

Reactive Programming
with JavaScript

Learn the hot new frontend web framework from
Facebook – ReactJS, an easy way of developing
the V in MVC and a better approach to software
engineering in JavaScript

Jonathan Hayward

BIRMINGHAM - MUMBAI

Reactive Programming with JavaScript

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1260815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-855-1

www.packtpub.com

www.packtpub.com

Credits

Author
Jonathan Hayward

Reviewers
Antal Orcsik

Sven A Robbestad

Hibai Unzueta

Commissioning Editor
Kunal Parikh

Acquisition Editor
Manish Nainani

Content Development Editor
Aparna Mitra

Technical Editor
Mohita Vyas

Copy Editors
Vikrant Phadke

Alpha Singh

Ameesha Smith-Green

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Jonathan Hayward is a polymath with advanced degrees bridging mathematics,
computers (UIUC), theology, and philosophy. He obtained his theology and
philosophy degrees from Cambridge University. He has worked in many areas of
web development, with a site (http://cjsh.name/) for "after hours" titles, and he
is also interested in the human side of computing, including usability/UI/UX. His
most popular work is a piece of poetry at https://cjshayward.com/doxology/.
The faster route to get there is by typing cjsh.name/doxology, and it gets there.
Jonathan has studied many languages, including French, Spanish, Latin, and
Greek. He is currently learning Russian. He has worked on various other books
as well (refer to http://www.amazon.com/s/ref=nb_sb_noss_2?url=search-
alias%3Daps&field-keywords=%22CJS+Hayward%22 to find out more).

I would like to thank my parents, John and Linda; my brothers,
Matthew, Joe, and Kirk; my sisters-in-law, Kristin and Adrien; and
my nephews, Jack and James. I would also like to thank all of the
Packt Publishing editorial team, including a great many who I do not
know, but I would like to single out Usha, Akshay, Neetu, Mohita,
and Aparna. They are the editors who left me wishing we lived next
door. Finally, I'd like to thank all those at Facebook for releasing
ReactJS as a framework that is free for the rest of the world.

http://cjsh.name/
https://cjshayward.com/doxology/
http://www.amazon.com/s/ref=nb_sb_noss_2?url=search-alias%3Daps&field-keywords=%22CJS+Hayward%22
http://www.amazon.com/s/ref=nb_sb_noss_2?url=search-alias%3Daps&field-keywords=%22CJS+Hayward%22

About the Reviewers

Antal Orcsik is a full-stack web developer from Hungary. He works at Prezi
(https://prezi.com/) as a payment engineer. In the last decade, he worked
for Hungary's biggest real estate catalog site and one of the biggest local weather
portals. Then he joined the fantastic team that created a revolutionary presentation
tool called Prezi to change the way the world shares ideas. During this time, he
gained experience in Scala, Python, and PHP backend environments as well as
JavaScript frontend technologies, while experimenting with various other fields
of the full-stack web development spectrum. Antal is a big fan of cats, games,
science fiction, and hamburgers.

I would like to thank my lovely girlfriend for her support and
patience while I played my part in creating this book.

Sven A Robbestad is a Norwegian open source developer and frequent
conference speaker with more than 20 years of experience of working on the Web.
He is passionate about mobile development and is always ready to talk about code.
Sven is currently employed at TeliaSonera (http://www.teliasonera.com/) as a
technologist.

https://prezi.com/
http://www.teliasonera.com/

Hibai Unzueta is a multifaceted builder who was programming and designing
complex systems much before he applied for his first job.

He believes that technology is nothing without technique and technique in turn needs
a solid vision-based foundation. He enjoys territories where different knowledge
areas overlap. Lately, he has been involved in projects of data visualization and user
experience design.

For the past 2 years, he has been researching travel search paradigms and technology
with the intention of launching a new project that is expected to rethink the way we
do travel planning. As a result, he has worn many hats, but never all of them at once.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To my nephews Jack and James: You are the light of my life

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction and Installation	 1

A 10,000-foot overview	 1
An easier way to handle user interface programming	 2

Programming paradigms	 3
Installing the tools required	 6

Installing Google Chrome	 6
Installing Node.js	 10
Installing the Starter Kit for ReactJS	 16

Summary	 18
Chapter 2: Core JavaScript	 19

The strict mode	 20
Variables and assignment	 20

Comments	 21
Flow control	 22

A note on values and NaN	 22
Functions	 22

Comments	 24
Loops	 28
Taking a look at ECMAScript 6	 29

Summary	 30
Chapter 3: Reactive Programming – The Basic Theory	 31

Declarative programming	 33
The war on Heisenbugs	 33
The Flux Architecture	 35
From the pit of despair to the pit of success	 35
Complete UI teardown and rebuild	 38
JavaScript as a Domain-specific Language	 39

Table of Contents

[ii]

The Big-Coffee Notation	 40
Summary	 43

Chapter 4: Demonstrating Nonfunctional Reactive
Programming – A Live Example	 45

The history of a game with multiple ports	 46
The HTML for the web page	 47

Using a content distribution network wherever we can	 48
Some simple styling	 48
A fairly minimal page body	 50

The JavaScript that animates that page	 51
A brief syntax note – Immediately Invoked Function Expression	 51
Variable declaration and initialization	 52
The function used to start or restart the game	 53
The function that creates game levels	 54
Getting our hands dirty with ReactJS classes	 55
Tick-tock, tick-tock – the game's clock ticks	 59
GAME OVER	 62

Summary	 65
Chapter 5: Learning Functional Programming – The Basics	 67

Custom sort functions – the first example of functional
JavaScript and first-class functions	 69

This leads us to array.filter()	 72
Illusionism, map, reduce, and filter	 74
Fool's gold – extending Array.prototype	 75
Avoiding global pollution	 77
The map, reduce, and filter toolbox – map	 78
The reduce function	 78
The last core tool – filter	 81

An overview of information hiding in JavaScript	 82
Information hiding with JavaScript closures	 85

Summary	 87
Chapter 6: Functional Reactive Programming – The Basics	 89

A trip down computer folklore's memory lane	 90
Advanced prerequisites for Hello, World!	 92

Distinguishing the features of functional reactive programming	 95
If you learn just one thing...	 96
Learn what you can!	 99
JavaScript as the new bare metal	 103
Summary	 105

Table of Contents

[iii]

Chapter 7: Not Reinventing the Wheel – Tools for
Functional Reactive Programming	 107

ClojureScript	 108
Om	 110
Bacon.js	 110
Brython – a Python browser implementation	 112
Immutable.js – permanent protection from change	 115
Jest – BDD unit testing from Facebook	 122
Implementing the Flux Architecture using Fluxxor	 126
Summary	 127

Chapter 8: Demonstrating Functional Reactive
Programming in JavaScript – A Live Example, Part I	 129

What we will be attempting in this chapter	 130
This project's first complete component	 136
The render() method	 139
Triggering the actual display for what we have created	 142
Summary	 143

Chapter 9: Demonstrating Functional Reactive Programming
in JavaScript with a Live Example Part II – A To-do List	 145

Adding a to-do list to our application	 146
Including ReactJS add-ons in our project	 147
Setting the appropriate initial state	 147
Making text editable	 147
Heavy lifting with render()	 148
Inner functions used to render	 148
Building the result table	 149
Rendering our result	 151
Differentiating columns visually	 151

Summary	 152
Chapter 10: Demonstrating Functional Reactive Programming
in JavaScript: A Live Example Part III – A Calendar	 153

Play it again Sam – an interesting challenge	 154
Classical Hijaxing works well	 157
Built with usability in mind, but there's still room to grow	 160
Plain old JavaScript objects are all you need	 164
Progressive disclosure that starts simply	 166
A render() method can easily delegate	 168
Boring code is better than interesting code!	 169
A simple UI for simply non-recurring entries...	 170

Table of Contents

[iv]

The user can still opt-in for more	 172
Avoiding being clever	 174
Anonymous helper functions may lack pixie dust	 175
How far in the future should we show?	 178
Different stripes for different entry types	 178
Now we're ready to display!	 179
Let's be nice and sort each day in order	 180
Let them use Markdown!	 181
One thing at a time!	 182
The holidays that inspired this calendar	 183
Summary	 184

Chapter 11: Demonstrating Functional Reactive Programming
in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together	 187

Adding a WYSIWYG scratchpad, courtesy CKeditor	 188
Bringing all things together into one web page	 188
This book is about ReactJS, so why use CKeditor?	 189

CKeditor – small free offerings, and small is beautiful	 190
Including CKeditor in our page	 190

Integrating all four subcomponents into one page	 192
Persistence	 194

One detail – persisting the CKeditor state	 198
Summary	 199

Chapter 12: How It All Fits Together	 201
A review of the terrain covered	 202
Could the Mythical Man-Month have been avoided?	 202
ReactJS is just a view, but what a view!	 204
Programming is fun again!	 205
Summary	 208

The next steps from here	 209
Appendix: A Node.js Kick start	 211

Node.js and INTERCAL	 212
Warning – Node.js and its ecosystem are hot, and hot enough
to burn you badly!	 218
A sample project – a server for our Pragmatometer	 223
Client-side preparations	 224
The server side	 227
Summary	 231

Index	 235

Preface

[v]

Preface
Charles Cézanne famously said about the impressionist painter Claude Monet,
"Monet is only an eye, but what an eye!" Today, we can similarly say, "ReactJS
[or if you prefer, "ReactJS is only a view, but what a view!"

ReactJS has neither the intention nor the ambition to be a complete, general-purpose
web framework. It doesn't even include tooling for Ajax calls! Rather, the intent
is that you will use technologies that make sense for different concerns in your
application, and use ReactJS's power tools for views and user interface development.

Functional reactive programming has been an extremely high-hanging fruit, with
a prohibitive barrier to entry in terms of sheer mathematical expectations assumed
in order to work with it. No longer with ReactJS! A veteran C++ programmer with
no particularly deep math background—I said this to pick a profile of programmers
who keep on saying on Stack Overflow that they don't get functional reactive
programming—is a veteran programmer who stands a fair chance of getting real
work done using ReactJS.

This book is about ReactJS, a simple and small technology that nonetheless lets huge
teams work together on different components of a web page without stepping on
each others' feet, but without a hint of bureaucratic measures. And add some liberal
help of pixie dust.

What this book covers
Chapter 1, Introduction and Installation, provides a 10,000-foot overview of different
programming paradigms, each of which has its strengths, and an introduction to
the trio of functional programming, reactive programming, and functional reactive
programming.

Preface

[vi]

Chapter 2, Core JavaScript, covers some of JavaScript's better neighborhoods and omits
the minefields, with a debt to Douglas Crockford, if not a complete agreement. In
terms of the parts of JavaScript that you use, you should be doing most of your
work within this core.

Chapter 3, Reactive Programming – The Basic Theory, is a basic exploration of reactive
theory, or reactive programming, specifically in relation to Facebook's ReactJS user
interface framework.

Chapter 4, Demonstrating Nonfunctional Reactive Programming – A Live Example, proves
that not all development is from scratch. Most professional work is not greenfield.
This will offer a live example of retrofitting a simple video game, the most recent
implementation using jQuery, to take advantage of ReactJS (if you are using ReactJS,
you will probably be doing other conversions from jQuery to ReactJS).

Chapter 5, Learning Functional Programming – The Basics, helps you if you want to
understand functional programming but have no idea where to start. Here's one
place to start! Map, reduce, and filter are introduced as an inexhaustible bag of tricks.

Chapter 6, Functional Reactive Programming – The Basics, covers what has been said about
functional programming and reactive programming. It will be put together with some
sage advice, and the last bit of foundation will be laid for the remaining hands-on work
in this book.

Chapter 7, Not Reinventing the Wheel – Tools for Functional Reactive Programming,
contains a lot to cover in one book, let alone one chapter. But there is meant to be an
interesting sampling of a space where a lot of interesting options are made available,
including writing ReactJS code from a language other than JavaScript.

Chapter 8, Demonstrating Functional Reactive Programming in JavaScript – A Live
Example, Part I, is where we see an application housing a whimsical ReactJS
component written in ReactJS from scratch, and showcasing the sweet JSX syntactic
sugar that is not required but is still made available for ReactJS development.

Chapter 9, Demonstrating Functional Reactive Programming in JavaScript with a Live
Example Part II – A To-do List, leads us to our first real component, designed to be
used rather than just amuse. We implement a to-do list, and it has several markers
other than just "done" to indicate what state, priority, and other things a task has.

Chapter 10, Demonstrating Functional Reactive Programming in JavaScript: A Live
Example Part III – A Calendar, is where we build a calendar. It is intended to
gracefully support not only one-time events but also many kinds of repeating
events with all kinds of rules that people offer.

Preface

[vii]

Chapter 11, Demonstrating Functional Reactive Programming in JavaScript with a Live
Example Part IV – Adding a Scratchpad and Putting It All Together, provides a rich-text
scratchpad with CKeditor. This shows how we might interoperate with other user
interface tools. Then we wind up by bringing the four components together into
one combined page and adding persistence functionality so that our user interface
doesn't forget what it is told.

Chapter 12, How It All Fits Together, reviews what we covered in this book, and we
look at the next steps in a world to explore.

Appendix, A Node.js Kick start, looks at some of the good, the bad, and the ugly of
a "Wild, Wild West" technology that everybody seems to want in on.

What you need for this book
There is a bit of software to download, and you will need a web server that can at
least serve static content. Appendix, Node.js, covers building a web server for the
larger project in Node.js, but all the chapters can work with just a web server that
will serve static content in the most basic fashion. You'll need a desktop computer,
which can be almost anything that can run Node.js (if you choose to work through
the appendix). The text will work well enough with Unix, Linux, Mac, Windows,
Cygwin, and so on. If you want to run it from a mobile device, that may be a
praiseworthy approach, but please work from a device (desktop or otherwise)
using some standard server or desktop operating system.

However, all that you really need is a server or desktop, a browser such as Chrome,
a web server, and a willingness to dive into something new. Everything else is
provided in the text.

Who this book is for
This book is intended for programmers who want to dive into functional reactive
programming and Facebook's ReactJS. There is an expectation of some general
programming maturity, some knowledge of JavaScript, and some knowledge of
producing user interfaces. Familiarity with functional programming is also one of
the several things that would help, but the hope, whether realized or not, is to create
a book using which a veteran programmer in any general-purpose language with
some (perhaps light) knowledge of JavaScript and web development would be able
to get things to work.

People who do have a solid background in frontend web development and
JavaScript's functional core may be surprised how easy it is to work with ReactJS,
and may find it like slicing a hot knife through butter.

Preface

[viii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The typeof function returns a string containing a description of a type; thus,
typeof can offer an extended type."

A block of code is set as follows:

 var counter = (function() {
 var value = 0;
 return {
 get_value: function() {
 return value;
 },
 increment_value: function() {
 value += 1;
 }
 }
 })();

Any command-line input or output is written as follows:

python -c "import binascii; print binascii.hexlify(open('/dev/random').
read(1024))"

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "When
the installer starts, click on Next, as follows:"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction and Installation
Welcome to the wonderful world of reactive (functional) programming in JavaScript!
In this book, we will cover the good parts of JavaScript, although we will not follow
it religiously. We will cover functional programming, reactive programming, and
the ReactJS library and integrate all of these into functional reactive programming
with JavaScript. If you are going to study reactive programming, it is our suggestion
that you seriously consider functional reactive programming, including learning
functional programming as much you can. In this context, the whole of functional
reactive programming is more than the sum of its parts. We will be applying reactive
programming to JavaScript user interface development. User interfaces are one
domain in which functional reactive programming (FRP), really shines.

The topics that will be covered in this chapter are as follows:

•	 A 10,000-foot overview of the subject-matter, including:
°° A discussion of an easier approach to user interface programming
°° A brief discussion of programming paradigms, such as functional

and reactive programming

•	 An overview of the chapters in this book
•	 A look at how to install some of the tools used over the course of this book

A 10,000-foot overview
There are a lot of things that can be stated, but (functional) reactive programming
may be easier than you think. Today, much that has been written about functional
reactive programming is intimidating, much like the instructions for closures a few
years ago.

Introduction and Installation

[2]

An easier way to handle user interface
programming
Years ago, when I first began to study JavaScript, I picked one site and literally
took everything from it that I needed to understand to perform objected-oriented
information hiding, that is, how to create a JavaScript object that had private fields.
I read perhaps two or three chapters that were dense with theoretical computer
science and 10-15 percent of the introduction before giving up. Then I saw how easy
it was to use a closure to create an object with private fields on a simple monkey see,
monkey do basis:

 var counter = (function() {
 var value = 0;
 return {
 get_value: function() {
 return value;
 },
 increment_value: function() {
 value += 1;
 }
 }
})();

Right now, functional reactive programming is in the state in which JavaScript
closures were some years back. The amount of theory you have to read before you
can start reactive programming is astounding, and large portions of the literature
are of a PhD reading level. That's bad news. But the good news is that you don't
have to wade through so much reading.

The purpose of this book is to provide something comparable to the monkey see,
monkey do way of conveying how to use a closure to make a JavaScript object with
private fields. Theory, as such, is not bad, nor is it a problem to introduce theory for
a discussion, but making a full-fledged dissertation's theoretical backing as the price
to do something simple is a problem.

It is our hope that this book will let you understand why building, for instance, a game
UI in JavaScript is easier with functional reactive programming than with jQuery.

Chapter 1

[3]

Programming paradigms
There are multiple programming paradigms around, and not all are mutually
exclusive. Many programming languages are multiparadigm languages, supporting
the use of more than one paradigm, including not only JavaScript, but also the likes
of OCaml, PHP, Python, and Perl.

Note that you can at least sometimes use a paradigm with a language that is not
explicitly designed to support it. Object-oriented programming was originally
formulated not for languages such as Java or Ruby that are specifically intended to
support object-oriented programming, but as matter of an engineering discipline
originally used in languages that predate object-oriented programming.

Among the programming paradigms, we now have the following:

•	 Aspect-oriented programming: Some have suggested that the professional
development of a programmer moves from procedural programming to
object-oriented programming, then to aspect-oriented programming, and
finally to functional programming. A canonical example of an aspect-
oriented concern, for an aspect that is spread through the program in naïve
usage, is logging. Aspect-oriented programming deals with cross-cutting
aspects of programming, such as security, the diagnostic exposure of a state,
and logging.

•	 Declarative programming: One of the key concepts of functional reactive
programming is that it is declarative rather than imperative. In other words,
c = a + b does not mean take the present value of a, add the present value
of b, and store their sum in c. Instead, we declare a lasting relationship that
works a bit like C1 = A1 + B1 in a spreadsheet. If A1 or B1 changes, C1 is
immediately affected by the change. What is stored in C1 is not the value of
A1 plus the value of B1 at the time of assignment, but something more lasting
from which individual values may be obtained in a print on demand fashion.

•	 Defensive programming: Analogous to defensive driving, defensive coding
means writing code that behaves correctly when it is given something
defective. Functional reactive programming is, among other things, an
approach to either functioning correctly or degrading gracefully in the
face of network issues and nonideal, real-world conditions.

Introduction and Installation

[4]

•	 Functional programming: Here, the term function has its mathematical
rather than programming meaning. In imperative programming, functions
can (and most often, they do) manipulate states. Hence, an init() function
might initialize all of the data that a program initially needs to run initially. A
function is something that takes zero or more inputs and returns a result. For
example, f(x) = 3x+1, g(x) = sin(x), and h(x, y) = x'(y) (the derivative of x at y)
are all mathematical functions; none of them command any manipulation of
stateful data. A pure function is a function under a mathematical definition
that excludes telling how to deal with states. Functional programming also
allows and often includes, with the last derivative-based example, higher
order functions, or functions that act on functions (in calculus, a derivative
or an integral represents a higher order function, and iterative integration
includes a higher order function that takes another higher order function
as the input). Problems whose solutions center on abstract functions that
operate on abstract functions tend to be more appealing to computer science
types than something really used in the business world. The higher order
functions explored here will be relatively concrete. You need not use higher
order functions all the time, and once you've grasped the core concepts, they
are not hard to use.

•	 Imperative programming: Imperative programming is a common way of
programming, and for the majority of programmers who are first taught
imperative programming, it may seem the most natural way to work.
Functional reactive programming's marketing proposal includes a live
alternative to this basic approach. An alternative to the natural-seeming
tendency towards imperative programming is found in functional reactive
programming's declarative programming, pure functions (including higher
order functions) in functional programming, and the time series of reactive
programming.

•	 Information hiding: Steve McConnel's Code Complete describes several
methodologies, and tells us which are optimal for different settings (the
sweet spot for procedural programming is on smaller projects than on
object-oriented programming, for instance). For information hiding alone,
his recommendation was use this as much as possible. In generic information
hiding developments, a large project is approached by walling off secrets
within the larger area, and larger secrets are divided by walling off subsecrets.
A large portion of procedural programming, object-oriented programming,
and functional programming alike is intended to facilitate information hiding.
Information hiding is the software engineering concern behind the Law
of Demeter, for example, you may have up to one dot in a method call
(foo.bar()), but not two (foo.baz.bar()).

Chapter 1

[5]

•	 Object-oriented programming: Instead of having a monolithic architecture,
a program is segmented into objects. These objects have their own methods
and fields and may in turn be segmented into further objects. This offers an
acceptable level of information hiding for larger projects than procedural
programming, even if object-oriented programming more or less starts with
procedural programming and builds on top of it.

•	 Patterns: Patterns are not a recipe for good software, but at a higher level of
human abstraction, they provide a way of talking about the best recurring
solutions so as to avoid reinventing from scratch what has already been
solved. Also, specific patterns are taken into the limelight, including MVC
and now the Observer pattern, which is often not mentioned in relation to
reactive programming despite being a founding ingredient.

•	 Procedural programming: Procedural programming is one of the oldest
of the methodologies mentioned, and it was meant to provide some order
to the spaghetti code fostered by the even older goto-based flow control.
Perhaps we can criticize procedural programming for not doing enough
once object-oriented programming, aspect-oriented programming, and
object-oriented design patterns are available. It is the right thing to move on
from procedural programming when you have tools to push further than
procedural programming from a rat's nest of gotos, the pointer as the
goto of data structures, and so on.

•	 Reactive programming: Suppose functional programming is, in large
measure, programming where functions have first-class status and it is
possible to make higher order functions (functions that act on other functions
as input). Then reactive programming is, in large measure, programming
where time series (functions that have different values over time) have
first-class status. For music, games, user interfaces, and some other use
cases, calculating the right value for the present moment is an area where
reactive programming shines.

•	 Functional reactive programming: Functional reactive programming is
reactive programming built on functional building blocks, and in which
both functions and time series are first-class entities. There are some useful,
and surprisingly simple, functions that act on one time series to provide
another time series from it (either of these series can be acted on by other
functions on time series). One of the major selling points of functional
reactive programming is that it provides a more graceful and much more
maintainable approach than following your nose straight into the callback hell.

Introduction and Installation

[6]

Installing the tools required
Many readers will be comfortable enough with simply installing Chrome and Node.
js, if they were not already installed some time ago. For those who would prefer
step-by-step directions, here are the details of installing the appropriate software.

Google Chrome can be installed from http://google.com/chrome. Note that for
some Linux distributions, Chrome may or may not be available from your package
manager. Google Chrome is an obvious choice to think of for something to include in
a distribution's packages, but licensing concerns may list Chrome as non-free due to
some of its parts, meaning that as far as the distribution maintainers are concerned,
you may be welcome to use this, but we're not comfortable including it in a free-only
package repository.

Node.js is available from http://nodejs.org/download. If you are running Linux,
it is probably better to obtain it through your package manager. Note that Node.
js comes with its own package manager, npm, which can be used to download
packages that can be used under Node.js.

The useful Starter Kit for ReactJS is available from http://facebook.github.io/
react/downloads.html.

The following instructions are given for Windows 8.1 (I prefers to develop in Mac or
Linux, but is writing for Windows 8.1 as a common lingua franca).

Installing Google Chrome
We will be using Google Chrome as the primary reference browser:

1.	 To download it, go to http://google.com/chrome, and click on the
Download now button to the left, towards the bottom, as shown here:

http://google.com/chrome
http://nodejs.org/download
http://facebook.github.io/react/downloads.html
http://facebook.github.io/react/downloads.html
http://google.com/chrome

Chapter 1

[7]

2.	 Next, click on the Accept and Install button down and to the right, as shown
in the following screenshot:

Introduction and Installation

[8]

3.	 After that, click on the Run button when asked whether you want to run or
save the installer, as shown here:

4.	 Next, authorize Chrome's installer to make changes to the system, as shown
in the following screenshot:

Chapter 1

[9]

5.	 Then click on the Next button to install Chrome, as shown in the following
screenshot:

6.	 Wait a minute for it to install and then if you are willing, set Chrome as your
default browser:

And that's it!

Introduction and Installation

[10]

Installing Node.js
Installing Node.js is straightforward and it makes it easy to start serving HTTP using
JavaScript as the only language.

1.	 Go to http://nodejs.org/download:

http://nodejs.org/download

Chapter 1

[11]

2.	 Click on the Windows Installer and wait for the installer to download. Then
click on the bottom-left part of the window, as shown in this screenshot:

Introduction and Installation

[12]

3.	 When the installer starts, click on Next, as follows:

4.	 Then click on the checkbox to accept the terms of the agreement,
as shown here:

Chapter 1

[13]

5.	 After that, click on the Next button to continue, as shown in the following
screenshot:

6.	 When asked where to install the software, click on the Next button, as shown
in this screenshot:

Introduction and Installation

[14]

7.	 Then click on Next to move forward, as shown in the next screenshot.
Customize the features if you want to:

8.	 After that, click on the Install button to go ahead with the installation,
as shown here:

Chapter 1

[15]

9.	 Finally, click on the Finish button to finish installing Node.js, as shown in
this screenshot:

10.	 Authorize the installer to make changes to your computer, shown as follows:

Introduction and Installation

[16]

Installing the Starter Kit for ReactJS
To install the Starter Kit perform the following steps:

1.	 Go to http://facebook.github.io/react/downloads.html and you will
see a screen similar to the following screenshot:

http://facebook.github.io/react/downloads.html

Chapter 1

[17]

2.	 Click on Download Starter Kit 0.12.0 to start the download (this will be
visible in the bottom-left corner), as shown in the preceding screenshot.

3.	 You will see a ZIP file downloaded at the bottom:

Introduction and Installation

[18]

4.	 From here, you should be able to explore the contents of the ZIP file:

Summary
In this chapter, we had a brief overview of programming paradigms to suggest
where functional reactive programming might fit, and installed the basic tools.

We will be moving on to discussing JavaScript in the next chapter. The basics of
Node.js are discussed in Appendix.

[19]

Core JavaScript
JavaScript is a good and a bad language rolled into one. There are some truly awful
parts to JavaScript and some excellent parts. Overall, JavaScript is a dynamic, loosely
typed, interpreted scripting language. The approach to the language as a whole is
to explore it with emphasis on The Good Parts as described by Douglas Crockford,
because of how bad the bad parts of JavaScript are: they are truly minefields.
Crockford has had a profound influence on how JavaScript is used now; enough
that the blog post titled AngularJS: The Bad Parts instantly, clearly, and completely
telegraphs what sort of things will be dissected in painful detail.

Topics covered in this chapter include:

•	 Strict mode: Implicitly used in code including ECMAScript 6 modules
•	 Variables and assignment: Some of the basic building blocks of

programming in any language
•	 Comments: There are two styles; we focus on one in preference to the other

due to the ease of producing unintended behavior by having comments
really begin or end somewhere other than where the programmer intended

•	 Flow control: A basic look at if-then, if-then-else, and switch statements
•	 A note on values and NaN: Notes on truthiness and the toxic not a number

value
•	 Functions: Illustration of JavaScript functions, one of the best parts of

the language
•	 A few brief notes on ECMAScript 6: The first truly radical change in core

JavaScript in years

Core JavaScript

[20]

The strict mode
"use strict"; as the first line of a file or function will cause certain things that can
cause innumerable problems (such as assigning to a variable without declaring it) to
cleanly error out with a line number called out, rather than leaving you to ferret out
clues from any of a number of possible consequences. The "use strict"; can also
be the first line of a function, in which case the function is in strict mode.

Perl users will know about the -w flag, possibly the best-known flag associated with
the language, and its successor, Perl's use warnings pragma. The documentation says
things like, opening the list of known bugs, The behavior implied by the use warnings is
not mandatory.

JavaScript's strict mode by itself may or may not be on par with Perl's use warnings
pragma, but it's at least something to make you get into the habit of using.

Variables and assignment
Variables should be declared with the var keyword. Any variable that is declared
outside of a function, or any variable that is used without being declared, is a global
variable, and global variables are a big problem; their place in default JavaScript is
one of the major design flaws.

When there was a major public relations push for Java, JavaScript was named to run
on Java's coattails, and certain decisions were made to make JavaScript code look like
Java. These decisions were unfortunate. JavaScript is formally a C-like language and
its most recent common ancestor with Java or C# is C, not C++ or Java. JavaScript has
been described as being like Scheme in C's clothing. Lisp is a syntax associated with
a family of languages including Scheme, Common Lisp, Clojure, and ClojureScript,
and it is arguable that the increasingly functional emphasis in pursuit of the best
JavaScript is from ClojureScript. In JavaScript, there are no separate integer and float
types; numbers are 64-bit floating point values that behave like integers when used
within a certain long range. However, they do sometimes give surprises to new
programmers; for example, 0.1 + 0.2 does not equal 0.3, for historical reasons that
also plague innumerable other languages.

Basic variable assignments can look C-like:

var x;
var y = 12 + 2;

Chapter 2

[21]

If a variable is declared without being assigned, as x in the preceding example, its
value will be undefined.

The following are equivalent:

y = y + 1;
y += 1;
++y;

We will avoid the use of the last of the three listed in the preceding example, as it
is not considered one of The Good Parts. Douglas Crockford, in one of his videos,
recounts a tale where he gave an hour long eloquent defense of the ++y usage, and
then had an interminable debugging session in which the subtleties of ++y had bitten
him. Unlike the first two options in the preceding example, one can assign a value to
it, and ++y and y++ are not the same. Crockford then magnanimously backed down
from his earlier position.

Comments
Most languages support comments in some form. Besides explanation of the code,
they are also used to temporarily deactivate the code. JavaScript has the comments
that would be expected of a language made to look like Java; however, Javadoc
comments are not natively special (various solutions such as JSDoc have been
made to fill the gap).

JavaScript supports both classes of C++ comments. The first three lines contain
only a comment and no executable code, the last line has a line of code and then
a comment until the end of the line:

/*
 * Multiline comments are legal.
 */

if (x) // In this case, we ...

We will be avoiding the multiline comments. Asterisks and slashes occur often
enough in regular expressions that multiline comments can be tripped up, and
regular expressions may be required by a context or written by someone else
in code that will still trip unintended effects. Inline comments, by their nature,
are less vulnerable to surprise effects.

Core JavaScript

[22]

Flow control
If-then and if-then-else works as described in the following example code, one of
which does something if a number is nonzero, and the other of which takes one
action if a number is nonzero and another if it is false. Both use truthiness in that 0
(and NaN) are falsy, while any other value is truthy:

if (books_remaining) {
 print_title();
}

var c = 1;
if (c) {
 c += 2;
} else {
 c -= 1;
}

A note on values and NaN
All values can be used in Boolean context and tested for truthiness. The values
undefined, null, '', 0, [], false, and NaN (Not a Number) are falsy and all
the other values are truthy.

NaN in particular is a special case and it does not behave like other real numeric
values. NaN is toxic; any calculation that includes NaN will give a result of NaN.
Furthermore, although NaN is falsy, it does not equal anything, including NaN
itself. The usual way of checking for NaN is via the isNaN() function. If you find NaN
lurking somewhere unexpected, you might give debugging log statements for code,
leading to where you detected NaN; there may be some distance between where NaN
was first generated and where you observed it corrupting your results.

Functions
In a function, by default, control flows from the beginning to the end, and the
function returns undefined. Optionally, there can be a return statement before
the end, and the function will stop execution and return the value in question.
The following example illustrates a function with a return:

var add = function(first, second) {
 return first + second;
}

console.log(add(1, 2));

// 3

Chapter 2

[23]

The previous function takes two parameters, although functions can be given
(without an error or error message) fewer or more arguments than the declaration
specifies. If they are declared to have values, those values will be present as
local variables (in the preceding example, first and second). In any case, the
arguments are also available in an array-like object called arguments which has
a .length method (arrays have a .length method which is one greater than the
highest position of an item), but not the rest of an array's features. Here we make a
function that can take any arbitrary number of Number arguments, and returns their
(arithmetical) average by using the arguments pseudo-array.

var average_arbitrarily_many() {
 if (!arguments.length) {
 return 0;
 }
 var count = 0;
 var total = 0;
 for(var index = 0; index < arguments.length; index += 1) {
 total += arguments[i];
 }
 return total / arguments.length;
}

Basic data types include number, string, Boolean, symbol, object, null, and
undefined. Objects include function, array, date, and RegExp.

The fact that the objects include the functions means that the functions are values
and can be passed as values. This facilitates higher-order functions, or functions
that take functions as values.

For an example of a higher-order function, we will include a sort function that sorts
an array and optionally accepts a comparator. This builds on function definitions,
actually containing a function definition within a function definition (which is
perfectly legal as anywhere else), and then an implementation of QuickSort where
values are divided into compares as less than the first element, compares as equal to the
first element, and compares as greater than the first element, and the first and last of these
three are recursively sorted. We check for nonempty length before sorting, in order
to avoid infinite recursion. An implementation of the classic QuickSort algorithm,
here implemented as a higher-level function, is as follows:

var sort = function(array, comparator) {
 if (typeof comparator === 'undefined') {
 comparator = function(first, second) {
 if (first < second) {
 return -1;
 } else if (second < first) {
 return 1;

Core JavaScript

[24]

 } else {
 return 0;
 }
 }
 }
 var before = [];
 var same = [];
 var after = [];
 if (array.length) {
 same.push(array[0]);
 }
 for(var i = 1; i < array.length; ++i) {
 if (comparator(array[i], array[0]) < 0) {
 before.push(array[i]);
 } else if (comparator(array[i], array[0]) > 0) {
 after.push(array[i]);
 } else {
 same.push(array[i]);
 }
 }
 var result = [];
 if (before.length) {
 result = result.concat(sort(before, comparator));
 }
 result = result.concat(same);
 if (after.length) {
 result = result.concat(sort(after, comparator));
 }
 return result;
}

Comments
There are several basic features and observations to note regarding this function,
which is not intended to be pushing the envelope, but demonstrate how to cover
standard bases well:

1.	 We use var sort = function()... rather than the permitted function
sort().... When used within a function, this stores the function in a
variable, rather than defining something globally. Note that it may be
helpful in debugging to include a name for the function, var sort =
function sort()... to access the function only through the variable, and
let debuggers pick up on the second. For example: sort rather than referring
to the function anonymously. Note that with var sort = function(), the
variable declaration is hoisted, not the initialization; with function sort(),
the function value is hoisted, available anywhere within the current scope.

Chapter 2

[25]

2.	 This is a standard way of checking to see if only one of the two arguments
has been specified, that is if an array has been provided without a sort
function. If not, a default function is provided. We run a few trial runs
of sorting:

console.log(sort([1, 3, 2, 11, 9]));
console.log(sort(['a', 'c', 'b']));
console.log(sort(['a', 'c', 'b', 1, 3, 2, 11, 9]);

This gives us:
[1, 2, 3, 9, 11]
["a", "b", "c"]
["a", 1, 3, 2, 11, 9, "b", "c"]

This gives us an opportunity to debug. Now, let's suppose we add the
following:
console.log('Before: ' + before);
console.log('Same: ' + same);
console.log('After: ' + after);

Before the declaration of result, we get:

[1, 2, 3, 9, 11]
Before:
Same: a
After: c,b
Before: b
Same: c
After:
Before:
Same: b
After:
["a", "b", "c"]
Before:
Same: a,1,3,2,11,9
After: c,b
Before: b
Same: c
After:
Before:
Same: b
After:
["a", 1, 3, 2, 11, 9, "b", "c"]

Core JavaScript

[26]

The output that says Same: a,1,3,2,11,9 looks suspicious, a Same bucket should
have identical values, so that an appropriate output might be Same: 2,2,2 or just
Same: 3 where the Same list has five values, no two of which are alike. This can't be
the behavior we intended. It appears that the integers are being classified as the same
as the initial "a", and the rest of it is being sorted. A little investigation confirms that
'"a" < 1' and '"a" > 1' are both false, so our comparator could be improved.

We make a dictionary order sort of their types. This is somewhat arbitrary to sort
first on alphabetical order of type, and then on the default sort order within types
defaults which could be overridden with another comparator. This is an example of
another of the many kinds of comparators one might use to sort an array: this one,
unlike the previous one, segments different kinds of items such as Numbers sorted
in order, and will appear before Strings, sorted in order:

 var comparator = function(first, second) {
 if (typeof first < typeof second) {
 return -1;
 } else if (typeof second < typeof first) {
 return -1;
 } else if (first < second) {
 return -1;
 } else if (second < first) {
 return 1;
 } else {
 return 0;
 }
 }

The typeof function returns a string containing a description of a type; thus typeof
can offer an extended type. With a comparator function similar to this, one can
meaningfully compare objects such as records that hold a first name, a last name,
and an address.

Objects can be declared via curly brace notation. Blocks of code and objects can
both use curly braces, but these are two separate things. The following code with its
braces, is not a block of code with statements to execute; it defines a dictionary with
keys and values:

var sample = {
 'a': 12,
 'b': 2.5
};

Chapter 2

[27]

Unless a key is a reserved word or contains a special character, as 'strange.
key' does (here a period), the quotation marks around a key are optional. JSON
formatting, in order to have a simple and consistent rule, requires quotes in all
cases, and specifically double quotes, not single.

An example of a record having a first name, a last name, and email address, perhaps
populated via JSON, is shown next. This example is not JSON because it does not
follow JSON's rules about double quoting all keys and all strings, but it illustrates
an array of records which could have other fields and could be much longer. It may
make sense to sort by distance or seniority (with populated fields not shown here):
there is a whole world of possible comparators one might use for records.

var records = [{
 first_name: 'Alice',
 last_name: 'Spung',
 email: 'a.spung@yahoo.com'
 }, {
 first_name: 'Robert',
 last_name: 'Hendrickson',
 email: 'Bob.Hendrickson@gmail.com'
 }
];

Note that a trailing comma is not merely inappropriate in JavaScript (after the
last entry in almost anything separated by commas), but it has some strange and
unexpected behavior which can be extremely hard to debug.

JavaScript was designed to have semicolons at the end of a statement which may be
optional. This is a debatable decision, and was tied to a decision to make a popular
language that regular non-programmers could use without involving IT people,
a factor also involved in the design of SQL. We should always supply semicolons
when they are appropriate. One side effect of this is that return alone on a line will
return undefined. This means that the following code will not have the desired effect
and will return undefined:

return
 {
 x: 12
 };

The effect as the code is executed is different from what it
appears to be and probably what was intended, so it is advisable
to not do it.

Core JavaScript

[28]

To get the desired effect, the open curly brace should be on the same line as the
return statement, as shown next:

return {
 x: 12
};

However, JavaScript does have an object-oriented programming that avoids a
classical difficulty in object-oriented programming: having to get the ontology
right the first time. Objects are usually best constructed, not as instances of a class,
but by factories. Or so Douglas Crockford has been abbreviated. Prototypes are
still part of the language, like many features good and bad, but barring esoteric
use cases objects should usually be made by factories that allow for a "better than
ontology-driven classes" approach to object-oriented programming. We will be
avoiding the pseudo-classical new function(), not because it can clobber global
variables if you ever forget the new, but because its semblance of traditional
object-oriented programming does not really help that much.

You should be aware of a wide-respected convention in JavaScript that
constructors intending to work with new begin with a capital letter. If a
function name begins with a capital letter, it is intended to be used with
the new keyword, and strange things may happen if it is invoked without
the new keyword.

In JavaScript, the interests served by classical object-oriented programming in some
other languages are sometimes best advanced by functional programming.

Loops
Loops include the for loop, the for in loop, the while-do loop, and the do-while
loop. The for loop works as in C:

var numbers = [1, 2, 3];
var total = 0;
for(var index = 0; index < numbers.length; ++index) {
 total += numbers[index];
}

Chapter 2

[29]

The for in loop will loop over everything in an object. The hasOwnProperty()
method can be used to examine only an object's fields. The two variants, for an
object named obj, are as follows:

var counter = 0;
for(var field in obj) {
 counter += 1;
}

This will include any fields from the prototype chain(not explained here). To check
things that are direct properties of an object itself, and not potentially noisy data
from a prototype chain, we use an object's hasOwnProperty() method:

var counter = 0;
for(var field in obj) {
 if (obj.hasOwnProperty(field)) {
 counter += 1;
 }
}

Ordering is not guaranteed; if you are looking for any specific fields, it is worth
considering to just iterate over the fields you want and check them on an object.

Taking a look at ECMAScript 6
JavaScript tools have been booming, with one tool being eclipsed by another and an
incredibly rich ecosystem that few developers can boast knowing both broadly and
deeply. However, the core language, ECMAScript or JavaScript, has been stable for
several years.

ECMAScript 6, with one introductory roadmap available from http://tinyurl.
com/reactjs-ecmascript-6, introduces profound new changes and expansions
to the core language. As a rule, these features enhance, deepen, or make more
consistent the functional aspects of JavaScript. It might be suggested that
ECMAScript 6 features that do not do this kind of work, such as enhanced class-
oriented syntactic sugar to let Java programmers pretend that JavaScript means
programming in Java, may be ignored.

ECMAScript 6 features are a force to reckon with and at the time of this writing have
more than started to make their way into the mainstream browsers. If you want to
expand and improve your value as a JavaScript developer, don't restrict yourself
to digging deeper into the rich JavaScript ecosystem, no matter how important that
may be. Learn the new JavaScript. Learn an ECMAScript with heaping mounds more
better parts.

http://tinyurl.com/reactjs-ecmascript-6
http://tinyurl.com/reactjs-ecmascript-6

Core JavaScript

[30]

Summary
In this whirlwind tour of some of JavaScript's better parts, we have covered
foundational building blocks that can be helpful as we push further in JavaScript.
These include variables and assignment, comments, flow control, values, NaN
functions, and ECMAScript 6.

In the Variables and assignment section, we threw light on some basic building blocks
of most programming, although the emphasis in functional reactive programming
may lie elsewhere. In the Comments section, we understood how comments are the
same everywhere, but the main concern here is to prevent strange surprises.

The Flow control section covered basic flow control within a function (or possibly
outside of any function, although that is usually to be avoided).

In the section A note on values and NaN, we discussed that similarly to Perl, JavaScript
holds truth to be self-evident; that is, the things are falsy if they are null, zero, empty,
Not a Number, and so on, and true for anything not on the list.

In the Functions section, we got a look at the functions that included a somewhat
involved example. In the section ECMAScript 6, we discussed how the core
JavaScript language is expanding.

This has been a brief tour of highlights, not a comprehensive tour. If you need a more
comprehensive grounding in JavaScript, there are multiple options available to you.
We will continue in the next chapter with basic theory for reactive programming.

[31]

Reactive Programming –
The Basic Theory

Reactive programming, including functional reactive programming as will be
discussed later, is a programming paradigm that can be used in multiparadigm
languages such as JavaScript, Python, Scala, and many more. It is primarily
distinguished from imperative programming, in which a statement does
something by what are called side effects, in literature, about functional and reactive
programming. Please note, though, that side effects here are not what they are in
common English, where all medications have some effects, which are the point of
taking the medication, and some other effects are unwanted but are tolerated for the
main benefit. For example, Benadryl is taken for the express purpose of reducing
symptoms of airborne allergies, and the fact that Benadryl, in a way similar to some
other allergy medicines, can also cause drowsiness is (or at least was; now it is also
sold as a sleeping aid) a side effect. This is unwelcome but tolerated as the lesser
of two evils by people, who would rather be somewhat tired and not bothered by
allergies than be alert but bothered by frequent sneezing. Medication side effects
are rarely the only thing that would ordinarily be considered side effects by a
programmer. For them, side effects are the primary intended purpose and effect of a
statement, often implemented through changes in the stored state for a program.

