass that the package of your dreams turns into a nightmare, and
even if it does not there are plenty of reasons to remove installed packages. This can
be done as follows:

$ npm list

/home/david/Node

└── openid@0.1.6

$ npm uninstall openid

$ npm list

/home/david/Node

(empty)

Developing and publishing npm packages
Now that we have a good idea of how to use npm let's get to the other end of the
process and look at how to develop npm packages. Some of the npm commands
serve the development process.

The first step is creating the package.json file, and the npm init command helps
you create the initial version. It interrogates you with a few questions and quickly
helps you create something like the following:

Chapter 3

[55]

{
 "author": "I.M. Awesome <awesome@example.com>",
 "name": "tmod",
 "description": "Test Module",
 "version": "0.0.1",
 "repository": {
 "url": ""
 },
 "engines": {
 "node": ">0.4.1"
 },
 "dependencies": {},
 "devDependencies": {}
}

The next step is obviously to create the package source. npm doesn't have any way
to help you with this. You are the coder so you do the coding. Just make sure to keep
updating the package.json file as you add things to the package. npm does have a
couple of commands you'll be using while developing the package.

One of these commands is npm link, a lighter-weight method of installing packages.
The difference between this and npm install is that npm link simply sets up a
symbolic link to your source directory, and you can freely edit package files without
having to repackage and update the package on every change. You can iteratively
work on the package, and test it, without having to continually rebuild.

Using npm link is a two step process, where first you link your project into the Node
installation as follows:

$ cd tmod

$ npm link

../../0.4.7/lib/node_modules/tmod -> /home/david/Node/chap03/tmod

In the second step you link that package into your application:

$ npm link tmod

../node_modules/tmod -> /home/david/Node/0.4.7/lib/node_modules/tmod -> /
home/david/Node/chap03/tmod

The arrows (->) show you the symbolic link chain that's set up by these commands.

The npm install command has a couple of modes that are useful during
development. The first is that, if executed in the root of a package directory, it installs
the current directory and dependencies into the local node_modules directory.

Node Modules

[56]

The second is to install tarball's either from a local file or over the network from
a URL. Most source code control systems support a URL providing a tarball
(compressed tar file) of the source tree. For example, the downloads page on github
projects gives a URL like this one:

$ npm install https://github.com/havard/node-openid/tarball/v0.1.6

openid@0.1.6 ../node_modules/openid

When you're satisfied that your package works, you might want to publish it in the
public npm repository so others can use it.

The first step is to register an account with the npm repository. It's done by running
the npm adduser command, which asks you a series of questions to establish a
username, password, and e-mail address:

$ npm adduser

Username: my-user-name

Password:

Email: me@example.com

After this step run the npm publish command in the root directory of your package:

$ npm publish

If all has gone well, after running npm publish, you can go to http://search.
npmjs.org and search for the package. It should show up pretty quick.

The npm unpublish command, as the name implies, removes the package from the
npm repository.

npm configuration settings
We've already touched on npm configuration earlier with global mode versus local
mode. There are a number of other settings to fine-tune npm behavior. Let's first look
at the ways to make configuration settings.

First is the npm set and npm get commands, or:

 npm config set <key> <value> [--global]
 npm config get <key>
 npm config delete <key>
 npm config list
 npm config edit
 npm get <key>
 npm set <key> <value> [--global]

http://search.npmjs.org/

Chapter 3

[57]

For example:

$ npm set color true

$ npm set global false

$ npm config get color

true

$ npm config get global

false

Environment variables can be used to set configuration values. Any variables which
start with NPM_CONFIG_ are interpreted for configuration values. For example, the
variable NPM_CONFIG_GLOBAL will set the global configuration value.

Configuration values can be put into configuration files:

•	 $HOME/.npmrc

•	 <Node Install Directory>/etc/npmrc

The configuration file contains name=value pairs like the following, and is updated
by the npm config set command:

$ cat ~/.npmrc

global = false

color = true

Package version strings and ranges
Node doesn't know anything about version numbers. It knows about modules, and
can treat a directory structure as if it were a module, and it has a fairly rich system
of looking for modules, but it doesn't know version numbers. npm however knows
about version numbers. It uses the Semantic Versioning model (see further) and as
we've seen you can install modules over the Internet, query for out-of-date modules,
and update them with npm. All of this is version controlled, so let's take a closer look
at the things npm can do with version numbers and version tags.

Earlier we used npm list to list installed packages, and the listing includes version
numbers of installed packages. If instead, you wish to see the version number of a
specific module, type the following command:

$ npm view express version

2.4.0

Node Modules

[58]

Whenever npm commands take a package name, you can append a version number
or version tag to the package name. This way you can deal with specific package
versions if needed; for example, if you've tested and qualified your application
against a specific version in a staging environment, you can ensure that version is
used in the deployment environment:

$ npm install express@2.3.1

mime@1.2.2 ./node_modules/express/node_modules/mime

connect@1.5.1 ./node_modules/express/node_modules/connect

qs@0.2.0 ./node_modules/express/node_modules/qs

express@2.3.1 ./node_modules/express

npm has a "tag" concept that might be used as shown to install the latest stable
release of a package:

$ npm install sax@stable

Tag names are arbitrary and are not required. The package author designates the tag
names and not all packages will use tag names.

Packages list dependencies to other packages in their package.json, which you can
view in this way:

$ npm view mongoose dependencies

{ hooks: '0.1.9' }

$ npm view express dependencies

{ connect: '>= 1.5.1 < 2.0.0',

 mime: '>= 0.0.1',

 qs: '>= 0.0.6' }

The package dependencies is the way npm knows which additional modules to
install. When installing a module, it looks at the dependencies and downloads any
which are currently not installed.

The sharp-eyed will see the less-than and greater-than signs in this example. npm
supports version number ranges, and for example if Express is declaring it will work
with any version of Connect between 1.5.1 and 2.0.0.

While this will be straightforward and unsurprising to anybody who has dealt with
software at any time, there is a sound model behind the scenes. The npm author
used the Semantic Versioning spec at http://semver.org to guide the npm version
numbering system. It is as follows:

http://semver.org/

Chapter 3

[59]

•	 Version strings are normally integers arranged as X.Y.Z; X is the Major
version, Y is the Minor version, and Z is the Patch (for example, 1.2.3).

•	 The version string can have an arbitrary text appended immediately after the
Patch number for what are called "special versions" (for example, 1.2.3beta1).

•	 Comparing version strings is not a string comparison, but a numerical
comparison of the X, Y, and Z values. For example, 1.9.0 < 1.10.0 < 1.11.3.
Further 1.0.0beta1 < 1.0.0beta2 < 1.0.0.

•	 Compatibility is documented through a version numbering convention:
	° Packages with major version 0 (X = 0) are completely unstable and

can change any API at any time.
	° The Patch number (Z) must be incremented when the only change is

backwards-compatible bug fixes.
	° The Minor number (Y) must be incremented when backwards-

compatible functionality is introduced (for example, a new function,
and all other functions remain compatible).

	° The Major number (X) must be incremented when incompatible
changes are made.

CommonJS modules
Node's module system is based on the the CommonJS module system (http://www.
commonjs.org/). While JavaScript is a powerful language with several advanced
modern features (such as objects and closures), it lacks a standard object library
to facilitate building applications. CommonJS aims to fill that gap with both a
convention for implementing modules in JavaScript, and a set of standard modules.

The require function takes a module identifier and returns the API exported by
the module. If a module requires other modules they are loaded as well. Modules
are contained in one JavaScript file, and CommonJS doesn't specify how the module
identifier is mapped into a filename.

Modules provide a simple mechanism for encapsulation to hide implementation
details while exposing an API. Module content is JavaScript code which is treated as
if it were written as follows:

(function() { … contents of module file … })();

This encapsulates (hides) every top-level object in the module within a private
namespace that other code cannot access. This is how the Global Object problem is
resolved (more on that shortly).

http://www.commonjs.org/

Node Modules

[60]

The exported module API is the object returned by the require function. Inside the
module it's implemented with a top-level object named exports whose fields contain
the exported API. To expose a function or object from the module, simply assign it
into the exports object.

Demonstrating module encapsulation
That was a lot of words, so let's do a quick example. Create a file named module1.js
containing this:

var A = "value A";
var B = "value B";
exports.values = function() {
 return { A: A, B: B };
}

Then create a file named module2.js containing the following:

var util = require('util');
var A = "a different value A";
var B = "a different value B";
var m1 = require('./module1');
util.log('A='+A+' B='+B+' values='+util.inspect(m1.values()));

Then run it as follows (you must have already installed Node):

$ node module2.js

19 May 21:36:30 - A=a different value A B=a different value B values={ A:
'value A', B: 'value B' }

This artificial example demonstrates encapsulation of the values in module1.js from
those in module2.js. The A and B values in module1.js don't overwrite A and B in
module2.js, because they're encapsulated within module1.js. Values encapsulated
within a module can be exported, such as the .values function in module1.js.

The Global Object problem mentioned earlier has to do with those variables which
are outside the functions, putting them in the global context. In web browsers there
is a single global context, and it causes a lot of problems if one JavaScript script
steps on the global variables used in another script. With CommonJS modules each
module has its own private global context, making it safe to share variables between
functions within a module without danger of interfering with global variables in
other modules.

Chapter 3

[61]

Summary
We learned a lot in this chapter about modules and packages for Node.

Specifically, we covered:

•	 Implementing modules and packages for Node
•	 Managing installed modules and packages
•	 How Node locates modules

Now that we've learned about modules and packages, we're ready to use them to
build applications, which is the topic of the next chapter.

Variations on a
Simple Application

Now that we've learned about Node modules it's time to put this knowledge to work
in building a simple Node web application. In this chapter, we'll keep the application
simple, enabling us to explore three different application frameworks for Node. In
later chapters we'll do some more complex applications, but before we can walk we
must learn to crawl.

So let's get on with it.

Creating a Math Wizard
The simple and concise application we'll work with in this chapter is a Math Wizard
that might, with enough user experience, be useful for teaching mathematics to
children. Since we didn't have a user experience expert handy, the Math Wizard
application is instead only useful for teaching web application development with
Node. Don't expect your children to become math geniuses with this application;
you've been warned.

The Math Wizard consists of a home page, a navigation sidebar, and several pages,
each of which allows the user to perform mathematical operations.

Variations on a Simple Application

[64]

To use a web framework, or not
Web frameworks help you invest your time in the task without getting lost in the
details of implementing HTTP protocol. Abstracting away details is a time honored
way for programmers to be more efficient. This is especially true when using a library
or framework providing pre-packaged functions that take care of the details.

In this chapter, we'll start by writing an application (called Math Wizard) with no
frameworks, then progressively improve it by using Connect and Express.

Implementing the Math Wizard with Node
(no frameworks)
We're going to start by crawling, to appreciate what the web frameworks are doing
for us. Crawling means starting with Node's core package, the HTTP Server object.

The Math Wizard, like any web application, has multiple pages, each with its own
URL. Each page has a few common elements (the general page structure and the
navigation bar) and per-page content unique to each page. In the Math Wizard the
URLs are as follows:

•	 /: For the wizard's home page
•	 /square: To calculate the square of a number
•	 /mult: To multiply two numbers
•	 /factorial: To calculate the factorial of a number
•	 /fibonacci: To calculate fibonacci numbers

To get started create a directory to hold the source code:

$ mkdir chap04

Routing requests in Node
Each page of the Math Wizard is implemented with a separate module, with the
server routing requests to these modules.

What we mean by "routing requests" is the strategy of splitting the application into
multiple modules. Rather than implement every inch of the application in one large
callback function, it's best to modularize. Request routing involves code to inspect
the incoming HTTP request, then calls the correct modules to handle the request.

Chapter 4

[65]

Create a file, app-node.js, to hold the following:

var http_port = 8124;

var http = require('http');
var htutil = require('./htutil');

var server = http.createServer(function (req, res) {
 htutil.loadParams(req, res, undefined);
 if (req.requrl.pathname === '/') {
 require('./home-node').get(req, res);
 } else if (req.requrl.pathname === '/square') {
 require('./square-node').get(req, res);
 } else if (req.requrl.pathname === '/factorial') {
 require('./factorial-node').get(req, res);
 } else if (req.requrl.pathname === '/fibonacci') {
 require('./fibo-node').get(req, res);
 // require('./fibo2-node').get(req, res);
 } else if (req.requrl.pathname === '/mult') {
 require('./mult-node').get(req, res);
 } else {
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end("bad URL "+ req.url);
 }
});

server.listen(http_port);
console.log('listening to http://localhost:8124');

This request router is straightforward. Each HTTP request invokes this callback with
req containing data on the request, and res used to send back the response. This
request router looks at the request URL, and passes the request to a request handling
function.

There are several modules, which we'll see in a couple of pages, each of which
export a function named .get with the the function(req, res) signature, and whose
responsibility is to implement one page of the Math Wizard.

If the request URL does not match any of the modules, we send back a 404 status
code, the status code for indicating a page not found error.

Variations on a Simple Application

[66]

Handling URL query parameters
The htutil.loadParams function helps us out by parsing the URL, and saving the
parsed URL object so that the rest of the Math Wizard can refer to it. What's going on
is that each page includes a FORM with inputs named a and b. When the user enters
numbers and clicks Submit, the URL will have a query string that will look like this:

http://localhost:8124/mult?a=3&b=7

These query parameters will only be there when someone has entered numbers
and clicked Submit. This means every Math Wizard page must accommodate
either case where the parameters exist, or do not. The htutil.loadParams function
conveniently looks for these parameters saving us from having duplicate code in
each module.

Create a file named htutil.js containing the following:

var url = require('url');
exports.loadParams = function(req, res, next) {
 req.requrl = url.parse(req.url, true);
 req.a = (req.requrl.query.a && !isNaN(req.requrl.query.a))
 ? new Number(req.requrl.query.a)
 : NaN;
 req.b = (req.requrl.query.b && !isNaN(req.requrl.query.b))
 ? new Number(req.requrl.query.b)
 : NaN
 if (next) next();
}

This is meant to be called from HTTP request handler functions and to be given
the req and res objects received by request handlers. It looks for the a and b query
parameters and as already said, attaches them to the req object. The tests, using the
?: operator, simplifies other code by ensuring that the req.a and req.b clearly have
either the value NaN or a Number, depending on whether a or b query parameters
were supplied. There's a function named next which you should ignore for now,
because we'll discuss it later when looking at the Connect framework.

The other two functions in htutil.js handle page layout. The Math Wizard uses
a common layout for each page, and it's best to centralize this to make it easier to
change and reduce duplicated code. Later, while using the Express framework we'll
use template files for page layout, but in this version of the Math Wizard we're
limiting ourselves to the core facilities of Node, which does not include templates.

With htutil.js still open, add the following two functions. They are a pair of utility
functions to help construct the pages.

http://localhost:8124/mult?a=3&b=7
http://localhost:8124/mult?a=3&b=7

Chapter 4

[67]

exports.navbar = function() {
 return ["<div class='navbar'>",
 "<p>home</p>",
 "<p>Multiplication</p>",
 "<p>Square's</p>",
 "<p>Factorial's</p>",
 "<p>Fibonacci's</p>",
 "</div>"].join('\n');
}

This function gives us an HTML snippet with links to each page. It will serve as the
navigation bar, giving users access to every page.

exports.page = function(title, navbar, content) {
 return ["<html><head><title>{title)</title></head>",
 "<body><h1>{title}</h1>",
 "<table><tr>",
 "<td>{navbar}</td><td>{content}</td>",
 "</tr></table></body></html>"
].join('\n')
 .replace("{title}", title, "g")
 .replace("{navbar}", navbar, "g")
 .replace("{content}", content, "g");
}

This function is the HTML structure for a whole page. It takes arguments to plug the
title, the navigation bar, and the content into appropriate sections of the page.

We're using a small trick here with regular expressions and the replace function
making a clean way to substitute data into a string. The replace function is a String
function which takes a regular expression, matches it against the string, and replaces
the matched text with the supplied string.

In the coming sections we'll see how to use these functions.

Multiplying numbers
Now let's see how to create some mathematics web pages in the Math Wizard. The
first is used to multiply numbers (for example, a * b).

Create a file named mult-node.js containing then following code:

var htutil = require('./htutil');
exports.get = function(req, res) {
 res.writeHead(200, {
 'Content-Type': 'text/html'
 });

Variations on a Simple Application

[68]

 var result = req.a * req.b;
 res.end(
 htutil.page("Multiplication", htutil.navbar(), [
 (!isNaN(req.a) && !isNaN(req.b) ?
 ("<p class='result'>{a} * {b} = {result}</p>"
 .replace("{a}", req.a)
 .replace("{b}", req.b)
 .replace("{result}", req.a * req.b))
 : ""),
 "<p>Enter numbers to multiply</p>",
 "<form name='mult' action='/mult' method='get'>",
 "A: <input type='text' name='a' />
",
 "B: <input type='text' name='b' />",
 "<input type='submit' value='Submit' />",
 "</form>"
].join('\n'))
);
}

The multiplication module, like the other Math Wizard modules, serves two
purposes. The first is to display a mathematical result, and the second is to display a
form allowing the user to enter one or two values.

The first thing to note is we're using the htutil.page function. It provides the
overall page layout, and in this function we only provide the main content area of
the page. This content is an array of strings which is concatenated using the .join()
function at the end.

The key part is the following code to display the result, if a parameter was supplied
by the user:

(!isNaN(req.a) && !isNaN(req.b) ?
 ("<p class='result'>{a} * {b} = {result}</p>"
 .replace("{a}", req.a)
 .replace("{b}", req.b)
 .replace("{result}", req.a * req.b))
: ""),

It uses the ?: operator to first check if the parameters were supplied, and if so
multiply req.a and req.b and display the result.

