
Layka

Shelve in
Programming Languages/Java

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Learn Java for Web DevelopmentRELATED

Web development is still one of today’s most popular, active, and important
programming and development activities. From a single web page to an
e-commerce-enabled web site to a fully-fledged web application, the Java
programming language and its frameworks allow you great flexibility and
productivity for your web application development.

Learn Java for Web Development teaches web developers who are new to Java
key skills, Java-based languages, and frameworks to build simple or complex web
sites and applications. As soon as you pick up this book, Vishal Layka’s experience
guides you on a very practical learning and building journey.

You will learn the Java nuts and bolts necessary to build a simple “HelloWorld”
application, as well as a “HelloWorld” Java-based web application using servlets
and JavaServer Pages (JSPs). Using a real-word case study (a bookstore
e-commerce application), you next will learn more about servlets and JSPs, add
JavaServer Faces (JSFs), and explore the JSP and JSF expression languages.
Then you’ll build your web application using Apache Struts2 and the Spring MVC
framework.

The book concludes by examining industry best practices and how these might
fit with your bookstore web application, as well as covering alternative Java Web
frameworks like Groovy/Grails and Scala/Play 2. You also can explore the basics of
Java, Groovy, and Scala in the book’s appendices.

With Learn Java for Web Development, you will see all these key technologies in
action and form a solid foundation for web development with Java and Java-based
technologies.

9 781430 259831

53999
ISBN 978-1-4302-5983-1

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��� xv

About the Technical Reviewer��� xvii

Introduction�� xix

Chapter 1: Introducing Java Web Development■■ ���1

Chapter 2: Building Web Applications Using Servlets and JSP■■ ��43

Chapter 3: Best Practices in Java EE Web Development■■ ��105

Chapter 4: Building a Web Application Using Struts 2■■ ���161

Chapter 5: Building Java Web Applications with Spring Web MVC■■ ��������������������������������203

Chapter 6: Component-Based Web Development Using JSF 2■■ ���������������������������������������263

Chapter 7: Rapid Web Development with Grails■■ ���299

Chapter 8: Play with Java and Scala■■ ��355

Appendix A: Introduction to Java■■ ���383

Appendix B: Introduction to Groovy■■ ��399

Appendix C: Introduction to Scala■■ ��423

Index��435

xix

Introduction

This book is for a large cross section of modern Java web developers, with various levels of
experience.

Learning the Java programming language is a noble cause, but learning merely the Java language
is not enough in the real world. Java developers have to learn Java EE, a collection of related
server-side technologies, to put their Java skills to any real use.

But learning Java EE is not enough either. The Java language along with Java EE may suffice to
develop web applications for projects in the same organization, as a means to reusability, but the
diverse landscape of Java on the Web is permeated with several web frameworks, such as Spring
Web MVC, that make development much easier; thus, a Java web developer has to have the
knowledge of these web frameworks.

But this is not enough still. In the very first line of this introduction, I mentioned that this book is for
a modern Java web developer. Modern Java is more than just a language; it is now a fully optimized
platform because several other languages such as Groovy and Scala, called the JVM languages,
now run on the Java Virtual Machine (JVM). All such JVM languages, especially Groovy, have a close
association with Java, and you will come across web applications before long where Java and these
other JVM languages work in tandem. The most ambitious projects will require you to build web
applications using these JVM languages.

This book addresses all the needs of a modern Java web developer. It is designed for beginners up
to intermediate developers and explains the specifics of Java on the Web. For example, this book is
perfect for developers who are aware of technologies like MVC but do not yet understand how and
why they have changed the way web applications are built.

This book is also for developers who want to learn frameworks other than JSF 2 (which is bundled
with Java EE). This book covers four types of web frameworks: request based, component based,
rapid, and reactive. Among these four types, the book covers five proven web frameworks: Struts 2,
Spring Web MVC, JSF 2, Grails 2, and Play 2.

In addition, this book is for developers who have no experience in the Java, Groovy, and Scala
programming languages but who yearn to create web applications. This book provides the essentials
of these three languages in the appendixes.

xx Introduction

Instead of simply pronouncing one web framework the best, Learn Java for Web Development
shows the strengths of the most popular web frameworks by means of a real-world bookstore
application. Developing a complete real application necessitates a seamless collaboration of
dynamic functionalities, and the code for building such components is contrived and too involved.
Instead of focusing on developing such moving parts, this book confines its attention on leveraging
the strengths of each web framework.

How the Book Is Structured
The book consists of eight chapters, which I’ll describe next, plus the three previously mentioned
appendixes that introduce the Java, Groovy, and Scala languages.

Chapter 1: Introducing Java Web Development
Chapter 1 explains the main objective that shapes this book and highlights what appears in the
subsequent chapters. This chapter begins with a discussion of a significant change in the Java
landscape, its implication, and what Java exactly means today. The chapter then discusses the three
key players that join forces in building modern Java web applications: the JVM languages, Java EE,
and the Java web frameworks.

This chapter introduces the key features of a modern Java web application such as Ajax and REST,
WebSocket for real-time web application, the Typesafe stack for a reactive web application, and
client-side MVC frameworks for responsive and single-page web applications. Finally, the chapter
introduces some important aspects of modern web development that are beyond the scope of this
book, such as Java information retrieval on the Web, and briefly introduces the central component of
Web 3.0, which is still an open subject of research, the Semantic Web.

Chapter 2: Building Web Applications Using Servlets and JSP
Chapter 2 begins with a discussion of the evolution and architecture of web applications. The
chapter then highlights how to use the standard web API. The first pass at the sample application
uses only servlets and JSP. Then the chapter shows you how to build the same application as a
Model 2 application.

Chapter 3: Best Practices in Java EE Web Development
Chapter 3 examines the chain of causality that leads to the need for following best practices.
The chapter explains the need to evolve projects and introduces Expression Language and JSTL.
The chapter then discusses the Java EE web tier patterns.

Chapter 4: Building a Web Application Using Struts 2
In Chapter 4, you’ll learn about Struts 2. Not as popular as it used to be, Struts 2 is introduced in
this book for developers who have to maintain legacy applications. This chapter first introduces
the key architectural components of Struts 2. Then you will learn to develop your first application
using Struts 2 and Maven 4. Moving forward, you will learn to develop the bookstore application and
integrate with Tiles 3.

xxiIntroduction

Chapter 5: Building Java Web Applications with Spring Web MVC
Chapter 5 explains three key objectives of the Spring Framework: loose coupling using dependency
injection, dealing with cross-cutting concerns using AOP, and removing boilerplate code using
Spring templates. Elucidating how Spring 3 works, the chapter introduces the Spring Web MVC
architecture. Then you will learn to build your first web application using Spring 3 Web MVC. This
chapter also shows you how to build the bookstore application. You will learn to use the latest
version of the SpringSource tool suite.

Chapter 6: Component-Based Web Development Using JSF
Chapter 6 introduces you to a component-based framework called JSF 2 that is bundled with Java
EE. After you have familiarized yourself with the request-based framework presented in Chapter 4
and Chapter 5, understanding JSF 2 will be much easier. This chapter shows you how JSF 2
represents a paradigm shift in web development and introduces you to key components of the
JSF 2 architecture. After you have a firm grasp of the architecture components, this chapter shows
you how to develop your first JSF 2 application, and along with this you will learn the life-cycle
phases of a JSF 2 application. Then the chapter shows you how to integrate JSF 2 with the Spring
Framework so that you can access the database via Spring templates from the JSF 2 web layer.
Finally, the chapter shows you how to develop the bookstore application.

Chapter 7: Rapid Web Development with Grails
Grails is a rapid application development framework that lets you create web applications in record
time. Chapter 7 introduces you to two techniques of generating web applications with Grails: static
and dynamic scaffolding. The chapter then takes you through the code generated and explains
step-by-step how the code works. Having presented the code generated, this chapter shows you
how to develop the bookstore application with Grails 2. This chapter also covers unit testing, an
oft-neglected task in application development. This chapter shows you how to build tests for your
web applications using the JUnit testing framework. Then this chapter shows you how to use the
in-memory database H2. In this chapter, you will also learn to use the latest version of the
Groovy-Grails tool suite.

Chapter 8: Play with Java and Scala
Chapter 8 introduces the key web player of the Typesafe stack, the Play 2 framework, and explains how
the Typesafe stack provides an alternative to Java EE to build Java- and Scala-based applications. First
you will learn to develop a Java-based web application using Play 2. Then you will learn to develop a
Scala-based web application using Play 2. Subsequently, this chapter shows how to use the model and
access a database in Play 2.

1

Chapter 1
Introducing Java Web
Development

The mind, once stretched by a new idea, never returns to its original dimensions.

—Ralph Waldo Emerson

An intelligent machine is that which extends the very imagination with which it was built. An example
of this is the instruction called invokeDynamic,1 which was introduced with Java 7 to optimize the
performance of dynamically typed languages on the Java Virtual Machine (JVM). The JVM, originally
intended for Java, can now host a myriad of programming languages, including Groovy2 and Scala.3
This has led to a renaissance of Java web development. This new paradigm of cross-pollination and
diverse, well-founded options carves out a number of niches in the Java ecosystem, resulting in a
richer web landscape than ever before.

The open source community has capitalized on the multiparadigm capabilities offered by the
languages that run on the JVM, by means of web frameworks, to dramatically enhance the
productivity in web development. Java EE4 advanced this momentum, pioneered by Java
frameworks such as Spring,5 by standardizing and improving the API and runtime environment.
Further, functional programming constructs, in the form of lambdas, have been added to Java 8. As
a result, Java is on the rebound to become an übersolution.

This chapter sets the stage for the book by introducing the three key players that join forces in
building modern Java web applications: the JVM languages, Java EE, and the Java web frameworks.

1http://cr.openjdk.java.net/~jrose/pres/200910-VMIL.pdf
2http://groovy.codehaus.org/
3www.scala-lang.org/
4www.oracle.com/technetwork/java/javaee/overview/index.html
5http://spring.io/

http://cr.openjdk.java.net/~jrose/pres/200910-VMIL.pdf
http://groovy.codehaus.org/
http://www.scala-lang.org/
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://spring.io/

2 CHAPTER 1: Introducing Java Web Development

Note  The JVM languages represent a new category of languages that run on the JVM. With the latest
version, Java 8, Java is no longer a privileged JVM language and is now simply one of the many languages
that run on the JVM.

Table 1-1.  Languages Designed for the JVM

Language Designed for JVM Description

Clojure6 Clojure is a dynamically typed, functional language.

Groovy Groovy is a dynamic, compiled language with syntax similar to Java but is
more flexible.

Java Java is a statically typed, imperative language. The latest release of Java,
Java 8, supports aspects of functional programming.

Scala Scala is a statically typed, compiled language that supports aspects of
functional programming and performs a large amount of type inference,
much like a dynamic language.

The chapter begins by introducing the JVM languages and then introduces Java EE. The Java
EE platform is the set of API specifications that act as the building blocks for developing web
applications. The chapter then highlights the Java web frameworks, which will be the subject of the
book from Chapter 4 onward.

JVM Languages
The JVM is the runtime environment that provides you with the ability to use different programming
languages for building web applications. The JVM languages can be largely classified into two types:
languages that are designed for the JVM and existing languages that are ported to JVM.

Languages Designed for the JVM
Plenty of languages are specifically designed for the JVM; Table 1-1 describes a few of them. All but
Clojure are discussed in this book.

Here are some important definitions:

	Dynamic typing: Dynamic typing keeps track of information about what sort of
values the variables contain by carrying the type information on the values held
in variables.

	Static typing: In static typing, the type information is all about the variables, not
the values in them.

6http://clojure.org/

http://clojure.org/

3CHAPTER 1: Introducing Java Web Development

	Imperative languages: These are languages in which the state can be mutated
by the instructions in the language.

	Functional languages: In functional languages, the functions operate on values
as in procedural languages, but instead of mutating the state, the functions are
purely mathematical functions that return new values.

Figure 1-1 shows where Java 8, Groovy, Scala, and Clojure fall on the functional language
continuum. Java 8 introduces lambdas, which makes it slightly functional, Groovy has had functional
constructs since its inception and is even more functional with Groovy 2.0, and Scala is the most
functional of the three object-oriented (OO) languages. Clojure, on the other hand, is a purely
functional, non-OO language.

Figure 1-1.  Functional gradation of JVM languages

Note  In Figure 1-1, no version number is mentioned for Groovy, Scala, and Clojure because Java supports
aspects of functional programming starting from Java 8 only.

Languages Ported to the JVM
JRuby, Jython, and Rhino are a few of the mainstream JVM implementations of existing languages.
Table 1-2 describes them.

4 CHAPTER 1: Introducing Java Web Development

This book is based on some of the mainstream object-oriented JVM languages that were specifically
designed for the JVM, namely, Java, Groovy, and Scala.

Java EE
Java began life as a programming language designed for building stand-alone applications and grew
rapidly into other spheres. A large part of Java’s popularity can be attributed to its usage in creating
web applications. A web application consists of static and dynamic (interactive) web pages. Static
web pages contain various types of markup languages (HTML, XHTML, and so on) and are used, in
general, to provide information; dynamic web pages, on the other hand, are capable of generating
content with the aid of additional web components (covered in Chapter 2). Thus, a web application
is a collection of web pages and is capable of generating dynamic content in response to requests.
Unlike a web page used merely to provide information, a web application lets you perform some
activity and save the result. Developing a web application, however, is fundamentally different from
building stand-alone applications and requires you to understand the following three key elements:

	The Java EE platform: This is the set of API specifications that are the building
blocks of the web application.

	The web container: The web container implements the API specifications of
the Java EE platform. Specifically, the web container provides the services
for managing and executing web components such as servlets, JSPs, filters,
listeners, and render responses to the client. The web containers are covered in
Chapter 2.

Table 1-2.  Languages Ported to the JVM

Languages Ported to JVM Description

JRuby7 JRuby is a JVM reimplementation of the Ruby programming language. Ruby is a
dynamically typed OO language with some functional features.

Jython8 Jython is a reimplementation of Python on the JVM, so it is a dynamic language.

Rhino9 Rhino provides an implementation of JavaScript on the JVM. JavaScript is a
dynamically typed OO language.

7http://jruby.org/
8www.jython.org/
9https://developer.mozilla.org/en-US/docs/Rhino_documentation

Note  There are several types of containers, but this book will focus on the web container primarily used for
web applications. You have to choose the container based on the kind of application you want to develop.

	Web components: These are hosted by the container. These web components,
such as servlets, JSPs, filters, and listeners, are covered in Chapter 2.

http://jruby.org/
http://www.jython.org/
https://developer.mozilla.org/en-US/docs/Rhino_documentation

5CHAPTER 1: Introducing Java Web Development

The Java EE Platform
The Java EE platform is driven by the following two goals:

Providing the API specifications that are the building blocks of the web 	
application.

Standardizing and reducing the complexity of enterprise application 	
development. It does this by providing an application model that defines an
architecture for implementing services as multitiered applications.

Figure 1-2 summarizes the evolution of Java EE and, for the sake of brevity, shows only the new
specifications added with each release.

Figure 1-2.  The evolution of Java EE

Note  Pruning (also known as marked for deletion) consists of a list of proposed features for possible
removal in the next Java EE release in order to reduce the size of the platform or to keep it from bloating.

The goal of Web Profile is to allow developers to create web applications with the appropriate set of
technologies.

The Java EE platform is aimed at standardizing and reducing the complexity of enterprise application
development by providing an application model that defines an architecture for implementing
services as multitiered applications. In a multitiered application, the functionality of the application
is separated into distinct functional areas, called tiers. Figure 1-3 illustrates the typical multitiered
architecture in a Java EE application model.

6 CHAPTER 1: Introducing Java Web Development

The Client Tier
The client tier is the top tier in a multitiered Java EE architecture; it consists of application clients
that make requests to the Java EE server, which is often located on a different machine. The server
processes the requests and returns a response to the client. An example of a client is a web browser
or a stand-alone application.

The Web Tier
The web tier consists of components that handle the interaction between clients and the business
tier. After receiving a request from the client, the web tier does the following:

1.	 Collects input from the client

2.	 Controls the flow of screens or pages on the client

3.	 Maintains the state of data for a user’s session

4.	 Obtains results from the components in the business tier

5.	 Generates dynamic content in various formats to the client

As shown in Figure 1-2, a new Web Profile specification has been added in Java EE 7.10 Table 1-3
lists technologies included in the Web Profile specification. As mentioned earlier, the goal of Web
Profile is to allow developers to create web applications with the appropriate set of technologies.

Figure 1-3.  Multitier architecture in Java

10www.oracle.com/technetwork/java/javaee/tech/index.html

http://www.oracle.com/technetwork/java/javaee/tech/index.html

7CHAPTER 1: Introducing Java Web Development

Regarding the Web Profile specifications listed in Table 1-3:

In Java EE 7, no changes were made to JSP and JSTL because these 	
specifications have not been updated.

Expression Language has been removed from JSP and now has its own 	
JSR (341).

Servlets and JSF have both been updated.	

WebSocket 1.0 was introduced in Java EE 7.	

This book concentrates on the web tier of Java EE; we will dive deep into the web tier in Chapter 2.

The multitier architecture of Java EE has a tremendous impact on the development of Java
enterprise applications. A Java enterprise application can be defined as a Java application that
utilizes the enterprise services offered by Java EE. In fact, a web application can be classified as
an enterprise application if it utilizes Java EE services in the form of components packed in the
web tier. Java EE isolates these services functionally into separate tiers, as illustrated in Figure 1-3,
by providing an application model on which the Java enterprise applications should be built. As a
consequence, the Java enterprise application mirrors the multitier architecture of Java EE. Figure 1-4
illustrates a generalized view of the layers of a typical web application.

Table 1-3.  Web Profile 7 Specification

Specification Version URL

JSF 2.2 http://jcp.org/en/jsr/detail?id=344

JSP 2.3 http://jcp.org/en/jsr/detail?id=245

JSTL 1.2 http://jcp.org/en/jsr/detail?id=52

Servlet 3.1 http://jcp.org/en/jsr/detail?id=340

WebSocket 1.0 http://jcp.org/en/jsr/detail?id=356

Expression Language 3.0 http://jcp.org/en/jsr/detail?id=341

EJB Lite 3.2 http://jcp.org/en/jsr/detail?id=345

JPA 2.1 http://jcp.org/en/jsr/detail?id=338

JTA 1.2 http://jcp.org/en/jsr/detail?id=907

Bean Validation 1.1 http://jcp.org/en/jsr/detail?id=349

Managed Beans 1.0 http://jcp.org/en/jsr/detail?id=316

Interceptors 1.2 http://jcp.org/en/jsr/detail?id=318

Contexts and Dependency
Injection

1.1 http://jcp.org/en/jsr/detail?id=346

Dependency Injection for Java 1.0 http://jcp.org/en/jsr/detail?id=330

Debugging Support for Other
Languages

1.0 http://jcp.org/en/jsr/detail?id=45

JAX-RS 2.0 http://jcp.org/en/jsr/detail?id=339

JSON-P 1.0 http://jcp.org/en/jsr/detail?id=353

http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=52
http://jcp.org/en/jsr/detail?id=340
http://jcp.org/en/jsr/detail?id=356
http://jcp.org/en/jsr/detail?id=341
http://jcp.org/en/jsr/detail?id=345
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=907
http://jcp.org/en/jsr/detail?id=349
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=45
http://jcp.org/en/jsr/detail?id=339
http://jcp.org/en/jsr/detail?id=353

8 CHAPTER 1: Introducing Java Web Development

Each layer in Figure 1-4 is an area of concern, for the application. For instance, the web layer deals
only with employing the web tier components of Java EE. Having different layers in an application
results in what is called a separation of concerns. In terms of implementation, this separation of
concerns is achieved using coarse-grained interfaces.

The concern is the feature, functionality or business functions with which the application’s
developer needs to be concerned. Crosscutting such concerns is inherent in complex systems
and leads to code scattering, which is when code for one concern spans many modules, and
code tangling, which is when code in one module concentrates on addressing multiple concerns.
Code scattering and code tangling lead to a lack of clarity, redundancy, rigidity, and continuous
refactoring. Figure 1-5 illustrates how the system services of logging, transaction, and security
crosscut the business functions of the application.

BookService in Figure 1-5 is too involved with the system services. Each object knows and is
responsible for logging, security, and transaction. A method, for example, to purchase a book in
BookService should be concerned only with how to purchase the book and not with whether it is

Figure 1-5.  BookService involved with system services

Figure 1-4.  A generalized view of layers in an enterprise application

9CHAPTER 1: Introducing Java Web Development

secure or transactional. Separation of concerns, one of the main goals of software engineering, lets
you handle each service on its own and thereby does the following:

Promotes traceability within and across the artifacts in the system, throughout 	
the life cycle of the system

Controls the impact caused by the change, thereby providing scope for 	
evolution and noninvasive adaptation

Promotes development of cohesive units, thereby facilitating reuse	

SEPARATION OF CONCERNS

The term separation of concerns (SoC) was coined by Edsger W. Dijkstra in his paper “On the role of scientific thought.”11
Dijkstra explains in in the following terms:

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking. It is, that
one is willing to study in depth an aspect of one’s subject matter in isolation for the sake of its own
consistency, all the time knowing that one is occupying oneself only with one of the aspects. We
know that a program must be correct and we can study it from that viewpoint only; we also know
that it should be efficient and we can study its efficiency on another day, so to speak. In another mood
we may ask ourselves whether, and if so: why, the program is desirable. But nothing is gained—on
the contrary!—by tackling these various aspects simultaneously. It is what I sometimes have called
“the separation of concerns,” which, even if not perfectly possible, is yet the only available technique
for effective ordering of one’s thoughts, that I know of. This is what I mean by “focusing one’s attention
upon some aspect”: it does not mean ignoring the other aspects, it is just doing justice to the fact
that from this aspect’s point of view, the other is irrelevant. It is being one- and multiple-track minded
simultaneously.

Web Layer
The web layer of a web application consists of the web tier components of Java EE such as servlets
and JSP. The web layer can access the service layer, but there should not be a tight coupling
between the web layer and the service layer. That is, changing the service layer should not impact
the web layer.

11www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

10 CHAPTER 1: Introducing Java Web Development

Service Layer
The service layer consists of the business tier components of Java EE such as Enterprise JavaBeans
(EJBs). The service layer can access the data access layer, but there should be no tight coupling
between the service layer and the data access layer. In fact, the service layer should not know
anything about the web or data access layer. The service layer provides a coarse-grained interface
for the web layer.

Data Access Layer
The data access layer consists of the data tier components of Java EE such as JDBC and JPA. This
layer should not contain any business logic. This layer abstracts the actual persistence mechanism
(in other words, JDBC or JPA) from the service layer by providing the coarse-grained interface to the
service layer.

Note  The call flow in this architecture is always from the top layer to the bottom layer. In other words, the
service layer should be able to call the data access layer but not vice versa.

In this chapter, you will build the data access layer of the bookstore application and query it via a
stand-alone Java application. In Chapter 2, you will replace this stand-alone Java application with
a web layer using the web tier components of Java EE (specifically, servlets and JSPs). You will
use this data access layer throughout this book, and from Chapter 4 onward you will build a web
application repeatedly by rebuilding the web layer using different web frameworks.

Oracle and the Java Community Process (JCP) provide standardized enterprise components, and if
successful enterprise applications can be built using these components, then why do we need web
frameworks? What are web frameworks for? The next section answers these questions.

Java Web Frameworks
While Java EE does a great job of standardizing the enterprise infrastructure, providing an
application model, and providing components adequate to develop web applications, two major
problems are associated with it.

Interacting directly with the Java EE components often results in massive 	
boilerplate code and even code redundancy.

Creating an enterprise application using the Java EE infrastructure is a nontrivial 	
task that requires a great deal of expertise. The team members usually involved
in creating an enterprise Java EE application act in varied roles, and all of them
may not have the level of expertise that meets the Java EE criteria.

Frameworks address these two major problems (and several other concerns discussed in detail in
Chapter 3). Table 1-4 describes the web frameworks you will learn about in this book.

11CHAPTER 1: Introducing Java Web Development

Now that you have looked at the three key players that join forces in building modern Java web
applications (the JVM languages, Java EE, and the Java web frameworks), it is time to delve into
some specifics about Java.

The following section introduces Java so you can build your first stand-alone Java application. Since
this book is centered on web development using Java and is not about Java as a programming
language, the introduction to Java is brief—it’s just enough to help newcomers to the language
follow the subsequent chapters.

Getting Started with Java
A Java application is a computer program that executes when you use the java command to
launch the JVM. In the Java programming language, all source code is first written in plain-text
files (in Notepad, for instance, or in any text editor) with the .java extension. The source files are
compiled by the javac compiler into .class files that contain bytecode instructions. The JVM reads
these bytecode instructions and translates them into the machine-language operations that each
computer executes. By making the JVM available on many platforms, Sun transformed Java into a
cross-platform language. As shown in Figure 1-6, the very same bytecode can run on any operating
system for which a JVM has been developed.

Table 1-4.  JVM-Based Web Frameworks

Web Frameworks Language Download From

Struts 2 Java http://struts.apache.org/download.cgi#struts2314

Spring Web MVC Java www.springsource.org/spring-community-download

JSF 2 Java www.oracle.com/technetwork/java/javaee/downloads/index.html

Grails 2 Groovy www.grails.org/download

Play 2 Java and Scala www.playframework.com/download

Java program Java compiler Bytecode

JVM for Windows

JVM for Unix

JVM for Linux

Figure 1-6.  Cross-platform Java

Because the JVM is available on many different operating systems, the same .class files are
capable of running on Windows, Unix, Linux, or Mac OS. In the section that follows, I will show you
how to compile and run your first Java application. But first you need to set up the development
environment.

http://struts.apache.org/download.cgi#struts2314
http://www.springsource.org/spring-community-download
http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.grails.org/download
http://www.playframework.com/download

12 CHAPTER 1: Introducing Java Web Development

Setting Up the Development Environment
The Java software is available in two distributions.

The Java Runtime Environment (JRE)	

The Java Development Kit (JDK)	

The JRE includes a JVM and the core libraries; it is essentially just an environment for running
bytecode. The JDK includes the JRE, a Java compiler (javac), and other tools—the basic software
you need to write and compile Java programs.