Reactive programming has its roots in the observer pattern, as discussed in Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides's classic book Design
Patterns: Elements of Reusable Object-Oriented Software (the authors of this book are
commonly called GoF or Gang of Four). In the observer pattern, there is an observable
subject. It has a list of listeners, and notifies all of them when it has something to
publish. This is somewhat simpler than the publisher/subscriber (PubSub) pattern,
not having potentially intricate filtering of which messages reach which subscriber
which is a normal feature to include.

Reactive Programming – The Basic Theory

[32]

Reactive programming has developed a life of its own, a bit like the MVC
pattern-turned-buzzword, but it is best taken in connection with the broader
context explored in GoF. Reactive programming, including the ReactJS framework
(which is explored in this title), is intended to avoid the shared mutable state and
be idempotent. This means that, as with RESTful web services, you will get the
same result from a function whether you call it once or a hundred times. Pete Hunt
formerly of Facebook—perhaps the face of ReactJS as it now exists—has said that
he would rather be predictable than right. If there is a bug in his code, Hunt would
rather have the interface fail the same way every single time than go on elaborate
hunts for heisenbugs. These are bugs that manifest only in some special and slippery
edge cases, and are explored later in this book.

ReactJS is called the V of MVC. That is, it is intended for user interface work and has
little intentions of offering other standard features. But just as the painter Charles
Cézanne said about the impressionist painter Claude Monet, "Monet is only an eye,
but what an eye!" about MVC and ReactJS, we can say, "ReactJS is only a view, but
what a view!"

In this chapter, we will be covering the following topics:

•	 Declarative programming
•	 The war on heisenbugs
•	 The Flux Architecture
•	 From pit of despair to the pit of success
•	 A complete UI teardown and rebuild
•	 JavaScript as a Domain-specific Language (DSL)
•	 Big-Coffee Notation

ReactJS, the library explored in this book, was developed by Facebook and made
open source in the not-too-distant past. It is shaped by some of Facebook's concerns
about making a large-scale site that is safe to debug and work on, and also allowing
a large number of programmers to work on different components without having
to store brain-bending levels of complexity in their heads. The quotation "Simplicity
is the lack of interleaving," which can be found in the videos at http://facebook.
github.io/react, is not about how much or how little stuff there is on an absolute
scale, but about how many moving parts you need to juggle simultaneously to work
on a system (See the section on Big-Coffee Notation for further reflections).

http://facebook.github.io/react
http://facebook.github.io/react

Chapter 3

[33]

Declarative programming
Probably, the biggest theoretical advantage of the ReactJS framework is that the
programming is declarative rather than imperative. In imperative programming, you
specify what steps need to be done; declarative programming is the programming in
which you specify what needs to be accomplished without telling how it needs to be
done. It may be difficult at first to shift from an imperative paradigm to a declarative
paradigm, but once the shift has been made, it is well worth the effort involved to
get there.

Familiar examples of declarative paradigms, as opposed to imperative paradigms,
include both SQL and HTML. An SQL query would be much more verbose if you
had to specify how exactly to find records and filter them appropriately, let alone
say how indices are to be used, and HTML would be much more verbose if, instead
of having an IMG tag, you had to specify how to render an image. Many libraries,
for instance, are more declarative than a rolling of your own solution from scratch.
With a library, you are more likely to specify only what needs to be done and
not—in addition to this—how to do it. ReactJS is not in any sense the only library
or framework that is intended to provide a more declarative JavaScript, but this is
one of its selling points, along with other better specifics that it offers to help teams
work together and be productive. And again, ReactJS has emerged from some of
Facebook's efforts in managing bugs and cognitive load while enabling developers
to contribute a lot to a large-scale project.

The war on Heisenbugs
In modern physics, Heisenberg's uncertainty principle loosely says that there is an
absolute theoretical limit to how well a particle's position and velocity can be known.
Regardless of how good a laboratory's measuring equipment gets, funny things will
always happen when you try to pin things down too far.

Heisenbugs, loosely speaking, are subtle, slippery bugs that can be very hard to
pin down. They only manifest under very specific conditions and may even fail to
manifest when one attempts to investigate them (note that this definition is slightly
different from the jargon file's narrower and more specific definition at http://
www.catb.org/jargon/html/H/heisenbug.html, which specifies that attempting
to measure a heisenbug may suppress its manifestation). This motive—of declaring
war on heisenbugs—stems from Facebook's own woes and experiences in working at
scale and seeing heisenbugs keep popping up. One thing that Pete Hunt mentioned,
in not a flattering light at all, was a point where Facebook's advertisement system
was only understood by two engineers well enough who were comfortable with
modifying it. This is an example of something to avoid.

http://www.catb.org/jargon/html/H/heisenbug.html
http://www.catb.org/jargon/html/H/heisenbug.html

Reactive Programming – The Basic Theory

[34]

By contrast, looking at Pete Hunt's remark that he would "rather be predictable than
right" is a statement that if a defectively designed lamp can catch fire and burn, his
much, much rather have it catch fire and burn immediately, the same way, every
single time, than at just the wrong point of the moon phase have something burn. In
the first case, the lamp will fail testing while the manufacturer is testing, the problem
will be noticed and addressed, and lamps will not be shipped out to the public until
the defect has been property addressed. The opposite Heisenbug case is one where
the lamp will spark and catch fire under just the wrong conditions, which means
that a defect will not be caught until the laps have shipped and started burning
customers' homes down. "Predictable" means "fail the same way, every time, if it's
going to fail at all." "Right means "passes testing successfully, but we don't know
whether they're safe to use [probably they aren't]." Now, he ultimately does, in fact,
care about being right, but the choices that Facebook has made surrounding React
stem from a realization that being predictable is a means to being right. It's not
acceptable for a manufacturer to ship something that will always spark and catch
fire when a consumer plugs it in. However, being predictable moves the problems
to the front and the center, rather than being the occasional result of subtle, hard-
to-pin-down interactions that will have unacceptable consequences in some rare
circumstances. The choices in Flux and ReactJS are designed to make failures obvious
and bring them to the surface, rather than them being manifested only in the nooks
and crannies of a software labyrinth.

Facebook's war on the shared mutable state is illustrated in the experience that they
had regarding a chat bug. The chat bug became an overarching concern for its users.
One crucial moment of enlightenment for Facebook came when they announced a
completely unrelated feature, and the first comment on this feature was a request
to fix the chat; it got 898 likes. Also, they commented that this was one of the more
polite requests. The problem was that the indicator for unread messages could have
a phantom positive message count when there were no messages available. Things
came to a point where people seemed not to care about what improvements or new
features Facebook was adding, but just wanted them to fix the phantom message
count. And they kept investigating and kept addressing edge cases, but the phantom
message count kept on recurring.

The solution, besides ReactJS, was found in the flux pattern, or architecture, which
is discussed in the next section. After a situation where not too many people felt
comfortable making changes, all of a sudden, many more people felt comfortable
making changes. These things simplified matters enough that new developers
tended not to really need the ramp-up time and treatment that had previously
been given. Furthermore, when there was a bug, the more experienced developers
could guess with reasonable accuracy what part of the system was the culprit, and
the newer developers, after working on a bug, tended to feel confident and have a
general sense of how the system worked.

Chapter 3

[35]

The Flux Architecture
One of the ways in which Facebook, in relation to ReactJS, has declared war on
heisenbugs is by declaring war on the mutable state. Flux is an architecture and
a pattern, rather than a specific technology, and it can be used (or not used) with
ReactJS. It is somewhat like MVC, equivalent to a loose competitor to that approach,
but it is very different from a simple MVC variant and is designed to have a pit
of success that provides unidirectional data flow like this: from the action to the
dispatcher, then to the store, and finally to the view (but some people have said that
these two are so different that a direct comparison between Flux and MVC, in terms
of trying to identify what part of Flux corresponds to what conceptual hook in MVC,
is not really that helpful). Actions are like events—they are fed into a top funnel.
Dispatchers go through the funnels and can not only pass actions but also make
sure that no additional actions are dispatched until the previous one has completely
settled out. Stores have similarities and difference to models. They are like models in
that they keep track of state. They are unlike models in that they have only getters,
not setters, which stops the effect of any part of the program with access to a model
being able to change anything in its setters. Stores can accept input, but in a very
controlled way, and in general a store is not at the mercy of anything possessing a
reference to it. A view is what displays the current output based on what is obtained
from stores. Stores, compared to models in some respects, have getters but not
setters. This helps foster a kind of data flow that is not at the mercy of anyone who
has access to a setter. It is possible for events to be percolated as actions, but the
dispatcher acts as a traffic cop and ensures that new actions are processed only after
the stores are completely settled. This de-escalates the complexity considerably.

Flux simplified interactions so that Facebook developers no longer had subtle edge
cases and bug that kept coming back—the chat bug was finally dead and has not
come back.

From the pit of despair to the pit of
success
Louis Brandy has warned about the perils of C++, which—at the risk of being
controversial—has been called the biggest example of the second system effect
(http://tinyurl.com/reactjs-second-system) since the OS/360 project. In a
vague XKCD-style graphic, he states "Never trust a programmer who says he knows
C++" (http://tinyurl.com/reactjs-cpp-valley).

http://tinyurl.com/reactjs-second-system
http://tinyurl.com/reactjs-cpp-valley

Reactive Programming – The Basic Theory

[36]

The following graph shows the level of confidence of the C++ programmer:

He continues:

"Programmers (especially those coming from C) can very quickly get up to speed
in C++ and feel quite proficient. These programmers will tell you they know C++.
They are lying. As a programmer continues in C++, he goes through this valley of
frustration where he comes fully to terms with the complexity of the language. The
good news is that it's really easy to tell between C++ programmers pre- and post-
valley (in an interview, in this case). Just mention that C++ is an extremely large
and complex language, and the post-valley people will give you 127 different tiny
frustrations they have with the language. The pre-valley people will say, "Yeah, I
guess. I mean, it's just C with classes."

Chapter 3

[37]

Eric Lippert tells us something that isn't really relevant to only C++ programmers; it
leads to something larger than C++:

I often think of C++ as my own personal Pit of Despair programming language.
Unmanaged C++ makes it so easy to fall into traps. Think buffer overruns, memory
leaks, double frees, mismatch between allocator and deallocator, using freed
memory, umpteen dozen dozen ways to trash the stack or heap -- and those are
just some of the memory issues. There are lots more "gotchas" in C++. C++ often
throws you into the Pit of Despair and you have to climb your way up to the Hill of
Quality. (Not to be confused with scaling the Cliffs of Insanity. That's different.)

Now as I've said before, the design of C# is not a subtractive process. It is not
"C++ with the stupid parts taken out." But that said, it would be rather foolish of
us not to look at what problems people have had with other languages and work to
ensure that those exact same problems do not crop up for C# users. I would like C#
to be a "Pit of Quality" language, a language whose rules encourage you to write
correct code in the first place. You have to work quite hard to write a buffer overrun
bug into a C# program, and that's on purpose.

I have never written a buffer overrun in C#. I have never written a bug where I
accidentally shadowed a variable in another scope in C#. I have never used stack
memory after the function returned in C#. I've done all those things multiple
times in C++, and it's not because I'm an idiot, it's because C++ makes it easy to
do all those things and C# makes it very hard. Making it easy to do good stuff is
obviously goodness; thinking about how to make it hard to do bad is actually more
important.

Or, as it happened on a Python mailing list, someone with an obvious 133t hax0r
spelling asked how to write a buffer overflow in Python, and one of the more senior
list members answered, "We're sorry, but Python doesn't support that feature."
The point of this meme is that someone asking about how to find a particular kind
of vulnerability is answered by saying that Python had the basic type of defect
designed out of the language. As has been pointed out for C#, strings are handled in
a sane fashion where no naive use ever results in buffer override vulnerabilities.

Eric Lippert is, and remains, a pivotal figure in C#, and his post eloquently clarifies
how exactly one could intelligently disagree with Bjarne Stroustrup's words:

"The connection between the language in which we think/program and the
problems and solutions we can imagine is very close. For that reason restricting
language features with the intent of eliminating programmer errors is at best
dangerous."

Reactive Programming – The Basic Theory

[38]

People who disagree with Stroustrup today might not contest both of these sentences,
but might contest only the second: the connection between the language and the
solutions may indeed seem to be real, but have quite the opposite implication for
language features and the pit of success. And something like this may be factored into
decisions such as those in the book JavaScript: The Good Parts by Douglas Crockford.
This or that detail might be challenged, but the core idea of using a cherry-picked
subset of JavaScript and leaving some other parts alone completely stems from
seeking and retrofitting the fact that a pit of success is almost a no-brainer once
the possibility has been pointed out.

All of this leads up to a point made by Rico Mariani in—sort of—the opposite of
the pit of despair. The pit of success, in stark contrast to a summit, a peak, or a
journey across a desert to find victory through many trials and surprises. We want
our customers to simply "fall into" winning practices using our platforms and
frameworks. To the extent that we make it easy to fall into trouble we fail.

Complete UI teardown and rebuild
One of Dijkstra's quotations that is a favorite with ReactJS developers such as Pete
Hunt is: our intellectual powers are rather geared to master static relations and that
our powers to visualize processes evolving in time are relatively poorly developed.
For that reason, we should do (as wise programmers aware of our limitations) our
utmost to shorten the conceptual gap between the static program and the dynamic
process, to make the correspondence between the program (spread out in text space)
and the process (spread out in time) as trivial as possible.

One way in which ReactJS plays to this strength conceptually, is by blowing
everything away and re-rendering afresh so that the correspondence between the
program and the process is simple. You do not keep track of the present state of the
DOM and 300 jQuery changes that need to be kept in mind to transition accurately
from one state to another. All you need to do is tell how it should look now.
Now, in fact, ReactJS does not blow everything away under the hood; it has fairly
sophisticated facilities that can make a lightning-fast pure JavaScript synthetic DOM
(the same synthetic DOM that enables HTML5 features in Internet Explorer 8), and
reconcile and make the fastest changes possible ("fast" in this context includes the
impressive feat of managing 60-frames-per-second updates on a non-JIT iPhone 5.)
However, conceptually speaking, using ReactJS means simply treating everything as
if it was being blown away and redrawn from scratch, and trusting ReactJS to bring
together all the pixie dust it needs to make the minimum sufficient DOM changes.
This is done to update the page as requested, probably without losing the existing
input or inertial scrolling.

Chapter 3

[39]

ReactJS provides optimization hooks to offer more fine-grained control over what is
rendered. These are well-documented, but they should rarely be needed. Remember
Knuth's words, "Premature optimization is the root of all evil." I have myself not
used this feature for optimization, although the Om bindings in ClojureScript for
ReactJS are significantly faster because they need only check reference equality
instead of deep equality as objects are immutable in ClojureScript, although I have
made a secondary usage, to ask ReactJS to disclaim ownership of some part of
the DOM so that it will play nicely with third-party functionality. See Chapter 11,
Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part
IV – Adding a Scratchpad and Putting It All Together for an example of this in action.
ReactJS is very performant by default, rather than only in how you customize its
default behavior.

JavaScript as a Domain-specific
Language
One widespread practice in templating systems is to provide a DSL for templating.
In the usual process, such as an underscore on the frontend (http://underscorejs.
org) or Django templating on the backend (http://djangoproject.com), there is
a carefully chosen but deliberately underpowered templating language provided.
In Django, for instance, the power is deliberately limited so that templating can be
handed over to untrusted designers, and there is nothing the designers can do that
will compromise anything that one would prefer not to be compromised.

This is perhaps an attractive feature, but it speaks of a limited templating language.
If templating needs something more powerful, they are in a bind until any
requirements they have are accommodated by nonstandard adjustments on the
server side. One basic insight, associated with Gödel's incompleteness theorem and
the halting problem, is that if you tie someone's hands tightly enough so that person,
in principle, cannot do any damage, you have significantly limited what that person
is able to do. The best results require at least a little trust. If you want people to be
able to give their most useful contributions, they probably won't be able to do that
with their hands bound.

http://underscorejs.org
http://underscorejs.org
http://djangoproject.com

Reactive Programming – The Basic Theory

[40]

In ReactJS, the DSL for templating is JavaScript, with all its power. Some people
perhaps find it strange to have designers working on raw JavaScript; The ReactJS
people seem to have a give it five minutes approach (see http://tinyurl.com/
reactjs-five-minutes), and say that designers are smarter than what they are
sometimes given credit for and are very capable of writing very specific types of
JavaScript code. But this also means that if you have a special case and your complex
situation calls for you to do something that was ruled out in some particular—
deliberately underpowered—templating languages, it is good news. With ReactJS,
you have the full power of JavaScript for use as you handle templating. With
ReactJS, you can also, if you want, use a very limited subset of the language used
for templating, and Pete Hunt and others seem to believe that designers are sharp
enough to be able to handle it. But the much better news is when you have a difficult
need that requires some real power to be available. You have as much power as
JavaScript offers, and this makes quite a difference.

The Big-Coffee Notation
Steve Luscher, a ReactJS guru and enthusiast outside of Facebook who was
subsequently hired by Facebook, has talked about the Big-Coffee Notation in a
video on React. The basic insight is that instead of using only the big-O notation
for runtime complexity (how long the runtime slows down as a function of the
rough size of a problem, or occasionally other dimensions, such as memory usage),
we should have a Big-Coffee Notation for what the demands scale for the poor
developer, who has to keep things in their own poor, caffeinated brain.

Gerald Weinberg's classic book The Psychology of Computer Programming works out a
basic insight at admirable length. The core insight is that programmers programming
computers is not just an activity that involves computers. It's also an activity that
involves people, and we would do well to treat it as such. Perhaps we should also
know the limits of computers, but the human side of this is not, in any sense, trivial.
Weinberg may have been the first to make this observation, or possibly someone
else may have made it before him, but in either case, this observation has been the
bedrock of serious software engineering literature ever since it was absorbed. It is a
core insight, for instance, in Steve McConnell's Code Complete: A Practical Handbook of
Software Construction. We will not be exploring this idea in full, but it is well worth
exploring, especially if you haven't explored it before, and Big-Coffee Notation falls
squarely in this court. The core idea is that along with tracking the big-O notation
or complexity, we should also pay attention to how increasingly complex problems
scale in terms of appropriate demands made by the developer. These demands are
in terms of how many moving parts need to be kept in one's head.

http://tinyurl.com/reactjs-five-minutes
http://tinyurl.com/reactjs-five-minutes

Chapter 3

[41]

In the big-O notation, depending somewhat on the context, there are various runtime
complexities that provide an upper bound to how much the runtime escalates when it
is given a progressively larger problem to solve. The O(1) runtime has a fixed upper
limit for any use case. O(log n) is associated, for instance, with unitary operations
on certain data structures. O(n) is also called linear, referring to a runtime in which
there is a linear upper limit to how much time something will take to run. You
are guaranteed to be at least as some constant multiplied by the number of items.
O(n log n) may be the next major step up, and it is associated with certain sorting
algorithms. O(n ^ 2) is called quadratic (all previously mentioned complexities
are called subquadratic, which means faster than quadratic) and may be taken as a
threshold complexity when things really do not scale to large volumes. (O(n * (n – 1))
is also considered to be quadratic and is subsumed under O(n ^ 2). After that, there
are some slower polynomial times and exponentials, without closing the door to still
slower escalations, such as factorials. The famous question of NP completeness is a
question of whether certain NP-complete problems, which are known to be solvable
in exponential time, can also always be solved in some polynomial time.

Steve Luscher's presentation about the difference between an imperative UI and
a declarative UI is that if someone is making a widget to display the number of
unread items in their queue, an imperative UI makes one transition between two
states, making the poor programmer keep track of , meaning quadratic
or complexity for the number of items in the poor programmer's brain
compared to the number of states. If there are three states, there are six transitions.
If you add a fourth state, there will be 12, or twice as many, transitions. Add a
fifth state and you are looking at twenty transitions. The explanation from the
programmer to understand the code is quadratic, meaning steep. However, if you give
the UI code declaratively, as in ReactJS programming, you describe the code only
once per possible rendered state. Three states means only three descriptions. Four
states means only four descriptions. Five states means only five descriptions. It's only

, or linear. The escalating demands the poor programmer's caffeinated brain to
keep a track of what goes on in the code, which is much less of an escalation to keep
track of. Like a fast algorithm, it is much less taxing to run.

Reactive Programming – The Basic Theory

[42]

I haven't heard of Dijkstra's The Humble Programmer being referenced by the
ReactJS community, but intellectual humility is a virtue among programmers and
has been recognized as such in software engineering literature for a long time. It
is emphasized in classics such as Code Complete: A Practical Handbook of Software
Construction, and programmers are divided, not among those who have big and
little minds, but those who know that they have little minds and those who have
little minds but are heedless of it. Excellence in programming partly stems from
recognition of one's own cognitive limits. Dijkstra writes:

The competent programmer is fully aware of the strictly limited size of his own
skull; therefore he approaches the programming task in full humility, and among
other things he avoids clever tricks like the plague. In the case of a well-known
conversational programming language I have been told from various sides that as
soon as a programming community is equipped with a terminal for it, a specific
phenomenon occurs that even has a well-established name: it is called "the one-
liners". It takes one of two different forms: one programmer places a one-line
program on the desk of another and either he proudly tells what it does and adds the
question "Can you code this in less symbols?" —as if this were of any conceptual
relevance!— or he just asks "Guess what it does!". From this observation we must
conclude that this language as a tool is an open invitation for clever tricks; and
while exactly this may be the explanation for some of its appeal, viz. to those who
like to show how clever they are, I am sorry, but I must regard this as one of the
most damning things that can be said about a programming language…

This challenge, namely the confrontation with the programming task, has already
taught us a few lessons, and the one I have chosen to stress in this talk is the
following:

We shall do a much better programming job, provided that we approach the task
with a full appreciation of its tremendous difficulty, provided that we stick to
modest and elegant programming languages, provided that we respect the intrinsic
limitations of the human mind and approach the task as very humble programmers.

Chapter 3

[43]

Summary
We just took a whirlwind tour of some of the theory surrounding reactive
programming with ReactJS. This includes declarative programming, one of the selling
points of ReactJS that offers something easier to work with at the end than imperative
programming. The war on heisenbugs, is an overriding concern surrounding decisions
made by Facebook, including ReactJS. This takes place through Facebook's declared
war on the shared mutable state. The Flux Architecture is used by Facebook with
ReactJS to avoid some nasty classes of bugs. The pit of success and the pit of despair,
which learns from others' pain, a pain that is concentrated in connection to the C++
programming language, and looks at what we should be aiming for.

We covered complete UI teardowns and rebuilds, providing a simple alternative to
keeping track of the state in how to update an interface. We also saw JavaScript as a
DSL, looking at an intentional decision in designing ReactJS that is meant to give you
as much power as you need. Then the Big-Coffee Notation was discussed in relation
to a healthy recognition of one's own limits instead of them breaking their shins,
which is preventable.

In our next chapter, we will continue by looking at a concrete case of a user interface
built with ReactJS.

[45]

Demonstrating Nonfunctional
Reactive Programming – A

Live Example
In this chapter, we will be looking at a live example that incorporates some principles
of reactive programming with ReactJS. Some portions of the program remain
imperative as a port of something that was previously written in jQuery after other
ports from HP-28S RPN and Unix C, but ReactJS's power still shines through, even
with code that, like much of the code in the real world, has gone through multiple
iterations. We will briefly look at the HTML requirements of the web page, before
going through the real meat in JavaScript. The web page offers a port of a video
game originally developed on an HP-28S graphing scientific calculator, and retains
much of the calculator's look and feel.

In this chapter, we will be covering these topics:

•	 The HTML for the web page
•	 The JavaScript that animates the page

Demonstrating Nonfunctional Reactive Programming – A Live Example

[46]

Here we see the game, as rendered against the background of a classic HP28S
calculator. Effort has been taken so that character graphics mimic the dark and
light colors as existed on the LED screen:

The history of a game with multiple ports
The title specifies that we are making a port of an HP28S RPN game, so let's look at a
bit of history of the specific game that we are implementing.

Chapter 4

[47]

This game has had different implementations and different ports, including
reimplementation in C, and a couple of ways with HTML or JavaScript. The original
version was on an HP28S, a hackerly scientific calculator that could have 32 KB or
a whopping 512 KB of RAM (mine had 512 KB). Programming and use (the two are
not terribly different, as in Unix/Linux shell programming) Reverse Polish Notation
(RPN) (http://en.wikipedia.org/wiki/Reverse_Polish_notation). There were
a lot of interesting depths in the calculator as far as hacking was concerned, and I
made two programs that I specifically remember. One was a fractal screen saver
with the humble two-dimensional staggering drunk algorithm (see http://tinyurl.
com/reactjs-staggering-drunk), and the other was the video game that will be
reimplemented here.

The basic game, implemented with dingbat character graphics, had a spaceship
moving from left to right, in a field with asteroids that grew denser from level to
level. The primary game mechanics was intended to be the dodging of asteroids
as you went through. You could shoot asteroids as well. This was really necessary
because some of the (naïvely) randomly drawn levels did not necessarily have a
clear route available. To discourage the game mechanics of simply shooting all the
way through each level, shooting asteroids was penalized, and intended as more of
a last resort than the maneuvering that intended as the primary game mechanics. A
friend of mine commented that it was the first video game he knew where the player
actually lost points for shooting things.

The HTML for the web page
We open with a standard HTML5 DOCTYPE:

<!DOCTYPE html>

Following this, we open the document, specifying UTF-8 as the charset. If the web
page is served correctly, the charset should be specified with the page download,
but this is still potentially helpful in terms of defensive coding, which is always
something to keep in mind:

<html lang="en">
 <head>
 <meta charset="utf-8" />

Hence the document title:

 <title>A video game on an HP-28S scientific
 calculator</title>

http://en.wikipedia.org/wiki/Reverse_Polish_notation
http://tinyurl.com/reactjs-staggering-drunk
http://tinyurl.com/reactjs-staggering-drunk

Demonstrating Nonfunctional Reactive Programming – A Live Example

[48]

The font used here is a retro VT series font, associated with the venerable VT100 and
other series of Unix terminals. Note—as will be seen in code later—that while the
VT100 series was a monospaced terminal, the font is not strictly a monospaced font
and simply displaying each row of spaces or asteroids inline will have undesired
spacing, so each character is positioned absolutely. Perhaps another font may not
have this problem, but there's a nice retro tint to the VT100 font.

Note that we will be including dingbats for much of the character graphics. They are
dealt within the JavaScript.

The font tags, like some other tags used on the HTML side, are written via the
HTTP/HTTPS ambidextrous format of two leading slashes, with http: or https:
not specified, and being supplied to be the same as in the web page:

 <link
 href='//fonts.googleapis.com/css?family=VT323'
 rel='stylesheet' type='text/css' />

Using a content distribution network
wherever we can
We load ReactJS from a content distribution network (CDN), following Steve Souders'
widely established Yslow ("Why is my web page slow to load?") recommendation.

Steve Souders (http://SteveSouders.com) pioneered a realization,
initially just at Yahoo!, that rendering web pages that would be working
more quickly wasn't really about shaving off milliseconds or microseconds
of server-side performance. There was a significant low-hanging fruit in
terms of influencing the client to be more performant, for instance, by
not loading the same resource from the network again and again when it
could be loaded with lightning speed from a computer's cache.

There are quite a lot of JavaScript libraries and frameworks available from a CDN
hit, including ReactJS, but there are also almost any other major or minor JavaScript
tool you would want to use.

Some simple styling
We give the page some basic styling. The background image is loaded from
http://haywardfamily.org/hp28s.png. You can make a local copy if you wish,
or if there are issues over HTTPS or if you are serving up the files locally where
the HTTP/HTTPS ambidextrous hack sadly fails to work.

http://SteveSouders.com
http://haywardfamily.org/hp28s.png

Chapter 4

[49]

The color for the text in p#display is taken from a screenshot of an HP28S calculator:

<style type="text/css">
 body
 {
 background-image:
 url(//haywardfamily.org/hp28s.png);
 background-position: top left;
 background-repeat: no-repeat;
 height: 670px;
 width: 860px;
 }
 div#main
 {
 height: 670px;
 width: 860px;
 }

Demonstrating Nonfunctional Reactive Programming – A Live Example

[50]

 p#display
 {
 color: #4f5c65;
 font-family: VT323, courier, sans;
 font-size: 18px;
 letter-spacing: 4px;
 left: 565px;
 top: 180px;
 position: absolute;
 }
 p#legend
 {
 background-color: rgba(0, 0, 0, .6);
 border-radius: 20px;
 color: white;
 font-family: Verdana, arial, sans;
 margin-left: 40px;
 margin-right: 90px;
 margin-top: 40px;
 padding: 10px;
 }
</style>
</head>

This is the last part of the page header.

A fairly minimal page body
We build the page body, which has an image of an HP-28S calculator as the
background. We also include a brief legend and space for the game to display
on the virtual calculator screen:

<body>
 <div id="main">
 <p id="legend">
 Arrow keys to move, Space to shoot.
 </p>
 <p id="display">
 </p>
 </div>

Before closing the body tag, we load the main script, which will use ReactJS to
animate the game:

<body>
 <script
 src="//cdnjs.cloudflare.com/ajax/libs/react/0.13.3/react.js"></

Chapter 4

[51]

script>
 <script type="text/javascript"
 src="hp28s.js"></script>
</body>
</html>

This is the end of the HTML for the page. The JavaScript, which contains the real
meat as far as programming is concerned, will now follow.

The JavaScript that animates that page
We might briefly note that the script is regular JavaScript, rather than ReactJS's JSX
format, which allows mixing of HTML-like XML and JavaScript and has been called
the tool that puts angle brackets in your scripts. Not all people will go with JSX, but
the tool is worth knowing about if nothing else.

JSX has many merits and is worth considering. It is used by perhaps some, but not
all non-Facebook ReactJS users, as well as by Facebook. Facebook has been careful
to support JSX but has not required it to use ReactJS. For development purposes,
JSX scripts can be loaded after a web page loads, from http://cdnjs.cloudflare.
com/ajax/libs/react/0.13.3/JSXTransformer.js for example, and compiled
in the browser. For production purposes, they need to be compiled in JavaScript, in
which case you can run npm install jsx and then run the jsx compiler from the
command line, as documented at https://www.npmjs.com/package/jsx.

A brief syntax note – Immediately Invoked
Function Expression
In our script, we use an Immediately Invoked Function Expression (IIFE) so that
our local variables, defined with the var keyword somewhere within the function
or its dependencies, will be protected as private within a closure. This will avoid
the concern of a shared mutable state (as it has a nonshared mutable state). A
shared mutable state leaves the program's stability at the mercy of anyone who has
sufficient access to modify the state. The function is wrapped in parentheses due to a
quirk of JavaScript syntax, wherein a line beginning with a function is considered a
function definition, so the following syntax will not work:

function() {
}();

http://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js
http://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js
https://www.npmjs.com/package/jsx

Demonstrating Nonfunctional Reactive Programming – A Live Example

[52]

The solution is to put the function within an enclosing pair of parentheses, and then
it will work properly:

(function()
 {
 })();

Back to our main script!

Variable declaration and initialization
Our main wrapper function begins nonreactively and imperatively by writing state
variables that are only used in the function:

function()
{
 var game_over_timeout = 2000;
 var game_over_timestamp = 0;
 var height = 4;
 var tick_started = false;
 var width = 23;
 var chance_clear;
 var game_over;
 var level;
 var rows;
 var score;
 var position;
 var row;

Having declared—and in some cases, initialized—these variables, we move on to the
function used to start the game. This initializes or reinitializes variables, but does not
include initializing the level. It starts the game by setting the game_over variable to
false, placing the player on level 1, setting a (horizontal) position at the beginning,
over to the left of the screen/asteroid field in the first of the 23 characters' width, and
a vertical position in row 1 (the row below the top, out of 4), a score of 0, and the
chance of most spaces being clear (that is, free of asteroids and therefore safe for the
player's ship to travel in) by the asteroids keep getting denser! This 5/6 is the start of
an exponential decay in the chances of a space being asteroid-free each time the player
goes to a new level. The latter is a parameter that can be adjusted to influence the
overall difficulty of the game, a lower value making a more difficult-to-navigate field.
Elsewhere, between levels, the chance that a space is clear decreases exponentially; the
rate of exponential decay, or perhaps other aspects of that feature are also something
that could be modified to affect the difficulty of the game between levels.

Chapter 4

[53]

Here we see what the display looks like when the player has almost cleared the
first level:

The levels that are generated have mostly spaces, with a random chance of an
asteroid being present, but the space that holds the spaceship initially and the space
in front of it are always clear. This is intended to allow the player to get some space
to react, instead of an automatic death.

The function used to start or restart the game
The function is invoked immediately after it is declared:

 var start_game = function()
 {
 game_over = false;
 level = 1;
 position = 0;
 row = 1;

Demonstrating Nonfunctional Reactive Programming – A Live Example

[54]

 score = 0;
 chance_clear = 5 / 6;
 }
 start_game();

The function that creates game levels
In the get_level() function, the level is built. The probability that a space is clear
undergoes exponential decay (the first level, after decay, being .75, then .675, then
.6075, and so on), with the density of asteroids increasing correspondingly, and
then a rectangular array of arrays of characters is built (arrays of characters are used
for collections of characters undergoing near-constant changes, rather than strings,
which are immutable, even though the original implementation manipulated strings).
Note that in internal representations here, things are represented by character codes:
a for an asteroid, s for the player's ship, a space for a blank space, and so on. (Now
it may be a bit strange to store an array of arrays of characters that are references to
other characters. On the original legacy system, the approach that would now be
obvious was not yet available. This could well be refactored out now, but this chapter
is the one code chapter intended to resemble what it's like to get good results while
dealing legacy code, and this wart's presence is intended. Most of the work most
developers do includes interfacing with legacy functionality.) Initially, all the spaces
are potentially populated with asteroids. After that, the ship's initial slot, and the
space immediately in front of it, are cleared. This is an example:

var get_level = function(){
 level += 1;
 rows = [];
 result = {};
 chance_clear *= (9 / 10);
 for(var outer = 0; outer < height; ++outer)
 {
 rows.push([]);
 for(var inner = 0; inner < width; ++inner)
 {
 if (Math.random() > chance_clear)
 {
 rows[outer].push('a');
 }
 else
 {
 rows[outer].push(' ');
 }
 }

Chapter 4

[55]

 }
 rows[1][0] = 's';
 rows[1][1] = ' ';
 return rows;
}

Although this function returns a grid of rows, the grid of rows will be assigned to
be a field of an object that will be used with ReactJS. ReactJS works better with a
property on an object than on an array.

The result of the preceding function call is stored in a field of the board variable,
and an array is defined for keystrokes. At the end of a move, the last keystroke (if
any) is taken from the keystrokes array, and then the array is emptied so that the
ship moves according to the last keystroke (if any) entered during a turn. All other
keystrokes are ignored:

 var board = {rows: get_level()};
 var keystrokes = [];

Getting our hands dirty with ReactJS classes
Now we will directly start interacting with ReactJS. We create a ReactJS class,
working on a hash of functions with specific fields named as per the documentation.
The componentDidMount() function and field, for instance, is a function invoked
when a ReactJS component mounts. This means that more or less, it is displayed and
represented in the DOM. In this case, we add event listeners to the document's body,
rather than add something directly to the component in ReactJS. This is because we
want to listen to key press/key down events, and it is difficult to get DIV to respond
to these events. Therefore, the body has event listeners added. They will address
event handlers in ReactJS, which are still meant to be defined as you would display
them normally. Note that some other types of events, such as some mouse events
(at least), will register through ReactJS's usual means, as introduced here:

 var DisplayGrid = React.createClass({
 componentDidMount: function()
 {
 document.body.addEventListener("keypress",
 this.onKeyPress);
 document.body.addEventListener("keydown",
 this.onKeyDown);
 },

Demonstrating Nonfunctional Reactive Programming – A Live Example

[56]

Components in ReactJS have properties and a state. Properties are something
defined once and they cannot be changed. They are available from within ReactJS,
and they should be treated as immutable. The state is mutable information. Both
properties and the state are available within ReactJS. We can briefly comment that
the shared mutable state is rightly treated by Facebook and ReactJS as begging for
Heisenbugs. Here, we handle all of the mutable state from within a closure. The
mutable state is not shared, nor should it be shared (in other words, it is a nonshared
mutable state):

 getDefaultProps: function()
 {
 return null;
 },
 getInitialState: function()
 {
 return board;
 },

We next define the key down and key press event handlers as they would normally
be used, as or at least as they would normally be handled if DIVs responded to key
events. (We will in fact be monitoring the body, because key-related events, unlike
a hover or mouse click, does not propagate to a containing DIV. This approximates
how you would normally demonstrate event handling with ReactJS. The specific
keys we are listening for, arrow keys and the spacebar, present a problem. In
essence, arrow keys trigger key down events, but not key press events (most other
keys generate key press events). This behavior is stupid, but it is deeply entrenched
in JavaScript and is now more or less non-negotiable. We delegate to a common
event handler that will handle both events. Here, key presses are converted to key
codes: left or up arrow key to go up (or left, from the orientation of the game), right
or down arrow key to go down (or right, from the orientation of the game), and
the spacebar to shoot. These are represented in the keystrokes array by u, d, and s
respectively:

 onKeyDown: function(eventObject)
 {
 this.onKeyPress(eventObject);
 },
 onKeyPress: function(eventObject)
 {
 if (eventObject.which === 37 ||
 eventObject.which === 38)
 {
 keystrokes.push('u');
 }

Chapter 4

[57]

 else if (eventObject.which === 39 ||
 eventObject.which === 40)
 {
 keystrokes.push('d');
 }
 else if (eventObject.which === 32)
 {
 keystrokes.push('s');
 }
 },

At this point, we create the render() function, which is a core ReactJS member to
define. What this render function does is create DIVs and SPANs that represent the
grid of spaces and symbols as appropriate. The leaf nodes are positioned absolutely.

Having built the leaf SPAN nodes and then the intermediate DIVs, we build up to
the main DIV element.

The out_symbol variable is a UTF-8 character and not an ASCII escape; this is for
a very specific reason. ReactJS, although with a clearly documented escape hatch
dangerouslySetInnerHTML() (see http://tinyurl.com/reactjs-inner-html),
is normally set up to resist XSS (cross-site scripting) attacks. As such, its normal
behavior is to escape angle brackets and much ampersand usage. This means that
 will be rendered as it is in source, rather than with a (non-breaking
and non-collapsing) space. Therefore, the dingbat symbols that we use are not given
as they might be elsewhere—with escape codes (though those are left in here in
comments)—but symbols pasted in the JavaScript that are stored as UTF-8.

If you're not sure how to enter the dingbats, you can simply use something else.
Alternatively, you can take the escapes in the comments, copy them to a Plain Old
Simple HTML (POSH) file, and then copy and paste the half dozen symbols from
the rendered POSH page in your JavaScript source with your editor. Your JavaScript
source should be treated as UTF-8:

 render: function()
 {
 var children = ['div', {}];
 for(var outer = 0; outer <
 this.state.rows.length; outer += 1)
 {
 var subchildren = ['div', null];
 for(var inner = 0; inner <
 this.state.rows[outer].length;
 inner += 1)
 {

http://tinyurl.com/reactjs-inner-html

Demonstrating Nonfunctional Reactive Programming – A Live Example

[58]

 (var symbol =
 this.state.rows[outer][inner];)
 var out_symbol;
 if (symbol === 'a')
 {
 // out_symbol = '■';
 out_symbol = '■';
 }
 else if (symbol === 's')
 {
 // out_symbol = '►';
 out_symbol = '►';
 }
 else if (symbol === ' ')
 {
 // out_symbol = ' ';
 out_symbol = ' ';
 }
 else if (symbol === '-')
 {
 out_symbol = '-';
 }
 else if (symbol === '*')
 {
 out_symbol = '*';
 }
 else
 {
 console.log('Missed character: '
 + symbol);
 }
 subchildren.push(
 React.createElement('span',
 {'style': {'position': 'absolute',
 'top': 18 * outer - 20), 'left':
 (12 * inner - 75)}}, out_symbol));
 }
 children.push(
 React.createElement.apply(this,
 subchildren));
 }
 return React.createElement.apply(this,
 children);
 }
 });

Chapter 4

[59]

The children and subchildren defined in the preceding code populate the argument
lists for React.createElement().

Having built things in an inner loop, we add a leaf node to the subchildren array.
It is specified to be a span, with inline CSS styling delivered in a hash and content
equal to the out_symbol variable. This in turn is added to the children array. It
contains the rows of the screen, which in turn is built into the complete board.

In ReactJS, components are defined in React.createElement() and subsequently
made available for use. The usual invocation for React.createElement() is
something like React.createElement('div', null, ...), where the part
represented by the ellipsis holds all the children. We use apply() to call React.
createElement() with the initial Arg that is requested, and then, in the array,
what the arguments should be.

Tick-tock, tick-tock – the game's clock ticks
This closes the render() field and the React.createElement() class definition.
In the source code, we move on to the tick() function. It handles whatever is
supposed happen at each turn. As of now, the code calls tick() at an interval of
300 milliseconds (0.3 seconds), although this is something that could be tweaked to
influence the gameplay and perhaps refactored slightly so that the gameplay would
accelerate with higher levels.

If the game is over, which can only be due to the ship crashing into an asteroid,
nothing happens in the tick() call:

 var tick = function()
 {
 if (game_over)
 {
 return;
 }

Next, React.render() is called, specifying the class that is being rendered and
what HTML element to render to. React.render() should be called at least each
time you want things to render. If you call it once, it will render once, which means
that it needs to be called repeatedly if you want repeated updates to show up. Here,
we call it inside each call of the tick() method, asking to create an element based
on DisplayGrid defined in a good chunk of the preceding code, and to put the
rendered HTML into the DIV with the display ID:

 React.render(
 React.createElement(DisplayGrid, {}),
 document.getElementById('display'));

Demonstrating Nonfunctional Reactive Programming – A Live Example

[60]

Here we see the screen as the player shoots an asteroid. The asteroid explodes into
an asterisk!

If, in the previous turn, the ship shot an asteroid (which will be represented in
the character symbols as zero or more hyphens and an asterisk to their right; the
hyphens fill the space leading up to the asteroid that has been shot, and the asterisk
represents the explosion as a shot hits the asteroid), we clear the slots that show the
shot taken in that turn:

 for(var outer = 0; outer < height; outer += 1)
 {
 for(var inner = 0; inner < width; inner += 1)
 {
 if (board.rows[outer][inner] === '-' ||
 board.rows[outer][inner] === '*')
 {

Chapter 4

[61]

 board.rows[outer][inner] = ' ';
 }
 }
 }

Having done this, we clear the variable indicating that a shot has been taken:

 var shot_taken = false;

We clear the space where the ship was:

 board.rows[row][position - 1] = ' ';

The keystrokes array is cleared at the end of each tick, and we pay attention to the
last keystroke stored. In other words, we are attending to the last keystroke, if any,
since the previous turn. Keystrokes do not accumulate between turns. At the end
of a turn, the last keystroke is the only keystroke that wins.