Chapter 4

[69]

Calculating the other mathematical functions
The other Math Wizard modules are similar to mult-node.js, using the same
general pattern, so let's go through them quickly.

The square of a number is the number multiplied with itself (for example, a * a).
Create a file named square-node.js containing the following code. Note that we are
using Math.floor to ensure rounding req.a to the nearest integer.

var htutil = require('./htutil');
exports.get = function(req, res) {
 res.writeHead(200, {
 'Content-Type': 'text/html'
 });
 res.end(
 htutil.page("Square", htutil.navbar(), [
 (!isNaN(req.a) ?
 ("<p class='result'>{a} squared = {sq}</p>"
 .replace("{a}", req.a)
 .replace("{sq}", req.a*req.a))
 : ""),
 "<p>Enter a number to see its square</p>",
 "<form name='square' action='/square' method='get'>",
 "A: <input type='text' name='a' />",
 "</form>"
].join('\n'))
);
}

The factorial of an integer n, denoted in mathematics as n!, is the product of n and
each positive integer less than n. It's used in many areas of mathematics. Create a file
named factorial-node.js containing the following code:

var htutil = require('./htutil');
var math = require('./math');

exports.get = function(req, res) {
 res.writeHead(200, {
 'Content-Type': 'text/html'
 });
 res.end(
 htutil.page("Factorial", htutil.navbar(), [
 (!isNaN(req.a) ?
 ("<p class='result'>{a} factorial = {fact}</p>"
 .replace("{a}", req.a)

Variations on a Simple Application

[70]

 .replace("{fact}",
 math.factorial(Math.floor(req.a))))
 : ""),
 "<p>Enter a number to see it's factorial</p>",
 "<form name='factorial' action='/factorial' method='get'>",
 "A: <input type='text' name='a' />",
 "</form>"
].join('\n'))
);
}

Fibonacci numbers are the integers in the following sequence: 0, 1, 1, 2, 3, 5, 8,
13, 21, 34, 55, and so on. Each member of the Fibonacci sequence is the sum of
the two previous members in the sequence. The ratio of consecutive elements is
approximately equal to the Golden Ratio. Create a file named fibo-node.js to
contain the page for calculating Fibonacci numbers:

var htutil = require('./htutil');
var math = require('./math');
exports.get = function(req, res) {
 res.writeHead(200, {
 'Content-Type': 'text/html'
 });
 res.end(
 htutil.page("Fibonacci", htutil.navbar(), [
 (!isNaN(req.a) ?
 ("<p class='result'>fibonacci {a} = {fibo}</p>"
 .replace("{a}", Math.floor(req.a))
 .replace("{fibo}", math.fibonacci(Math.floor(req.a))))
 : ""),
 "<p>Enter a number to see its fibonacci</p>",
 "<form name='fibonacci' action='/fibonacci' method='get'>",
 "A: <input type='text' name='a' />",
 "</form>"
].join('\n'))
);
}

The sharp-eyed among you will have noticed a module named math. It, of course,
contains the implementation of a couple of mathematics functions. Create a file
named math.js containing the following:

var factorial = exports.factorial = function(n) {
 if (n == 0)
 return 1;

Chapter 4

[71]

 else
 return n * factorial(n-1);
}

var fibonacci = exports.fibonacci = function(n) {
 if (n === 1)
 return 1;
 else if (n === 2)
 return 1;
 else
 return fibonacci(n-1) + fibonacci(n-2);
}

These are relatively straightforward implementations of these standard mathematics
functions. As we'll see shortly, the Fibonacci function is especially naïve and
computationally intensive.

We also want the Math Wizard to have a home page. Create a file named home-
node.js containing this code:

var htutil = require('./htutil');
exports.get = function(req, res) {
 res.writeHead(200, {
 'Content-Type': 'text/html'
 });
 res.end(
 htutil.page("Math Wizard",
 htutil.navbar(),
 "<p>Math Wizard</p>")
);
}

Enter the following command:

$ node app-node.js

http://localhost:8124/

Variations on a Simple Application

[72]

Since app-node.js listens to port 8124, visit http://localhost:8124/ to see
the following:

Extending the Math Wizard
Our children need good quality education and maybe this example program is the
basis for the best mathematics teaching program ever. Or, maybe not. In any case
the Math Wizard can easily be extended with other pages because the world of
Mathematics is endless. It's straightforward to add new pages following the pattern
already in place using these steps:

•	 Add an "a" tag in htutil.navbar:
As the htutil.navbar function contains the HTML for the navigation bar,
any new Math Wizard page needs to be listed there with something like this
to list a URL for the page, and the name of the page:
"<p>Math Function Name</p>\n"+

•	 Add an if statement in app-node.js:
Since app-node.js contains the request router it, too, needs a new if
statement to route the URL we just defined. The URL given here needs
to match the one in the htutil.navbar function:
if (req.requrl.pathname === '/newUrl') {
 require('./moduleName').get(req, res);

 }

http://localhost:8124/

Chapter 4

[73]

•	 Add a page handler module which exports a get method:

We've already seen several handler modules (mult-node.js and so on), so
it's simple to follow these examples to create one.

Long running calculations
(fibonacci numbers)
The Math Wizard demonstrates a critical consideration with Node applications.
They can bog down if callback functions don't conform to the requirement of quickly
returning to the event loop.

To see this, go to the Fibonacci page and enter a "large" number like 50. This will take
a LONG time to run (measured in hours or days), the node process will consume
a high CPU percentage, and you'll be unable to use the Math Wizard in another
browser window. All this is because calculating numbers in the Fibonacci sequence is
computationally intensive. Why is the browser unresponsive? This happens because
the intense computation prevents the Node event loop from running, preventing
Node from responding to browser requests.

Since Node has a single execution thread, processing requests depends on request
handlers quickly returning to the event loop. Normally the asynchronous coding
style ensures that the event loop executes regularly. This is true even for requests
that load data from a server half way around the globe because I/O is non-blocking
and control is quickly returned to the event loop. The naïve Fibonacci function we
chose doesn't fit into this model, because it's a long running, blocking operation. This
type of event handler prevents the system from processing requests and stops Node
from doing what it's meant to do, namely to be a blistering fast web server.

In this case, the long-response-time problem is obvious. Response time quickly
escalates to the point you can take a vacation to Tibet during the time it takes to
respond with the Fibonacci number. Long response times might not be obvious
in your application, so how do you know your requests are taking too long? One
measurement to make is response latency shown by browser tools such as YSlow.
The rule of thumb when there are human beings using a web browser, is to show the
next page within a second or two or else run the risk of losing your visitor.

Variations on a Simple Application

[74]

There are two general ways in Node to solve this problem:

•	 Algorithmic refactoring: Perhaps, like the Fibonacci function we chose, one
of your algorithms is suboptimal and can be rewritten to be faster. Or, if not
faster, to split it into callbacks dispatched through the event loop. We'll look
at one such method in a moment.

•	 Creating a backend service: Can you imagine a backend server dedicated
to calculating Fibonacci numbers? Okay, maybe not, but it's quite common
to implement backend servers to offload work from frontend servers, and
we will implement a backend mathematics server at the end of this chapter.
The request handler should be making asynchronous calls to data services or
databases, assmbling everything required for the response, sending it to the
browser when ready.

While we could optimize the Fibonacci algorithm with a less naïve one, we'll instead
convert it from a non-asynchronous function to an asynchronous function one with
a callback. Using the asynchronous Fibonacci algorithm here isn't the best idea, but
it demonstrates the algorithmic refactoring approach. We'll split the calculation into
callbacks dispatched through the event loop.

The first thing to do is add a new Fibonacci function to replace the naïve one we
originally implemented. This can happen to you as well, that you write a naïve and
slow function only to have to replace it with a better one later on. In math.js add the
following:

var fibonacciAsync = exports.fibonacciAsync = function(n, done) {
 if (n === 1 || n === 2)
 done(1);
 else {
 process.nextTick(function() {
 fibonacciAsync(n-1, function(val1) {
 process.nextTick(function() {
 fibonacciAsync(n-2, function(val2) {
 done(val1+val2);
 });
 });
 });
 });
 }
}

This is our new asynchronous Fibonacci algorithm. We've converted it from a simple
function into an asynchronously driven calculation that sends its result through a
callback function like the following:

Chapter 4

[75]

fibonacciAsync(n, function(value) {
 // act on value
});

It uses the process.nextTick function to convert a recursive function into one
whose steps are dispatched through the event loop. This function invokes its callback
through the event loop, ensuring the event loop is entered quickly, allowing the
server to continue handling HTTP requests. This is not the only method to dispatch
steps of an algorithm through the event loop. The async module can do this, and has
a long list of functions that help tame asynchronous JavaScript.

In fibonacciAsync, process.nextTick replaces this statement in the original
algorithm:

return fibonacci(n-1)+fibonacci(n-2);

The task is to calculate the two fibonacci numbers, add them together, and send
the result to the caller function. Our new algorithm has three anonymous functions
to implement each step of the task. It uses process.nextTick to ensure this all
happens through the event loop.

Before we go on let's take a moment to ponder on this solution. It does nothing
to reduce the computation required; it simply spreads that computation through
the event loop. It keeps all the CPU load within the current Node process, and
this simply isn't the best way to refactor intense computation like the Fibonacci
algorithm. This helps demonstrate dispatching work through the event loop, a
technique which will be useful for some algorithms and not so useful for others.

It's up to you, and your specific algorithms, to choose the best method for handling
long running computations. For example, later in this chapter we'll demonstrate
implementing a backend server, accessed through HTTP, a technique which can send
computation elsewhere.

Create a new file, fibo2-node.js, and modify app-node.js to require('./fibo2-
node') so it uses the new Fibonacci module. We've already put this line of code in
app-node.js, but it's commented out. Just change which line is commented out to
switch between Fibonacci implementations:

var htutil = require('./htutil');
var math = require('./math');
function sendResult(req, res, a, fiboval) {
 res.writeHead(200, {
 'Content-Type': 'text/html'
 });
 res.end(
 htutil.page("Fibonacci", htutil.navbar(), [

Variations on a Simple Application

[76]

 (!isNaN(fiboval) ?
 ("<p class='result'>fibonacci {a} = {fibo}</p>"
 .replace("{a}", a)
 .replace("{fibo}", fiboval))
 : ""),
 "<p>Enter a number to see its fibonacci</p>",
 "<form name='fibonacci' action='/fibonacci' method='get'>",
 "A: <input type='text' name='a' />",
 "</form>"
].join('\n'))
);
}

exports.get = function(req, res) {
 if (!isNaN(req.a)) {
 math.fibonacciAsync(Math.floor(req.a), function(val) {
 sendResult(req, res, Math.floor(req.a), val);
 });
 } else {
 sendResult(req, res, NaN, NaN);
 }
}

We've refactored this from the original by moving the work to a function,
sendResult, which we call in two different ways depending on whether or not there
is a Fibonacci number to display.

Chapter 4

[77]

Large Fibonacci number requests still take a long time to calculate, but the server
isn't blocked and can handle other requests. You can easily see this by opening
multiple browser tabs. In one tab request a large Fibonacci number that will take
a long time to compute. In another tab make other requests. As you see in this
screenshot, rather than unresponsive boringness it handles your requests.

What "complete web server" features are
missing?
As we'll see later when discussing Connect, the rather minimal dispatch function
in the Math Wizard does not do several things that real web servers do. Just
implementing the HTTP protocol does not make a complete web server or web
application because it's missing several useful best practices developed over the last
20 years of web application development:

•	 The Math Wizard application doesn't look at the request method (GET, PUT,
POST, and so on). Maintaining HTTP semantics requires behaving differently
for GET, PUT, or POST requests.

•	 It doesn't provide a page for bad URLs (the 404 page).
•	 Neither the URL nor the forms are screened for any injected scripting attacks.
•	 It doesn't support handling cookies, nor does it use cookies to maintain

sessions.
•	 It doesn't log requests.
•	 It doesn't support authentication.
•	 It doesn't handle static files such as images, CSS, JavaScript, or HTML.
•	 It doesn't limit anything such as page size, or execution time.

As we'll see later with Connect and Express, the Node web frameworks provide
most of these missing features.

Using Connect to implement the Math Wizard
Connect (http://senchalabs.github.com/connect/) is not described as a web
framework, but instead as a middleware framework for Node. It ships with "11
bundled middleware" and there is "a rich choice of third-party middleware". It's
okay if you're confused by the term "middleware" since it's such a general word; so
let's start by closely examining that word.

http://senchalabs.github.com/connect/

Variations on a Simple Application

[78]

TJ Holowaychuck has described "middleware" as providing Node developers
with simple "plug-and-play" modules, which can be "stacked" in any order, and
aid in rapid application development providing useful common web application
functionality such as request routing, authentication, request logging, cookie
handling, and more (http://tjholowaychuk.com/post/664516126/connect-
middleware-for-nodejs).

Middleware comes in two flavors:

•	 filters: Sit in the middle of the request flow processing incoming and
outgoing traffic but not themselves responding to requests. An example of a
filter is the "logger" middleware which provides customizable logging.

•	 providers: Are "end-points" in the stack, meaning that an incoming request
stops at a provider, and it's the provider which sends the response. An
example of a provider is the "static" middleware which serves static files.

In the previous section, we saw an application built using http.createServer and
a function that is called for each HTTP request arriving on the server. With Connect
you instead use connect.createServer and then attach middleware modules
to that server. One of the middleware modules, router, is used to implement
application URLs.

With that in mind, let's look at some code.

Installing Connect and other setup
First, make sure that Connect is installed:

$ npm install connect

Now, create the file app-connect.js with this content:

var connect = require('connect');
var htutil = require('./htutil');

connect.createServer()
 .use(connect.favicon())
 .use(connect.logger())
 .use('/filez', connect.static(__dirname + '/filez'))
 .use(connect.router(function(app){
 app.get('/',
 require('./home-node').get);
 app.get('/square', htutil.loadParams,
 require('./square-node').get);
 app.get('/factorial', htutil.loadParams,

http://tjholowaychuk.com/post/664516126/connect-middleware-for-nodejs
http://tjholowaychuk.com/post/664516126/connect-middleware-for-nodejs

Chapter 4

[79]

 require('./factorial-node').get);
 app.get('/fibonacci', htutil.loadParams,
 require('./fibo2-node').get);
 app.get('/mult', htutil.loadParams,
 require('./mult-node').get);
 })).listen(8124);
console.log('listening to http://localhost:8124');

Then execute the server as follows:

$ node app-connect.js

Since the server is started with .listen(8124), visit http://localhost:8124/ in your
web browser.

Congratulations! We have now just run our first Connect based Node application.

You'll notice it behaves and looks exactly like the previous incarnation of the Math
Wizard. This is because app-connect.js reuses modules from app-node.js. The
app.get functions simply passes requests to one of the existing modules.

If it's behaving the same then what's the big deal?

The difference is that Connect offers a request processing and dispatch framework
to ease application development. It takes care of many of the "complete web server"
features mentioned earlier, letting you focus more on your application. But does this
make it an application framework?

Connect isn't presented as an application framework but as the basis upon which to
build an application framework. Express is one such application framework built
upon Connect. Connect is useful by itself, and understanding Connect helps to
understand Express, so we'll have a short discussion of Connect and then move on to
Express.

Connecting with Connect
We've just had a taste of Connect so let's take a more careful look. Connect is the
basis for the Express framework, and it resolves practically all of the limitations
discussed earlier with applications built on the HTTP Server object. Before we get
ahead of ourselves, let's take a look at app-connect.js.

In Connect there are several ways of setting up and configuring the server object. The
way we're doing it in app-connect.js is as follows:

var connect = require('connect');
connect.createServer()

http://localhost:3000/

Variations on a Simple Application

[80]

 .use(connect.favicon())
 .use(connect.logger())
 .use('/filez', connect.static(__dirname + '/filez'))
 .use(connect.router(function(app){
 // configure the router
 })).listen(.. port number ..);

The .use method is one way to attach middleware to a Connect server. This sets up
a series of middleware modules invoked on every request. The middleware modules
to use of course, depend on your application.

The .use method allows one to chain .use invocations for a nicer programming
experience (server.use().use().use().use()).

In this case we're configuring the favicon, logger, static, and router middleware.

The logger middleware is useful for creating an Apache style access log. By default it
prints to the terminal but can be configured to print in any format or to any file.

The static middleware implements a "static web server" to deliver the files located
under the specified directory. What that means is if you have a directory hierarchy
containing .html or .css or .js files to send to browsers, the connect.static
middleware will do the job.

Favicons are those little images which some web browsers show in the location bar,
on tabs, and are generally another little place for your branding to exist, and the
favicon middleware handles it for you.

The router middleware serves the purpose of directing requests for each URL to the
correct handler function. It's configuration starts with the following :

.use(connect.router(function(app){
 // configure the router
})

But the real power here is the router configuration code where you declare the URLs
recognized by the application, and the handler function for each URL. The pattern
for router configuration is as follows:

app.requestName('path', function(req, res, next) {..});

The requestName is one of the HTTP verbs such as get, put, post, and so on. This
means you can have an HTML form on a page, and with method=POST, use an app.
get function to send the page to the browser, and use an app.post function to
receive posted requests on this form. We'll see an example in Chapter 6, Data Storage
and Retrieval but it might look like the following, assuming appropriately
defined functions:

Chapter 4

[81]

app.get('/form', createPageWithForm);
app.post('/form', receiveValuesPostedWithForm);

The callback function have one more function argument than the usual request
handler. Its signature is function(req, res, next) where req and res have the
usual meaning of HTTP Request and HTTP Response. The next argument is a
function provided by Connect which plays a role in making sure that all middleware
functions are executed.