Before you can start compiling and running Java programs, you need to download and install the
JDK and configure some system environment variables.

Most of the code in this book requires Java 7, but some of the code is based on Java 8, so you
should install Java 8. To get the latest version of the JDK)), follow these steps:

1.	 Open www.oracle.com/technetwork/java/javase/downloads/index.html in a
web browser.

2.	 Click the Download JDK button.

3.	 Follow the instructions provided by the web site.

4.	 Run the installer and accept any defaults.

To confirm you have installed the JDK correctly, type javac on the command line from any directory
on your machine. If you see instructions on how to run javac correctly, then you have installed it
successfully.

Creating and Running Your First Java Application
This section demonstrates how to create, compile, and execute a simple Java application on
Windows. Every Java application has one class that is the program’s starting point (often called an
entry point). Listing 1-1 illustrates a HelloWorld entry-point class.

Listing 1-1.  A HelloWorld Java Application

1. public class HelloWorld {
2. public static void main(String[] args) {
3. System.out.println("Hello World.");
4. }
5. }
 

	Line 2: The main method in line 2 makes this class an entry-point class. This
method accepts inputs and starts the program.

The name of the Java application should be the name of the entry-point class, and the file that holds
a Java class must have the same name as the class. Therefore, the HelloWorld class in Listing 1-1
must be stored in a file named HelloWorld.java.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

13CHAPTER 1: Introducing Java Web Development

Note  Every Java application has only one main method.

You use the javac program in the bin directory of your JDK installation directory to compile Java
programs. Assuming you have edited the PATH environment variable on your computer, you should
be able to invoke javac from any directory. To compile the HelloWorld class in Listing 1-1, do the
following:

1.	 Open a command prompt and change to the directory where the HelloWorld.
java file is saved.

2.	 Type the following command:
 
javac HelloWorld.java
 

If everything goes well, javac will create a file named HelloWorld.class in your working directory.

Running Your Java Application
To run your Java application, you have to use the java program that is part of the JDK with the
command java <class name>. Again, having added the PATH environment variable, you should be
able to invoke java from any directory. From your working directory, type the following:
 
java HelloWorld
 
Note that you do not include the .class extension when running a Java application. You will see the
following on your console:
 
Hello World.

Developing Java Applications with an IDE
In this book you will use the Eclipse Kepler integrated development environment (IDE). To download
it, follow these steps:

1.	 Open www.eclipse.org/downloads/ in a web browser.

2.	 Follow the instructions provided by the web site.

3.	 Run the installer and accept any defaults.

Creating Your First Project in the IDE
After you’ve started Eclipse, you can make a new project as follows:

1.	 From the File menu, select New, and then select Project. The New Project
window appears.

2.	 In the New Project window, double-click Java Project. The New Java Project
window appears, as illustrated in Figure 1-7.

http://www.eclipse.org/downloads/

14 CHAPTER 1: Introducing Java Web Development

Figure 1-7.  Creating a Java project

15CHAPTER 1: Introducing Java Web Development

3.	 Type chapter1 in the “Project name” field.

4.	 Click Finish. You can change a number of other options here. However, for
our purposes, the default settings work just fine.

Creating the Application
To create a class with a main method for your first program, follow these steps:

1.	 Right-click the chapter1 project in the Eclipse Package Explorer, choose
New, and then choose Class. The New Java Class window displays, as
shown in Figure 1-8.

Figure 1-8.  Creating a Java class

16 CHAPTER 1: Introducing Java Web Development

A package groups classes together. In the Name field, you can type the name of the class, which is
HelloWorld. Select the check box that gives you a main method (public static void main (String
args[])). When you’re done, you should have a class similar to the one in Listing 1-2.

2.	 Click “Generate comments.” This will be explained soon.

Listing 1-2.  A Simple Java Application

packageapress.helloworld;
 
/**
 * A Hello World Java application
 * @author Vishal Layka
 *
 */
public class HelloWorld {
  
 /**
 * Entry point
 * @paramargs
 */
 public static void main(String[] args){
 System.out.println("Hello World");
 }
 
}
 
You can now run the application by clicking the Run button in the toolbar or by choosing Run from
the Run menu.

Eclipse then displays a console panel under the code area that shows the output of your program. In
this case, it says “Hello World.”

Javadoc Comments
A Javadoc comment begins with the /** character sequence and ends with the */ character
sequence. The compiler ignores everything between these character sequences. In Eclipse, you can
add the Javadoc comments by selecting the class or method name and pressing Alt+Shift+J. To see
all the shortcuts in Eclipse, press Ctrl+Shift+L.

To generate the Javadoc, select the project in Eclipse, select the Project menu, and click Generate
Javadoc, as shown in Figure 1-9.

17CHAPTER 1: Introducing Java Web Development

A window will open (Figure 1-10) where you can select Java projects or their underlying resources
for which a Javadoc needs to be generated. Several other options are also available; you can select
whether to generate a Javadoc for public/private APIs, and so on. For now, configure the javadoc.
exe file in the “Javadoc command” field and browse to and select the target folder where the
Javadoc should be generated.

Figure 1-9.  Generating a Javadoc

18 CHAPTER 1: Introducing Java Web Development

Click Finish. On the console you can see the progress of the Javadoc generation. Figure 1-11 shows
the generated Javadoc.

Figure 1-10.  Generating a Javadoc

19CHAPTER 1: Introducing Java Web Development

Now you will learn how to create a simple but functional version of the stand-alone bookstore
application that you’ll work on throughout this book.

The Bookstore Application
Instead of simply declaring one web framework as the best, this book intends to show the strengths
of the most popular web frameworks by means of a real-world bookstore application. Developing a
complete real application necessitates a seamless collaboration of dynamic functionalities, and the
code for building such components is contrived and too involved. Instead of focusing on developing
such moving parts, this book confines its attention on leveraging the strengths of each web
framework. Throughout the book, you will learn how to use Java EE and the Java web frameworks
to build the bookstore web application. In this chapter, you will take the first step by building a
traditional stand-alone Java bookstore application. In Chapter 2, you will transform the stand-alone
application into a web application.

Throughout this book, I will use a single web application case study to demonstrate how to write a
web application using servlets and JSPs and the different web frameworks such as JSF, Struts 2,
Spring Web MVC, and rapid web development frameworks such as Grails and Play. The application
allows users to view books and search for them by keyword, usually by the first name or last name
of the author and the title of the book.

Figure 1-11.  Javadoc for the HelloWorld class

20 CHAPTER 1: Introducing Java Web Development

Data Model for the Bookstore Application
This section introduces a simple data model that will be used for the bookstore web application
throughout this book. I will expand the model progressively with each chapter, as the need arises.
The model is a simple book database that consists of three tables.

The Category table stores the different categories of books; categories include 	
Java, Scala, and so on.

The Book table stores the book details such as titles.	

The Author table stores the details of the authors.	

Each category can have zero or more books. For instance, there could be zero or more books in
the Java category in the bookstore. In other words, there is a one-to-many relationship between
the Category and Book tables. Similarly, each book can have one or more authors. In other words,
there is a one-to-many relationship between the Book and Author tables. The entity-relationship (ER)
diagram in Figure 1-12 illustrates this relationship.

Figure 1-12.  Entity-relationship diagram of the data model

This data model is not production-ready because you can have a many-to-many relationship
between Category and Book, and you can have a many-to-many relationship between Book and
Author. I have kept the data model simple so that the complexity of the data model does not get in
the way of learning the mechanics of building a web application. However, you can, for example,
model a many-to-many relationship between Book and Author, as illustrated in Figure 1-13.

21CHAPTER 1: Introducing Java Web Development

The sole purpose of the BookAuthor table is to provide a many-to-many relationship between Book
and Author.

Figure 1-13.  Many-to-many relationship between Book and Author

Note  As shown in Figure 1-13, there is a one-to-many relationship between Book and BookAuthor,
and there is a one-to-many relationship between Author and BookAuthor. In fact, the sole purpose of the
BookAuthor table is to provide a many-to-many relationship between Book and Author—in other words, an
author can write many books, and a book can have many authors.

Because of the profusion of web applications across several domains, many relational and
nonrelational databases such as NoSQL12 have emerged. In this book, I’ll use MySQL13 because
it is the most widely used free database management system (DBMS). To install MySQL, go to
http://dev.mysql.com/downloads/ and click Download. You can download MySQL Server 5.5 or
newer. You can see the instructions for installing MySQL at
http://dev.mysql.com/doc/refman/5.5/en/installing.html.

To create the books database, use the following command:
 
create database books;
 
You need to instruct MySQL to create tables in the books database by using the following command:
 
use books;
 
Now you can create the tables using the statements illustrated in Listing 1-3.

Listing 1-3.  Creating Tables for the Bookstore

CREATE TABLE CATEGORY (
ID INT NOT NULL AUTO_INCREMENT ,
CATEGORY_DESCRIPTION VARCHAR(20) NOT NULL ,
PRIMARY KEY (ID)
);
 

12http://nosql-database.org/
13www.mysql.com/

http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://nosql-database.org/
http://www.mysql.com/

22 CHAPTER 1: Introducing Java Web Development

CREATE TABLE BOOK (
ID INT NOT NULL AUTO_INCREMENT,
CATEGORY_ID INT NOT NULL ,
BOOK_TITLE VARCHAR(60) NOT NULL,
PUBLISHER VARCHAR(60) NOT NULL ,
PRIMARY KEY (ID) ,
CONSTRAINT FK_BOOK_1 FOREIGN KEY (CATEGORY_ID) REFERENCES CATEGORY(ID)
 
);
 
CREATE TABLE AUTHOR (
ID INT NOT NULL AUTO_INCREMENT ,
BOOK_ID INT NOT NULL ,
FIRST_NAME VARCHAR(20) NOT NULL ,
LAST_NAME VARCHAR(20) NOT NULL ,
PRIMARY KEY (ID) ,
CONSTRAINT FK_AUTHOR_1 FOREIGN KEY (BOOK_ID) REFERENCES BOOK (ID)
);
 
You can verify the created tables using the show tables command, as illustrated in Figure 1-14.

Figure 1-14.  All tables in the database

You can also check the structure of the tables using the command describe <table-name> or
desc<table-name>, as illustrated in Figure 1-15.

23CHAPTER 1: Introducing Java Web Development

Now populate the tables using the insert statements, as follows:
 
insert into category (category_description) values ('Clojure');
insert into category (category_description) values ('Groovy');
insert into category (category_description) values ('Java');
insert into category (category_description) values ('Scala');
 
You can verify the populated Category table as illustrated in Figure 1-16.

Figure 1-15.  Structure of the tables

Figure 1-16.  All categories in the Category table

24 CHAPTER 1: Introducing Java Web Development

insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (1, 'Practical Clojure', 'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (2, 'Beginning Groovy, Grails and
Griffon', 'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (2, 'Definitive Guide to Grails 2',
'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (2, 'Groovy and Grails Recipes',
'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (3, 'Modern Java Web Development',
'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (3, 'Java 7 Recipes', 'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (3, 'Java EE 7 Recipes', 'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (3, 'Beginning Java 7 ', 'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (3, 'Pro Java 7 NIO.2', 'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (3, 'Java 7 for Absolute Beginners',
'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (3, 'Oracle Certified Java Enterprise
Architect Java EE7', 'Apress');
insert into Book (CATEGORY_ID, BOOK_TITLE, PUBLISHER) values (4, 'Beginning Scala', 'Apress');
 
You can verify the populated Book table as illustrated in Figure 1-17.

Figure 1-17.  All books in the Book table

insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (1, 'Luke', 'VanderHart');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (2, 'Vishal', 'Layka');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (3, 'Jeff', 'Brown');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (4, 'Bashar', 'Jawad');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (5, 'Vishal', 'Layka');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (6, 'Josh', 'Juneau');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (7, 'Josh', 'Juneau');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (8, 'Jeff', 'Friesen');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (9, 'Anghel', 'Leonard');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (10, 'Jay', 'Bryant');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (11, 'B V', 'Kumar');
insert into Author (BOOK_ID, FIRST_NAME, LAST_NAME) values (12, 'David', 'Pollak');
 

25CHAPTER 1: Introducing Java Web Development

You can verify the populated Author table as illustrated in Figure 1-18.

Figure 1-18.  All authors in the Author table

Figure 1-19.  DAO pattern

Data Access Layer for the Bookstore Application
Now that the database is ready, you will build the data access layer for application. The data
access layer will retrieve the data via JDBC from the database and directly map the result set
into Java objects. These Java objects are the domain objects in the application that are the Java
representation of the tables in the database. The data access layer is responsible for interfacing with
the underlying persistence mechanism in a transparent way in order to store and retrieve objects
from the database. This transparency means that the data access layer can switch the persistence
mechanism from plain JDBC14 to ORM15 persistence technologies such as Hibernate,16 JPA,17 and so
on, without affecting the client of the data access layer. This transparency is achieved via the data
access object (DAO) pattern, as illustrated in Figure 1-19. The DAO object provides an interface to the
database or the underlying persistence mechanism, thus abstracting the underlying implementation
from the client.

14www.oracle.com/technetwork/java/overview-141217.html
15http://en.wikipedia.org/wiki/Object-relational_mapping
16www.hibernate.org/
17www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

http://www.oracle.com/technetwork/java/overview-141217.html
http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.hibernate.org/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

26 CHAPTER 1: Introducing Java Web Development

The DAO maps application calls to the persistence mechanism and provides specific data
operations without exposing details of the database. The DAO interface abstracts the
implementation details of accessing the data from the client (application object) and provides the
domain-specific objects that the client (application object) needs.

First you need to create the domain-specific classes for the Java object representations of the
database tables. Listings 1-4, 1-5, and 1-6 show the Book, Author, and Category domain classes,
respectively.

Listing 1-4.  Model: Category

package com.apress.books.model;
 
public class Category {
 private Long id;
 private String categoryDescription;
 
 public Long getId() {
 return id;
 }
 
 public void setId(Long id) {
 this.id = id;
 }
 
 public String getCategoryDescription() {
 returncategoryDescription;
 }
 
 public void setCategoryDescription(String categoryDescription) {
 this.categoryDescription = categoryDescription;
 }
 
 public String toString() {
 return "Category - Id: " + id + ", Category Description: "
 + categoryDescription;
 }
 
}
 

Listing 1-5.  Model: Book

package com.apress.books.model;
 
import java.util.List;
import com.apress.books.model.Author;
 
public class Book {
 private Long id;
 private Long categoryId;
 private String bookTitle;

27CHAPTER 1: Introducing Java Web Development

 private List<Author> authors;
 private String publisherName;
 
 public Long getId() {
 return id;
 }
 
 public void setId(Long id) {
 this.id = id;
 }
 
 public Long getCategoryId() {
 return categoryId;
 }
 
 public void setCategoryId(Long categoryId) {
 this.categoryId = categoryId;
 }
 
 public String getBookTitle() {
 return bookTitle;
 }
 
 public void setBookTitle(String bookTitle) {
 this.bookTitle = bookTitle;
 }
 
 public List<Author> getAuthors() {
 return authors;
 }
 
 public void setAuthors(List272103_1_En authors) {
 this.authors = authors;
 }
 
 public String getPublisherName() {
 return publisherName;
 }
 
 public void setPublisherName(String publisherName) {
 this.publisherName = publisherName;
 }
 
 public String toString() {
 return "Book - Id: " + id + ", Book Title: " + bookTitle;
 }
 
}
 

28 CHAPTER 1: Introducing Java Web Development

Listing 1-6.  Model: Author

package com.apress.books.model;
 
public class Author {
 private Long id;
 private Long bookId;
 private String firstName;
 private String lastName;
 
 public Long getId() {
 return id;
 }
 
 public void setId(Long id) {
 this.id = id;
 }
 
 public Long getBookId() {
 return bookId;
 }
 
 public void setBookId(Long bookId) {
 this.bookId = bookId;
 }
 
 public String getFirstName() {
 return firstName;
 }
 
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 
 public String getLastName() {
 return lastName;
 }
 
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 
 public String toString() {
 return "Author - Id: " + id + ", Book id: " + bookId + ", First Name: "
 + firstName + ", Last Name: " +lastName;
 }
 
}
 
Now let’s start with a simple interface for BookDAO that encapsulates all the data access by your web
application. Listing 1-7 shows the BookDAO interface.

29CHAPTER 1: Introducing Java Web Development

Listing 1-7.  BookDAO Interface

 1. package com.apress.books.dao;
 2.
 3. import java.util.List;
 4.
 5. import com.apress.books.model.Book;
 6. import com.apress.books.model.Category;
 7.
 8. public interface BookDAO {
 9. public List<Book>findAllBooks();
10.
11. public List<Book>searchBooksByKeyword(String keyWord);
12.
13. public List<Category>findAllCategories();
14.
15. public void insert(Book book);
16.
17. public void update(Book book);
18.
19. public void delete(Long bookId);
20.
21. }
 

	Line 9: This is the findAllBooks() method for listing all the books from the
database.

	Line 11: SearchBooksByKeyword(String keyWord) allows the user to search
books by keyword in the title of the book or by the first and last names of the
author.

	Line 13: findAllCategories() is required by the application to provide a
categorized listing of books.

The methods in this interface correspond to the CRUD terms (in other words, create, read, update,
and delete) of the application. Listing 1-8 illustrates the implementation of the BookDAO interface.

Listing 1-8.  Implementation of the BookDAO Interface

 1. package com.apress.books.dao;
 2.
 3. import java.sql.Connection;
 4. import java.sql.DriverManager;
 5. import java.sql.PreparedStatement;
 6. import java.sql.ResultSet;
 7. import java.sql.SQLException;
 8. import java.sql.Statement;
 9. import java.util.ArrayList;
10. import java.util.List;
11.
12. import java.apress.books.model.Author;
13. import java.apress.books.model.Book;

30 CHAPTER 1: Introducing Java Web Development

14. import java.apress.books.model.Category;
15.
16. public class BookDAOImpl implements BookDAO {
17.
18. static {
19. try {
20. Class.forName("com.mysql.jdbc.Driver");
21. } catch (ClassNotFoundException ex) {
22. }
23. }
24.
25. private Connection getConnection() throws SQLException {
26. return DriverManager.getConnection("jdbc:mysql://localhost:3306/books",
27. "root", "password");
28. }
29.
30. private void closeConnection(Connection connection) {
31. if (connection == null)
32. return;
33. try {
34. connection.close();
35. } catch (SQLException ex) {
36. }
37. }
38.
39. public List<Book> findAllBooks() {
40. List<Book> result = new ArrayList<>();
41. List<Author> authorList = new ArrayList<>();
42.
43. String sql = "select * from book inner join author on book.id = author.book_id";
44.
45. Connection connection = null;
46. try {
47. connection = getConnection();
48. PreparedStatement statement = connection.prepareStatement(sql);
49. ResultSet resultSet = statement.executeQuery();
50. while (resultSet.next()) {
51. Book book = new Book();
52. Author author = new Author();
53. book.setId(resultSet.getLong("id"));
54. book.setBookTitle(resultSet.getString("book_title"));
55. book.setCategoryId(resultSet.getLong("category_id"));
56. author.setBookId(resultSet.getLong("book_Id"));
57. author.setFirstName(resultSet.getString("first_name"));
58. author.setLastName(resultSet.getString("last_name"));
59. authorList.add(author);
60. book.setAuthors(authorList);
61. book.setPublisherName(resultSet.getString("publisher"));
62. result.add(book);
63. }
64. } catch (SQLException ex) {
65. ex.printStackTrace();

31CHAPTER 1: Introducing Java Web Development

66. } finally {
67. closeConnection(connection);
68. }
69. return result;
70. }
71.
72.
73. public List<Book> searchBooksByKeyword(String keyWord) {
74. List<Book> result = new ArrayList<>();
75. List<Author> authorList = new ArrayList<>();
76.
77. String sql = "select * from book inner join author on book.id = author.book_id"
78. + " where book_title like '%"
79. + keyWord.trim()
80. + "%'"
81. + " or first_name like '%"
82. + keyWord.trim()
83. + "%'"
84. + " or last_name like '%" + keyWord.trim() + "%'";
85.
86. Connection connection = null;
87. try {
88.
89. connection = getConnection();
90. PreparedStatement statement = connection.prepareStatement(sql);
91. ResultSet resultSet = statement.executeQuery();
92. while (resultSet.next()) {
93. Book book = new Book();
94. Author author = new Author();
95. book.setId(resultSet.getLong("id"));
96. book.setBookTitle(resultSet.getString("book_title"));
97. book.setPublisherName(resultSet.getString("publisher"));
98. author.setFirstName(resultSet.getString("first_name"));
99. author.setLastName(resultSet.getString("last_name"));
100. author.setBookId(resultSet.getLong("book_id"));
101. authorList.add(author);
102. book.setAuthors(authorList);
103. result.add(book);
104. }
105. } catch (SQLException ex) {
106. ex.printStackTrace();
107. } finally {
108. closeConnection(connection);
109. }
110.
111. return result;
112. }
113.
114. public List<Category> findAllCategories() {
115. List<Category> result = new ArrayList<>();
116. String sql = "select * from category";
117.

32 CHAPTER 1: Introducing Java Web Development

118. Connection connection = null;
119. try {
120. connection = getConnection();
121. PreparedStatement statement = connection.prepareStatement(sql);
122. ResultSet resultSet = statement.executeQuery();
123. while (resultSet.next()) {
124. Category category = new Category();
125. category.setId(resultSet.getLong("id"));
126. category.setCategoryDescription(resultSet
127. .getString("category_description"));
128. result.add(category);
129. }
130. } catch (SQLException ex) {
131. ex.printStackTrace();
132. } finally {
133. closeConnection(connection);
134. }
135. return result;
136. }
137.
138. public void insert(Book book) {
139. }
140.
141. public void update(Book book) {
142. }
143.
144. public void delete(Long bookId) {
145.
146. }
147. }
 
Listing 1-8 is an implementation of the BookDao interface for interacting with; this interaction includes
connecting to the database and selecting, deleting, and updating data via pure JDBC. JDBC
provides the driver that is specific to each database and that allows Java code the database.

	Lines 18 to 37: These lines show the code required for managing a JDBC
connection.

	Line 26: The getConnection() method returns a driver-implemented java.sql.
Connection interface. This interface allows you to run SQL statements against
the database. For this to work, you need to provide a MySQL Connector/J JAR
file. A MySQL Connector/J is a native Java driver that converts JDBC calls into
a network protocol the MySQL database can understand. The DriverManager
manages drivers and provides static methods for establishing connections to
the database.

Note  You can download the MySQL Connector/J from http://dev.mysql.com/downloads/
connector/j/. Place this connector JAR in the classpath of the project.

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

33CHAPTER 1: Introducing Java Web Development

 	 Lines 30 to 37: The connections need to be closed because connections are
expensive when it comes to the performance of the application.

	Lines 39 to 144: These lines are implementations of CRUD services in the
BookDAO interface.

	Lines 67, 108, and 133: You created a connection for each statement in the
CRUD services. You need to close these connections; keeping them open will
result in the poor performance of the application.

Client for the Data Access Layer
Now that your data access layer is ready, you will query it with a stand-alone Java application. In
Chapter 2, you will replace this Java app with a web application. Listing 1-9 illustrates the Java
application.

Listing 1-9.  Stand-Alone Bookstore Java App

 1. package com.apress.books.client;
 2. import java.util.List;
 3.
 4. import com.apress.books.dao.BookDAO;
 5. import com.apress.books.dao.BookDAOImpl;
 6. import com.apress.books.model.Book;
 7.
 8. public class BookApp {
 9. private static BookDAO bookDao = new BookDAOImpl();
10.
11. public static void main(String[] args) {
12. // List all books
13. System.err.println("Listing all Books:");
14. findAllBooks();
15. System.out.println();
16. // search book by keyword
17. System.err.println("Search book by keyword in book title : Groovy:");
18.
19. searchBooks("Groovy");
20. System.out.println();
21.
22. System.err.println("Search book by keyword in author's name : Josh:");
23.
24. searchBooks("Josh");
25.
26.
27. }
28.
29. private static void findAllBooks() {
30. List<Book> books = bookDao.findAllBooks();
31. for (Book book : books) {
32. System.out.println(book);
33. }
34. }
35. private static void searchBooks(String keyWord) {

34 CHAPTER 1: Introducing Java Web Development

36. List<Book> books = bookDao.searchBooksByKeyword(keyWord);
37. for (Book book : books) {
38. System.out.println(book);
39. }
40. }
41. }
 
Figure 1-20 illustrates the directory structure of the stand-alone application.

Figure 1-20.  Directory structure of the stand-alone bookstore application

Running this application gives the following output:

In the next chapter, you will develop the web layer that will replace this client and that will call the
data access layer in the bookstore web application.

35CHAPTER 1: Introducing Java Web Development

Trends and Technologies in the Java Web Landscape
Now it is time to delve into the trends and technologies in today’s Java web landscape. This may
seem daunting to a newcomer to Java, but the goal is to familiarize you with the tools, technologies,
and trends in Java web application development in order to give you a glimpse of the modern Java
landscape. When you learn to develop web applications using rapid web frameworks such as Grails
2 and Play 2, you will see that most of these tools and technologies are provided out of the box.

As mentioned throughout the chapter, the JVM, originally intended for Java, can now host a myriad
of programming languages, including Groovy and Scala. As a consequence of this emerging
multiprogramming paradigm, modern web applications are often characterized in one or more of the
following ways:

Responsive web applications	

Single-page web applications	

Real-time web applications	

Reactive web applications	

Mashups and web services	

Responsive Web Applications
One of the greatest strengths of the Web is that it is flexible. This flexibility, however, is also its
greatest weakness. This weakness manifests itself when a web application tested on one browser
is viewed on the different browser and doesn’t perform properly. This cross-browser compatibility
problem has only grown with the advent of smartphones. As shown in Figure 1-21, as of the end of
2013, there are 6.8 billion mobile subscriptions worldwide, and that number is poised to grow to
8 billion by 2016 (www.itu.int/ITU-D/ict/facts/index.html).