The keystroke array stores key codes rather than exact keystrokes. Arrow keys have
been processed such that a left or up arrow key press will store a u for up, a right or
down arrow key press will store a d for down, and a spacebar press will store an s
for shoot. If someone enters up or down, the ship moves up or down respectively
within bounds:

 if (keystrokes.length)
 {
 var move = keystrokes[keystrokes.length – 1];
 if (move === 'u')
 {
 row -= 1;
 if (row < 0)
 {
 row = 0;
 }
 }
 else if (move === 'd')
 {
 row += 1;
 if (row > height - 1)
 {
 row = height - 1;
 }
 }

Demonstrating Nonfunctional Reactive Programming – A Live Example

[62]

If the user shoots an asteroid, in the next turn, a row of hyphens will extend from
the front of the ship to the asteroid, and the asteroid will become an asterisk,
representing an explosion:

 else if (move === 's')
 {
 shot_taken = true;
 score -= 1;
 var asteroid_found = false;
 for(var index = position + 1; index <
 width && !asteroid_found; index += 1)
 {
 if (board.rows[row][index] === 'a')
 {
 board.rows[row][index] = '*';
 asteroid_found = true;
 }
 else
 {
 board.rows[row][index] = '-';
 }
 }
 }
 keystrokes = [];
 }

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

GAME OVER
If the user runs over, or collides with an asteroid, the game is over. Then we display
a GAME OVER screen and stop further processing, like this:

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 4

[63]

 if (position < width)
 {
 if (rows[row][position] === 'a')
 {
 game_over = true;
 game_over_timestamp = (new
 Date()).getTime();
 (document.getElementById(
 'display').innerHTML =
 '' +
 'GAME OVER' +
 '
' +
 'SCORE: ' + score + '');
 return;
 }

Demonstrating Nonfunctional Reactive Programming – A Live Example

[64]

As long as the user hasn't hit an asteroid, the game is still going on, and we replace
the present slot in the row with a marker for the ship. Then we increment the player's
(horizontal) position:

 board.rows[row] = board.rows[row].slice(0,
 position).concat(['s']).concat(
 board.rows[row].slice(position + 1));
 position += 1;
 }

If the user has "fallen off the right edge of the screen", we take the game to the
next level:

 else
 {
 rows = get_level();
 score += level * level;
 position = 0;
 row = 1;
 }
 }

Having defined all of this, we start the game, and if we haven't started the ticks in
motion, we do so with an interval of 300 milliseconds (a value that can be played
with to make the game easier or harder; it might be made into a configurable interval
that speeds up with the gameplay):

 start_game();
 if (!tick_started)
 {
 setInterval(tick, 300);
 tick_started = true;
 }
 })();

Chapter 4

[65]

Summary
We covered a lot of ground in this chapter. Earlier, we had covered some theory,
but it was here that we began to piece together an application using some of ReactJS.
Later on, we will work with a more in-depth application.

The topics covered included the HTML for the web page. This is a simple HTML
skeleton, that serves as a rack to hold reactive JavaScript. Another topic covered was
the reactive JavaScript. This includes a mix of JavaScript with a clear example that
shows how to write reactive JavaScript for ReactJS.

We will continue with further coverage of functional programming in the
next chapter.

[67]

Learning Functional
Programming – The Basics

JavaScript is a multiparadigm language that is not perfect for any paradigm it
touches, but it has interesting features for its main paradigms. It is an object-oriented
language, although the definition of object-oriented varies between object-oriented
languages. It has been suggested that its prototypal inheritance may be less significant
for object-oriented programming than a demonstration of how to create class-free
objects instead of fumbling at the difficult task of getting the taxonomy right from
the beginning. The definition of object-oriented also varies between multiparadigm
languages with object-oriented features. For example, Python dynamically allows
members to be added to existing objects, while Java requires members to be defined
in a class. The object-oriented characteristics of JavaScript are useful and interesting,
but especially in the past few years, they have been a source of frustration to
programmers of other object-oriented languages, who have been told that JavaScript
is object-oriented without sufficient information on how JavaScript is object oriented
through an approach that differs profoundly from other major languages.

Likewise, for functional programming, JavaScript has functional programming
support, or at least some of it. But like JavaScript as a whole, functional JavaScript is
not 100 percent in line with the The Good Parts. One common, although not universal,
feature of functional programming languages is tail call optimization, which says
that recursive functions that only recur at the end are internally converted into
a more commonplace style of loop that is faster and can go very deep without
exhausting its quota of call stack space. This optimization is slated for ECMAScript
6, but at the time of writing this book, it has not been implemented in common
browsers, which provide not only slower performance but also a limit of around
10,000 to 20,000 calls deep in recursion.

Learning Functional Programming – The Basics

[68]

There's a lot that can be done within this limit, but structured program writers
would not be happy if their for loop was not implemented to go much beyond
20,000 iterations. The point here is not to specify which solution is best for JavaScript
not always supporting tail call optimization, but to indicate that this difficulty is
presently here, and this is one of the few ways in which JavaScript does not directly
support standard functional language features (summing all integers from 1 to
1,000,000 or higher is especially not interesting to do, but it serves as a standard
example in tutorials).

Literature is divided over whether or not JavaScript should be called a functional
language; it is certainly not a pure functional language as Haskell is (but then,
neither is OCaml). JavaScript has been called after a known functional language—
Scheme in C's clothing—and its basic functional features are not something tacked on
after the fact. Perhaps this may reflect his preferences, but Douglas Crockford, who is
willing to be both critical and picky in his judgments of what parts of the JavaScript
language are good ideas, has never that I have seen picked functional aspects present
in JavaScript for targets of a scathing critique. In his move from JavaScript: The Good
Parts to The Better Parts, one of his preferences given ECMAScript 6 is to stop using
for and while loops in an imperative style, and use recursion that takes advantage
of tail call optimization, which is to be included. Maybe the strongest claim that
JavaScript has a functional heart can be seen in the question of what feature in a
language is central. It has been suggested that in Java, the central feature is objects.
In C, it is pointers. In JavaScript, it is functions.

JavaScript's functions have first-class status, meaning among other things that
(higher order) functions can act on other functions and be passed as arguments,
or even be dynamically constructed and returned as a result.

In this chapter, we will be covering:

•	 Custom sort functions
•	 Map, reduce, and filter
•	 Fool's gold – altering the behavior of other people's prototypes
•	 Closures and information hiding

Chapter 5

[69]

Custom sort functions – the first example
of functional JavaScript and first-class
functions
To break the ice, let's look at sorting JavaScript's arrays. JavaScript's arrays have a
built-in sort() function, which is, at the very least, a sensible default. If, for instance,
we create an array with the first six digits of π, we can sort it:

var digits = [3, 1, 4, 1, 5, 9];
digits.sort();
console.log(digits);

Chrome's debugger shows an array on the console, which we can access:

Array[6]
 0: 1
 1: 1
 2: 3
 3: 4
 4: 5
 5: 9
 length: 6
 __proto__: Array[0]

This is well and good. Let's stretch things a little further and try mixing integers
and floating-point decimals (floats). Note that in JavaScript, there is one numeric
type that acts like an integer (and remains integer clean) for the integers between
(in Firefox) -(253 - 1), or -9007199254740991, and 253 – 1, or 9007199254740991. This
numeric type also stores floating-point numbers. These have a greater range and, of
course, more fine-grained values for smaller numbers. To stretch things further, let's
have an array with integers and floats mixed together:

var mixed_numbers = [3, Math.PI, 1, Math.E, 4, Math.sqrt(2), 1,
 Math.sqrt(3), 5, Math.sqrt(5), 9];

Among these numbers, Math.PI is around 3.14, Math.E is around 2.72, Math.sqrt(2)
is around 1.41, Math.sqrt(3) is around 1.73, and Math.sqrt(5) is around 2.24. Let's
sort this like the other array and log the values:

[1, 1, 1.4142135623730951, 1.7320508075688772, 2.23606797749979,
 2.718281828459045, 3, 3.141592653589793, 4, 5, 9]

Learning Functional Programming – The Basics

[70]

Chrome's debugger, for some reason, behaved differently this time, displaying all
of the array in a string rather than an array with a drill-down triangle to the left.
However, the array is sorted correctly, with all the values in ascending order and
integers and floating-point values displayed correctly.

Let's try this out on strings. Suppose we have the following array:

var fruits = ['apple', 'durian', 'banana', 'canteloupe'];

When we sort it, we get this:

["apple", "banana", "canteloupe", "durian"]

This is in order, and good. Let's add a bit in the middle of the array:

var words = ['apple', 'durian', 'Alpha', 'Bravo', 'Charlie',
 'Delta', 'banana', 'canteloupe'];

We sort it and get back the following:

 ["Alpha", "Bravo", "Charlie", "Delta", "apple", "banana",
 "canteloupe", "durian"]

What is this? All the new words are at the beginning, and all the old words are at the
end! Sorted among themselves perhaps, but segregated by capitalization.

The reason for this is that string sorting is the dictionary order by Unicode values,
which is the same as ASCII encoding for characters that are part of ASCII. In ASCII,
all uppercase letters come before all lowercase letters. Here, uppercase letters are
sorted correctly within uppercase and lowercase letters are sorted correctly within
lowercase, but both of these are segregated. If we want all of the A to come before all
the B, we need to be more specific about what we want.

One way we can do this is by providing a comparator function—something that will
compare two elements and tell Array.sort() which one should go first. Let's make
a case-insensitive sort just for these words:

var case_insensitive_comparison = function(first, second) {
 if (first.toLowerCase() < second.toLowerCase()) {
 return -1;
 } else if (first.toLowerCase() > second.toLowerCase()) {
 return 1;
 } else {
 return 0;
 }
}

Chapter 5

[71]

Then we sort the array and specify the comparing function:

words.sort(case_insensitive_comparison);

When we log the sorted array, we see a case-insensitive alphabetical order:

["Alpha", "apple", "banana", "Bravo", "canteloupe", "Charlie",
 "Delta", "durian"]

What if we want capitalization to serve as a tiebreaker and an uppercase character
will be placed before its lowercase equivalent? This is a straightforward modification
of our comparator:

var mostly_case_insensitive_comparison = function(first, second) {
 if (first.toLowerCase() < second.toLowerCase()) {
 return -1;
 } else if (first.toLowerCase() > second.toLowerCase()) {
 return 1;
 } else {
 if (first < second) {
 return -1;
 } else if (second < first) {
 return 1;
 } else {
 return 0;
 }
 }
}

Let's add 'ALPHA' and 'alpha' to the end of our list of strings and re-sort:

["ALPHA", "Alpha", "alpha", "apple", "banana", "Bravo",
 "canteloupe", "Charlie", "Delta", "durian"]

It works!

This may or may not be needed with mere string comparisons, but what if the
server has run a database query and packaged the results in JSON for us? The result,
once parsed on the client, will probably be an array of objects that have the same
structure. Electronic customer contact information might include the following,
among other things:

{
 "email": {
 "personal": "jsmith@gmail.com",
 "work": "john.smith@company.com"
 },

Learning Functional Programming – The Basics

[72]

 "name": {
 "first": "John",
 "last": "Smith"
 },
 "skype": {
 "personal": "JohnASmith",
 "work": "JASCompany"
 }
}

This record structure may not be one that JavaScript innately infers how we would
like to see it sorted, but this does not really hurt us. If we build a comparator
function, it has full access to fields or other details of both the items that it is asked to
compare. This means that we can compare one field, then another, and then a third.
It also means that we can compare by different criteria if we want to; at one point,
we could compare by name, and another point we might compare by geographical
location. If our server stores (or looks up) GPS coordinates for addresses, we can
search by who is closest to a particular location.

This leads us to array.filter()
In functional languages, features such as map, reduce, and filter are staples of
everyday use. They operate on lists, which in more functional, list-centric languages
may be finite or infinite. In this sense, a list may be more like a JavaScript array or
a generator, a kind of function that, instead of returning a single value, yields zero
or more values and may theoretically yield an infinite number of values. Unlike an
array, there is no finite point where any given generator may be exhausted, even
though one never actually produces an infinite number of values. Generators are a
wonderful feature, but they are dodgily supported in browsers at the time of writing
this book, which means that our use of map, reduce, and filter will more likely be on
(finite) arrays than on generators.

But before we drop the topic of generators, let's give two examples of generators,
both of which will overflow before too long, but both of which serve as examples
of what, in a language like Haskell, might be considered an infinite list with all
the members of a mathematical series, as opposed to an array containing only
and exactly the first n members. We will look at generators for powers of 2 and
Fibonacci numbers, using the ECMA6-proposed syntax for generators, as discussed
at http://wiki.ecmascript.org/doku.php?id=harmony:generators:

function* powers_of_two_generator() {
 var power = 1;
 while (true) {
 yield power;
 power *= 2;

http://wiki.ecmascript.org/doku.php?id=harmony:generators

Chapter 5

[73]

 }
}

function* fibonacci_generator() {
 var first = 0;
 var second = 1;
 var sum;
 yield second;
 while (true) {
 sum = first + second;
 yield sum;
 first = second;
 second = sum;
 }
}

Contrast these examples with generators with standard, recursive approaches to
compute the nth power of 2 (this is not really needed, because JavaScript's arithmetic
handles exponents, but is included for the sake of completeness), and a naïve
implementation of computing the nth Fibonacci number. Both are what is called tail
recursive, and would stand to benefit from tail call optimization if and when such a
thing is made available from browsers:

function power_of_two_recursive(n) {
 if (n === 0) {
 return 1;
 } else {
 return 2 * power_of_two_recursive(n – 1);
 }
}

function fibonacci_recursive(n) {
 if (n === 0 || n === 1) {
 return 1;
 } else {
 return (fibonacci_recursive(n – 2) +
 fibonacci_recursive(n – 1));
 }
}

Learning Functional Programming – The Basics

[74]

Both of these functions assume a nonnegative integer as the argument. The second
function also has terrible performance characteristics, even though memory usage
is not particularly bad. However, the number of function calls is comparable to the
value returned, so calculating the 100th Fibonacci number, besides any concerns
about integer overflow, could take longer than the age of the Universe. As Donald
Knuth said, "Premature optimization is the root of all evil," but this is one case
where optimization is not premature.

Note that another feature of functional programming, called memoization—which
means retaining the results of the intermediate calculations, instead of repeatedly
regenerating them from scratch—avoids this performance bottleneck altogether.
Consider the following memoization of the recursive Fibonacci function:

var calculated_fibonacci_numbers = [];

function fibonacci_memoized(n) {
 if (calculated_fibonacci_numbers.length > n) {
 return calculated_fibonacci_numbers[n];
 } else {
 if (n === 0 || n === 1) {
 result = 1;
 } else {
 result = (fibonacci_memoized(n – 2) +
 fibonacci_memoized(n – 1));
 }
 calculated_fibonacci_numbers[n] = result;
 return result;
 }
}

Illusionism, map, reduce, and filter
As a child, I was very interested in illusionism, and I still have an illusionist's
set—which has (or had) things such as a fake thumb and a trick cup—and books on
illusions. One of the tricks I remember was putting a rope around one's thighs and
looping around the hands. The rope appears tight if one's legs are relaxed, but much
looser if one lifts one's legs a bit, thus giving the impression that one is tied securely,
while it is straightforward to free one or both hands.

Chapter 5

[75]

I was never too good at the showmanship aspect of amateur illusionism, which
is really the core of the craft. Senior illusionists, when advising their juniors or
aspirants, are apt to say things such as, "Entertain the audience and deceive them,
but know which comes first." And I remember for a long time thinking that I did not
know (the technical side of) real illusionism, because I knew technically how to do
several tricks, but I did not see how one would approach doing the things I saw.

Much later, there was an illusionist at my company's party, and I was fascinated
for an unusual reason. He did some tricks that were novel to me, but for about 70
percent or 80 percent of the time, he spent making significant mileage out of the rope
tricks I learned as a kid. And it worked very well. He had exquisite showmanship,
and my fascination was not about wondering how he technically pulled off the trick,
but at such an adept entertainer who could take two tricks that a child could do and
mine them for amusement value.

Map, reduce, and filter (here, "reduce" includes both the right and left folds) are
somewhat like this for functional programming. Map takes it and applies it to all
members of a list. Reduce takes an operation and, starting from the right or left,
applies it to every member with an intermediate result. Filter takes a function and a
list and creates a new list consisting of exactly those items for which the function is
true. These concepts will be explained and further illustrated in this chapter. Map,
reduce, and filter aren't particularly difficult concepts, but there's a lot of mileage
to get out of them. Let's look at map, reduce, and filter for arrays, bracketing the
question of generators and the potentially infinite lists offered by languages such as
Haskell. We will show you how to use JavaScript's array built-in versions of map,
reduce, and filter. We will also take a look at the use of core JavaScript to implement
these functions, not so much so that people can have IE8-compatible (and earlier)
access to these functions, but to give a sense of how these things work.

The implementations that we will explore, after a warning about fool's gold, have
a somewhat nonfunctional style of implementation. They use for loops where, in a
purely functional language, the solution of choice would probably be a tail recursive
implementation. The rationale for this choice is the goal of providing functional
feature support in a way that operates optimally for JavaScript's plumbing and
doesn't fail in the rare cases where (non-tail-call-optimized) JavaScript recursion
runs into its limits.

Fool's gold – extending Array.prototype
A note of caution is due. An attractive solution, and one that can be easily
implemented, is to extend (here) Array.prototype or the prototypes of other
objects used by others, including Object.prototype. Don't do it.

Learning Functional Programming – The Basics

[76]

Among other things, extending Array.prototype and its kin destabilizes the playing
field for other people's software; it's like rewriting other people's code when you
haven't seen it. Probably, the best use case for extending basic prototypes is polyfills
(reimplementation of a functionality that is not available in the current environment,
using the available features), but even then, if there are competing polyfills, only one
of them can win. Now it is unlikely that your polyfill will have the same testing for
bug-for-bug compatibility as a major browser manufacturer. This leaves the door
open to subtle bugs. In our case, in the interest of supporting sparse matrices, we
ignore undefined entries, but not null. I submit that this is reasonable in context, but
far from the only conceivable way someone smart (or not-so-smart) would frame the
matter. JavaScript has two null values, null and undefined, and there is potential for
more than one opinion about how these two distinct null values should be handled.
What if the semantics that makes sense to us isn't the semantics that was evident to
someone else? Do we want to open the door to slippery heisenbugs?

There is an alternative that is straightforward and good: make your own functions,
preferably anonymous functions defined within a closure, and stored in a variable.
These functions can, if desired, check whether there is a browser's built-in function,
such as Array.prototype.map(), and fall back to the built-in function if it is found.
It can do for our code almost any job accomplished by extending Array.prototype.
But it shows good habits and that doesn't yank the rug from under anyone else's feet.

The term anonymous function in JavaScript does not exclude functions
stored in named variables. It only means that they have been defined
without a function name. In other words, they are defined like
function(), var foo = function(), or other alternatives,
but not a name between the function keyword and the opening
parenthesis, that is, function bar(). Usually, we will be using
anonymous functions, whether they are stored in a variable or not,
but there is a debugging-related reason for which we might name a
function even if we never use it: a debugger's stack trace may be more
informative in its way of mentioning functions if the functions are
named, even if the names are never used. It does make sense, for this
purpose, to write var quux = function quux().

One aside about what we may be developing privately, off in a corner: an
astonishing number of Unix utilities began life as private hacks to solve local
problems for different people. Things that spread like wildfire are often not things
that are engineered to spread like wildfire, such as the Web, JavaScript, and versions
of PHP before 5.0. In their first versions—perhaps this applies to the Web more than
JavaScript—they did something specific and had people struggling to function in a
more complete manner.

Chapter 5

[77]

The statelessness of HTTP was a carefully chosen feature, but for that time, a good
chunk of web programming was trying to support use cases where stateless HTTP
was getting quite painful. There may be differences between a 5 MB HTML5
key-value store and a 4096-byte cookie ceiling, but they present both more or less
gracious accommodations in providing hooks for properly stateful behavior when
the web's HTTP is stateless: the web was built not to enable the dynamic content
as it is the lion's share of all web contents today. JavaScript has its strengths and
weaknesses, and its weaknesses may be some of the worst of any wildly successful
language, but the reason for its wide success and celebrity status is not its strengths
or weaknesses. It succeeded because it was included in browsers at a time when the
Web was spreading like wildfire. Both JavaScript and the Web had people trying to
fix their limitations and weaknesses to do many things well after they had spread
like wildfire when they actually did only one thing well.

The mentality of "This is just something in a corner and we do not need to think
about maintenance or interoperability" is very, very dangerous. Perhaps now your
software will not break anything if it subtly redefines the behavior of an object or
array, but not ever? Not even with any future decision? Not even if someone realizes
that in solving X, you created a great engine for Y that could save a lot of work?
Client-side JavaScript is some of the code that is most quickly made open source
(after all, even lawyers concerned about keeping things proprietary know that
your whole kaboodle can be delivered to anyone who logs in to your system from
the Web), and it is dangerous to assume that a particular redefinition of standard
behavior is simply future-proof.

A short answer to the preceding questions is this: don't redefine anything on which
other people's code is built, including redefining part of Object.prototype, Array.
prototype, Function.prototype, and so on. Opt for your own implementation as
far as it makes sense, but don't (forcibly) install it for everybody.

Avoiding global pollution
It is also good practice to minimize incursions into the global namespace. The more
global variables you add, the more easily you can conflict with other tooling. When
Yahoo! announced YUI, as a matter of basic manners, they used only one global
variable—YUI. There's a whole library that's available, but you don't have pages and
pages of items dumped on the browser's global namespace; every call to YUI().use()
or whatever is entirely contained in YUI's one incursion into the global namespace.
jQuery uses a little more of the global namespace than they advertise, but in principle,
they ask us only to use jQuery and $. Also, they try to make the second one wholly
negotiable, as jQuery acknowledges that other frameworks need $ and jQuery is
intended to play nicely with others.

Learning Functional Programming – The Basics

[78]

However, you can actually go further than this, by an immediately invoked
function expression, including the ReactJS web application explored in Chapters
8, Demonstrating Functional Reactive Programming in JavaScript – A Live Example to
Chapter 11, Demonstrating Functional Reactive Programming in JavaScript with a Live
Example Part IV – Adding a Scratchpad and Putting It All Together. The functionality
that you can accomplish without making a single global variable is quite a lot.
Perhaps libraries should have some global variable as a public face available for
others, but it is perfectly possible to make a web application that doesn't touch
global variables.

The map, reduce, and filter toolbox – map
A map takes an array and a function and returns a new array with the function
applied to all of its elements. As an example, let's create an array of the numbers 1
to 10, and use map to create a new array with their squares. (Note that JavaScript is
somewhat inconsistent about whether array options modify an array in-place, return
a modified array, or do both. The array's map(), reduce(), and filter() functions
all create a new array, leaving the original array unchanged and untouched.):

var one_to_ten = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
var squares = one_to_ten.map(function(x) {return x * x});

The squares variable now holds, [1, 4, 9, 16, 25, 36, 49, 84, 81, 100].

One implementation of map() might be as follows:

var map = function(arr, func) {
 var result = [];
 for(var index = 0; index < arr.length; ++index) {
 if (typeof arr[index] !== 'undefined') {
 result[index] = func(arr[index]);
 }
 }
 return result;
};

The reduce function
What the reduce function does is it takes an operation and progressively apply it to
the elements in an array. You may have covered infinite (and finite) series in school,
perhaps with symbols like this one:

1

n

i
c

=
∑

Chapter 5

[79]

In this kind of operation, the uppercase sigma (Σ, which is roughly equivalent
to "S" in the Greek alphabet) is used for sums, and less frequently, the uppercase pi
(Π, which is roughly equivalent to "P" in the Greek alphabet) is used for products.
Both of them repeatedly apply an arithmetic operator to a finite (or infinite) series
of numbers, and they work on the same basic principle as reduce().

What this kind of notation says is, "For this series of numbers, what do we get if we
add them together, that is, reduce them with the addition function, taking the first
number and the second, calculating their sum, then adding it to the third number,
and so on?"

If we wish to add up the contents of an array, we can reduce it with an addition
function (as a minor implementation detail, we do not use the bare + operator
because we can't directly pass an operator as a regular function):

var sum = one_to_ten.reduce(function(x, y) {return x + y});
// returns 55

Finite and infinite series taught in school are usually sums; we can use other series as
well. For example, if we want to calculate 10!, we can reduce by multiplying instead
of adding in terms of the function we supply:

var factorial = one_to_ten.reduce(function(x, y) {return x * y});
// returns 3628800

Reduction does not need to be mathematical in character; this just gives us a
quick way to demonstrate it. We can also use reduce to concatenate arrays of
strings, where the + operator serves the purpose of string concatenation rather
than numerical addition:

var message1 = ['H', 'e', 'l', 'l', 'o', ',', ' ',
 'w', 'o', 'r', 'l', 'd', '!'].reduce(function(x, y)
 {return x + y});
var message2 = ['Hello', ', ', 'world', '!'].reduce(
 function(x, y) {return x + y});
// Both invocations return, 'Hello, world!'

However, there is a basic difficulty that JavaScript's built-in functions do not solve
for us. We will sometimes need to make a choice and further specify what we
really want. Numerical addition, multiplication, and string concatenation are all
associative, which essentially means that you can put parentheses wherever you
want, follow standard rules for parentheses, and get the same answer. In numerical
addition, the following are equivalent:

1 + (2 + (3 + 4))
((1 + 2) + 3) + 4

Learning Functional Programming – The Basics

[80]

Both of these calculations give 10, and if we multiply instead of adding, both give
us a product of 24. But what happens if we use exponentiation for very slightly
different values:

Math.pow(2, Math.pow(3, 4))
Math.pow(Math.pow(2, 3), 4)

This is the same sort of thing we have in the immediately preceding code, although
admittedly with an uglier namespaced function instead of an infix operator. In
non-JavaScript notation, using a caret (^), we get the following pseudo-JavaScript,
which restates the preceding calculation:

2 ^ (3 ^ 4)
(2 ^ 3) ^ 4

If we use console.log() with the Math.pow() calculation that you just saw,
we get this:

2.4178516392292583e+24
4096

There's a slight difference here. One result is a four-digit integer; the other is
expressed in scientific notation with a lot more than four digits. Well, how many
things are really like the special case of exponentiation?

The answer to this question is a bit tricky, partly because of how I have deceptively
framed the question to illustrate a treacherous misunderstanding. Exponentiation,
where it matters how you add parentheses, can be more like the general case. There
do exist cases where it doesn't matter, and they might even more commonly be
candidates for reduce(), but in the general case, we should not assume that the two
are equivalent. We will give a fold_left() and fold_right() function; these are
not the only two options (you can do things manually if neither of them is what you
want), but they respectively calculate the sum of the array one to ten as follows:

((((((((1 + 2) + 3) + 4) + 5) + 6) + 7) + 8) + 9) + 10
1 + (2 + (3 + (4 + (5 + (6 + (7 + (8 + (9 + 10))))))))

One is not necessarily better than the other, but the difference can matter. JavaScript's
built-in reduce() function is a left fold, starting from the left and moving to the
right, as shown in the first of the two preceding expressions (and this is probably
a sensible default).

Chapter 5

[81]

If we define fold_left() and fold_right(), it could look something like the
following. I use abbreviations here where the full word spelled out would look too
close to a reserved word; for example, array won't collide with Array but they are
confusingly close (there would be a similar collision with a variable named function):

function fold_left(arr, fun) {
 var accumulator;
 for(var index = 0; index < arr.length; ++index) {
 if (typeof arr[index] !== 'undefined') {
 if (typeof accumulator === 'undefined') {
 accumulator = arr[index];
 } else {
 accumulator = fun(accumulator, arr[index]);
 }
 }
 }
 return accumulator;
}

function fold_right(arr, fun) {
 var accumulator;
 for(var index = arr.length - 1; index >= 0; --index) {
 if (typeof arr[index] !== 'undefined') {
 if (typeof accumulator === 'undefined') {
 accumulator = arr[index];
 } else {
 accumulator = fun(arr[index], accumulator);
 }
 }
 }
 return accumulator;
}

The last core tool – filter
Filter winnows through an array for values that meet some criterion. For example,
we can filter only positive values, as follows:

var positive_and_negative = [-4, -3, -2, -1, 0, 1, 2, 3, 4];
var positive_only = positive_and_negative.filter(
 function(x) {return x > 0;});

Learning Functional Programming – The Basics

[82]

The positive_and_negative filter, after this run, is as declared; positive_only has
the array value of [1, 2, 3, 4].

Filter is useful for narrowing down the contents of an array. If we have an array, as
the preceding one, with the contact information of Mr. Smith, we can access fields to
narrow down to things that may be of our interest. We can state that we want only
one state, or require a phone number with a particular telephone area code, or state
some other criterion on anything that a function can tell. If our record includes GPS
coordinates, we can filter the contents to include only the results within a particular
radius of a specific central point. All we need is a function that will return true for
the records that we want to include and false for those that we don't.

An overview of information hiding in
JavaScript
In general—meaning any programming language, client-side, server-side, non-web,
mobile application, and almost anything else, perhaps even microcontrollers
(which can now run a stripped-down Python)—there are different methodologies
that generally have their own strengths and weaknesses. Steve McConnell's Code
Complete: A Practical Handbook of Software Construction (http://tinyurl.com/
reactjs-code-complete) discusses different methodologies and covers, for
instance, how object-oriented programming's sweet spot is with larger projects
than are really procedural programming's sweet spot. For most methodologies,
his suggestion is that they have their strengths, weaknesses, and sweet spots, and
under conditions X and Y, you should consider methodology Z. But there is one
exception—information hiding. His simple advice on when to use information
hiding is "As much as you can".

Procedural or structured programming is perhaps easy to overlook, and it's not
pushing the envelope to use its strengths. But suppose we look at it when it first
came out, with its functions/procedures, if-then-else, for/while loops, and
procedure bodies not open to prying eyes. Now, if we compare this to straight
assembler or machine code, with pre-Dijkstra-style use of gotos that do not even
pretend to emulate structured control flow, then we understand that procedural or
structured programming is really, really astounding. Also, it comes as a blinding
flash of the obvious today because it has largely succeeded, to everyone's benefit.
Flowcharts, which in the past were essential lifesavers for anybody hoping to
understand a complex system, have become a novelty item. They appear on a mug,
in an XKCD comic that shows how to deliver excellent tech support, or in other
whimsical uses, as they are no longer needed to give any kind of road map to give
some people—a sense of how to find their way through spaghetti.

http://tinyurl.com/reactjs-code-complete
http://tinyurl.com/reactjs-code-complete

Chapter 5

[83]

Now a large system may be vastly more complex, and vastly larger than would
fit into the memory or disk of an old, flowcharted, goto-navigated program, but
procedural programming has effectively exorcized that ghost. Also, newer iterations
in software engineering paradigms, such as object-oriented programming, have
cut down the difficulty of understanding large systems. And in both cases, much
of the benefit is a practical way to advance information hiding. With structured
programming, you can navigate through source code without having to keep track
of every point where the assembler or machine language renders a jump (that is, a
goto). Both structured and object-oriented programming have historically allowed
developers to unprecedentedly treat more of the program as a set of closed black
boxes, and you only need to open and inspect a small fraction of them. They deliver
information hiding.

Dear various parents, grandparents, co-workers,
and other "not computer people."

We don't magically know how to do everything in every
program. When we help you, we're usually just doing this:

Please print this flowchart out and tape it near your screen.
Congratulations; you're now the local computer expert!

I can't
find one.

Ok

Ok

I've tried
them all.

You're
done!

Yes

Yes

No

No

Ask someone
for help
or give up.

Click it.

Start

Google the name
of the program
plus a few words
related to what you
want to do. Follow
any instructions.

Find a
menu item or

button which looks
related to what

you want to
do.

Have
you been

trying this for
over half an

hour?

Pick one
at random.

Did it
work?

Learning Functional Programming – The Basics

[84]

The preceding flowchart is a novelty flowchart from http://xkcd.com/627/. I've
never seen a real flowchart for a program that someone and I were talking about.

A standard textbook example of information hiding, in classic Java, might be this:

class ObjectWithPrivateMember {
 private int counter;
 public ObjectWithPrivateMember() {
 counter = 0;
 }
 public void increment() {
 counter += 1;
 }
 public void decrement() {
 counter -= 1;
 }
 public void get_counter() {
 return counter;
 }
}

Uncharacteristic of a good example of live Java classes from production, this class has
one private and four public members. The usual goal is to make the interesting heavy
lifting as well hidden as possible and just present a simplified facade to the rest of the
world. This is how Java's object-oriented programming delivers information hiding,
and even though there are important differences between object-oriented languages
and how they approach and handle objects, this is one of Java's strong suits. Not only
are object methods supposed to be written procedurally—as black boxes that have
defined inputs and outputs—but they are also encapsulated in objects, where multiple
smaller black boxes can be subsumed under a larger black box. In this case, we see
another benefit of information hiding: we are largely protected from the outside and
free to make whatever internal changes we want without breaking outside usage,
as long as we preserve the same behavior. Suppose we decide to keep a log of when
the counter was changed and to what value. That's at least another private field and
changes to the internals of the methods that represent the public interface, but we
can make the changes without altering any single detail of any class that accesses this
class. Now suppose we want even more logging and we want our log to record a full-
stack trace. Internally, we need to use something such as Thread.currentThread.
getStackTrace(), but externally, no one needs to know or care about our refactoring.
In a larger class, we might find a bottleneck that can be improved considerably by
switching to another equivalent algorithm. Because of the way Java's object-oriented
programming delivers information hiding, we can make an awful lot of changes
without disturbing other people, who can use our work without troubling themselves
about anything other than our public interface.

http://xkcd.com/627/

Chapter 5

[85]

Information hiding with JavaScript closures
We need to look a little further to see the patterns of information hiding. In Java,
you are quickly taught the language features for information hiding, and encouraged
with words such as the security maxim—"Stinginess with privileges is kindness in
disguise"—to err on the side of declaring things non-public. In JavaScript, there may
be future-reserved words such as public, private, and protected (which Douglas
Crockford suggested may be there for Java programmers to feel more at home with
JavaScript at the expense of understanding JavaScript's better side), but there are not
the same kind of obvious mechanisms now. All of an object's members, whether they
are functions are not, are open for inspection. JSON—another thing that spread like
wildfire, but without people cursing its simplicity—has no mechanism offered to
mark anything as non-public.

However, there is a technique to create private fields in a feature of some functional
languages called a closure. It isn't exactly a technique that is simply present in
the language to create information hiding, but it allows us to create objects with
non-public information. To port the functionality of the preceding example,
including the non-public state, we can have something shown as follows:

var factory_for_objects_with_private_member = function() {
 var counter = 0;
 return {
 'increment': function() {
 counter += 1;
 },
 'decrement': function() {
 counter -= 1;
 },
 'get_count': function() {
 return counter;
 }
 }
};

The example given here suggests how we might expand it. A more involved example
could have more var functions storing fields and functions, and return a dictionary
that would expose its public interface. But let's not simply jump for that; there are
some interesting things along the way.

Learning Functional Programming – The Basics

[86]

In a functional language, functions can contain other functions. Indeed, given
JavaScript's syntax—where functions are first-class entities that can be stored in
variables, passed as arguments, and so on—it would be surprising if functions
could not be nested even two deep. So, the following syntax is legal:

var a = 1;
var inner = function() {
 var b = 2;
 return a + b;
}

But the same can legally be wrapped in a function, as follows:

var outer = function() {
 var a = 1;
 var inner = function() {
 var b = 2;
 return a + b;
 }
}

It is a basic feature of functional languages, including JavaScript's heritage, that inner
functions can see variables from outer functions; hence both a and b are equally
available to the inner function.

Now what happens if we change the outer function to return the inner function?
Then we have the following:

var outer = function() {
 var a = 1;
 var inner = function() {
 var b = 2;
 return a + b;
 }
 return inner;
}
var result = outer();

By the time the function finishes executing, its variables have fallen out of scope.
JavaScript now has var variables with the function scope and is in the process of
getting let variables with the block scope, but any variables declared in either way
in the outer function are no longer available. However, something interesting has
happened; the inner function has survived the end of the outer function, but in a
logically consistent fashion. The inner function should and does have access to its
execution context. We have a closure.

Chapter 5

[87]

This phenomenon can be used for information hiding, and information hiding is
important. However, it may be argued that what is most interesting here is not
that it can include non-public variables, potentially including functions, but that
the execution context as a whole is maintained as long as something with access
to it survives. This leaves an interesting territory to explore. A StackOverflow
member once commented, "Objects are poor man's closures," and both objects and
closures have interesting possibilities beyond the FAQ entry about how to use their
features for information hiding. Even code complete, which may strongly endorse
information hiding, never says, "Use information hiding as much as possible but
nothing else."

Perhaps it would be harsh to blame functional language purists for saying,
"JavaScript has to wait until it becomes 2 decades old before implementing tail
call optimization, instead of punishing standard functional programming's use of
recursion—as in, old enough to go from being a newborn infant to an adult under US
laws." However, irrespective of anything else that may irk functional programmers
about JavaScript, JavaScript did get closures right enough from the beginning,
so much so that closures that retained the execution context were, and remain, a
significant feature in JavaScript all the way along. And 2 decades later, they remain
the primary, and possibly only, information hiding resource in most browsers.

Summary
In this chapter, we hit a few notes of functional programming in relation to
JavaScript. We looked mainly at three topics. Custom sort functions provide a simple
and useful glimpse at how we can pass a helper function to a higher order function
to obtain more useful behavior than the default. Map, reduce, and filter are the
three workhorses of functional programming with respect to arrays. With Closures
and information hiding, we took a look at a functional way of providing some core
interest in responsible software development.

JavaScript is a multiparadigm language with functional roots and some functional
language strengths, although it is perhaps uncommon for functional language
purists to lump JavaScript together with imperative multiparadigm languages.
JavaScript does not have, as some functional languages do, permanent binding
on assignments or purely immutable data structures.

Learning Functional Programming – The Basics

[88]

All languages have better and worse neighborhoods, but JavaScript so starkly
combines excellent parts and terrible parts that the basic approach of Crockford's
JavaScrpt: The Good Parts and The Better Parts is not seriously questioned among
good developers (I wonder why no one has yet sold Kernigan and Ritchie, The
C Programming Language, Second Edition, as C++: The Good Parts). It would be
provocative to the point of being obnoxious to argue that defaulting to dumping
things on a global object is a good idea for developing web applications. This extends
to the functional aspects of JavaScript as well. JavaScript was the first mainstream
language to allow anonymous functions, or lambdas, which have been staples of
functional programming roughly since LISP appeared over 50 years ago. Even
if even Java has jumped into that bandwagon now, its presence in mainstream
languages is from JavaScript's influence. JavaScript has also had closures from the
beginning. As far as some of the worse neighborhoods are concerned, it seems to
have taken decades for JavaScript to apply tail call optimization, and with it, the
functional programming style of using tail recursion without the penalty instead
of for and while loops to structure iterative work.

Functional programming is an interesting topic and something that you can explore
indefinitely (that is, the list of interesting aspects of functional programming that one
can profitably explore is an infinite list, even though in the concrete, one only ever
takes a finite number of items from the left of the list). Without trying to settle the
question of whether JavaScript should be considered a functional language or not,
JavaScript is best understood in relation to roots in functional programming, and
learning to program better in functional languages/paradigms should be the basis
of better programming in JavaScript. JavaScript may go down in history, not only as
the language of the Web and perhaps the most crucial language for a programmer
to know, but also the bridge language through which the goodness of functional
languages ceased to be known as (like Scheme) "the best language you'll never use."
Maybe, the strengths of a functional language come to be seen as non-negotiable
for the construction of serious, mainstream multiparadigm languages.

Let's continue with a look at functional reactive programming.

[89]

Functional Reactive
Programming – The Basics

I might begin here by somewhat awkwardly mentioning that I have a Master's
degree in math and lots of math awards, but I find some of the mathematical
concepts associated with basic functional programming to be a tad slippery. One
wouldn't discourage someone strong in the relevant math and computer science
fields from tackling the full mathematical rigor of, for example, the foundational
functional reactive programming papers linked to in the Wikipedia article on
functional reactive programming. However, the intent here is slightly different: to
learn something from functional reactive programming that is useful to professional
developers who do not have, or do not remember, the level of mathematical
formation that informs those seminal works.

StackOverflow comments repeatedly ask, "Can you explain it in a way that doesn't
assume a PhD in computational mathematics?" The intent here is not to provide the
whole of those mathematical articles together, but a subset that can be practical and
is useful to real professional software developers who do not dream in Scheme
or Haskell.

In this chapter, we will cover:

•	 A trip down computer folklore's memory lane
•	 Functional reactive programming
•	 If you learn just one thing…
•	 Learn what you can about functional programming
•	 The future of frontend web development

Let's dig in. The folklore-laden trip down memory lane may be fairly long, but it is
not, in any sense, dull.

Functional Reactive Programming – The Basics

[90]

A trip down computer folklore's memory
lane
There is a scathingly insulting checklist that has been floating around to apply to pet
(or other) programming languages. One of the put-downs is, "Programmers should
not have to understand category theory to write, Hello, World!" It reflects, in part,
an irritation of mistakes that wet-behind-the-ears juniors keep making when they
propose the best programming language yet. In that, it might be compared to the
viral evil overlord list of stupid things that keep happening in adventure movies.
Learning from the mistakes of countless movie villains, the author declares that
"Shooting is not too good for my enemies" and "I will not include a self-destruct
mechanism unless absolutely necessary…" The put-downs come from frustration
at seeing the same mistakes again and again.

There are other points that show programming wit and wisdom. For one example,
there are orders of magnitude more pet or toy languages than successful languages,
where success can either be in academic computer science circles or business
information technology. One widely recognized turning point in the development
of any language is when it works at a level where one could dogfood it by using it
to write its own compiler.

And this is not an insignificant point; when Java was first announced, it was
declared that the Java compiler was written in Java itself, with the implication that
a system that could run the Java runtime environment should be able to compile
software written in Java. In relation to this, a standard question to insult someone's
enthusiastically gushed-about pet language is, "Has it been used to write anything
besides its own compiler?" And this particular node of computer wisdom and
folklore is baked into the checklist: two of the entries are, in quick succession, "The
most significant program written in this language is its own compiler" and then,
even more insultingly, "The most significant program written in this language isn't
even its own compiler".

But the philosophical objection of, "Programmers should not need to understand
category theory to write, Hello, World!" is not simply making things up to sound
insulting. There is a tradition started by the 1978 first edition of Kernigan and
Ritchie's classic The C Programming Language, where the first program developed
before diving into intricacies was a minimal C program, on the thought of "Let's
crawl before we try to walk," to print out Hello, World!:

main()
{
 printf("hello, world.\n");
}

Chapter 6

[91]

People introducing new programming languages overwhelmingly follow in the
tradition of using Hello, World! as their first sample program. That's one end of
"Programmers should not need to understand category theory to write, Hello, World!"
So what is the other end of the spectrum?

In the world of academic mathematics, whether pure or applied, mathematics as
a sign of success has become very specialized (like almost any domain that's had
enough work). It has been commented that it's a rare beast of a mathematician
who can understand more than 13 of 50 papers presented at a math conference.
Mathematics has become specialized enough that most math PhDs, however
competent, cannot understand the work of most other math PhDs. In that case this
doesn't make sense, the hope of being able to understand all of mathematics is like
the hope of being able to speak all human languages: a bit naïve. The point of a math
PhD program is perhaps not to develop you to the point of being able to follow the
whole breadth of the discipline of mathematics, but to understand some narrow area
deeply enough that, by the time your PhD is complete, you understand that highly
focused area better than anyone else in the world.

There are two exceptions of a sort, disciplines that connect all of mathematics, but
from completely opposite directions. On one hand, there is logic and the foundations
of mathematics, which looks at the bedrock that all other areas of mathematics is
founded on. Now there are some questions about whether logic belongs to math
or philosophy, and one hears of people asked to decide whether they want to be
logicians or mathematicians. But setting aside some of these questions, it would not
be too controversial to say that logic connects to all of mathematics by digging into
the bedrock that the rest of mathematics rests on.

And then there's the other option: category theory. A Barbie doll once said, "Math is
hard", but the mathematical community understands that very well without Barbie's
help. Albert Einstein said, "Do not worry about your difficulties with mathematics.
I can assure you that mine are greater still." But the branch of mathematics called
category theory is particularly and obnoxiously harder.

If logic can study the bedrock that the great edifice of mathematics is built on,
category theory looks at the already built city and explores architectural themes and
similarities running through all kinds of mathematical neighborhoods. Category
theory is a discipline a bit like the academic discipline of comparative in that
practitioners are expected to be able to cope with comparative literature in not
just one, but several languages. It could be argued that category theory is the most
difficult place under the whole mathematical umbrella. You need to do something
most math PhDs are never taught.

Functional Reactive Programming – The Basics

[92]

Also, it is perhaps a tribute that my thesis advisor, who was a category theorist, was
able to effectively supervise a thesis in the obscure branch of point-set topology even
though he did not show any particular specialization in point-set topology. So saying
that a programmer using your language needs to understand category theory to
write Hello, world! is quite the scathing insult.

So what does this have to do with functional or functional reactive programming?
Glad you asked!