Routes can dispatch to multiple functions, as we do in app-connect.js. Connect
will call each function in turn so long as the next function is used. In app-connect.
js we are using htutil.loadParams, as we did in app-node.js. You'll remember
that this includes use of a function named next, which we now know is provided by
Connect.

Here's a typical router configuration function:

app.get('/square', htutil.loadParams,

 require('./square-node').get);

The arguments are a URL string and two functions, the first being htutil.
loadParams. Router configuration functions can contain any number of functions
like this and you can construct the series of processing functions needed for your
application.

Taken together the middleware and multiple router functions are a kind of state
machine for processing HTTP requests. We've seen that there are two series of
functions. The first is the middleware functions listed in the server configuration,
and the second is the list of router functions we've just looked at.

Using Express to implement the Math
Wizard
Now that we understand Connect, let's take the Math Wizard on its next
evolutionary step with Express. Express is a web application framework built upon
Connect (a middleware framework). This means that the focus of Express is on
constructing an application, including providing a template system, where the focus
of Connect is on web server infrastructure. The same team develops both Express
and Connect so it shouldn't be surprising to learn the APIs are extremely similar.

Variations on a Simple Application

[82]

For example, this is Hello World in Express:

var app = require('express').createServer();
app.get('/', function(req, res) {
 res.send('Hello, world!');
});
app.listen(3000);

This should look similar to the code for Connect we went over in the previous
section. However, the object returned from createServer has the router middleware
functions attached to it. The feeling is very much as if you're skipping past most of
the middleware attaching and configuring, and instead going direct for the URL
router. You can still attach and configure middleware, of course:

var express = require('express');
var app = express.createServer(
 express.logger(),
 express.bodyParser()
);

To install Express and EJS (a template processing system) simply do the following :

$ npm install express ejs

qs@0.1.0 ../node_modules/express/node_modules/qs

express@2.3.11 ../node_modules/express

ejs@0.4.2 ../node_modules/ejs

Implementing the Express Math Wizard
With the required modules installed let's start coding. To prepare for coding the
Express Math Wizard, create a directory:

$ mkdir views

And create the file app-express.js containing the following:

var htutil = require('./htutil');
var math = require('./math');
var express = require('express');
var app = express.createServer(
 express.logger()
);

app.register('.html', require('ejs'));
// Optional since express defaults to CWD/views
app.set('views', __dirname + '/views');

Chapter 4

[83]

app.set('view engine', 'ejs');

app.configure(function(){
 app.use(app.router);
 app.use(express.static(__dirname + '/filez'));
 app.use(express.errorHandler({
 dumpExceptions: true, showStack: true }));
});

This sets up the server and configures the required middleware. Some of the details
are different, for example, express.logger rather than connect.logger, but
everything should look familiar.

Among the new things are app.register and app.set. The configuration shown
here configures the template system so that .html files are processed by the EJS
engine. We'll see in a moment how res.render is used to render data into templates
through one of several template engines.

Now for the router configuration (still in app-express.js):

app.get('/', function(req, res) {
 res.render('home.html', { title: "Math Wizard" });
});
app.get('/mult', htutil.loadParams, function(req, res) {
 if (req.a && req.b) req.result = req.a * req.b;
 res.render('mult.html', {
 title: "Math Wizard" , req: req });
});
app.get('/square', htutil.loadParams, function(req, res) {
 if (req.a) req.result = req.a * req.a;
 res.render('square.html', {
 title: "Math Wizard" , req: req });
});
app.get('/fibonacci', htutil.loadParams, function(req, res) {
 if (req.a) {
 math.fibonacciAsync(Math.floor(req.a), function(val) {
 req.result = val;
 res.render('fibo.html', {
 title: "Math Wizard" , req: req });
 });
 } else {
 res.render('fibo.html', {
 title: "Math Wizard" , req: req });
 }
});

Variations on a Simple Application

[84]

app.get('/factorial', htutil.loadParams, function(req, res) {
 if (req.a) req.result = math.factorial(req.a);
 res.render('factorial.html', {
 title: "Math Wizard" , req: req });
});

app.get('/404', function(req, res) {
 res.send('NOT FOUND '+req.url);
});

app.listen(8124);
console.log('listening to http://localhost:8124');

Router configuration in Express is largely the same as for Connect, except filtered
through a parallel universe. As already noted, the router functions are directly
available on the server object. The main difference is in what we're doing in the
router functions because of template engine support.

In Express we send pages using the res.render function rather than res.
writeHead and res.end, as we did before. The res.render function renders data
through a template file, letting us implement some healthy separation between
presentation and code.

EJS is just one of the template systems available in Express. Our configuration is to
use it for any file within the views directory with the .html extension.

There are other template engines, and lacking configuration the file extension is used
to indicate the template engine as follows:

res.render('index.haml', {..data..}); // Use Haml
res.render('index.jade', {..data..}); // Use Jade
res.render('index.ejs', {..data..}); // Use EJS
res.render('index.coffee', {..data..}); // Use CoffeeKup
res.render('index.jqtpl', {..data..}); // Use jQueryTemplates

You can also change the default rendering engine with app.set as follows:

app.set('view engine', 'haml'); // Use Haml
app.set('view engine', 'jade'); // Use Jade
app.set('view engine', 'ejs'); // Use EJS

Now that we've talked about the code, let's create the template files. They are all to
be placed in the views directory.

Chapter 4

[85]

First, in layout.html let's add the following code:

<html>
 <head><title><%= title %></title></head>
 <body>
 <h1><%= title %></h1>
 <table>
 <tr><td>
 <div class='navbar'>
 <p>home</p>
 <p>Multiplication</p>
 <p>Square's</p>
 <p>Factorial's</p>
 <p>Fibonacci's</p>
 </div>
 </td>
 <td><%- body %></td>
 </tr>
 </table></body></html>

In Express the layout template is special. You'll note that in app.js we used res.
render('fibo.html' ..) and nowhere was layout.html mentioned. What's going
on? The default behavior is for the rendered contents of the named template to be
passed on to the layout template as the variable named body. When app.js calls
res.render('fibo.html' ..) it first renders a page snippet with fibo.html, then
renders the whole page using the layout template.

There are two ways to override this default behavior. The first is to make a global
setting in Express that turns off (or on) all use of the layout template:

app.set('view options', { layout: false (or true) });

The second way is to override the layout template for a specific rendering:

res.render('myview.ejs', { layout: false (or true) });

To disable (or enable) the layout template on a specific rendering, or to use a
different layout template use the following:

res.render('page', { layout: 'mylayout.jade' });

Variations on a Simple Application

[86]

EJS templates are mostly HTML except for three special kinds of tags. These should
be familiar if you've used other template systems:

•	 Unbuffered code for conditionals and so on <% code %>
•	 Escapes html by default with <%= code %>
•	 Unescaped buffering with <%- code %>

We see here the use of escaped HTML, with <%= title %>, and unbuffered data,
with the <%- body %> tag.

Let's get back to the Math Wizard templates next, home.html:

<p>Math Wizard</p>

And, that's it.

In mult.html we will add the following code:

<% if (req.a && req.b) { %>
 <p class='result'>
 <%= req.a %> * <%= req.b %> = <%= req.result %>
 </p>
<% } %>
<p>Enter numbers to multiply</p>
<form name='mult' action='/mult' method='get'>
 A: <input type='text' name='a' />

 B: <input type='text' name='b' />
 <input type='submit' value='Submit' />
</form>

Here we see the use of <% code %> tags to introduce a bit of conditional rendering of
the appropriate bits if we have data to render:

<% if (req.a && req.b) { %>
 conditional content
<% } %>

The code within <% code %> tags is JavaScript to do anything, however in this case
we're using an if statement to conditionally render some content. If you were to
have a list or array of data you might use a while statement to loop over and render
the items.

Now in square.html we'll add the following code:

<% if (req.a) { %>
 <p class='result'>
 <%= req.a %> squared = <%= req.result %>

Chapter 4

[87]

 </p>
<% } %>
<p>Enter numbers to multiply</p>
<form name='square' action='/square' method='get'>
 A: <input type='text' name='a' />
 <input type='submit' value='Submit' />
</form>

Now in factorial.html we'll add the following code:

<% if (req.a) { %>
 <p class='result'>
 <%= req.a %> factorial = <%= req.result %>
 </p>
<% } %>
<p>Enter a number to see it's factorial</p>
<form name='factorial' action='/factorial' method='get'>
 A: <input type='text' name='a' />
 <input type='submit' value='Submit' />
</form>

And finally, in fibo.html we'll add the following code:

<% if (req.a) { %>
 <p class='result'>
 fibonacci <%= req.a %> = <%= req.result %>
 </p>
<% } %>
<p>Enter a number to see it's fibonacci</p>
<form name='fibonacci' action='/fibonacci' method='get'>
 A: <input type='text' name='a' />
 <input type='submit' value='Submit' />
</form>

Now, with all that set up you can run the application using the following:

$ node app-express.js

Then visit the application in your browser at http://localhost:8124/ and enjoy
the Math Wizard.

http://localhost:3000/

Variations on a Simple Application

[88]

Handling errors
Errors will happen. It's best to learn about errors early because early detection makes
it cheaper to fix errors. Express provides two ways to catch errors.

In the Math Wizard we had this line of code:

app.use(express.errorHandler({
 dumpExceptions: true, showStack: true
}));

This is the default error handler and shows a geek-friendly, developer-friendly stack
trace. It's not what you want to show to real visitors. Instead you might want to show
something like a whale being lifted out of the ocean by a flock of birds. The first step
to showing user-friendly errors is to install a handler for error events using the app.
error function. Note the function it takes has an additional parameter, err, which
contains the error object:

app.error(function(err, req, res, next) {
// …
 res.send(... error page); // or res.render('template'..)
});

This is where your brilliance can shine with a fun error page, or maybe you'll instead
make yet another dull, boring error page. It's up to you.

Parameterized URLs and data services
So far we've looked at applications that send HTML to a web browser. While that's
an important use case, Express (and Connect) can be used for many other things. For
example, we commonly use HTTP to build REST services to send data meant to be
consumed by an application rather than HTML meant for human enjoyment.

Earlier we pondered (and dismissed) the likelihood of a Fibonacci server to offload
Fibonacci calculations from the frontend web server to a backend. Let's go ahead and
build one, just to see the basics of how to do it. Along the way we'll take a look at
Express's parameterized routing feature, and formatting a response as data. So let's
get started.

Chapter 4

[89]

Parametrized URLs in Express
The routing system in express allows your URL to specify placeholders that become
available in the req object. It can make your program more flexible than non-
parameterized URLs. It's done by a kind of pattern matching with tokens plugged
into URL elements. Express examines the request URL, matching it against the
patterns you specify, extracting matching elements from the URL, and filling the data
into fields in the req object.

An example might make this clearer:

app.get('/user/:id', function(req, res){
 res.send('user ' + req.params.id);
});

In the URL, /user/:id has a placeholder token named id. Express recognizes the
stuff after /user/ and assigns it to the req.params.id field. The pattern can be a
regular expression, if you prefer.

The mathematics server (and client)
Now let's create a simple server for supporting mathematics calculations, returning
the results through a JSON object. It'll support the same four operations we had in
the Math Wizard.

Create a file named math-server.js containing the following:

var math = require('./math');
var express = require('express');
var app = express.createServer(
 //express.logger()
);
app.configure(function(){
 app.use(app.router);
 app.use(express.errorHandler({
 dumpExceptions: true, showStack: true }));
});

app.get('/fibonacci/:n', function(req, res, next) {
 math.fibonacciAsync(Math.floor(req.params.n),
 function(val) {
 res.send({ n: req.params.n, result: val });
 });
});
app.get('/factorial/:n', function(req, res, next) {
 res.send({

Variations on a Simple Application

[90]

 n: req.params.n,
 result: math.factorial(Math.floor(req.params.n))
 });
});
app.get('/mult/:a/:b', function(req, res, next) {
 res.send({
 a: req.params.a, b: req.params.b,
 result: req.params.a * req.params.b
 });
});
app.get('/square/:a', function(req, res, next) {
 res.send({
 a: req.params.a,
 result: req.params.a * req.params.a
 });
});
app.listen(3002);

That's the entire server, except for the math module, which is the same one we
used earlier. It has a slightly stripped down configuration, and is set up to listen on
http://localhost:3002/ so that it can be used as the backend of the Math Wizard.

The routes we specify are straightforward, providing space for the function
arguments needed for each operation.

This is the first time we've seen res.send used. It's a flexible way to send responses
which can take an array of header values (for the HTTP response header), and an
HTTP status code. As used here it automatically detects the object, formats it as
JSON text, and sends it with the correct Content-Type.

Now let's run it:

$ node math-server.js &

[1] 10483

$ curl -f http://localhost:3002/square/34.2

{"a":"34.2","result":1169.64}

$ curl -f http://localhost:3002/mult/3.3/3

{"a":"3.3","b":"3","result":9.899999999999999}

$ curl -f http://localhost:3002/factorial/20

{"n":"20","result":2432902008176640000}

$ curl -f http://localhost:3002/fibonacci/20

{"n":"20","result":6765}

http://localhost:3002/
http://localhost:3002/

Chapter 4

[91]

Now that we've implemented a server, what about the client?

Because this is an HTTP service, client programs make HTTP requests to the server.
Node includes an excellent HTTP Client object, and in Chapter 5, A Simple Web Server,
EventEmitters, and HTTP Clients we'll look at it in more depth.

The task is to construct an HTTP request, send the request, wait for the response,
decode the response body, and make use of it. While you can do this in a web
application like the Math Wizard, let's make a simple terminal client application to
the math server.

Create a file named math-client.js containing the following:

var http = require('http');
var util = require('util');
[
 "/fibonacci/20", "/factorial/20",
 "/mult/10/20", "/square/12"
].forEach(function(path) {
 var req = http.request({
 host: "localhost",
 port: 3002,
 path: path,
 method: 'GET'
 }, function(res) {
 res.on('data', function (chunk) {
 util.log('BODY: ' + chunk);
 });
 });
 req.end();
});

The code http.request creates an HTTP request, but with the URL elements split
out into the parameters object. We'll go deeper into this in the next chapter, but what
you need to know right now is that the callback declared in the res.on statement is
triggered when the HTTP response data arrives.

Hence math-client.js makes a few hardcoded requests against the math-server.
js, printing out the results as follows:

$ node math-client.js

7 Jun 22:17:49 - BODY: {"n":"20","result":2432902008176640000}

7 Jun 22:17:49 - BODY: {"a":"12","result":144}

7 Jun 22:17:49 - BODY: {"a":"10","b":"20","result":200}

7 Jun 22:17:49 - BODY: {"n":"20","result":6765}

Variations on a Simple Application

[92]

The sharp-eyed among you will have noticed the responses arrived out of order
from how they're listed in the array. The response for the Fibonacci request arrived
last, while having been requested first. Recall that callbacks occur asynchronously
based on when they arrive in the event loop, and that the Fibonacci function can take
a while to calculate its result. What happened is that calculating the 20th element of
the Fibonacci series took a long time. In math-client.js the requests are all sent
very quickly, because its work to send requests is very small, and the printout we see
here is a result of invoking the res.on('data'..) handlers. Answering the request
in math-server.js is an app.get request handler. Each res.on('data'..) handler
is tied to an app.get request handler invocation through the socket over which
the HTTP request was made. When an app.get request handler calls res.send,
its HTTP response in turn causes the res.on('data'..) handler waiting for that
response to be invoked.

What determines the ordering of which result is printed first? It's the length of time
math-server.js spends calculating each result, because the result is printed only
after the response arrives.

In most cases the calculation is quick (a multiplication) and it returns the answer
almost immediately. The Fibonacci query, as we discussed before, is a different
story. Since fibonacciAsync is used, calculation of Fibonacci values will happen in
parallel with calculating the other responses and the 20th Fibonacci number takes
enough time to calculate that the other values were calculated first, and arrived
first in the client. Changing the Fibonacci request value to 2 changes it to a shorter
calculation, changing the arrival order of the responses, as we see here:

$ node math-client.js

7 Jun 22:34:49 - BODY: {"n":"2","result":1}

7 Jun 22:34:49 - BODY: {"a":"10","b":"20","result":200}

7 Jun 22:34:49 - BODY: {"n":"20","result":2432902008176640000}

7 Jun 22:34:49 - BODY: {"a":"12","result":144}

Refactoring Math Wizard to use math server
Now that we have this client function, it's a fairly simple matter to transplant it into a
request handler in the Math Wizard. Earlier we pondered how to keep the frontend
user-facing server handling requests for happy users, while at the same time hosting
a potentially heavy-weight calculation. Calculating members of the Fibonacci
sequence is an example of a heavy-weight calculation that, if performed on a user-
facing server, could detract from user happiness.

Chapter 4

[93]

The solution we looked at before was refactoring the algorithm to split its
calculations into chunks distributed through the event queue. While this strategy
will work in some cases it does mean the user-facing server is still performing the
calculation, and the refactored algorithm may be less efficient than before. With
math-client.js we have yet another way to solve this problem, sending the work
to a backend server or maybe a load-balanced cluster of servers.