Figure 1-21.  Mobile subscriptions

Web applications are expected to run on smartphones as well as on the desktop, but creating
separate web applications for the desktop and the smartphone has significant overhead for
development as well as maintenance. In May 2010, Ethan Marcotte wrote an article for A List

http://www.itu.int/ITU-D/ict/facts/index.html

36 CHAPTER 1: Introducing Java Web Development

Apart titled “Responsive Web Design” (http://d.alistapart.com/responsive-web-design/ex/ex-
site-flexible.html) that defined a groundbreaking approach. He used existing tools (which will
be explained later in this section) to create a site that displays beautifully on different devices, as
illustrated in Figure 1-22 and Figure 1-23.

Figure 1-22.  Responsive web site by Ethan Marcotte

http://d.alistapart.com/responsive-web-design/ex/ex-site-flexible.html
http://d.alistapart.com/responsive-web-design/ex/ex-site-flexible.html

37CHAPTER 1: Introducing Java Web Development

Responsive web applications are device-agnostic, in that they adapt themselves to the device on
which they are run. The technique goes as far as rethinking the way page layouts are designed. You
can go one step further by designing the web application with the smallest screen (smartphones)
in mind and then progressively enhance the application to run on desktop screens. This technique
is known as mobile-first design. The philosophy of a mobile-first design is that if you design
the interface and the web components to run with acceptable performance on a smartphone,
the performance on desktop screens will be blazing fast. In addition, using the smartphone real
estate wisely will also be applied to the desktop screens, which will result in better usability of the
application.

The core technologies employed in developing responsive web applications are CSS3,18 jQuery19
and jQuery plug-ins,20 LESS,21 CoffeeScript,22 and front-end frameworks such as Bootstrap,23
Polyfills, and Modernizr.

Figure 1-23.  The same responsive site on a smartphone

18www.w3.org/Style/CSS/current-work.en.html
19http://jquery.com/
20http://plugins.jquery.com/
21http://lesscss.org/
22http://coffeescript.org/
23http://getbootstrap.com/

http://www.w3.org/Style/CSS/current-work.en.html
http://jquery.com/
http://plugins.jquery.com/
http://lesscss.org/
http://coffeescript.org/
http://getbootstrap.com/

38 CHAPTER 1: Introducing Java Web Development

Here are some important definitions in the responsive world:

	Unobtrusive JavaScript24: Unobtrusive JavaScript is a means of separation of
concerns, that is, separating the look and feel from behavior concerns. This
results in a pure markup, and the JavaScript (behavior) works unobtrusively
across different browsers and devices. jQuery is a popular library that helps in
writing unobtrusive JavaScript. CoffeeScript compiles into JavaScript. It is used
as an alternative to JavaScript and considerably reduces code.

	CSS3 media queries: Media queries are the primary means of making web
applications responsive. Media queries use media features such as device-
width, device-height, orientation, and device-aspect-ratio in a CSS file to
develop a responsive web application.

	LESS: LESS is the CSS preprocessor that is used when a CSS3 stylesheet gets
unmanageable. LESS extends CSS with dynamic behavior such as mixins and
functions.

	Polyfills: Polyfills are JavaScript, used to make a browser HTML5-enabled. The
polyfills provide missing functionality in the browser and provide a fallback.

	Modernizr: Modernizr is a JavaScript library that detects HTML5 and CSS3
features in the browser and conditionally loads polyfills.

Single-Page Web Application (SPA)
Another trend in web application development is a single-page web application (SPA).

The client-side code—such as HTML, JavaScript, and CSS—is retrieved with a 	
single page load; the page does not reload at any point in the process, and the
control is not transferred to another page.

The resources, such as images, are dynamically loaded and added to the page 	
in response to events.

SPAs are built using Node.js25 as the web server. AngularJS is a full-featured SPA framework.

Real-Time Web Application
A real-time web application delivers responses to events in a measurable and acceptable
time period, depending on the nature of the event, by means of asynchronous, bidirectional
communication between the client and the server. WebSocket is the core technology employed
for developing real-time web applications. WebSocket provides a full-duplex and bidirectional
communication protocol over a single TCP connection. That is, a client and a server can send
messages to each other and independent of each other.

24www.w3.org/wiki/The_principles_of_unobtrusive_JavaScript
25http://nodejs.org/

http://www.w3.org/wiki/The_principles_of_unobtrusive_JavaScript
http://nodejs.org/

39CHAPTER 1: Introducing Java Web Development

A few examples of the applications that require real-time functionality are chat applications,
multiplayer online games, stock trading applications, and so on.

Note  The Java API for WebSocket is defined as JSR 356; see Table 1-3.

Reactive Web Application
Reactive applications are a new class of applications that are fundamentally different from traditional
web-based applications and are driven by the Typesafe26 Reactive Platform. The Typesafe Reactive
Platform is a suite of integrated products consisting of the Play 2 framework, Akka,27 and Scala,
along with the Typesafe Console for command and control. Reactive programming is becoming
crucial because of multicore processors and because it advocates asynchronous and event-based
programming. The Play framework is an alternative to the enterprise Java stacks. Play is built for
the needs of modern web and mobile applications, leveraging technologies such as REST, JSON,
and WebSocket, to name a few. These technologies allow the creation of rich, highly interactive
user interfaces rendered via any modern browser, while at the same time making it easier to render
portions of the page in parallel and to do partial-page updates or progressive enhancements.

Mashups and Web Services
A mashup is a web application that uses content from more than one source to create a new service
displayed in a single graphical interface. With mashups you can develop powerful applications by
combining web services. You can find popular APIs for mashups at www.programmableweb.com/apis/
directory/1?sort=mashups. This section will focus on web services and then touch on a fascinating
trend, which is still an area of research: the Semantic Web.

A web service is a software component stored on one machine that can be accessed over the
network by an application (or other software component) on another machine. The machine on
which a web service resides is referred to as a web service host. The client application sends
a request over a network to the web service host, which processes the request and returns the
response. Making a web service available to receive client requests is known as publishing a web
service; using a web service from a client application is known as consuming a web service.

Web services use technologies such as XML and JSON28 for data interchange.

JavaScript Object Notation
JavaScript Object Notation (JSON) is used for representing data as an alternative to XML. JSON
reduces the payload of web requests, improving the overall performance of a web application. JSON
is a text-based data-interchange format used to represent objects in JavaScript as collections of
name-value pairs represented as Strings.

26http://typesafe.com/
27http://akka.io/
28www.json.org/

http://www.programmableweb.com/apis/directory/1?sort=mashups
http://www.programmableweb.com/apis/directory/1?sort=mashups
http://typesafe.com/
http://akka.io/
http://www.json.org/

40 CHAPTER 1: Introducing Java Web Development

Note  JSON Processing is defined as the Java API for JSON Processing in JSR 353; see Table 1-3.

Two Java APIs facilitate web services:

	JAX-WS: This is based on the Simple Object Access Protocol (SOAP),29 which
is an XML-based protocol that allows web services and clients to communicate,
even if the client and the web service are written in different languages.

	JAX-RS: This uses Representational State Transfer (REST), which is a network
architecture that uses the Web’s traditional request-response mechanisms such
as GET and POST requests.

Simple Object Access Protocol
The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses XML to
interact with web services, typically over HTTP. Each request and response is packaged in a SOAP
message, which is XML markup containing the information that a web service requires to process
the message. A SOAP web service works as follows:

1.	 When a method of a SOAP web service is invoked, the request is packaged
in a SOAP message enclosed in a SOAP envelope and sent to the server on
which the web service resides.

2.	 When the SOAP)web service receives this message, it parses the XML
representing the message and then processes the message’s contents.

3.	 Then, the web service, after processing the request, sends the response to
the client in another SOAP message.

4.	 The client parses the response.

Representational State Transfer
The term representational state transfer (REST) was introduced and defined in 2000 by Roy Fielding
in his doctoral dissertation30 at UC Irvine. REST refers to an architectural style for implementing
web services called RESTful web services. Each method in a RESTful web service is identified by a
unique URL.

Note  RESTful web services are defined as JSR 339, as shown in Table 1-3.

29www.w3.org/TR/soap/
30www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.w3.org/TR/soap/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

41CHAPTER 1: Introducing Java Web Development

Unlike SOAP, REST does the following:

Identifies a resource as a URI	

Uses a well-defined set of HTTP methods to access the resource	

Works with multiple representation formats of a resource	

Semantic Web (Web 3.0)
Web 2.0 began to take shape in 2004. It was pioneered by Google and followed by social
applications such as video sharing, social networking, microblogging, photo sharing, Wikipedia,
and virtual worlds such as Second Life. Mashups played a major role in the evolution of social
applications and Web 2.0.

The term Semantic Web refers to the W3C’s vision of the Web of linked data. The Semantic Web
can be viewed as a set of standards that allow machines to understand the meaning of information
on the Web. The Web as it is today constitutes data that has no meaning in itself, and the meaning
has to be constituted manually after gathering the data from the Web. Semantic Web technologies
enable you to create data stores on the Web, build vocabularies, and write rules for handling data.
Linked data are empowered by technologies such as RDF,31 SPARQL,32 and OWL.33 The Semantic
Web is the future of the Web and is a subject of ongoing research. I recommend Aaron Swartz’s
A Programmable Web: An Unfinished Work34 as an excellent resource on the Semantic Web. You can
also follow the latest news on the Semantic Web.

Summary
This chapter introduced the Java language and then took you on a whirlwind tour through the Java
landscape. The diverse landscape of the Java world consists of several web frameworks (such as
Struts 2, Spring Web MVC, JSF 2, Grails 2 and Play 2) that make development much easier; thus,
as a Java web developer, you need to be familiar with these web frameworks. Modern Java is
more than just a language; it is now a fully optimized platform for several other industry-strength
languages such as Groovy, Clojure, and Scala. All these languages, especially Groovy, have a close
association with Java, and you will come across web applications before long where Java and these
alternative JVM languages will work in tandem.

The subsequent chapters will address all these needs of a modern Java web developer. Specifically,
in the next chapter, you will create a Hello World web application that utilizes the basic building
blocks of a web application, namely, servlets and Java Server Pages. From there, you will then
transform the stand-alone application into your first full-blown web application: a bookstore
application using servlets and JSP.

31www.w3.org/RDF/
32www.w3.org/TR/rdf-sparql-query/
33www.w3.org/TR/owl-features/
34www.morganclaypool.com/doi/pdf/10.2200/S00481ED1V01Y201302WBE005

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl-features/
http://dx.doi.org/www.morganclaypool.com/doi/pdf/10.2200/S00481ED1V01Y201302WBE005

43

Chapter 2
Building Web Applications Using
Servlets and JSP

Protocol is everything.

—François Giuliani

The core Internet protocols substantiate and sustain the Web, so understanding these protocols is
fundamental to understanding how web applications are developed.

The Internet is a colossal network of networks, and in general, all of the machines on the Internet
can be classified into two types: the server and the client. The client is the machine requesting some
information, and the server is the machine that provides that information. The information data that
flows from the information provider (that is, the server) to the information requester (that is, the client)
is bound by a definite rule that governs the marshaling of the information to be transmitted by the
server and the unmarshaling of the information to be translated or read by the client. This rule is
called the protocol. The web browser (that is, the client), the web server (that is, the server), and the
web application all converse with each other through the Hypertext Transfer Protocol (HTTP). The
clients send HTTP requests to the web servers, and the web servers return the requested data in the
form of HTTP responses. The HTTP clients and the HTTP servers are the bricks and mortar that lay
the foundation of the World Wide Web, and HTTP is the lingua franca of the Web.

HTTP is a request-response stateless protocol, the corollary of which is that, from the web server’s
view, any request is the first request from the web browser. When a client makes a request for the
resource, the request also encloses the identification of the resource being requested, in the form of
a Uniform Resource Locator (URL). URLs are described in RFC 39861 as a uniform way of uniquely
identifying a resource. URLs are designed to implicitly provide a means of locating a resource by
describing its “location” on a network.

1www.ietf.org/rfc/rfc3986.txt

http://www.ietf.org/rfc/rfc3986.txt

44 CHAPTER 2: Building Web Applications Using Servlets and JSP

Note  A URL is a concrete form of Uniform Resource Identifier (URI), which is a mechanism to distinguish
entities. But URIs in themselves are abstract. There are two concrete forms of URI: URL and Uniform Resource
Name (URN). URN is still experimental and not widely adopted.

Figure 2-1.  Anatomy of a URL

A generic URL is a hierarchical sequence of components, structured as
scheme://hostName:portNumber/path/resource?query string.

To identify the parts of a URL, consider a URL that lists the details of a book on your bookstore web
site, as shown here:
 
http://www.yourbookstore.com/bookstore/bookServlet?action=bookDetails
 
Figure 2-1 illustrates the parts of this URL.

The host name and port number together are termed an authority. By default, a web server such as
Tomcat, as explained later, listens for incoming requests on port 8080. Some parts of the URL shown
in Figure 2-1 are optional, including the port number (which defaults to the well-known ports 80 and
443 for the HTTP and HTTPS schemes, respectively) and the query string.

Note  HTTPS is HTTP over Secure Sockets Layer (SSL); it allows secure, encrypted communications.

When present, a query string is a series of name-value pairs preceded with a question mark (?) and
with an ampersand (&) separating the pairs.

http://www.yourbookstore.com/bookstore/bookServlet?action=bookDetails

45CHAPTER 2: Building Web Applications Using Servlets and JSP

Note  Query strings are supported only for the GET method. There are other HTTP protocol methods, such as
POST, DELETE, and PUT.

Figure 2-2.  Request for dynamic content

A web application is a collection of web components that work together to provide a specific
functionality on the Web. In the Java EE specification, a web component is defined to be either a
Servlet or a Java Server Page (JSP) page.

Note  Other than servlets and JSP pages, a web application may also comprise static resources such
as HTML documents, images, and the metadata or configuration files that define properties of the web
application; however, these are not considered to be web components.

The web application and its constituent components are managed and executed inside the web
container, also called a servlet container, which provides additional features to the web application
such as security. When the web server gets a request for specific functionality that a particular web
component (such as a servlet or a JSP page) can provide, the web server forwards the request to
the servlet container in which the web component resides. All requests for the dynamic content
(that is, all requests to the web component that is responsible for generating the dynamic content)
are mediated by the servlet container, as shown in Figure 2-2.

The Java EE Servlet and JSP specifications describe the service contract that a servlet container
must provide and specify how a servlet should use those services. In terms of implementation,
a servlet is a Java class that acts as a dynamic web resource.

Servlets
Servlets are the central processing unit of a Java web application and are responsible for most of the
processing required by a web application. Specifically, a servlet is a Java class that implements the
javax.servlet.Servlet interface. The Servlet interface defines the methods that all servlets must
implement. “One ring to rule them all!” This interface, along with other methods, defines key life-cycle

46 CHAPTER 2: Building Web Applications Using Servlets and JSP

methods such as init(), service(), and destroy() to initialize a servlet, to service requests, and to
remove a servlet from the server, respectively. Table 2-1 describes all the methods of the
javax.servlet.Servlet interface.

Table 2-1.  The Life-Cycle and Non-Life-Cycle Methods of the Servlet Interface

Modifier and Type Method

void init(ServletConfig config)

void service(ServletRequest req, ServletResponse res)

void destroy()

ServletConfig getServletConfig()

String getServletInfo()

The life-cycle methods are invoked by the container at appropriate instants in a servlet’s life in the
following sequence:

1.	 The servlet is constructed and then initialized with the init method.

2.	 Any calls from clients to the service method are handled.

3.	 The servlet is then destroyed with the destroy method, garbage collected,
and finalized.

The Servlet interface methods illustrated in Table 2-1 are explained here:

	init(ServletConfig): Called by the servlet container exactly once after
instantiating the servlet. This method must complete successfully before the
servlet is a candidate to receive any requests.

	service(): Called by the servlet container, after the servlet’s init() method has
completed successfully, to allow the servlet to respond to a request.

	destroy(): Called by the container to destroy the servlet and serves as a
method in which the servlet must release acquired resources before it is
destroyed.

	getServletConfig(): Allows the servlet to get start-up information in the form
of a ServletConfig object returned by this method. The ServletConfig object
contains initialization and start-up parameters for the servlet.

	getServletInfo(): Allows the servlet to return its own information such as the
servlet’s author and version.

47CHAPTER 2: Building Web Applications Using Servlets and JSP

Your First Web Application Using a Servlet
In Chapter 1, you installed the Eclipse Kepler IDE. You will develop your first web application in
Eclipse in this section. Specifically, you will use Tomcat 7 both as the HTTP server and as the servlet
container. You can install Tomcat 7 by downloading the source distribution of Tomcat as a ZIP file
from http://tomcat.apache.org/download-70.cgi.

Start Eclipse and select the Window ➤ Preferences menu option to display the Preferences dialog,
as illustrated in Figure 2-3.

Figure 2-3.  Preferencesdialog, verifying installed JRE

http://tomcat.apache.org/download-70.cgi

48 CHAPTER 2: Building Web Applications Using Servlets and JSP

Figure 2-4.  Creating a new project

In the left pane of this dialog, drill down to Java ➤ Installed JREs and verify that your previously
installed version of JRE8/JDK 8 shows up. If it doesn’t, click the Add button to add a reference to
your JDK. Create a Dynamic Web Project by selecting File ➤ New ➤ Dynamic Web Project,
as shown in Figure 2-4. Name the project helloworld, as shown in Figure 2-5.

49CHAPTER 2: Building Web Applications Using Servlets and JSP

Click Next, and check “Generate web.xml deployment descriptor,” as shown in Figure 2-6. Later we
will see how it is possible to configure the web module without web.xml.

Figure 2-5.  Creating the helloworld project

50 CHAPTER 2: Building Web Applications Using Servlets and JSP

Click Finish, and create a new Java class, as shown in Figure 2-7.

Figure 2-6.  Configuring web module settings

Figure 2-7.  Creating a Java class: the servlet

51CHAPTER 2: Building Web Applications Using Servlets and JSP

Modify the generated HelloWorld class with the code in Listing 2-1.

Listing 2-1.  HelloWorld Servlet

1.package apress.helloworld;
2.
3.import java.io.IOException;
4.import java.io.PrintWriter;
5.
6.import javax.servlet.http.HttpServlet;
7.import javax.servlet.http.HttpServletRequest;
8.import javax.servlet.http.HttpServletResponse;
9.
10.public class HelloWorld extends HttpServlet{
11.
12.protected void doGet(HttpServletRequest request,
13.HttpServletResponse response)
14.{
15.try
16.{
17.response.setContentType("text/html");
18.PrintWriter printWriter = response.getWriter();
19.printWriter.println("<h2>");
20.printWriter.println("Hello World");
21.printWriter.println("</h2>");
22.}
23.catch (IOException ioException)
24.{
25.ioException.printStackTrace();
26.}
27.}
28.
29.}
 
Modify the web.xml file with the code in Listing 2-2.

Listing 2-2.  Web.xml: Deployment Descriptor

1.<?xml version="1.0" encoding="UTF-8"?>
2.<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3.xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
4.xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
5.id="WebApp_ID" version="3.0">
6.<display-name>helloworld</display-name>
7.<servlet>
8.<servlet-name>HelloWorld</servlet-name>
9.<servlet-class>apress.helloworld.HelloWorld</servlet-class>
10.</servlet>
11.<servlet-mapping>
12.<servlet-name>HelloWorld</servlet-name>

http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

52 CHAPTER 2: Building Web Applications Using Servlets and JSP

13.<url-pattern>/hello</url-pattern>
14.</servlet-mapping>
15.<welcome-file-list>
16.<welcome-file>index.html</welcome-file>
17.<welcome-file>index.htm</welcome-file>
18.<welcome-file>index.jsp</welcome-file>
19.<welcome-file>default.html</welcome-file>
20.<welcome-file>default.htm</welcome-file>
21.<welcome-file>default.jsp</welcome-file>
22.</welcome-file-list>
23.</web-app>
 
Now we need to configure HelloWorld servlet as a web module in Tomcat. SelectWindow ➤ Show
View ➤ Servers in the menu bar of Eclipse, as illustrated in Figure 2-8.

Figure 2-8.  Adding the server

53CHAPTER 2: Building Web Applications Using Servlets and JSP

Next you will have to define a new server, as illustrated in Figure 2-10.

Figure 2-9.  Defining the server

On the Servers tab, right-click and add Tomcat 7 as the new server, as shown in Figure 2-9.

54 CHAPTER 2: Building Web Applications Using Servlets and JSP

Now configure the helloworld project by moving the resources to the right in the configured section,
as shown in Figure 2-11.

Figure 2-10.  Defining the Tomcat server

55CHAPTER 2: Building Web Applications Using Servlets and JSP

Click Add, and the resource will be configured on the server. Then click Finish. Start the server and
access the application using the URL shown in Figure 2-12.

Figure 2-11.  Configuring the resource on the server

56 CHAPTER 2: Building Web Applications Using Servlets and JSP

You can now access your first web application through the URL
http://localhost:8080/helloworld/hello, as illustrated in Figure 2-13.

Figure 2-12.  Starting the server

Figure 2-13.  Running the helloworld web application

http://localhost:8080/helloworld/hello

57CHAPTER 2: Building Web Applications Using Servlets and JSP

In the following section, you will learn how the request flows through the application and how
the container finds the servlet in the helloworld application you developed. Then you will use the
HelloWorld servlet to understand the life-cycle methods of the servlet.

Request Flow for the HelloWorld Servlet
The request originating from the web browser flows through the web server and the servlet container
before the HelloWorld servlet can generate the response, as explained in following sections.

HTTP Request Message
The URL used to access the helloworld web application is http://localhost:8080/helloworld/hello.
When the user accesses the web application through this URL, the web browser creates the HTTP
request, as illustrated in Listing 2-3.

Listing 2-3.  HttpRequest Message

1.GET /helloworld/hello HTTP/1.1
2.Host: localhost:8080
3.User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.31 (KHTML, like Gecko)
Chrome/26.0.1410.43 Safari/537.31
 

	Line 3: This line describes the specific user agent (web browser) that initiated
communication by making a request for a specific resource using HTTP,
described in line 1.

	Line 1: The request made by the user agent is of the form shown in Figure 2-14.

Figure 2-14.  Anatomy of HTTP request message

	Line 2: This machine (your machine) that is running a web server is a server
machine. Localhost is specified where you would otherwise use the host name
of a computer. For example, directing a browser installed on a system running
an HTTP server to http://localhost will display the home page of the web site
installed on that system, as illustrated in Figure 2-15.

http://localhost:8080/helloworld/hello
http://en.wikipedia.org/wiki/User_agent#User%20agent
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_message%23Hypertext%20Transfer%20Protocol
http://en.wikipedia.org/wiki/HTTP#HTTP
http://localhost/

58 CHAPTER 2: Building Web Applications Using Servlets and JSP

Figure 2-15 shows the homepage of Tomcat that you will see when you start Tomcat on your
machine by running startup.bat in the bin directory of Tomcat. A server machine makes its services
available to the Internet using numbered ports, one for each service that is available on the server.
For example, if a server machine is running a web server, the web server would typically be available
on port 80, or 8080 in the case of Tomcat.

Figure 2-15.  Home page of the web server

59CHAPTER 2: Building Web Applications Using Servlets and JSP

Examining the Request
When the client (web browser) makes a request (a GET request in this case), the web server (Tomcat)
sees the resource path /helloworld/hello in the request in line 1 and determines that the resource
requested by the user is not a static page (for example a .html file) and so forwards the request to
the web container (Tomcat). Astute readers will notice that Tomcat serves the role of the web server
and the web container.

Locating the Servlet
The resource path in the request (line 1 in Listing 2-3) is mapped to the HelloWorld servlet through
the web.xml file written in Listing 2-2. This web.xml file is called a deployment descriptor because it
describes the deployed servlet to the web container. Through the deployment descriptor, the web
container determines the servlet that needs to be called to serve the original HTTP request that the
web browser initiated. For the sake of reader’s convenience, the web.xml is shown again here in
Listing 2-4.

Listing 2-4.  web.xml

1.<?xml version="1.0" encoding="UTF-8"?>
2.<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" version="3.0">
3.<servlet>
4.<servlet-name>HelloWorld </servlet-name>
5.<servlet-class>
6.apress.helloworld.HelloWorld
7.</servlet-class>
8.</servlet>
9.<servlet-mapping>
10.<servlet-name>HelloWorld</servlet-name>
11.<url-pattern>/hello </url-pattern>
12.</servlet-mapping>
13.</web-app>
 

	Lines 1 to 2: These lines contain boilerplate XML stating the version, encoding,
and schema used for the XML file.

	Lines 3 to 8: The <servlet> tag is used to configure our servlet. It contains
two nested tags: <servlet-name> defines a logical name for the servlet, and
<servlet-class> indicates the Java class defining the servlet.

	Lines 9 to 12: The <servlet-mapping> XML tag is used to configure our servlet.
It contains two nested tags: <servlet-name> matches the value set in the
<servlet> tag, and <url-pattern> sets the URL pattern for which the servlet
will execute.

Java EE web applications run from within a context root. The context root is the first string in the URL
after the server name and port. For example, in the URL http://localhost:8080/ helloworld/hello,
the string helloworld is the context root. The value for <url-pattern> is relative to the application’s

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://localhost:8080/

60 CHAPTER 2: Building Web Applications Using Servlets and JSP

context root. A Java EE web.xml file can contain many additional XML tags. Besides mapping URLs
to actual servlets, you can use the deployment descriptor to customize other aspects of your web
application such as security roles, error pages, tag libraries, and initial configuration information.
However, these additional tags are not needed for this helloworld application. The web container
loads the HelloWorld servlet class and instantiates it. Only a single instance of the HelloWorld servlet
is created, and concurrent requests to the HelloWorld servlet are executed on that same instance.
Every client request generates a new pair of request and response objects. The container runs
multiple threads to process multiple requests to a single instance of the HelloWorld servlet.

Note  In a distributed web app, there is one instance of a particular servlet per JVM, but each JVM still has
only a single instance of that servlet.

The Life-Cycle Methods
The life cycle of an object describes the sequence of steps an object must go through during its
existence. The life of a servlet is different from a normal Java class because a servlet has to execute
inside the web container. Figure 2-16 shows the hierarchy of the HelloWorld servlet.