In the sources linked to in the Wikipedia article for functional reactive programming,
Haskell (or something built on it) is the dominant language. There are a couple of
other players, such as a dialect of Scheme, but people seem to keep coming back to
Haskell. There are a number of Haskell resources out there; one of the most respected
is Learn You a Haskell for Great Good, http://tinyurl.com/reactjs-learn-haskell.
It has a Hello, World! program that mysteriously appears in the ninth chapter instead
of the first. Why the ninth? Well, as explained, input and output are built on top of
monads. But does it really take that much explanation to get to monads? Yes; monads
are built on top of the concept of applicative functors, which are built on the basic
concept of functors, which ring a bell as the name of something met in math grad
school and not really understood. Let's visit the Wikipedia page for functors. The
Wikipedia is known for being something that is clear and easy to read. And there
are a couple of things in the Wikipedia page for functors. One is that the language
is awfully esoteric for the Wikipedia. The other point is that functors are in fact
something acquired from category theory:

In mathematics, a functor is a type of mapping between categories, which is
applied in category theory. Functors can be thought of as homomorphisms between
categories. In the category of small categories, functors can be thought of more
generally as morphisms.

Functors were first considered in algebraic topology, where algebraic objects (such
as the fundamental group) are associated with topological spaces, and algebraic
homomorphisms are associated with continuous maps. Nowadays, functors are used
throughout modern mathematics to relate to various categories. Thus, functors are
generally applicable in areas within mathematics that category theory can make an
abstraction of.

Advanced prerequisites for Hello, World!
If you want a challenge, read the Wikipedia article on functors. But if you find
yourself skimming because it's mostly over your head, you're in good company:
possibly a lot of math Ph.D.'s tend to skim the same way you would, for much the
same reason.

http://tinyurl.com/reactjs-learn-haskell

Chapter 6

[93]

There is more that can be said at this point, but I'll limit myself to one further remark
after commenting on the intent of this chapter. This leads into the central difficulty of
this chapter. This is a text on information technology rather than computer science,
and while one may check in with computer scientists, this text is intended to be
written from the perspective of one programmer who doesn't follow all the layers of
math to another. The equivalent of the goal in Haskell, would be to say on a monkey
see, monkey do basis, "This is an example of a pure function; that is an example of
an input and output monad. Try to do as much of your heavy lifting as possible
from the pure portion of your program and confine input and output to as small a
quarantined space as possible."

And there is one point where one would contrast Haskell with Python, starting
again with XKCD—note what is given as the first example of everything being
simple in Python. One's first encounter with Python leads to the feeling of being
head over heels in love with programming again. The same is entirely true of
ReactJS, which is like discovering the web for the first time all over again:

Functional Reactive Programming – The Basics

[94]

Python and Haskell are similar in at least one respect: they both allow rapid software
development. Haskell boasts a similar feature to what one would expect of Python:
an undergraduate spent a few months and implemented a good deal of the Quake 3
engine in Haskell. There may be other strengths to Haskell, such as its rock solid
type system, and by the time something compiles, it already stands a good chance
of working. However, the question pursued here is, "Does it make programmers
highly productive?" This screen shot is from a Quake 3 level implemented in a few
months for a one student's undergraduate project. There are things Haskell has
that Python doesn't: a rock-solid type system, for instance. However, Haskell and
Python are similar at least in this: in the hands of a proficient developer, they allow
productivity and pace of development that needs to be seen before it can believed.

But, while seasoned programmers may try Python and find themselves flying,
if they can't handle the math, they won't have the same experience using Haskell.
Haskell offers rapid development super powers to people who can handle a good
deal of computational math. Python offers such powers to a much wider group of
programmers, whether or not they have a heavy math background.

This chapter is an attempt, rightly or wrongly, to explain things so that workers in
information technology, rather than computer science specifically, can have a seasoned
programmer's good Python experience with functional reactive programming and
ReactJS, instead of a seasoned programmer's bad Haskell experience that leads so
many developers to keep on making comments that become very sad after a while,
depressing comments such as "I might understand this if I just knew more math."

Chapter 6

[95]

The purpose of our writing this book is to make a book useful for programmers in
the field, not just computer science students who know a lot of math. But an easier
approach is at least hinted at, along with seasoned programmers saying "I might
get this if I knew more math." Taken directly from the page http://tinyurl.com/
reactjs-learn-monads. Now, here are some steps on how to learn Monads:

1.	 Get a PhD in computer science.
2.	 Throw it away because you don't need it for this section!

(Perhaps ordinary developers can, after all, profit from (reactive) functional
programming!)

Distinguishing the features of functional
reactive programming
One of the leading lights of functional reactive programming, and arguably a
grandfather to functional reactive programming, Conal Elliott, looked back on the
term "functional reactive programming," and a leading light's second thoughts
about a name can be very interesting. Elliott expressed a reservation about the
term functional, suggesting that the word means so many things now that it means
very little, and expressed a regret about a word that the term didn't include: time.
He suggested an alternative name of denotative continuous-time programming,
which is significant even if we use the more standard term of "functional reactive
programming" here. By denotative, we mean, as we discussed earlier about ReactJS,
that you specify only what needs to be accomplished, not every step of how to
accomplish it. Continuous-time did not merely mean that it should be called such,
but that continuous time was important enough that it should be baked into the
name for what is now called functional reactive programming.

The continuous time element comes up in the sources and may seem surprising
to some, since computers only measure time discretely, but the distinction is a
distinction in a conceptual model rather than a feature observed in implementations.
The comparison is made to infinite lists as they exist in functional languages, where
one may take as much or as little from a list without running out of precomputed
entries, or perhaps more saliently to the difference between raster graphics (GIF,
JPEG, PNG), which have a certain fixed number of pixels represented, and vector
graphics (SVG, some PDF) where admittedly, an image is rendered to be displayed
on something with a concrete number of fixed pixels, but an SVG logo can be
rendered in accordance with a classic advertising executive's quote that a company
logo should look as good one sixteenth of an inch high on letterhead as it does eight
feet tall on top of corporate headquarters.

http://tinyurl.com/reactjs-learn-monads
http://tinyurl.com/reactjs-learn-monads

Functional Reactive Programming – The Basics

[96]

Continuous time means that time is handled like SVG or other vector graphics,
not raster GIF/JPEG/PNG, which is stored at a fixed resolution and not a pixel
more. One of the suggestions made for functional reactive programming is that
continuous-time events and probably continuous-valued behaviors or streams of
events have a first-class entity status as one of the defining features (though, some
might point out, perhaps not the only one) is that functions are first-class entities
that can be passed as arguments, as one does in JavaScript and other languages
with anonymous functions.

It may not be immediately obvious how ReactJS relates to this; I've watched over
a dozen ReactJS videos, usually from Facebook developers. There is emphatic
mention of denotational symantics, a formal term to describe only what needs to be
accomplished and not every step of how to accomplish it. And there is consistent
discussion of the virtual DOM, which amounts to "You can learn more if you want,
but all you need to do is tell how to render(), and trust the system to do all the rest."
But in fact, continuous time semantics are baked into how ReactJS works at a very
basic level. Part of the developer's responsibility is to write a render() method that
specifies what should appear on the page at the time it is called (and, perhaps, to call
render() appropriately; render() doesn't run by itself).

This does not have every feature of continuous time; one instructional video hints at
a system that does not just work in real time, but allows VCR-style "rewind" and "fast
forward" functionality to step through time, and one of Pete Hunt's ReactJS videos
hints that Facebook, through ReactJS technology, might take a bug report and be able
to replay, detail by detail, what went wrong before someone gave a bug report with
no written description of what went wrong beyond "a profanity." However, the front
and center use case is one where continuous time is assumed and it is the developer's
responsibility to make a render() function that can correctly say what to render the
instance it is called, and (incidentally) to call that function appropriately.

If you learn just one thing...
Richard P. Feynman's classic "Feynman lectures," held as an exemplar of clear
explanation of technical topics, opens with a very simple question: if all else of
science were forgotten and only one sentence's worth of information survived,
what would that ideally be? Feynman gave a succinct answer that actually says
quite a lot:

Chapter 6

[97]

"If, in some cataclysm, all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generation of creatures, what statement
would contain the most information in the fewest words? I believe it is the atomic
hypothesis that all things are made of atoms — little particles that move
around in perpetual motion, attracting each other when they are a little
distance apart, but repelling upon being squeezed into one another. In that
one sentence, you will see, there is an enormous amount of information about the
world, if just a little imagination and thinking are applied."

And this serves as the springboard, in the Feynman lectures, to say a lot about
physics as we know it.

The biggest learning point from functional reactive programming that can be put
into a single sentence is a lesson associated with the functional programming itself,
that functional reactive programming further refines: Spend as much time writing pure
functions, math-style, as you can, and as little time as possible writing or following recipes.

A recipe says such things as "Preheat your oven to 350 °F. Mix the leaves, ghee, and
salt together in a large bowl. Line two large baking trays with parchment. Divide
the leaves evenly in a single layer on each tray..." Now this is not taking a dig at
home economics and people who cook. (A purely functional approach to cooking
would never produce anything edible, a minor drawback if you want to get anything
done.) Recipes are equally to be found in the many, many YouTube videos detailing
how to replace, for example, a broken wiper blade on a 2004 Ford Escort, and they
power traditional hacker-written How-to's, which are less prominent today than they
were earlier, not because the hacker community has realized that using a How-to is
not an appropriate way to resolve a difficulty when following your nose is getting
you nowhere, but because the general usability of almost everything has improved
enough that you don't need a How-to that mentions the moon phase if you want to
burn a CD; How-tos are much less likely to be the only game in town (which is really
their best use case).

I am somewhat concerned with what theoretical contortions Haskell went through
(read: needed to go through) to include input and output with minimal compromise
to its functional status. But all the same, even if purely functional JavaScript may
or may not be possible, we would do well to grow the portion of our software that
is purely functional and minimize what gets work done by specifying how to do
things. Functions here should not mean, as in structured programming, "a subroutine
that returns a value." A function is not doing something plus returning something
interesting when it is done. It rather has the mathematical sense of "something that
takes zero or more arguments and does neither more nor less than return a value that
is arrived at based on that value."

Functional Reactive Programming – The Basics

[98]

Examples of pure functions from basic mathematics used by computer people
include arithmetic functions such as addition, subtraction, multiplication, division,
exponentiation, factorial (4 factorial, for instance, is 4 * 3 * 2 * 1), Fibonacci numbers,
trigonometric functions such as sine and cosine, hyperbolic functions, integral,
derivative, Euclidean division to calculate the greatest common divisor between
two positive integers, and so on. Without exception, these take zero or more (or,
as the case may be for these, one or more) inputs, and yield something calculated
from them without making any external changes; none of them update a database
or output something to the console. They just take their inputs and deterministically
calculate an output, no more, no less. That is of the essence of a pure function.

A sesquipedalian term is "a word that is a foot and a half long." Some of them
float around, including in videos on ReactJS and functional reactive programming,
such as idempotent and referential transparency. But the meanings are simple
and straightforward in relation to pure functions.

An idempotent function is the one that returns the same result whether you call it
once or a hundred times. In mathematics, addition and factorial, for instance, always
give the same result. RESTful web services offer a less mathematical example of
idempotence: requesting the same URL means getting the same HTML or other data,
every single time. Getting static content is idempotent; a version of a library pulled
from CDN should result in the same download no matter who requests it, where,
or when.

Caching, such as one aims for with Steve Souder's classic far-future Expires headers
for Yslow, is a useful thing to do precisely where there is idempotence between
downloads. (If a download is idempotent, a document is the same document
regardless of whether one downloaded a fresh copy or supplied it from your
browser's cache.) Dynamic content, whether old-fashioned CGI scripts or dynamic
Django applications, is not idempotent. If a page says, even in an HTML comment,
"This page downloaded at such-and-such time," it is not idempotent. The Web was
designed from the beginning to be idempotent; later on people started to realize that
dynamic content could be highly desirable and worked on how to overcome the
stateless, idempotent design of HTTP.

The nice eight syllables of referential transparency mean that a function call can
equivalently be replaced with the value it returns. Because 4! is 24, it should be
equivalent to include 4! in your code and just include 24 instead. If you have the
cosine of a value, it should be equivalent to use a stored value of the result of
that call to cos(), or to recompute. Impure behavior that would break referential
transparency would be to have cos() log a string each time it was called, which
is a classic example of a side effect.

Chapter 6

[99]

The term side effect is unfortunate and probably intended to be loaded
language; in a medical context, all drugs produce multiple effects, some
of which are the point of taking the medication and some of which are
tolerated as a necessary evil that comes with getting the desired effects.
A side effect medically is a medication effect that is tolerated but not why
the medication is taken. Saying that logging a message in a program is a
side effect is a bit like saying that taking a pain reliever, and experiencing
consequent reduction in one's physical pain, is experiencing a side effect:
that is the entire point of taking the medication, not any other effects the
drug may have, and it's an odd thing to call this a side effect.

Preceding are some stock examples of functions from basic math, and perhaps that
is easy, because in certain areas of math, everything is a pure function, perhaps
built from pure functions, and the setting precludes impure functions or side
effects. One could also give polynomials as an example of pure functions built up
from pure functions, which is a really nice approach if you are equipped to use it,
but feels foreign and confusing if one is used to framing everything in informative
assumptions. Between functional and imperative functions, for programmers with an
imperative-based formation, imperative function is the approach that is easiest in the
short term but harder in the long term. For programmers with a functionally-based
formation, functional programming is easy, both in the short term and the long term.
But for an example of these concerns playing out in practical information technology,
we need look no further than ReactJS.

Facebook's learning from prolonged pain essentially led to a realization that the way
out of the morass was through idempotency and referential transparency, and that is
what ReactJS was written to deliver.

Learn what you can!
A wise master in the Orthodox spiritual tradition boiled many things down into
55 maxims (http://tinyurl.com/reactjs-55-maxims), the second of which was,
Pray as you can, not as you think you must, and these are wise words for much of
programming too. And there is a suggestion here, but not so non-mathematicians
will be daunted. Follow this one suggestion as you can, not as you think you must.
Learn as much functional programming as you can. Write JavaScript in as purely a
functional fashion as you can.

http://tinyurl.com/reactjs-55-maxims

Functional Reactive Programming – The Basics

[100]

I have wrapped my head around functors now, as I failed to do so as a graduate
student in math. I haven't conceptually wrapped my head around applicative
functors and monads from a theory perspective, but the idea of writing pure
functions as much as possible and making minimal use of input and output monads
is something that appears doable on a monkey see, monkey do basis, which is much less
taxing than having to trace a monad's conceptual genealogy. And this falls into the
category of using functional programming as you can, not as you think you must.

The Wikipedia article on functional reactive programming links to nine major works
in the field, and if you want to wrestle with a good mathematical challenge, all of
them are worth a good wrestle. The mathematical symbols can be as dense as they
are on the Wikipedia article on functors, which is quite dense.

But if we look at languages, there's a clue here. There are a few interesting
possibilities, all functional, that are mentioned in the literature: a Scheme dialect,
DDD, and Elm (which is its own language compiling, comparably to DDD, to its
own JavaScript / HTML / CSS). But the strongest attraction of functional reactive
programming authors seems to be by far Haskell. This offers us a free clue that,
at least in its origins, Haskell is a center of gravity to pretty much all the seminal
papers on functional reactive programming. Any language, including Haskell, has
flaws, but it would be silly to simply ignore the fact that seminal works in functional
reactive programming gravitate towards Haskell.

Functional reactive programming is reactive programming built out of the building
blocks of functional programming. Some aspects of this are taken care of for us
when developing in JavaScript with ReactJS. We only need to specify declaratively
what the UI should look like when rendered, and ReactJS will handle all necessary
compilation so a declarative render() method will be translated into optimized
imperative manipulations on the DOM. But at least at first glance, it would make
sense, if you want to understand functional reactive programming, to learn a
technique closely tied to Haskell from the outset and only later, after you've walked
a mile in Haskell's shoes and then know if they pinch you, write your "declaration of
independence" from Haskell's lead.

There is criticism of Learn You a Haskell for Great Good, but the book was deliberately
chosen as an excellent text to teach a top-notch functional language. Pointing out that a
Haskell text covers eight chapters of theory and some category theory concepts before
allowing the reader to see the traditional Hello, world! program, makes a much stronger
point by picking on a strong text than picking on an introduction that is mediocre
and invites of an obvious response of but there are much better examples that don't
have that problem. A companion text that is more focused on practical applications
for real-world information technology needs is Real World Haskell (http://book.
realworldhaskell.org/read/). These aren't the only books out there, but they offer
at least a good pairing and a starting point, and are often recommended together.

http://book.realworldhaskell.org/read/
http://book.realworldhaskell.org/read/

Chapter 6

[101]

More to the point, don't try to snarf these two books and expect that after a day's
study, or even a month, it will be easier to get things done in Haskell than whatever
favorite language you've given years of use. Instead play around, and tinker with
these things. Treat the Glasgow Haskell Compiler as a nice set of virtual Lego that a
loved one gave you for Christmas. Learn You a Haskell for Great Good nowhere dives
into how you can write a web server, and that is one of the book's strengths. It builds
core strengths that are only to your benefit and should put you in a better position to
appreciate and exploit opportunities for functional programming in JavaScript. G.K.
Chesterton said:

"…to understand everything a strain. The poet only desires exaltation and
expansion, a world to stretch himself in. The poet only asks to get his head into
the heavens. It is the logician who seeks to get the heavens into his head. And it
is his head that splits." Try to get your head into the Heavens, not the Heavens
immediately into your head. If you are an adept programmer now, perhaps in
an imperative paradigm, chances are good that when you were in school and
exploring things, you sought to get your head into Heavens with programming.
You wrote games; you played around, and acquired a foundation you would later
use for professional work. If you want to learn Haskell, don't cram it. Become like
a little child again and play. And read Learn You a Haskell for Great Good, with
its deliberate avoidance of how to get something slammed out for a deadline, until
you have an actual foundation before reading Real World Haskell, and please do
not take Real World Haskell to be justification to "cut to the chase" and just try to
release commercial-style functionality on deadline-style timing.

Douglas Crockford, in his South American presentation on The Better Parts, gives an
increasingly strong functional focus to functional programming when he describes
good JavaScript. All of the earlier Crockford videos I've seen, from when there was
just The Good Parts and no The Better Parts even on the horizon, seem to associate
JavaScript's better parts with its functional side. But The Better Parts is even more
explicit in saying that one of JavaScript harmony's improvements is that you can
apply tail recursion, and use functional styles of flow control that make some kinds
of flow control, such as looping almost or completely unnecessary.

Even apart from functional reactive programming, better JavaScript seems to
increasingly mean functional JavaScript. And this is a very good thing. Scheme, as
mentioned earlier, has been called "the best language you'll never use," and the set of
generally functional languages that computer scientists consistently choose on their
merits for computer science usage are a little paradise that one must leave to enter
professional programming.

Functional Reactive Programming – The Basics

[102]

JavaScript changed that, and not only by making anonymous functions mainstream.
JavaScript, especially when used with ReactJS, provides one of the greatest
opportunities to enjoy the goodness of functional programming in mainstream
software development. And as long as you understand what you are doing, the
more you can write JavaScript in a functional paradigm.

Functional programming, reactive or otherwise, may come more easily if you're
introduced to it in schooling that covers the more mathematical side of functional
programming. But it is possible to teach a programmer how to write Hello, world! in
Haskell while leaving the most incomprehensible mathematics of category theory
out of sight and under the hood.

The computational mathematical foundations of functional programming are
something that should be like a machine or assembler in a higher-level language:
present under the hood and making language capabilities possible, but out of sight
with minimally leaky abstractions that just work, regardless of whether one is a
mechanic competent to make adjustments under the hood.

In some sense, for seasoned programmers who have been out of school for a while,
what is needed is The Good Parts of learning functional programming. Now in this
case the good parts may vary from programmer to programmer depending on
their comfort level for functional programming. The criterion is "Do what you can,
not what you think you must." Getting your head around the difference between
declarative/denotative programming and imperative programming, is perhaps
difficult, but not too difficult. The closely connected concept of writing pure functions
as much as reasonably possible and quarantining code that must have side effects
even if you're trying to avoid them, is a shift in thinking but not too slippery.

Learning functors, for instance, is actually a bit easier in Haskell than in category
theory, even if the Wikipedia page does not reflect this. It shouldn't take most
programmers too long to write a first Haskell program that is mostly pure functions
and input and output handled by a minimal quarantine of monads. But using
features such as monads is much easier than understanding the contorted steps
one uses to work with pure functions and build up to monads.

And it is worth repeating: if functional (reactive) programming is appropriate for
mainstream use, the heavily mathematical theory used to get from a function to a
monad should no more be forced on average Joe professional developers than even a
C programmer should be forced to work with the assembler or machine instructions
generated by his software. One wag said that "C is a language that combines the
power of assembler with the ease of using assembler," but C never forces most
programmers to micromanage how the compiler renders the C source.

Chapter 6

[103]

Many mainstream languages now, in particular multi-paradigm languages, have
incorporated some elements of functional programming strengths. All the same,
one might suggest that JavaScript, of all mainstream languages, directly offers the
best set of functional programming strengths bar none. Not necessarily the best
functional programming among the languages favored by computer scientists such
as Haskell or Lisp/Scheme; it's hard to find a mainstream programming job where
management will allow a solution in Haskell or Scheme. But among mainstream
languages, JavaScript is still the juiciest. Computer scientists have long been fond
of functional programming, and at least one programmer who studied math in
school commented, "Functional programming is the first programming paradigm
I've seen that makes sense." And for excellence that computer scientists have almost
universally favored for (mumble) years or decades, JavaScript isn't just the language
browsers will execute, important as that may be. It also offers the best opportunity
for functional programming goodness in a language frequently encountered on job
descriptions for employers who want to hire you.

JavaScript as the new bare metal
Douglas Crockford, in The Better Parts mentioned earlier, tries to make the point
that programmers are just as emotional as everyone else. He backs up this point in
a way that would not be a surprise to a Kuhn scholar: fundamental improvements
in software engineering win by the attrition of programmers holding the earlier
approach. He gives an example of six or so "it took a generation" remarks: "it took
a generation" for software engineers to recognize that high-level languages were a
good idea, or that the F-bomb of all programming language statements, the G-bomb
or goto statement, was not a good idea. And although Crockford gives several
examples, his efforts do not seem to have pretensions of including all the significant
examples: although I'm not completely sure of the dates, it seems to have taken about
a generation between the 1960s, when Smalltalk recognized that references were
better than pointers (pointers have been called "the goto of data structures"), and the
1990s when a mainstream language that was "front and center," like Java, superceded
pointers with references.

Crockford made a few remarks about programmers invoking freedom of self-
expression to do all programming on bare metal or routinely use goto statements
to handle flow control. But when all is said and done, including that it took two
generations for anonymous functions to be used in a mainstream language,
JavaScript being the first, improvements in software development do not take
root because existing programmers embrace better ways.

Functional Reactive Programming – The Basics

[104]

They take root because new programmers embrace better ways, while the majority
of older, unconvinced programmers die. (Even if they could learn. But in some sense
there is an option to opt-out of becoming obsolete, by embracing new changes. It's
just that many people say, "If it was good enough for me at 20, it's good enough for
me at 40." There is no iron determinism grasping every individual: only a "default
setting" on /programmers/ that ages poorly as a default setting.)

JavaScript is lingua franca on the web, and even if you object to it because it's not your
favorite language (indeed, why should it be just like Perl, Python, Java or C++?), it is
here to stay and is perhaps the best bet around for what will be the most important
language, and will be for quite a while. But what may "take a generation" in this
context is the realization that web programming in non-JavaScript languages is a
good idea.

Alan Perlis said, "A programming language is low level when its programs require
attention to the irrelevant," and if programming well in JavaScript requires avoiding
large minefields of languages for reasons that are far from obvious to casual
inspection, JavaScript requires attention to the irrelevant: JavaScript is low level.

One encouraging sign in newer web development, in ReactJS videos, is not only that
another non-JavaScript language or syntactic sugar, CoffeeScript, is used, but that its
introduction was presented smoothly and casually, and entirely without apology,
defense, or explanation. The fact that they used CoffeeScript at all is significant, and
the fact that they did so without any trace of defensiveness is even more significant.
Now CoffeeScript might not be any kind of be-all, end-all among languages that can
or should be able to be compiled to JavaScript. But it is encouraging to see something
other than JavaScript "bare metal."

This does not mean that there is no place for that "bare metal" programming. Amateur
game developers or programmers from mega-corporations trying to squeeze the
last ounce of performance out of either bare metal for standalone applications and
games, will legitimately want to squeeze the last ounce of performance out of their
user's computer, whether working on the "bare metal" of application programming
or JavaScript on the web. But just as one ordinarily does not write web applications in
C or assembler (and didn't do so even when CGI scripts were the primary means of
delivering dynamic content), for most uses of web programming, a good smartphone
(a slightly old iPhone 5 is roughly 100 times as fast as a top-of-the-line computer from
when the web was new) really is fast enough to run code generated by compiling other
languages to JavaScript. And JavaScript is, after all, so much more impressive when
one understands how it is developed. It is a computer language that was designed in
10 days, something that one ordinarily greets not with, "That's an impressive feat!" but
also, "Dude, ease up a bit! If you keep abusing stimulants like that, you'll kill yourself!"

Chapter 6

[105]

The essential reason why using a high-level language is desirable is something
painfully obvious that programmers learn to shut out so they can get any work done
in JavaScript. Douglas Crockford's The Good Parts, and with it the idea that JavaScript
has both treasures and land mines and a good part of navigating JavaScript well
is avoiding minefields altogether, has taken such deep root that this title's brief
summary may be entirely superfluous for most programmers reading this book.

That, even by itself, is serious reason to consider alternatives to programming on
JavaScript "bare metal" if one has the option. And in fact, there are many alternatives
to JavaScript "bare metal" for frontend web development. http://tinyurl.com/
reactjs-compiled-javascript has a long list of other languages, including family
and friends intended to offer an enhanced JavaScript in some aspect or other, and
compilers for other languages to JavaScript, including (often) multiple options for
Basic, C/C++, C#/F#/.NET, Erlang, Go, Haskell, Java/JVM, Lisp, OCAML, Pascal,
PHP, Python, Ruby, Scheme, Smalltalk, and SQL. Presumably not every single one of
the compilers and implementations is particularly good, but like every other serious
computer language, JavaScript is Turing-complete, and not only is it theoretically
possible to compile other complete languages to JavaScript as well as "bare metal",
but it is practically possible and makes plenty of sense. JavaScript may become the
most important compilation target, eclipsing even x86_64 machine code. Or it may
not, but JavaScript's desirability and capabilities mean that the phenomenon of
writing in languages compiled to JavaScript—meaning most other languages—might
only grow in the foreseeable future.

Summary
This chapter may be an early attempt at the kind of endeavor where early attempts
often do not succeed. There are seminal documents easily available on the web, but
they assume you can not only program but handle a particular kind of math that
most professional developers cannot and perhaps have never achieved proficiency.
The goal here is not to provide another highly mathematical explanation, but to
produce a document that would be useful, perhaps on a less highly exalted plane, to
the majority of frontend developers who naturally think of imperative solutions. The
goal here is to move towards more functional and less imperative programming, but
also to produce a text appropriate to the level of mathematical skill that professional
programmers actually have, not the level of math skills some authority might
wish them to have. Consequently, the prerequisites are meant not to assume an
understanding of category theory itself before programmers are allowed to write,
Hello, world!

http://tinyurl.com/reactjs-compiled-javascript
http://tinyurl.com/reactjs-compiled-javascript

Functional Reactive Programming – The Basics

[106]

In this chapter, we took a trip down computer folklore's memory lane. This trip
looked at a scathing computer checklist, simple Hello, world! program, and category
theory—and how functional reactive programming's preferred language, Haskell,
may want you to use category theory if you're allowed to write, Hello, world! This
is a major problem.

We've also had a look at the distinguishing features of functional reactive
programming including how time is treated. Also a serious answer to the question,
"If you learn just one thing from functional reactive programming, what would be
the best thing to learn?" is covered in this chapter.

Learning what you can about pure functional development, not what you think you
must learn about it, is also covered here. It's easy to paralyze yourself by trying to
learn too much functional programming, and honestly, functional programming
(which requires that you shift how you look at the world) is not the easiest thing
for seasoned imperative programmers to learn. This is an attempt to offer a sane
measure of profiting from what functional programming one can without getting
completely lost in the almost infinite trackless wastes of grappling with functional
programming.

We also discussed the future of web development, where JavaScript is viewed as the
new "bare metal."

In our next chapter, we will explore tools to support functional reactive
programming. Let's begin!

[107]

Not Reinventing the
Wheel – Tools for Functional

Reactive Programming
In this chapter, we will look at a few out of the many good tools for building on top
of "bare-metal" JavaScript, as discussed briefly in the last chapter. JavaScript is not
interesting only for its properties as a core language; browser JavaScript is home
to an ecosystem, or perhaps multiple ecosystems. Regarding tools for functional
reactive programming, the total set of offerings represents a good, healthy, and
sprawling bazaar, next to which the direct use of JavaScript alone for all web
development looks more like a cathedral. We will be taking a small sample of this
bazaar, with the understanding that this chapter does not intend to cover all that
is good, interesting, or worthwhile. That's very hard to do in a bazaar!

The tools that we will cover include the following:

•	 ClojureScript and Om
•	 Bacon.js
•	 Brython
•	 Immutable.js
•	 Jest
•	 Fluxxor

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[108]

The set of tools we would include, or not include, in a chapter such as this involves
drawing lines that are up for, and making judgment calls. Readers interested in
a more comprehensive treatment can look at the link compendium at http://
tinyurl.com/reactjs-complementary-tools, and drill down to the tools that are
of interest to their specific concerns. There is a lot there, and probably a lot of gems
for almost any purpose.

ClojureScript
ClojureScript, and perhaps Clojure in general, represents an important watershed
in software and web development. ClojureScript proves by example that it is
possible to have a solid foundation and environment for development in a language
other than JavaScript, and this pioneering language is a Lisp dialect. (This is fitting
perhaps, for one of the two oldest programming languages in common use. Lisp
was good when it came out, and it's still a good language today.) Furthermore, Lisp
may enjoy a good advantage compared to JavaScript, and be alive due to some of the
same reasons. JavaScript is the language of web browsers and Lisp is the language of
Emacs. Also, Lisp offers a sort of proto-JavaScript; before there were web browsers
that were programmable in JavaScript, there were Emacsen programmable in Lisp,
and someone who said Lisp was the better language in comparison to JavaScript
would hardly be contested.

There is good reason to suggest that Lisp, and not the Emacs default key bindings, is
responsible for the classical Emacs learning curve in this "classical learning curves"
cartoon that has been floating around on the Internet:

http://tinyurl.com/reactjs-complementary-tools
http://tinyurl.com/reactjs-complementary-tools

Chapter 7

[109]

As suggested in an earlier chapter, the uniformity of everybody programming
directly in JavaScript may give way to a beautiful diversity, or a patchwork quilt. In
this beautiful patchwork quilt, JavaScript may still be pre-eminent, but JavaScript's
pre-eminence may serve as the new "bare metal." We may have a collection of high-
level languages and tools for frontend development. Again, as Alan Perlis said, "A
language is low-level when it requires attention to the irrelevant." On those grounds,
JavaScript is low-level.

Some of these tools may have a better portfolio of good parts with respect to the bad
parts. They may lend themselves to frontend work that may still finally be executed
in JavaScript. But they may also open up frontend web development in which new
developers are no longer told, "Here is the language that we will use, and here are
some large portions of the language that you should try to avoid as much as possible
because they are fundamentally toxic." Newer versions of ECMAScript (the formal
name for JavaScript, and it is not particularly connected to Emacs) may offer better
collections of features, but it is still desirable to work in high-level languages that
offer a better terrain for productive work and results.

ClojureScript says, with bells on, that it is possible to have a good high-level
language that will run on browsers, and this isn't good news only for Lisp hackers.
It is good news for everyone. It demonstrates an open door to the possibility of web
development in other high-level languages and potentially a better web development
environment with fewer tar pits.

ClojureScript can be used both for client-side work and on the server side with Node.
js. Hello, World! is as follows:

(ns nodehello
 (:require [cljs.nodejs :as nodejs]))

(defn -main [& args]
 (println (apply str (map [\space "world" "hello"] [2 0 1]))))

(nodejs/enable-util-print!)
(set! *main-cli-fn* -main)

(comment
; Compile this using a command line like:

CLOJURESCRIPT_HOME=".../clojurescript/" \
 bin/cljsc samples/nodehello.cljs {:target :nodejs} \
 > out/nodehello.js

; Then run using:
nodejs out/nodehello.js

)

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[110]

Om
Om is a wrapper that makes ReactJS available for ClojureScript. Apart from the fact
that ClojureScript is usually fast, a certain part of Om is actually about two times
faster than in JavaScript. The difference has to do with identifying changes so as to
optimally and appropriately update the DOM when ReactJS does that. The reason
is that ReactJS, in its diffing algorithm (by dealing with mutable JavaScript data
structures), has to perform a deep comparison to see what, if anything, in the
(pure JavaScript) synthetic virtual DOM has changed.

This is still lightning fast compared to direct DOM manipulations, so fast that it's
really not the bottleneck for most ReactJS users. But it's faster in Om. The reason is
that ClojureScript, like a good functional programming language, has immutable
data. You can easily enough get a mutated copy of something, but you cannot
tamper with the original or trip up anyone who has access to the original. This means
that Om can get by with only comparing top-level references and not digging into
the depths of data structures. This is enough to make Om faster than the original
JavaScript use of ReactJS. Hello, World! in Om is written like this:

(ns example
 (:require [om.core :as om]
 [om.dom :as dom]))

(defn widget [data owner]
 (reify
 om/IRender
 (render [this]
 (dom/h1 nil (:text data)))))

(om/root widget {:text "Hello world!"}
 {:target (. js/document (getElementById "my-app"))})

Bacon.js
Note that discussing ReactJS and Bacon.js alone does not qualify as an exhaustive list.
To mention one alternative suite, Microsoft has tried to create RxJS, RxCpp [Rx for
C++], Rx.NET, and Rx* for various JavaScript frameworks and libraries, and they've at
least tried to make a polyglot-friendly portfolio for multiple languages and optimized
versions for multiple JavaScript frameworks and libraries. There is really a lot available
that offers some form of functional reactive programming. And while most of the
few (at the time of writing this book) functional reactive programming and ReactJS
resources on the Web are golden, there are some that aren't.

Chapter 7

[111]

Andre Stalz writes:

"So you're curious in learning this new thing called Reactive Programming,
particularly its variant comprising of Rx, Bacon.js, RAC, and others.

Learning it is hard, even harder by the lack of good material. When I started, I
tried looking for tutorials. I found only a handful of practical guides, but they
just scratched the surface and never tackled the challenge of building the whole
architecture around it. Library documentations often don't help when you're
trying to understand some function. I mean, honestly, look at this:

Rx.Observable.prototype.flatMapLatest(selector, [thisArg])

Projects each element of an observable sequence into a new sequence of observable
sequences by incorporating the element's index and then transforms an observable
sequence of observable sequences into an observable sequence producing values only
from the most recent observable sequence."

I now understand what the quotation is saying, but that's because I've learned from
other resources that have communicated better. Part of the intent behind this book
you are reading is to make good documentation a little less difficult to understand.

There is a famous question in the open source community: would you buy a car with
the hood welded shut? ReactJS can be described as a car that most people can drive
without opening the hood. It's not that ReactJS is closed-source, or that Facebook
shows any signs of making it harder to read as much of the source code as you want.
But to pick one salient example, Denotative continuous-time semantics was part
of Conal Elliott's second thoughts about what would be a better name for what is
now called functional reactive programming. Whether one agrees or disagrees with
his suggestion for a better and more descriptive name, such second thoughts from a
leading light can be very insightful and illuminating. And with ReactJS, if it's working
correctly, a novice programmer can be given the same explanation that Calvin's
father (a patent attorney!) in Calvin and Hobbes gives when Calvin asks how a lamp,
or a vacuum cleaner, works—It's magic! Looking at a newcomer's question, "How
is continuous time handled?" the reply is It's magic! "How can you get away with
discarding and recreating the DOM every single time?"—It's magic!; "But how does
ReactJS achieve an astonishing 60 fps on a non-JIT iPhone?"—It's magic!

Functional reactive programming describes certain tasks that need to be
accomplished, such as the appropriate handling of event streams, but the ReactJS
documentation doesn't seem to explain how to address this handling because the
responsibility is offloaded to ReactJS; It's magic!

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[112]

Not only does Bacon.js not weld the hood shut, but you are also expected to tinker
under the hood. Bacon.js seems closer to the roots of basic functional reactive
programming. Some programmers, intending to work in ReactJS, might find it
profitable to "lift weights" a bit and strengthen themselves with Bacon.js. One
significant area of functional reactive programming is dealing with emitted
streams of events, and as far as ReactJS goes, It's magic!

In Bacon.js, it is in fact not magic that all is done without you ever moving a finger;
it is something that the programmer needs to work out, and they are given good
tools to do so. On these grounds, it could help form a developer for a solid reactive
programming foundation to use ReactJS. If the selling point of ReactJS is that it is a
tool optimized to allow good user interface work while drawing on the strengths of
functional reactive programming, the selling point of Bacon.js is that it is a tool in
JavaScript that is optimized for (learning and) performing solid functional reactive
programming in theory and practice as a whole.

The difference between ReactJS and Bacon.js doesn't seem to be a matter of
unearthing that one framework is simply better than the other. It is rather a matter
of taking stock of what you want to do and accomplish, recognizing that ReactJS and
Bacon.js (besides being worthy competitors) have different areas where they really
shine, and deciding whether your work sounds more like a ReactJS sweet spot or
a Bacon.js sweet spot. Moreover, with respect to the topic of sweet spots, Bacon.js
(unlike ReactJS) has a name meant to make your mouth water, and the ~ functional
operator is called "bacon" in the references.

Brython – a Python browser
implementation
Brython (http://brython.info), a browser and Python implementation, is
another example of an alternative to programming a browser in JavaScript, and
while it would be a bit unfair to Brython to call it merely experimental, it is also
not necessarily appropriate to call it mature—certainly not in the same sense that
ClojureScript has some significant maturity. ClojureScript is developed well enough
to essentially replace "bare metal" JavaScript for a frontend developer who'd really
prefer to use Lisp rather than JavaScript. In other words, unless we are talking about
something performance-critical or possibly special cases, there aren't too many
cases where ClojureScript experts would answer the question, "How do I do this
in ClojureScript?" with, "Use JavaScript directly for this kind of problem." Brython
is included not because the sun rises or sets on Python but as an illustration that
Lisp in ClojureScript is not a fundamental exception in terms of being the only
non-JavaScript language that works for frontend web development, but perhaps
the first of many.

http://brython.info

Chapter 7

[113]

Brython is meant for world domination. Its home page boldly announces, "Brython
is intended to replace JavaScript as the scripting language for the Web," and it will,
perhaps, never reach that quite naïve goal. Brython takes surprisingly long to load and
is slow to run after it has loaded. It may be better to use one of the Python-to-JavaScript
compilers (which would be closer to ClojureScript), but Brython really offers quite a lot
of Python's goodness and may be someday be seen as significant. Yet, I would suggest
that it is silly to try to be the next JavaScript and take the place of every other transpiler
that renders JavaScript.

In Brython, the goal of world domination also lends itself to a blind spot: failing
to see how important it is to be able to interoperate with tools written in other
languages. But the good news is that Brython or other Python-to-JavaScript
approaches may be significant without needing to become the "One Language to
Rule Them All." Python is hardly the only backend language available, but it's a
good player, and there is every reason for good implementations of Python to be
worthwhile players in a patchwork quilt composed of multiple languages
that can all be used profitably for frontend web development.

Furthermore, at least a Hello,World! program with ReactJS is straightforward to
implement in Brython. A Hello, World! program, as run after gathering Brython and
ReactJS on a page, includes first JavaScript (not JSX) commented out, and then the
Python code that calls React in the browser via Brython:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello, Brython!</title>
 <script src="brython.js"></script>
 <script src="react.js"></script>
 </head>
 <body onload="brython()">
 <p>Hello, static world!</p>
 <div id="dynamic"></div>
 <!--
 <script type="text/javascript">
 React.render(
 React.createElement('p', null,
 'Hello, JavaScript world!'),
 document.getElementById('dynamic')
);
 </script>
 -->
 <script type="text/python3">
 from browser import document, window

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[114]

 window.React.render(window.React.createElement(
 'p', None, 'Hello, Python world!'),
 document['dynamic']);

 </script>
 </body>
</html>

This displays what is shown here:

Note that the entire first script tag and contents, and not just the JavaScript inside
them, are in an HTML comment. This means that the first (JavaScript) script, shown
here for clarity, is not active, the second (Python) script being the one that runs and
displays its message.

The second script is an interesting one; the included Python code is equivalent
(apart from the message) to the commented-out JavaScript text and does the same
thing. This is quite a feat, especially when combined with how Brython successfully
implements most features in the 3.x branch of Python. Even if Brython is looked into
for a project and deemed not the right solution, it remains an achievement.

Chapter 7

[115]

In one sense, Brython is presented here as an example of a possibility rather than,
in any sense, the only member of its class that is worth attention. The point is not
specifically that Python can be used for frontend development; it's that ClojureScript
Lisp may not be the only additional language besides JavaScript that is available for
use in frontend development.

Immutable.js – permanent protection
from change
Immutable.js, with its home page at http://facebook.github.io/immutable-js
and a tagline of Immutable collections for JavaScript, was originally named for
persistence. Then it went through a name change to something that would register
more quickly by referring to the immutable. Immutable.js plugs a gap in JavaScript
as a functional language and offers significantly more functional-friendly data
structures for collections (which is the point for which it was created).

It offers data structures for collections that are immutable. They support the creation
of modified copies gracefully enough, but it is always the copy that is changed, never
the original. Though this is more of a minor point, it greatly reduces the need for
"defensive copying" and related workarounds for not using immutable data where
there are multiple programmers. The original code could be chugging along with
a different and modified copy of the data structure that you want, but your copy,
which you have kept as a reference, is guaranteed to be entirely untouched. The
library is intended to support other niceties, such as easy conversion to and from
staple JavaScript data structures.

However, data structures of Immutable.js are not only immutable; they are also lazy
in some aspects, and the document clearly marks which aspects of an application are
eager. (as a reminder, lazy data structures are treated in a print-on-demand fashion
when needed, while eager operations are done at once and upfront). Furthermore,
certain functional idioms are baked into Immutable.js facilities. For instance, there is
a .take(n) method offered. It returns the first n items of a list in the classic functional
fashion. Other functional staples, such as map(), filter(), and reduce(), are also
available. In general, runtime complexity is as good as a computer scientist could
reasonably request.

http://facebook.github.io/immutable-js

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[116]

There are several data types provided by Immutable.js; these include the following
(the descriptions in this and the next table are partly based on the official
documentation):

Immutable.js class Description
Collection This is an abstract base class for Immutable.js data

structures. It cannot be directly instantiated.
IndexedCollection A collection that represents indexed values in a

particular order.
IndexedIterable This is an iterable with indexed numeric keys that

support some array-like interface features, such as
indexOf() (An iterable is something that you can
iterate through like a list, but it may or may not be a list
in the internals).

IndexedSeq A Seq that supports an ordered indexed list of values.

Iterable A set of (key and index) values that can be iterated
through. This class is the base class for all collections.

KeyedCollection A collection that represents key-value pairs.
KeyedIterable An iterable with discrete keys tied to each iterable.
KeyedSeq A sequence that represents key-value pairs.
List An ordered collection, somewhat like a (dense)

JavaScript array.
Map A keyed iterable of key-value pairs.

OrderedMap A map that does everything that a map does and, in
addition, guarantees that iterations will produce keys in
the order in which they are set.

OrderedSet A set that does everything that a set does and, in
addition, guarantees, that iterations will produce values
in the order in which they are set.

Record A class that produces concrete records. Conceptually,
this is different from the other records here. The other
elements are, conceptually, collections of "whatnots,"
perhaps objects that have a similar structure. The
Record class is closer to the records one encounters
in school, where one record is similar to a row in a
database table, while result sets or tables are more like
container objects.

Seq A sequence of values, which may or may not be backed
by a concrete data structure.

Set A collection of unique values.

Chapter 7

[117]

Immutable.js class Description
SetCollection A collection of values without keys or indices.

SetIterable Iterables representing values without keys or indices.