In app-express.js replace the /fibonacci request handler with the following:

app.get('/fibonacci', htutil.loadParams, function(req, res) {
 if (req.a) {
 var httpreq = require('http').request({
 host: "localhost",
 port: 3002,
 path: "/fibonacci/"+Math.floor(req.a),
 method: 'GET'
 }, function(httpresp) {
 httpresp.on('data', function (chunk) {
 var data = JSON.parse(chunk);
 req.result = data.result;
 res.render('fibo.html',
 { title: "Math Wizard", req: req });
 });
 });
 httpreq.end();
 //math.fibonacciAsync(Math.floor(req.a), function(val) {
 //req.result = val;
 //res.render('fibo.html',
 //{ title: "Math Wizard" , req: req });
 //});
 } else {
 res.render('fibo.html',
 { title: "Math Wizard" , req: req });
 }
});

What's happening is this new request handler is itself turning around and making
an HTTP request from the backend server we just implemented (math-server.js).
In effect this is the simplest of REST style backend services you can imagine. The
backend server defines several URLs for HTTP GET requests, it returns JSON with
the data, and our request handler parses that JSON to get the result.

Variations on a Simple Application

[94]

You run this the same way, after modifying the request handler function:

$ node app-express.js

Again, it behaves the same as if you're using fibonacciAsync, so what's the big
deal? Why would you architect the use of any backend service? For the Math Wizard
this is probably overkill, but it demonstrates a commonly made choice which could
be perfect for your application. Here are a few reasons to consider:

•	 It may be best to remove heavy computation demands from the frontend
user-facing server, leaving it free to interact with web browsers.

•	 Load balancing to distribute requests over multiple servers (cloud
computing).

•	 Responses from math-server.js are deterministic making a caching proxy
an attractive way to get a dramatic speed boost. Why recalculate answers
that have already been answered?

•	 It lets you use fancy buzzwords to impress your boss.

The ease with which we implemented math-server.js and integrated it into the
Math Wizard demonstrates all over again the simplicity and power Node brings to
the game.

Summary
We learned a lot in this chapter, and are now ready to start writing some real
applications. But first let's recap what we covered:

•	 Request handling and modularization into separate modules
•	 Creating web applications with the HTTP Server object, and with the

Connect and Express frameworks
•	 Handling URL query parameters from FORM submissions
•	 The impact of long running calculations on server responsiveness and user

happiness, as well as methods to fix it
•	 Using the async module to tame asynchronous coding practices
•	 Some aspects of a full web application stack provided by Connect and

Express
•	 What Connect means by middleware
•	 How to handle different HTTP verbs with Connect and Express routing rules

Chapter 4

[95]

•	 Using parameterized URL's in Express
•	 Implementing a REST style backend server to distribute computation load

Now that we've learned so much about implementing web applications let's take a
closer look at the HTTP server and client objects and the events distributing system
in Node.

A Simple Web Server,
EventEmitters, and

HTTP Clients
Now that we've seen how to create Node applications using the Express web
framework, let's dig under the covers into the details of HTTP web server
implementation. In this chapter, we'll implement a simple web server that supplies
a few of the attributes of real web servers discussed in Chapter 4, Variations on a
Simple Application.

It's generally best to let the web application framework take care of details, because
the HTTP protocol is complex to implement correctly. So why do we want to
implement our own HTTP web server? There are several reasons as follows:

•	 Understanding why to choose one framework or another
•	 Understanding why a framework does what it does
•	 Not every task fits into the opinions embedded in a framework design
•	 Sometimes you need to code directly to the bare HTTP layer to implement

web services rather than web applications
•	 Maybe you have a better idea than the framework authors

Let's get started.

A Simple Web Server, EventEmitters, and HTTP Clients

[98]

Sending and receiving events with
EventEmitters
The EventEmitter object is a key part of using Node to implement applications, but
it's so much a part of the woodwork that you may miss its existence. Many of Node's
objects subclass from EventEmitter, using its methods to send events to signal certain
conditions. These events go through Node's event loop, eventually invoking
callback functions.

In this chapter, we'll be working with the HTTPServer and HTTPClient objects. Both
of them subclass EventEmitter and rely on it to send events for each step of the HTTP
protocol. Understanding EventEmitter will help you understand not only these
objects but many other objects in Node.

The EventEmitter object is defined in Node's events module. Directly using the
EventEmitter class means doing require('events'), but this is not required
except for cases which explicitly need you to. The many objects in Node that use
EventEmitter do so without requiring you to call require('events').

This example (pulser.js) shows both sending and receiving events while directly
using the EventEmitter class:

var events = require('events');
var util = require('util');

function Pulser() {
 events.EventEmitter.call(this);
}
util.inherits(Pulser, events.EventEmitter);

Pulser.prototype.start = function() {
 var self = this;
 this.id = setInterval(function() {
 util.log('>>>> pulse');
 self.emit('pulse');
 util.log('<<<< pulse');
 }, 1000);
}

This defines a class, Pulser, which inherits from EventEmitter (using util.
inherits). Its purpose is to send timed events, once a second, to any listeners. The
start method uses setInterval to kick off repeated callback execution, scheduled
for every second, and calling emit to send pulse events to any listeners.

Chapter 5

[99]

This much of pulser.js could be a standalone module for any application needing
timer events at regularly scheduled intervals.

Now let's see how to use the Pulser object:

var pulser = new Pulser();
pulser.on('pulse', function() {
 util.log('pulse received');
});
pulser.start();

Here we create a Pulser object, and consume its pulse events. Calling pulser.
on('pulse'..) sets up connections for pulse events to invoke the callback function.
It then calls the start method to get the process going.

Having entered this into a file named pulser.js, run it, and you should see the
following output:

$ node pulser.js

23 May 20:30:20 - >>>> pulse

23 May 20:30:20 - pulse received

23 May 20:30:20 - <<<< pulse

23 May 20:30:21 - >>>> pulse

23 May 20:30:21 - pulse received

23 May 20:30:21 - <<<< pulse

...

EventEmitter theory
EventEmitter events are named, such as the pulse event used here. Event names can
be anything which makes sense to you and you can define as many events as you like.
Event names are defined simply by calling .emit with the event name. There's nothing
formal to do, no registry of event names, and simply making a call to .emit is enough
to define an event name. By convention, the event name error indicates errors.

An object sends events using the .emit function. Events are sent to any listeners
which have registered to receive events from the object. The program does so by
calling that object's .on method, giving the event name, as well as a callback function
to receive the event.

We can see this in pulse.js. The Pulser object calls self.emit('pulse') to send
events, and later in the file, pulse.on('pulse', ..) is called to receive those
events.

A Simple Web Server, EventEmitters, and HTTP Clients

[100]

Often it is required to send data along with an event. To do so, simply add the data
as arguments to the .emit call, as follows:

self.emit('eventName', data1, data2, ..);

Then when the program receives that event, the data appears as arguments to the
callback function. Your program would listen to such an event as follows:

emitter.on('eventName', function(data1, data2, ..) {
 // act on event
});

We'll see some practical examples of this with the HTTP objects beginning in the next
section. All of the HTTP client and server objects are EventEmitters sending events
correlating with different stages of the HTTP protocol. For example, every incoming
HTTP request is encapsulated in a Request object. The Request object sends data
events as request data arrives, sends an end event when all data has arrived, and
sends a close event if the socket closes before the end event was sent.

HTTP Sniffer—listening to the HTTP
conversation
Now let's start working with the HTTP objects by creating a useful class which
listens to all events emitted by an HTTP Server object. It could be a useful debugging
tool which also demonstrates how HTTP server objects operate.

Node's HTTP Server object is an EventEmitter and the HTTP Sniffer simply listens to
every server event, printing out information pertinent to each event.

Create a file named httpsniffer.js containing the following:

var util = require('util');
var url = require('url');

exports.sniffOn = function(server) {
 server.on('request', function(req, res) {
 util.log('e_request');
 util.log(reqToString(req));
 });

 server.on('close', function(errno) {
 util.log('e_close errno='+ errno);
 });

Chapter 5

[101]

 server.on('checkContinue', function(req, res) {
 util.log('e_checkContinue');
 util.log(reqToString(req));
 res.writeContinue();
 });

 server.on('upgrade', function(req, socket, head) {
 util.log('e_upgrade');
 util.log(reqToString(req));
 });

 server.on('clientError', function() {
 util.log('e_clientError');
 };

 // server.on('connection', ..);
}

var reqToString = function(req) {
 var ret = 'request ' + req.method +' '+
 req.httpVersion +' '+ req.url +'\n';
 ret += JSON.stringify(url.parse(req.url, true)) +'\n';
 var keys = Object.keys(req.headers);
 for (var i = 0, l = keys.length; i < l; i++) {
 var key = keys[i];
 ret += i +' '+ key +': '+ req.headers[key] +'\n';
 }
 if (req.trailers)
 ret += req.trailers +'\n';
 return ret;
}
exports.reqToString = reqToString;

That was a lot of code, but the key to it is the sniffOn function. When given an
HTTP Server function, it uses the .on function to connect listener functions that print
data about each event emitted by the HTTP Server object. The events for this object
correspond to the HTTP protocol exchanges the server makes with its client.

A Simple Web Server, EventEmitters, and HTTP Clients

[102]

An example of using the HTTP Sniffer is this modified version of the simple hello
world server (hwserver.js):

var http = require('http');
var sniffer = require('./httpsniffer');

var server = http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello, World!\n');
});
sniffer.sniffOn(server);
server.listen(3000);

With this in place, upon running the following server:

$ node hwserver.js

you can visit http://localhost:3000/ in your browser and see the following
console output. Notice that two requests are made, one for / and one for /favicon.
ico. The Favicon is that little image some browsers show to help you brand your
website. The server we're using at this moment doesn't support this file but we'll see
later how to implement it.

$ node hwserver.js

6 Apr 21:14:38 - e_request

6 Apr 21:14:38 - request GET 1.1 /

{"search":"","query":{},"pathname":"/","href":"/"}

0 host: localhost:3000

1 user-agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_7; en-us)
AppleWebKit/533.20.25 (KHTML, like Gecko) Version/5.0.4 Safari/533.20.27

2 accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5

3 cache-control: max-age=0

4 accept-language: en-us

5 accept-encoding: gzip, deflate

6 connection: keep-alive

6 Apr 21:14:39 - e_request

6 Apr 21:14:39 - request GET 1.1 /favicon.ico

{"search":"","query":{},"pathname":"/favicon.ico","href":"/favicon.ico"}

0 host: localhost:3000

http://localhost:3000/
http://localhost:3000/

Chapter 5

[103]

1 user-agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_7; en-us)
AppleWebKit/533.20.25 (KHTML, like Gecko) Version/5.0.4 Safari/533.20.27

2 referer: http://localhost:3000/

3 cache-control: max-age=0

4 accept: */*

5 accept-language: en-us

6 accept-encoding: gzip, deflate

7 connection: keep-alive

You now have a tool for snooping on HTTP server events. This simple technique
prints a detailed log of event data and the pattern can be used for any EventEmitter
object. You can use this technique as a way to inspect the actual behavior of
EventEmitter objects in your program.

Implementing a basic web server
This section presents the implementation of Basic Server, a basic web server. While
Node includes an excellent HTTP Server object there are several additional protocol
elements and services to wrap around that object to provide common
website features.

Basic Server is, well, pretty basic. It demonstrates a way to implement some features
including the following:

•	 Flexible request routing
•	 Automatically provide a parsed URL object
•	 Automatically extract the Host header (for virtual hosting)
•	 Automatically extract Cookie headers
•	 Satisfy favicon.ico requests
•	 Serving static files (HTML, JS, PNG, GIF, JPEG, and so on).
•	 Flexible server configuration

With these as the goals the following code comprises four Node modules, a CSS file,
and one or more HTML files implementing Basic Server. Its small size is testament to
Node's flexibility and power.

A Simple Web Server, EventEmitters, and HTTP Clients

[104]

One item of preparation is to install the MIME module that's used to generate the
correct Content-Type headers. We discuss the purpose of the module later if you're
interested in what this is. In the meantime type this command:

$ npm install mime

The Basic Server implementation
Before we go into the code let's think a little about a general strategy to implement
the goals we listed. Out of the box, Node provides this server architecture:

var server = http.createServer(function (req, res) {
 // handle the request
});
server.listen(port);

The goals we listed amount to implementing a HTTP request handler which inspects
each request, and based on request attributes, to service each request with the
appropriate functions. This architecture will separate the logic for inspecting and
dispatching requests from the application business logic.

Basic Server core (basicserver.js)
The core of Basic Server is a module which creates an HTTP Server object, attaching
to it the functions Basic Server uses to inspect requests, dispatching to appropriate
functions.

Create a file named basicserver.js containing the following:

var http = require('http');
var url = require('url');

exports.createServer = function() {
 var htserver = http.createServer(function(req, res) {
 req.basicServer = {
 urlparsed: url.parse(req.url, true)
 };
 processHeaders(req, res);
 dispatchToContainer(htserver, req, res);

Chapter 5

[105]

 });
 htserver.basicServer = { containers: [] };
 htserver.addContainer = function(host, path,
 module, options) {
 if (lookupContainer(
 htserver, host, path) !== undefined) {
 throw new Error("Already mapped "+host+"/"+path);
 }
 htserver.basicServer.containers.push({
 host: host, path: path,
 module: module, options: options });
 return this;
 }
 htserver.useFavIcon = function(host, path) {
 return this.addContainer(host, "/favicon.ico",
 require('./faviconHandler'),
 { iconPath: path });
 }
 htserver.docroot = function(host, path, rootPath) {
 return this.addContainer(host, path,
 require('./staticHandler'),
 { docroot: rootPath });
 }
 return htserver;
}

What we have here, in the core of Basic Server, is a createServer function to
create and return an HTTP Server object, while adding functionality to the server.
The main show here is the request handler function. The strategy is to first add
useful information to the request object (in the processHeaders function), and then
dispatch to the appropriate handler (in the dispatchToContainer function). A
second module is intended to be used with this to configure the server as desired for
your application. We'll look at one such server configuration module shortly.

One tactic is to add useful data to both the server (htserver) and request (req)
objects. JavaScript lets us do this as desired because of its loosely typed nature. All
additions are made within an object, basicServer, that we attach to both htserver
and req in this function. This way we can add any data to [htserver], and by hiding
that data within the htserver.basicServer object, there is little chance of it
interfering with other code.

A Simple Web Server, EventEmitters, and HTTP Clients

[106]

The other thing we do here is add three functions to manage a list of containers.
Containers roughly correspond to the Express router middleware we used in the
previous chapter. The three functions add a container to the server (addContainer)
and set up the two built-in containers, one to handle Favicon's (useFavIcon), the
other to handle static files (docroot).

Containers are defined by four pieces of data as follows:

•	 A regular expression to match the Host header
•	 A regular expression to match the request URL
•	 An options object
•	 A handler function

Together this implements name-based virtual hosting, meaning Basic Server can
answer requests for multiple domain names, by matching the Host header against
container objects. We have more on this later.

The options object is meant to assist passing configuration data from the
configuration module into the handler module, and the content of the options object
is defined by the handler module.

For example with the Favicon handler, it contains the pathname for the image file to
return for favicon requests. The path requested by the browser is always /favicon.
ico, and this is the hard-coded path in the container.

There are several functions we used earlier but haven't looked at yet. The first of
these, lookupContainer, looks in the containers array for a container matching the
host and path in the HTTP request:

var lookupContainer = function(htserver, host, path) {
 for (var i = 0;
 i < htserver.basicServer.containers.length; i++) {
 var container = htserver.basicServer.containers[i];
 var hostMatches = host.toLowerCase().match(container.host);
 var pathMatches = path.match(container.path);
 if (hostMatches !== null && pathMatches !== null) {
 return {
 container: container,
 host: hostMatches,
 path: pathMatches };
 }
 }
 return undefined;
}

Chapter 5

[107]

This is a fairly straightforward scan through an array using regular expressions to
match the host and path against entries in the array. If one is found it's returned,
otherwise we return undefined.

The next function, processHeaders, scans through the req.headers array looking for
Cookie and Host headers, because both are useful for request dispatch. As you saw in
the request handler discussed earlier, this function is called for every HTTP request:

var processHeaders = function(req, res) {
 req.basicServer.cookies = [];
 var keys = Object.keys(req.headers);
 for (var i = 0, l = keys.length; i < l; i++) {
 var hname = keys[i];
 var hval = req.headers[hname];
 if (hname.toLowerCase() === "host") {
 req.basicServer.host = hval;
 }
 if (hname.toLowerCase() === "cookie") {
 req.basicServer.cookies.push(hval);
 }
 }
}

There are plenty of other HTTP headers (Accept, Accept-Encoding, Accept-
Language, and User-Agent) which might be useful to save, depending on your
application.

The last function, dispatchToContainer, does what its name implies. It looks
up the matching container, dispatching the request to the container. Like
processHeaders this function is called for every HTTP request:

var dispatchToContainer = function(htserver, req, res) {
 var container = lookupContainer(htserver,
 req.basicServer.host,
 req.basicServer.urlparsed.pathname);
 if (container !== undefined) {
 req.basicServer.hostMatches = container.host;
 req.basicServer.pathMatches = container.path;
 req.basicServer.container = container.container;
 container.container.module.handle(req, res);
 } else {
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end("no handler found for "+
 req.host +"/"+ req.urlparsed.path);
 }
}

A Simple Web Server, EventEmitters, and HTTP Clients

[108]

If no container is found the user gets an error page (status code 404) instead.

Handler modules export a function, handle, with the signature function(req,res).
It is in dispatchToContainer where Basic Server dispatches requests by
calling handle.