Figure 2-16.  Hierarchy of HelloWorld servlet

61CHAPTER 2: Building Web Applications Using Servlets and JSP

An HTTP request to an HttpServlet subclass goes through a number of steps:

1.	 A call to the public service (ServletRequest, ServletResponse) method by
the container.

2.	 Delegation of this call to HttpServlet’s protected service
(HttpServletRequest, HttpServletResponse) method.

3.	 The protected service (HttpServletRequest, HttpServletResponse)
method then delegates to the appropriate doXxx method, depending on the
HTTP method used for the request.

HelloWorld Servlet
As mentioned in the previous section, the superclass of your servlet includes two versions of init(),
one that takes a ServletConfig and one that’s a no-arg. The init(ServletConfig) method calls the
no-arg init(), so you need to override only the no-arg version.

init( )
The container calls init()on the servlet instance. You can override it in order to get database
connections registered with other objects. Otherwise, the init() method from the Genericservlet runs.

Note  HTTP/1.1 defines seven request methods. The HttpServlet class provides default implementations
for each of these methods that you can override in your servlets. However, most web application comprise
servlets that override only the doGet() and doPost() methods.

GenericServlet
Most servlets provide similar basic functionality through an abstract javax.servlet.GenericServlet
class provided by the Servlet API. The GenericServlet class implementation is protocol-independent,
so it does not matter if it has to respond to HTTP or FTP requests. The GenericServlet abstract
class defines an init() method that is called by the default init(ServletConfig) method to execute
any application-specific servlet initialization.

HttpServlet
In a web application, lack of any protocol-dependent processing in a GenericServlet class signifies
that the developer has to write the code for this processing in any subclass she creates. Since
HTTP is the most well-known and widely used protocol on the Web, the Servlet API also includes
one more abstract subclass of GenericServlet: javax.servlet.http.HttpServlet. The service()
method is implemented by HttpServlet, which inspects the incoming HTTP method and invokes the
appropriate method for that request type.

62 CHAPTER 2: Building Web Applications Using Servlets and JSP

1.	 When a servlet instance is created, its init() method is invoked. The init()
method allows a servlet to initialize itself before the first request is processed.
You can specify init() parameters to the servlet in the web.xml file or via
annotations.

2.	 The web container calls the init() method of the servlet (only once in the
servlet’s life), and the init() method must complete before the container can
call service() method.

service( )
The container calls the service() method of the servlet. This method looks at the request,
determines the type of HTTP method, and invokes the matching doGet() or doPost() on the servlet.
You never override it. Your job is to override doGet() or doPost() and let the service implementation
from HTTPServlet worry about calling the right one.

When the 	 service() method is called on your servlet, it will be handed
references to HttpServletRequest and HttpServletResponse objects that
implement the HttpServletRequest and HttpServletResponse interfaces.
The container implements these interfaces.

For every request received to the servlet, the servlet’s 	 service() method
is called. For HttpServlet subclasses, one of the doGet(), doPost(), and
so on, methods is typically called. The container creates two objects:
HTTPServletRequest and HttpServletResponse.

The 	 service() method can be called multiple times as long as the servlet is
active in the servlet container.

The 	 service() methods call doGet()/doPost(). You always override at least one
of them in your servlet.

destroy( )
The servlet container calls the destroy() method on the servlet, and this method is called only
once. This method provides the servlet with an opportunity to release acquired resources before
it is destroyed.

ServletContext and ServletConfig
After the init() method is called, the servlet gets one ServletConfig object per servlet and one
ServletContext per web application. In a distributed environment, you will have one ServletContext
per JVM. A ServletContext is a means by which a servlet can connect with both the container
and the other parts of the web application. In the servlet, the only time you have to go through the
ServletConfig to get the ServletContext is if your servlet is not an HttpServlet or a GenericServlet.

63CHAPTER 2: Building Web Applications Using Servlets and JSP

The ServletConfig object can be used to do the following:

Pass deploy-time information to the servlet (such as a database or enterprise 	
bean lookup name) that you do not want to hard-code into the servlet. This
deploy-time information is called the servlet init parameters. The servlet init
parameters will be discussed in the next section.

Access the 	 ServletContext.

The ServletContext object can be used to do the following:

Access the web application parameters 	

Set attributes that all components of the application can access 	

Get server information, including the name and version of the container and the 	
version of the API that is supported

A servlet can have three types of parameters:

Request parameters	

Initialization (init) parameters	

Context-initialization (context-init) parameters	

Initialization Parameters
The initialization parameters are defined in the web.xml file, as illustrated in Listing 2-5.

Listing 2-5.  Defining Initialization Parameters

<servlet>
<init-param>
<param-name>email </param-name>
<param-value>vishalway@.gmail.com</param-value>
</init-param>
</servlet>
 
You cannot use init-parameters until the servlet is initialized. Your servlet inherits
getServletConfig(), so you can call that from any method in your servlet to get a reference to a
ServletConfig. Once you have a ServletConfig reference, you can call getInitParam().

When the container initializes a servlet, the following happens:

1.	 The container makes a unique ServletConfig for the servlet.

2.	 The container reads the init parameters from the deployment descriptor and
sets them in the ServletConfig object.

3.	 The container then passes the ServletConfig to the servlet’s init
(servletConfig) method.

http://vishalway@.gmail.com

64 CHAPTER 2: Building Web Applications Using Servlets and JSP

Note  Once the container sets the init params in ServletConfig, the container never reads init param
from the deployment descriptor again, unless the servlet is redeployed.

Context-Init Parameters
Context-init parameters are similar to init parameters. The main difference between the context-init
parameters and init params is that context parameters are available to the entire web app while the
init parameters are available to just the servlet. Listing 2-6 illustrates the context-init parameters in
the web.xml file.

Listing 2-6.  Defining Context-Initialization Parameters

<context-param>
<param-name>email </param-name>
<param-value>vishalway@gmail.com</param-value>
</context-param>
 
The <context-param> element is not nested inside the <servlet> element.

Listing 2-7 illustrates how to get the context-init parameters from your servlet.

Listing 2-7.  Getting Context-Initialization Parameters

out.println(getServletContext().getInitParameter("email");
 
Every servlet inherits a getServletContext() method. The getServletContext() method returns a
ServletContext object.

RequestDispatcher
In a web application, there are two ways to alter the request flow.

	Redirecting the request: The request is redirected to a completely different URL.
The redirect can be done by calling sendRedirect() on the response object.
The redirect is done by the browser.

	Dispatching the request: The request is dispatched to another component in the
web app, typically a JSP page. A request dispatch is different from a redirect in
that it does the work on the server side. A RequestDispatcher is called on the
request, and a redirect is called on the response.

Figure 2-17 shows the methods in the RequestDispatcher interface.

http://vishalway@gmail.com

65CHAPTER 2: Building Web Applications Using Servlets and JSP

You can get a RequestDispatcher in two ways.

Getting a 	 RequestDispatcher from a ServletRequest

Getting a 	 RequestDispatcher from a ServletContext

Getting a RequestDispatcher from a ServletRequest
RequestDispatcher view = request.getRequestDispatcher("bookDetails.jsp");
 
The getRequestDispatcher() method in ServletRequest takes a path for the resource to which
the request is being forwarded. If the path begins with a forward slash (/), it is considered by the
container to be starting from the root of the web application. If the path does not begin with the
forward slash, the container considers it relative to the original request.

Getting a RequestDispatcher from a ServletContext
RequestDispatcher view = getServletContext().getRequestDispatcher("/bookDetails.jsp");
 
The getRequestDispatcher() method takes a String path for the resource to which you are
forwarding the request. The RequestDispatcher, thus obtained from the context or request,
can be used to forward to the resource because the RequestDispatcher knows the resource
you are forwarding to, in other words, the resource that was passed as the argument to the
getRequestDispatcher(). Listing 2-8 illustrates calling forward on a RequestDispatcher.

Listing 2-8.  Calling forward on RequestDispatcher

RequestDispatcher view = request.getRequestDispatcher("bookDetails.jsp");
view.forward(request, response);

Filters
A filter is a reusable Java component that can transform the content of HTTP requests, responses,
and header information. Filters are used for the following:

Accessing static or dynamic content or modifying the request headers before 	
invoking a request

Intercepting the invocation of a web component after the call is invoked	

Figure 2-17.  RequestDispatcher interface

66 CHAPTER 2: Building Web Applications Using Servlets and JSP

Providing actions on web components by using a chain of filters in a 	
specific order

Modifying the response headers and response data before they are rendered	

A filter is created by implementing the javax.servlet.Filter interface and providing a no-arg
constructor. A filter is configured in a web application either in the deployment descriptor using
the <filter> element or in the @WebFilterannotation (introduced in the section that follows). In the
<filter> element, you must declare the following:

	<filter-name>: Used to map the filter to a servlet or URL

	<filter-class>: Used by the container to identify the filter type

Note  You can also declare the initialization parameters for a filter.

Listing 2-9 illustrates the filter declaration.

Listing 2-9.  Declaring the Filter

<filter>
<filter-name>ResponseFilter</filter-name>
<filter-class>com.apress.ResponseServlet</filter-class>
</filter>
 
Filters can be associated with a servlet using the <servlet-name> element. Listing 2-10 maps the
Response Filter filter to the ResponseServlet servlet.

Listing 2-10.  Mapping the Filter to the Servlet

<filter-mapping>
<filter-name>Response Filter</filter-name>
<servlet-name>ResponseServlet</servlet-name>
</filter-mapping>
 
Filters can be associated with groups of servlets using <urlpattern>, as illustrated in Listing 2-11.

Listing 2-11.  Associating a Filter with a Group of Servlets

<filter-mapping>
<filter-name>Response Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>
 
In Listing 2-11 the response filter is applied to all the servlets in the web application.

A web application typically comprises the following filtering components:

Authentication filters	

Caching filters	

67CHAPTER 2: Building Web Applications Using Servlets and JSP

Data compression filters	

Encryption filters	

Image conversion filters	

Logging and auditing filters	

Configuring Servlet via Annotations
From Servlet 3.0 onward, servlets can be configured either via web.xml or using annotations or both.
Table 2-2 describes the annotations supported by a Servlet 3.0–compliant web container.

Table 2-2.  Annotations for Configuring the Servlet

Annotation Description

@WebFilter Defines a filter in a web application

@WebInitParam Specifies init parameters to be passed to the servlet or the filter

@WebListener Annotates a listener to get events

@WebServlet Defines a component in a web application

@MultipartConfig Indicates that the request is of type mime/multipart

In the section that follows, you will develop a helloworld project in which you will configure the
servlet via annotations. Right-click the project helloworld, create a new servlet class, and give the
class name as HelloWorld, as shown in Figure 2-18. Click Next.

Figure 2-18.  Creating a servlet

68 CHAPTER 2: Building Web Applications Using Servlets and JSP

On the next screen, you can fill in the information pertaining to the deployment descriptor such as
the initialization parameters and URL mappings, as illustrated in Figure 2-19. For the HelloWorld
application, you do not have to fill in the values for initialization parameters. The default value of the
URL mapping, in this case /HelloWorld, is just fine. This value in the “URL mappings” field is the
servlet path of the URL, as explained in the previous section. Click Next.

Figure 2-19.  URL mapping

On the next screen, specify the modifiers, interfaces to implement, and method stubs to generate, as
illustrated in Figure 2-20. Check doGet and doPost if they are not already checked. Then click Finish.

69CHAPTER 2: Building Web Applications Using Servlets and JSP

The IDE generates the HelloWorld servlet illustrated in Listing 2-12.

Listing 2-12.  HelloWorld Servlet Using Annotations

1.package apress.helloworld;
2.
3.import java.io.IOException;
4.import javax.servlet.ServletException;
5.import javax.servlet.annotation.WebServlet;
6.import javax.servlet.http.HttpServlet;
7.import javax.servlet.http.HttpServletRequest;
8.import javax.servlet.http.HttpServletResponse;
9.
10./**
11. * Servlet implementation class HelloWorld
12. */
13.@WebServlet(urlPatterns = { "/HelloWorld" }, description = "A hello world servlet")
14.public class HelloWorld extends HttpServlet {

Figure 2-20.  Specifying methods

70 CHAPTER 2: Building Web Applications Using Servlets and JSP

15.private static final long serialVersionUID = 1L;
16.
17. /**
18. * @see HttpServlet#HttpServlet()
19. */
20. public HelloWorld() {
21. super();
22. // TODO Auto-generated constructor stub
23. }
24.
25./**
26. * @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse response)
27. */
28.protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
29.// TODO Auto-generated method stub
30.}
31.
32./**
33. * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse response)
34. */
35.protected void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
36.// TODO Auto-generated method stub
37.}
38.
39.}
 

	Line 13: This line shows the usage of the @WebServlet annotation. The
HelloWorld servlet is decorated with the @WebServlet annotation to specify
the name, URL pattern, initialization parameters, and other configuration items
usually specified in the web.xml deployment descriptor.

	Line 14: This line shows that the HelloWorld servlet extends the HTTPServlet.

	Lines 28 to 37: These lines show the doGet and doPost methods generated by
the IDE.

Add the code in Listing 2-13 to the doGet method of the HelloWorld servlet.

Listing 2-13.  Printing “Hello World”

PrintWriter out = response.getWriter();
out.println("<h2>Hello World !</h2>");
 
You will have to import java.io.Printwriter. You can do this in Eclipse by selecting Source ➤
Add Import or by pressing Ctrl+Shift+M; now you can run the application on the server. Right-click
HelloWorld.java in the helloworld project in Eclipse and then select Run As ➤ Run on Server. The
server you are using in this case is Tomcat 7.0. Then use the following URL to access the application:
 
http://localhost:8080/helloworld/HelloWorld
 

http://localhost:8080/helloworld/HelloWorld

71CHAPTER 2: Building Web Applications Using Servlets and JSP

For more information on the Java Servlet technology, refer to the Java Servlet 3.1 specification2 and
the Java Servlet web site.3

Java Server Pages
Servlets enable the web server to generate dynamic content. However, servlets have one major
disadvantage in that the HTML code is required to be hardwired in the Java code. To eliminate
this cross-cutting of concerns, the Java Server Pages (JSP) technology was created. JSP uses a
combination of static HTML content and dynamic content to generate web pages, thus separating
the concern of embedding HTML content in Java code.

Your First Web Application Using JSP
Now you will create a “Hello World” application using JSP. Since you created a project with this
name earlier, make sure to delete or rename the old project first. Then right-click in the project
explorer and select Dynamic Web Project, as shown in Figure 2-22. Name the project helloworld.

Figure 2-21.  Accessing the application

2http://jcp.org/en/jsr/detail?id=340
3www.oracle.com/technetwork/java/index-jsp-135475.html

Figure 2-21 shows the output.

http://jcp.org/en/jsr/detail?id=340
http://www.oracle.com/technetwork/java/index-jsp-135475.html

72 CHAPTER 2: Building Web Applications Using Servlets and JSP

Right-click the project helloworld, create a new JSP file, and give the name as helloworld.jsp. Click
Next. Click Finish on the next screen.

Figure 2-22.  Creating the helloworld project

73CHAPTER 2: Building Web Applications Using Servlets and JSP

Figure 2-23.  Creating the JSP file

Modify the code of helloworld.jsp as illustrated in Listing 2-14.

Listing 2-14.  helloworld.jsp

<!DOCTYPE html >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Hello World</title>
</head>
<body>
Hello World!
</body>
</html>
 
Deploy the application on the server, as shown in Figure 2-24.

74 CHAPTER 2: Building Web Applications Using Servlets and JSP

Launch the application using http://localhost:8080/HelloWorld/hello.jsp.

Figure 2-25 shows the output.

Figure 2-24.  Running the application on the server

http://localhost:8080/HelloWorld/hello.jsp

75CHAPTER 2: Building Web Applications Using Servlets and JSP

JSP Basics
This section will cover the fundamental JSP constructs. A sound understanding of the classic
approach is essential for understanding its limitations and to appreciate the power of more advanced
techniques such as Expression Language, which is a subject of the next chapter. Before Expression
Language was added to the JSP specification, a billion JSP pages were written using the classic
approach, and you may still have to maintain them or refactor them. This need for backward
compatibility is one reason why the JSP specification still covers the classic components. But when
you have to write new JSPs in your application, you should not write backward-compatible code;
instead, you should use the best-practice approach, which will be explained in the next chapter.
When JSP 1.0 was added to the JSP specification in 1999, it was meant to produce dynamic,
web-based content by embedding business-logic code in the template data. To that end, the
following JSP elements were provided to be used within a JSP page to manipulate Java objects and
perform operations upon them, thereby enabling the generation of dynamic content:

Directives	

Declarations	

Expressions	

Scriptlets	

Implicit objects	

Standard actions	

Figure 2-25.  Accessing the JSP

76 CHAPTER 2: Building Web Applications Using Servlets and JSP

JSP Directives
JSP directives are instructions to the JSP container that are processed during the page translation
process. Directives provide a mechanism for making page-level information available to the JSP engine.
The directives are declared between <%@ and %> directive delimiters and take the following form:
 
<%@ directive {attribute="value"}* %>

Page Directive
The page directive is used to provide instructions about a specific JSP page to be used by the
container to generate the underlying servlet. The following is the basic syntax of the page directive:
 
<%@ page attribute="value" %>
 
Table 2-3 describes the attributes associated with the page directive.

Table 2-3.  Attributes of the Page Directive

Attribute Purpose

autoFlush Controls the behavior of the servlet output buffer. It indicates whether the buffer
should be automatically written when it is full.

buffer Specifies the buffering model for the servlet output stream. It indicates the size of
the buffer.

contentType Specifies the MIME type and character encoding scheme for the response.

errorPage Specifies the URL of a JSP that handles the error conditions and reports the runtime
exceptions.

extends Indicates a superclass that the generated servlet must extend.

import Specifies the classes for use in the JSP page similar to the import statement in Java.

info Specifies a string for servlet’s getServletInfo() method.

isELIgnored?
isELEnabled

Specifies whether the EL expression is allowed in the JSP page.

isErrorPage Specifies whether this JSP page is meant to handle error conditions and report
runtime exceptions.

isScriptingEnabled Specifies whether scripting elements are allowed in the JSP page.

isThreadSafe Indicates whether the JSP page can handle concurrent requests.

language Indicates the scripting language that is used in the JSP page.

session Specifies whether the JSP page participates in the HTTP session.

77CHAPTER 2: Building Web Applications Using Servlets and JSP

Include Directive
The include directive is used to specify static resources that should be included within the current
JSP page translation unit. The include directive has an attribute called file that specifies the URL
for the resource that should be included. The general form of this directive is as follows:
 
<%@ include file="relative url" >
 
The following example demonstrates using the include directive to include a standard JSP header
and footer in the current translation unit (Listing 2-15). You can create a project like your first web
application, helloworld, and replace helloworld.jsp with main.jsp. Listing 2-15 illustrates main.jsp.

Listing 2-15.  main.jsp

1.<%@ include file="header.jsp" %>
2.
3.<p>content</p>
4.
5.<%@ include file="footer.jsp" %>
 

	Line 1: This line includes header.jsp in the main.jsp file at translation time.

	Line 5: This line includes footer.jsp in the main.jsp file at translation time.

Listing 2-16 illustrates header.jsp.

Listing 2-16.  header.jsp

1.<html>
2.<head></head>
3.<body>
4.<%out.print("header"); %>
 

	Line 4: This line uses an implicit object out. Implicit objects will be introduced
later in this chapter. The implicit out object represents an instance of the
JspWriter class and is used to write character data to the response stream.

Listing 2-17 illustrates footer.jsp.

Listing 2-17.  footer.jsp

1.<%out.print("footer"); %>
2.</body>
3.</html>
 
Figure 2-26 illustrates the output.

78 CHAPTER 2: Building Web Applications Using Servlets and JSP

Taglib Directive
The Java Server Pages API provides standard actions, covered in the next section, that encapsulate
functionality. The JSP API also allows you to define custom actions that implement custom behavior.
Several such custom actions, also called custom tags, are assembled in a library called a tag library.
The taglib directive is used to define a prefix and location for a tag library in the current JSP page.
The taglib directive uses the following syntax:
 
<%@ taglib uri="uri" prefix="tagPrefix" >
 
The uri attribute value is an absolute or relative path that specifies the location of the tag library, and
the prefix attribute specifies the custom action to be used in the current JSP. Listing 2-18 illustrates
the usage of the taglib directive for an example tag library called helloTagLib, which comprises a
tag called hello that prints a “Hello World” message.

Listing 2-18.  Usage of the Taglib Directive

1.<%@ taglib uri="/ helloTagLib" prefix="helloTag" %>
2.<html>
3.<body>
4.<helloTag:hello/>
5.</body>
6.</html>
 

	Line1: The URI to the library helloTagLib and prefix helloTag

	Line 4: Using the hello tag via the prefix

Declarations
Using declarations, JSP allows you to declare methods and variables in JSP pages. Once they are in
a JSP page, they are available to scriptlets and expressions throughout the page. JSP declarations
are placed between <%! and %> declaration delimiters. Since declarations are used with expressions
and scriptlets, I will introduce expressions and scriptlets in the following sections, and then I will
show you how declarations, scriptlets, and expressions are used in a JSP page.

Figure 2-26.  Using the include directive

79CHAPTER 2: Building Web Applications Using Servlets and JSP

Expressions
Expressions are similar to scriptlets, but they evaluate a regular Java expression and return a result,
which is a String or something convertible to a String, to the client as part of the response. The
general syntax is as follows:
 
<%= expression %>

Scriptlets
Scriptlets are blocks of Java code surrounded within the <% and %> delimiters to create dynamic
content. Listing 2-19 illustrates the usage of a declaration with a scriptlet and expression.

Listing 2-19.  Usage of Declaration, Scriptlet, and Expression

1.<%!
2.public String hello() {
3.String msg = "Hello World";
4.return msg;
5.}
6.%>
7.Message from Scriptlet: <%hello();%>

8.Message from Expression: <%=hello() %>
 

	Lines 1 to 6: These lines contain a JSP declaration that declares a hello()
method. Line 1 is the start tag, and line 6 is the end tag of the declaration.

	Line 7: The hello() method declared in lines 1 to 6 is used in an expression
on line 7.

Figure 2-27 illustrates the usage of declaration, scriptlets and expression.

Figure 2-27.  Using the declaration, scriptlet, and expression

Implicit Objects
In a web application, multiple web components collaborate with each other and share information by
means of objects that are maintained as attributes of four scope objects. You access these attributes
by using the getAttribute and setAttribute methods of the class representing the scope. Table 2-4
lists the scope objects.

80 CHAPTER 2: Building Web Applications Using Servlets and JSP

Note  In addition to the standard servlet request, session, and application scopes, JSP adds a fourth scope
called page scope.

A JSP page can access some specific objects through scripting variables. These objects are
provided by the JSP container and are called implicit objects. These implicit objects can be
accessed in scriptlets, in expressions, or as part of the EL expressions. (The EL expressions are
introduced in Chapter 3.) Table 2-5 lists the nine implicit objects with the corresponding API.

Table 2-4.  Scope Objects

Scope Objects Servlet API Accessible From . . .

Application/web
context

javax.servlet.ServletContext Web components across the application

Request Subtype of javax.servlet.ServletRequest Web components that handle the request

Session javax.servlet.http.HttpSession Web components in a session

Page javax.servlet.jsp.JspContext The JSP page that creates the object

Table 2-5.  Implicit Objects

Implicit Object Usage API

application Accesses application-level objects ServletContext

config Provides configuration information ServletConfig

exception Accesses error status JSPException

out Accesses the JSP output stream JSPWriter

page Provides a reference to the current JSP Object

pageContext Accesses the JSP container PageContext

request Provides access to the client request ServletRequest

response Provides access to the JSP response ServletResponse

session Shares information across client requests HttpSession

These implicit objects are described in more detail in the following sections.

application
The implicit application object provides a reference to the javax.servlet.ServletContext interface.
The ServletContext interface is used to provide access to any context-initialization parameters that
have been configured for the JSP page via the deployment descriptor of the web application. The
ServletContext object and parameters stored in them by the web container are available to the
entire web application. The application object provides the developer of the JSP page with access
to the ServletContext object.

81CHAPTER 2: Building Web Applications Using Servlets and JSP

config
Similar to the application object, the config object provides a reference to the ServletConfig
interface of the web application. The ServletConfig interface is used to provide access to any
initialization parameters that have been configured for the JSP page via the deployment descriptor
of the web application. The config object provides the JSP developer with access to the
ServletConfig object.

exception
The implicit exception object is available to JSP to handle the error conditions and report the
runtime exceptions using the errorPage page directive.

out
The implicit out object represents an instance of the JspWriter class that is used to write character
data to the response stream.

page
The JSP implicit page object is an instance of the Object class and represents the current JSP page.

pageContext
A pageContext provides context information by providing access to all the namespaces associated
with a JSP page and to several page attributes. Also, it contains the reference to implicit objects.

request
The request object is an instance of the javax.servlet.http.HttpServletRequest interface.
It represents the client request. The request implicit object is generally used to get request
parameters, request attributes, header information, and query string values.

response
The implicit response object is an instance of the javax.servlet.http.HttpServletResponse
interface and represents the response to be given to the client. The implicit response object is
generally used to set the response content type, add cookies, and redirect the response.

session
The JSP implicit session object is an instance of a Java class that implements the
javax.servlet.http.HttpSession interface. It is used to store session state for a client.

Listing 2-20 illustrates the usage of the often-used implicit objects. First it shows the common task
of setting a book attribute in the request, session, and application scopes in a servlet. Then it shows
their JSP equivalents.

82 CHAPTER 2: Building Web Applications Using Servlets and JSP

Listing 2-20.  Usage of Common Implicit Objects

1.getServletContext().setAttribute("book", book);
2.request.setAttribute("book", book);
3.request.getSession().setAttribute("book", book);
4.application.setAttribute("book" book);
5.request.setAttribute("book" book);
6.session.setAttribute("book" book);
7.pageContext.setAttribute("book" book);
 

	Line 1: This sets the book attribute in a ServletContext without using implicit
objects.