SetSeq A sequence representing a set of values.
Stack A standard stack with push() and pop(). Semantics

always go to first element, unlike JavaScript arrays.

Record is slightly different from the others; it is similar to a JavaScript
object that meets certain criteria. The other elements are related container
classes that provide functional access to some collection of objects and
tend to have a similar list of methods supported.

The methods for List, to pick one example, include the following:

Immutable.List method Description
asImmutable A function that takes a (mutable) JavaScript collection and

renders an Immutable.js collection.
asMutable This is a concession to "not-the-best" programming. The

proper way to handle mutations based on an Immutable.
js collection is to use with Mutations. Even if asMutable
is available, it should only be used inside of functions and
never be made available or returned.

butLast This produces a similar new List, but it lacks the last entry.

concat Concatenate (that is, append) two iterables of the same type.

contains This is true if the value exists in this List.

count Return the size of this List.

countBy Group the List's contents with a grouper function, and then
emit counts for the keys as partitioned by the grouper.

delete Create a new List without this key.
deleteIn Remove a key from a keypath, which allows traversal from

an outer collection to an inner collection, much like the way
a filesystem path allows traversal of the filesystem from an
outer directory to an inner directory.

entries An iteration of the List as key, value tuples.

entrySeq Create a new IndexedSeq of key, value tuples.

equals This is a full equality comparison.

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[118]

Immutable.List method Description
every This is true if a predicate is true for all entries in this List.

filter Returns the elements of a List for which the provided
predicate holds true.

filterNot Returns the elements of a List for which the provided
predicate returns false.

find Returns the value for which the provided predicate holds
true.

findIndex Returns the first index for which the provided predicate
holds true.

findLast Returns the last element for which the provided predicate
holds true.

findLastIndex Returns the last index for which the provided predicate
holds true.

first The first value in the List.

flatMap This flat-maps, or collapses, a potential List of Lists into a
List that is one deep.

flatten This flattens nested iterables.
forEach Executes a function for each entry in the list.

fromEntrySeq Return a KeyedSeq of any iterable of the key, value tuples.

get Returns the value for a key.

getIn Traverses a key path (like a filesystem path) to get a key, if
available.

groupBy Converts a List into a List of Lists keyed by the grouping of
a provided grouper function.

has This is true if a key exists in this List.

hashCode This calculates a hash code for this collection. It is
appropriate for use in a hash table.

hasIn This is true if a collection's equivalent to a filesystem walk
finds the value in question.

indexOf The index of the first occurrence in this List, for example,
Array.prototype.indexOf.

interpose Interpose a separator between individual List entries.

interleave Interleave the provided Lists into one list of the same type.

isEmpty This tells whether this iterable has values or not.
isList This is true if the value is a List.

Chapter 7

[119]

Immutable.List method Description
isSubset True if every value in the comparison iterable is in this List.

isSuperset True if every value in this List is in the comparison iterable.

join This joins together as a string with a separator (default).

keys An iterator of this List's keys.
keySeq Returns a KeySeq for this iterable, discarding all values.

last The last value in the List.

lastIndexOf Returns the last index at which a value can be found in this
List.

List The constructor for lists.

map Returns a new List with values passed through a map
function.

max Returns the maximum value in this collection.
maxBy This is like max, but with more fine-grained control.
merge Merges iterables or JavaScript objects into one List.

mergeDeep A recursive analog to merge.
mergeDeepIn Performs a deep merge, starting at a given keypath.

mergeDeepWith This is like mergeDeep, but uses a provided merger
function when nodes conflict.

mergeIn This is a combination of update and merge. It performs a
merger at a specified keypath.

mergeWith This is like merge, but uses a provided merger function
when nodes conflict.

min Returns the minimum value in the List.
minBy Returns the minimum value in the List as determined by a

helper function you provide.
of Creates a new list containing its arguments as values.
pop This returns everything in this List but the last. Note that

this differs from the standard push semantics, but a regular
push() can be simulated by calling last() before push().

push Returns a new list with the specified value (or values)
appended at the end.

reduce Calls the reducing function for every value and returns the
accumulated value.

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[120]

Immutable.List method Description
reduceRight This is similar to reduce, but starts at the right and moves

progressively to the left, the opposite of the basic reduce.
rest Returns the tail of a List, that is, all entries but the first.
reverse Provides a List in reverse order.

set Returns a new List with the value at the index.

setIn Return a new List with this value at the keypath.

setSize Creates a new List with the size that you specify, truncating
or adding undefined values as needed.

shift Creates a new list with the first value subtracted and all
other values shifted down.

skip Returns all that is left of the List when the first n entries are
not included.

skipLast Returns all that is left of the List when the last n entries are
not included.

skipUntil Returns a new iterable containing all entries after the first
where a provided predicate is true.

skipWhile This returns a new iterable containing all entries before a
provided predicate is false.

slice Returns a new iterable containing this list's contents from
the start value to one before the last, inclusive.

some True if a predicate returns true for any element of the List.

sort Returns a new List sorted by an optional comparator.

sortBy Returns a new List sorted by an optional comparator value
mapper, with more detailed information available for the
comparator and therefore more refined results.

splice Replaces a segment of the first list with the second, or
deletes it if no second list is provided.

take Creates a new List containing exactly the first n entries in a
List.

takeLast Creates a new List containing exactly the last n entries in a
List.

takeUntil This returns a new List containing all entries as long as the
predicate returns false; then it stops.

takeWhile This returns a new List containing all entries as long as the
predicate returns true; then it stops.

toArray Shallowly converts this List to an Array, discarding the keys.

Chapter 7

[121]

Immutable.List method Description
toIndexedSeq Return an IndexedSeq of this List, discarding the keys.

toJS Deeply converts this List into an Array. This method has
toJSON() as an alias, although the documentation does
not clearly state whether or not toJS() returns JavaScript
objects, while toJSON() returns a JSON-encoded string.

toKeyedSeq Returns a KeyedSeq from this List where indices are treated
as keys.

toList Returns itself.

toMap Converts this List into a Map.

toObject Shallowly converts this List into an Object.

toOrderedMap Convert this List into a Map, preserving the order of
iteration.

toSeq Returns an IndexedSeq.

toSet Converts this List to a Set, discarding the keys.

toSetSeq Converts this List to a SetSeq, discarding the keys.

toStack Convert this List to a Stack, discarding the keys.

unshift Prepend the provided values to a List.

update Update an entry on a List by a provided updater function.

updateIn Update an entry, as in update(), but at a given key path.

values An iterator of this List's values.

valueSeq An IndexedSeq of this List's values.

withMutations This is an optimization (recall "Premature optimization is
the root of all evil," said by Donald Knuth) hook meant to
allow more performant work when multiple mutations
are performed. It is to be used when there are known and
persistent performance issues where other tools have
demonstrably not solved the problem.

zip Returns an iterable zipped (that is, joined pairwise to make a
list of 2-tuples) with this List.

zipWith Returns an iterable zipped with a custom zipping function.

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[122]

The documentation for the API, which is under the Documentation link available
on the home page, is pretty clear. But as a rule, Immutable.js collections do what a
functional programmer would expect them to do as much as possible, and indeed
there appears to be a presumable overriding design consideration of "do what a
functional programmer would want as much as we can."

One thing that might be an unpleasant surprise to functional
programmers is that the documentation does not explain how to create
infinite lists. It is not obvious how one might create a generator for a list
(if they do so at all), or produce lists of mathematical sequences, such
as all counting all numbers, positive even numbers, squares, primes,
Fibonacci numbers, powers of 2, factorials, and so on. Such functionality
is apparently not supported (at the time of writing this book). Lazy
sequences cannot build infinite lists with Immutable.js because
constructing a collection includes an eager inclusion of all elements ever
in the list, which must therefore be finite. It shouldn't be terribly difficult
to create lazy, and potentially infinite, data structures in the style of
Immutable.js that have a memoized generator inside and allow you to
XYZ.take(5). But Immutable.js appears not to have expanded into that
territory yet.

Jest – BDD unit testing from Facebook
Jest is a JavaScript unit testing framework intended to support behavior-driven
development. It is built on top of Jasmine, and in the future, it may be able to
interact with other foundations. It has been used for a couple of years and is used
on Facebook, though there appears to be no decisive endorsement that ReactJS
development is best done using Jest. (Facebook uses JSX with ReactJS internally but
tends to make a relatively unopinionated statement that about half of ReactJS users
opt to use JSX. It is actually designed to be entirely optional.)

Chapter 7

[123]

JSX—the X boldly meaning XML at a time when XML has fallen out of
favor—is a well-made syntactic sugar that "puts angle brackets in your
code." This loosely means that you can put HTML into your JavaScript in
.jsx files and things just work. Also, you can use almost anything that
you can build on a page that has been built into a ReactJS component.
You can include things such as images that have been part of HTML from
the beginning, and you can just as easily include a calendar as defined in
this title, a threaded networked discussion, or a draggable and zoomable
fractal. Like subroutines, once a component is defined, it can be used zero,
one, or many times anywhere in your web app. The JSX syntactic sugar
allows components that you and others have defined as easily as old
HTML tags. The JSX for the outer shell in the project in chapters 8 to 11 is
"dirt simple" in terms of allowing us to incorporate the other components
that we have developed:

var Pragmatometer = React.createClass({
 render: function() {
 return (
 <div className="Pragmatometer">
 <Calendar />
 <Todo />
 <Scratch />
 <YouPick />
 </div>
);
 }
});

One Facebook employee said that he had made Jest open source for "selfish reasons,"
namely that he wanted to use it in his personal projects. This may give a good
hint about why Jest is at least worth considering. It is nice enough for at least one
user to really want to use Jest, so much so that he was willing to make proprietary
intellectual property open source, and did this even when no one told him to.

It is arguable that in its beginnings, unit testing has served what is most easily
unit tested, which means that unit testing has washed its hands of integration and
user interface testing. So, you might see a blog article on unit testing that tests and
confirms a "red, green, refactor" approach to a function that converts your language's
integers to Roman numerals, which is a pretty good example of a problem that
serves the needs of primitive unit testing. If you want to test whether your code is
interacting with its database appropriately, that's a slightly taller order. And Jest, like
other frameworks, doesn't really have which is pretensions of obviating the need for
good, old-fashioned budget usability testing as Jakob Nielsen and others advocate.
There is an old (pre-IT) business distinction between asking, "Are we building the
product right?" and "Are we building the right product?"

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[124]

Both of these questions are valuable and have their place, but unit testing helps
more with the first than the second, and it is dangerous to let a good test suite that
addresses the first question well lull you to sleep which is regarding addressing
the second question well. Nonetheless, Jest offers something more useful than just
testing whether a unit of code will successfully take input of a primitive data type,
such as an integer, a float, or a string, and return the correct and expected output of a
primitive data type (such as the right Roman numeral for an input integer). Though
this is not true only for Jest, Jest simulates the user interface so as to support (for
instance) user interface events, such as clicks on an element, and supports testing
user interface changes, such as the text on a label (compare the Jasmine home page,
where the first several examples involve assertions using primitive data types only).

Jest is intended to provide layers on top of Jasmine (and potentially other backends
in the future), but with significant added value. Besides certain features, such as
running tests in parallel so that testing becomes more responsive, Jest is a solution
intended to require a minimum amount of time and fuss to get good test coverage,
based on the thought that it is desirable for developers to spend most of their time
on their main development and not on writing unit tests.

Jest is intended to mock everything, or almost everything, pulled in with require().
You can opt out for individual elements by calling jest.dontMock(), and it is
boilerplate practice that tests usually call jest.dontMock() for the components that
they are testing. It automatically finds and runs tests in the __tests__ directory. Jest
can handle JSX if ReactJS's preprocessor is included in, for example, preprocessor.js:

var ReactTools = require('react-tools');
module.exports = {
 process: function(source) {
 return ReactTools.transform(source);
 }
};

The package.json file needs to be told what to load:

'dependencies': {
 'react': '*',
 'react-tools': '*'
},
}, 'jest': {
 'scriptPreprocessor': '<root directory>/preprocessor.js',
 'unmockedModulePathPatterns':
 ['<root directory>/node_modules/react']
},

Chapter 7

[125]

Now we will lightly adapt Facebook's example. Facebook provides an example
CheckboxWithLabel class. This class displays one label when the checkbox is
unchecked and another when it is checked. The Jest unit test here simulates a click
and confirms that the label changes appropriately.

The CheckboxWithLabel.js file reads as follows:

/** @jsx React.DOM */

var React = require('react/addons');
var CheckboxWithLabel = React.createClass({
 getInitialState: function() {
 return {
 isChecked: false
 };
 },
 onChange: function() {
 this.setState({isChecked: !this.state.isChecked});
 },
 render: function() {
 return (
 <label>
 <input
 type="checkbox"
 checked={this.state.isChecked}
 onChange={this.onChange}
 />
 {(this.state.isChecked ?
 this.props.labelOn :
 this.props.labelOff)}
 </label>
);
 }
});

module.exports = CheckboxWithLabel;

The __tests__/CheckboxWithLabel-test.js test file reads:

/** @jsx React.DOM */

jest.dontMock('../CheckboxWithLabel.js');

describe('CheckboxWithLabel', function() {
 it('changes the text after click', function() {

Not Reinventing the Wheel – Tools for Functional Reactive Programming

[126]

 var React = require('react/addons');
 var CheckboxWithLabel = require('../CheckboxWithLabel.js');
 var TestUtils = React.addons.TestUtils;

 // Verify that it's Off by default.
 var label = TestUtils.findRenderedDOMComponentWithTag(
 checkbox, 'label');
 expect(label.getDOMNode().textContent).toEqual('Off');

 // Simulate a click and verify that it is now On.
 var input = TestUtils.findRenderedDOMComponentWithTag(
 checkbox, 'input');
 TestUtils.Simulate.change(input);
 expect(label.getDOMNode().textContent).toEqual('On');
 });
});

Implementing the Flux Architecture
using Fluxxor
As mentioned in earlier chapters, Flux is an architecture that was developed by
Facebook and used by them as something largely complementary to ReactJS. It
helped untangle a genuine rat's nest of crossed wires and let Facebook eradicate a
recurrent message count bug that kept coming back—the Flux Architecture killed it
permanently. Fluxxor, by Brandon Tilley (http://fluxxor.com), is a tool intended
to help people implement the Flux Architecture in their applications. There is no
need to use the Flux Architecture in order to use ReactJS, or use the Fluxxor tool to
implement the Flux Architecture. But Flux, and perhaps Fluxxor, is at least worth
considering to make things easier.

Fluxxor has classes for the Flux Architecture overall, including a Fluxxor.Flux
container (which includes a dispatcher) and Action and Store classes. The sample
code was concise and readable and seemed to have little boilerplate. Two ReactJS-
friendly mixin classes are provided for ease of use. Sample code is written using JSX.

I might also comment with reference to Fluxxor's author that http://fluxxor.
com has a link at the bottom of the page asking people to report an issue on GitHub
if something is unclear or if there is an issue. I noticed a common usability defect—
visited and unvisited links being the same color—and reported the issue on GitHub.
The author apologized immediately, and the issue I opened was Closed fixed within
no more than 15 minutes. I think he is the kind of person one likes to work with.

http://fluxxor.com
http://fluxxor.com
http://fluxxor.com

Chapter 7

[127]

Summary
Now let's see what we covered in this chapter. We explained Om and ClojureScript,
which allow Lisp-based development that takes advantage of ReactJS's abilities. It
is said that ClojureScript may be the leading light of solutions that allow a beautiful
patchwork of different languages that are usable for frontend development,
compiling, or interpreting JavaScript as the new "bare metal."

Bacon.js is a very respectable technology that competes with ReactJS that allows
good functional reactive programming in the browser. This is presented, not as the
"one and only" good example, but as an example of good stuff that is beyond the
scope of this book.

We also covered Brython, a browser-based Python environment. It is not perfect
but interesting. It is highlighted as an example of what can be used as a language
outside of Lisp other than JavaScript for web development. As a reminder, http://
tinyurl.com/reactjs-compiled-javascript offers a directory of other languages
that compile to JavaScript or can be interpreted in a web browser, ranging from
syntactic sugar such as CoffeeScript to JavaScript extensions to separate languages
such as Ruby, Python (including Brython), Erlang, Perl, and so on and so forth.

Immutable.js plugs a hole in functional JavaScript by providing mainly collections
that allow copy-on-mutate without disrupting the functional advantages of
immutable data.

Jest is a behavior-driven development JavaScript unit testing framework that is
used by Facebook for ReactJS. Fluxxor is an implementation of controllers, actions,
and stores intended to make it easier to apply the Flux Architecture to JavaScript
development, including ReactJS.

Join us in the next chapter as we explore a more in-depth example using ReactJS.

http://tinyurl.com/reactjs-compiled-javascript
http://tinyurl.com/reactjs-compiled-javascript

[129]

Demonstrating Functional
Reactive Programming

in JavaScript – A Live
Example, Part I

In Chapter 4, Demonstrating Nonfunctional Reactive Programming—A Live Example, we
used ReactJS to migrate from the legacy code that has its own structure and was
written without using ReactJS. In the last chapter, Chapter 7, Not Reinventing the
Wheel – Tools for Functional Reactive Programming, we studied a few out of a great
many tools that we might use when working with ReactJS. In this chapter, we will
be covering a sort of central road of what to expect in mainstream development with
ReactJS. One may add quite a lot of options to the basics, but the intent is to give a
foundational example of how you can build a project with ReactJS.

We've spoken a bit about functional reactive programming. Now we will see it
live in action with ReactJS. We've also talked about how, conceptually, we have a
complete teardown and rebuild of the user interface. So you, as a developer, have

 states to manage instead of state transitions. Here, we will build
a render() method that will let you build just this, and you can call it whenever
you want.

In this chapter, we have the first installment of a partly stubbed green field project
built for ReactJS, this time working with the very sweet syntactic sugar in JSX. The
two areas of this book, meaning the earlier one-chapter project and this multichapter
project, are meant to be complementary. The project in this chapter stands alone, but
is meant to be expanded.

Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I

[130]

In this chapter, we will cover the following topics:

•	 An overview of the project and its inspiration
•	 The skeleton of the project, and the basics of the preferred approach

in ReactJS.
•	 Starting a first component in ReactJS
•	 Building a render() method
•	 Triggering display when you want to render or update the display

What we will be attempting in this
chapter
The example in the next three chapters is intended to represent a slightly larger green
field project. What we will be working on is a system that you should be able to see
by visiting http://demo.pragmatometer.com. The term "Pragmatometer" is taken
from the most dystopian of C. S. Lewis's novels, That Hideous Strength, in which the
ominous National Institute for Coordinated Experiments builds a transcendent or
nearly transcendent computer such as one might have loosely imagined ENIAC
when the novel was published (1945; by comparison, ENIAC was created in 1946).
Alternatively, you might imagine a steampunk novel's analytical engine doing with
a seemingly transcendent deck of punch cards. When the discussion turns to the
computers, it says:

"I agree with James," said Curry, who had been waiting somewhat impatiently to
speak. "The N.I.C.E. marks the beginning of a new era—the really scientific era.
Up to now, everything has been haphazard. This is going to put science itself on a
scientific basis. There are to be forty interlocking commitees sitting every day and
they've got a wonderful gadget—I was shown the model last time I was in town—
by which the findings of each committee print themselves off in their own little
compartment on the Analytical Notice-Board every half hour. Then, that report
slides itself into the right position where it's connected up by little arrows with all
the relevant parts of the other reports. A glance at the Board shows you the policy
of the whole Institute actually taking shape under your own eyes. There'll be a staff
of at least twenty experts in the top of the building working this Notice-Board in
a room rather like the Tube control rooms. It's a marvellous gadget. The different
kinds of business all come out in the Board in different coloured lights. It must have
cost half a million. They call it a Pragmatometer."

http://demo.pragmatometer.com

Chapter 8

[131]

I am not putting too fine a point on it, but C.S. Lewis apparently predicted the
Twitter that would not be built until decades after his death.

That point aside, we will be making a dashboard that features a simple 2 x 2 grid of
quadrants (the exact size and details are subject to hacking and tinkering), each one
of which is a pigeonhole that can hold different functions. In terms of responsive
design, we will correct to a 1 xn line of cells, one above the other. The features, as
they are arranged on the page, are as follows:

Calendar To-do list
Scratchpad Room to grow

The Calendar has a somewhat experimental user interface; it shines at showing
entries, perhaps days out, in a way that degrades gracefully to a sparse input
(so you don't need to click through multiple months to find out when some XYZ
appointment down the road is available). It might click with you, or it might not,
but it is interesting.

The To-do list implements a to-do list with some slightly nonstandard bells and
whistles. Instead of one checkbox for an item (strictly speaking, no checkbox is
needed), there are ten boxes, representing various states, and color-coded with
custom styling of the label to the right of the checkboxes so that you can tell, for
instance, what is important, active, or on the back burner.

The Scratchpad is a rich text area that can be used for scratching. It capitalizes
on CKeditor.

Finally, the Room to Grow is a placeholder for you to stick in your own two cents.
There is something that comes in by default, and you can see it as you explore.
But please do visit https://demo.pragmatometer.com, and see the default option
there (hint, hint!). There are many places for hacking and tinkering besides what is
explicitly advertised, but some possibilities include the following:

•	 Building an API client for several public websites: Most of the top
20 websites expose a RESTful API. Twitter would be the most obvious
candidate as the most authentic to the name of Pragmatometer, but news,
video, and social networking sites can work if they expose either an API
that is friendly to client-side JavaScript, or something else.

•	 Building an application: Build your own application for displaying.
•	 Making a playground: Build your own Pragmatometer or download the

source online, and keep three-fourths of the screen for the purposes detailed
here. Make the remaining one-fourth a playground for tinkering.

https://demo.pragmatometer.com

Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I

[132]

•	 Incorporating Google (or other) gadgets that others have made: You can
also incorporate gadgets that others have made, such as Google.

•	 Keeping the default application: You can keep the default application,
if you want.

Saying "the implementation is the spec" has a bad reputation, but a spec, written or not,
can be complemented neatly by sketching the appearance and behavior. Perhaps
using low-fidelity prototypes, which may draw helpful criticism more quickly than
something that looks pretty polished but will create an undesired social nuance of
people being less free in criticisms that have an implicit emotional payload of "Will
I be hurting others' feelings by criticizing something that looks as if someone put
a lot of work into it?" And this attitude is not a bad thing. In terms of the concern
that undergirds politeness, it is naïve to tell people, "be as brutal as it takes to speak
your mind," and actually expect other people to take this completely at face value
(or perhaps, you don't like receiving criticism any more than anyone else, but you
recognize its value in the whole of the software development process). You may
mean it without any mixed messages, but most of us have seen it meant with many
mixed messages. And even if you are the sort of production who almost salivates at
the prospect of some really helpful criticism, it does not help matters—or does not
help much—to tell people to stop acting like polite human beings when you show
them something you've created. But here, having seen a UI, played with it, and
thought how you can duplicate things can be a very invigorating way to understand
what is intended much more precisely than a legal-contract spec.

For this interface, there is one account, and the priority is for cross-synchronization
of updates. Let's begin assembling some of the basic skeleton. Building everything
within a single, large, and immediately invoked function expression, we have the
following:

 var Pragmatometer = React.createClass({
 render: function() {
 return (
 <div className="Pragmatometer">
 <Calendar />
 <Todo />
 <Scratch />
 <YouPick />
 </div>
);
 }
});

Chapter 8

[133]

Here, we define a container class for the entire project. The Calendar, Todo,
Scratch, and YouPick classes represent applications in the larger page; some
of them could have various layers of subcomponents as well.

The JSX optional syntactic sugar is meant to be readable to people who
can read HTML, but contains a greater invitation to contribute your
own components than HTML or really even XHTML (and possibly even
XML). In XML development, you can define whatever DTD you want,
but the usual rank-and-file XML author won't define new tags, possibly
even after having done a lot of work with XML (this is something
like programmers who can use functions or objects but not add either
functions or objects to a namespace). In JSX, it is routine for authors who
write any appreciable amount of JSX, by nature, to contribute tags that
are reusable.

The preceding code sample has <div className=, where the desired HTML is <div
class=. Because JSX compiles JavaScript and is meant to be a syntactic sugar only,
rather than an independent language in its depths, the decision was made to avoid
class and for in the rendered JavaScript. Use className to cover CSS class names
and htmlFor. HTML ID attributes may optionally be specified; JSX gets along with
the HTML IDs it puts in and the HTML IDs that you specify, along with some pixie
dust. If you need to enter the UTF8 literals outside of ASCII, don't give the ASCII
encoding of the symbol (—); instead, paste the literal inside your editor (—).

Furthermore, there is an XSS protection escape hatch available. The optimal intended
approach for using the language seems to be to solve the problem so that you will
mark up what should genuinely be marked up and include an XSS-protected display
of the user data.

Alternately, if you are willing to trust a third-party library, such as Showdown
(https://github.com/showdownjs/showdown), to render HTML without including
XSS's vulnerabilities, you can create a Showdown converter:

var converter = new Showdown.converter();
var hello_world = React.createClass({
 render: function() {
 var raw_markdown = '*Hello*, world!';
 var showdown_markup = converter.makeHtml(raw_markdown);
 return (
 <div dangerouslySetInnerHtml={{__html:
 showdown_markup}}>
 </div>
);
 }
});

https://github.com/showdownjs/showdown

Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I

[134]

Note that this code is a self-contained example and not part of the main
project that we have begun in this chapter.

This will render as a DIV variable containing Hello, world!.

This escape hatch, which may or may not serve as a rarely used escape hatch, is
central enough to be explicitly covered in the documentation. One gets the feeling
that the mainstream use of JSX, with XSS protection that escapes HTML (so that
a renders in a web page not as a but as an a function displayed
in the browser window), has benefits similar to unit testing. This is a point worth
pausing on for a moment.

Unit testing has come somewhat further down to earth; its early center of gravity was
around what was easiest to unit test—mathematical functions that would return an
appropriate value if given an appropriate input value. So, we would illustrate unit
testing with problems implicitly optimized to play to the strengths and needs of unit
testing, and show a red, green, refactor XP approach to appropriately solve a problem
such as converting integers to and from Roman numerals (good luck if you wanted to
test code that deals with a database or user interface). Unit testing caught perhaps 30
percent of the total errors, and as a rule, it tended to catch the least significant errors,
with the least coverage of the bugs that were the most difficult to resolve. Now there
is a more robust set of features, with it being entirely possible and straightforward
to make test assertions about how a user interface behaves given some mouse clicks
and other user interface behavior. Also, it is less of a matter of software that is written
to serve the needs of unit testing than unit testing that properly serves the needs of
software. It is possible that unit testing hit prime time when it was not yet ready for
prime time, like responsive design, about which some have said, "I've seen responsive
design mainly on websites advocating for responsive design." This was true when unit
testing and responsive design became buzzwords; but since then, they have matured,
and responsive design is pretty close to being the only game in town. Perhaps the
largest websites, such as Google, can afford to customize a solution for every mobile,
tablet, desktop, and watch environment. But for most customers, responsive design
has fairly effectively displaced its other competitors. It is now relatively uncommon for
websites to have some URLs for a desktop version and a mobile version and perform
browser direction and redirection to separate sites, which was once fairly mainstream.
These approaches have matured since they first entered the limelight.

Chapter 8

[135]

In the case of early unit testing, when you couldn't really test integration or user
interface behavior, there was one cardinal payoff to writing code for unit testing:
code written to be unit testable is usually better code. The same principle may speak
about writing as much as possible to cut with Facebook's grain, not against it, in
using ReactJS.

Right now, there is no particular premature hype about writing code in an approach
oriented to play well with the XSS protection surrounding JSX and not, as per the
deliberately chosen name, dangerously set innerHTML, which has been labeled an
escape hatch. Facebook could, if they wanted, try to go the "tough love" route and
advise people to structure and organize projects in a way that would fit in naturally
with XSS protection and JSX. But perhaps they are taking a humbler approach, both
making it clear how to bypass the XSS protection, and presenting this escape hatch as
perhaps something to avoid wherever possible.

The wisdom would appear to be as follows:

•	 As far as practicable, structure your applications to work appropriately with
the main anti-XSS approach adopted in ReactJS.

•	 If you want to do something that requires rendering, for example, HTML
tags in innerHTML, confine it to as small a space as you can and treat it like
the monads in Haskell used for the IO, necessary and perhaps nonnegotiable,
but quarantined to as small a space as is practicable.

•	 If you need to render tags, consider using HTML generated by a tool such
as Showdown for Markdown, which is not necessarily perfect and foolproof
but offers less surface area for HTML code that contains tags that have been
vetted and lessen the surface area for bugs in HTML code (possibly, this is a
use case for an HTML tag cleaner or an HTML-to-markdown converter that
stores markdown and renders HTML).

•	 Only if you cannot work the default way with XSS protection and can't
tag, clean, or work from markup, or anything else, should you store and
dangerously set innerHTML.

Let's move on to the YouPick tag included in the Pragmatometer definition.

Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I

[136]

This project's first complete component
You can see what this component implements at https://CJSHayward.com/
missing.html. For our first component, we pick a mostly skeletal implementation:

 var YouPick = React.createClass({
 getDefaultProps: function() {
 return null;
 },
 getInitialState: function() {
 return null;
 },
 render: function() {
 return <div />;
 }
 });

This skeleton returns empty, "falsy" values, which we will override. What we want
to do is take two strings, break them down into one-character substrings (excluding
tags), then display more and more of the first string, and then repeat the second
string. It makes for a very old joke displayed for the user.

There is a division of labor between properties, meant to be set once and never
changed and state, meant to allow changing. Note that state, being mutable, should
be treated privately, so as to avoid the shared mutable state that Facebook declared
war on. Technically, properties can be changed, but notwithstanding this, properties
that should be set at the beginning (possibly passed down by a parent component)
and then frozen. The state is something that can change, although the general pattern
in relation to Flux is to avoid the shared mutable state. In general, this means that
stores have getters but not setters; they might receive actions from dispatchers, but
they are not at the mercy of anyone who has reference to the core object.

For this object, the strings are obvious candidates for the default props. Note,
however, that the timestamp that a component began is not appropriate for the
props, because getDefaultProps() will be evaluated before any instances are
created, thus enabling a borg variation on the singleton pattern, where there are any
number of components of this type. Potentially, there are more of them added over
time, but all of them share a starting timestamp before any of them were instantiated.

So let's flesh out the getDefaultState method:

 getDefaultProps: function() {
 return {
 initial_text: '<p>I am terribly ' +
 'sorry.</p><p>I cannot provide you with ' +

https://CJSHayward.com/missing.html
https://CJSHayward.com/missing.html

Chapter 8

[137]

 'the webapp you requested.</p><p>You must ' +
 'understand, I am in a difficult position. You ' +
 'see, I am not a computer from earth at all. I ' +
 'am a \'computer\', to use the term, from a ' +
 'faroff galaxy: the galaxy of <a ' +
 'href="https://CJSHayward.com/steel/">Within ' +
 'the Steel Orb.</p><p>Here I am ' +
 'with capacities your world\'s computer science ' +
 'could never dream of, knowledge from a million, ' +
 'million worlds, and for that matter more ' +
 'computing power than Amazon\'s EC2/Cloud could ' +
 'possibly expand to, and I must take care of ' +
 'pitiful responsibilities like ',
 interval: 100,
 repeated_text: 'helping you learn web development '
 };
},

Perhaps the first change to this is to convert the text from HTML to Markdown. This
is not strictly necessary; this is text that we have written ourselves, and we may have
more confidence in text that we've written—confidence that it will not trigger XSS
vulnerabilities—than text generated from our Markdown. In the world of computer
security, a great deal of trouble can be presented by giving as little privilege out,
stingily, as will let people or things get their work done: hence the saying, "Stinginess
with privilege is kindness in disguise". Facebook has made not so much a stellar
decision that shows uniquely good judgment as avoiding handing its users a live
grenade. It is very, very easy to allow vulnerabilities that will run hundreds of megs
of hostile JavaScript, with security certification assuring the user that this hostile
JavaScript is genuinely from your site. For more information, please see http://
tinyurl.com/reactjs-xss-protection. In this case, only initial_text, and
not repeated_text, needs to be changed, as repeated_text contains only letters
and spaces; thus, it works the same as plain text, HTML, or Markdown. Our revised
initial_text reads like this:

 initial_text: '**I am *terribly* sorry.**\r\n\r\n' +
 'I cannot furnish you with the webapp you ' +
 'requested.\r\n\r\nYou must understand, I am in ' +
 'a difficult position. You see, I am not a ' +
 'computer from earth at all. I am a ' +
 '\'computer\', to use the term, from a faroff ' +
 'galaxy, the galaxy of **[Within the Steel Orb] +
 '(https://CJSHayward.com/steel/)**.\r\n\r\nHere ' +
 'I am with capacities your world's computer ' +
 'science could never dream of, knowledge from a ' +

http://tinyurl.com/reactjs-xss-protection
http://tinyurl.com/reactjs-xss-protection

Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I

[138]

 'million million worlds, and for that matter ' +
 'more computing power than Amazon's EC2/Cloud ' +
 'could possibly expand to, and I must take care ' +
 'of pitiful responsibilities like ',

Before continuing further, let's create stubs for the other three main components,
which we will expand later on:

 var Calendar = React.createClass({
 render: function() {
 return <div />;
 }
 });
 var Scratchpad = React.createClass({
 render: function() {
 return <div />;
 }
 });
 var Todo = React.createClass({
 render: function() {
 return <div />;
 }
 });

We will set the state as the timestamp for this object's creation. At one glance, this
might seem like something that belongs to properties, and in spirit, it is. But we want
each component instance to keep its own creation date, and therefore start at zero
from when it was created. If we or someone else reuse our work and create more
than one instance of this on a page, each keeping its appropriate time.

Thus, we change the getInitialState method of YouPick to the following:

 getInitialState: function() {
 return {
 start_time: new Date().getTime()
 };
 },

Chapter 8

[139]

The render() method
Next, we implement the render method. What we do is take the properties, which
should never be directly mutated and probably should not have any existing value
changed, and get the two strings from them. We will, token by token, display
everything in the first string, and repeat the second as many times as the component
is displayed. We will also create a tokenize function for rendered HTML converted
from Showdown—this breaks its argument to each next tag or the next character—and,
in a moment, see why we are creating a verbose anonymous function instead of a
regular expression (in a nutshell, writing readable code in lieu of a regular expression
appears verbose compared to the terseness available in writing write-only code).

The render method consists of more than half the lines of code as we already have it.
Let's go through it step by step:

 render: function() {

One of the points of breakage in JavaScript surrounds this. Among the horror
stories that many readers may be familiar with is that if you create a constructor
(the convention is to give a warning label by capitalizing the first letters of
constructors and non-constructor functions, thus providing a way to cause serious
misunderstanding by not holding down the Shift key) that adds methods and
fields to an object and you have x = Foo(); when you actually meant x = new
Foo();, then the Foo constructor will trample the global namespace and add or
clobber variables in it. Douglas Crockford, after originally including the "bad
implementation of Java" pseudoclassical inheritance in The Good Parts, had second
thoughts and eliminated it from The Better Parts, after he made an Adsafe program
that could maintain security only if the this were removed from use. Then he
started to try out the medicine he was foisting on others, and suddenly found a
bunch of things he liked when he stopped using this. We can't drop the this and
still use technologies like ReactJS, but we do have a say about whether we choose to
drag in this when we don't need to. But ReactJS uses it, and it might be good practice
to use pseudo-classical approaches based on this as much as needed to talk with
ReactJS, but not (much) more.

Here, we have the patterned hack to deal with this not always being available for
our first line we have:

 var that = this;

Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I

[140]

The tokenize() function is a function that breaks HTML mostly into characters but
keeps tags together:

 var tokenize = function(original) {
 var workbench = original;
 var result = [];
 while (workbench) {
 if (workbench[0] === '<') {
 length = workbench.indexOf('>') + 1;
 if (length === 0) {
 length = 1;
 }
 } else {
 length = 1;
 }
 result.push(workbench.substr(0, length));
 workbench = workbench.substr(length);
 }
 return result;
 }

We introduce helper variables to mitigate multiline expressions. The two variables
following could as well be refactored out, but multiline expressions without them
are the sort of thing that programmers glance at and then skip down, saying, "I'll
read it if I have to." This is a bad thing. These variables hold the original (Markdown)
strings converted to HTML:

 var initial_as_html = converter.makeHtml(
 that.props.initial_text);
 var repeated_as_html = converter.makeHtml(
 that.props.repeated_text);

The HTML generated by Showdown has proper paragraph formatting. This is a
good thing, but in this case, it means paragraph tags separating things that should
belong to the same paragraph. We remove the counterproductive tags in this slightly
unusual case:

 if (initial_as_html.substr(initial_as_html.length - 4)
 === '</p>') {
 initial_as_html = initial_as_html.substr(0,
 initial_as_html.length - 4);
 }
 if (repeated_as_html.substr(0, 3) === '<p>') {
 repeated_as_html = repeated_as_html.substr(3);
 }

Chapter 8

[141]

 if (repeated_as_html.substr(repeated_as_html.length - 4)
 === '</p>') {
 repeated_as_html = repeated_as_html.substr(0,
 repeated_as_html.length - 4);
 }

We tokenize the HTML generated from our Markdown:

 var initial_tokens = tokenize(initial_as_html);
 var repeated_tokens = tokenize(repeated_as_html);

This step calculates the number of tokens that are desired at a particular point
of time, in what has been called continuous time semantics. This means that
however often or rarely we call the render() method, the content will be rendered
appropriately when it is called, and (apart from choppiness) nothing will change if
you double the frequency at which the render function is called. The tokens function
is not a list of tokens, but the count of how many tokens should be displayed now:

 var tokens = Math.floor((new Date().getTime() -
 that.state.start_time) / that.props.interval);

We have a workbench as an array to which we keep adding or replacing with more
tokens to display so as to build up the string that should be displayed. These should
be one-character or one-tag tokens:

 var workbench;

If the number of tokens that should be displayed is at most the number of tokens
from the initial string, we render that part of the string:

 if (tokens <= initial_tokens.length) {
 workbench = initial_tokens.slice(0, tokens);
 }

If we need more tokens, we keep looping over the already available tokens from the
repeated tokens:

 else {
 workbench = [];
 workbench = workbench.concat(initial_tokens);
 for(var index = 0; index < Math.floor((new
 Date().getTime() - that.state.start_time) /
 that.props.interval) - initial_tokens.length; index +=
 1) {
 var position = index % repeated_tokens.length;
 workbench = workbench.concat(

Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I

[142]

 repeated_tokens.slice(position, position + 1));
 }
 }

Here is roughly how we can render an element containing text that we have
calculated:

 return (
 <div dangerouslySetInnerHTML={{__html:
 workbench.join('')}} />
);
}

Triggering the actual display for what we
have created
We have to manually refresh the display for updates. Because ReactJS is so fast,
we really can afford to wastefully render the page every millisecond. We put the
following code at the end, just preceding the end of the immediately invoked
function expression:

 var update = function() {
 React.render(<Pragmatometer />,
 document.getElementById('main'));
 };
 update();
 var update_interval = setInterval(update, 1);
})();

For the last major piece of our puzzle, let's look at an HTML skeleton that will house
these components for now. The HTML is not especially interesting, but is provided
with an interest in reducing guesswork:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Pragmatometer</title>
 <style type="text/css">
 body {
 font-family: Verdana, Arial, sans;
 }
 </style>
 </head>
 <body>

Chapter 8

[143]

 <h1>Pragmatometer</h1>
 <div id="main"></div>
 <script src="//cdnjs.cloudflare.com/ajax/libs/react/0.12.
 2/react.js">
 </script>
 <script
 src="//cdnjs.cloudflare.com/ajax/libs/showdown/0.3.1/
 showdown.min.js">
 </script>
 <script src="/js/site.js"></script>
 </body>
</html>

And what does it look like!

Summary
Here, we saw the nuts and bolts used for a simple application, perhaps more
whimsical than the the TodoMVC function. For now, we're just making some basic
explanations.

Join us in the next chapter for a to-do list that offers ways to mark a task as in
progress, important, having problems, or other useful points.

[145]

Demonstrating Functional
Reactive Programming

in JavaScript with a Live
Example Part II – A To-do List

In this chapter, we will be walking through a to-do list. This to-do list will illustrate
a slightly obscure kind of two-way data binding. ReactJS's forte is via one-way data
binding, and most problems, solved in the idiomatic ReactJS fashion, will normally
follow the von Neumann model with one-way data binding (it is claimed that two-
way data binding is usually not needed, and articles such as AngularJS: The Bad Parts
suggest that two-way binding carries a heavy price tag by default, especially as far as
scaling is concerned).

If we build our to-do list in an obvious way, the checkboxes will be unresponsive.
We can click on them as much as we want, but they will never be checked because
one-way data binding uses props—or in our case, the state—to determine whether
they will be checked. We will make a foray into two-way data binding, which means
that not only will the checkboxes be live, but also clicking on a checkbox will update
the state. This means that what is displayed in the user interface, and what is behind
the scenes as the state are kept in sync with each other.

The to-do list, as a distinctive feature, offers more than Done or Not done as a status.
It has checkboxes for Important, In Progress, Problems, and so on.

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part II – A To-do List

[146]

This chapter will be a walkthrough of the following:

•	 The nuts and bolts of using add-ons as in two-way data binding
•	 Setting the appropriate initial state
•	 Making text inside a TEXTAREA editable
•	 A render() function that does some heavy lifting
•	 Inner functions used by render()
•	 Building the table to display
•	 Rendering our result
•	 Distinguishing the columns visually

Adding a to-do list to our application
In the previous chapter, you implemented a YouPick placeholder for an application
of your own to create. Here, we will be commenting it out so as to display only our
to-do application (we can, and we will, arrange things in different parts of the screen,
but now we are displaying only one thing at a time). In JSX, the way to comment out
code is to wrap it in a C-style multiline comment, and then wrap that in curly braces,
so <YouPick /> becomes {/* <YouPick /> */}:

 var Pragmatometer = React.createClass(
 {
 render: function()
 {
 return (
 <div className="Pragmatometer">
 <Calendar />
 <Todo />
 <Scratch />
 {/* <YouPick /> */}
 </div>
);
 }
 }
);

Chapter 9

[147]

Including ReactJS add-ons in our project
We will open the Todo class and include the React.addons.LinkedStateMixin
function. Note that we are using an add-on here, and this means that when we
include ReactJS in our page, we need to include a build containing add-ons. So,
consider this line:

//cdnjs.cloudflare.com/ajax/libs/react/0.13.3/react.min.js

Instead of it, we include the following:

//cdnjs.cloudflare.com/ajax/libs/react/0.13.3/react-with-addons.min.js

The opening of the Todo class reads as follows:

 var Todo = React.createClass(
 {
 mixins: [React.addons.LinkedStateMixin],

Setting the appropriate initial state
The initial state is empty; there are no to-do items on the list, and there is empty text
for any new to-do item:

 getInitialState: function()
 {
 return {
 'items': [],
 'text': ''
 };
 },

Note that some initial state setting may involve heavy lifting; here, it is quite simple,
but this need not always be the case.