The Favicon handler (faviconHandler.js)
The Basic Server includes two built-in handler modules which we've not yet looked
at. The first, faviconHandler.js, is the Favicon handler which is used to respond to
Favicon requests. It is installed in Basic Server when your configuration module uses
the useFavIcon function:

var fs = require('fs');
var mime = require('mime');
exports.handle = function(req, res) {
 if (req.method !== "GET") {
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end("invalid method " + req.method);
 } else if (req.basicServer.container.options.iconPath!== undefined) {
 fs.readFile(req.basicServer.container.options.iconPath,
 function(err, buf) {
 if (err) {
 res.writeHead(500, {
 'Content-Type': 'text/plain' });
 res.end(
 req.basicServer.container.options.iconPath
 +" not found");
 } else {
 res.writeHead(200, {
 'Content-Type':
 mime.lookup(req.basicServer.container.options.iconPath),
 'Content-Length': buf.length
 });
 res.end(buf);
 }
 });
 } else {
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end("no favicon");
 }
}

Chapter 5

[109]

This handler is responsible for responding to requests for favicon.ico.

To reiterate, handler modules export a function(req,res) method named handle.
Basic Server calls the handle function of the handler, listed in the container matching
the incoming request. This one attempts to read in the file specified in iconPath
sending it to the browser using the res object. Several error conditions are detected
and error pages sent using res.

The MIME module is used to determine the correct MIME type based on the
supplied icon file. Favicons can be any image type and we must inform the web
browser of the image type being sent.

Since this handler is not valid for anything but GET requests, it checks the request
method and responds with a 404 status code for anything but GET requests.

The static file handler (staticHandler.js)
Now let's look at the code required to respond to requests for files such as .html or
.css. Create a file named staticHandler.js containing the following:

var fs = require('fs');
var mime = require('mime');
var sys = require('sys');
exports.handle = function(req, res) {
 if (req.method !== "GET") {
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end("invalid method " + req.method);
 } else {
 var fname = req.container.options.docroot +
 req.urlparsed.pathname;
 if (fname.match(/\/$/)) fname += "index.html";
 fs.stat(fname, function(err, stats) {
 if (err) {
 res.writeHead(500, {
 'Content-Type': 'text/plain' });
 res.end("file "+ fname +" not found " + err);
 } else {
 fs.readFile(fname, function(err, buf) {
 if (err) {
 res.writeHead(500, {
 'Content-Type': 'text/plain' });
 res.end("file "+
 fname +" not readable " + err);
 } else {
 res.writeHead(200, {

A Simple Web Server, EventEmitters, and HTTP Clients

[110]

 'Content-Type':
 mime.lookup(fname),
 'Content-Length': buf.length
 });
 res.end(buf);
 }
 });
 }
 });
 }
}

This is the staticHandler, responsible for serving up files from the file system.

The docroot option is the pathname for a directory to hold the files it serves. It is a
straightforward task to read in the specified file under the docroot directory, and
send it to the browser using the res object—that is, if it exists—or otherwise no
errors occur while reading the file.

One special case is the use of the MIME module (you can retrieve this from npm) to
determine the correct Content-Type header. The MIME type is required so that the
web browser can interpret the data correctly. We'll talk more about this later.

Another special case is if the requested URL ends in a /, then the handler changes the
request by appending index.html.

A configuration for Basic Server (server.js)
Now that we have looked at all the components of Basic Server, we can look at
building a working web server. Create a file named server.js with the following:

var port = 4080;
var server = require('./basicserver').createServer();
server.useFavIcon("localhost", "./docroot/favicon.png");
server.docroot("localhost", "/", "./docroot");
require('./httpsniffer').sniffOn(server);
server.listen(port);

This configuration specifies a directory named docroot to be the root directory for
static files. In that directory, an image file named favicon.png is specified to be the
Favicon. In other words, we've configured a simple web server with no dynamically
generated pages.

The HTTP Sniffer is connected so that your console should show in excruciating
detail every request your browser makes.

Chapter 5

[111]

Before running the server let's look at the content to place into docroot.

It'll be helpful to add a few HTML files to have something to look at. They might
look like this (which you can call index.html):

<html>
<head>
 <link href="/style.css" rel="stylesheet">
</head>
<body>
 <h1>Index</h1>
 <p>page 2</p>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam
 fringilla molestie leo eu tincidunt. Donec pulvinar porttitor
 dictum. Fusce at elit mauris, a ornare ipsum. Nulla congue nisi
 non ante pellentesque vel lobortis lacus varius. Nam metus ante,
 blandit in rutrum et, pellentesque eu velit. Nulla blandit
 placerat scelerisque. Morbi odio magna, accumsan sit amet
 pharetra eu, varius sit amet ipsum. Aenean interdum libero ut est
 hendrerit dictum. Suspendisse convallis pellentesque metus
 ac tempor. Nam diam lectus, posuere eu rutrum id, facilisis vel
 tellus.
 </p>
</body>

You can create several similar HTML files using your favorite Lorem Ipsum
generator (such as http://www.lipsum.com/) to supply the text. For convenience
the HTML files can be linked together using <a> tags.

This HTML file references a CSS file named style.css, such as:

body {
 color: #00c;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 background-color: #cf9
}
H1 {
 color: #ff6;
 background-color: #090;
 border: solid 5px #0f9
}

A Simple Web Server, EventEmitters, and HTTP Clients

[112]

Finally, create a small image file named favicon.png. Favicons are the little image
which web browsers show in the location bar. According to the Wikipedia page
(http://en.wikipedia.org/wiki/Favicon) these can be a 32x32 or 48x48 image
in nearly any image format, and display in every web browser except for Internet
Explorer (which insists on ICO files).

Now run Basic Server:

$ node server.js

And in your web browser visit http://localhost:4080

Congratulations! You've now run the Basic Server. As configured your web browser
will now show the content of the index.html you placed in the docroot directory:

The Basic Server is very flexible with many things it can be made to do:

•	 Serve multiple virtual domains
•	 Add your own handlers
•	 Finish support for Cookie headers
•	 Implement authentication and HTTPS support

http://en.wikipedia.org/wiki/Favicon
http://en.wikipedia.org/wiki/Favicon
http://localhost:4080/

Chapter 5

[113]

Virtual host configuration with Basic Server
Virtual hosting is a common need. If you need to support additional domain names
you might do something like this to configure one directory per virtual domain:

// Two independent domains with separate content
bs.useFavIcon("example.com", "./example.com/favicon.png");
bs.docroot("example.com", "/", "./example.com");
bs.useFavIcon("example2.com", "./example2.com/favicon.png");
bs.docroot("example2.com", "/", "./example2.com");
// Parking one domain name on another
bs.useFavIcon("parked.com", "./example.com/favicon.png");
bs.docroot("parked.com", "/", "./example.com");

One can park a domain on top of another (configure it so two domains access the
same container) by the example shown here. You can also use regular expressions
like this:

bs.useFavIcon("parked.com|example.com",
 "./example.com/favicon.png");
bs.docroot("parked.com|example.com", "/", "./example.com");

A shorturl module for Basic Server
A common requirement is, instead of parking a domain on top of another, to cause
requests on one domain to redirect to another. For example, redirecting www.
example.com to just example.com (removing the www). Another example is services
like tinyurl.com that provide a short URL which redirects to a long URL.

Both cases rely on sending a status code of either 301 (Moved Permanently) or 302
(Moved Temporarily) along with a Location header in the HTTP response. This
combination signals the web browser to redirect over to another web location.

Let's implement a short handler module for Basic Server to send 302 redirects for a
list of code values. Create a file named redirector.js:

var util = require('util');
var code2url = {
 'ex1': 'http://example1.com',
 'ex2': 'http://example2.com',
};
var notFound = function(req, res) {
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end("no matching redirect code found for "+
 req.basicServer.host +"/"+
 req.basicServer.urlparsed.pathname);

http://www.example.com/

A Simple Web Server, EventEmitters, and HTTP Clients

[114]

}
exports.handle = function(req, res) {
 if (req.basicServer.pathMatches[1]) {
 var code = req.basicServer.pathMatches[1];
 if (code2url[code]) {
 var url = code2url[code];
 res.writeHead(302, { 'Location': url });
 res.end();
 } else {
 notFound(req, res);
 }
 } else {
 notFound(req, res);
 }
}

This is a handler module for Basic Server. It expects a configuration line in server.
js like this (before configuring the docroot container):

server.addContainer(".*", "/l/(.*)$", require('./redirector'), { });

We've used regular expressions for both the host and path portions of configuring
the container. Any host name is matched because of the .* regular expression. The
regular expression for matching the path name recognizes any path beginning with
/l/ and remembers the remainder as a submatch.

When you request http://localhost:4080/l/code1, the data about pathname
matches appears in req.basicServer.pathMatches, with the submatch appearing
in req.basicServer.pathMatches[1]. If everything matches up correctly, the
handler returns an HTTP response with status code 302 and a Location header
containing the URL retrieved from the code2url object.

MIME types and the MIME npm package
There are many details to get right in the HTTP protocol to implement a successful
and correct web server. One of the details is the Content-Type header borrowed from
the MIME protocol.

The MIME protocol was originally developed in the early 90s for improving e-mail
capabilities; the HTTP protocol was developed in the same time frame, and both
had the same core challenge. Namely, to identify the data format of the attachments
to e-mail messages or HTTP requests. File extensions are insufficient to properly
identify the file type because three characters (or so) are much too short to be a useful
identifier, and there is no standard for file name extensions. Instead, we designed the
Content-Type header and the whole MIME type standard as a generalized system of
designating data types, and then made sure MIME types were useful for both e-mail
and HTTP.

http://localhost:4080/l/code1
http://localhost:4080/l/code1

Chapter 5

[115]

History lesson aside, it's mandatory to include the Content-Type header. The
question is how does your application know what Content-Type to send? In some
applications it's possible to know precisely what Content-Type headers to use
because your application is sending specific known objects. This is especially true for
smaller applications dealing with known data objects.

The staticHandler however, can be used to send any file and in the general case it
won't know the correct Content-Type. It could be programmed with a list of common
file extensions and matching Content-Type headers, but as was said earlier that's an
insufficient solution. The best practice solution is to use an external configuration file,
which is normally supplied by the operating system.

The MIME npm package uses the Apache projects mime.types file containing data
on over 600 Content-Types. The mime module also supports adding your own
MIME types should you need to support something specific.

Install the module:

$ npm install mime

Then in your code:

var mime = require('mime');
var mimeType = mime.lookup('image.gif'); // ==> image/gif
res.setHeader('Content-Type', mimeType);

Some related HTTP headers you might consider (http://www.w3.org/Protocols/
and http://en.wikipedia.org/wiki/List_of_HTTP_header_fields) are as
follows:

•	 Content-Encoding: Used when encoding the data such as gzip
•	 Content-Language: The language used in the content
•	 Content-Length: The number of bytes
•	 Content-Location: An alternate location to retrieve the data from
•	 Content-MD5: MD5 sum of the content body

http://www.w3.org/Protocols/

A Simple Web Server, EventEmitters, and HTTP Clients

[116]

Cookie handling
Another important feature is cookie support. The HTTP protocol is stateless,
meaning that the web server doesn't know the identity of one requester from the
identity of another requester. How then can we "log in" to a website if the protocol
doesn't support any concept of state? The normal way is for a web server to send
cookies to the browser, including cookies which identify the person who is logged in.
Web browsers send cookies related to websites they're visiting on every request.

The Basic Server includes partial support for recognizing cookies sent by the
browser. The request handler scans through the headers in the req object, identifying
any Cookie headers, saving them into an array (http://en.wikipedia.org/wiki/
HTTP_Cookie).

This retrieves cookies sent by the browser, with the remaining bit to parse hval to
extract cookie values out of the string:

var keys = Object.keys(req.headers);
for (var i = 0, l = keys.length; i < l; i++) {
 var hname = keys[i];
 var hval = req.headers[hname];
 if (hname.toLowerCase() === "cookie") {
 req.basicServer.cookies.push(hval);
 }
}

To send a cookie, set a value for either Set-Cookie, or Set-Cookie2 header as follows:

res.setHeader('Set-Cookie2', .. cookie value ..);

Cookies are a structured text format, and cookie string parsing and formatting is an
obvious candidate feature in a web framework like Basic Server (or Connect). There
are a few existing libraries such as the following:

•	 https://github.com/jed/cookies/: Provides a somewhat complete cookie
handling and validation layer, including support for signed cookies

•	 https://github.com/bmeck/node-cookiejar: Simple cookie parsing
library

http://en.wikipedia.org/wiki/HTTP_Cookie
https://github.com/jed/cookies/
https://github.com/bmeck/node-cookiejar

Chapter 5

[117]

Virtual hosts and request routing
Virtual hosting is a method of hosting multiple domain names on the same IP
address. As Basic Server shows, Node is capable of implementing name-based
virtual hosting.

In name-based virtual hosting, the HTTP request will include a Host header
specifying the domain name:

GET /path/to/request HTTP/1.1
Host: example.com

In Node the req object contains an array named headers which will contain the
Host header. As Basic Server demonstrates, virtual hosting is easily implemented
by inspecting the headers array and directing the request appropriately to the
requested domain.

Making HTTP Client requests
Now that we've looked deeply at the HTTP server object, let's jump over to the
other end of the wire. Node includes an HTTP Client object useful for making HTTP
requests. It's enough to issue any kind of HTTP request, but for example it does not
emulate a full browser so don't get delusions of this being a full scale test automation
tool. With it you can build browser emulators or any other sort of HTTP client. For
example, any REST web service can be called through an HTTP client object.

Let's start with some code inspired by the wget or curl commands to make HTTP
requests and show the results. Create a file named wget.js containing this code:

var http = require('http');
var url = require('url');
var util = require('util');

var argUrl = process.argv[2];
var parsedUrl = url.parse(argUrl, true);

var options = {
 host: null,
 port: -1,
 path: null,
 method: 'GET'
};

options.host = parsedUrl.hostname;
options.port = parsedUrl.port;
options.path = parsedUrl.pathname;
if (parsedUrl.search) options.path += "?"+parsedUrl.search;

A Simple Web Server, EventEmitters, and HTTP Clients

[118]

var req = http.request(options, function(res) {
 util.log('STATUS: ' + res.statusCode);
 util.log('HEADERS: ' + util.inspect(res.headers));
 res.setEncoding('utf8');
 res.on('data', function (chunk) {
 util.log('BODY: ' + chunk);
 });
 res.on('error', function(err) {
 util.log('RESPONSE ERROR: ' + err);
 });
});
req.on('error', function(err) {
 util.log('REQUEST ERROR: ' + err);
});
req.end();

You can run the script as follows:

$ node wget.js http://example.com

11 Apr 21:34:35 - STATUS: 302

11 Apr 21:34:35 - HEADERS: {"location":"http://www.iana.org/domains/examp
le/","server":"BigIP","connection":"close","content-length":"0"}

This shows a HTTP response with status code 302 (redirect) telling your browser to
instead go to http://www.iana.org/domains/example/, and indeed if you visit
http://example.com in your browser it will redirect over to the iana.org page.

The purpose of wget.js is to make an HTTP request and show you voluminous
detail of the response.

An HTTP request is initiated with the http.request method as follows:

var http = request('http');

var options = {
 host: 'example.com',
 port: 80,
 path: null,
 method: 'GET'
};
var request = http.request(options,
 function(response) { .. });

http://www.iana.org/domains/example/
http://example.com/
http://example.com/

Chapter 5

[119]

The options object describes the request to make, and the callback function is
called when the response arrives. The options object is fairly straightforward with
the host, port, and path fields specifying the URL being requested. The method
field must be one of the HTTP verbs (GET, PUT, POST, and so on). You can also give
a headers array for the headers in the HTTP request. For example, you might need
to provide a cookie:

var options={

 headers: {
 'Cookie': '.. cookie value'
 }
};

The response object is itself an EventEmitter which emits data and error events.
The data event is called as data arrives, and the error event is of course called
on errors.

The request object is a WritableStream, which is useful for HTTP requests
containing data, like PUT or POST. The data format in an HTTP request is specified
by the MIME protocol. HTML forms will POST with a Content-Type of multipart/
form-data, for example.

To send data over an HTTP ClientRequest simply call the .write function with
properly formatted data. The data format is specified by the HTTP protocol with
many options to handle a wide variety of uses. It's beyond the scope of this book to
document the exact format of all variants of HTTP requests, so instead consider
these libraries:

•	 https://github.com/coolaj86/abstract-http-request: Higher level
wrapper around the HTTP request system

•	 https://github.com/danwrong/restler: A REST client library
•	 https://github.com/maxpert/Reston: A REST client library
•	 https://github.com/pfleidi/node-wwwdude: A REST client library
•	 https://github.com/cloudhead/http-console: A useful interactive shell

for HTTP requests

https://github.com/coolaj86/abstract-http-request
https://github.com/coolaj86/abstract-http-request
https://github.com/danwrong/restler
https://github.com/danwrong/restler
https://github.com/maxpert/Reston
https://github.com/maxpert/Reston
https://github.com/pfleidi/node-wwwdude
https://github.com/pfleidi/node-wwwdude
https://github.com/cloudhead/http-console
https://github.com/cloudhead/http-console

A Simple Web Server, EventEmitters, and HTTP Clients

[120]

Summary
We learned a lot in this chapter about the following:

•	 EventEmitters and their role in HTTP client and server objects
•	 Using an EventEmitter to separate acting on HTTP request data from the

mechanics of receiving that data
•	 Listening to all the events of an HTTP object or other EventEmitter as a

debugging aid
•	 Implementing an HTTP server
•	 Routing incoming requests in an HTTP server
•	 Using the MIME protocol to identify content data type
•	 Implementing an HTTP client

Now that we've learned the basics of implementing a web application with
Node, we're ready to start towards useful applications. That means storing data
somewhere, and acting on that data. In the next chapter, we'll look at several means
of storing data and retrieving data from external datastores.