	Line 2: This sets the book attribute in a request object. The request object is
also an implicit object in JSP. Hence, setting the attribute in a servlet is similar to
setting the attribute in a JSP page.

	Line 3: This sets the book attribute in the session without using implicit objects.

	Line 4: This sets the book attribute in the ServletContext using the application
implicit object.

	Line 5: This sets the book attribute in a request object. request is also an implicit
object in JSP. Hence, setting the attribute in JSP is similar to setting the attribute
in a servlet.

	Line 6: This sets the book attribute in the session using a session implicit object.

	Line 7: This sets the book attribute in PageContext using a pageContext implicit
object. There is no equivalent of pageContext in a servlet. A PageContext
instance provides access to all the namespaces associated with a JSP
page, provides access to several page attributes, and provides a layer above
the implementation details. Implicit objects are added to the pageContext
automatically.

Standard Actions
The JSP standard actions provide a way to do the following:

Manipulate JavaBeans 	

Dynamically include files	

Perform URL forwarding	

The <jsp:include> Action
The <jsp:include> action provides a way to include at runtime the directive for including the
contents of a separate web component in the declaring JSP page. The syntax for using the standard
include action is as follows:
 
<jsp:include page="relativeURL" flush="true"/>
 

83CHAPTER 2: Building Web Applications Using Servlets and JSP

We will create two JSPs, shown in Listing 2-21 and Listing 2-22, to illustrate the use of the
<jsp:include> action.

Listing 2-21.  main.jsp

1.<html>
2.<head>
3.</head>
4.<body>
5.<%out.print("Inside main.jsp"); %>

6.<jsp:include page="sub.jsp"/>
7.</body>
8.</html>
 

	Line 6: Uses the <jsp:include> to include the target JSP page (sub.jsp)

Listing 2-22.  sub.jsp

1.<html>
2.<head>
3.</head>
4.<body>
5.<%out.print("Inside sub.jsp"); %>

6.</body>
7.</html>
 
Figure 2-28 shows the output when main.jsp is accessed.

Figure 2-28.  Using the <jsp:include> action

The <jsp:forward> Action
The <jsp:forward> action is used to forward the current request to another resource such as a static
page, a JSP page, or a servlet. The syntax for the action is as follows:
 
<jsp:forward page="relativeURL" />
 
We will use the two JSPs created in the previous section to illustrate the use of the <jsp:forward>
action as illustrated in the Listing 2-23 and 2-24.

84 CHAPTER 2: Building Web Applications Using Servlets and JSP

Listing 2-23.  Using the Forward Action in main.jsp

1.<html>
2.<head>
3.</head>
4.<body>
5.<%out.print("Inside main.jsp"); %>

6.<jsp:forward page="sub.jsp"/>
7.</body>
8.</html>
 

	Line 6: Uses <jsp:forward> to forward to the target JSP page (sub.jsp).

Listing 2-24.  sub.jsp

1.<html>
2.<head>
3.</head>
4.<body>
5.<%out.print("Inside sub.jsp"); %>

6.</body>
7.</html>
 
Figure 2-29 shows the output when main.jsp is accessed.

Figure 2-29.  Usage of the forward action

To understand the difference between the include action and the forward action, compare Listing 2-21
with Listing 2-23 and compare Figure 2-28 with Figure 2-29. In Listing 2-23, we use the forward
action in main.jsp, instead of the include action. The forward action transfers the control to sub.jsp,
just like the include action. But when sub.jsp completes, unlike the include action, control does not
go back to main.jsp.

The <jsp:useBean>, <jsp:getProperty>, and <jsp:setProperty> Actions
These three standard actions can eliminate a great deal of scripting code including declarations,
scriptlets, and expressions.

85CHAPTER 2: Building Web Applications Using Servlets and JSP

The useBean action is used to declare and initialize the bean object. Once the bean is initialized,
you can use the jsp:setProperty and jsp:getProperty actions to set and get bean properties

The <jsp:useBean> action has the following syntax:
 
<jsp:useBean id="someId" class="SomeClass" />
 
The <jsp:setProperty> action sets the properties of a bean.

The <jsp:setProperty> action has the following syntax where someId is the ID of the useBean:
 
<jsp:setProperty name="someId" property="someProperty" .../>
 
The <jsp: getProperty> action, as the name suggests, gets the value of a given property. If the
property is not a string, it converts it to a string.

The <jsp: getProperty> action has the following syntax where someId is the ID of the useBean:
 
<jsp:getProperty name="someId" property="someProperty" .../>
 
Listing 2-25 shows how to create a user bean, and Listing 2-26 shows the usage of these three
actions in a JSP page.

Listing 2-25.  User Bean

1.package com.apress.jspactions;
2.
3.public class User {
4.
5.private String name;
6.
7.public String getName() {
8.return name;
9.}
10.
11.public void setName(String name) {
12.this.name = name;
13.}
14.
15.}
 
The user bean in Listing 2-25 will be used in user.jsp, which is shown in Listing 2-26.

Listing 2-26.  user.jsp

1.<html>
2.<head>
3.</head>
4.<body>
5.<jsp:useBean id="user" class="com.apress.jspactions.User" />
6.<jsp:setProperty name="user" property="name" value="vishal" />
7.Hello <jsp:getProperty name="user" property="name" />
8.</body>
9.</html>
 

86 CHAPTER 2: Building Web Applications Using Servlets and JSP

Figure 2-30 shows the output when user.jsp is accessed.

Figure 2-30.  Usage of useBean, getProperty, and setProperty actions

The MVC Pattern
The motivation for the Model-View-Controller (MVC) pattern has been around since the conception
of object-oriented programming. Prior to MVC, the browser directly accessed JSP pages. In other
words, JSP pages handled user requests directly. This was called a Model-1 architecture, as
illustrated in Figure 2-31. A Model-1 architecture exhibited decentralized application control, which
led to a tightly coupled and brittle presentation tier.

Figure 2-31.  Model-1 architecture

A Model-2 architecture for designing JSP pages is in actuality the MVC pattern applied to web
applications. MVC originated in Smalltalk and has since made its way to Java community.
Figure 2-32 shows the Model-2 (in other words, MVC) architecture. In Model-2, a controller
handles the user request instead of another JSP page. The controller is implemented as a servlet.
The following steps are executed when the user submits the request:

1.	 The controller servlet handles the user’s request.

2.	 The controller servlet instantiates the appropriate JavaBeans based on the
request.

3.	 The controller servlet communicates with the middle tier or directly to the
database to retrieve the required data.

4.	 The controller sets the JavaBeans in one of the following contexts: request,
session, or application.

5.	 The controller dispatches the request to the next view based on the request URL.

6.	 The view uses the JavaBeans from step 4 to display data.

87CHAPTER 2: Building Web Applications Using Servlets and JSP

Bookstore Application
In the previous chapter, we developed the data-access layer for the bookstore application and
queried it with a stand-alone Java application. In this chapter, we will replace the stand-alone Java
layer with a presentation layer. The data-access layer at the bottom will remain the same,
as illustrated in Figure 2-33.

Figure 2-32.  Model-2 architecture

Figure 2-33.  Replacing the stand-alone Java client with a presentation layer

In a production-ready application, you should also add a service layer to handle the database
exception. As the application grows, a partitioned application keeps the separation of concerns
clean. Figure 2-34 shows the directory structure of the bookstore application.

88 CHAPTER 2: Building Web Applications Using Servlets and JSP

Home Page
Figure 2-35 shows the home page of the application. On entering the URL (http://localhost:8080/
bookWeb/books), the home page displays the menu, which consists of the categories of the books
available in the bookstore database.

Figure 2-34.  Directory structure of the bookstore application

http://localhost:8080/bookWeb/books
http://localhost:8080/bookWeb/books

89CHAPTER 2: Building Web Applications Using Servlets and JSP

Figure 2-36 shows the MVC architecture of the bookstore application. For the sake of brevity and
understanding how the categories are displayed on the home page, only the components related to
the home page and categories are shown in the figure.

Figure 2-35.  Home page of the bookstore application

Figure 2-36.  MVC in bookstore application

90 CHAPTER 2: Building Web Applications Using Servlets and JSP

In the MVC architecture shown in Figure 2-36, M stands for Category, V stands for home.jsp, and C
stands for BookController. The application flow comprises six steps, as discussed in the following
sections.

Step 1: Locating the Servlet from the Request
The URL (http://localhost:8080/bookWeb/books) is for the dynamic content, so the web server
forwards the request to the servlet container (Tomcat). Listing 2-27 illustrates the Deployment
Descriptor.

Listing 2-27.  Deployment Descriptor of the BookstoreWeb App

1.<?xml version="1.0" encoding="UTF-8"?>
2.<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3.xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
4.xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
5.id="WebApp_ID" version="3.0">
6.<display-name>bookWeb</display-name>
7.<servlet>
8.<servlet-name>BookServlet</servlet-name>
9.<servlet-class>com.apress.bookweb.controller.BookController</servlet-class>
10.<init-param>
11.<param-name>base</param-name>
12.<param-value>/bookWeb/books</param-value>
13.</init-param>
14.<init-param>
15.<param-name>imageURL</param-name>
16.<param-value>/bookWeb/images</param-value>
17.</init-param>
18.<load-on-startup>1</load-on-startup>
19.</servlet>
20.<context-param>
21.<param-name>param1</param-name>
22.<param-value>/bookWeb/books</param-value>
23.</context-param>
24.<context-param>
25.<param-name>imageURL</param-name>
26.<param-value>/bookWeb/images</param-value>
27.</context-param>
28.<servlet-mapping>
29.<servlet-name>BookServlet</servlet-name>
30.<url-pattern>/books </url-pattern>
31.</servlet-mapping>
32.<welcome-file-list>
33.<welcome-file>index.html</welcome-file>
34.<welcome-file>index.htm</welcome-file>
35.<welcome-file>index.jsp</welcome-file>
36.<welcome-file>default.html</welcome-file>

http://localhost:8080/bookWeb/books
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

91CHAPTER 2: Building Web Applications Using Servlets and JSP

37.<welcome-file>default.htm</welcome-file>
38.<welcome-file>default.jsp</welcome-file>
39.</welcome-file-list>
40.</web-app>
 

	Line 30: url-pattern/books is mapped to the BookServlet in the <servlet-mapping>
element, which is mapped to the servlet class BookController on line 9.

	Lines 20 to 27: We specify context parameters to the servlet in the web.xml
file, since context parameters are available to the entire web app. When a
servlet instance is created, its init() method is called by the servlet container.
The init() method allows a servlet to initialize itself before the first request
is processed. We override the init(ServletConfig config)method in the
BookController for getting the categories from the bookstore database.
These categories will be available to the entire application. The overridden
init(ServletConfig config) in the BookController is illustrated in Listing 2-28.

Step 2 and Step 3: Accessing DB via DAO to Get the Categories from the
Database and Setting the Categories in the Model
Listing 2-28 shows the BookController.

Listing 2-28.  init( ) Method in BookController

1.public void init(ServletConfig config) throws ServletException {
2.super.init(config);
3.BookDAO bookDao = new BookDAOImpl();
4.// calling DAO method to retrieve bookList from Database
5.List<Category> categoryList = bookDao.findAllCategories();
6.ServletContext context = config.getServletContext();
7.context.setAttribute("categoryList", categoryList);
8.}
 

	Line 5: This list of categories is obtained from the database by calling
findAllCategories() on the bookDao object.

	Line7: The list of categories is set in the ServletContext so that the list is
available to the entire webapp.

Step 4: Dispatching to the View
As the init() method is completed in the previous step, the container calls the service() method of
the servlet (discussed in life-cycle methods of servlet). This method looks at the request, determines
the HTTP method, and invokes the matching doget() or dopost() on the servlet. Listing 2-29
illustrates the doGet() and doPost() methods of the servlet.

92 CHAPTER 2: Building Web Applications Using Servlets and JSP

Listing 2-29.  doGet( ) and doPost( ) in BookController

1.protected void doGet(HttpServletRequest request,
2.HttpServletResponse response) throws ServletException, IOException {
3.doPost(request, response);
4.}
5.
6.protected void doPost(HttpServletRequest request,
7.HttpServletResponse response) throws ServletException, IOException {
8.String base = "/jsp/";
9.String url = base + "home.jsp";
10.String action = request.getParameter("action");
11.String category = request.getParameter("category");
12.String keyWord = request.getParameter("keyWord");
13.if (action != null) {
14.switch (action) {
15.case "allBooks":
16.findAllBooks(request, response);
17.url = base + "listOfBooks.jsp";
18.break;
19.case "category":
20.findAllBooks(request, response);
21.url = base + "category.jsp?category=" + category;
22.break;
23.case "search":
24.searchBooks(request, response, keyWord);
25.url = base + "searchResult.jsp";
26.break;
27.
28.}
29.}
30.RequestDispatcher requestDispatcher = getServletContext()
31..getRequestDispatcher(url);
32.requestDispatcher.forward(request, response);
33.}
 

	Line 3: The doPost() method is called from the doGet() method.

	Line 9: This line constructs the URL that points to the home page view
(home.jsp).

	Line 10: This line gets the action parameter from the request. But since this is
a home page, there is no associated action parameter, so the variable action
is null.

	Lines 13 to29: The code block from lines 13 to 29 is skipped as the action is
null. If the action was not null, the URL would have been reconstructed to
point at a different view depending on whether the action value is allBooks or
category or search.

	Line 32: The RequestDispatcher forwards to the view name in the URL
on line 31.

93CHAPTER 2: Building Web Applications Using Servlets and JSP

Step 5: Accessing the Model from the View
In the previous step, the controller forwards to the view home.jsp using the RequestDispatcher.

Listing 2-30 illustrates a fragment of home.jsp, which includes leftColumn.jsp. The leftColumn.jsp
file uses the model Category to display categories on the left menu of the home page.

Listing 2-30.  Including leftColumn.jsp in home.jsp

1.<body>
2.<div id="centered">
3.
4.<jsp:include page="header.jsp" flush="true" />
5.

6.<jsp:include page="leftColumn.jsp" flush="true" />
7.Featured Books
8...........
9.</div>
10.</body>
 

	Line 6: The <jsp:include> tag is used to include leftColumn.jsp. This is done
because the left-side bar of the application (the menu) is common to all screens
in the application, but instead of writing the left-side bar in all screens, we write
it in one JSP page and include it wherever required as a means to reusability.
(In the next few chapters on web frameworks, we will see more advanced
techniques for reusing JSPs.)

Listing 2-31 illustrates the code fragment related to categories in leftColumn.jsp where the Category
is accessed.

Listing 2-31.  Accessing the Category Model in leftColumn.jsp

1.<div>Categories</div>
2.
3.<%
4.List<Category> categoryList1 = (List<Category>) application.getAttribute("categoryList");
5.Iterator<Category> iterator1 = categoryList1.iterator();
6.while (iterator1.hasNext()) {
7.Category category1 = (Category) iterator1.next();%>
8.<a class="label"href="<%=param1%>?action=category&categoryId=<%=category1.
getId()%>&category=<%=category1.getCategoryDescription()%>"><spanclass="label" style="margin-left:
30px;"><%=category1.getCategoryDescription()%>
9.
10.<%}%>
11.
 

	Line 4: In this line, the category list is obtained from the ServletContext.
We had saved the category list in the ServletContext obtained from the
database in step 2.

	Line 6 to 10: The category details are displayed in the markup, such as the
category description that you see on the home page.

94 CHAPTER 2: Building Web Applications Using Servlets and JSP

Note  The JSP page in Listing 2-31 uses scriptlets and expressions to obtain the categories and display them.
Using scriptlets and expressions are bad practices and should be avoided as much as possible. This is the
subject of the next chapter, which will show you how to replace scriptlets and expressions with JSTL and EL.

Step 6: Sending the Response
The view constructed in the previous step is delivered to the browser.

Listing All the Books
When the user clicks All Books on the menu, the list of all books is displayed, as illustrated in
Figure 2-37.

Figure 2-37.  Listing all books

The All Books link is in the leftColumn.jsp file. Listing 2-32 illustrates the code fragment for the All
Books link on the menu.

95CHAPTER 2: Building Web Applications Using Servlets and JSP

Listing 2-32.  All Books Link in leftColumn.jsp

1.<div>
2.<a class="link1" href="<%=param1%>?action=allBooks">All Books
4.</div>
 

	Line 2: This line is the All Books link displayed in the menu. When this link is
clicked, the value of action-allBooks is added to the URL as the parameter,
as shown in the URL:
 
http:localhost:8080/bookWeb/books?action=allBooks
 

Step 2, which is locating the servlet from the request, is executed, but this time the action is not null
and has a value allBooks. So, the code block in the doPost() method in the BookController, shown
in Listing 2-33, is executed.

Listing 2-33.  All Books in the doPost( ) in BookController

1.protected void doPost(HttpServletRequest request,
2.HttpServletResponse response) throws ServletException, IOException {
3.String base = "/jsp/";
4.String url = base + "home.jsp";
5.String action = request.getParameter("action");
6.String category = request.getParameter("category");
7.String keyWord = request.getParameter("keyWord");
8.if (action != null) {
9.switch (action) {
10.case "allBooks":
11.findAllBooks(request, response);
12.url = base + "listOfBooks.jsp";
13.break;
14.case "category":
15.findAllBooks(request, response);
16.url = base + "category.jsp?category=" + category;
17.break;
18.case "search":
19.searchBooks(request, response, keyWord);
20.url = base + "searchResult.jsp";
21.break;
22.
23.}
24.}
25.RequestDispatcher requestDispatcher = getServletContext()
26..getRequestDispatcher(url);
27.requestDispatcher.forward(request, response);
28.}
 

	Line 8: The action is not null, and the value of the action is allBooks.

	Lines 10 to 12: The helper method findAllBooks(request, response) is invoked,
the URL is reconstructed to point to listOfBooks.jsp, and RequestDispatcher
forwards to the view provided to the RequestDispatcher in the form of a URL.

96 CHAPTER 2: Building Web Applications Using Servlets and JSP

Listing 2-34 shows the helper method findAllBooks(request, response) in the BookController.

Listing 2-34.  findAllBooks( ) in BookController

1.private void findAllBooks(HttpServletRequest request,
2.HttpServletResponse response) throws ServletException, IOException {
3.try {
4.BookDAO bookDao = new BookDAOImpl();
5.List<Book> bookList = bookDao.findAllBooks();
6.request.setAttribute("bookList", bookList);
7.
8.} catch (Exception e) {
9.System.out.println(e);
10.}
11.}
 

	Lines 5 to 6: This list of all books is obtained from the database using the
findAllBooks() method on the DAO and is set as an attribute in the request.

Searching the Books by Category
When the user clicks a specific category on the menu, the list of books in that category is displayed,
as illustrated in Figure 2-38.

Figure 2-38.  Searching the book by category

97CHAPTER 2: Building Web Applications Using Servlets and JSP

We saw in the previous section that the categories are in leftColumn.jsp. Listing 2-35 illustrates the
code fragment for the category.

Listing 2-35.  Categories Link on the Menu (leftColumn.jsp)

1.
2.�<a class="label" href="<%=param1%>?action=category&categoryId=<%=category1.
getId()%>&category=<%=category1.getCategoryDescription()%>"><span class="label"
style="margin-left: 30px;"><%=category1.getCategoryDescription()%>

3.
 

	Line 2: This is the link of the category displayed in the menu. When this link
is clicked, the ID of the category and description and the name of the action
category is added to the URL as the parameter, as shown in the following URL:
 
http:localhost:8080/bookWeb/books?action=category&categoryId=1&category=clojure
 

Again, step 2, which is locating the servlet from the request, is executed, and this time the
action is not null and has a value category. So, the code block in the doPost() method in the
BookController, shown in Listing 2-36, is executed.

Listing 2-36.  doPost( ) in BookController

1.protected void doPost(HttpServletRequest request,
2.HttpServletResponse response) throws ServletException, IOException {
3.String base = "/jsp/";
4.String url = base + "home.jsp";
5.String action = request.getParameter("action");
6.String category = request.getParameter("category");
7.String keyWord = request.getParameter("keyWord");
8.if (action != null) {
9.switch (action) {
10.case "allBooks":
11.findAllBooks(request, response);
12.url = base + "listOfBooks.jsp";
13.break;
14.case "category":
15.findAllBooks(request, response);
16.url = base + "category.jsp?category=" + category;
17.break;
18.case "search":
19.searchBooks(request, response, keyWord);
20.url = base + "searchResult.jsp";
21.break;
22.
23.}
24.}
25.RequestDispatcher requestDispatcher = getServletContext()
26..getRequestDispatcher(url);
27.requestDispatcher.forward(request, response);
28.}
 

98 CHAPTER 2: Building Web Applications Using Servlets and JSP

	Line 8: The action is not null, and the value of the action is category.

	Lines 15 to16: The helper method findAllBooks(request, response) is invoked,
the URL is reconstructed to point to listOfBooks.jsp, and RequestDispatcher
forwards to the view provided to the RequestDispatcher in the form of a URL.

Listing 2-37 shows the helper method findAllBooks(request, response) in the BookController.

Listing 2-37.  findAllBooks( ) in BookController

1.private void findAllBooks(HttpServletRequest request,
2.HttpServletResponse response) throws ServletException, IOException {
3.try {
4.BookDAO bookDao = new BookDAOImpl();
5.List<Book> bookList = bookDao.findAllBooks();
6.request.setAttribute("bookList", bookList);
7.
8.} catch (Exception e) {
9.System.out.println(e);
10.}
11.}
 

	Lines 5 to 6: A list of all books is obtained from the database using the
findAllBooks() method on the DAO and is set as an attribute in the request.

Searching the Books by Keyword
You can search the books by the author’s name or a keyword in the book’s title, as illustrated in
Figure 2-39.

Figure 2-39.  Searching books by keyword

99CHAPTER 2: Building Web Applications Using Servlets and JSP

Before we talk about how the search by keyword works, let’s first take a look at one usability aspect
of search. There is a question mark next to the search field, which serves to help the user. In other
words, on mouse-hover, a tooltip is shown that indicates search parameters to be used,
as illustrated in Figure 2-40.

Figure 2-40.  Tooltip for the search parameters

To understand how the tooltip works, take a look at the markup of the search field, which is in
leftColumn.jsp, as illustrated in Listing 2-38.

Listing 2-38.  Search Field Markup

1.<form class="search">
2.<input type="hidden" name="action" value="search" />
3.<input id="text"type="text" name="keyWord" size="12" />
4.<spanclass="tooltip_message">?
5.<p />
6.<input id="submit" type="submit" value="Search" />
7.</form>
 

	Line 4: This has a class tooltip_message. The tooltip works using jQuery and
CSS on this class.

Listing 2-39 illustrates the jQuery code.

Listing 2-39.  jQuery for the Tooltip

1.$(document).ready(function () {
2.$("span.tooltip_message").hover(function () {
3.$(this).append('<div class="message"><p>Search by Keyword in:Author First Name
Author Last Name Title of the book </p></div>');

100 CHAPTER 2: Building Web Applications Using Servlets and JSP

4.},function () {
5.$("div.message").remove();
6.});
7.});
 

	Line 2: The class tooltip_message and the tag are used as a selector on
which the hover function is called.

	Line 3: The message to be displayed in the tooltip is appended to the object
returned by the selector in line 2.

In the similar manner, a tooltip can be added to the images on the home screen, as illustrated in
Figure 2-41. Listing 2-40 illustrates the jQuery function used.

Figure 2-41.  Tooltip for the images

Listing 2-40.  jQuery Function for the Image Tooltip

$("span.tooltip_img1").hover(function(){$(this).append('<div class="message">
Title - Beginning Groovy, Grails and GriffonAuthor: Vishal Layka
Publisher: Apress</div>');
}, function(){$("div.message").remove();});
 
Listing 2-41 illustrates the CSS code for the tooltip.

Listing 2-41.  CSS for Tooltip

1.span.tooltip_message,span.tooltip_img1 {
2.cursor: pointer;
3.display: inline-block;
4.background-color: #F20B26;
5.width: 16px;
6.height: 18px;
7.color: #ffffff;

101CHAPTER 2: Building Web Applications Using Servlets and JSP

8.font-size: 12px;
9.font-weight: bold;
10.text-align: center;
11.position: relative;
12.}
13.
14.span.tooltip_message:hover {
15.background-color: #04FF97;
16.}
17.
18.div.message {
19.background-color: #04FF97;
20.color: #000000;
21.position: absolute;
22.left: 18px;
23.top: -18px;
24.z-index: 1000000;
25.text-align: left;
26.width: 280px;
27.}
 
This CSS and jQuery code in Listing 2-40 and Listing 2-41 are included in leftColumn.jsp,
as illustrated in Listing 2-42.

Listing 2-42.  Accessing CSS and jQuery Files in leftColumn.jsp

1.<link rel="stylesheet" href="css/bookstore.css" type="text/css" />
2.<script src="js/bookstore.js" type="text/javascript"></script>
3.<script type="text/javascript" src="js/jquery-1.9.1.js"></script>
 

	Line 1: This is the externalized CSS file for the rules illustrated in Listing 2-41

	Line 2: This is the externalized JavaScript file for the jQuery function in
Listing 2-40

	Line 3: Line 3 specifies the jQuery library we are using.

Now we will begin with the search-by-keyword functionality in our web application. Listing 2-43
illustrates the search field markup.

Listing 2-43.  Search Field Markup

1.<form class="search">
2.<input type="hidden" name="action" value="search" /><input id="text"
3.type="text" name="keyWord" size="12" />?
5.<p />
6.<input id="submit" type="submit" value="Search" />
7.</form>
 

	Line 2: This line specifies the action value search.

	Line 6: This line submits the request.

102 CHAPTER 2: Building Web Applications Using Servlets and JSP

When the user submits the search request (again, locating the servlet from the request), step 2is
executed, and this time the action has a value search. So, the search case in the doPost() method in
the BookController, shown in Listing 2-44, is executed.