Making text editable
As a minor housekeeping detail, we want obvious behavior when someone types
in the box. Hence we define a two-way data binding for the TEXTAREA so that if
someone types in the TEXTAREA, the change is added to the state, and overflows
back to the TEXTAREA:

 onChange: function(event)
 {
 this.setState({text: event.target.value});
 },

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part II – A To-do List

[148]

If someone submits a new to-do item by hitting the Submit button after entering
some text, we add that item to the list:

 handleSubmit: function(event)
 {
 event.preventDefault();
 var new_item = get_todo_item();
 new_item.description = this.state.text;
 this.state.items.push(new_item);
 var next_text = '';
 this.setState({text: next_text});
 },

Heavy lifting with render()
The render() function is slightly more involved, containing inner functions and
much of the heavy lifting of a responsive user interface based on two-way data
binding. Just inside of it, we use the var that=this; pattern, which is absent
from most ReactJS code. In most of ReactJS, we can just use this and it works
automagically; here we are defining inner functions that are not as directly
built as other ReactJS functions, and we retain a reference to the this object:

 render: function()
 {
 var that = this;
 var table_rows = [];

Inner functions used to render
The table_rows array will hold to-do items. Having defined these, we define our
first inner anonymous function, handle_change(). If the user clicks on one of the
checkboxes for a to-do item, we extract the HTML ID, which tells its to-do item's ID,
as well as which field (that is, checkbox identifier) has been toggled:

 var handle_change = function(event)
 {
 var address = event.target.id.split('.', 2);
 (that.state.items[parseInt(address[0])][address[1]] =
 !that.state.items[parseInt(address[0])][address[1]]);
 };

Chapter 9

[149]

The display_item_details() function is the lowest of a few functions used to
build up the display. It builds up an individual TD containing a checkbox:

 var display_item_details = function(label, item)
 {
 var html_id = item.id + '.' + label;
 return (<td className={label} title={label}>
 <input onChange={handle_change}
 id={html_id} className={label} type="checkbox"
checked={item[label]} />
 </td>
);
 };

Next, display_item() uses these building blocks to build the display for a to-do
item. Besides including the rendered nodes, that is, checkboxes, it applies markdown
formatting to the text in the box:

 var display_item = function(item)
 {
 var rendered_nodes = [];
 for(var index = 0; index < todo_item_names.length;
 index += 1) {
 rendered_nodes.push(
 display_item_details(todo_item_names[index], item)
);
 }
 return (<tr>
 {rendered_nodes}
 <td dangerouslySetInnerHTML={{__html:
 converter.makeHtml(item.description)}} />
 </tr>
);
 };

Building the result table
For each item, we add a table row:

 table_rows.push(
 <tr>{this.state.items.map(display_item)}</tr>);

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part II – A To-do List

[150]

Finally, a JSX expression that includes various values calculated so far is returned,
and it wraps them in a full-featured table:

 return (
 <form onSubmit={this.handleSubmit}>
 <table>
 <thead>
 <tr>
 <th>To do</th>
 </tr>
 </thead>
 <tbody>
 {table_rows}
 </tbody>
 <tfoot>
 <textarea onChange={this.onChange}
 value={this.state.text}></textarea>

 <button>{'Add activity'}</button>
 </tfoot>
 </table>
 </form>
);
 }
 }
);

It is left as an exercise for you to hide and display rows of data when checkboxes that
should hide and display them are checked.

Here's one brief remark about the use of tables: there has been a shift from
primarily using tables to primarily using CSS for formatting. However,
the exact rule concerning the use of tables is not precisely "don't use
tables at all" or "only use tables when you really have to," but "use tables
for tabular data." This means grids, such as what we displayed here. The
table with its grid of checkboxes is a good example of a situation where
tables are perfectly appropriate in the current markup.

Chapter 9

[151]

Rendering our result
Our result will render only when we tell it to; this can be seen as a chore, or as an
added degree of freedom on our end. Before we end the closure, we write this:

var update = function()
{
 React.render(<Pragmatometer />,
 document.getElementById('main'));
};
update();
var update_interval = setInterval(update, 100);

Differentiating columns visually
At present, our undifferentiated grid of checkboxes runs together. We could do
several things to differentiate them. A spectrum of colors in the index.html CSS
differentiates them:

 td.Completed {
 border-left: 3px solid black;
 background-color: white;
 }
 td.Delete {
 background-color: gray;
 }
 td.Invisible
 {
 background-color: black;
 }
 td.Background
 {
 background-color: #604000;
 }
 td.You.Decide
 {
 background-color: blue;
 }
 td.In.Progress
 {
 background-color: #00ff00;
 }

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part II – A To-do List

[152]

 td.Important
 {
 background-color: yellow;
 }
 td.In.Question
 {
 background-color: darkorange;
 }
 td.Problems
 {
 background-color: red;
 }

Summary
In this chapter, we had a walkthrough of a slightly-more-than-minimal to-do list.
As far as functionality is concerned, we saw an interactive form built in a way that
includes two-way data binding. ReactJS's usual recommendation is that most of
the time, you think you need two-way data binding, but you would really be better
off just using one-way data binding. However, the framework does not seem to
be intended as a straightjacket, and where ReactJS says, "You usually shouldn't do
X," there is a way to do X. For both dangerouslySetInnerHTML and two-way data
binding, you can opt into it on specific points, but every effort has been made to
opt for better engineering. The dangerouslySetInnerHTML function is a singularly
forceful way to name something, and the clearly expressed opinion of the ReactJS
team is that the von Neumann model calls for one-way data binding, at least in most
cases. However, the ReactJS philosophy explicitly allows developers to use features
they think are best to usually avoid; the final verdict is with you.

Join us in our next chapter as we create a calendar application that handles recurring
appointments gracefully.

[153]

Demonstrating Functional
Reactive Programming in

JavaScript: A Live Example
Part III – A Calendar

This chapter will be the most involved in the book. Throughout the book, there
have been minor to not-so-minor differences between chapters. These are intended
so that if you meet a fork in the road, this book offers coverage to both options.
The chapters are intended to be complementary, instead of hitting the same note all
the time. Here, we will not be revealing much more about core ReactJS, but show
how to engage a problem with the thorniness of real-world business problems,
and a solution that engages ReactJS but is not focused on it. We will be engaging
ReactJS on a more serious application, a calendar with support for recurring events
that offers more sophistication and power than, for instance, Google Calendar, as
seen in the upcoming figures. If you have a 7:00 PM second and fourth Thursdays each
month Toastmasters' Club meeting, it's supported! The core functionality is very much
intended not to be a mere toy.

In this chapter, we will discuss the following points:

•	 Learning about calendars with repeating calendar entries
•	 The nuts and bolts for a class and its Hijaxed form
•	 The basic data types—plain old JavaScript objects
•	 A rendering function—an outer wrapper
•	 Rendering the page—a one-time calendar entry UI

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[154]

•	 An expanded user interface for recurring calendar entries
•	 Rendering calendar entries—anonymous helper functions
•	 The main loop for displaying calendar entries
•	 Sorting each day's calendar entries for display
•	 Supporting Markdown in calendar entry descriptions
•	 Working on one main component at a time

Play it again Sam – an interesting
challenge
The following is a sample screenshot showing how you enter a repeating entry in
Google Calendar:

Chapter 10

[155]

This calendar system is inspired by a private calendar system that uses regular
expressions matched against a date string, like this: Wed Apr 29 18:13:24
CDT. Also, there is really quite a lot that can be done with the power of regular
expressions. An entry to check car engine fluids, for instance, every first Saturday of
even-numbered months, is periodic_Sat.(Feb|Apr|Jun|Aug|Oct|Dec).(1| 2| 3|
4| 5| 6| 7)..................,Check fluid levels in car. This, however,
is nothing compared to the hairy beast of a truly complex regular expression. But it
does give a hint on why regular expressions are considered write-only code. It may
be guessed that even if you are a regular expression writer, you put off checking
until later (if you have to). In other words, you don't want to check whether the
regular expression quoted earlier in this paragraph matches the date for the first
Saturdays of even-numbered months. This is the effect that regular expressions have
on programmers, and this regular expression is elegant compared to a URL regular
expression, which begins like this:

~(?:\b[a-z\d.-]+://[^<>\s]+|\b(?:(?:(?:[^\s!@#$%^&*()_=+[\]{}\|;:'

The code in this chapter is intended to be readable, at times slowly and laboriously,
but very clearly without a trace of regular expressions. It has been said that
a programmer has a problem with strings, and says, "I know! I'll use regular
expressions!" Now the programmer has two problems.

In my own experience, I've been using regular expressions for years, and they
are by far, byte for byte, my most effective defect injection method, and I often
get simple regular expressions wrong the first time. This is why I'm following
others in deprecating regular expressions as Not a Good Part.

The program, by default, presents a relatively simple user interface for entering
one-time calendar entries.

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[156]

Here is a screenshot of our program's user interface as it is initially presented,
without a drill-down into the smorgasbord of options for repeating calendar entries:

Progressive disclosure reserves a more detailed combination of supported items
for recurring calendar entries, with added controls for repeating calendar entries
displayed if a user opts to see them.

The following is a screenshot of the more advanced interface for recurring calendar
entries. Because there are several different ways in which recurring calendar entries
are often organized, several controls are available.

Chapter 10

[157]

Classical Hijaxing works well
As we open the class, one member is conspicuous by its absence—mixins: [React.
addons.LinkedStateMixin]. This member was featured heavily in our previous
chapter where we had two-way data binding between form fields, for which
we specified the HTML field/JSX component's value and this complementary
implementation where the form is not controlled (value not being specified). Here,
form elements are queried in the old-fashioned way as they are needed. While
ReactJS strongly believes that one-way data binding should be the norm, two-way
data binding can be legitimate, preferably in a small and quarantined area. This
chapter and the previous ones are intended to provide working examples of two
slightly different approaches so as to give a reference to the one that you prefer:

var Calendar = React.createClass({

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[158]

The getInitialState() function initializes two items. One is a list for calendar
entries. The other is a patient who is, on the operating table until the surgery is
complete and it can be added to the list of live entries.

There are two types of entries: a smaller, basic entry that just gives the date for a one-
off calendar entry, and a larger, more involved entry that gives the fuller information
that is needed for a repeating series of calendar entries. Another implementation
might keep them in separate lists; here, we use one list and check individual entries
to see whether they have the repeats field, which recurring series have and one-off
calendar entries lack:

 getInitialState: function() {
 return {entries: [], entry_being_added: this.new_entry()};
 },

The handle_submit() function Hijaxes form submission, taking the entry that is on
the operating table and filling in its fields, whether for a one-time calendar entry or
for a series. Then it adds the entry to the list of entries and resets the form (it would
be simpler to simply reset() the form, but this provides slightly finer control,
updating the default date to today's date so that the form's reset() does not always
reset the page originally loaded to the date).

The entries are formulaic in character—all plain old JavaScript objects, easily
JSON-serializable—and are, in essence, dictionaries containing strings, integers, and
Booleans (in two cases, the entries also contain other dictionaries that contain strings
and integers). There is no use of closures or other more sophisticated techniques
here; the design is intended to be simple enough for someone to attentively read
handle_submit() and accurately know how one-time and recurring calendar
entries are represented.

The handle_submit() function pulls from the form information on whether it
represents a one-time or repeating calendar entry:

 handle_submit: function(event) {
 event.preventDefault();
 (this.state.entry_being_added.month =
 parseInt(document.getElementById('month').value));
 (this.state.entry_being_added.date =
 parseInt(document.getElementById('date').value));
 (this.state.entry_being_added.year =
 parseInt(document.getElementById('year').value));
 if (document.getElementById('all_day').checked) {
 this.state.entry_being_added.all_day = true;
 }

Chapter 10

[159]

 (this.state.entry_being_added.description =
 document.getElementById('description').value);
 if (this.state.entry_being_added.hasOwnProperty('repeats')
 && this.state.entry_being_added.repeats) {
 (this.state.entry_being_added.start.time =
 this.state.entry_being_added.time);

At the end, it adds the entry read from the form to the list of live entries and puts a
new one in place for further data entry:

 var old_entry = this.state.entry_being_added;
 this.state.entries.push(this.state.entry_being_added);
 this.state.entry_being_added = this.new_entry();
 var entry = this.new_entry();
 (document.getElementById('month').value =
 entry.month.toString());
 (document.getElementById('date').value =
 entry.date.toString());
 (document.getElementById('year').value =
 entry.year.toString());
 document.getElementById('all_day').checked = false;
 document.getElementById('description').value = '';
 document.getElementById('advanced').checked = false;
 if (old_entry.hasOwnProperty('repeats') &&
 old_entry.repeats) {
 (document.getElementById('month_based_frequency').value =
 'Every');
 document.getElementById('month_occurrence').value = '-1';
 document.getElementById('series_ends').checked = false;
 (document.getElementById('end_month').value =
 '' + new Date().getMonth());
 (document.getElementById('end_date').value =
 '' + new Date().getDate());
 (document.getElementById('end_year').value =
 '' + new Date().getFullYear() + 1);
 }
 },

Here, we create a new entry. This will be a one-time calendar entry that can be
augmented to represent a series later on, if desired.

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[160]

Here is a screenshot of the calendar with the one one-time event represented:

Built with usability in mind, but there's
still room to grow
Here's a note that may address a confusing point of the code: the time units
represented in an entry are not intended to represent everything that a JavaScript Date
object represents, but to be maximally compatible with a JavaScript Date object. This
means, in particular, that some programmer-confusing designs of the Date object are
accommodated in our code because the JavaScript Date object numbers the dates of a
month from 1 to 31, just like general calendar use, but months are represented from 0
(January) to 11 (December). Similarly, hours range from 0 to 23 in the Date object.

Chapter 10

[161]

This function is a constructor in terms of what it does, but it is not designed for the
new keyword, as the entire constructor and this is something that Crockford no
longer includes in The Better Parts after he tried—in the wake of creating AdSafe, which
forbade the use of the this keyword for security reasons—to take the medicine he was
prescribing for others. He found that his code got smaller and better for the discipline.
Working with code built to use this is nonnegotiable for serious work in ReactJS, but
it may be suggested that we should opt out when we do not need to.

There is one more specific detour, as some more perceptive readers may note: the
initial hours are set to 12 instead of, for instance, 0. The school that says not to allow
the user to enter invalid data in the first place can, by itself, lead to some "anti-
patterns" in usability. Consider the hall-of-shame-worthy interface to enter a United
States social security number, which should be needed very rarely and not because
you need an institution-wide identifier.

The next screenshot shows perhaps the worst way—in terms of usability and user
interface concerns—of ensuring that (something that could be) a United States social
security number is entered in an appropriate format:

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[162]

This user interface is not appropriate; a much better approach would be to allow
a text input, use JavaScript to enforce exactly nine digits, and simply ignore the
hyphens (and preferably any other non-digit characters).

This interface, as implemented, represents careful thoughts but real compromises
with respect to usability, and a good laboratory could probably improve it nicely
(the Holy Grail here would be to have one text field where the user types the time
and the system automagically uses heuristics to identify what was really meant,
but that system might have trouble identifying whether a calendar entry scheduled
at 8 is at 8 A.M. or 8 P.M.) Putting A.M. or P.M. immediately after the hour and in
the same input, as is done a bit further down, is a violation of the principle of least
astonishment, which says that whatever the software does, it should astonish the user
the least. The expected approach, which is usually the right approach, is to have one
field for hours, one field for minutes, and one field for A.M. or P.M. But depending
on the default values, this allows someone with a mid-afternoon commitment to enter
3 for the hours, 15 for the minutes, and click on Save, only to get an appointment
scheduled for 3:15 AM. Mistakes are still possible, as they always are, but the design
that is taken is intended to help people start in the middle of the day and have more
of a fighting chance of entering the hour that they really intended.

The following screenshot shows our program's default user interface, without the
added controls for the user interface. It shows the drop-down menu for the hour of
the day, intended as a sensible default and to reduce user errors of the time being
entered as AM or PM:

Chapter 10

[163]

One usability improvement on the interface would be to use—instead of a minute
dropdown—a text field with JavaScript validation, enforcing an integer value from
0 to 59, possibly with a leading zero before a single-digit value.

But let's move on from the default starting hours of the noon to something else.

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[164]

Here is an example of a calendar with a one-time event and a repeating event:

Plain old JavaScript objects are all
you need
Let's take a look at the following code:

 new_entry: function() {
 var result = {};
 result.hours = 12;
 result.minutes = 0;
 result.month = new Date().getMonth();
 result.date = new Date().getDate();
 result.year = new Date().getFullYear();

Chapter 10

[165]

 result.weekday = new Date().getDay();
 result.description = '';
 return result;
 },

For one-time calendar entries, the fields are used just as you might expect. For
series of calendar entries, the date becomes not the time when the calendar entry
occurs, but the time when it starts. The user interface offers several ways that you
might narrow down when a calendar entry occurs. This can be said to be every first,
Tuesday only, and for a particular month. Every selection that is made narrows
things down further, and so the desired usage is to be just specific enough to
request the behavior that you want.

Most of the variable names here are meant to be self-explanatory. Two that might
need explanation are frequency and month_occurrences. The frequency variable
has values of Every, Every First, Every Second, Every Third, Every Fourth,
Every Last, Every First and Third, and Every Second and Fourth (this is the
part of the web application that accommodates your Toastmasters' meeting at 7:00
P.M. every second and fourth Thursday). The month_occurrences variable specifies
in which month something occurs (0 to 11 as per the JavaScript Date object for
January to December, or -1 to indicate every month):

 new_series_entry: function() {
 var result = this.new_entry();
 result.repeats = true;
 result.start = {};
 result.start.hours = null;
 result.start.minutes = null;
 result.start.month = new Date().getMonth();
 result.start.date = new Date().getDate();
 result.start.year = new Date().getFullYear();
 result.frequency = null;
 result.sunday = false;
 result.monday = false;
 result.tuesday = false;
 result.wednesday = false;
 result.thursday = false;
 result.friday = false;
 result.saturday = false;
 result.month_occurrence = -1;
 result.end = {};
 result.end.time = null;
 result.end.month = null;
 result.end.date = null;
 result.end.year = null;
 return result;
 },

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[166]

Here is a screenshot that shows an activity that repeats every other week:

Progressive disclosure that starts simply
The on_change() function is called when the checkbox for repeating calendar entries
is ticked, and it allows progressive disclosure, displaying the entire user interface for
repeating calendar entries if the user opts for them. It toggles this.state.entry_
being_added.repeats, which is respected by the render() function. This function
displays the additional form area if the entry that is presently on the operating table
has a repeats field, and it is true. If the entry does not have a repeats field, a new
series is created, any time data already entered in the one-time calendar entry is
copied over, and the new and (partly) blank entry is placed on the operating table:

Chapter 10

[167]

 on_change: function() {
 if (this.state.entry_being_added.hasOwnProperty('repeats') {
 (this.state.entry_being_added.repeats =
 !this.state.entry_being_added.repeats);
 } else {
 var new_entry = this.new_series_entry();
 new_entry.time = this.state.entry_being_added.time;
 new_entry.month = this.state.entry_being_added.month;
 new_entry.date = this.state.entry_being_added.date;
 new_entry.year = this.state.entry_being_added.year;
 this.state.entry_being_added = new_entry;
 }
 },

The following screenshot shows an event that happens every other week live in
the interface:

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[168]

A render() method can easily delegate
The (outer) render function, is more of a wrapper than a workhorse. It displays the
fields for a one-time calendar entry that belongs to both one-time calendar entries and
series. Additionally, if the calendar entry that is on the operating table is a recurring
calendar entry (which will be true only if the checkbox that indicates a recurring
calendar entry is checked), this function includes the added form elements that are
appropriate for a recurring calendar entry:

The JSX syntax is surprisingly forgiving. However, it does have
some rules, and they are enforced with descriptive error messages,
including that if there are multiple elements, they need to be wrapped
in an enclosing element. So, you do not write Hello,
world!. Instead, you write Hello</
em>, world!. But given a few other
ground rules, JSX will do the right thing for a remarkably broad stretch of
uses and abuses.

Here is a render() method, which is a central method for any component you
define. In some cases the render() method will not be monolithic, but will delegate
some or all of its work to other methods. Let's explore:

 render: function() {
 var result = [this.render_basic_entry(
 this.state.entry_being_added)];
 if (this.state.entry_being_added &&
 this.state.entry_being_added.hasOwnProperty('repeats')
 this.state.entry_being_added.repeats) {
 result.push(this.render_entry_additionals(
 this.state.entry_being_added));
 }
 return (<div id="Calendar">
 <h1>Calendar</h1>
 {this.render_upcoming()}<form onSubmit={
 this.handle_submit}>{result}
 <input type="submit" value="Save" /></form></div>);
 },

Chapter 10

[169]

Boring code is better than interesting
code!
Readers familiar with Terry Pratchett would have probably heard of Interesting
Times, which opens with something that has been misattributed to China in an
urban legend: There is a curse. They Say: May You Live in Interesting Times! One of the
characters, Rincewind (this is not a kind of cheese), is on a perennial quest for things
that are boring, and boring is precisely what he never gets. Part of the book's plot
has Rincewind tricked from living on a remote, boring tropical island to a teeming
empire where all sorts of interesting things involving him keep on happening. For
Rincewind, boring is a kind of Holy Grail that keeps on slipping through his fingers.

This code is meant to be boring, Rincewind-style. It would be possible to write more
concise code that would populate a hash (or array) for hour_options rather than
specify the array directly. But it would not be so easily checked to see whether it is
right or wrong. And developing in this way doesn't mean extra typing, which (expert
opinions have recognized this) is not any real bottleneck in programming.

The way the following code works essentially defines arrays, and then these
arrays are used to create/form elements (which are mostly SELECT populated in a
straightforward fashion from the arrays). The task that it accomplishes is to display
the user interface for a one-time calendar entry (plus the checkbox to indicate a
recurring calendar entry).

There has been a conscious decision in this chapter to do things the boring way,
with one exception—populating the menu for the number of days in a month that
is intended. This could be 28, 29, 30, or 31 days. We show the code to generate the
dropdown menu for hours; minutes (and months) are simpler examples of the
same pattern.

No programmer's wrists were harmed in the production of this chapter
(it really didn't take that much typing or development time).

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[170]

A simple UI for simply non-recurring
entries...
For the more basic type of calendar entry, the kind that only happens once, we collect
the date, month, and year, defaulting to the current date's values. Some things are
"all-day" events for that day, such as someone's birthday; others start at a specific
time. The interface could possibly be expanded to include optional end time. This
functionality would be an extension of the same principles demonstrated here.

We begin to see the UI for rendering basic entries:

 render_basic_entry: function(entry) {
 var result = [];
 var all_day = false;
 var hour_options = [[0, '12AM'],
 [1, '1AM'],
 [2, '2AM'],
 [3, '3AM'],
 [4, '4AM'],
 [5, '5AM'],
 [6, '6AM'],
 [7, '7AM'],
 [8, '8AM'],
 [9, '9AM'],
 [10, '10AM'],
 [11, '11AM'],
 [12, '12PM'],
 [13, '1PM'],
 [14, '2PM'],
 [15, '3PM'],
 [16, '4PM'],
 [17, '5PM'],
 [18, '6PM'],
 [19, '7PM'],
 [20, '8PM'],
 [21, '9PM'],
 [22, '10PM'],
 [23, '11PM']];
 var hours = [];
 for(var index = 0; index < hour_options.length; ++index) {
 hours.push(<option
 value={hour_options[index][0]}
 >{hour_options[index][1]}</option>);
 }

Chapter 10

[171]

The JSX here is similar to others that we have seen before; it is provided to reinforce
what it would be like in a case like this:

 result.push(<input type="checkbox" name="all_day"
 id="all_day" />All day event.
 —or—
 <select id="hours" id="hours"
 defaultValue="12">{hours}</select>:
 <select id="minutes" id="minutes"
 defaultValue="0">{minutes}</select>);

We use a dropdown for the day of a month that the user selects, and try to provide a
slightly nicer alternative to making a first through a 31st year round (users shouldn't
be required to know which months have 30 days). We query the form's month
dropdown for the month that is presently selected. As a reminder, we are aiming for
compatibility with JavaScript's Date object, and while a JavaScript Date object can
have a 1-based date value from 1 to at most 31, the month value is 0-based, from 0
(January) to 11 (December), and we follow this lead:

 var days_in_month = null;
 if (entry && entry.hasOwnProperty('month')) {
 var month = entry.month;
 if (document.getElementById('month')) {
 month = parseInt(
 document.getElementById('month').value);
 }
 if (month === 0 || month === 2 || month === 4 || month
 === 6 || month === 7 || month === 9 || month === 11) {
 days_in_month = 31;
 } else if (month === 1) {
 if (entry && entry.hasOwnProperty('year') && entry.year
 % 4 === 0) {
 days_in_month = 29;
 } else {
 days_in_month = 28;
 }
 } else {
 days_in_month = 30;
 }
 }
 var date_options = [];
 for(var index = 1; index <= days_in_month; index += 1) {
 date_options.push([index, index.toString()]);
 }

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[172]

 var dates = [];
 for(var index = 0; index < date_options.length; ++index) {
 dates.push(<option value={date_options[index][0]}
 >{date_options[index][1]}</option>);
 }
 result.push(Date: <select id="date" name="date"
 defaultValue={entry.date}>{dates}</select>);
 var year_options = [];
 for(var index = new Date().getFullYear(); index < new
 Date().getFullYear() + 100; ++index) {
 year_options.push([index, index.toString()]);
 }
 var years = [];
 for(var index = 0; index < year_options.length; ++index) {
 years.push(<option value={year_options[index][0]}
 >{year_options[index][1]}</option>);
 }
 result.push(Year: <select id="year" name="year"
 defaultValue={entry.years}>{years}</select>);
 result.push(Description: <input type="text"
 name="description" id="description" />);
 result.push(<input type="checkbox" name="advanced"
 id="advanced" onChange={this.on_change} />
 Recurring event);
 result.push(<input type="submit" value="Save" />);
 return {result};
 },

The user can still opt-in for more
This method is similar to the previous one, but displays the entire interface for
repeating calendar entries. It shows further variations on the theme.

The fact that the present implementation goes with the intersection of all restricting
criteria for recurring calendar entries is good enough for a first pass.

The frequency_options functions are populated slightly differently from other
fields; while this could also have been done with the date options, SELECT is
populated in the <option>description</option> format, as opposed to the
(usually secondary) <option value="code">description</option> format:

 render_entry_additionals: function(entry) {
 var result = [];

Chapter 10

[173]

 result.push(<input type="checkbox"
 name="yearly" id="yearly"> This day,
 every year.);
 var frequency = [];
 var frequency_options = ['Every',
 'Every First',
 'Every Second',
 'Every Third',
 'Every Fourth',
 'Every Last',
 'Every First and Third',
 'Every Second and Fourth'];
 for(var index = 0; index < frequency_options.length;
 ++index) {
 frequency.push(<option>{frequency_options[index]}
 </option>);
 }

The weekdays are straightforward even if they break the pattern of populating
SELECT, in a situation where a checkbox is the more obvious type of input. A radio
button for selecting one day is also conceivable, but we are trying to accommodate
more use cases, and a calendar entry with recurring Tuesdays and Thursdays or
recurring Mondays, Wednesdays, and Fridays is common. Also, these aren't the
only patterns in which something occurs more than once per week (it would be
nice if a college student using our program did not have to make more than one
entry for classes that meet more than once per week):

result.push(<select name="month_based_frequency"
 id="month_based_frequency" defaultValue="0"
 >{frequency}</select>);
 var weekdays = [];
 var weekday_options = ['Sunday', 'Monday', 'Tuesday',
 'Wednesday', 'Thursday', 'Friday', 'Saturday'];
 for(var index = 0; index < weekday_options.length; ++index) {
 var checked = false;
 if (entry && entry.hasOwnProperty(
 weekday_options[index].toLowerCase()) &&
 entry[weekday_options[index].toLowerCase()]) {
 checked = true;
 }
 weekdays.push(<input type="checkbox"
 name={weekday_options[index].toLowerCase()}
 id={weekday_options[index].toLowerCase()}

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[174]

 defaultChecked={checked} />
 {weekday_options[index]});
 }
 }
 result.push({weekdays});

Avoiding being clever
Let's see a subtlety (which is less obvious when scrolling through the code than
looking at the user interface): there are two separate dropdown menus with their
own populating arrays representing the month. The reason for this is that in one
case, there is supposed to be a choice, not only between specific months, but also
between specifying one month only and all months. That menu includes an option
of [-1, "Every Month"].

The other example is for the (optionally specified) end date for a series of calendar
entries. This is a use case where it does not really make sense to specify that
something ends every month. The intended use is to give the day, month, and year
on which something stops displaying. The combination of these two use cases makes
for two separate, non-cookie-cutter ways of choosing a month. The more exclusive
could be gotten from the more inclusive with an array.slice(1) function, but we
are again going for Rincewind-style, boring code:

 var month_occurrences = [[0, 'January'],
 [1, 'February'],
 [2, 'March'],
 [3, 'April'],
 [4, 'May'],
 [5, 'June'],
 [6, 'July'],
 [7, 'August'],
 [8, 'September'],
 [9, 'October'],
 [10, 'November'],
 [11, 'December']];
 var month_occurrences_with_all = [[-1, 'Every Month'],
 [0, 'January'],
 [1, 'February'],
 [2, 'March'],
 [3, 'April'],
 [4, 'May'],
 [5, 'June'],

Chapter 10

[175]

 [6, 'July'],
 [7, 'August'],
 [8, 'September'],
 [9, 'October'],
 [10, 'November'],
 [11, 'December']];

These are baked into two separate arrays in a user interface that is slowly built up to
calendar "entry-ually" include the last option, a checkbox to mark that the repeating
calendar entry ends on a certain date, and fields to specify which date, month, and
year it ends on, drawing on the first of the two preceding arrays:

 result.push(Ends on (optional): <input type="checkbox"
 name="series_ends" id="series_ends" />Month:
 <select id="end_month" name="end_month"
 defaultValue={month}>{months}</select>
 End date:<select id="end_date"
 name="end_date" defaultValue={entry.date}
 >{dates}</select>
 End year:<select id="end_year"
 name="end_year" defaultValue={entry.end_year + 1}
 >{years}</select>);
 return {result};
 },

The previous two major methods are building forms for a user to enter data. The
next method switches gears somewhat; it is set to display upcoming calendar entries
from the present date to a year after the last scheduled one-time calendar entry.

Anonymous helper functions may lack
pixie dust
Internally, calendar entries are segregated into one-time and recurring calendar
entries. Premature optimization may be the root of all evil, but when it comes to
working on calendars on other systems, looking at every calendar entry for every
day has worse performance characteristics, roughly O(n * m) instead of the slight
mindfulness shown here, which is closer to O(n + m). Calendar entries are displayed
as an H2 and a UL, each given a CSS class to facilitate styling (at present, the project
has this portion as an unstyled, blank canvas):

 render_upcoming: function() {
 var that = this;
 var result = [];

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[176]

This code, unusually for the examples we have seen so far, uses the var
that = this; hack. In general, ReactJS guarantees that this is available
at any time and not only when a function is first run. However, ReactJS
does not ensure that inner functions will have the same benefits as top-
level methods, and in general, it may be recommended that you use
an inner function inside a top-level method only if you can do without
at least some of ReactJS's pixie dust. Inner functions are here used as,
for example, detached comparators. They don't interact directly with
ReactJS and are limited with respect to what is available in terms of direct
interaction with ReactJS.

Here, we have a comparator. It is written to be boring, as are other parts of this
method; more terse replacements are readily available, but would lose plodding,
"Rincewind-boring" clarity:

 var compare = function(first, second) {
 if (first.year > second.year) {
 return 1;
 } else if (first.year === second.year && first.month >
 second.month) {
 return 1;
 } else if (first.year === second.year && first.month ===
 second.month && first.date > second.date) {
 return 1;
 } else if (first.year === second.year && first.month ===
 second.month && first.date === second.date) {
 return 0;
 } else {
 return -1;
 }
 }

The successor() function uses modified one-time entries as representations of days.
These keep the date, month, year, and also the number of days in the future that a
day represents. The original entry used as a day has the number of days (0) added to
it as a member.

Chapter 10

[177]

Another aspect of the design is to eschew creating functions so anonymously that
they're not assigned to a variable. The successor() function is written for a for
loop analogous to the for(var index = 0; index < limit; ++index) loop, and
it could have been made inline, but it would have been much less clear (and much
less boring) than if it were pulled out into its own function. This may not be needed
for a two-line anonymous function, but here the code appears to be clearer and
more boring, with successor() stored in its own variable with a name that is
meant to be descriptive:

 var successor = function(entry) {
 var result = that.new_entry();
 var days_in_month = null;
 if (entry.month === 0 || entry.month === 2 ||
 entry.month === 4 || entry.month === 6 ||
 entry.month === 7 || entry.month === 9 ||
 entry.month === 11) {
 days_in_month = 31;
 } else if (entry.month === 1) {
 if (entry && entry.hasOwnProperty('year') &&
 entry.year % 4 === 0) {
 days_in_month = 29;
 } else {
 days_in_month = 28;
 }
 } else {
 days_in_month = 30;
 }
 if (entry.date === days_in_month) {
 if (entry.month === 11) {
 result.year = entry.year + 1;
 result.month = 0;
 } else {
 result.year = entry.year;
 result.month = entry.month + 1;
 }
 result.date = 1;
 } else {
 result.year = entry.year;
 result.month = entry.month;
 result.date = entry.date + 1;
 }
 result.days_ahead = entry.days_ahead + 1;
 result.weekday = (entry.weekday + 1) % 7;
 return result;
 }

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[178]

How far in the future should we show?
The greatest function immediately stores the greatest one-time calendar entry's
date that exists in the list, and is then modified to represent the last day that will be
represented, which is a year after the greatest one-time calendar entry found (if there
are recurring calendar entries, there will probably be a number of instances rendered
after the last one-time calendar entry):

 var greatest = this.new_entry();
 for(var index = 0; index < this.state.entries.length;
 ++index) {
 var entry = this.state.entries[index];
 if (!entry.hasOwnProperty('repeats') && entry.repeats) {
 if (compare(entry, greatest) === 1) {
 greatest = this.new_entry();
 greatest.year = entry.year;
 greatest.month = entry.month;
 greatest.date = entry.date;
 }
 }
 }

Different stripes for different entry types
Calendar entries are segregated into one-time and repeating entries, so only a
probable minority of repeating calendar entries are checked for every day. One-time
calendar entries are put into a hash with a key straightforwardly taken from
their date:

 var once = {};
 var repeating = [];
 for(var index = 0; index < this.state.entries.length;
 ++index) {
 var entry = this.state.entries[index];
 if (entry.hasOwnProperty('repeats') && entry.repeats) {
 repeating.push(entry);
 } else {
 var key = (entry.date + '/' + entry.month + '/' +
 entry.year);
 if (once.hasOwnProperty(key)) {
 once[key].push(entry);
 } else {
 once[key] = [entry];
 }

Chapter 10

[179]

 }
 }
 greatest.year += 1;
 var first_day = this.new_entry();
 first_day.days_ahead = 0;

Now we're ready to display!
Here is the for loop mentioned earlier; it is considerably more readable with
compare() and successor() pulled into their own variables with descriptive names
rather than inline. For each day, the loop compiles a (possibly empty) list starting
with one-time activities for that day, and checks all recurring calendar entries
against it. For a recurring calendar entry, it starts out with accepts_this_date as
true, indicating that the calendar entry does occur on that day, and then each of the
criteria for a repeating date has a cumulative opportunity to say that the criterion
they are checking is not met and veto that calendar entry happening on that day. If a
recurring calendar entry passes through the gauntlet without any vetoes, it is added
to the calendar entries displayed for that day:

 for(var day = first_day; compare(day, greatest)
 === -1; day = successor(day)) {
 var activities_today = [];
 if (once.hasOwnProperty(day.date + '/' + day.month + '/' +
 day.year)) {
 activities_today = activities_today.concat(
 once[day.date + '/' + day.month + '/' + day.year]);
 }
 for(var index = 0; index < repeating.length;
 ++index) {
 var entry = repeating[index];
 var accepts_this_date = true;
 if (entry.yearly) {
 if (!(day.date === entry.start.date &&
 day.month === entry.start.month)) {
 accepts_this_date = false;
 }
 }
 if (entry.date === day.date && entry.month ===
 day.month && entry.year === day.year) {
 entry.days_ahead = day.days_ahead;
 }
 if (entry.frequency === 'Every First') {
 if (!day.date < 8) {
 accepts_this_date = false;
 }

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[180]

Let's be nice and sort each day in order
Now that all the calendar entries, both one-time and recurring, have been assembled
for the day, they are sorted. We begin with the all-day activities, which are sorted
alphabetically, and then proceed with the calendar entries that occur at a specific
time, sorted by time ascending:

 if (activities_today.length) {
 activities_logged_today = true;
 var comparator = function(first, second) {
 if (first.all_day && second.all_day) {
 if (first.description < second.description) {
 return -1;
 } else if (first.description ===
 second.description) {
 return 0;
 } else {
 return 1;
 }
 } else if (first.all_day && !second.all_day) {
 return -1;
 } else if (!first.all_day && second.all_day) {
 return 1;
 } else {
 if (first.hour < second.hour) {
 return -1;
 } else if (first.hour > second.hour) {
 return 1;
 } else if (first.hour === second.hour) {
 if (first.minute < second.minute) {
 return -1;
 } else if (first.minute > second.minute) {
 return -1;
 } else {
 if (first.hour < second.hour) {
 return -1;
 } else if (first.hour > second.hour) {
 return 1;
 } else if (first.hour === second.hour) {
 if (first.minute < second.minute) {
 return -1;
 } else if (first.minute > second.minute) {
 return -1;
 }

Chapter 10

[181]

 }
 }
 }
 activities_today.sort(comparator);

The day is displayed in a human-friendly fashion; it's Monday, not Mon:

 if (activities_today.length)
 {
 var weekday = null;
 if (day.weekday === 0)
 {
 weekday = 'Sunday';
 }

Let them use Markdown!
The description for activities supports Markdown. Note—as is pointed
out in Facebook's own documentation on the deliberately named
dangerouslySetInnerHTML—that we are implicitly trusting Showdown (which
provided our converter) to be secure. There also exist tools intended to tag clean
and sanitize HTML in a fashion appropriate for XSS-secure display of HTML here.

We strip off open and close P tags, so that the descriptions will appear on the same
line as any time or other information given by the day's ordered list:

 if (activity.all_day) {
 rendered_activities.push(<li
 dangerouslySetInnerHTML={{__html:
 converter.makeHtml(activity.description)
 .replace('<p>', '').replace('</p>', '')}}
 />);
 } else if (activity.minutes) {
 rendered_activities.push(<li
 dangerouslySetInnerHTML={{__html:
 hour_options[activity.hours][1] + ':' +
 minute_options[activity.minutes][1] + ' ' +
 converter.makeHtml(activity.description)
 .replace('<p>', '').replace('</p>', '')}}
 />);
 } else {
 rendered_activities.push(<li
 dangerouslySetInnerHTML={{__html:

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[182]

 hour_options[activity.hours][1] + ' ' +
 converter.makeHtml(activity.description)
 .replace('<p>', '').replace('</p>', '')}}
 />);
 }
 }
 result.push(<ul className="activities">
 {rendered_activities});
 }
 }
 }
 if (entry_displayed) {
 result.push(<hr />);
 }
 return result;
 }
 });

One thing at a time!
Finally, in the top-level Pragmatometer class, we comment out the display of Todo,
so that only this will display while we are working on it. Next, we comment out the
Calendar component to work on the scratchpad, and when this is done, the final
integration will place these elements in the four corners of the screen:

 var Pragmatometer = React.createClass({
 render: function() {
 return (
 <div className="Pragmatometer">
 <Calendar />
 {/* <Todo />
 <Scratch />
 <YouPick /> */}
 </div>
);
 }
 });

Chapter 10

[183]

The holidays that inspired this calendar
Here, you can see the calendar set up and gracefully accommodating all the holidays
in a list of American holidays:

Each nation has its own holidays, and no disrespect is meant to other nations and
their holidays, but I know U.S. holidays better than those of other nations, and the
approach in this chapter is partly shaped by accommodating almost all major holidays.
The exception is Easter/Pascha (with Good Friday 2 days before), which is calculated
according to a very specific algorithm, but one much more intricate than anything else
we cover in this project, and it actually has two different algorithms for most Catholics
and Protestants on one hand, and most Orthodox on the other. It could perhaps be
included as a special case, but it is not entirely clear how one can create a generic
solution that will accommodate equally complex calculations without a compromise
of security (The most promising route for that would probably be to allow calculations
in a sandbox based on Douglas Crockford's AdSafe project, which would allow a fairly
free hand in calculations without needing to compromise overall page security).

Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar

[184]

Apart from Good Friday and Easter, the main official holidays in the U.S. are listed
as follows:

•	 New Year's Day (January 1, fixed)
•	 Martin Luther King Day (third Monday in January)
•	 President's Day (third Monday in February)
•	 Memorial Day (last Monday in May)
•	 Independence Day (July 4, fixed)
•	 Labor Day (first Monday in September)
•	 Columbus Day (second Monday in October)
•	 Veteran's Day (November 11, fixed)
•	 Thanksgiving (fourth Thursday in November)
•	 Christmas (Western, December 25, fixed)
•	 New Year's Eve (December 31, fixed)

This system, is similar to the private calendar that served as its inspiration, is
intended (among other things) to be powerful enough to allow calculation of
floating and fixed holidays (with the regretted and intricately complex exception
of Easter/Pascha), Also, it provides a very straightforward interface to enter every
single holiday on the bulleted list, and much more. With a modern calendaring
system, people in the U.S. do not research holidays on Wikipedia, and manually
enter in their calendars that Thanksgiving is on the fourth Monday in November.
They include a calendar that lists the holidays. However, this system is flexible
enough for someone so inclined in any country to get a very direct interface to
enter these holidays or others following the anticipated pattern or others like it.

Summary
This chapter was meant to provide a slightly more involved example of a user
interface built on ReactJS that has non-toy functionality. We saw both rendering
code and backend-type functionality, that adds depth beyond a user interface alone.
The approach was intended to be complementary to the previous chapter, in terms
of (for instance) controlled inputs that specify what their value will be, as opposed
to near classic Hijaxing of queried forms.

Chapter 10

[185]

From a usability perspective, the best way of handling user input for
recurring calendar entries is probably not to directly tweak and enhance
a complex and somewhat heterogeneous form, as we have done here. The
kind of advanced recurring events we use here are a use case for a wizard
or interview approach.

We looked at a calendaring system that uses ReactJS in the kind of messy problem
solving that we encounter in the real world. We have an approach to sophisticated
render methods. With respect to usability, which ReactJS developers should perhaps
be the most sensitive to (as they are the people most responsible for development
that touches usability), there has been attention and a constant eye on usability,
coupled with awareness that the user interface could stand improvement.

Along the way, we looked at boring code and boring plain old JavaScript objects that
rather work extremely well when we need records. Finally, we looked at the holidays
for a specific nation that our calendar was intended to be powerful enough to depict
with its recurring event facilities.

Join us in the next chapter as we look at incorporating a third-party (non-ReactJS)
tool and integrate the code of various applications into a single page.

[187]

Demonstrating Functional
Reactive Programming in

JavaScript with a Live Example
Part IV – Adding a Scratchpad

and Putting It All Together
In this chapter, we will cover the three last endeavors intended to put it all
together and finish our sample ReactJS application. Earlier chapters dealt with
a basic custom-made component made with 100 percent ReactJS. This chapter is
different in making a valid components, that works with ReactJS while drawing
on a significant non-ReactJS-based tool.

Having made the last component, we will integrate them into one page, where
each of the four components is placed in its quarter of the page. This is different
from development, where we gave the tool under development the whole page.
This will be the second major section of this chapter.

So far, the page has no way of keeping track of the state. Suppose you make an entry
in the calendar, a to-do item, or make some notes in the scratchpad. Then, if you
navigate away and come back or reload the page, all your changes will be lost. It
would be nice to have the changes remembered, and this is exactly what we will do
next. In the third, and last, major section in this chapter, we will introduce a cheap,
homegrown HTML5 localStorage-based persistence solution that works surprisingly
well. It does not let you access your data from multiple computers, but let's leave
that alone for now and just work on persistence on the same computer.

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together

[188]

The overall application is intended to handle personal information management/
logistics: a scratchpad for any information, a to-do list, a calendar, and a stub of
whining artificial intelligence that is meant to be replaced by something interesting
of your own devising.

Adding a WYSIWYG scratchpad,
courtesy CKeditor
There are multiple What You See Is What You Get (WYSIWYG) editors out here,
and the choice of CKeditor is not much a judgment that CKeditor is the uncontested
king of free and paid editors as a common choice. We will see how to ask ReactJS to
leave part of the DOM alone (and in this case, not clobber our CKeditor instance).
We will cover these topics:

•	 Why use something such as CKeditor when it doesn't work similar
to ReactJS?

•	 Installing a "small is beautiful" take on CKeditor, with a look at which edition
is the best

•	 Including CKeditor in our page, with an emphasis on JSX

Bringing all things together into one
web page
We've done almost everything together. We will cover the following topics:

•	 Adjusting the JSX so that all our features are now uncommented. This is a
very simple step.

•	 CSS styling that lets everything fit. We arrange the components in a 2 x 2
grid, but this could be replaced by pretty much any styling approach that
would fit the components on a page.