Data Storage and Retrieval
To round off this book we'll look at methods in Node for storing data. No matter
how powerful Express is as a web framework, it can do little without storing data
somewhere. The common best practice is to store data in some sort of database.
Today the range of database technology serves a wide range of use cases, from
traditional SQL data warehouses to modern NoSQL document-oriented databases, to
simple key/value data stores, to web-service based query services like YQL.

In this chapter we'll implement two versions of a simple Notes application. The
application demonstrates CRUD (Create, Read, Update, and Delete) basics using an
Express based web application, and some SQL and MongoDB modules for Node.

Data storage engines for Node
Node does not include built-in support for any data storage system, other than
reading and writing files in the file system. Using any other data storage system,
such as databases, means you are using a module to interface with the database.
The Node wiki lists a couple dozen modules interfacing with CouchDB, MongoDB,
MySQL, Postgres, SQLite3, Memcache, REDIS, YQL, and others.

See: https://github.com/joyent/node/wiki/modules#database.

Generally you'll have to install both the module and its dependencies, including
native code database client libraries. For example, the MySQL modules require a
MySQL server and a MySQL client library to be available.

https://github.com/joyent/node/wiki/modules#database
https://github.com/joyent/node/wiki/modules#database

Data Storage and Retrieval

[122]

SQLite3—Lightweight in-process SQL
engine
SQL databases don't necessarily require heavy-weight database servers with expensive
database administrators. SQLite3 (http://www.sqlite.org/) is easy to set up: it's
just a self-contained library linked into your application, and is a server-less, no-
configuration-required SQL database engine. The node-sqlite3 project (https://
github.com/developmentseed/node-sqlite3) interfaces sqlite3 into Node.

Installation
Installation is very simple if you have npm installed:

$ npm install sqlite3

Installing this module requires having the sqlite3 library installed on your system,
and the npm module which contains native code (in C) that links to the sqlite3
library. The library is already installed on Mac OS X, and if not delivered with your
favorite Linux distro it's just one package manager command away (for example,
apt-get install libsqlite3). The sqlite3 website (http://sqlite.org/) has
documentation about using this database, its command-line tools, and C API.

Implementing the Notes application with
SQLite3
To explore using sqlite3 we'll implement a simple application to enter and display
notes. The application will be used later using MongoDB.

Since it is an SQL database the Notes schema is described with SQL. The SQL CREATE
TABLE command can be seen in notesdb-sqlite3.js in the next section:

CREATE TABLE IF NOT EXISTS notes (
 ts DATETIME,
 author VARCHAR(255),
 note TEXT
)

The field ts is a timestamp used to identify the note, author is meant to have the
name of the author, and note contains the note.

http://www.sqlite.org/
https://github.com/developmentseed/node-sqlite3
https://github.com/developmentseed/node-sqlite3
http://sqlite.org/

Chapter 6

[123]

Database abstraction module—notesdb-sqlite3.js
This is the database interface library to be used by the rest of this application, hiding
the SQL commands within one module. It implements the four legs of CRUD with
the functions add (to create), findNoteById (to read), edit (to update), and delete
(to delete) Notes in the database.

The purpose of this module is encapsulating SQLite3 calls from the rest of the Notes
application. It provides a few functions to set up the database table, add entries to
the table, return all rows of the table, and delete entries from the table, which helps
us take a step towards the model-view-controller architecture:

var util = require('util');
var sqlite3 = require('sqlite3');
sqlite3.verbose();
var db = undefined;
exports.connect = function(callback) {
 db = new sqlite3.Database("chap06.sqlite3",
 sqlite3.OPEN_READWRITE | sqlite3.OPEN_CREATE,
 function(err) {
 if (err) {
 utils.log('FAIL on creating database ' + err);
 callback(err);
 } else
 callback(null)
 }
);
}
exports.disconnect = function(callback) {
 callback(null);
}
exports.setup = function(callback) {
 db.run("CREATE TABLE IF NOT EXISTS notes "+
 "(ts DATETIME, author VARCHAR(255), note TEXT)",
 function(err) {
 if (err) {
 util.log('FAIL on creating table ' + err);
 callback(error);
 } else
 callback(null);
 });
}

Data Storage and Retrieval

[124]

This is the administrative code, bringing in the modules, and functions for opening
and closing the database, as well as setting up the database table. We have a hard-
coded database name, so when the connect and setup functions are called a file,
chap06.sqlite, will be created in the current directory.

This module shares the same API with a module named notesdb-mongoose.js we'll
look at later in the chapter. That module will use Mongoose to talk with a MongoDB
instance. For example, the disconnect function here is essentially empty, but the
Mongoose version later actually disconnects from Mongoose:

exports.emptyNote = { "ts": "", author: "", note: "" };
exports.add = function(author, note, callback) {
 db.run("INSERT INTO notes (ts, author, note) "+
 "VALUES (?, ? , ?);",
 [new Date(), author, note],
 function(error) {
 if (error) {
 util.log('FAIL to add ' + error);
 callback(error);
 } else
 callback(null);
 });
}

The add function adds an entry to the database, and is a straightforward use of SQL.

With SQLite3 the .run function takes a parameterized string where question marks
indicate placeholders, and you must pass in values for the placeholders through an
array as shown here. This approach with parameterized strings is common among
SQL implementations in every programming language. With SQLite3 you are
expected to provide one array element for every question mark in the SQL string.
The SQL interface takes care of encoding the value correctly for the SQL statement.

The notable thing is that the caller provides a callback function, through which errors
are indicated. The model does not know how to present the error to the user, and it's
expected that the calling function will have a better idea of what to do about
the error:

exports.delete = function(ts, callback) {
 db.run("DELETE FROM notes WHERE ts = ?;",
 [ts],
 function(err) {
 if (err) {
 util.log('FAIL to delete ' + err);
 callback(err);

Chapter 6

[125]

 } else
 callback(null);
 });
}

The delete function deletes notes from the database.

The notable thing here is that the timestamp is used to identify the note to delete,
and all through this module we're doing the same to identify the note to operate on.
The field ts in the database is initialized in the add function:

exports.edit = function(ts, author, note, callback) {
 db.run("UPDATE notes "+
 "SET ts = ?, author = ?, note = ? "+
 "WHERE ts = ?",
 [ts, author, note, ts],
 function(err) {
 if (err) {
 util.log('FAIL on updating table ' + err);
 callback(err);
 } else
 callback(null);
 });
}

The edit function supports updating a note with new values. We're using the
UPDATE SQL statement along with parameters for the new values and the timestamp
of the note to update:

exports.allNotes = function(callback) {
 util.log(' in allNote');
 db.all("SELECT * FROM notes", callback);
}
exports.forAll = function(doEach, done) {
 db.each("SELECT * FROM notes", function(err, row) {
 if (err) {
 util.log('FAIL to retrieve row ' + err);
 done(err, null);
 } else {
 doEach(null, row);
 }
 }, done);
}

Data Storage and Retrieval

[126]

The allNotes and forAll functions are two ways to operate on the entire set of
Notes. In allNotes it collects all rows from the database into an array. In forAll
there are two callback functions, doEach that is called for each row in the result set,
and done that is called after the last row.

Clearly allNotes has potential for a bigger memory footprint than does forAll,
which works with one row at a time:

exports.findNoteById = function(ts, callback) {
 var didOne = false;
 db.each("SELECT * FROM notes WHERE ts = ?",
 [ts],
 function(err, row) {
 if (err) {
 util.log('FAIL to retrieve row ' + err);
 callback(err, null);
 } else {
 if (!didOne) {
 callback(null, row);
 didOne = true;
 }
 }
 });
}

The .findNoteById function returns the data for one Note as identified by the
timestamp. The timestamp should identify specific rows in the database, and we're
also using a flag to ensure the callback is called only once, on the outside chance of
additional database rows with the same timestamp.

Initializing the database—setup.js
The Node sqlite3 module uses the sqlite3 libraries to do its work, so of course
all the normal sqlite3 tools work with databases created using node-sqlite3. For
example, a database can be created using the sqlite3 command as follows:

Chapter 6

[127]

But you can also write a script, setup.js, to initialize a database this way using the
notesdb module:

var util = require('util');
var async = require('async');
var notesdb = require('./notesdb-sqlite3');
// var notesdb = require('./notesdb-mongoose');
notesdb.connect(function(error) {
 if (error) throw error;
});
notesdb.setup(function(error) {
 if (error) {
 util.log('ERROR ' + error);
 throw error;
 }
 async.series([
 function(cb) {
 notesdb.add("Lorem Ipsum ",
 "Cras metus. Sed aliquet risus a tortor. Integer id quam.
 Morbi .. fermentum non, convallis id, sagittis at, neque.",
 function(error) {
 if (error) util.log('ERROR ' + error);
 cb(error);
 });
 }
],
 function(error, results) {
 if (error) util.log('ERROR ' + error);
 notesdb.disconnect(function(err) { });
 }
);
});

The first notable item is having two require calls for different notesdb modules,
where only require('notesdb-sqlite3') is actually being executed. We'll be
reusing this same script later with the Mongoose module, and because their APIs are
the same we can change only the module name to switch between databases.

This pre-populates the database and you can repeat notesdb.add as many times as
you like. The consideration here is when is the correct time to call the .disconnect
function. If we call disconnect before all the add operations are finished and some
of them will fail. Remember that these functions run asynchronously and the add
operations might randomly run out of the order of their appearance in the
source code.

Data Storage and Retrieval

[128]

The async module is being used here to correctly orchestrate a series of add
operations followed by disconnect. Normally callback functions run in the
background and if the script were to run several notesdb.add calls followed by
a notesdb.disconnect, the disconnect operation might run before all the add
operations are finished. The async module is very useful. It can do many things, and
the async.series function lets you execute one function after another, in order, and
ensures the final function is executed after all the others are finished.

Display notes on the console—show.js
As we mentioned earlier, the notesdb.forAll function enables retrieving every note
in the database. We can be use it to print the database to the console as follows:

var util = require('util');
var notesdb = require('./notesdb-sqlite3');
// var notesdb = require('./notesdb-mongoose');
notesdb.connect(function(error) {
 if (error) throw error;
});
notesdb.forAll(function(error, row) {
 util.log('ROW: ' + util.inspect(row));
}, function(error) {
 if (error) throw error;
 util.log('ALL DONE');
 notesdb.disconnect(function(err) { });
});

You can run the script as follows:

Chapter 6

[129]

Putting together the Notes web application—app.js
Now that we've seen how to make database calls through the notesdb-sqlite3.
js module, let's put this together in a simple Express based web application, where
notesdb-sqlite3.js serves as the model for the Notes application and app.js
will serve as the controller. The view will be provided by some template files we'll
see in a moment. Like the two scripts we've already looked at, show.js and setup.
js, app.js is written to be easily switched between the notesdb-sqlite3.js and
notesdb-mongoose.js modules:

var util = require('util');
var url = require('url');
var express = require('express');
var nmDbEngine = 'sqlite3';
// var nmDbEngine = 'mongoose';
var notesdb = require('./notesdb-'+nmDbEngine);
var app = express.createServer();
app.use(express.logger());
app.use(express.bodyParser());
app.register('.html', require('ejs'));
app.set('views', __dirname + '/views-'+nmDbEngine);
app.set('view engine', 'ejs');

Here is the administrative code to load in the required modules and set up the
Express server components.

Here we need to highlight the nmDbEngine variable and its usages. This variable is
used to name the database engine, to select the correct notesdb implementation,
and to select the correct views directory. Both of these differ depending on database
engine, while app.js can remain the same:

var parseUrlParams = function(req, res, next) {
 req.urlP = url.parse(req.url, true);
 next();
}
notesdb.connect(function(error) {
 if (error) throw error;
});
app.on('close', function(errno) {
 notesdb.disconnect(function(err) { });
});

Here we maintain the database connection using the connect and disconnect
functions.

Data Storage and Retrieval

[130]

The parseUrlParams function is a route middleware function used in some of the
router functions for parsing URL query parameters:

app.get('/', function(req, res) { res.redirect('/view'); });
app.get('/view', function(req, res) {
 notesdb.allNotes(function(err, notes) {
 if (err) {
 util.log('ERROR ' + err);
 throw err;
 } else
 res.render('viewnotes.html', {
 title: "Notes ("+nmDbEngine+")", notes: notes
 });
 });
});

Here we show the list of notes in the browser.

The first thing we do is redirect a request for / to /view by calling res.redirect('/
view'). The /view page is being treated as the Notes application main interface, and
many router functions redirect to this page.

Page rendering is done with the viewnotes.html template, which we'll look at a bit
later. It is being sent two variables, title containing a page title string, and notes
which is an array of notes. It handles rendering all the notes in the array
it's given:

app.get('/add', function(req, res) {
 res.render('addedit.html', {
 title: "Notes ("+nmDbEngine+")",
 postpath: '/add',
 note: notesdb.emptyNote
 });
});
app.post('/add', function(req, res) {
 notesdb.add(req.body.author, req.body.note,
 function(error) {
 if (error) throw error;
 res.redirect('/view');
 });
});

Here we have the route functions to add notes to the database.

Chapter 6

[131]

One implementation detail to discuss is the two router functions for /add. The
function in app.get('/add', …) is called when the user clicks on the Add button.
Their browser will issue an HTTP GET request on /add. This function uses the
addedit.html template to create a FORM, allowing the user to enter their note, and
click the Submit button.

The addedit.html template is used for both /add and /edit operations, and it
expects to be given a Note object. The notesdb.emptyNote object is, as its name
implies, an empty Note suitable for use when there is no existing Note object.

The function in app.post('/add', …) is called upon submitting the form, when the
browser issues an HTTP POST request. Data entered by the user is sent in the request
body, which is processed by the bodyParser (app.use(express.bodyParser()))
middleware and is available in req.body. Hence we use the data entered by the user
in the req.body.author and req.body.note variables:

app.get('/del', parseUrlParams, function(req, res) {
 notesdb.delete(req.urlP.query.id,
 function(error) {
 if (error) throw error;
 res.redirect('/view');
 });
});

This is the router function to delete Notes from the database.

We're using parseUrlParams as route middleware because the Note identifier will
appear as a URL query parameter named id. Therefore, we can go ahead and write
req.urlP.query.id to access the id parameter, rather than having to write the code
to parse the URL. When the notesdb.delete operation is done we redirect back to
the application home page at /view:

app.get('/edit', parseUrlParams, function(req, res) {
 notesdb.findNoteById(req.urlP.query.id,
 function(error, note) {
 if (error) throw error;
 res.render('addedit.html', {
 title: "Notes ("+nmDbEngine+")",
 postpath: '/edit',
 note: note
 });
 });
});
app.post('/edit', function(req, res) {
 notesdb.edit(req.body.id, req.body.author, req.body.note,

Data Storage and Retrieval

[132]

 function(error) {
 if (error) throw error;
 res.redirect('/view');
 });
});
app.listen(3000);

Here we have the router functions to edit Notes in the database.

We're again using parseUrlParams to get the Note id from URL query parameters,
using it to retrieve the Note using the notesdb.findNoteById function. You'll notice
that we're again rendering the page using addedit.html but this time are sending it
the Note retrieved from the database.

The postpath variable was earlier set to /add and this time is set to /edit. This
variable is the destination for the form in addedit.html ensuring the correct app.
post function is called, either app.post('/add',..) or app.post('/edit',..).

Notes application templates
Before we can run the Notes application we must set up the templates referenced in
app.js, which is viewnotes.html, addedit.html and layout.html.

The following files must be placed in a directory named views-sqlite3. Later we
will create another directory, views-mongoose, to hold the Mongoose templates.

Let's start with layout.html:

<html>
 <head><title><%= title %></title></head>
 <body>
 <h1><%= title %></h1>
 <p>View | Add</p>
 <%- body %>
 </body>
<html>

This is the Notes application page layout, which is pretty straightforward. It handles
the title variable sent in the res.render calls in app.js.

Now let's look at viewnotes.html:

<table><% notes.forEach(function(note) { %>
 <tr><td>
 <p><%= new Date(note.ts).toString() %>:
 by <%= note.author %></p>
 <p><%= note.note %></p>
 </td><td>

Chapter 6

[133]

 <form method='GET' action='/del'>
 <input type='submit' value='Delete' />
 <input type='hidden' name='id' value='<%=
 note.ts %>'>
 </form>

<form method='GET' action='/edit'>
 <input type='submit' value='Edit' />
 <input type='hidden' name='id' value='<%=
 note.ts %>'>
 </form>
 </td></tr><% }); %></table>

This version is for the SQLite3 Notes application. It shows the timestamp, title, and
content of the Note, as well as two forms allowing the user to either delete (/del) or
edit (/edit) the Note.

There's a hidden form value, id, and for the SQLite3 Notes application we're using
the timestamp to identify Notes. Earlier while discussing the app.post functions for
delete (/del) or edit (/edit) operations we parsed the URL parameters to get the id
param, which comes from this hidden form value.

Now let's look at addedit.html:

<form method='POST' action='<%= postpath %>'>
 <% if (note) { %>
 <input type='hidden' name='id' value='<%= note.ts %>'>
 <% } %>
 <input type='text' name='author' value='<%= note.author %>'/>

 <textarea rows=5 cols=40 name='note' ><%=
 note.note
 %></textarea>

<input type='submit' value='Submit' />
</form>

This form is used for both adding (/add) and editing (/edit) Notes. The postpath
variable gets set to the form destination URL. Other form values come from the Note
object passed from app.js, which might be the emptyNote object.