Listing 2-44.  doPost( ) in the BookController

1.protected void doPost(HttpServletRequest request,
2.HttpServletResponse response) throws ServletException, IOException {
3.String base = "/jsp/";
4.String url = base + "home.jsp";
5.String action = request.getParameter("action");
6.String category = request.getParameter("category");
7.String keyWord = request.getParameter("keyWord");
8.if (action != null) {
9.switch (action) {
10.case "allBooks":
11.findAllBooks(request, response);
12.url = base + "listOfBooks.jsp";
13.break;
14.case "category":
15.findAllBooks(request, response);
16.url = base + "category.jsp?category=" + category;
17.break;
18.case "search":
19.searchBooks(request, response, keyWord);
20.url = base + "searchResult.jsp";
21.break;
22.
23.}
24.}
25.RequestDispatcher requestDispatcher = getServletContext()
26..getRequestDispatcher(url);
27.requestDispatcher.forward(request, response);
28.}
 

	Line 18: The case search is executed, and the value of the action is search

	Line 19: The searchBooks() method is called. The searchBooks( ) is illustrated in
Listing 2-45.

	Line 20: Line 20 constructs the URL for the view.

	Line 26: The URL for the view is provided to the RequestDispatcher.

Listing 2-45 illustrates the searchBooks() helper method used by the controller to invoke the call on
the DAO.

Listing 2-45.  searchBooks( ) in the BookController

1.private void searchBooks(HttpServletRequest request,
2.HttpServletResponse response, String keyWord)
3.throws ServletException, IOException {

103CHAPTER 2: Building Web Applications Using Servlets and JSP

4.try {
5.BookDAO bookDao = new BookDAOImpl();
6.List<Book> bookList = bookDao.searchBooksByKeyword(keyWord);
7.
8.request.setAttribute("bookList", bookList);
9.
10.} catch (Exception e) {
11.System.out.println(e);
12.}
13.}
14.
 

	Line 6: This obtains the bookList based on the search keyword by invoking the
searchBooksByKeyword() method defined in BookDAO. We used this method in
Chapter 1 when we built the data-access layer for our web application.

Summary
This chapter introduced servlets and JSP and showed you how to make your first web application
using these web components. Then the chapter implemented the real-world MVC-based Java web
application, a bookstore using servlets and JSP. In the next chapter, we will augment this application
to use the best practice of separating the business-logic concerns from the presentation using JSTL
and Expression Language.

105

Chapter 3
Best Practices in Java EE Web
Development

All the evolution we know of proceeds from the vague to the definite.

—Charles Sanders Peirce

Every so often good solutions are invented. At times they are discovered. Invention and discovery
are not synonyms,1 and they signify different objectives; however, both are realized through
experience and expertise. Experience helps you achieve good solutions, and when you apply those
good solutions to the same set of problems, patterns begin to emerge. Patterns are the catalog of
good solutions that stem from the experience and expertise of developers.

An architect named Christopher Alexander observed that architects tend to solve the same
problems in more or less the same way. This realization led him to write a book of design patterns for
architects.2 He reflected in this book, “A design pattern describes a problem which occurs over and
over again, and then describes the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same way twice.”

1Invention means to create a new object from preexisting objects. Discovery is figuring out something that
preexists but not creating new objects from it.
2A Pattern Language: Towns, Buildings, Construction by Christopher Alexander, Sara Ishikawa, and
Murray Silverstein (Oxford University Press, 1977). See also The Timeless Way of Building by Christopher
Alexander (Oxford University Press, 1979).

106 CHAPTER 3: Best Practices in Java EE Web Development

In 1994, the book Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1994) (the “Gang of
Four” or “GoF”), applied Alexander’s ideas to software. This book expounded OO patterns and
ushered in a wave of best-practice solutions, addressing a number of design requirements that
surfaced over the years with a design strategy that is reusable across applications.

As server systems grew, enterprise infrastructure such as Java EE emerged that provided
abstractions of technologies and services. However, using Java EE does not naturally lead to
best-practice architecture and design. John Crupi, Dan Malks, and Deepak Alur first established
Java EE design patterns based on their experience of architecting enterprise systems.

Applying these Java EE design patterns to the development of a Java EE–based application is
de rigueur to achieving best-practice architecture and design. That said, ensuring best-practice
architecture and design is not enough to ensure reusable, maintainable, extensible software. Even with
the Java EE design patterns in place, a software project is often afflicted by a phenomenon called
entropy, a measure of the degree of disorder. According to the Second Law of Thermodynamics,
everything in the universe moves from low entropy (a state of order) to high entropy (disorder) and
eventual chaos. Everything in nature is bound by this law of physics, and nature deals with this
irrevocable law by means of evolution.

A software project too often tends to move from low entropy to high entropy, and to deal with the
disordered state, it needs to keep evolving. That is not to say that evolving your project supersedes
project management and methodologies; despite the most finely honed project management,
sharp-edged methodologies, and a team with a keen sense of style, a software project may fall into
a state of high entropy. Figure 3-1 presents the evolutionary steps in Java EE’s web tier that help
deal with entropy in software projects.

Figure 3-1.  The evolution in the Java EE web tier

As you can see in Figure 3-1, not only have the technologies in the Java EE web tier evolved, but new
ones are added with each new release. If you are still using J2EE 1.4, for instance, you will not have
the unified EL (EL 2.1) in your toolbox. It is essential to keep up with the evolution of any technology
to keep from falling into the eventual state of high entropy that can afflict any software project.

This chapter elucidates the importance of gradually evolving a project with any new technologies
available with each new release of Java EE and using them to deal with high entropy in the project.
The chapter then discusses the importance of the Java EE patterns and explains how the web

107CHAPTER 3: Best Practices in Java EE Web Development

applications can be made reusable, maintainable, and extensible by using Java EE web tier patterns.
Next, the chapter shows how web frameworks relinquish you from using Java EE web tier patterns
by providing you out-of-the-box best-practice solutions.

Best-Practice Solutions: Using EL and JSTL
Sun released the Servlet specification in 1998. The sole purpose of servlets was to help the Java
web server generate dynamic content for the client. Listing 3-1 illustrates what the first servlet
looked like.

Listing 3-1.  The First Servlet

 1.import java.io.IOException;
 2.import java.io.PrintWriter;
 3.
 4.import javax.servlet.ServletException;
 5.import javax.servlet.http.HttpServlet;
 6.import javax.servlet.http.HttpServletRequest;
 7.import javax.servlet.http.HttpServletResponse;
 8.public class Hello extends HttpServlet {
 9.public void doGet(HttpServletRequest req, HttpServletResponse res)
10.throws ServletException, IOException {
11.res.setContentType ("text/html");
12.PrintWriter out = res.getWriter();
13.out.println("<HTML>");
14.out.println("<HEAD><TITLE>Hello World</TITLE></HEAD>");
15.out.println("<BODY>");
16.out.println("<BIG>Hello World</BIG>");
17.out.println("</BODY></HTML>");
18.}
19.}
 
Servlets worked fine for dynamic content generation but had one big problem. The view was
hardwired into the servlet, as you can see in lines 13 to 17 in Listing 3-1. To solve this problem, JSP
was born. JSP removes the need of hardwiring the view code into the business logic code. This
separation of the view concern from the business-logic concern depends on the attributes shown in
Listing 3-2 and Listing 3-3.

Listing 3-2.  Using Attributes for Separation of Presentation(View) from Business(Servlet) Code

1.public void doPost(HttpServletRequest request, HttpServletResponse response)
2.throws IOException, ServletException {
3.String name = request.getParameter("userName");
4.request.setAttribute("name", name);
5.RequestDispatcher view = request.getRequestDispatcher("/result.jsp");
6.view.forward(request, response);
7.}
 

108 CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-2 shows the fragment of a servlet that uses attributes.

	Line 3: This retrieves the userName from the request.

	Line 4: This sets the userName as an attribute in the request.

	Line 5: This retrieves the RequestDispatcher from the request.

	Line 6: This forwards to the view, passing request and response object. Note
that this request object has an attribute set in it for the userName. The view can
now make use of this attribute

Listing 3-3.   The First JSP

1.<html><body> Hello
2.<%= request.getAttribute("name") %>
3.</body></html>
4.<html>
5.<body>
6.<% User u = (User) request.getAttribute("user"); %>
7.User is: <%= u.getName() %>
8.</body>
9.</html>
 
The separation of the view from the business logic depends on the attributes, as illustrated in
Listing 3-2 and Listing 3-3. JSP, in this manner, solved the problem of presentation cross-cutting
business logic in servlets. But as you can see in Listing 3-4, with the scriptlets (Java code) intermingled
in the presentation code (JSP), now the business logic cross-cuts the presentation concern.

Listing 3-4.  Using a Scriptlet and an Expression in JSP

1.<% User u = new User(); %>
2.User is: <%= u.getName() %>
 

	Line 1: The scriptlet creates an instance of a class called User.

	Line 2: This outputs the user name using Expression.

What went wrong? Scriptlets and expressions brought Java code into JSP. Prior to JSP, the
presentation code cross-cut the business code. With JSP, the business code cross-cuts the
presentation code. So JSP, inadvertently, didn’t actually solve anything but turned the problem of
cross-cutting the business and presentation logic upside down. The scriptlet and expression in
Listing 3-4 could indeed be easily replaced by JSP standard actions (<useBean>), as shown in Listing 3-5.

Listing 3-5.  Using JSP Standard Action sand Expression Language

1.<jsp:useBean id="user" class="com.apress.User"/>
2.User is: ${user.name}
 
Listing 3-5 does the same thing that Listing 3-4 does but without using any Java code inside the
JSP page.

109CHAPTER 3: Best Practices in Java EE Web Development

	Line 1: This line creates the instance of the class User using a standard JSP
action.

	Line 2: This line introduces the key feature of Expression Language called an EL
expression, which replaces the scripting element called expressions. The syntax
shown in line 2 will be discussed in greater detail in the sections that follow.

JSP standard actions are, in general, far too limited, and consequently developers had to resort to
using scriptlets to create function-rich web applications. Using Java code in the form of scriptlets in
JSP leads to unmaintainable JSP pages. As a result, the JSP specification has evolved to support
Java-free JSP pages. This support rests primarily on the JSP Expression Language (EL) and the JSP
Standard Tag Library (JSTL). In the sections that follow, we will take a closer look at EL and JSTL.

Expression Language
Beauty without expression is lifeless, JSP without Expression Language is chaos. The underlying
principle of the Expression Language is to provide scriptless JSP components. The Expression
Language is used in two ways.

To retrieve objects from scoped attributes (explained in the previous chapter). 	
These objects are JavaBeans, maps, arrays, and lists that have been stored as
attributes in any of the four scopes (also explained in the previous chapter). The
EL searches the attributes first in the smallest scope, which is page scope; then in
request and session; and finally in the largest scope, which is application scope.

To access request parameters, request headers, cookies, context-initialization 	
parameters, and pageContext objects.

An EL expression is formed by using the construct${expr} or #{expr}. Even though both the
constructs are evaluated in the same way by the EL, the ${expr} construct is used for immediate
evaluation, and the #{expr} construct is used for deferred evaluation.

	Immediate evaluation: The expression is compiled when the JSP page is
compiled, and it is executed when the JSP page is executed.

	Deferred evaluation: The expression is not evaluated until its value is needed by
the system.

Note  Note In JSP 2.1 and newer, #{} expressions are allowed only for tag attributes that accept deferred
expressions. #{expr} will generate an error if used anywhere else.

In the sections that follow, you will look at the syntax of EL and the reserved words of the language
and see how to use it on a JSP page. After you have learned the basics, you’ll learn how to use EL
to read values from JavaBeans, and in the final section you will learn how to use EL functions.

110 CHAPTER 3: Best Practices in Java EE Web Development

Literals
An EL literal can be the following types: Boolean, integer, floating-point, string, or null. Table 3-1
shows the valid values for each literal type.

Table 3-1.  Literals in EL

Literal Type Valid Literal Value

Boolean true or false

Integer -11
0
12345

Floating point 4.21
-8.01
1.0E12
0.12

String Both valid: "hello" and 'hello'

Null null

Table 3-2.  Reserved Words in EL

and eq gt true

instanceof or ne le

false empty not lt

ge null div mod

Reserved Words
As with any other language, EL has words that are reserved and should not be used as identifiers.
Table 3-2 lists the reserved words in EL.

EL Operators
The EL operations are necessary to handle data manipulations. EL supports several operators such
as relational, arithmetic, logical, and others.

Arithmetic Operators
Listing 3-6 illustrates some of these operators. You can use this code on a JSP file and run it on the
server. Figure 3-2 illustrates the output.

111CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-6.  Arithmetic Operators

<table border="1">
<tr>
<td>Arithmetic Operator</td>
<td>Boolean Result</td>
</tr>
<tr>
<td>${'${'}2 + 2 }</td>
<td>${2 + 2}</td>
</tr>
<tr>
<td>${'${'}2 - 2 }</td>
<td>${2 - 2}</td>
</tr>
<tr>
<td>${'${'}2 * 2 }</td>
<td>${2 * 2}</td>
</tr>
<tr>
<td>${'${'}2 / 2 }</td>
<td>${2 / 2}</td>
</tr>
<tr>
<td>${'${'}2 mod 2 }</td>
<td>${2 mod 2}</td>
</tr>
</table> 

Figure 3-2.  Arithmetic operators

Relational Operators
These operators include ==, !=, <, >, <=, >=, eq, ne, lt, gt, le, and ge.

Listing 3-7 illustrates all these operators. You can use this code on a JSP file and run it on the server.
The output is illustrated in Figure 3-3.

Listing 3-7.  Relational Operators
 
<table border="1">
<tr>
<td>Relational Operator</td>
<td>Boolean Result</td>
</tr>

112 CHAPTER 3: Best Practices in Java EE Web Development

<tr>
<td>${'${'}10 < 20}</td>
<td>${10 < 20}</td>
</tr>
<tr>
<td>${'${'}10 > 20}</td>
<td>${10 > 20}</td>
</tr>
<tr>
<td>${'${'}10 >= 10}</td>
<td>${10 >= 10}</td>
</tr>
<tr>
<td>${'${'}10 <= 10}</td>
<td>${10 <= 10}</td>
</tr>
<tr>
<td>${'${'}10 == 10}</td>
<td>${10 == 10}</td>
</tr>
<tr>
<td>${'${'}10 != 20}</td>
<td>${10 != 20}</td>
</tr>
<tr>
<tr>
<td>${'${'}10 lt 20}</td>
<td>${10 lt 20}</td>
</tr>
<tr>
<td>${'${'}10 gt 20}</td>
<td>${10 gt 20}</td>
</tr>
<tr>
<td>${'${'}10 le 10}</td>
<td>${10 le 10}</td>
</tr>
<tr>
<td>${'${'}10 ge 10}</td>
<td>${10 ge 10}</td>
</tr>
<tr>
<td>${'${'}10 eq 10}</td>
<td>${10 eq 10}</td>
</tr>
<tr>
<td>${'${'}10 ne 20}</td>
<td>${10 ne 20}</td >
</tr>
</table>
 

113CHAPTER 3: Best Practices in Java EE Web Development

Logical Operators
Listing 3-8 illustrates the logical operators like &&,||, and the not operator in action. You can use this
code on a JSP file and run it on the server. The output is illustrated in Figure 3-4.

Listing 3-8.  Logical Operators
 
<table border="1">
<tr>
<td>Logical Operator</td>
<td>Result</td>
</tr>
<tr>
<td>${'${'}true && false}</td>
<td>${true && false}</td>
</tr>
<tr>
<td>${'${'}true || false}</td>
<td>${true || false}</td>
</tr>
<tr>
<td>${'${'}not true}</td>
<td>${not true}</td>
</tr>
</table>
 

Figure 3-3.  Relational operators

114 CHAPTER 3: Best Practices in Java EE Web Development

Using EL
In this section, you will create a simple application based on the model of our bookstore application.
This will not only show you how to use EL but also demonstrate its significance. Figure 3-5 illustrates
the relationship between Book and Author in the application, implemented in Listings 3-9 and 3-10.

Book Author
*

book Title: String name: String
author: Author

Figure 3-5.  Relationship between Book and Author

Figure 3-4.  Logical operators

Listing 3-9.  Author.java

 1.package com.apress.chapter03.model;
 2.
 3.public class Author {
 4.private String name;
 5.
 6.public String getName() {
 7.return name;
 8.}
 9.
10.public void setName(String name) {
11.this.name = name;
12.}
13.
14.}
 

Listing 3-10.  Book.java

 1.package com.apress.chapter03.model;
 2.
 3.public class Book {
 4.
 5.private String bookTitle;
 6.private Author author;
 7.
 8.public String getBookTitle() {

115CHAPTER 3: Best Practices in Java EE Web Development

 9.return bookTitle;
10.}
11.
12.public void setBookTitle(String bookTitle) {
13.this.bookTitle = bookTitle;
14.}
15.
16.public Author getAuthor() {
17.return author;
18.}
19.
20.public void setAuthor(Author author) {
21.this.author = author;
22.}
23.
24.}
 
The goal of the application is to show how to access the property of an attribute (the bookTitle property
of Book in Figure 3-5) and the property of an attribute that is itself a property of the attribute (the name
property of Author in Figure 3-5). In Figure 3-5,you need to output the value of the name property of
the Author. It is not possible to do this using JSP standard actions, as you will see later in this section,
and in such cases, scriptlets have been used. This is how scriptlets found their way into JSP. However,
you should not use scriptlets because with the scriptlets (Java code) intermingled in the presentation
code (JSP); the business logic cross-cuts the presentation concern, resulting in unmaintainable JSP, as
explained earlier in Listing 3-4. Because JSP standard actions cannot access properties of an attribute
that is itself a property of an attribute and because using scriptlets results in unmaintainable JSPs, you
should use EL. In this section, you will learn how to use EL with the help of an example where Author
class is the property of the Book class. Figure 3-5 shows the relationship between Book and Author.
You will access the name property of Author from Book without using scriptlets.

Listing 3-9 illustrates the Author object with a single property called name with getters and setters.
You need to output the value of the name property of Author.

Listing 3-10 illustrates the Book object with two properties, bookTitle and author, and their getters
and setters. The author property in Book is the Author class, illustrated earlier in Listing 3-9. You
need to access the name property of the author property.

The Book and Author objects serve as the model of the MVC application. Listing 3-11 illustratesthe
controller of the application.

Listing 3-11.  BookController.java

 1.package com.apress.chapter03.controller;
 2.
 3.import java.io.IOException;
 4.
 5.import javax.servlet.RequestDispatcher;
 6.import javax.servlet.ServletException;
 7.import javax.servlet.http.HttpServlet;
 8.import javax.servlet.http.HttpServletRequest;
 9.import javax.servlet.http.HttpServletResponse;
10.

116 CHAPTER 3: Best Practices in Java EE Web Development

11.import com.apress.chapter03.model.Author;
12.import com.apress.chapter03.model.Book;
13.
14.public class BookController extends HttpServlet {
15.
16.protected void doGet(HttpServletRequest request,
17.HttpServletResponse response) throws ServletException, IOException {
18.Book book = new Book();
19.book.setBookTitle("Learning Java Web");
20.Author author = new Author();
21.author.setName("Vishal Layka");
22.book.setAuthor(author);
23.
24.request.setAttribute("bookAttrib", book);
25.
26.RequestDispatcher view = request.getRequestDispatcher("/book.jsp");
27.view.forward(request, response);
28.}
29.
30.}
 
Listing 3-11 is the controller part of the MVC pattern. As you learned in Listing 3-2, the separation
of the view concern from the business-logic concern depends on the attributes. Hence, you have
to save the model object into the attributes for the view (JSP) to be able to access the model via
attributes.

	Lines 19 to 22: In these lines you set the bookTitle and author properties of
Book. Note that the name property of Author is already set on line 21.

	Line 22: This sets the author property of book.

	Line 24: This sets the Book object as an attribute in the request.

	Lines 26 to 27: Line 26 should now be familiar to you. In this line, you dispatch
the request to book.jsp.

Listing 3-12 provides the deployment descriptor for this application.

Listing 3-12.  web.xml

 1.<?xml version="1.0" encoding="UTF-8"?>
 2.<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 3. xmlns="http://java.sun.com/xml/ns/javaee"
 4. xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 5. xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 6. http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" id="WebApp_ID" version="3.0">
 7.<display-name>chapter03</display-name>
 8.<servlet>
 9.<servlet-name>BookController</servlet-name>
10.<servlet-class>com.apress.chapter03.controller.BookController</servlet-class>
11.</servlet>
12.<servlet-mapping>
13.<servlet-name>BookController</servlet-name>

http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

117CHAPTER 3: Best Practices in Java EE Web Development

14.<url-pattern>/book</url-pattern>
15.</servlet-mapping>
16.<welcome-file-list>
17.<welcome-file>index.html</welcome-file>
18.</welcome-file-list>
19.</web-app>
 
Now the only key component that is missing in this web application is the JSP page, which is where
the EL code is actually written. Before we get to the JSP page, we will look at the two key operators
provided by EL to access encapsulated data: the [] and . (also called dot) operators. After
learning about the [] and . operators, you will be able to write book.jsp. Figure 3-6 illustrates the
directory structure of the application.

Figure 3-6.  Directory structure

The [] and . Operators
Using the . notation is shortcut for accessing an object’s property. The dot operator was introduced
in Listing 3-5. For the sake of convenience, it is shown again in Listing 3-13.

Listing 3-13.  Using the Dot Operator

1.<jsp:useBean id="user" class="com.apress.User"/>
2.User is: ${user.name}
 

118 CHAPTER 3: Best Practices in Java EE Web Development

Line 1: In Line 1, the class 	 User is created using the <jsp:useBean> action. The
user was set as the request attribute in the servlet code.

Line 2: In Line 2, the value of name, which is a property of the User object is 	
accessed using ${user.name}.

The variable user in the expression ${user.name} is an attribute stored in the request scope. The
variable in the EL expression to which the dot operator is applied could be one of two kinds.

An attribute that is stored in any of the four scopes, as it is in this case	

An EL implicit object, as explained later in this chapter	

Whether this variable is an EL implicit object or an attribute stored in any of the four scopes, it
can be either a JavaBean or a map. In Listing 3-13, this variable is a JavaBean that was set as an
attribute in the request scope, and therefore name is the property of the JavaBean referenced by
the variable user. Had the user variable been a map set as an attribute in any of the four scopes, the
name would-be the key of the map.

Note  The variable in the EL expression to which the dot operator is applied could be either an attribute
set in any of the four scopes or an EL implicit object. Furthermore, regardless of whether this variable is an
attribute set in any of the four scopes or is an EL implicit object, it could be either a JavaBean or a Map. If the
variable is a JavaBean, it is followed by its property right after the dot operator; if the variable is a Map, it is
followed by its key right after the dot operator.

So, now it should be clear that the variable in the EL expression is either a JavaBean or a Map. But
what if you want to set an array as an attribute in any of the four scopes and access its elements
using an EL expression? Or what if you want to set a list as an attribute in any of the four scopes and
access its elements using an EL expression? The answer lies with the [] operator provided by EL.

The []operator is used for accessing arrays, lists, JavaBeans, and maps. That is, the variable to
which the [] operator is applied can be an array, list, JavaBean, or map.

Inside the Brackets

There can be one of following inside the brackets of the [] operator:

An index with or without quotes.	

A String literal.	

An EL implicit object or an attribute in any of the four scopes. The EL implicit 	
object is explained later in this chapter.

A nested expression.	

If there is an index with or without quotes inside the brackets of the[] operator, the variable to which
the [] operator is applied is either an array or a list. Listing 3-14 illustrates how to use the [] operator
with a list or an array.

119CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-14.  Using the [] Operator with a List or an Array

someArray["1"]
someArray[1]
someList["2"]
someList[2]
 
For example, the array in Listing 3-15 can be accessed as illustrated in Listing 3-16.

Listing 3-15.  Setting an Array as an Attribute in the Servlet Code

1. String [] books = {"Clojure", "Groovy ", "Java" , "Scala"} ;
2. request.setAttribute("books", books); 

Listing 3-16.  Using the [] Operator

Book: ${books[0]}
 
The output displayed for Listing 3-16 is as follows:

 
Book: Clojure 

Note  Lists can be accessed in the same manner as arrays.

If there is a String literal inside the brackets of the [] operator, the variable to which the [] operator
is applied is either a JavaBean or a Map. Listing 3-17 illustrates the code for setting a Map as an
attribute in the Servlet.

Listing 3-17.  Code Fragment for Setting a Map as an Attribute in the Servlet Code

1.Map<String, String> bookMap = new HashMap<>();
2.bookMap.put("Groovy", "Beginning Groovy");
3.bookMap.put("Java", " Beginning Java");
4.bookMap.put("Scala", " Beginning Scala");
5.request.setAttribute("books", bookMap);
 
In Listing 3-18, EL searches for the attribute bound to the name books in the scope. In Listing 3-17,
books is a Map set in the request attribute. Therefore, EL searches for the key Groovy passed in the
[] operator of Listing 3-18 and evaluates it.

Listing 3-18.  Using the [] Operator

Book : ${books["Groovy"] }
 
The output displayed for Listing 3-8 is as shown here:

 
Book: Beginning Groovy
 

120 CHAPTER 3: Best Practices in Java EE Web Development

Both . and [] operator can be used with JavaBeans or Maps. For example, Listing 3-18 could be
written using the . operator as shown here:
 
${books.Groovy}
 
If there is neither a String literal nor an index with or without quotes inside the brackets of the []
operator and if the content inside the brackets of the [] operator is not an EL implicit object, then the
content is evaluated by searching for an attribute with that name in any of the four scopes. This is
illustrated using Listing 3-19 and Listing 3-20.

Listing 3-19.  Code Fragment for Setting a Map as an Attribute in the Servlet Code

1.Map<String, String> bookMap = new HashMap<>();
2.bookMap.put("Groovy", "Beginning Groovy");
3.bookMap.put("Java", " Beginning Java");
4.bookMap.put("Scala", " Beginning Scala");
5.request.setAttribute("books", bookMap);
6.request.setAttribute("java", "Java");
 

Listing 3-20.  Using the [] Operator

Book : ${books[java] }
 
Let’s see how the evaluation works in Listing 3-20.

In the code	 ${ books[java] } of Listing 3-20, EL searches for an attribute bound
by the name books in the scopes.