•	 Bringing in elementary data persistence which displays the components
together. This will include some basic, non-exhaustive CSS work.

•	 In the interests of offering a complete sample application, the user-interface-
centric application we have been developing will include basic persistence on
your computer, in this case humbly implemented with HTML5 localStorage.
This means that one computer, without sign-in or other annoyances, will be
able to persistently use data.

Chapter 11

[189]

•	 A few simple JSON.stringify() calls work and lay a foundation for
a more common style of remote, server-based persistence. The data is
stringified through JSON.stringify(), which is not specifically needed
with localStorage, but makes the code slightly more ready to swap out the
localStorage references alone and replace them with a potentially remote
server of choice.

•	 Causing the CKeditor state to persist. Some experienced programmers, on
being asked to create a localStorage persistence solution for the component
state, might reasonably guess our solution for everything but the scratchpad.
The scratchpad has some gotchas for Web 2.0 work, because CKeditor has
some gotchas for Web 2.0 work.

The entire system working together may be seen at http://demo.pragmatometer.
com/.

This book is about ReactJS, so why use
CKeditor?
It might, in general, be suggested that it is better to have something that works
with the declarative spirit of ReactJS and one-way data bindings. If you have a
choice between a good implementation of something such as CKeditor that doesn't
particularly work in a similar way to ReactJS, and some other component made
that fits in nicely with ReactJS and handles WYSIWYG well, you should go with
the component that fits ReactJS well.

This book is intended to help you with either side of a fork on the road. It includes
development with and without JSX, both legacy and green field development,
one-way and two-way data binding, and (here) purely ReactJS components versus
integrating with non-ReactJS JavaScript tools. The good news is that ReactJS is good
at playing nicely with other children. Tools from all across the world of JavaScript
are at least potentially available for you, not just the sliver explicitly developed for
work with ReactJS. Perhaps you may have the luxury of working with pure ReactJS
components. Perhaps you want, need, or have to use some JavaScript tool that was
not built with any ReactJS integration in mind. Here's the good news: in either case,
ReactJS probably has covered. In this chapter, we will use a standard non-ReactJS
tool—the famous and well-established CKeditor, which ReactJS lets us integrate
into our web page quite well.

http://demo.pragmatometer.com/
http://demo.pragmatometer.com/

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together

[190]

CKeditor – small free offerings, and small
is beautiful
There are several free and commercial editors available; one such editor is CKeditor,
(its home page is at http://ckeditor.com/). CKeditor comes with four basic
options: Basic, Standard, Full, as well as a Custom option that allows complete
freedom in selecting and deselecting optional functionality. For this project, we will
use the Basic option. This is not a service for a user to present an overwhelming array
of rows of buttons, and the correct question regarding which features to include is,
"What is the minimum that will work well for us?"

Including CKeditor in our page
The Basic option (and also the Standard, Full, and Custom arrays of options) is
available for download or from CDN. At the time of writing this book, the Basic
option can be obtained from CDN using the following:

<script src="//cdn.ckeditor.com/4.4.7/basic/ckeditor.js"></script>

This should be our HTML. We also need to work on JSX. The code used to put up
the scratchpad is the simplest and shortest of our four subcomponents:

 var Scratchpad = React.createClass({
 render: function() {
 return (
 <div id="Scratchpad">
 <h1>Scratchpad</h1>
 <textarea name="scratchpad"
 id="scratchpad"></textarea>
 </div>
);
 },
 shouldComponentUpdate: function() {
 return false;
 }
 });

http://ckeditor.com/

Chapter 11

[191]

The render() method is as simple as it looks. Note that it defines a TEXTAREA
rather than a CKeditor widget. The different versions of CKeditor work by
Hijaxing specific TEXTAREAs rather than writing their widget in the code. The
shouldComponentUpdate() method is also as simple as it looks, but it is worthy of a
comment. This method is intended to facilitate optimization for the rare case where
ReactJS's virtual DOM diffing isn't as fast as what you can do. For instance, under
ClojureScript, Om has immutable data structures and can therefore test equality via
reference comparison alone, without the need for deep equality checking, which is
why Om plus ClojureScript is about twice as fast as ReactJS plus JavaScript. And,
as stated in earlier chapters, 99 percent of the time, micromanaging ReactJS's virtual
DOM is simply not needed, even if you want to be very performant.

However, here we have a separate use case for the mechanism of
shouldComponentUpdate(). Its use here is unrelated to optimization and obtaining
the same result with less comparison. Instead, it is used to disclaim the jurisdiction of
part of the DOM. For some other tools that you might like to include, such as CKeditor,
it is desirable to ask ReactJS to create part of the DOM and then leave it alone, without
later clobbering another tool's changes; this is exactly what we have done here. Hence,
shouldComponentUpdate()—besides constituting a mechanism to prune unnecessary
comparisons in lightning-fast virtual DOM diffing—can also be used to affix a label
that says, "Something other than ReactJS is responsible for maintaining this part of the
DOM. Please do not clobber it."

After the first rendering of the web application, we ask CKeditor to replace the
TEXTAREA that has an ID of scratchpad, which should give us a live widget:

 React.render(<Pragmatometer />,
 document.getElementById('main'));
 CKEDITOR.replace('scratchpad');
We temporarily comment out the other subcomponents:
 var Pragmatometer = React.createClass({
 render: function() {
 return (
 <div className="Pragmatometer">
 {/* <Calendar /> */}
 {/* <Todo /> */}
 <Scratchpad />
 {/* <YouPick /> */}
 </div>
);
 }
 });

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together

[192]

And now we have an interactive scratchpad. Here is a screenshot of our web
application, showing only the scratchpad:

Integrating all four subcomponents into
one page
Having created four subcomponents—a calendar, a scratchpad, a to-do list, and a
You Pick slot with a placeholder—we will now integrate them.

We start by uncommenting all the commented subcomponents in the
Pragmatometer's render() method:

 <div className="Pragmatometer">
 <Calendar />
 <Todo />
 <Scratchpad />
 <YouPick />
 </div>

Chapter 11

[193]

Our next step is to add styling, with just a bit of responsive design. At least one of
the main contenders in responsive design is to simply not try to know and address
each screen resolution, but to have several steps of responsiveness depending on
screen width. You can see this if, for example, you have a wide desktop monitor,
load http://therussianshop.com/, and progressively narrow your browser
window. Different adaptations kick in, and the page as a whole makes a whole when
seen at desktop width, tablet on either orientation, or smartphone. We will not be
attempting a serious solution here, but there is some responsiveness in the fact that
we make our styling conditional to a minimum width of 513 px. Without any styling,
the four elements will displayed one on top of the other; with styling, they will be
corralled into a 2 x 2 grid.

The CSS that styles the subcomponents essentially divides a sufficiently large
window into quarters, adds some padding, and ensures that any overflow on
each application will scroll:

 @media only screen and (min-width: 513px) {
 #Calendar {
 height: 46%;
 left: 2%;
 overflow-y: auto;
 position: absolute;
 top: 2%;
 width: 46%;
 }
 #Scratchpad {
 height: 46%;
 left: 2%;
 overflow-y: auto;
 position: absolute;
 top: 52%;
 width: 46%;
 }
 #Todo {
 height: 46%;
 left: 52%;
 overflow-y: auto;
 position: absolute;
 top: 0;
 width: 46%;
 }
 #YouPick {
 height: 50%;
 left: 52%;
 overflow-y: auto;

http://therussianshop.com/

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together

[194]

 position: absolute;
 top: 52%;
 width: 46%;
 }
 }

This allows us to display and the following is a screenshot of all the parts of our web
application put together:

Persistence
Some frameworks are all-purpose frameworks that are intended to do everything;
ReactJS is not. It does not even offer any method by which to make an AJAX call,
even though (practically) any important project that uses ReactJS will have AJAX
requirements. This is entirely by design. The reason is that ReactJS is specialized
as a framework for working on user interfaces or making Views, and it is intended
to be combined with other technologies to make whatever complete package is
appropriate for your site.

Chapter 11

[195]

One feature that is desirable in this Pragmatometer application is that it remembers the
data you enter. If you enter an appointment for tomorrow at 2:00 p.m., then leave the
page and come back, it would be nice if the page remembered the appointment instead
of presenting a completely blank slate every single time you load it. Persistence is one
part of a complete web application, but it's not the responsibility of the view or user
interface, and ReactJS obviously does not offer a solution for persistence. Nor should
it—perhaps. Some recent chapters covered how to use ReactJS to do "X"; this chapter
is about how to do something else that complements ReactJS.

For mainstream use, persistence is usually handled by communication with a
backend; there are several good technologies available. But perhaps it will not be
terribly useful to try to cram the treatment of properly implementing a backend into
one section of one chapter of a book on frontend development with ReactJS.

As an exercise that remains squarely in frontend territory, we will handle persistence
by a well-known frontend route—HTML5's localStorage (the persistence code does
nothing if Modernizr fails to detect localStorage). The functions used, save() and
restore(), save in localStorage if such is found. They call JSON.stringify()
and JSON.parse() directly, even though such a step is not strictly needed to cause
JSON-serializable objects to persist in localStorage. This is intended to provide a
direct hook to change the code to talk to a remote backend. The simplest adaptation
would, like the implementation here, monolithically save and restore the entire state
for an application, but remember that premature optimization remains the root of all
evil. Extremely heavy use of an application in this way might lead to an amount of
state comparable to a single large PNG file. The code is, of course, further adaptable
to more surgical approaches to saving or restoring a diff that is lighter, but the point
here is to lay a solid groundwork, not push optimization as far as it can go.

We will use Crockford's JSON from https://github.com/douglascrockford/
JSON-js/blob/master/json2.js and Modernizr from http://modernizr.com/.
We will only use Modernizr in this application to test the localStorage availability, so
if you're looking for a "minimum weight that's sufficient for this project" Modernizr
build, opt to test for localStorage and opt out of everything else. Let's include these
files in index.html:

<script src="js/json2.js"></script>
<script src="js/modernizr.js"></script>

https://github.com/douglascrockford/JSON-js/blob/master/json2.js
https://github.com/douglascrockford/JSON-js/blob/master/json2.js
http://modernizr.com/

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together

[196]

In our site.jsx file, we define the save() and restore() functions. These will
be used to cause the entire state to persist for different applications. A different
approach might be to make more and smaller saves instead of a few monolithic
saves, but a few monolithic saves are easy to keep track of mentally. Therefore, they
are easier to maintain and debug than a mesh of different saves for minor aspects of
data (if we need to optimize later, we can, but premature optimization is still the root
of all evil). The save() function reads as follows:

 var save = function(key, data) {
 if (Modernizr.localstorage) {
 localStorage[key] = JSON.stringify(data);
 }
 }

The most obvious way to connect this to a remote backend, besides taking care of
details such as account management (which are not addressed in this example),
would be to replace the localStorage[key] assignment with a call to notify the
server of the new stringified data associated with that key. That would make the
Modernizr check unnecessary. However, be warned: even IE8 supports localStorage,
and clients that don't support it will be a little archaic and probably not supported
by ReactJS, which does not advertise support for IE versions earlier than 8 (also, IE8
support is now based on a shim instead of being native; see http://tinyurl.com/
reactjs-ie8-shim).

The restore() function takes an optional parameter besides key—default_value.
This is used to support an initialization that pulls the saved state if it exists and falls
back to the normal value that would otherwise be used in initialization. Initialization
code can be reused to work with this restore() function, which pulls non-null and
defined saved data for that key if it exists, or the default if nothing interesting is
found. The line with JSON.parse() and the if statement that probes localStorage
are the lines you would most directly replace with calls to talk to a remote backend.
Alternatively, and to take a step further, the restore() function would probably
be gutted and replaced with a function with the same signature and semantics, but
would talk to a remote server that owned more of the work of checking whether any
pre-existing data has been saved. This perhaps leaves the client to return the default
value if the server has nothing to return:

 var restore = function(key, default_value) {
 if (Modernizr.localstorage) {
 if (localStorage[key] === null || localStorage[key]
 === undefined) {
 return default_value;
 } else {

http://tinyurl.com/reactjs-ie8-shim
http://tinyurl.com/reactjs-ie8-shim

Chapter 11

[197]

 return JSON.parse(localStorage[key]);
 }
 } else {
 return default_value;
 }
 }

Now, all the getInitialState() functions are modified to go through the restore()
function. See what happens hence. Consider the Todo initializer of this code:

 getInitialState: function() {
 return {
 'items': [],
 'text': ''
 };
 },

It is simply wrapped in a call to restore():

 getInitialState: function() {
 return restore('Todo', {
 'items': [],
 'text': ''
 });
 },

There are a few functions that alter the state on one component or another, and we
make any function that changes part one of our component's states save the whole
state. Hence, in the appropriately named Calendar#handle_submit, numerous
details of this.state.entry_being_added are filled in to match what is on the
(Hijaxed) form. Then the filled-in entry is added to the list of live filled-in entries,
and a new one is put in its place:

 this.state.entries.push(this.state.entry_being_added);
 this.state.entry_being_added = this.new_entry();

These two lines alter this.state, and so we save the state after them:

 this.state.entries.push(this.state.entry_being_added);
 this.state.entry_being_added = this.new_entry();
 save('Calendar', this.state);

Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together

[198]

One detail – persisting the CKeditor state
Most of this section is relatively predictable. Some programmers, who were told
that we were adding persistence through HTML5 localStorage, might have guessed
something close to what was written earlier, and most likely, they would be pretty
close to the mark. There is one detail about CKeditor, however, that is less than
obvious and less than ideal.

CKeditor does what you might naïvely expect under "un-fancy" Web 1.0 form usage.
If you have a form, include a TEXTAREA with a name and ID of foo, call CKeditor to
convert it, and submit the form. The form will be submitted as if the HTML, which
was then on the CKeditor instance, had been the content of the TEXTAREA. All of this
is as it should be.

However, if you use CKeditor in almost any "AJAXian" way, querying the value
of the text area without having a full-page form submission, you will run into a
problem. The reported value of the CKeditor instance is neither more nor less than
the text that it was initialized to. The reason is that the value of TEXTAREA is synced
for you on a whole-page form submission, but this is not automatically done at
the intermediate steps. This means that unless you take an extra step, you cannot
usefully query the CKeditor instance.

Fortunately, the extra step is not particularly difficult or slippery; CKeditor provides
an API to sync the TEXTAREA, so you can query TEXTAREA to get the CKeditor
instance's value. Before connecting the CKeditor scratchpad, we initialized the entire
display and set an interval so that the display is updated every 100 milliseconds (there
is nothing necessary or magical about this length for an interval; it could be updated
more or less often, with longer intervals being choppier but basically the same):

 var update = function() {
 React.render(<Pragmatometer />,
 document.getElementById('main'));
 };
 update();
 var update_interval = setInterval(update,
 100);

To accommodate CKeditor, we shuffle and unbundle things slightly. Our code
will be a little messier in order to accommodate calling things in a particular order.
For our TEXTAREA to exist in the first place, we need to render the Pragmatometer
master component once (or more than once, if we want). Then, after that call, we ask
CKeditor to convert the TEXTAREA.

Chapter 11

[199]

Next, we start an update function. This both updates the display and synchronizes
CKeditor's TEXTAREAs to where they can be queried. The loop that synchronizes
the TEXTAREA is not strictly necessary. If we have only one editor instance, we need
only one line of code, but the code we have is generic for any number of CKeditor
instances with any ID. Finally, within the loop, we call save() on the editor contents.
One optimization, if save() and restore() are gutted and replaced to talk to a
backend server, would be to save the current editor state in a variable and only
save() if the editor's contents differ from the previous saved value. This should
diminish the frequent network chatter:

 React.render(<Pragmatometer />,
 document.getElementById('main'));
 CKEDITOR.replace('scratchpad');
 var update = function() {
 React.render(<Pragmatometer />,
 document.getElementById('main'));
 for(var instance in CKEDITOR.instances) {
 CKEDITOR.instances[instance].updateElement();
 }
 save('Scratchpad',
 document.getElementById('scratchpad').value);
 };
 var update_interval = setInterval(update,
 100);

There are a few more changes so that all of the initialization wraps our earlier code in
a call to restore(). Also, each time we change a component's state, we call save().
And we're done!

Summary
In this chapter, we added a fourth component. It differs from the others by not being
built from the ground up in ReactJS, but integrating a third-party tool. This can
work well enough; just be careful to have a shouldComponentUpdate() method that
returns false as a way of saying, "Don't clobber this; let the other software do its
work here."

Despite the fact that we covered three basic topics—a component, integration, and
persistence—this chapter was easier than some others. We have a live, working
system, and you can see it at http://demo.pragmatometer.com/.

Now let's take a step back to look at the conclusion, discussing what you learned over
the course of this book.

http://demo.pragmatometer.com/

Chapter 12

[201]

How It All Fits Together
Google Maps was a big hit when it came out, and it remains quite important, but the
new functionality it introduced was pretty much nothing. The contribution Google
made with its maps site was taking things previously only available with a steep
learning cliff and giving them its easy trademark simplicity. And that was quite a lot.

Similar things might be said about ReactJS. No one at Facebook invented functional
reactive programming. No one at Facebook appears to have significantly expanded
functional reactive programming. But ReactJS markedly lowered the bar to entry.
Previously, with respect to functional reactive programming, there were repeated
remarks among seasoned C++ programmers; they said, "I guess I'm just stupid, or at
least, I don't have a PhD in computational mathematics." And it might be suggested
that proficiency in C++ is no mean feat; getting something to work in Python is less
of a feat than getting the same thing to work in C++, just as scaling the local park's
winter sledding hill is less of an achievement than scaling Mount Everest. Also,
ReactJS introduces enough of changes so that competent C++ programmers who do
not have any kind of degree in math, computational or otherwise, stand a fair chance
of using ReactJS and being productive in it. Perhaps they may be less effective
than pure JavaScript programmers who are particularly interested in functional
programming. But learning to effectively program C++ is a real achievement, and
most good C++ programmers have a fair chance of usefully implementing functional
reactive programming with ReactJS. However, the same cannot be said for following
the computer math papers on Wikipedia and implementing something in the
academic authors' generally preferred language of Haskell.

In this conclusion, we will explore the following topics in this chapter:

•	 A retrospective of the terrain covered
•	 Immunity to the problems that gave rise to The Mythical Man-Month
•	 ReactJS as just a view—but what a view!

How It All Fits Together

[202]

•	 The joy of programing ReactJS
•	 Whole new vistas opening for ReactJS beyond the web. The ReactJS

work introduced here is not the end of ReactJS's possibilities: it is only
the beginning.

A review of the terrain covered
We've covered a lot in this book, both theoretically and practically. We covered
the basics of functional programming, reactive programming, and functional
reactive programming. We also covered a technology, Facebook's ReactJS. It makes
some of the strengths of functional reactive programming available to frontend
developers who are not necessarily steeped in computational mathematics (this
is, unfortunately, something of a distinctive feature to this text). The text here is
meant to follow the lead of ReactJS and is specifically intended to make sense to
programmers without a special math background. Along the way, we met interesting
technologies, such as Om, Brython, and Jest, and took a look at what future frontend
web development might be like. We may be able to do web development in the
language of our choice, rather than necessarily be limited to JavaScript.

We also built two systems, one smaller and one larger, and tried to demonstrate
slight variations in how a problem is solved: with or without JSX, with controlled
values for form elements, and by classic form Hijaxing. The point is not exactly
that one is better than the other, as that needs will call for different solutions, and
we want to increase the chances that at least one of the approaches covered here is
helpful in a particular situation.

Along the way, there were reasons to say, as has been said about Python,
"Programming is fun again!" Every system has its quirks, but somehow, there seem
to be fewer speed bumps along the road when traveling with ReactJS. This title's brief
treatment of CKeditor necessarily included a workaround for a speed bump that will
frustrate a first-time CKeditor user. There have been precious few necessary warnings
about workarounds for problems that persist in ReactJS code.

Could the Mythical Man-Month have been
avoided?
Fred Brooks' 1975 book The Mythical Man-Month (40 plus years old by the time
you read this book) is the most heavily cited work in all of software engineering
literature. Tanenbaum's classic textbook Operating Systems: Design and Implementation
makes a (brief) mention of Brooks' title:

Chapter 12

[203]

"One of the designers of OS/360, Fred Brooks, wrote a witty and incisive book
(Brooks, 1975) describing his experiences with OS/360. While it would be
impossible to summarize the book here, suffice it to say that the cover shows a
herd of prehistoric beasts stuck in a tar pit..."

Here, there is a direct relevance. To explain why, let's make a variant of the
Big-Coffee notation as introduced by Steve Luscher. While perhaps no one outside
Luscher's head knows what inspired him to make his point as he did, Luscher
is clearly familiar with the classical big-O notation for runtime complexity, and
presumably with the fact that it is also used to assess the complexity in other kinds
of resource usage, such as memory. But I might suggest that a possible additional
inspiration might be helpful as explained by Big Organization complexity. If
Big-Coffee complexity can be nightmarish and quadratic at —or as Luscher
writes, —something eerily familiar manifests in the communication
complexity within a monolithic project.

If there is one programmer on a monolithic project, the complexity is zero, as there is
no need to avoid stepping on other programmers' feet. If there are two programmers,
the complexity in communication is exactly one connection. If there are three
programmers, there are three connections; and if we scale up to 10 programmers, the
paperwork scales up to 45 connections. IBM's approach to the OS/360 project was
the so-called Big Blue Solution, and it said, "Since there's lots and lots of work we
want done, let's hire lots and lots and lots of programmers!" IBM had well over 10
programmers, and therefore had vastly more than 45 connections.

One character that might be appropriate to indicate the complexity of organizational
communication is the interconnected HTML dingbat, encodable as ☸ or
☸:

How It All Fits Together

[204]

If we are able to retrofit a "Big Organization" complexity of how much communication
is needed to prevent programmers from breaking others' work, perhaps no dingbat
or emojicon is perfect. But we can speak of monolithic software projects having a
quadratic communication complexity—of , or if you prefer,
—for developers to keep up with other changes and partially avoid collisions with
other developers' work. On the scale of the OS/360 project, this resulted in developers
spending over half their day only keeping track of memos, to keep abreast of what
other programmers have done.

There is reason to believe that if the OS/360 project had been done with an approach
like what Facebook uses for ReactJS plus Flux, there might have been no need to
write The Mythical Man-Month.

The combination of ReactJS and Flux is explicitly written so that you don't need to
put your hands in every other component's pockets. In fact, it is written so that if
everybody is observing the approach, you can't put your hands in other components'
pockets unless you find a way to breach the security. The communication complexity
is not quadratic (as it was in the OS/360 project) at or ; the
number of directions of communication if you have at most one developer per
component is vastly smaller, and may possibly be barely above linear at .
The difference is enormous in its implications.

While it is not clear that Facebook is being insistently purist enough to achieve the
best theoretically possible results, it does seem evident that Facebook—which is one
of the largest organizations on the Internet, and may have a frontend development
staff comparable to (or greater than) the OS/360 project in size—has communications
that scale much better than the monolithic OS/360 endeavor. Perhaps Facebook
is one of the many organizations that are quicker to advertise their strengths than
their weaknesses. But nothing that I've been able to find in any resource on the Web
suggests that the volume of communication between Facebook developers is out
of hand, as it was in the OS/360 project, or that the necessary volume of internal
communications is onerous enough to be an issue that makes developers' lives
genuinely more difficult.

ReactJS is just a view, but what a view!
Charles Cézanne famously said, "Monet is just an eye, but what an eye!" Monet didn't
try to show off his knowledge of structure and anatomy, but just copy what his eye
saw. The consensus judgment of his work holds on to both "just an eye," and "what an
eye!" And indeed, the details may be indistinct in Monet, who rebelled against artistry
that tried to impress with deep knowledge of anatomy and knowledge of structure
that is far beyond what jumps out to the eye.

Chapter 12

[205]

ReactJS is a framework rather than a library, which means that you are supposed
to build a solution within the structure provided by ReactJS instead of plugging
ReactJS into a solution that you structure yourself. The canonical example of a library
is jQuery, where you build a solution your way, and call on jQuery as it fits into a
structure that you design.

However, ReactJS is specialized as a view. It's not that this is necessarily good or
bad, but ReactJS is not a complete web development framework, and does not have
even the intension of being the only tool you will ever need. It focuses on being a
view, and in Facebook's offering, this does not include any form of AJAX call. This
is not a monumental oversight in developing ReactJS; the expectation is that you use
ReactJS as a View to provide the user interface functionality, and other tools to meet
other needs as appropriate. This text hasn't covered using ReactJS together with your
favorite tools, but do combine your favorite tools with ReactJS if they are not going
to step on each other's feet. ReactJS may or may not collide with other Views, but it is
meant to work with non-View technologies.

Programming is fun again!
When the Web first appeared, I had my first "Programming is fun again!" experience.
I had gotten my bearings in programming in Unix and C, and when I was informed
that it was possible to include an image in a web page, I anticipated the amount of
work that it would take in a C-like environment from scratch to tell how to display
an image. I implicitly thought, "Too much work for me." But I was positively
astonished to find that an image could be included in a web page with nothing more
than , and that an image itself didn't need to be embedded
in a web page; it could equally gracefully be made available as <A HREF=Portrait.
GIF>Click here!. Thus began my first exposure to a language that was
declarative rather than imperative. Perhaps it was not strictly programming;
certainly, before JavaScript, it was not a Turing approximant. However, it let me
easily do things with computers that I hadn't dreamed of.

Some years later, I had my second "Programming is fun again!" experience after
a friend suggested that I try Python. By the time that occurred, I was a sort of a
language collector; the only languages I wanted to know but didn't were Icon, C++,
and some assembler. A common reality for language collectors is that their first
project in a new language is slower, more difficult, and more frustrating than any
further work. It gets better after that, but for the first project, "It always takes longer
than you think, even when you take into account the fact that it always takes longer
than you think." However, with Python, my surprise was, "What? Is it working
already?" and this was just the tip of an iceberg.

How It All Fits Together

[206]

My story of being a language collector, finding Python, and then stopping the effort
to learn new languages is not an especially unusual story among Pythoneers. Eric
Raymond certainly picked up some deeper notes in his article Why Python? at
http://www.linuxjournal.com/article/3882. Python is an enchanted kingdom
where the streets are paved with glue, and it's not just masters who can benefit.

What was not mentioned earlier is that if you leave your mouse hovering over the
cartoon image at http://xkcd.com/353/, this message appears: I wrote 20 short
programs in Python yesterday. It was wonderful. Perl, I'm leaving you... Now
Perl is also a good language and, for a time, my favorite, but there's still something
about Python.

Finally, my last and greatest "Programming is fun again!" moment came when I
began appreciating ReactJS. ReactJS delivers something that XHTML and HTML5
don't, in terms of creating useful components that can be used like tags.

Whatever the "X" in XHTML stands for, it does not mean, "In mainstream use,
people will build and deploy lots of interesting new tags." HTML5 offers a number
of new components, such as <input type="date" />, but they are not universally
supported, and this is not another case of IE having to be the life of a party. The
mainstream and current non-Microsoft browsers have very inconsistent coverage of
features that were announced loudly and clearly when HTML5 was in the limelight.
There are polyfills available, and integrating one of the many JavaScript date pickers
that existed before HTML5 may make just as much sense today as it did when they
were new. But while a site like http://html5please.com/ is praiseworthy and
worth using, it is also a symptom of a major problem.

ReactJS and JSX succeed where these fail. This text has not covered how to make
a <DatePicker /> function, but once this has been made, you can include it in
your JSX almost as easily as a native HTML tag. If someone nostalgic for fractals
draws on an HTML5 canvas and makes scrollable and zoomable <LogisticMap />,
<VonKochSnowflake />, <MandelbrotSet />, and <SierpinskiGasket />, these
can be as easily included in JSX as the plain old simple tags. Components
defined in ReactJS differ in an important sense from manually configuring and
wiring a JavaScript date picker to work with your form. They are like subroutines
in classic structured programming, in the sense that they can be readily reused
wherever reusing makes sense, and combined to make bigger building blocks.

It might be suggested that there is money to be made in producing
libraries of useful components that can be used to almost extend the
basic set of useful tags open to other web developers.

http://www.linuxjournal.com/article/3882
http://xkcd.com/353/
http://html5please.com/

Chapter 12

[207]

Moreover, if I may borrow from Robin Martin's "What Killed Smalltalk Could Kill
Ruby" and use slightly more polite language, the key metric in a code review (among
other things) is the number of times the reviewer has to ask, "What were they
thinking?" For the "What were they thinking?" metric, an acceptable score for the
code being reviewed is 0. Anything higher than this is unacceptable. Also, this metric
is relevant well outside of code reviews.

In Python, such moments are rare: they do exist, as a search for "Python mutable
default argument" will show, but they are significant because they are rare. This is
different from "What were they thinking?" arguments in JavaScript, such as "You can
use variables without declaring them (but if you do, they'll be global)" and "You can
write pseudo-classical constructors (but if you forget to use the new keyword when
calling them, they'll clobber things in the global namespace.)" The environment in
JavaScript is such that a key language advocate, such as Douglas Crockford, sharply
warns people to steer clear of large chunks of the basic language, and appears to be
getting pickier over time.

Ultimately, it seems that ReactJS and Python have the same heart. Both are, at heart,
small and simple. Perhaps both have flaws, but flaws where the "What were they
thinking?" moment is the exception and not the norm. Both have, as a sarcastic tweet
said when ReactJS was announced, "Facebook: Rethink established best practices." ESR
mentioned quite a hang-up about Python's strange choice of significant white spaces.

"And like most hackers, upon realizing this fact, I recoiled in reflexive disgust.

I was barely old enough to have programmed in batch Fortran for a few months
back in the 1970s. These days, most hackers aren't, but somehow our culture seems
to have retained a pretty accurate folk memory of how nasty those old-style fixed-
field languages were. Indeed, the term "free format" used back then to describe the
newer style of token-oriented syntax in Pascal and C has almost been forgotten. All
languages have been designed that way for decades now, or almost all; anyway. On
seeing this Python feature, it's hard to blame anyone for initially reacting as if they
had unexpectedly stepped in a steaming pile of dinosaur dung."

ReactJS also has the courage to say that those people who create CSS can create
very simple JavaScript, instead of only working in deliberately underpowered
templating languages. Now, JavaScript was chosen as a Domain-specific Language
to deliberately leave as much power as is needed. However, it is not necessary for
designers to summon the full power of JavaScript. They can create the 99 percent of
the simple JavaScript that would have been done in an underpowered templating
language, and JavaScript developers can create the remaining 1 percent of powerful
JavaScript, because this would be problematic to address in an underpowered
templating language.

How It All Fits Together

[208]

Summary
In this chapter, we looked at a slightly higher level than the nitty-gritty. Other chapters
had detailed a couple of projects, but here we looked at some of the major wins that
ReactJS represents, and to some of the most famous problems in computing.

This book is intended to cover both the theory and practice of functional reactive
programming with Facebook's ReactJS. It is hardly the first title covering functional
programming, reactive programming, or functional reactive programming, but it
may be an early title among treatments of functional reactive programming that
do not assume PhD-level mathematical prowess. Part of this was accomplished
by making the text somewhat philosophical. In some sense, this is the price paid
to be merely challenging for some veteran programmers to understand, but not
impossible for most veteran programmers to understand. The best functional
reactive programming in JavaScript and ReactJS is based on functional programming
proficiency, and the best functional reactive programming in Haskell is also based
on functional programming proficiency; there is no real difference there. There
is, however, a difference in the fact that a typical veteran C++ programmer has a
fighting chance of achieving a useful proficiency with ReactJS. And Facebook has
done quite an impressive job of putting things in easier reach.

JavaScript is a versatile language, and you can get a significant amount of
productivity if you are approaching it while thinking in a Scheme way (of course!)
or a Python way, or C#, Erlang, Perl, Ruby, Java, Haskell, PHP, Lisp, or Visual Basic.
Perhaps no other programming language's way of thinking will reach the upper
echelons of pure, functionally driven JavaScript thinking, but there's a lot that you
can say in JavaScript, without needing to be a native speaker sporting a flawless
JavaScript accent!

And nothing of this is lost in ReactJS. Perhaps the last ounce of power cannot be
squeezed out of functional reactive programming unless you have a very high
proficiency in some very specific areas of math, but ReactJS has markedly lowered
the barrier to entry for the benefits of functional reactive programming. Functional
reactive programming used to have an unwritten sign over its door saying, "Math
Programming Jocks Only." Now it doesn't. It may be purely an advantage to grok
functional reactive programming to work with ReactJS, but all the other specialties
mentioned can get a lot out of ReactJS without needing to know much math beyond
the significant proficiency that is normally embedded in computer science and
information technology.

Chapter 12

[209]

Some people have said that developers very rarely pay for books; they pay for
chapters. This book has been intended to work as a whole, with different parts
illustrating complementary approaches to others so that each part adds to the whole.
But it is also seriously intended to provide chapters that work perfectly well as
standalone assets for people who want to orient themselves to something.

The next steps from here
There are countless directions that you can explore. You can dig deeper and explore
the core of ReactJS. You can also explore the integration of ReactJS into projects that
use other technologies to address other concerns.

Then, you can program ReactJS from Lisp or Python. (It's not merely true that you
can program with ReactJS in JavaScript only if you come from a "Lispy" or "Pythonic"
background. You can create animated web pages using ReactJS without leaving Lisp
or Python to author a single line of JavaScript code.)

You can create a much richer set of components than any version of HTML5 can
offer, and use them as easily as components that HTML 1.0 offered.

Perhaps the most exciting possibility of all is that ReactJS is no longer only for HTML/
Web. It now offers a killer application for "learn once, write anywhere." Now your
stellar JavaScript skills and hard work with learning functional programming unlock
a good deal more than the Web. It's about as easy to write for iOS, for instance. Now
see the home page at https://facebook.github.io/react-native/. This book
has placed you in a position to not only use ReactJS on the Web but also learn ReactJS
Native quickly and well, and this is profoundly significant.

You've climbed to the top of the diving board. Now it's time to jump in and make the
biggest splash that's available.

Perhaps the best thing to be said about the best way to work with functional reactive
programming and ReactJS is not to work with ReactJS at all. It is to play with ReactJS,
as you play with fresh snow. What has been said of the Glasgow Haskell Compiler
applies in entirety to ReactJS: forget that it's something you use for work. Play with
it as if you were given a huge Lego set as a young child. See what you can build, and
what you can't.

https://facebook.github.io/react-native/

How It All Fits Together

[210]

Programming is new again; there's pixie dust. Just like programmers once gained the
ability to use programmer-contributed subroutines on par with built-in functions, now
frontend web developers have gained the ability to use developer-made components
as easily and with as little fuss as including an IMG tag in their JSX. Gone are the
days when we needed to go to http://html5please.com/ and learn that <input
type="date"> has an amber alert for a "Caution [even] with polyfill" warning label.
Gone are also the days when you needed to—even worse manually—wire up a
JavaScript date picker with your form on each page, and you might use 58 lines of
repetitive-stress-injury-inducing code to get a date picker on one single page. Once
someone has made a proper ReactJS <DatePicker /> function, the problem is solved
to the point that it is less than one line of code to include, and you can include it zero,
one, or many times on a page. "Even. When. Deploying. With. A Shim. to Internet
Exploder 8" was deliberate use of punctuation, as also used by Terry Pratchett in the
speech of trolls, and is emphatic. As regarding the term "Internet Exploder", that title
has been around for a long time and developers, or me at any rate, had two problems
in implementing a solution that would work with any normal browser, and then again
get things working, this time for the browser that was the, um, life of the party.

Wikipedia aims for a neutral "POV" (point of view), and unflinchingly writes of an
earlier version:

This version of Internet Explorer has been widely criticized for its security issues and
lack of support for modern web standards, making frequent appearances in "worst
tech products of all time" lists, with PC World labeling it "the least secure software
on the planet."[2] And this isn't even beginning to mention all of the pixie dust that
means that you don't have to manage transitions, because you conceptually
blow everything up and rebuild things as they should be at a particular point in time.

There is a world of possibilities to explore, and there is perhaps one thing to be said:

When this book began, the author's home was Python. When this book ended, the author's
home was ReactJS.

http://html5please.com/

Appendix

[211]

A Node.js Kick start
In web development, it is desirable to have a backend server of some sort. The list
of servers and languages available is extensive. But one server that has generated an
extraordinary level of excitement is Node.js, which lets you use the same JavaScript
for frontend and backend development, and allows truly interesting possibilities.

The purpose of this book is to introduce Facebook's frontend user interface framework,
called ReactJS. The purpose of this appendix is to provide just enough of a backend to
run an authenticated server, and while there are many good choices, Node.js works
without an appendix asking you to deal with a new language. The basic work done in
this appendix covers territory comparable to what you might approach with another
server and backend language.

In this appendix, we will be covering these topics:

•	 How Node.js takes a cue from INTERCAL
•	 How Node.js, like JavaScript, has minefields
•	 Porting the Pragmatometer

But let's first look at Node.js and INTERCAL.

A Node.js Kick start

[212]

Node.js and INTERCAL
INTERCAL, properly named The Compiler Language With No Pronounceable
Acronym, was first announced by Princeton students Don Woods and Jim Lyon
in 1972. The archetypal example of a language designed to satirize various
trends and fashions in programming languages, it is perhaps better known as the
archetypal example of a language intended, not to be easy to work with, but to
be deliberately and unnecessarily hard to use. Its Hello, world! code contains full,
repetitive-stress-injury-inducing 16 lines; its legendary ROT-13 encryptor/decryptor
(a straightforward one-liner for Perl or Unix shell commands) has been described
on alt.folklore.computers as "four pages of completely undecipherable code."
INTERCAL was originally published on punch cards in EBCDIC, a character
encoding that has been called an encryption standard.

One trend that was satirized was Edgser Dikjstra's "Go to statement considered
harmful," a work that was beyond being merely seminal, arguably being the single
most important article in the history of computer science. Wags have said, for instance,
that a programmer is someone who is offended on being told, "Go to hell!" not by the
"hell" but by Go to. One INTERCAL variant (C-INTERCAL) took the premise that
Go to statements are indeed rightly considered harmful, and they wanted to go as far
away from Go to statements as possible—much farther than wimpy IF-THEN-ELSE
statements and while loops. They offered a much more radical departure from the Go
to statement than IF-THEN-ELSE and while loops—the come from statement. While
the Go to statement says, "If the execution reaches this point of the code, go to that
area of the code," the come from antonym says, "If the execution reaches that other
area of the code, switch over and pick up things at this point of the code."

The suggestion that might be made is as follows: the genius of Node.js, for which
we are providing a kick start in this chapter, is that it bends over backward to have
flow control based on come from statements, or something very similar to them.
Now, Node.js is also a server programmable in JavaScript, which is nothing to sneeze
at, but it has completely eclipsed all other servers programmable in JavaScript. Its
genius stems, not from JavaScript alone, but from a development environment that
works best when you can solve problems in terms of come from as a primary tool
for flow control. The usual preferred term is asynchronous callback function, rather
than come from, but you will work best with Node.js when you realize that Node.
js is interesting as a live example of come from programming being performant by
default, and outperforming its competitors by an order of magnitude.

Appendix

[213]

Someone who has formative C experience and comes to Perl might well be told,
"You're not really thinking of Perl unless you're thinking of hashes," or an old-line
Java programmer might be told, "You're not really thinking of JavaScript unless
you're thinking of closures." In like fashion, someone coming from any other
mainstream web server at all might be told, "You're not really thinking of Node.js
unless you're thinking of come from-style asynchronous callback functions."

Anonymous functions have been glorious since they appeared in Lisp,
and they're a great feature in JavaScript. But when dealing with Node.js
callbacks, consider using non-nested named functions as an alternative
to deeply nesting layers of anonymous inner functions.

Technically speaking, using asynchronous callback functions in Node.js is strictly
optional. However, it may be strongly suggested that unless you are using a learning
tool for Node.js—such as the excellent "Learn You the Node.js For Much Win!" (a title
that clearly alludes to Learn You a Haskell For Great Good as an excellent predecessor),
the Node.js learning tool being the one promoted at http://nodeschool.io—you
should remember Knuth's two rules:

•	 Rule 1 (for all programmers): Don't optimize
•	 Rule 2 (for advanced programmers only): Optimize later

In the context of Node.js, this becomes:

•	 Rule 1 (for all Node.js hackers): Don't use synchronous methods where an
asynchronous approach would work

•	 Rule 2 (for advanced Node.js hackers only): Add any synchronous
functionality later

For an example of code implemented synchronously, the way a non-Node.js person
would likely see, we can read and print a file such as /etc/passwd (on Windows, a
different full path would be appropriate; you can create and save one with Notepad
or your favorite editor):

var fs = require('fs');
var contents = fs.readFileSync('/etc/passwd');
console.log(contents);

http://nodeschool.io

A Node.js Kick start

[214]

Implemented with the come from asynchronous callback functionality:

var fs = require('fs');
fs.readFile('/etc/passwd', 'utf8', function(err, data) {
 if (err) {
 console.log('There was an error:');
 console.log(err);
 return;
 }
 console.log(data);
});

The question of whether console.log() is blocking or not does not concern us here.

This is a slightly more sophisticated Hello, world! program for node, or perhaps a
program just after Hello, world! which, in Node.js, is simply as follows:

console.log('Hello, world!');

Let's comment on the asynchronous example in detail.

The standard way of importing a package is to call require(), and save the result
in the variable you want to use to access the package. The fs package is one of the
few packages that come automatically with Node.js, but Node.js comes packed with
a whole universe of packages available through Node Package Manager (npm),
a package manager that may appear familiar to people who use Linux package
managers. With npm, you can search for, for example, Express.js, which will be
covered briefly in this chapter. Express.js is popular among the Node.js community,
works well with Node.js, and is a bit like Rails for Ruby or Django for Python.
A search for Express.js can be like this:

npm search express

Once you've identified which package name you want (or you think you want), you
can install it:

npm install express

Appendix

[215]

In the preceding code, the fs.readFile() function call is what sets up the come
from behavior. Like other asynchronous calls, it has two required arguments: a
basic argument (possibly an array) that is given to fs.readFile(), and a callback
function. What happens when this is called—instead of blocking for an expensive
amount of time while the file is being read—is that the program registers a request to
read a file with the specified parameters, and then the single Node.js leaves it where
it is, and attends to other requests. This is very important. Instead of blocking and
doing nothing while it waits, the program services other needs, and after the file
operation comes back with the file result (having been busy in the meantime tucking
in other requests), and then come from wherever it is and services the callback
function provided. It is very hard to accidentally get properly used Node.js to block,
except with something that burns the CPU, and with the current CPU speeds, it is
rare for an innocuous request to block the CPU so much to be a problem (interested
parties can use Node.js to mine bitcoins via tools such as those provided at http://
bitcoinjs.org/, but presumably few people worried about their Node.js server
being as performant as possible will have it mine bitcoin on the side). There is a cluster
module intended to take advantage of multiple cores where Node.js, by default, runs
in one single-threaded process on one core. But if you have any doubt about whether
your use case is extreme enough to need something like cluster to perform Node's
performant-by-default structure, you probably don't need cluster yet.

The way Node works (without using cluster, at least) has the additional advantage
of avoiding concurrency issues, because it is single-threaded and de facto not
concurrent. This is a very good thing. Concurrency is a slippery, treacherous
thing to deal with. There are highly proficient programmers who work well with
concurrency, but overall, concurrency should be considered harmful—a sort of
Pandora's Box that perennially confuses most normal programmers. There may
be a reason to consider purely functional languages using immutable data to be a
separate case as far as concurrency goes, but here we will stick to saying that it is
good that Node.js can, by default, handle an enormous number of requests without
requiring the developer to cope with slippery concurrency difficulties.

The second argument given to fs.readFile() is optional, and fs.readFile()
allowing it is a little unusual. Normal asynchronous calls look like identifier(data,
callback). In this case, the second, optional argument is worth a closer look.

The argument is what encoding to use to make a string from an array of bytes,
and the argument given is the normal default encoding, 'utf-8', although there
is a slight temptation here to fall back, in this case on 'ascii'. This is particularly
because Unix /etc/passwd files precede UTF-[anything] by decades. But we will
be good netizens and use 'utf-8'.

http://bitcoinjs.org/
http://bitcoinjs.org/

A Node.js Kick start

[216]

The behavior would probably be similar, in our case, between using UTF-8 and
ASCII encoding. The output will, in fact, be identical if /etc/passwd is like many
/etc/passwd files over the years in containing ASCII characters alone and possibly
supporting ASCII characters alone. But either of them will be a different beast by
not specifying some encoding. Without further changes, the callback will be given
in bytes rather than any JavaScript string in the ordinary sense. And here, we have
a hint of something big about Node.js.