Data Storage and Retrieval

[134]

Running the SQLite3 Notes application
Now that we have all the pieces together, the Notes application can be run. If you
ran the setup.js script earlier, the database has already been set up, otherwise do so
now. You can now run it by using the following:

$ node app

Because of the app.listen(3000) statement you can visit the application at
http://localhost:3000/. It will look something like the following:

If you click on a Delete button the browser simply refreshes, but you'll notice one
item is missing, the one you clicked on. The immediate refresh is because the app.
get('/del'..) implementation just calls notesdb.delete, immediately redirecting
back to /view.

The next thing you can do is either add (clicking the Add link) or edit (clicking an
Edit button) a Note. The screen looks like the following :

http://localhost:3000/
http://localhost:3000/

Chapter 6

[135]

Clicking the Submit button calls either app.post('/add',..) or app.post('/
edit',..), both of which update the database and redirect the browser to
the /view page.

Handling and debugging errors
If you make a coding mistake or when other issues arise, error objects will be thrown
inside the application. Debugging the application means displaying the errors to know
when and where they occur. In the Notes application we used util.log statements
to display errors as they happened. Inside the notesdb-sqlite3.js module we use
callbacks to send error objects back to app.js, which then throws the error.

One of the defaults built into Express displays this nice developer-friendly stack
trace in the browser:

Data Storage and Retrieval

[136]

The function app.error is provided by Express to capture exceptions thrown by a
route function, or executed with a next(error) call.

It's easy to insert an error if you want to explore this behavior, such as this contrived
call of a method on a null object:

app.get('/del', parseUrlParams, function(req, res) {
 var notAllowed = null;
 notAllowed.delete();
..
});

The error page we just showed, while effective for a developer, isn't very user
friendly, is it? Let's try to make it better.

One option is to insert this into app.js:

app.use(express.errorHandler({ dumpExceptions: true }));

The browser window will show a simple message "Internal Server Error". It is less
user unfriendly, but still not very nice. The developer-friendly stack trace does get
printed to stderr where it won't bother the user with unnecessary details, while still
being available to you, the developer.

The starting point to a proper user-friendly error page is an app.error function like
the following:

app.error(function(err, req, res) {
 res.render('500.html', {
 title: "Notes ("+nmDbEngine+") ERROR", error: err
 });
});

There are plenty of options in implementing this function, such as generating a
different error page based on the kind of error object it receives, or maybe showing a
picture of birds lifting a whale out of the ocean. The specifics are up to you, and for
demonstration purposes let's just use this error page template, 500.html:

Internal Server Error
ERROR: <%= error %>

Chapter 6

[137]

With this much in place we get this error displayed in the browser:

Using other SQL databases with Node
SQLite3 is by no means the be all and end all of SQL databases. We chose it for the
Notes application due to the easy setup and configuration. You should consider
SQLite3 whenever your database needs can live on a single computer. The other SQL
databases have other compelling features such as supporting distributed database
access, high transactional throughput, mirroring, and more.

Low level (close to the SQL):

•	 Node-mysql (https://github.com/felixge/node-mysql) is a pure Node
JavaScript implementation of the MySQL client protocol.

•	 Node-mysql-native (https://github.com/sidorares/nodejs-mysql-
native) wraps the native MySQL client library as a Node module.

•	 Node-mysql-libmysqlclient (https://github.com/Sannis/node-mysql-
libmysqlclient) are MySQL bindings for Node using libmysqlclient.

•	 Node-postgres (https://github.com/brianc/node-postgres) is a heavily
tested Node client for connecting to Postgres. It has both, pure JavaScript and
native bindings.

•	 Node-sqlite3 (https://github.com/developmentseed/node-sqlite3) is
an asynchronous non-blocking SQLite3 bindings for Node.

•	 Node-DBI (https://github.com/DrBenton/Node-DBI) is an SQL database
abstraction layer.

https://github.com/felixge/node-mysql
https://github.com/sidorares/nodejs-mysql-native
https://github.com/Sannis/node-mysql-libmysqlclient
https://github.com/brianc/node-postgres
https://github.com/brianc/node-postgres
https://github.com/developmentseed/node-sqlite3
https://github.com/developmentseed/node-sqlite3
https://github.com/DrBenton/Node-DBI
https://github.com/DrBenton/Node-DBI

Data Storage and Retrieval

[138]

Higher level (has ORM features):

•	 FastLegS (https://github.com/didit-tech/FastLegS) PostgreSQL ORM
built on top of node-postgres

•	 Node-orm (https://github.com/dresende/node-orm) Node Object-
Relational-Mapping meant to be for multiple databases

•	 persistence.js (https://github.com/zefhemel/persistencejs) is an
asynchronous JavaScript object-relational mapping library which can be used
in both browser and Node server applications

•	 Sequelize (https://github.com/sdepold/sequelize) is an object-relational
mapper for Node and MySQL

Mongoose—Node interface to MongoDB
MongoDB is one of the leading "nosql" databases (where nosql of course means "no
SQL"). They describe it as a "scalable, high performance, open source, document-
oriented database". It uses JSON-style documents with no predefined rigid schema,
and a large number of advanced features. You can see their website for more
information and documentation: http://www.mongodb.org/.

Mongoose is one of several modules for accessing MongoDB. It is an object modeling
tool, meaning that your program defines Schema objects describing its data, and
Mongoose takes care of storage in MongoDB. It's a very powerful object modeling
tool for Node and MongoDB, with embedded documents, a flexible typing system
for fields, field validation, virtual fields, and more. See: http://mongoosejs.com/.

Installing Mongoose
Installation is very simple if you have npm installed:

$ npm install mongoose

Before using Mongoose you must have a MongoDB instance running. There are
prebuilt binary packages on mongodb.com or it's available through package systems
on most Linux distributions. On Mac OS X it is available through MacPorts. You can
consult their website for more information, especially their Quickstart guide for your
operating system (http://www.mongodb.org/display/DOCS/Quickstart).

There's a two-step procedure to verify that you can use MongoDB. The first part is
to start the MongoDB server (mongod) with a local data directory, as shown in the
following screenshot:

https://github.com/didit-tech/FastLegS
https://github.com/didit-tech/FastLegS
https://github.com/dresende/node-orm
https://github.com/dresende/node-orm
https://github.com/zefhemel/persistencejs
https://github.com/zefhemel/persistencejs
https://github.com/sdepold/sequelize
https://github.com/sdepold/sequelize
http://www.mongodb.org/
http://www.mongodb.org/
http://mongoosejs.com/
http://www.mongodb.org/display/DOCS/Quickstart
http://www.mongodb.org/display/DOCS/Quickstart

Chapter 6

[139]

This is useful for development use, which we'll be doing in a moment. You can kill
the process with Control-C any time you like, and start over with a fresh clean data
directory by running the commands shown here.

The next step to verify you can use MongoDB is to run the user interaction in their
quickstart guide (see the previous link):

This inserts a document (the JSON { a: 1 }) into the collection named foo. The
command db.foo.find is used to query the collection foo and, because there's
no query parameters, it lists all elements in the collection, which are then printed
in JSON notation. The MongoDB website has full documentation on using this
database, including the Mongo shell.

Implementing the Notes application with
Mongoose
To explore using Mongoose we'll implement another version of the Notes
application.

The schema we'll be using is similar to the SQL version of the schema, but written
using the Mongoose object notation:

var NoteSchema = new Schema({
 ts : { type: Date, default: Date.now },
 author : String,

Data Storage and Retrieval

[140]

 note : String
});
mongoose.model('Note', NoteSchema);

The fields used have the same purpose as in the SQL schema. The data types are
JavaScript objects because that's what Mongoose uses. The ts field uses a default
value in case a ts value is not provided when creating the object.

Let's get on with the code.

Database abstraction module—
notesdb-mongoose.js
As with the sqlite3 Notes application, this is the database interface library to be
used by the rest of this application. It implements the three legs of CRUD with the
functions add (to create), findNoteById (to read), edit (to update), and delete (to
delete) Note documents in the database.

As with the sqlite3 Notes application, notesdb-mongoose.js implements the
model aspect of the model-view-controller architecture:

var util = require('util');
var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var dburl = 'mongodb://localhost/chap06';
exports.connect = function(callback) {
 mongoose.connect(dburl);
}
exports.disconnect = function(callback) {
 mongoose.disconnect(callback);
}

This is the administrative code, bringing in the modules as well as the .connect
and .disconnect functions. The dburl variable is used to connect with the running
MongoDB. These handle connecting with MongoDB, and the programs are expected
to call .connect when they start and .disconnect before they stop:

exports.setup = function(callback) { callback(null); }
var NoteSchema = new Schema({
 ts : { type: Date, default: Date.now },
 author : String,
 note : String
});
mongoose.model('Note', NoteSchema);
var Note = mongoose.model('Note');
exports.emptyNote = { "_id": "", author: "", note: "" };

Chapter 6

[141]

This part defines the schema, but then we have already discussed it. The schema
is created by var NoteSchema = new Schema(...). It is then registered as a
Mongoose model with this code:

mongoose.model('Note', NoteSchema);
var Note = mongoose.model('Note');

With a schema and model registered, your program can proceed with creating
documents in the database:

exports.add = function(author, note, callback) {
 var newNote = new Note();
 newNote.author = author;
 newNote.note = note;
 newNote.save(function(err) {
 if (err) {
 util.log('FATAL '+ err);
 callback(err);
 } else
 callback(null);
 });
}

With Mongoose you do this by creating a new instance of the object, assigning data
to its fields, and calling the .save method. In this case, we are not providing a value
for the ts field, but the schema definition declares a default value:

exports.delete = function(id, callback) {
exports.findNoteById(id, function(err, doc) {
 if (err)
 callback(err);
 else {
 util.log(util.inspect(doc));
 doc.remove();
 callback(null);
 }
 });
}

Deleting a Note from the database is a two step process. You have to first retrieve
the Note from the database by using a function, findNoteById, that we'll see in a
minute, and then call that object's .remove method:

exports.edit = function(id, author, note, callback) {
 exports.findNoteById(id, function(err, doc) {
 if (err)

Data Storage and Retrieval

[142]

 callback(err);
 else {
 doc.ts = new Date();
 doc.author = author;
 doc.note = note;
 doc.save(function(err) {
 if (err) {
 util.log('FATAL '+ err);
 callback(err);
 } else
 callback(null);
 });
 }
 });
}

Likewise, updating a Note is also a two step process. You first retrieve the Note,
assign new values to its fields, and then call the object's .save method:

exports.allNotes = function(callback) {
 Note.find({}, callback);
}
exports.forAll = function(doEach, done) {
 Note.find({}, function(err, docs) {
 if (err) {
 util.log('FATAL '+ err);
 done(err, null);
 }
 docs.forEach(function(doc) {
 doEach(null, doc);
 });
 done(null);
 });
}
var findNoteById = exports.findNoteById = function(id,
 callback) {
 Note.findOne({ _id: id }, function(err, doc) {
 if (err) {
 util.log('FATAL '+ err);
 callback(err, null);
 }
 callback(null, doc);
 });
}

Chapter 6

[143]

Now we see the three functions to retrieve Notes from the database.

In the allNotes and forAll functions we use the Notes.find method. This and the
Query object used behind the scenes, are a powerful part of Mongoose. It's analogous
to the WHERE clauses in SQL SELECT statements but is cleaner and easier to read. In
both these functions the Query object is empty, which causes Mongoose to retrieve
every document in the Notes collection.

In the .findNoteById function we call Note.findOne to find a specific Note
identified by its _id field. We do this by passing in a Query object, { _id: id }, to
match the id against the _id field. MongoDB provides a guaranteed-to-be-unique ID
for every document it stores, the _id field. It can serve the same purpose we had for
the ts field in the sqlite3 Notes application, so of course we use the _id field value
to identify Notes. The Mongoose Query object can do much more than this, which
you can learn about on mongoosejs.org.

Initializing the database—setup.js
As with SQLite3, there are two ways to initialize the database. You can use the
mongo shell commands as shown in the following screenshot:

The other way is with the setup.js script that we used earlier. It contains a pair of
lines to select between notesdb-sqlite3 and notesdb-mongoose.

// var notesdb = require('./notesdb-sqlite3');
var notesdb = require('./notesdb-mongoose');

Make the change shown here to swap which line is commented out, then run the
script this way:

$ node setup

Nothing is printed, but you can use show.js to display the database and see what's
there.

Data Storage and Retrieval

[144]

Display notes on the console—show.js
Displaying every item from the database is also done with the show.js script we
used earlier. Simply make the same change we did in setup.js, and run the script
as follows:

$ node show

7 Jul 17:20:58 - ROW: { doc:

 { ts: Fri, 08 Jul 2011 00:13:22 GMT,

 _id: 4e164ba289dc189149000001,

 note: 'Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Integer nec odio. Praesent .. Sed dignissim lacinia nunc.',

 author: 'Lorem Ipsum 12' },

 activePaths:

 { paths:

 { note: 'init',

 author: 'init',

 _id: 'init',

 ts: 'init' },

 states: { init: [Object], modify: {}, require: {} },

 stateNames: ['require', 'modify', 'init'] },

 saveError: null,

 isNew: false,

 pres: { save: { serial: [Object], parallel: [] } },

 errors: undefined }

Putting it together in an application—app.js
Since notesdb-mongoose.js has the same API as notesdb-sqlite.js, we have
been able to reuse setup.js and show.js with minimal modification. The same is
true with app.js. The modification is slightly different but with the same intent.
However, we must use different template files because of certain differences.

In app.js make the following change:

// var nmDbEngine = 'sqlite3';
var nmDbEngine = 'mongoose';

Chapter 6

[145]

Now, make a directory named views-mongoose and prepare to create the following
template files:

1. The first, layout.html, is the same as before so let's make a copy:
$ cp views-sqlite3/layout.html views-mongoose/layout.html

2. The next, viewnotes.html, is identical to the previous one, except you
change the hidden id input tag to read as follows:
 <input type='hidden' name='id' value='<%= note._id %>'>

3. Similarly, duplicate addedit.html, and edit the hidden id input tag to read
as follows:

 <input type='hidden' name='id' value='<%= note._id %>'>

The difference between these templates and the SQLite3 version is the value of the
hidden id form field. Like we noted earlier, Mongo provides an _id value in every
document it stores, serving as a globally unique identifier.

Now we have all the pieces together to run the Mongoose Notes application:

$ node app

You can go ahead and visit http://localhost:3000/ in your browser, as we did
here. It looks almost precisely the same as the SQLite3 version of the application, but
with a different title as shown in the following screenshot:

http://localhost:3000/

Data Storage and Retrieval

[146]

This version of the Notes application behaves exactly the same and both versions of
the Notes application are a demonstration of using SQL and Mongo
based datastores.

Other MongoDB database support
Mongoose isn't the only game in town when it comes to using MongoDB with Node.

One thing you'll find surprising is the difference between the MongoDB shell and the
Node MongoDB module APIs. Since the MongoDB shell uses a JavaScript command
interpreter, you might think they'd have the same API. Despite the many modules
which claim similarity to the MongoDB shell, none of them use the
same API:

•	 Node-mongodb (https://github.com/orlandov/node-mongodb) is an
experimental asynchronous Node interface to MongoDB

•	 node-mongodb-native (https://github.com/christkv/node-mongodb-
native) is another driver

•	 node-mongolian (https://github.com/marcello3d/node-mongolian) is
an "awesome" driver that "attempts to closely approximate the MongoDB
shell"

•	 Mongolia (https://github.com/masylum/mongolia) is a flexible "non-
magical" layer above MongoDB, but is not an ORM

•	 Mongoose (http://www.learnboost.com/mongoose/) which we just used,
is an ORM built on top of MongoDB

•	 Mongous (https://github.com/amark/mongous) is a "dead simple"
interface to MongoDB with a jQuery-like syntax

•	 node-nosql-thin (https://github.com/dmcquay/node-nosql-thin) is a
"thin" interface library to MongoDB that may later support other "NoSQL
databases"

A quick look at authenticating your users
There are many application types where users log in to use privileged features.
Since HTTP is a stateless protocol the only way to authenticate a user is by sending
a cookie to their browser, after making them perform some action to verify their
identity. The cookie would contain that data the application can use to verify the
user. We're going to take a quick tour through implementing a login form, sending a
cookie to the browser, and preventing access to Notes unless the cookie is present.

https://github.com/orlandov/node-mongodb
https://github.com/christkv/node-mongodb-native
https://github.com/christkv/node-mongodb-native
https://github.com/marcello3d/node-mongolian
https://github.com/masylum/mongolia
http://www.learnboost.com/mongoose/
https://github.com/amark/mongous
https://github.com/dmcquay/node-nosql-thin

Chapter 6

[147]

We start with a couple of modifications to app.js, the first of which is the server
object configuration to add the cookieParser middleware:

var app = express.createServer();
app.use(express.logger());
app.use(express.cookieParser());
app.use(express.bodyParser());

The next step is to add a small route middleware function to check whether the user
is allowed to have access. In this case we will only check if the cookie is equal to AOK,
because that's the universal signal that everything is alright:

var checkAccess = function(req, res, next) {
 if (!req.cookies
 || !req.cookies.notesaccess
 || req.cookies.notesaccess !== "AOK") {
 res.redirect('/login');
 } else {
 next();
 }
}

The cookieParser middleware does a lot of heavy lifting here looking for cookies,
parsing them, and putting their values in the req object. When a cookie is present
it's value appears in req.cookies, such that we can access its value like we do here.
If there are no cookies, or there is no notesaccess cookie, or if its value is not AOK,
then the browser is redirected to the /login URL.