EL finds this attribute in the request scope because 	 books was set as a request
attribute on line 5 in Listing 3-19.

In Listing 3-20, the content of the [] operator is 	 java, which is neither a String
literal nor an EL implicit object; therefore, EL searches for an attribute bound by
the name java in the scopes and finds it in the request scope because java was
set as a request attribute on line 6 in Listing 3-19.

Using the value 	 Java of java on line 6 of Listing 3-19, the EL expression now
becomes${ books["Java"] }.

Now, because the 	 books attribute is a Map set as a request attribute on line 5 in
Listing 3-19, EL searches for the key Java, which is on line 3 in Listing 3-19. and
prints its value as shown in the following output:

 
Book : Beginning Java
 

If there is an EL expression inside the brackets of the [] operator, the content inside the brackets,
which is an EL expression in this case, is evaluated by the same rules applied to any EL expression.
In other words, if the EL expression is using the dot operator or [] operator and if it is a [] operator,
then the same rules as explained previously are applied. This is illustrated using Listing 3-21 and
Listing 3-22.

121CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-21.  Code Fragment for Setting a Map and an Array as Attributes in the Servlet Code

1.Map<String, String> bookMap = new HashMap<>();
2.bookMap.put("Groovy", "Beginning Groovy");
3.bookMap.put("Java", " Beginning Java");
4.bookMap.put("Scala", " Beginning Scala");
5.request.setAttribute("books", bookMap);
6.
7.String[] categories = {"Groovy", "Java", "Scala"};
8.request.setAttribute("category", categories);
 
Listing 3-22.  Nested EL Expression

Book : ${ books[category[1]] }
 
Here’s the output:

 
Book : Beginning Java

 
Now that you have learned how far you can go with the . and [] operators, it is time to see why EL
is so important. You will now see why it is so important by completing the application you started to
create, specifically, by writing the JSP page. Listing 3-23 illustrates book.jsp. This JSP page uses
scripting elements (scriptlets and expressions) and EL. The idea is to compare the two, i.e. scripting
elements and EL. This comparison is illustrated in Figure 3-7.

Listing 3-23.  book.jsp

 1.<%@page import="com.apress.chapter03.model.Book"%>
 2.<%@page import="com.apress.chapter03.model.Author"%>
 3.<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn"%>
 4.<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c"%>
 5.<html>
 6.<head>
 7.</head>
 8.<body>
 9.<table border="1">
10.<tr>
11.<th width= "20px">Description</th>
12.<th >code</th>
13.<th >output</th>
14.</tr>
15.<%
16.Book book = (Book) request.getAttribute("bookAttrib");
17.Author author = book.getAuthor();
18.%>
19.<tr>
20.<td>Author's Name using Scriptlet and Expression
21.</td>
22.<td>${fn:escapeXml("<%= author.getName() %>")}</td>
23.<td><%=author.getName()%></td>
24.</tr>
25.

http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jstl/core

122 CHAPTER 3: Best Practices in Java EE Web Development

26.<jsp:useBean id="bookAttrib" class="com.apress.chapter03.model.Book"
27.scope="request" />
28.<tr>
29.<td>Author's Name using jsp:getProperty action
30.</td>
31.<td>
32.<table border="1">
33.<tr>
34.<td>${fn:escapeXml("<jsp:getProperty name = \"bookAttrib \" property= \"author \" />")}</td>
35.</tr>
36.<tr>
37.<td>${fn:escapeXml("<jsp:getProperty name = \"bookAttrib \" property= \"author.name \" />")}</td>
38.</tr>
39.</table>
40.
41.</td>
42.<td>
43.<table border="1">
44.<tr>
45.<td><jsp:getProperty name="bookAttrib" property="author" />
46.</td>
47.</tr>
48.<tr>
49.<td>
50.<%-- <jsp:getProperty name ="bookId" property="author.name" /> - this code will yield run time
exception --%>
51.Not possible
52.</td>
53.</tr>
54.</table>
55.</td>
56.</tr>
57.<tr>
58.<td>Author's Name using EL </td>
59.<td>${fn:escapeXml("${bookAttrib.author.name}")}</td>
60.<td>${bookAttrib.author.name}</td>
61.</tr>
62.</table>
63.</body>
64.</html> 
 

	Line 23: This outputs the name of the author using expressions.

	Line 50: This shows that it is not possible to output the name of the author using
a JSP standard action.

	Line 60: This outputs the name of the author using EL.

Figure 3-7 illustrates what you will see when you run this application (http://localhost:8080/
chapter03/book). Essentially, it is just not possible to display the value of the name property of Author
using a standard JSP action; scripting elements would have been the only way to do it, had it not
been for EL.

http://localhost:8080/chapter03/book
http://localhost:8080/chapter03/book

123CHAPTER 3: Best Practices in Java EE Web Development

EL Implicit Objects
Scriptlets have access to several JSP implicit objects, as explained in Chapter 2. These objects
allow access to any variables that are held in the particular JSP scopes. EL also provides its own
implicit objects called EL implicit objects. EL implicit objects are not the same as JSP implicit objects
(except for pageContext). All of these EL Implicit objects are Maps that map the respective scope
attribute names to their values. For instance, using the implicit objects param and paramValues, it is
possible to access HTTP request parameters. Table 3-3 describes the EL implicit objects.

Table 3-3.  Implicit Objects in EL

Implicit Object Description

cookie Map: maps cookie names to a single Cookie object.

header Map: contains the values of each header name

headerValues Map: maps a header name to a string array of all possible values for the header.

initParam Map: maps context initialization parameter names to their string parameter values.

param Map: contains the names of the parameters to a page.

paramValues Map: maps a parameter nameto a string array of all the values for the parameter.

pageContext The PageContext object.

applicationScope Map: contains all application-scoped variables.

pageScope Map: contains all page-scoped variables.

requestScope Map: contains all request-scoped variables.

sessionScope Map: contains all session-scoped variables.

Figure 3-7.  Comparing scriptlets, standard actions, and EL

124 CHAPTER 3: Best Practices in Java EE Web Development

Using EL Implicit Objects
Of the EL implicit objects listed in Table 3-3, applicationScope, pageScope, requestScope, and
sessionScope are meant for specifying scope. These are used to access scoped attributes, that is,
to access data from JavaBeans, maps, arrays, and lists that have been stored as attributes in any of
the four scopes: page, request, session, and application.

The other implicit objects listed in Table 3-3 are used to access request parameters, request
headers, cookies, context-initialization parameters, and pageContext objects. This section illustrates
the usage of some of the EL implicit objects.

Accessing Request Parameters

Listing 3-24 illustrates a simple form used to submit the request parameters through form.jsp.

Listing 3-24.  form.jsp

 1.<body>
 2.<form action="books" method="post">
 3.<input type="hidden" name="action" value="books"/>
 4.<p>Book Title: <input type="text" name="bookTitle"></p>
 5.<p>Author 1 Name: <input type="text" name="authorName"></p>
 6.<p>Author 2 Name: <input type="text" name="authorName"></p>
 7.
 8.<input type = "submit"/>
 9.</form>
10.</body> 
 
In Listing 3-24, the name property of the <input> tag is the same: authorName.

Listing 3-25 illustrates the usage of the EL implicit objects param and paramValues to retrieve the
request parameter and display the result on the result.jsp page.

Listing 3-25.  result.jsp

1.<p>Book Title: ${param.bookTitle}

2.Author 1: ${paramValues.authorName[0]}

3.Author 2: ${paramValues. authorName[1]}
4.</p>
 

	Line 1: This uses the EL implicit object param to get the Book title.

	Line 2 to Line 3: This code uses the EL implicit object paramValues to get the
Author 1 and Author 2 names.

Accessing the Header

The EL implicit objects header and headerValues give you access to the header values that can be
obtained using the request.getHeader() and request.getHeaders() methods.

125CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-26 illustrates accessing a header named user-agent, using the expression
${header.user-agent} or ${header["user-agent"]}.

Listing 3-26.  Using EL Implicit Object Header

${header["user-agent"]}
 
Here’s the output: 

Mozilla/5.0 (Windows NT 6.1; rv:12.0) Gecko/20100101 Firefox/12.0

Accessing Cookie

The El implicit object cookie gives us access to the cookie. Listing 3-27 illustrates the cookie stored
in the servlet.

Listing 3-27.  Setting a Cookie in a Servlet

1.String userName = "vishal";
2.Cookie c = new Cookie("userName", userName);
3.c.setPath("/");
4.response.addCookie(c);
 
Listing 3-28 illustrates how to use an EL implicit object to access the cookie in the JSP page.

Listing 3-28.  Using an EL Implicit Object Cookie

${cookie.userName.value}

Accessing a Scoped Attribute

The El implicit object sessionScope gives access to the attribute stored in the session scope.
Listing 3-29 illustrates the attribute stored in the session in a servlet.

Listing 3-29.  Setting a Session Attribute in a Servlet

HttpSession session = request.getSession();
Book book = new Book();
book.setBookTitle("Beginning Java");
session.setAttribute("book", book);
 
Listing 3-30 illustrates using an EL implicit object called sessionScope to access the book title in the
JSP page.

Listing 3-30.  Using EL Implicit Object sessionScope

Book title in Session Scope ${sessionScope.book.bookTitle}

126 CHAPTER 3: Best Practices in Java EE Web Development

EL Functions
EL functions let you call Java method from JSP without using scripting. An EL function is mapped to
a static method of a Java class. This mapping is specified within a tag library descriptor (TLD), which
is explained later in this section. Listing 3-31 illustrates a simple Java method that returns the current
date and time.

Listing 3-31. Java Class with Public and Static Methods

 1.package com.apress.elfunction;
 2.
 3.import java.text.SimpleDateFormat;
 4.import java.util.Calendar;
 5.
 6.public class Now {
 7.
 8.public static String now() {
 9.Calendar currentDate = Calendar.getInstance();
10.SimpleDateFormat formatter = new SimpleDateFormat(
11."yyyy/MMM/dd HH:mm:ss");
12.String now = formatter.format(currentDate.getTime());
13.
14.return now;
15.}
16.}
17.
 
The key requirement for a Java method to be used in an EL function is that the method must be
public and static. The three key players in an EL function are as follows:

A Java method defined in a class	

A JSP page that invokes the Java method using EL	

A tag library descriptor file that maps the Java method in the Java class to the 	
JSP code that calls this Java method

Listing 3-32 illustrates the tag library descriptor file. A TLD is an XML file that declares a tag library.
This TLD file contains the declarations and mappings of one or more EL functions. Each function is
given a name and a specific method in a Java class that will implement the function.

Listing 3-32.  Tag Library Descriptor

 1.<?xml version="1.0" encoding="UTF-8"?>
 2.<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee"
 3.xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4.xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 5.http://java.sun.com/xml/ns/javaee/webjsptaglibrary_2_1.xsd">
 6.<tlib-version>1.2</tlib-version>
 7.<uri>elFunction</uri>
 8.<function>
 9.<name>now</name>
10.<function-class>

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/webjsptaglibrary_2_1.xsd

127CHAPTER 3: Best Practices in Java EE Web Development

11.com.apress.elfunction.Now
12.</function-class>
13.<function-signature>
14.String now()
15.</function-signature>
16.
17.</function>
18.</taglib>
 

	Line7: Line 7 is the URI of the function that will be used in the taglib directive in
the JSP page.

	Lines 8 to 17: These lines specify the Java method that will be invoked with the
signature and the Java class in which this method is defined.

A Java method can be called from JSP using EL in the following manner: ${prefix:function-name).
The namespace prefix is declared by using the taglib directive in the JSP page. Listing 3-33 shows
the JSP code.

Listing 3-33.  Invoking an EL Function in JSP

1.<%@ taglib prefix="elf" uri="elFunction"%>
2.<html>
3.
4.<body>${elf:now() }
5.</body>
6.</html>
 

	Line 1: Line 1 is a taglib directive with the prefix elf and a URI. The URI is
defined in the tag library descriptor.

	Line 4: This uses the prefix elf and invokes the function. This function name is
defined in the tag library description.

You can create this application based on the first JSP application we created in Chapter 2. When
this application is run (http://localhost:8080/elFunctions/elTest.jsp), it gives the output shown
in Figure 3-8.

http://localhost:8080/elFunctions/elTest.jsp

128 CHAPTER 3: Best Practices in Java EE Web Development

JSTL
The ultimate goal of the JSP Standard Tag Library (JSTL) is to help simplify the development of
Java Server Pages. As discussed in the previous section, scriptlets lead to unmaintainable JSPs
and can be replaced by JSP standard actions. However, standard actions are far too limited; an
even better approach is for Java developers to create their own custom actions. Still, creating a
custom action is a nontrivial task. JSTL provides such custom actions that can handle common
recurring tasks, and JSTL includes a wide variety of actions divided into different functional areas.
Table 3-4 lists the functional areas along with the URIs used to reference the libraries and the
prefixes used in the JSTL specification.

Table 3-4.  JSTL Tag Libraries

Functional Area URI Prefix

Core http://java.sun.com/jsp/jstl/core c

XML processing http://java.sun.com/jsp/jstl/xml x

I18N-capable formatting http://java.sun.com/jsp/jstl/fmt fmt

Relational database access http://java.sun.com/jsp/jstl/sql sql

Functions http://java.sun.com/jsp/jstl/functions fn

Figure 3-8.  Output from invoking the EL function

Many JSTL actions export scoped variables that you can easily access through the Expression
Language. As we saw in the previous chapter, scoped variables are objects stored in one of the
JSP scopes: application, page, request, and session. When a JSTL action makes a scoped variable

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions

129CHAPTER 3: Best Practices in Java EE Web Development

available to one or more JSP pages, it has an attribute named var that lets you specify the name
of that scoped variable. Listing 3-34 illustrates the <c:set>action, available in the core tag library of
JSTL, to set the value of a scoped variable.

Listing 3-34.  Using<c:set>

<c:set var="name" value="hello" scope="session" />
 
Listing 3-34 sets a variable called name to the value hello and allows that variable to be visible in
session scope. If the value for scope is not specified, the default scope is page scope. In the section
that follows, you will learn all the actions in different functional areas provided in the core tag library.

The Core Tag Library
Table 3-5 describes the core actions in the core tag library.

Table 3-5.  Core Actions in the Core Tag Library

Action Description

<c:catch> Catches exceptions thrown in the action’s body

<c:choose> Chooses one of many code fragments

<c:forEach> Iterates over a collection of objects or iterates a fixed number of times

<c:forTokens> Iterates over tokens in a string

<c:if> Conditionally performs some functionality

<c:import> Imports a URL

<c:otherwise> Specifies default functionality in a <c:choose> action

<c:out> Sends output to the current JspWriter

<c:param> Specifies a URL parameter for <c:import> or <c:url>

<c:redirect> Redirects a response to a specified URL

<c:remove> Removes a scoped variable

<c:set> Creates a scoped variable

<c:url> Creates a URL, with URL rewriting as appropriate

<c:when> Specifies one of several conditions in a <c:choose> action

The JSTL core library can be divided into four distinct functional areas, as described in Table 3-6.

130 CHAPTER 3: Best Practices in Java EE Web Development

General-Purpose Actions
The general-purpose actions provide the means to work with scoped variables. Table 3-7 describes
the general-purpose actions in the core tag library.

Table 3-6.  JSTL Core Library

Functional Areas Description

General-purpose actions Used to manipulate the scoped variables

Conditional actions Used for conditional processing within a JSP page

Iterator actions Used to iterate through collections of objects

URL-related actions Used for dealing with URL resources in a JSP page

Table 3-7.  General-Purpose Actions

Action Description

<c:out> Evaluates an expression and outputs the result to the JspWriter object

<c:set> Sets the value of a scoped variable or a property of a target object

<c:remove> Removes a scoped variable

<c:catch> Catches a java.lang.Throwable thrown by any of its nested actions

The <c:out> Action

The <c:out> action evaluates an expression and displays the result. It’s equivalent to the JSP syntax
<%= expression %>.

Here’s the syntax without a body:
 
<c:out value="value" [escapeXml="{true|false}"][default="defaultValue"] />
 
Here’s the syntax with a body:
 
<c:out value="value" [escapeXml="{true|false}"]>
default value
</c:out>Items in brackets are optional
 
Table 3-8 describes the attributes of <c:out>. Since this chapter covers JSTL comprehensively,
I recommend you read the JSTL specification3 for a thorough understanding of how to use JSTL
attributes.

3http://java.coe.psu.ac.th/J2EE/JSTL1.2/jstl-1_2-mrel2-spec.pdf

http://java.coe.psu.ac.th/J2EE/JSTL1.2/jstl-1_2-mrel2-spec.pdf

131CHAPTER 3: Best Practices in Java EE Web Development

The value to be written to the JspWriter is specified as a value attribute. You can use expressions in
the value attribute.

	value: The expression to be evaluated is supplied via the value attribute,
and the result is converted into a string before being returned as part of the
response.

	default: You can optionally specify a default value that <c:out> sends to the
current JspWriter if the specified value is null or is not a valid expression. You
can specify the default value with the default attribute or in the body of the
<c:out> action.

	escapeXml: The escapeXml attribute specifies whether to convert certain
characters to the HTML character entity codes listed in Table 3-9. By default, the
escapeXmlattribute is set to true. If you specify false for the escapeXml attribute,
<c:out> will not convert these characters.

Table 3-9.  Character Entity Codes

Character Character Entity Code

< <

> >

& &

' '

" "

Table 3-8.  <c:out> Attributes

Name Type Description

value Object This is the expression to be evaluated.

escapeXml boolean This determines whether the characters <,>,&,’,” in the
resulting string should be converted to their corresponding
character entity codes. The default value is true.

default Object This is the default value if the resulting value is null.

Listing 3-35 illustrates replacing scripting elements with the <c:out> action.

Listing 3-35.  Comparing <c:out> and Expression

<%= "hello" %> // Ouput "hello" using Expression
<c:out value = "hello"/> // Ouput "hello" using <c:out> action

132 CHAPTER 3: Best Practices in Java EE Web Development

The <c:set>Action

The JSTL set tag or the <c:set> action sets the value of a scoped variable or a property of a target
object. The <c:set> action is a better alternative to using the <jsp:setProperty> JSP action. Unlike
<jsp:setProperty>, which allows you to set only the bean property, the <c:set> tag can do the following:

Set bean properties	

Set Map values	

Create scoped variables on the page, request, session, or application scope	

Table 3-10 describes the attributes of the <c:set> action.

Table 3-10.  <c:set>Attributes

Name Type Description

value Object Expression to be evaluated.

var String Name of the exported scoped variable to hold the value specified in the action.

scope String Scope for var.

target Object Target object whose property will be set. This must evaluate to a JavaBeans object
with the setter property property or to a java.util.Map object.

property String Name of the property to be set in the target object.

The <c:set> tag is used to do the following:

Set the value of a scoped variable in any JSP scope.	

Set a property of a specified target object. The target must evaluate to a 	
JavaBean or Map object.

Setting the Value of a Scoped Variable in Any JSP Scope

One of the tasks of the <c:set> action is to set variables that can be used by other actions on pages.

Here’s the syntax:
 
<c:set value=""value""var=""varName" " [scope=""{page|request|session|application}""]/>
 
Listing 3-36 shows an example of using <c:set>to set the value of the scoped variable helloVar.

Listing 3-36.  Using <c:set>

<c:set var="helloVar" value="hello" />
 
Listing 3-36 creates an attribute named helloVar with the value "hello" in the default scope, which
is page scope. You can also create attributes in another scope, say session scope; in that case, you
need to specify the scope with <c:set> attribute scope="". Listing 3-37 creates a variable on session
scope using <c:set>.

133CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-37.  Using Scope

<c:set var="helloVar" value="hello" scope="session" />
 
We could also have expressed this by providing the value in the body content of the action,
as illustrated in Listing 3-38.

Listing 3-38.  Using <c:set>with Body

<c:set var="hello" scope="session" >
helloworld
</c:set>
 
The value of a variable can also be an EL expression, as illustrated in Listing 3-39.

Listing 3-39.  Using an EL Expression in a Value

<c:set var="titleVar" value="${book.title}" scope="session" />
 
In Listing 3-39, the title property of the book bean is set in the titleVar variable.

Listing 3-40 shows the scriptlet equivalent of <c:set>, as illustrated in Listing 3-36.

Listing 3-40.  Scriptlet Equivalent of <c:set>

<%
 String helloVar = "hello";
 pageContext.setAttribute("helloVar ", helloVar);
%>

Setting the Property of a Specified Target Object  

To be able to set bean properties or map values using <c:set>, we need to use target and property,
instead of var, which will define the bean and property name to be set. If target is map, for instance,
then property is the name of the key and value is the value for that key.

Here’s the syntax:
 
<c:set value=""value""target=""target"" property=""propertyName""/>
 

If using a target object, the target must evaluate to a JavaBean or a 	
java.util.Map object.

If the target is a JavaBean, it must contain the appropriate getter/setter 	
methods.

Listing 3-41 illustrates how to set a map key using a<c:set> tag.

Listing 3-41.  Setting a Map Key using the <c:set>Tag

<c:set target="bookMap" property="id" value="1">
 
This is equivalent to bookMap.put("id", "1");. You can also supply the value in the body of the
<c:set> tag.

134 CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-42 illustrates how to set bean properties using <c:set>.

Listing 3-42.  Setting the bean property using the <c:set> Tag

<c:set target="book" property="book.title" value="Learning Java Web">
 
Listing 3-42 sets the title property of a bean named book to Learning Java Web. This is equivalent
to book.setTitle("Learning Java Web");.

The <c:remove>Action

The <c:remove> action removes a variable from a specific scope. The variables set by <c:set> in any
of the scopes can be removed using the <c:remove> action by specifying the variable name in the
var attribute and the scope attribute.

Here’s the syntax:
 
<c:remove var="varName"[scope="{page|request|session|application}"]/>
 
Table 3-11 describes the attributes of the <c:remove> action.

Table 3-11.  <c:remove> Attributes

Name Type Description

var String Name of the scoped variable to be removed

scope String Scope for var

Listing 3-43 illustrates the simple usage of <c:remove>.

Listing 3-43.  Using <c:remove>

<c:remove var=" helloVar " />

The <c:catch> Action

The <c:catch> action provides a way to catch java.lang.Throwableexceptions that are thrown by
any nested actions. This action has a single var attribute that holds a reference to any java.lang.
Throwable exceptions that occur during the execution of any of the nested actions.

Here is the syntax:
 
<c:catch [var="varName"]>
...nested actions in the body...
</c:catch>
 
Table 3-12 describes the attribute of the <c:catch> action.

135CHAPTER 3: Best Practices in Java EE Web Development

The <c:catch> action can handle errors from any action by nesting those actions within <c:catch>.
When an exception is thrown, it is stored in a page-scoped variable that is identified by the var
attribute of the tag. Listing 3-44 illustrates the usage of <c:catch>.

Listing 3-44.  Using <c:catch>

<body>
 
<c:catch var = "exception">
<% int i = 1/0;%>
</c:catch>
 
<c:if test = "${exception != null}">
 Exception : ${exception}
 
</c:if>
</body>
 
Here’s the output: 

Exception : java.lang.ArithmeticException: / by zero

Conditionals
The conditional tags provided by the JSTL core tag library provide an alternative to using scriptlets
for generating dynamic content based on conditions. Table 3-13 describes the actions in this
functional area.

Table 3-13.  Conditional Actions in the Core Tag Library

Action Description

<c:if> Evaluates its body content if the expression specified with the test attribute is true

<c:choose> Provides the context for mutually exclusive conditional execution

<c:when> Represents an alternative within a <c:choose> action

<c:otherwise> Represents the last alternative within a <c:choose> action

Table 3-12.  <c:catch> Attributes

Name Type Description

var String Name of the exported scoped variable for the exception
thrown from a nested action.

The <c:if>Action

The <c:if> action is used for conditional processing and evaluates an expression, displaying its
body content only if the expression evaluates to true.

136 CHAPTER 3: Best Practices in Java EE Web Development

Here’s the syntax without body content:
 
<c:if test="testCondition"
var="varName" [scope="{page|request|session|application}"]/>
 
Here’s the syntax with body content:
 
<c:if test="testCondition"
[var="varName"] [scope="{page|request|session|application}"]>

. . . body content . . .

</c:if>
 
Using the test attribute, a Boolean EL expression is evaluated. If the test condition evaluates to
true, only then the body of the action is executed. The Boolean result of the expression evaluation is
exported to a scoped variable using the var attribute. The default scope of the var is page, but using
the scope attribute, the scope could be set to any of the JSP scopes.

Table 3-14 illustrates the attributes of the <c:if> action.

Table 3-14.  <c:if> Attributes

Name Type Description

test Boolean The test condition that determines whether the body content should be processed.

var String The name of the exported scoped variable for the resulting value of the test
condition.

scope String The scope for var.

Listing 3-45 illustrates using <c:if> with the body content.

Listing 3-45.  Using <c:if> with Body Content

<c:set var="number" value="9"/>
<c:if test="${ number < 10}" >
<c:out value ="number is less than 10"/>
</c:if>
 
Here’s the output:

 
number is less than 10
 

The <c:choose>, <c:when>, and <c:otherwise> Actions

The <c:choose> action enables you to handle mutually exclusive conditions. It works like a Java
switch statement and lets you choose between a number of alternatives, using <c:when> instead
of case statements and <c:otherwise> to provide default action just like the switch statement does
with a default clause.

137CHAPTER 3: Best Practices in Java EE Web Development

The syntax for the <c:choose> action is as follows:
 
<c:choose>
body content (<c:when> and <c:otherwise>)
</c:choose>
 
As you can see, the <c:choose> action has two possible nested actions that form its body: <c:when>
and <c:otherwise>. The syntax for each is as follows:
 
<c:when test="testCondition">
body
</c:when>
<c:otherwise>
body
</c:otherwise>
 
Table 3-15 illustrates the attributes of the <c:when> action.

Table 3-15.  <c:when> Attributes

Name Type Description

test Boolean The test condition that determines whether the body content should be processed

Listing 3-46 illustrates a simple usage of <c:choose>.