There has been an arms race for the fastest JavaScript engine among browsers,
and Node.js took a release of Google Chrome's V8 engine (forks of Node.js may
use something newer), and extended it in certain ways, so that it would be able to
function as a general-purpose runtime environment, including being well-adapted
to serving as a web server. This included adding several extensions that don't exist in
client-side web browser JavaScript. The ability to handle sockets as a server was one
example, and this, along with I/O, was brilliantly developed along an asynchronous
model, as discussed earlier.

Another gap has to do with binary data. The standard browser JavaScript, at the time
of writing this book, doesn't really provide a direct way to deal with binary data.
While there may be obvious work of handling binary data behind the scenes in the
following code, there is no clear way to say "I want 128 (octet) bytes of alternating 1s
and 0s, starting with a 1":

<script>
(document.getElementById('portrait').src =
'http://cjsh.name/images/portrait.png');
</script>

Node.js extends V8's capabilities to handle proper binary data, and tried and true
JSON is complemented with the new and binary-friendly BSON. The handling of
binary data is low-level, possibly too low-level for its C-like character. For example, a
productivity boost and decrease in frustration comes when a C programmer switches
completely from using malloc() ("memory allocate") to using calloc() ("cleared
memory allocate"). The malloc() function allocates a raw block of memory with
whatever detritus was left over from the memory's previous occupant, leading to
strange and wickedly magical effects if you fail to properly initialize any portion of
the memory.

Appendix

[217]

The calloc() function allocates a raw block of memory and clobbers any previous
content with zeroes. Remember Pete Hunt's words, "I'd rather be predictable than
right?" Stopping ever using malloc() directly again in favor of calloc() is a major
way in which C programmers can opt to be predictable rather than right. However,
out of misguided optimization concerns (it is a fraction of a second faster not to wipe
the allocated byte memory), Node.js offers the equivalent of a C malloc() only,
without any furnished calloc() equivalent, as far as I can tell. Fortunately, Node.
js JavaScript (or C, for that matter) is so powerful that it is a straightforward exercise
to port the calloc() functionality. Just make a wrapper that handles everything that
the Node.js byte allocation handles, follows up by making all bits zeroes, and use this
wrapper exclusively when you allocate bytes.

Returning to the immediately highlighted code, in Node.js thinking at least, reading
from a file or from the network does not return a string. It returns binary bytes. Now
those bytes may be easily convertible via a given encoding, and if you furnish the
encoding you want, fs.readFile() will give you a proper string, not just bytes.
But let's look at some code similar to what we had earlier. Node.js, like many good
environments, offers a Read-Eval-Print-Loop (REPL) to try things out (invoking
the node executable without any following arguments will activate the REPL). From
the REPL:

> fs.readFile('/etc/passwd', function(err, data){console.log(data)});
undefined
> <Buffer 23 23 0a 23 20 55 73 65 72 20 44 61 74 61 62 61 73 65 0a 23
20 0a 23 20 4e 6f 74 65 20 74 68 61 74 20 74 68 69 73 20 66 69 6c 65
20 69 73 20 63 6f 6e 73 ...>

The various bytes in the file are represented in hexadecimal code.

Returning to our last code sample, the function(err, data) callback signature is
the normal callback signature for the programming contract. The callback should be
eventually called, and perhaps called very quickly. This should be done with either
a "truthy" err, in which case the callback should optionally take steps to respond to
any information contained in the error feedback, and non-optionally return without
going further, or a null err, in which case the function's precondition is met and the
callback should take whatever action is appropriate to receive the data that was
requested. The preceding code illustrates the pattern: check for null err, optionally
act on it by logging diagnostics, and print the file contents if err is null.

A Node.js Kick start

[218]

Warning – Node.js and its ecosystem are
hot, and hot enough to burn you badly!
When I was a teacher's assistant, one of the nonobvious suggestions I was told was
not to tell a student that something was "easy." The reason was somewhat obvious
in retrospect: if you tell people that something is easy, someone who doesn't see
a solution may end up feeling (even more) stupid, because not only do they not
get how to solve the problem, but also the problem that they are too stupid to
understand is an easy one!

There are gotchas that don't just annoy people coming from Python/Django, which
immediately reloads the source if you change anything. With Node.js, the default
behavior is that if you make one change, the old version continues to be active until
the end of time or until you manually stop and restart the server. This inappropriate
behavior doesn't just annoy Pythonistas; it also irritates native Node.js users who
provide various workarounds. The StackOverflow question "Auto-reload of files
in Node.js" has, at the time of this writing, over 200 upvotes and 19 answers; an
edit directs the user to a nanny script, node-supervisor, with homepage at http://
tinyurl.com/reactjs-node-supervisor. This problem affords new users with
great opportunity to feel stupid because they thought they had fixed the problem,
but the old, buggy behavior is completely unchanged. And it is easy to forget to
bounce the server; I have done so multiple times. And the message I would like to
give is, "No, you're not stupid because this behavior of Node.js bit your back; it's just
that the designers of Node.js saw no reason to provide appropriate behavior here.
Do try to cope with it, perhaps taking a little help from node-supervisor or another
solution, but please don't walk away feeling that you're stupid. You're not the one
with the problem; the problem is in Node.js's default behavior."

This section, after some debate, was left in, precisely because I don't want to give
an impression of "It's easy." I cut my hands repeatedly while getting things to work,
and I don't want to smooth over difficulties and set you up to believe this: getting
Node.js and its ecosystem to function well is a straightforward matter, and if it's not
straightforward for you too, you don't know what you're doing. If you don't run into
obnoxious difficulties while using Node.js, that's wonderful. If you do, I would hope
that you don't walk away feeling, "I'm stupid. There must be something wrong with
me." You're not stupid if you experience nasty surprises dealing with Node.js. It's not
you! It's Node.js and its ecosystem!

http://tinyurl.com/reactjs-node-supervisor
http://tinyurl.com/reactjs-node-supervisor

Appendix

[219]

Next, we will explore a sample project, a remote equivalent of the quick and dirty
localStorage-based persistence, which was covered in Chapter 11, Demonstrative
Functional Reactive Programming in JavaScript with a Live Example Part IV – Adding a
Scratchpad and Putting It All Together. That was a success, but it was way too hard
with way too many trip-ups along the way. I have, at times, compared Python and
JavaScript; but it may be worth a moment to look at why JavaScript's Node.js is
really nasty compared to Python's Django.

My first experience with Django, after years of experience, was a feeling that it
was a brilliant power tool that, for some strange reason, had accidentally not been
enshrined in Python's standard library. Now, in fact, there is excellent reason for
this, and one that need criticize neither Python nor Django: as Python's Benevolent
Dictator for Life observed, you put something into the standard library when it is
"dead," not when it is still growing. Django is still growing and it's still getting better.
Therefore, Django does not belong in the standard library for Python no matter how
good it is.

There is, for many contexts, a principle of least astonishment, and once you start
to know Python well, it does not give you unpleasant surprises too often. Django
does come with some surprises, such as its templating system, which at the time of
ASP and JSP was a striking proposition. (Now it has had its 15 minutes of fame, and
even Python/Django developers start off by replacing the templating system with
something more powerful. It was entirely the right choice for ReactJS to essentially
do the opposite.) But paradoxically, both Django and ReactJS offered templating that
reflected a genius from Mars technique, as defined in The New Hacker's Dictionary:

[TMRC] A visionary quality which enables one to ignore the standard approach
and come up with a totally unexpected new algorithm. An attack on a problem
from an offbeat angle that no one has ever thought of before, but in retrospect makes
perfect sense. Compare grok, zen.

Working with Node.js doesn't feel anything like working with Python, or even like
working with ReactJS. It is more frustrating, is more difficult, and has more things
that don't make sense.

Here is one example: at the time of the initial research, I intended to use passport.
js to offload the dirty work of authentication. I originally meant to use Facebook
authentication, but the instructions involved creating something on the Facebook
developer site, and taking down information from the Facebook application. And
even after exploring the Facebook developer site and asking, "passport.js says to get
XYZ information from my application on the Facebook developer site," I completely
failed to obtain any timely answer.

A Node.js Kick start

[220]

Scaling back my ambitions, I decided to use the most basic proper authentication
from passport.js—username and password—until I learned that what was provided
as username and password support was almost entirely useless.

The reason it is useless is that just as Create, Read, Update, Destroy (CRUD) offers an
enumeration of basic responsibilities—bases that need to be covered in any serious and
complete tool for handling data and records (whether it is an SQL database, any stripe
of a NoSQL database, pickled data saved in a programming environment, an editor,
or an e-mail client)—there is a basic set of bases that need to be covered in mainstream
account management, whether username/password or any newer and gentler
alternative to making users keep track of yet another login and password. While
individual sites may opt out of certain functionality, repeated and basic functionality
that provide the CRUD of account management includes the following:

•	 Allowing users to create new accounts
•	 Allowing users to log in with an existing account
•	 Replacing a lost password without an unencrypted password being e-mailed

to the user
•	 Possibly an extended set of features for a site's administrative members, such

as account moderation (if desired), locking and unlocking accounts, and
account deletion

The only one of these bases covered by passport.js's functionality is logging in
with an already existing account, created by some means that I have not been able
to ascertain, and being successfully or unsuccessfully authenticated. Perhaps the
only thing more pathologically incomplete in terms of a CRUD was offered in the
April 1 issue of Byte magazine some decades ago, when someone advertised an
exceptionally good deal on write-only memory.

Now we might note in passing that supporting 100 percent of CRUD is not, strictly
speaking, the only possible approach. Years ago, Write Once, Read Many (WORM)
disk drives spent some time in the limelight. While there is possibly no modern
laptop that has shipped with a genuine WORM drive, ClojureScript includes an
extraordinary amount of effort to offer WORM data. WORM, in this context, means
that data is designed to exclude Updating (although you can make modified copies
easily enough), and Deletion is reserved to garbage collection: out of full CRUD
support, ClojureScript's WORM data only allows unimpaired Creation and Reading
of data. ClojureScript reflects a carefully thought-out decision to offer WORM data
in a context where full CRUD support would have been considerably easier. This
decision now deserves obvious respect.

Appendix

[221]

Now, the lack of an equivalent of full CRUD support is not the end of the world for
authentication, as at least one other group has approached "authentication CRUD"
more appropriately. Stormpath advertises offerings for Node, Python, Java, and
REST. One of their developers rewrote my code for authentication for me to use
their system. While this may just be being nice to an author who might cover their
product, Stormpath inclusion isn't even a proper integration challenge; it's really
simple. Now it should be stated for the record that Stormpath is not open source, but
a SaaS with freemium pricing. The full-featured, free, and "no credit card required"
developer tier has a quota of 100,000 API calls per month, and they estimate user
logins as using about three API calls. They definitely have a profit motive, but if you
have enough traffic for you to need a paid tier of service, you shouldn't care about
the trifle you have to pay them. The system gives an overall impression of being a
bit young, with people working out the remaining kinks, but it has happened that
someone told them politely about something that was immature, and the problem
was resolved quickly.

Another basic difficulty surrounds databases. There's a good case to be made that
MongoDB is important, and together with the "access MongoDB from Node.js"
package of mongoose, it is worth the learning curve. In preparation for this chapter,
top-of-search tutorials proved to explain how to create a Schema and save something
in it, but left guesswork as to how to usefully approach a database where all the
necessary schemas already exist. Subsequent work turned up an existing Stack
Overflow solution that appeared to cover database CRUD with a database with
already existing schemas and databases. I may have come within an inch of pay
dirt before giving up, but I intended to use mongoose/MongoDB for its database
work almost from the beginning, and I have not yet attained proficiency.

Another database that seemed like a perfect fit, and may yet be redeemable,
is a server-side implementation of the HTML5 key-value store. This approach
has the cardinal advantage of an API that most good frontend developers
understand well enough. For that matter, it's also an API that most not-so-good
frontend developers understand well enough. But with the node-localstorage
package, while dictionary-syntax access is not offered (you would want to use
localStorage.setItem(key, value) or localStorage.getItem(key), but not
localStorage[key]), the full localStorage semantics is implemented, including a
default 5 MB quota. Why? Do server-side JavaScript developers need to be protected
from themselves?

A Node.js Kick start

[222]

For client-side database capabilities, a 5 MB quota per website is really a generous
and useful amount of breathing space to let developers work with it. You could
set a much lower quota and still offer developers an immeasurable improvement
over limping along with cookie management. A 5 MB limit doesn't lend itself very
quickly to big data client-side processing, but there is a really generous allowance
that resourceful developers can use to do a lot. On the other hand, 5 MB is not a
particularly large portion of most disks purchased any time recently. This means
that if you and a website disagree about what the reasonable use of disk space is, or
if a site is simply hoggish, it does not really cost you much and you are in no danger
of a swamped hard drive, unless your hard drive was already too full. We may be
better off if the balance were a little less, or a little more, but overall it's a decent
solution for addressing the intrinsic tension with respect to a client-side context.

However, it might gently be pointed out that when you are the one writing code for
your server, you don't need any additional protection from making your database
more than a tolerable 5 MB in size. Most developers will neither need nor want tools
acting like nannies and protecting them from storing more than 5 MB of server-side
data. Also, this 5 MB quota, which is a golden balancing act on the client side, is
rather a bit silly on a Node.js server.

Moreover, for a database for multiple users—such as is covered in this appendix—it
might be pointed out, slightly painfully, that it's not 5 MB per user account, unless
you create a separate database for list on each account. It is 5 MB shared between all
user accounts together. This could get painful if you go viral!

The documentation states that the quota is customizable, but an e-mail a week ago
to the developer asking how to change the quota is unanswered, as was a Stack
Overflow question asking the same thing. The only answer I have been able to find
is in the GitHub CoffeeScript source, where it is listed as an optional second integer
argument to a constructor. This is easy enough, and you can specify a quota equal
to the disk or partition size. But besides porting a feature that does not make sense,
the tool's author has also completely failed to follow a very standard convention
of interpreting 0 as "unlimited" for a variable or function wherein an integer is to
specify the maximum limit for the concerned resource use. The best thing to do with
this disfeature is probably to specify that the quota is infinity:

if (typeof localStorage === 'undefined' || localStorage === null)
 {
 var LocalStorage = require('node-localstorage').LocalStorage;
 localStorage = new LocalStorage(__dirname + '/localStorage',
 Infinity);
 }

Appendix

[223]

A similar amateur roughness kept cropping up in elements that surfaced in my
research. Express.js is of a higher level than Node.js, but in terms of ways of shooting
yourself in the foot, Node.js is closer to offering C's way than any other technology
I have used recently. C is for those who prefer to load their own rounds before
shooting themselves in the foot.

A sample project – a server for our
Pragmatometer
Let's work toward a simple project. We will create a generic server backend that
can serve a modification of the Pragmatometer project covered in the last chapters
of this book, which handled persistence by saving and restoring from a few JSON
strings locally in HTML5 localStorage. We will work on a server that can provide
static content, like what has already been developed, provide an API to save or
restore a string and an identifying key, and handle basic authentication and account
management. The client-side programming should be barely more interesting than
it was before, essentially by swapping saving to localStorage to saving to our remote
Node.js server.

We will work with several technologies. The most attention will be given to working
within Express.js compared to, for instance, Stormpath. Stormpath appears not to
have taken credit for inventing something fundamentally new, original, or stunning,
or for a breakthrough in an authentication mechanism. They might perhaps take
credit for solving a well-known problem in such a way that a large chunk of busy
work will be taken off your plate. Adding Stormpath is small and unobtrusive. Most
users will not use it as a platform to build some great work on top of. Consequently,
we will give significant attention to Express.js (and getting our client to talk to
Express.js), which is a platform to work with. On the framework's site, Express.js is
promoted as a "fast, unopinionated web framework for Node.js." They pretty much
deliver what they boast of.

We will need to build a server, but also alter the client side for the Pragmatometer
project in chapter 8 to chapter 11 There are save() and restore() functions, and
they will be altered and expanded.

Install Express.js via npm install express. Then create an express project using
express [the directory name for your project]. You will have a framework
fleshed out. You can add packages to the package.json file, and run npm install
to populate your local copy. There will be a public or static directory that you can
make available, and routes/index.js handles routing in a way that people who
know other frameworks may feel like home.

A Node.js Kick start

[224]

Client-side preparations
Everything that was under the js/ directory in chapter 8 to chapter 11 is moved to
public/javascripts. The full details of the changes will be posted on the website.
Here, we adapt the save() and restore() functions from being (client-side)
localStorage-specific to retaining localStorage for a slight perceived speed boost, but
restore from and save to a remote server. In this case, the server is a Node.js server
built with Express.js, but it could essentially be any server serving the same, simple,
and implicit API.

Ordinarily, with ReactJS, an object's state is set within a setInitialState() call.
Theoretically, we can preserve the relevant semantics by loading with the synchronous
equivalent of an Ajax call, but it's also possible to populate a stub and then make
available a callback that will really set things in motion. The function used to populate
an object's state upon successful return from an Ajax call is populate_state():

 var populate_state = function(state, new_data) {
 for (field in new_data) {
 if (new_data.hasOwnProperty(field)) {
 state[field] = new_data[field];
 }
 }
 state.initialized = true;
 }

The restore() function is slightly complex, but that's because it is written to
build perceived layers of responsiveness. It makes an Ajax call, setting a state as
initialized and marking state.initialized as false. It also restores from JSON
(if anything has been saved). Its check of whether localStorage is available, and
graceful degradation if it isn't, is probably historical, as ReactJS is only claimed to
work with browsers (IE8 and higher) that offer localStorage. Nonetheless, it provides
an example of how we might go about graceful degradation:

 var restore = function(identifier, default_value, state, callback) {
 populate_state(state, default_value);
 state.initialized = false;
 var complete = function(jqxhr) {
 if (jqxhr.responseText === 'undefined' || jqxhr.responseText.
length &&
 jqxhr.responseText[0] === '<') {
 // We deliberately do nothing.
 } else {
 populate_state(state, JSON.parse(jqxhr.responseText));
 }
 callback();

Appendix

[225]

 state.initialized = true;
 }
 jQuery.ajax('/restore', {
 'complete': complete,
 'data': {
 'identifier': identifier,
 'userid': userid
 },
 'method': 'POST'
 });
 if (Modernizr.localstorage) {
 if (localStorage[identifier] === null ||
localStorage[identifier]
 === undefined) {
 return default_value;
 } else {
 return JSON.parse(localStorage[identifier]);
 }
 } else {
 return default_value;
 }
 }

As a limitation of scope, neither the implementation of the restore() function in the
preceding code, nor the save() function in the following code address resilience in
the face of a failed Ajax call (or calls). One way of addressing this concern is to check
for failure and keep retrying, with exponentially increasing delays between retries to
be a good netizen and not add persistent heavy traffic to the network. This pattern
is followed (roughly) at a high level by Gmail and at a low level baked into TCP/IP.
For our implementation, anything that a failed Ajax call might not have conveyed
should be available afresh in the key-value store, unless there has been a subsequent
update, in which case both changes will usually be saved.

The save() function is slightly simpler, but it represents the other side of a coin:
make an Ajax call to save/restore, and save to and restore from localStorage as an
approximation before it is available:

 var save = function(identifier, data) {
 if (Modernizr.localstorage) {
 localStorage[identifier] = JSON.stringify(data);
 }
 jQuery.ajax('/save', {
 'data': {
 'data': JSON.stringify(data),
 'identifier': identifier,

A Node.js Kick start

[226]

 'userid': userid
 },
 'method': 'POST'
 });
 }

While we are pulling stuff from localStorage, we try to prevent the user from being
able to enter data. This is because under unpredictable race conditions, this data gets
clobbered when data from Ajax calls comes back. In other words, the user is blocked
from adding any input until data is restored from Ajax (even if a value has already
been restored from localStorage). This means, in particular, that submit buttons
are disabled, and for now, the only application for which the callback function is
given to restore() is for enabling submit buttons that have been disabled. For the
calendar, the render() method has a disabled Submit button (you can be more
purist and disable all the input fields, but disabling the Submit button is enough
to prevent user data from being clobbered by race conditions):

 render: function() {
 var result = [this.render_basic_entry(
 this.state.entry_being_added)];
 if (this.state.entry_being_added &&
 this.state.entry_being_added.hasOwnProperty('repeats') &&
 this.state.entry_being_added.repeats) {
 result.push(this.render_entry_additionals(
 this.state.entry_being_added));
 }
 return (<div id="Calendar">
 <h1>Calendar</h1>
 {this.render_upcoming()}<form onSubmit={
 this.handle_submit}>{result}
 <input type="submit" value="Save" id="submit-calendar"
 disabled="disabled" /></form></div>);
 },

The Calendar's getInitialState function only arranges for a bare stub of data
to be synchronously put in place. The Ajax call, upon returning, gives it a more
appropriate value and re-enables the disabled save button, as race conditions
are no longer a concern here:

 getInitialState: function() {
 default_value = {
 entries: [],
 entry_being_added: this.new_entry()
 };

Appendix

[227]

 restore('Calendar', default_value,
 default_value, function()
 {
 jQuery('#submit-calendar').prop('disabled', false);
 });

There are a few more details on the client side, but they are not particularly difficult.
For instance, we add a Logout link (positioned with CSS to be at the top right), and
the JavaScript behavior (without calling the usual preventDefault() method,
because we do not want to prevent the default behavior) of erasing account data
from the key-value store:

 jQuery('#logout').click(function() {
 if (Modernizr.localstorage) {
 localStorage.removeItem('Calendar');
 localStorage.removeItem('Todo');
 localStorage.removeItem('Scratch');
 }
 });

The server side
When we need packages, we should add them to our package.json file. One way of
doing this is backwards. Perform npm install XYZ and then add a line to the package.
json file under "dependencies," specifying "XYZ": "~1.2.3" and recording the version
number for the installation. The dependencies presently included are as follows:

{
 "name": "Pragmatometer",
 "version": "0.0.0",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "body-parser": "~1.13.2",
 "connect-flash": "~0.1.1",
 "debug": "~2.2.0",
 "ejs": "~2.3.2",
 "express": "~4.12.4",
 "express-stormpath": "~1.0.5",
 "jade": "~1.9.2",
 "morgan": "~1.5.3",

A Node.js Kick start

[228]

 "serve-favicon": "~2.2.1",
 "stormpath": "~0.10.0"
 }
}

We create an account at https://stormpath.com/, probably a free developer
account (unless you know you need more), and specify the various details in
app.js. This setup uses HTML-like EJS over Markdown-like Jade for views:

// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.engine('html', require('ejs').renderFile);
app.set('view engine', 'ejs');

app.use(logger('dev'));
// uncomment after placing your favicon in /public
app.use(favicon(__dirname + '/public/images/favicon.ico'));
app.use('/public', express.static(path.join(__dirname, 'public')));

// Authentication middleware.
app.use(stormpath.init(app, {
 apiKeyId: '[Deleted]',
 apiKeySecret: '[Deleted]',
 application:
 'https://api.stormpath.com/v1/applications/[Deleted]',
 secretKey: '[Deleted]',
 sessionDuration: 365 * 24 * 60 * 60 * 1000
 }));

app.use('/users', users);

All but one of the items marked [Deleted] are things that you get from your setup
on Stormpath. Some people have advised trying to be clever in making your own
secret key; Don't! Under Mac, Unix, Linux, or Cygwin (Cygwin is freely available
from http://cygwin.org and runs under Windows), pull up Command Prompt
and type the following line:

python -c "import binascii; print binascii.hexlify(open('/dev/random').
read(1024))"

This will get you a kilobyte of cryptographically strong and random data that is
encoded to be copy and paste friendly.

https://stormpath.com/
http://cygwin.org

Appendix

[229]

Here's a note on hygiene: the recommended practice is to be very careful with your
secret key and, in particular, not to include it in version control. Instead, put it into a
dot-file directory under your home directory with permissions that don't let anyone
else do anything with it.

Probably, the one file with the heaviest work in it is routes/index.js. We pull in
several dependencies, including a body parser that will be able to get data out of
Ajax saves that POST JSON in the body of the request:

var body_parser = require('body-parser');
var json_parser = body_parser.json();
var express = require('express');
var stormpath = require('express-stormpath');

We include localStorage , specifying Infinity as our quota, and then provide a
sanitizer for characters in keys. This specific sanitizer leaves alphanumeric characters
intact, which with the rest of the application is sufficient to ensure that it doesn't
make key collisions. It also ensures that the characters are on a whitelist that excludes
colons. This allows us to create keys with names similar to username:component-
name, perform a string split on colons, and always get the username in the zeroth slot
and a component name in the first slot:

var sanitize = function(raw) {
 var workbench = [];
 for(var index = 0; index < raw.length; ++index) {
 if
('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_.'
 .indexOf(raw[index]) !== -1) {
 workbench.push(raw[index])
 }
 }
 return workbench.join('');
}

The router works in a way that should seem familiar to users who've seen routers in
almost any context before. Although route and non-route functions will be mixed,
the router is created and connected to the first two routes:

var router = express.Router();

router.get('/', stormpath.loginRequired, function(request, response) {
 response.render('index.ejs');
});

A Node.js Kick start

[230]

router.post('/', stormpath.loginRequired, function(request, response)
{
 response.render('index.ejs');
});

The included stormpath.loginRequired, once Stormpath is included, is really
all that you need to get a view to be login protected. We go ahead to define two
non-view functions: the functions used to save() and restore() a key for a
particular user:

var save = function(userid, identifier, value) {
 localStorage.setItem(sanitize(userid) + ':' + sanitize(identifier),
value);
 return true;
}

var restore = function(userid, identifier) {
 var value = localStorage.getItem(sanitize(userid) + ':' +
 sanitize(identifier));
 if (value) {
 return value;
 } else {
 return 'undefined';
 }
}

We add the routes that will service the POST Ajax requests. If we want to add
support for GET or other verbs, we can call router.get() and the like:

router.post('/restore', json_parser, function(request, response, next)
{
 var result = restore(request.user.href, request.body.identifier);
 response.type('application/json');
 response.send(result);
});

router.post('/save', function(request, response, next) {
 var success_or_failure = save_identifier(request.user.href,
 request.query.identifier,
 request.query.data);
 response.type('application/json');
 response.send(String(success_or_failure));
 });

Appendix

[231]

Then there is a boilerplate line that we keep intact:

module.exports = router;

We also use Express.js's hierarchy for static data; the revised index.ejs pulls from a
place different from our earlier js/:

 <script
 src="//cdnjs.cloudflare.com/ajax/libs/react/0.13.1/react-with-
addons.js">
 </script>
 <script
 src="//cdnjs.cloudflare.com/ajax/libs/showdown/1.0.2/showdown.
js">
 </script>
 <script src="//cdn.ckeditor.com/4.4.7/basic/ckeditor.js"></script>
 <script src="//code.jquery.com/jquery-1.9.1.js"></script>
 <script src="/public/javascripts/json2.js"></script>
 <script src="/public/javascripts/modernizr.js"></script>
 <script src="/public/javascripts/site.js"></script>

And that's it! We provide full details in the electronic resource packet. Now we have
provided a server-side key-value store with account management.

Summary
When this appendix was being contemplated, one of the questions I considered
was "JavaScript plus Node.js or Python plus Django?" The focus of this book is on
a frontend with ReactJS, and the focus on the backend was just to have enough to
support the frontend. I naturally thought that Python is so easy, even to newcomers,
and Django also is so easy (again, even to newcomers) that even with the introduction
of a new language, a basic key-value store with authentication should be an easy
appendix to read and to write. However, the author thought then that I would go
the high road of JavaScript plus Node.js, the combination everybody wants in on, and
I have been paying for his decision not to provide a Python-plus-Django appendix
ever since.

The code provided in a bundle is, of course, freely offered for any mileage you can
pull from it that won't violate Packt Publishing's licensing. But the basic task of
implementing a key-value store with account management is perhaps of the level of
an undergraduate's homework assignment. It does not, in any sense, demonstrate
the peaks of wonder offered by any server.

A Node.js Kick start

[232]

Now, Node.js really does offer peaks of wonder. These, however, were not explored
here because the goal was to provide just enough "Node.js plus Express.js" to create
a server-based adaptation of the Pragmatometer project covered in chapters 8 to 11.
Moreover, given the degree of enthusiasm and the sheer work hours on all projects,
it may be warranted in a year, 2 years, or 3 years to sharply temper any remarks
about an immature ecosystem made at the time of writing this book. After 5 years,
it may really make sense to say, "The 2015 Node.js ecosystem had several
minefields. The 2020 Node.js ecosystem has multiple paradises."

But to publish, as passport.js did, to have a simple animation between passport.
authenticate('twitter'), passport.authenticate('google'), passport.
authenticate('facebook'), and so on slide by with a quite seductive apparent
ease, and then have the user searching and asking at length for a passport.js way
to handle username-password authentication that allowed users to create a new
account, doesn't happen. This is extremely inappropriate, and it is inappropriate
in a way that happened more than once in the Node.js ecosystem. The transition
between finding a Node.js tool with a slick website that seems to offer exactly what
you need, and activating "Hello, world!" levels of functionality meets perhaps 50
percent success. It represents a gulf bigger than I anything have seen in the entire
history of the Web.

I can see people thinking, not exactly that I am brilliant because of how I made the
to-do list with multiple statuses available for each item, but that I was practical,
and overall the book significantly reduced the amount of legwork involved in the
readers' getting up to speed with ReactJS. However, I would be mystified if people
told me that I was brilliant, because I thought of making an authenticated key-value
store, as covered in this appendix. The achievement is not at all because I managed
to get some technology to work as an authenticated key-value store—which is a
task on par with undergraduate homework—but because it was accomplished in
an environment that exists in continuity with INTERCAL.

People have needlessly shot themselves in the foot by constantly using JavaScript as
a whole, and crucial to JavaScript being made a respectable language was Douglas
Crockford saying, in essence:

"JavaScript as a language has some really good parts and some really bad parts.
Here are the good parts. Just forget that anything else is there."

Appendix

[233]

Perhaps the hot Node.js ecosystem will grow its own "Douglas Crockford," who
will say:

The Node.js ecosystem is a coding Wild West, but there are some real gems to
be found. Here's a road map. Here are the areas to avoid at almost any cost. And
here are the areas with some of the richest pay dirt to be found in any language or
environment.

Perhaps someone else can take these words as a challenge, follow Crockford's lead,
and write The Good Parts and/or The Better Parts for Node.js and its ecosystem. I'd
buy a copy!

[235]

Index
Symbols
10,000-foot

overview 1
user interface programming, handling 2

.length method 23

B
Bacon.js 110, 112
Big-Coffee Notation 40-42
Brython

about 112-115
URL 112

C
calendar system

about 131
boring code, writing 169
calendar entries, adding 157-159
calendar entries, displaying 179
calendar entries, segregating 178
challenges 154-156
day activities, sorting 180, 181
dropdown menus, adding for

months 174, 175
greatest one-time calendar entry,

searching 178
holidays, accommodating 183
interface, displaying for repeating calendar

entries 172, 173
Markdown, using 181
Plain Old JavaScript Objects,

using 165, 166

progressive disclosure, implementing 166
render() method, using 168
successor() function, using 175-177
Todo, displaying 182
UI, creating for non-recurring

entries 170, 171
user interface, creating 160-164

CKeditor
about 190
including, in page 190, 191
state, persisting 198, 199
URL 190
using 189

ClojureScript 108, 109
complementary tools

URL 108
componentDidMount() function 55
computer folklore

history 90-92
content distribution network (CDN) 48
Create, Read, Update, Destroy (CRUD) 220
custom sort functions

about 69-71
array.filter() 72, 73
Array.prototype, extending 76, 77
filter 75
filter toolbox 78
filter windows 81
global pollution, avoiding 77
Illusionism 74, 75
map 75-78
reduce 75-78
reduce function 78-80

Cygwin
URL 228

[236]

D
data types, Immutable.js

collection 116
IndexedCollection 116
IndexedIterable 116
IndexedSeq 116
Iterable 116
KeyedCollection 116
KeyedIterable 116
KeyedSeq 116
List 116
Map 116
OrderedMap 116
OrderedSet 116
Record 116
Seq 116
Set 116
SetCollection 117
SetIterable 117
SetSeq 117
Stack 117

declarative programming 33
Django templating

backend, URL 39
frontend, URL 39

Domain-specific Language (DSL)
JavaScript as 39, 40

E
ECMAScript 6

about 19, 29
URL 29

F
Facebook

BDD unit testing 122-125
flow control 19
Flux Architecture

about 35
implementing, with Fluxxor 126

Fluxxor
URL 126
used, for implementing Flux

Architecture 126

function
about 19, 22, 98
comments 24-28

functional reactive programming (FRP)
about 1, 96-102
actual display, triggering 142, 143
complete component 136-138
demonstrating, example 129-135
features , distinguishing 95
features, distinguishing 96
render method 139

G
game with multiple ports

history 47
generators

ECMA6-proposed syntax, URL 72
get_level() function 54
Google Chrome

installing 6-9
URL 6

Google Maps 201
green field project 130

H
Haskell

URL 92, 100
hasOwnProperty() method 29
Heisenbugs

about 33, 34
URL 33

Hello, World!
advanced prerequisites 92-95

HTML, for web page
about 47, 48
content distribution network (CDN),

using 48
minimal page body 50, 51
simple styling 48-50

I
IE8 support

URL 196

[237]

Immediately Invoked Function Expression
(IIFE)

about 51
function, for creating game levels 54, 55
function, for game restart 53
function, for game start 53
GAME OVER screen 62, 64
initialization 52, 53
ReactJS classes, using 55-59
tick() function 59-62
variable declaration 52, 53

Immutable.js
about 115, 116
data types 116
URL 115

Immutable.List methods
asImmutable 117
asMutable 117
butLast 117
concat 117
contains 117
count 117
countBy 117
delete 117
deleteIn 117
entries 117
entrySeq 117
equals 117
every 118
filter 118
filterNot 118
find 118
findIndex 118
findLast 118
findLastIndex 118
first 118
flatMap 118
flatten 118
forEach 118
fromEntrySeq 118
get 118
getIn 118
groupBy 118
has 118
hashCode 118
hasIn 118
indexOf 118

interleave 118
interpose 118
isEmpty 118
isList 118
isSubset 119
isSuperset 119
join 119
keys 119
keySeq 119
last 119
lastIndexOf 119
List 119
map 119
max 119
maxBy 119
merge 119
mergeDeep 119
mergeDeepIn 119
mergeDeepWith 119
mergeIn 119
mergeWith 119
min 119
minBy 119
of 119
pop 119
push 119
reduce 119
reduceRight 120
rest 120
reverse 120
set 120
setIn 120
setSize 120
shift 120
skip 120
skipLast 120
skipUntil 120
skipWhile 120
slice 120
sort 120
sortBy 120
splice 120
take 120
takeLast 120
takeUntil 120
takeWhile 120
toArray 120

[238]

toIndexedSeq 121
toJS 121
toKeyedSeq 121
toList 121
toMap 121
toObject 121
toOrderedMap 121
toSeq 121
toSet 121
toSetSeq 121
toStack 121
update 121
updateIn 121
values 121
valueSeq 121
withMutations 121
zip 121
zipWith 121

information hiding
JavaScript closures, using 85-87
JavaScript, using 82-84

INTERCAL 212-217

J
JavaScript

about 67-105
arrays, sorting 69-71
as DSL 39, 40
for page animation 51
information hiding 82-84
URL 105

Jest 122-125
JSON

URL 195
JSX scripts

URL 51

L
linear 41
loops 28, 29

M
memoization 74
Monads

URL 95

N
NaN 19-22
Node.js

about 212-217
installing 10-15
limitations 218-223
URL 6, 10

Node Package Manager (npm)
about 214
jsx, URL 51

novelty flowchart
URL 84

O
Observer pattern 5
Om 110

P
persistence 194-197
Plain Old Simple HTML (POSH) 57
Pragmatometer project

client-side preparations 224-227
server, creating 223
server side preparations 227-231
URL 130, 131

programming
evolution 205, 207
language 104

Q
quadratic 41

R
reactive programming 31, 32
ReactJS

about 189
advantages 201
as view 205
declarative programming 33
properties 56
Starter Kit, installing 16-18
state 56
URL 32

[239]

Read-Eval-Print-Loop (REPL) 217
reduce function 78-81
render() method

about 96, 191
implementing 139-141

restore() function 196
Reverse Polish Notation (RPN)

URL 47
Room to Grow 131

S
Scratchpad 131
second system effect

URL 35
sesquipedalian 98
shouldComponentUpdate() method 191
Showdown library

URL 133
side effect 99
sort() function 69
Starter Kit

for ReactJS, URL 6
installing, for ReactJS 16-18
URL 16

strict mode 19, 20
subcomponent

integrating, into page 192-194

T
Todo class 147
to-do list

about 131, 145
adding, to application 146
appropriate initial state, setting 147
colors, using 151
inner functions. using 148, 149
ReactJS add-ons, including 147
render() function, used for heavy

lifting 148
result, rendering 151
result table, building 149, 150
text, making editable 147

tools
Google Chrome, installing 6
installing 6
Node.js, installing 10
Starter Kit, installing for ReactJS 16

U
UI teardown and rebuild 38, 39
unit testing 134, 135
updates

cross-synchronization
display, refreshing 142, 143

user interface programming, paradigms
about 3
aspect-oriented programming 3
declarative programming 3
defensive programming 3
functional reactive programming 4, 5
handling 2
imperative programming 4
information hiding 4
object-oriented programming 5
patterns 5
procedural programming 5
reactive programming 5

V
values 19, 22
variables and assignment

about 19-21
comments 21
flow control 22

W
web page

HTML 47
What You See Is What You Get

(WYSIWYG) scratchpad
adding 188
merging, into web page 188, 189

Write Once, Read Many (WORM) 220

Thank you for buying
Reactive Programming with JavaScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

JavaScript and JSON Essentials
ISBN: 978-1-78328-603-4 Paperback: 120 pages

Successfully build advanced JSON-fueled web
applications with this practical, hands-on guide

1.	 Deploy JSON across various domains.

2.	 Facilitate metadata storage with JSON.

3.	 Build a practical data-driven web application
with JSON.

Learning JavaScriptMVC
ISBN: 978-1-78216-020-5 Paperback: 124 pages

Learn to build well-structured JavaScript web
applications using JavaScriptMVC

1.	 Install JavaScriptMVC in three different ways,
including installing using Vagrant and Chef.

2.	 Document your JavaScript codebase and
generate searchable API documentation.

3.	 Test your codebase and application as well
as learning how to integrate tests with the
continuous integration tool, Jenkins.

Please check www.PacktPub.com for information on our titles

Object-Oriented JavaScript
Second Edition
ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS in this
comprehensive guide

1.	 Make object-oriented programming accessible
and understandable to web developers.

2.	 Apply design patterns to solve JavaScript
coding problems.

3.	 Learn coding patterns that unleash the unique
power of the language.

4.	 Write better and more maintainable
JavaScript code.

Learning Reactive Programming
with Java 8
ISBN: 978-1-78528-872-2 Paperback: 182 pages

Learn how to use RxJava and its reactive Observables
to build fast, concurrent, and powerful applications
through detailed examples

1.	 Learn about Java 8's lambdas and what reactive
programming is all about, and how these
aspects are utilized by RxJava.

2.	 Build fast and concurrent applications
with ease, without the complexity of Java's
concurrent API and shared states.

3.	 Explore a wide variety of code examples to
easily get used to all the features and tools
provided by RxJava.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and Installation
	A 10,000-foot over view
	An easier way to handle user interface programming
	Programming paradigms

	Installing the tools required
	Installing Google Chrome
	Installing Node.js
	Installing the Starter Kit for ReactJS
	Summary

	Chapter 2: Core JavaScript
	The strict mode
	Variables and assignment
	Comments
	Flow control

	A note on values and NaN
	Functions
	Comments

	Loops
	Taking a look at ECMAScript 6

	Summary

	Chapter 3: Reactive Programming – the Basic Theory
	Declarative programming
	The war on Heisenbugs
	The Flux Architecture
	From the pit of despair to the pit of success
	Complete UI teardown and rebuild
	JavaScript as a Domain Specific Language
	The Big-Coffee Notation
	Summary

	Chapter 4: Demonstrating Nonfunctional Reactive Programming – a Live Example
	The history of a game with multiple ports
	The HTML for the web page
	Using a content distribution network wherever we can
	Some simple styling
	A fairly minimal page body

	The JavaScript that animates that page
	A brief syntax note – Immediately Invoked Function Expression
	Variable declaration and initialization
	The function used to start or restart the game
	The function that creates game levels
	Getting our hands dirty with ReactJS classes
	Tick-tock, tick-tock – the game's clock ticks
	GAME OVER

	Summary

	Chapter 5: Learning Functional Programming – the Basics
	Custom sort functions – the first example of functional JavaScript and first-class functions
	This leads us to array.filter()
	Illusionism, map, reduce, and filter
	Fool's gold – extending Array.prototype
	Avoiding global pollution
	The map, reduce, and filter toolbox – map
	The reduce function
	The last core tool – filter

	An overview of information hiding in JavaScript
	Information hiding with JavaScript closures

	Summary

	Chapter 6: Functional Reactive Programming – the Basics
	A trip down computer folklore's memory lane
	Advanced prerequisites for Hello, World!

	Distinguishing the features of functional reactive programming
	If you learn just one thing...
	Learn what you can!
	JavaScript as the new bare metal
	Summary

	Chapter 7: Not Reinventing the Wheel – Tools for Functional Reactive Programming
	ClojureScript
	Om
	Bacon.js
	Brython – a Python browser implementation
	Immutable.js – permanent protection from change
	Jest – BDD unit testing from Facebook
	Implementing the Flux Architecture
using Fluxxor
	Summary

	Chapter 8: Demonstrating Functional Reactive Programming in JavaScript – A Live Example, Part I
	What we will be attempting in this chapter
	This project's first complete component
	The render() method
	Triggering the actual display for what we have created
	Summary

	Chapter 9: Demonstrating Functional Reactive Programming in JavaScript with a Live Example Part II – A To-do List
	Adding a to-do list to our application
	Including ReactJS add-ons in our project
	Setting the appropriate initial state
	Making text editable
	Heavy lifting with render()
	Inner functions used to render
	Building the result table
	Rendering our result
	Differentiating columns visually

	Summary

	Chapter 10: Demonstrating Functional Reactive Programming in JavaScript: A Live Example Part III – A Calendar
	Play it again Sam – an interesting challenge
	Classical Hijaxing works well
	Built with usability in mind, but there's still room to grow
	Plain old JavaScript objects are all
you need
	Progressive disclosure that starts simply
	A render() method can easily delegate
	Boring code is better than interesting code!
	A simple UI for simply non-recurring entries...
	The user can still opt-in for more
	Avoiding being clever
	Anonymous helper functions may lack pixie dust
	How far in the future should we show?
	Different stripes for different entry types
	Now we're ready to display!
	Let's be nice and sort each day in order
	Let them use Markdown!
	One thing at a time!
	The holidays that inspired this calendar
	Summary

	Chapter 11: Demonstrating Functional Reactive Programming in JavaScript a Live Example Part IV – Adding a Scratchpad and Putting It All Together
	Adding a WYSIWYG scratchpad,
courtesy CKeditor
	Bringing all things together into one
web page
	This book is about ReactJS, so why use CKeditor?

	CKeditor – small free offerings small is beautiful
	Including CKeditor in our page

	Integrating all four subcomponents into one page
	Persistence
	One detail – persisting CKeditor state

	Summary

	Chapter 12: How It All Fits Together
	A review of the terrain covered
	Could the Mythical Man-Month have been avoided?
	ReactJS is just a view, but what a view!
	Programming is fun again!
	Summary
	Next steps from here

	Appendix: A Node.js Kick start
	Node.js and INTERCAL
	Warning – Node.js and its ecosystem are hot and hot enough to burn you badly!
	A sample project – a server for our Pragmatometer
	Client-side preparations
	The server side
	Summary

	Index