Before we look at the /login URL handler, let's add the cookieParser middleware
to the Notes application routes. It's very simple:

app.get('/view', checkAccess, function(req, res) {
..
});

Specifically we add a call to checkAccess in the definition for every router function.
This ensures that checkAccess is called for every URL in Notes and that every
Notes URL is protected. Any URLs which aren't to be protected must not use the
checkAccess route middleware function.

These two router functions handle the /login URL:

app.get('/login', function(req, res) {
 res.render('login.html', {
 title: "Notes LOGIN ("+nmDbEngine+")",
 });
});

Data Storage and Retrieval

[148]

app.post('/login', function(req, res) {
 // TBD check credentials entered in form
 res.cookie('notesaccess', 'AOK');
 res.redirect('/view');
});

And then finally this uses the following template, login.html:

<form method='POST' action='/login'>
 <p>Click the <i>Login</i> to log in.</p>
 <input type='submit' value='Login' />
</form>

There are a few bits to fill in here if you were to implement a real security system.

When the user's browser is redirected to /login by the checkAccess function, the
first router function renders the login.html template in the browser, which looks
like the following screenshot:

A real security system would have fields for at least a username and password.
Instead we'll skip this and just ask the user to click the Login button.

The button is in a Form, which causes the app.post('/login'..) route function
to be called. That function, if this were a real security system, would check the user
credentials supplied in the login form, and only issue the authentication cookie if
they match a user in the user database. Instead the route function issues the AOK
cookie value and redirects the browser back to the /view URL.

While this left out several parts to a real security system, it contains the bones of such
a system. There are many websites which have a user login form, which use and
check authentication cookies on every page request. We have implemented functions
to check for an authentication cookie and correct cookie value, a redirect to a login
form, a check of the login form, and then send an authentication cookie to
the browser.

Chapter 6

[149]

Summary
We learned a lot in this chapter about data storage in Node. It's of course a key
feature to many kinds of applications, so let's review what we learned:

•	 Node doesn't include built-in support for data storage engines, but the Node
community has developed modules interfacing with more data storage
engines than you knew existed

•	 Installing a data storage engine module probably means installing
dependencies such as servers and client libraries

•	 SQLite3 is a no setup, no configuration required way to develop SQL
applications

•	 A nearly identical web application can drive either SQL or MongoDB
data storage

•	 ORM techniques are probably best used atop SQL data storage, but the
community has developed ORMs for MongoDB and CouchDB anyway

•	 How to implement the model-view-controller architecture (partially)
•	 Handling form submission in an Express application
•	 Document-oriented database systems like MongoDB are closer to modern

programming languages and applications than is SQL

We've come a long way in this book. We started with an overview of Node and the
sort of software it can be used to implement. Then we learned how to install Node
and npm for both development and deployment scenarios, and with those basics
out of the way we developed Node modules and several applications to learn about
building web applications, HTTP client and server applications, the Node event loop,
converting long-running CPU intensive algorithms into ones that work with the
Node event loop, distributing work to background processes using web services, and
bringing data from a database into a Node application.

Index
Symbols
.use method 80

A
absolute module identifiers 39
addedit.html template 131, 133
add function 123, 124
adduser command 56
algorithmic refactoring 74
allNotes function 126
app-connect.js 81
app.js 129, 131
application

external dependencies, bundling with 41-43
app-node.js 65, 72
apt-get tool 45
asynchronous event-driven architecture

about 10
versus threads 11, 12

B
Basic Server core 104-106
basicserver.js file 104
basic web server

about 103
capabilities 112
configuring 110, 112
cookie handling 116
favicon handler 108, 109
implementing 104
shorturl module 113, 114
static file handler 109, 110
virtual host configuration 113
virtual hosting 117

bin tag 46
blocking I/O 10

C
Cluster 34
command-line tools, Node

node 24
node-waf 24

CommonJS module system 10, 38, 59
complex modules 44, 45
config set command 57
configuration, basic web server 110, 112
configuration settings, npm 56, 57
Connect

about 9, 64, 77
connecting with 79, 81
installing 78
Math Wizard, implementing with 78
server object, setting up 79

Connect based Node application
running 79

connect function 129
containers 106
Content-Type header 115
cookie handling 116
cookies 116
CouchDB 121
count variable 38
CPAN 45
CPU cores

using, on multi-core systems 33, 35
Create, Read, Update, and Delete. See

CRUD
createServer function 105
CREATE TABLE command 122

[152]

CRUD 121
curl command 117

D
database

initializing 126, 127
notes, adding to 131
notes, deleting from 131
notes, editing in 132
printing, to console 128

database abstraction module, Sqlite3 123-
126

database connection
maintaining 129

data storage engines 121
db.foo.find command 139
Debian's launchtool 30
delete function 123, 125
developer tools

about 19
installing, in home directory 19-21
installing, in system-wide directory 21
installing on Linux, from package manage-

ment systems 23
installing on Mac OS X, with homebrew 22
 installing on Mac OS X, with MacPorts 22

developer tools installation, on Mac OS X
about 19
home directory, installing in 19-21
installing, on Linux from package manage-

ment systems 23
multiple Node installs, maintaining simul-

taneously 23, 24
system-wide directory, installing in 21
with homebrew 22
with MacPorts 22

development environment, Node
system requisites 17, 18

directories tag 47
disconnect function 124, 129
dispatch function 77
dispatchToContainer function 105-108
docroot option 110
doEach function 126
done function 126

E
edit function 123, 125
encapsulation

example 38
errors

handling, in Express Math Wizard 88
EventEmitter class 98
EventEmitter object

about 98
events 99, 100
events, receiving with 98, 99
events, sending with 98, 99

event names 99
events

about 99
receiving, with EventEmitter object 98, 99
sending, with EventEmitter object 98, 99

explore command 53
Express 121

about 64
Math Wizard, implementing with 81

Express Math Wizard
data services 88
errors, handling 88
implementing 82-87
mathematics server 89-92
parameterized URLs 89

express module 42
external dependencies

bundling, with application 41-43

F
factorial-node.js 69
FastLegS 138
Favicon 80, 102
Favicon handler 108, 109
faviconHandler.js file 108
fibonacci numbers 70
fibo-node.js 70
filters 78
findNoteById function 123, 126
forAll function 126
forever 30
forms module 43

[153]

fs module 37
fs object 37
fugue 30

G
get command 56
Global Object 10, 60

H
handle function 109
help

retrieving, from npm 49
home-node.js 71
HTTP 146
HTTPClient object 98
HTTP Client requests

creating 117-119
http.createServer method 12
HTTP headers

about 115
Content-Encoding 115
Content-Language 115
Content-Length 115
Content-Location 115
Content-MD5 115

HTTP modules 8
http object 12
HTTP protocol 116
HTTP Server object

about 64, 100
events 101

HTTPServer object 98
HTTP Sniffer

about 100
using 102, 103

httpsniffer.js file 100
htutil.loadParams function 66, 67
htutil.navbar function 72
htutil.page function 68

I
init command 54
install command 55
installed npm package

uninstalling 54
installing

Connect 78
Mongoose 138, 139
npm package 50
Sqlite3 122

J
JavaScript

about 9
disadvantages 10

java.util.concurrent framework 11

L
launchd script 30
list command 51, 57
local modules 39-41
logger middleware 80
Lorem Ipsum generator 111
low level SQL databases

FastLegS 138
Node-DBI 137
Node-mysql 137
Node-mysql-libmysqlclient 137
Node-mysql-native 137
Node-orm 138
Node-postgres 137
Node-sqlite3 137
persistence.js 138
Sequelize 138

M
MacPorts project 45
mathematical functions

calculating 69-71
mathematics web pages

creating, in Math Wizard 67, 68
math.js 70
math module 70
Math Wizard

creating 63
extending 72
implementing, Connect used 78
implementing, Express used 81

[154]

implementing, with node 64
layouts 63
long running calculations 73-77
mathematical functions, calculating 69-71
mathematical web pages, creating in 67, 68
missing complete web server features 77
refactoring 92-94
URL query parameters, handling 66, 67
URLs 64

Memcache 121
middleware

about 78
filters 78
providers 78

MIME module 104
MIME npm package 115
MIME protocol 114
module

about 37-39
example 38

module encapsulation
demonstrating 60

module identifiers
about 39
types 39

MongoDB
about 121, 122, 138
database support 146
URL, for documentation 138

Mongolia 146
Mongoose

about 138
app.js 144, 145
database abstraction module 140-143
installing 138, 139
Notes application, implementing with 139
notes, displaying on console 144
show.js 144
URL 138

Mongous 146
multiple Node installs

maintaining simultaneously 23, 24
multiplication module 68
multi-process Node server projects

about 34
Cluster 34

mult-node.js 67, 68

MySQL 121

N
nmDbEngine variable 129
node

about 7
asynchronous event-driven architecture 10
benefits 9, 10
capabilities 8
command-line tools 24, 25
data storage engines 121
developer tools 19
developer tools, installing on Mac OS X 19
development environment 17
green web hosting 14
installing, on POSIX-like systems 18
Math Wizard, implementing with 64
modules 37, 38
network layer 8
performance 12, 13
routing requests strategy 64, 65
server-side JavaScript 9
server, launching 27
server utilization 14
setting up 17
simple script, running 26
utilization 12, 13

node application
complex modules 44, 45
local modules 39-41
system-wide modules 43, 44

Node-DBI 137
node-init 30
Node installation

testing 24
Node installation, on POSIX-like systems

installation instructions 18
prerequisites 18

nodejs-autorestart 30
Node model 7
node_modules directory 39, 41
Node-mongodb 146
node-mongodb-native 146
node-mongolian 146
Node-mysql 137
Node-mysql-libmysqlclient 137

[155]

Node-mysql-native 137
node-nosql-thin 146
Node-orm 138
Node package manager. See npm
NODE_PATH environment variable 44
Node-postgres 137
Node servers

starting, at system startup 29-33
Node-sqlite3 137
node-sqlite3 project 122
notes

adding, to database 131
deleting, from database 131
editing, in database 132

Notes application
implementing, with Mongoose 139
implementing, with sqlite3 122

Notes application templates 132, 133
notesdb-mongoose.js 140-143
notesdb-sqlite3.js 123-126
Notes web application 129
npm

about 45
adduser command 56
configuration settings 56, 57
init command 54
install command 55
installed package content, editing 53
installed package content, exploring 53
installed packages,listing 51, 52
installed packages, using 51
installing 28
list command 51, 52, 57
outdated packages, updatng 54
package scripts 53
package version strings 57
publish command 56
unpublish command 56

npm commands
help, retrieving from 49
using 48

npm package format 45, 46
npm package information

viewing 49, 50
npm packages

about 45
developing 54-56

format 45, 46
installing 50
publishing 54-56
searching 47
version strings 58

npm package scripts 53

O
options object 106

P
package dependencies 58
package.json file 45, 49
packages 37, 46
page rendering 130
parseUrlParams function 130
PEAR 45
persistence.js 138
Postgres 121
postpath variable 132
processHeaders function 105, 107
process.nextTick function 75
providers 78
publish command 56
pulse event 99
Pulser class 98
Pulser object 99

Q
qs module 42

R
REDIS 121
relative module identifiers 39
replace function 67
req object 89, 147
Request object 100
require function 37
res object 110
RingoJS application framework 9
router functions 147
router middleware 80
routing requests strategy 64, 65
rpm tool 45

[156]

run function 124

S
Semantic Versioning model 57
Sequelize 138
set command 56
setup.js 126, 127, 143
shorturl module 113, 114
show.js 128
sniffOn function 101
SQLite3

about 121, 122
app.js 129, 131
database abstraction module 123-126
database, initializing 126, 127
errors, debugging 135, 136
errors, handling 135, 136
installing 122
Notes application, implementing with 122
Notes application templates 132, 133
notes, displaying on console 128

sqlite3 Notes application
running 134, 135

square-node.js 69
start method 98
static file handler 109, 110
staticHandler.js file 109
static middleware 80
Swing 8
system requisites, Node

about 17
POSIX-like operating systems 17

system-wide modules 43, 44

T
tar-gzip tarballs 46
threads

versus asynchronous event-driven architec-
ture 11, 12

top-level module identifiers 39

U
Ubuntu's Upstart tool 30
unpublish command 56
UPDATE SQL statement 125

URL query parameters
handling 66, 67

user authentication 146-148

V
V8 engine 8
view command 49
viewnotes.html template 130
virtual host configuration, basic web server

113
virtual hosting 117

W
Web frameworks 64
wget command 117

Y
YQL 121
YSlow 73
yum tool 45

Thank you for buying
Node Web Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Ext JS
ISBN: 978-1-847195-14-2 Paperback: 324 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applications

1. Learn to build consistent, attractive web
interfaces with the framework components

2. Integrate your existing data and web services
with Ext JS data support

3. Enhance your JavaScript skills by using Ext's
DOM and AJAX helpers

4. Extend Ext JS through custom components

Learning jQuery
ISBN: 978-1-847192-50-9 Paperback: 380 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1. Create better, cross-platform JavaScript code

2. Learn detailed solutions to specific client-side
problems

3. For web designers who want to create
interactive elements for their designs

4. For developers who want to create the best user
interface for their web applications

Please check www.PacktPub.com for information on our titles

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

This book and eBook is a comprehensive exploration
of the popular JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery's
powerful plug-in architecture

JavaFX 1.2 Application
Development Cookbook
ISBN: 978-1-847198-94-5 Paperback: 332 pages

Over 60 recipes to create rich Internet applications
with many exciting features

1. Easily develop feature-rich internet applications
to interact with the user using various built-in
components of JavaFX

2. Enhance the look and feel of your application
by embedding multimedia components such as
images, audio, and video

4. Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is Node?
	What can you do with Node?
	Server-side JavaScript

	Why should you use Node?
	Architecture: Threads versus asynchronous event-driven
	Performance and utilization
	Server utilization, the bottom line, and green web hosting

	Spelling: Node, Node.js, or Node.JS?
	Summary

	Chapter 2: Setting up Node
	System requirements
	Installation on POSIX-like systems (Linux, Solaris, Mac, and so on)
	Installing prerequisites

	Installing developer tools on Mac OS X
	Installing in your home directory
	What's the rationale for a home directory installation?

	Installing in a system-wide directory
	Installing on Mac OS X with MacPorts
	Installing on Mac OS X with homebrew
	Installing on Linux from package management systems
	Maintaining multiple Node installs simultaneously

	Run a few commands; test your installation
	Node's command-line tools
	Running a simple script with Node
	Launching a server with Node

	Installing npm, the Node package manager
	Starting Node servers at system startup
	Using all CPU cores on multi-core systems

	Summary

	Chapter 3: Node Modules
	What's a module?
	Node modules
	How does Node resolve require('module')?
	Module identifiers and path names
	Local modules within your application
	Bundling external dependencies with your application
	System-wide modules in the require.paths directories
	Complex modules—modules as directories

	Node package Manager (npm)
	npm Package format
	Finding npm packages
	Using the npm commands
	Getting help with npm
	Viewing package information
	Installing an npm package
	Using installed packages
	What packages are currently installed?
	Package scripts
	Editing and exploring installed package content
	Updating outdated packages you've installed
	Uninstalling an installed npm package
	Developing and publishing npm packages
	npm configuration settings

	Package version strings and ranges
	CommonJS modules
	Demonstrating module encapsulation

	Summary

	Chapter 4: Variations on a Simple Application
	Creating a Math Wizard
	To use a web framework, or not

	Implementing the Math Wizard with Node (no frameworks)
	Routing requests in Node
	Handling URL query parameters
	Multiplying numbers
	Calculating the other mathematical functions
	Extending the Math Wizard
	Long running calculations
(fibonacci numbers)
	What "complete web server" features are missing?
	Using Connect to implement the Math Wizard
	Installing Connect and other setup
	Connecting with Connect

	Using Express to implement the Math Wizard
	Implementing the Express Math Wizard
	Handling errors
	Parameterized URLs and data services
	Parametrized URLs in Express
	The mathematics server (and client)
	Refactoring Math Wizard to use math server

	Summary

	Chapter 5: A Simple Web Server, EventEmitters, and HTTP Clients
	Sending and receiving events with EventEmitters
	EventEmitter theory

	HTTP Sniffer—listening to the HTTP conversation
	Implementing a basic web server
	The Basic Server implementation
	Basic Server core (basicserver.js)
	The Favicon handler (faviconHandler.js)
	The static file handler (staticHandler.js)
	A configuration for Basic Server (server.js)
	Virtual host configuration with Basic Server
	A shorturl module for Basic Server

	MIME types and the mime npm package
	Cookie handling
	Virtual hosts and request routing
	Making HTTP Client requests
	Summary

	Chapter 6: Data Storage and Retrieval
	Data storage engines for Node
	SQLITE3—Lightweight in-process SQL engine
	Installation
	Implementing the Notes application with sqlite3
	Database abstraction module—notesdb-sqlite3.js
	Initializing the database—setup.js
	Display notes on the console—show.js
	Putting together the Notes web application—app.js
	Notes application templates
	Running the sqlite3 Notes application
	Handling and debugging errors

	Using other SQL databases with Node

	Mongoose—Node interface to MongoDB
	Installing Mongoose
	Implementing the Notes application with Mongoose
	Database abstraction module –
notesdb-mongoose.js
	Initializing the database—setup.js
	Display notes on the console—show.js
	Putting it together in an application—app.js

	Other MongoDB database support

	A quick look at authenticating your users
	Summary

	Index