Listing 3-46.  Using <c:choose>

<body>
<c:set var="number" value="10"/>
<c:choose>
<c:when test="${number < 10}">
 Number is less than 10.
</c:when>
<c:when test="${number > 10}">
 Number is greater than 10.
</c:when>
<c:otherwise>
 Number is equal to 10
</c:otherwise>
</c:choose>
</body>
 
Here’s the output:
 

Number is equal to 10

138 CHAPTER 3: Best Practices in Java EE Web Development

Looping and Iteration
JSTL offers two useful actions for looping and iteration: <c:forEach> for general data and
<c:forTokens> for string tokenizing.

Table 3-16 illustrates the actions for looping and iteration.

Table 3-16.  Looping and Iteration Actions in the Core Tag Library

Action Description

<c:forEach> Iterates over a collection of objects

<c:forTokens> Iterates over tokens, separated by the supplied delimiters

The <c:forEach>Action

The <c:forEach> action iterates over a collection of objects.

Here’s the syntax for iterating over a collection of objects:
 
<c:forEach[var="varName"] items="collection"
[varStatus="varStatusName"]
[begin="begin"] [end="end"] [step="step"]>

. . . body content

</c:forEach>
 
Here’s the syntax for iterating a fixed number of times:
 
<c:forEach [var="varName"]
[varStatus="varStatusName"]
begin="begin" end="end" [step="step"]>

. . . . body content . . .

</c:forEach>
 
Table 3-17 illustrates the attributes of the <c:forEach> action.

139CHAPTER 3: Best Practices in Java EE Web Development

Table 3-17.  <c:forEach> Attributes

Name Type Description

var String Name of the exported scoped variable for the current item of the iteration.

items ”
Arrays, Collection,
Enumeration, Iterator,
Map, String

Collection of items to iterate over.

varStatus String Name of the exported scoped variable for the status of the iteration. The
object exported is of type

javax.servlet.jsp.jstl.core.LoopTagStatus.

begin int If items are specified, iteration begins at the item located at the specified
index. The first item of the collection has index 0.If items are not specified,
then iteration begins with index set at the value specified.

end int If items are specified, then iteration ends at the item located at the
specified index (inclusive).If items are not specified, then iteration ends
when the index reaches the value specified.

step int Iteration will process only every step item , starting with the first one.

To iterate over a collection of objects, use the following syntax:
 
<c:forEach[var="varName"] items="collection" [varStatus="varStatusName"]
...body content
</c:forEach>
 
To iterate a fixed number of times, use the following syntax:
 
<c:forEach [var="varName"] [varStatus="varStatusName"]
begin="begin" end="end" [step="step"]>
...body content ...
</c:forEach>
 
Listing 3-47 illustrates a simple usage of <c:forEach>.

Listing 3-47.  Using <c:forEach>

<body>
<c:forEach var="i" begin="1" end="3">
 Item <c:out value="${i}"/><p>
</c:forEach>
</body>
 
Here’s the output: 

Item 1
Item 2
Item 3

140 CHAPTER 3: Best Practices in Java EE Web Development

The <c:forTokens> Action

The <c:forTokens> action iterates over a string of tokens separated by a set of delimiters.

Here’s the syntax:
 
<c:forTokens items="stringOfTokens" delims="delimiters"
[var="varName"] [varStatus="varStatusName"]
[begin="begin"] [end="end"] [step="step"]>

. . . body

</c:forTokens>
 
Table 3-18 describes all the attributes of <c:forTokens>.

Table 3-18.  <c: for Tokens > Attributes

Name Type Description

var String Name of the exported scoped variable for the current item of the iteration.

items String String of tokens to iterate over.

delims String Set of delimiters (the characters that separate the tokens in the string).

varStatus String Name of the exported scoped variable for the status of the iteration. The object
exported is of type javax.servlet.jsp.jstl.core.LoopTagStatus.

begin int Iteration begins at the token located at the specified index. The first token has index 0.

end int Iteration ends at the token located at the specified index (inclusive).

step int Iteration will process only every step tokens, starting with the first one.

The <c:forTokens> tag works with a string of characters separated by a delimiter. Listing 3-48 shows
the usage of <c:forTokens>.

Listing 3-48.  Using <c: for Tokens>

<body>
<c:forTokens items="Clojure,Groovy,Java, Scala" delims="," var="lang">
<c:out value="${lang}"/><p>
</c:forTokens>
</body>
 

141CHAPTER 3: Best Practices in Java EE Web Development

Here is the output of Listing 3-48: 

Clojure
Groovy
Java
Scala

URL-Related Actions
The URL-related actions are for linking, importing, and redirecting in web applications. Table 3-19
describes all the URL-related actions in the core library.

Table 3-19.  URL-Related Actions

Action Purpose

<c:import> Imports the content of a URL-based resource.

<c:param> Adds request parameters to a URL. This is a nested action of <c:import>, <c:url>,
and <c:redirect>.

<c:url> Builds a URL with the proper rewriting rules applied.

<c:redirect> Sends an HTTP redirect to the client.

Let’s take a look at these URL-related actions.

The <c:import>Action

The <c:import> action imports the content of a URL-based resource, providing additional
functionality over the <jsp:include> action. The syntax of the <c:import> action is as follows:

 
<c:import url ="url [context="context"] [charEncoding="charEncoding"] [scope="application|page|requ
est|session"] [var= "varName"] >
Optional body content for <c:param> sub tags
</c:import>
 

The only required attribute is 	 url, which is the URL of the resource to import.

The 	 <c:param> action, explained next, can be used as a nested tag in the body
content of the <c:import>.

Table 3-20 describes all the attributes used with the <c:import> action.

142 CHAPTER 3: Best Practices in Java EE Web Development

In the previous chapter, we saw how the <jsp:include> action lets us encapsulate functionality
in one JSP page and include it in another; for example, you could include a header and footer as
illustrated in Listing 3-49.

Listing 3-49.  Using the <jsp:include> Action

<body>
<jsp:include page='/WEB-INF/jsp/header.jsp'/>
<%-- content -%>
<jsp:include page='/WEB-INF/jsp/footer.jsp'/>
</body>
 
The <jsp:include> action is limited to including the resource that belongs to the same web
application as the including page and specified as a relative URL.

You can use <c:import> instead of <jsp:include> to import resources in the same web application;
Listing 3-50 illustrates how to use <c:import> instead of <jsp:include>.

Listing 3-50.  Using <c:import>

<body>
<c:import url='/WEB-INF/jsp/header.jsp'/>
<%-- content --%>
<c:import url='/WEB-INF/jsp/footer.jsp'/>
</body>
 
With the <c:import> action, other than accessing resources in the same web application, you can
also access external resources or resources in a foreign context. To access an external resource,
you specify an absolute URL for the url attribute, and to access a resource in a foreign context,
you specify a value for the context attribute that represents a context path for the foreign context
along with the url attribute, which represents a context-relative path to the resource. Listing 3-51
illustrates how to use the <c:import> action to import a resource from a foreign context.

Listing 3-51.  Importing a Resource from a Foreign Context

<c:import url='/jsp/book.jsp' context='/foreigncontext'/>
 

Table 3-20.  <c:import> Attributes

Name Type Description

url String URL of the resource to import.

context String Name of the context when accessing a relative URL resource that belongs to a
foreign context.

var String Name of the exported scoped variable for the resource’s content.

scope String Scope for var.

charEncoding String Character encoding of the content at the input resource.

varReader String Name of the exported scoped variable for the resource’s content.

143CHAPTER 3: Best Practices in Java EE Web Development

Note  The charEncoding attribute is required when accessing absolute URL resources where the protocol
is not HTTP and where the encoding is not ISO-8859-1.

The <c:param>Action

The <c:import>, <c:url>, and <c:redirect> actions explained later in this section all deal with URLs.
The <c:param> action is used to pass request parameters and is used as a nested tag in the body
of either the <c:import>, <c:url>, or <c:redirect> action. The <c:param> action also does the URL
encoding.

Here’s the syntax with a parameter value specified in the attribute value.
 
<c:param name="name" value="value"/>
 
Here’s the syntax with a parameter value specified in the body content.
 
<c:param name="name">
parameter value
</c:param>
 
Table 3-21 describes the attributes of <c:param>.

Table 3-21.  <c:param> Attributes

Name Type Description

name String Name of the query string parameter

value String Value of the parameter

Listing 3-52 illustrated how you can use <c:import> instead of <jsp:include>. You can also specify
request parameters for included files with the <jsp:param> action, as shown in Listing 3-52.

Listing 3-52.  Using <jsp:param>

<body>
<jsp:include page='/WEB-INF/jsp/company/companyHeader.jsp'>
<jsp:param name='user'
value='<%=session.getAttribute("userName")%>'/>
</jsp:include>
<%-- Page content goes here--%>
<jsp:include page='/WEB-INF/jsp/company/companyFooter.jsp'/>
</body>
 
Listing 3-53 illustrates how you can use <c:param> instead of <jsp:param>.

144 CHAPTER 3: Best Practices in Java EE Web Development

Listing 3-53.  Using <c:param>

<body>
<c:import url='/WEB-INF/jsp/header.jsp'>
<c:param name='user'
value='${sessionScope.userName}'/>
</c:import>
<%-- body content --%>
<c:import url='/WEB-INF/jsp/footer.jsp'/>
</body>

The <c:url>Action

The <c:url> action builds a URL with the proper rewriting rules applied. It can format a URL and
store it in a variable specified by the var attribute.

Here’s the syntax without body content:
 
<c:url value [context] [var] [scope]/>
 
Here’s the syntax with body content to specify query string parameters:
 
<c:url value [context] [var] [scope]>
<c:param> actions
</c:url>
 

The only required attribute is 	 value, which is the URL to be processed.

	<c:param> subtags can also be specified within the body of <c:url> for adding
to the URL query string parameters, which will be properly encoded if necessary.

The attributed of <c:url> are listed in the Table 3-22.

Table 3-22.  <c:url> Attributes

Name Type Description

value String URL to be processed.

context String Name of the context when specifying a relative URL resource that belongs to a
foreign context.

var String Name of the exported scoped variable for the processed URL.

scope String Scope for var.

Listing 3-54 shows the simple usage of <c:url>.

Listing 3-54.  Using <c:url>

<c:url var="homePage" scope="session"value="http://www.yourbookstore.com" />
 

http://www.yourbookstore.com/

145CHAPTER 3: Best Practices in Java EE Web Development

If you specify a context-relative or page-relative URL for the value attribute, <c:url> prepends
the context path of the web application to the URL; for example, if the context path of the web
application is /bookWeb/books, the <c:url> action <c:url value='/book.jsp'/> will result
inurl:/bookWeb/books/book.jsp.

The <c:redirect>Action

The <c:redirect> action sends an HTTP redirect to the client, redirecting the browser to an alternate
URL. The <c:redirect> action provides the URL rewriting with a redirect.

Here’s the syntax without body content:
 
<c:redirect url="value" [context="context"]/>
 
Here’s the syntax with body content to specify query string parameters:
 
<c:redirect url="value" [context="context"]>
<c:param> subtags
</c:redirect>
 
The <c:redirect>action has two attributes: the URL that will be used to redirect to and an optional context.

The attributes of <c:redirect> are listed in the Table 3-23.

Table 3-23.  <c:redirect> Attributes

Name Type Description

url String The URL of the resource to redirect to

context String The name of the context when redirecting to a relative URL resource that belongs to
a foreign context

The URL, relative or absolute, follows the same URL rewriting rules as <c:url>. Listing 3-55
illustrates redirecting to an external resource, which is an absolute URL.

Listing 3-55.  Using <c:redirect>

<c:redirect url="http://www.yourbookstore.com" />
 
You can redirect to a resource in a foreign context using the context attribute. The URL specified
must start with a / as a context-relative URL, and as defined, the context name must also start with
a /. Listing 3-56 illustrates redirecting to a foreign resource in a foreign context.

Listing 3-56.  redirecting to a foreign resource in a foreign context.

<c:redirect url="/foreignresource.html" context="/foreigncontext" />
 
In this chapter, we have looked at the nuts and bolts of the Java EE machine in the web tier: the web
components (servlets and JSP), the feature-rich Expression Language, and the ready-to-use custom
actions (JSTL). Now we’ll talk about best-practice solutions using patterns.

http://www.yourbookstore.com/

146 CHAPTER 3: Best Practices in Java EE Web Development

Best-Practice Solutions: Using Patterns
While Java EE does a great job of standardizing the enterprise infrastructure, of providing an
application model, and of providing components adequate to develop web applications, interacting
directly with the Java EE components often results in massive amounts of boilerplate code and even
code redundancy. Using Java EE does not naturally lead to best-practice architecture and design.
To that end, Deepak Alur, John Crupi, and Dan Malks first established the Java EE design patterns
based on their experience of architecting enterprise systems. In this section, you will be introduced
to the Java EE patterns in the web tier established by Alur, Crupi, and Malks.

Note  The book Core J2EE Patterns: Best Practices and Design Strategies by Alur, Crupi, and Malks (Prentice
Hall, 2003) is highly recommended for learning about best-practice architecture and design. However, there
have been substantial changes in the business and persistence JavaEE patterns with the Java EE 6 and Java
EE 7. For instance, some patterns such as Service Locator have been dropped in favor of the Dependency
Injection pattern. But the web tier patterns remain the same. You can find substantial literature on the new
business and persistence Java EE patterns in Real World Java EE Patterns: Rethinking Best Practices (second
edition) by Adam Bien.

The web tier encapsulates the presentation logic that is required to provide the service to the clients.
The presentation tier does the following:

Intercepts the client requests	

Provides functionality such as authentication, authorization, encryption, and 	
session management, to name a few

Accesses business services	

Constructs the response	

Renders the response to the client	

In general, web application development requires you to address a common set of problems.

When a request enters a web application, it often has to be preprocessed 	
to provide certain functionality such as authentication, authorization, and
encryption.

The presentation tier and the business logic are often intermingled. This makes 	
the presentation tier difficult to maintain.

Views are often encoded with the view navigation logic. This results in 	
intermingled view content and view navigation.

There is no centralized component for view management, which results in code 	
redundancy and code scattering across the views.

This is not a complete list of problems, but these are the most common of them in a web application.
Fortunately, these problems in a web application can be addressed using web tier Java EE patterns.
How to use these Java EE patterns differs with each problem. Table 3-24 describes these patterns.

147CHAPTER 3: Best Practices in Java EE Web Development

Note  A good enterprise application consists of multiple tiers, and each tier concentrates on its own

responsibilities/concerns, as explained in Chapters 1 and 2.

Table 3-24.  Presentation Tier Java EE Patterns

Presentation Tier Pattern Description

Intercepting Filter Preprocessing and postprocessing of a client web request and response

Front Controller Centralized access point for presentation tier request handling to support
the integration of system services, content retrieval, view management,
and navigation

View Helper Encapsulating business logic so that it is not intertwined with the
presentation logic

Composite View Managing the layout of the view independent of the content

Service to Worker Assembling a microframework of front controller and view helper with a
dispatcher component

Dispatcher View Assembling a microframework of front controller and view helper with a
dispatcher component

Client

Response
Response Filters

Intercepting Filter

Request

Response

Servlet Container

Request
Request Filters

Filter 1 Filter n Servlet

Figure 3-9.  Intercepting Filter pattern

In the sections that follow we will look at each of these Java EE web tier patterns.

Intercepting Filter
A web application receives different types of requests that require some kind of processing, for
example, to check whether the client has to be authenticated before proceeding with navigation. The
best technique to provide a processing mechanism for requests is to use a processing component
called a filter. Filters are used when you need to provide request preprocessing or postprocessing
functionalities. The Intercepting Filter pattern comes along with the introduction of filters to the
Servlet specification. This pattern uses one or more filters plugged into the current application to
provide services such as authorization, compression, encryption, and logging. Figure 3-9 illustrates
the Intercepting Filter pattern.

148 CHAPTER 3: Best Practices in Java EE Web Development

The Intercepting Filter pattern is used for preprocessing and postprocessing of client requests and
also the responses by intercepting requests and responses. The filters are pluggable in the sense
that you can add or remove them without changing the code.

One of the use cases for which the Intercepting Filter pattern is deemed best fit is when you want
to enable theIE9 document mode of the browser by default. IE has two modes: browser mode and
document mode. The browser always sends browser mode data to the server, and the server always
responds with document mode data. The browser mode data consists of a user agent string with
a version and trident token information, while the document mode data consists of metatags that
dictate the mode in which the response will be rendered on the browser.

Listing 3-57 shows a simple response filter that enables the IE9 document mode of the browser
by default.

Listing 3-57.  Simple Response Filter

 1.package com.apress.filters
 2.import javax.servlet.*;
 3.import javax.servlet.http.HttpServletResponse;
 4.import java.io.IOException;
 5.import java.util.Enumeration;
 6.
 7./**
 8. * filter for enabling IE9 document mode by default
 9. *
10. */
11.public class ResponseHeaderFilter implements Filter {
12. private FilterConfig filterConfig = null;
13.
14. public void doFilter(ServletRequest aServletRequest, ServletResponse aServletResponse,
FilterChain chain)
15. throws IOException, ServletException {
16.
17. HttpServletResponse response = (HttpServletResponse) aServletResponse;
18.
19. // set the provided HTTP response parameters
20. for (Enumeration e = filterConfig.getInitParameterNames(); e.hasMoreElements();) {
21. String headerName = (String) e.nextElement();
22. response.addHeader(headerName, filterConfig.getInitParameter(headerName));
23. }
24.
25. // pass the request/response on
26. chain.doFilter(aServletRequest, response);
27. }
28.
29. public void init(FilterConfig aFilterConfig) {
30. filterConfig = aFilterConfig;
31. }
32.
33. public void destroy() {
34. filterConfig = null;
35. }
36.}
 

149CHAPTER 3: Best Practices in Java EE Web Development

	Line 20: This line fetches all the initialization parameters from the deployment
descriptor.

	Line 22: This line adds these parameters to the response.

Listing 3-58 illustrates the configuration of the response filter in the deployment descriptor.

Listing 3-58.  Configuring Simple Response Filter

 1.<filter>
 2.<filter-name>HTML5</filter-name>
 3.<filter-class>com.apress.filters.ResponseHeaderFilter</filter-class>
 4.<init-param>
 5.<param-name>X-UA-Compatible</param-name>
 6.<param-value>IE=edge,chrome=1</param-value>
 7.</init-param>
 8.</filter>
 9.<filter-mapping>
10.<filter-name>HTML5</filter-name>
11.<url-pattern>/*</url-pattern>
12.</filter-mapping>
 

	Line 5 to 6: These lines define the init parameters.

Front Controller
For web applications to be maintainable, all requests must pass through a common central
component. The lack of a centralized mechanism leads to the following problems:

There is no centralized component for view management, which results in code 	
redundancy and code scattering across the views.

Views are often encoded with view navigation logic. This results in intermingled 	
view content and view navigation.

The Front Controller pattern provides a centralized access for the request handling to provide
content retrieval, view management, navigation, validation, error handling, centralized security
control, and so on. The Front Controller pattern is best implemented with a servlet. Using a
centralized servlet to handle all requests and responses provides the following advantages:

It provides a single location from which to control decisions related to 	
authentication and authorization.

All URLs that the front controller is required to handle can be mapped to this 	
servlet.

It provides a centralized access point to support the view management and 	
navigation.

You can apply common logic to several views.	

It provides the separation of the presentation logic from the navigation and 	
business logic. This leads to loose coupling between the two.

150 CHAPTER 3: Best Practices in Java EE Web Development

Figure 3-10 shows the structure of the Front Controller pattern.

Client
Front
Controller

Request
Delegates request Dispatches request

Servlet Container

Dispatcher View

Figure 3-10.  Front Controller class diagram

The components of the Front Controller pattern are as follows:

Controller	

Dispatcher	

View	

Controller
The controller is the initial point for handling a request and coordinates with a dispatcher component.
The controller manages the following:

Handling the request, including invoking security services such as authentication 	
and authorization

Delegating to the business service	

Handling errors	

Dispatcher
The dispatcher is responsible for view management and navigation.

View
The view represents and displays information to the client.

Figure 3-11 illustrates the sequence diagram of the front controller.

151CHAPTER 3: Best Practices in Java EE Web Development

View Helper
In a web application, the presentation content (that is, the content of the JSP page) requires the
processing of dynamic content. Presentation tier changes occur often and are difficult to develop
and maintain when the business logic and presentation logic are intermingled. In fact, intermingling
the business logic and presentation logic makes the presentation unmaintainable. The View Helper
design pattern decouples the presentation tier from with the business tier and generates views
based on a template. The components in the View Helper pattern are as follows:

View 	

View helper	

View
A view contains the presentation formatting logic and delegates the business processing logic in the
presentation to the helper.

View Helper
The view helper does the following:

A view helper can be implemented as a JavaBean implementation or a custom 	
tag implementation. We used this pattern in Chapter 2.

Helpers serve as the view’s intermediate data model.	

Helpers are responsible for getting data from a business service.	

Presentation business logic is encapsulated in the helper.	

Client Front Controller

Request
Delegate

Dispatch

Dispatcher View

Figure 3-11.  Front controller sequence diagram

152 CHAPTER 3: Best Practices in Java EE Web Development

Composite View
In web applications, views are often built by embedding formatting code directly within each view.
This makes modifying the layout of multiple views difficult. The Composite View pattern allows a
parent view to be composed of subviews. Hence, the overall view becomes a composition of smaller
subviews that are included dynamically in the overall view.

The components of the Composite View pattern are as follows:

	Basic view: This is the basic abstraction of the view.

	Composite view: This is a view that is composed of a number of subviews.

	The view: This is a simple view that has no subviews.

Figure 3-13 shows the basic structure for the Composite View pattern.

View View Helper

Figure 3-12.  View Helper class diagram

View

Simple View
Composite

View

Figure 3-13.  Composite View class diagram

Figure 3-14 illustrates the usage of the Composite View pattern.

Figure 3-12 illustrates the structure of the View Helper pattern.

153CHAPTER 3: Best Practices in Java EE Web Development

Dispatcher View
The Dispatcher View design pattern assembles two patterns, Front Controller and View Helper, into a
microframework with a dispatcher component to utilize the benefits associated with each pattern.

In the Dispatcher View pattern, the dispatcher is responsible for choosing and providing the
mechanism to statically or dynamically present the subsequent view to the user.

The members of the Dispatcher View pattern, as illustrated in Figure 3-15, are as follows:

Front controller	

Dispatcher	

Helper	

View 	

View helper	

client Dispatcher View
Helper

View
Manager

Business
Service

Composite
view

Footer.jsp

Header.jsp

include

include

include

include

Front
controller

Figure 3-14.  Composite View usage

Client Front
Controller

Dispatcher

Helper

View

View
Helper

delegates

uses

Figure 3-15.  Dispatcher class diagram

154 CHAPTER 3: Best Practices in Java EE Web Development

Front Controller
The front controller does the following:

Centralizes request processing 	

Delegates to the view using the dispatcher 	

Uses the view helper to separate the business logic concerns from the 	
presentation logic concerns

Dispatcher
The dispatcher does the following:

Is responsible for view management and navigation	

Delegates to the view	

Uses a helper to push data into the view	

Helper
The helper does the following:

Helps the view or the controller to complete its processing	

View
The view does the following:

Represents and displays information to the client	

Pulls the data from the data source using a view helper	

Figure 3-16 illustrates the sequence diagram of the Dispatcher View pattern.

155CHAPTER 3: Best Practices in Java EE Web Development

Service to Worker
The Service to Worker design pattern assembles two patterns, Front Controller and View Helper, into
a microframework with a dispatcher component to utilize the benefits associated with each pattern.

The Service to Worker pattern is a combination of a dispatcher with views and helpers to handle
client requests and to generate dynamic content as the response. The Service to Worker pattern can
be used in an application when the application requires dynamic content generation.

The members of the Service to Worker pattern, as illustrated in Figure 3-17, are as follows:

Front controller	

Dispatcher	

Helper	

View 	

View helper	

Client

Request

Delegate

Dispatch
Gather data

get Data

Front Controller Dispatcher View Helper View Helper

Figure 3-16.  Dispatcher View sequence diagram

156 CHAPTER 3: Best Practices in Java EE Web Development

Front Controller
The front controller does the following:

Centralizes request processing 	

Delegates to the view using the dispatcher 	

Uses a view helper to separate the business logic concerns with the 	
presentation logic concerns

Dispatcher
The dispatcher does the following:

Is responsible for view management and navigation	

Delegates to the view	

Uses a helper to push data into the view	

Helper
The helper does the following:

Helps the view or the controller to complete its processing	

Pushes data into the view	

Client Front
Controller

Dispatcher View

Helper
delegates

View
Helper

uses

Figure 3-17.  Service to Worker class diagram

157CHAPTER 3: Best Practices in Java EE Web Development

The Service to Worker pattern, like the Dispatcher View pattern, consists of a combination of other
patterns from the catalog. Both of these microframework patterns describe the combination of a
controller and dispatcher with views and helpers, but the difference is that the Dispatcher View
pattern delays content retrieval until dynamic view generation, while the Service to Worker pattern
does content retrieval in the front controller.

We just covered all the Java EE web tier patterns. Using these patterns, you can address the
architectural domain problem and business problem areas. However, you must also use OO
patterns to address the architectural problem domain. Many design patterns can be applied to
attain reusability, maintainability and extensibility. For instance, you can attain this trinity in the web
application using OO patterns such as the following:

Abstract Factory	

Builder	

Decorator 	

Façade	

Template Method 	

Client

Request

Delegate

Dispatch

Gather data

get Data

Front Controller Dispatcher View Helper View Helper

Figure 3-18.  Service to Worker sequence diagram

Figure 3-18 illustrates the sequence diagram of the Service to Worker pattern.

158 CHAPTER 3: Best Practices in Java EE Web Development

Note  In spite of applying the Java EE patterns and incremental evolution, some applications fail due to
wrong architectural decisions. These wrong architectural decisions are documented so that you do not
make the same mistake again. These documented wrong architectural decisions are called Antipatterns.
J2EE Antipatterns by Bill Dudney, Stephen Asbury, Joseph K. Krozak, and Kevin Wittkopf (Wiley, 2003) is an
excellent resource for Antipatterns.

Java Web Frameworks
You learned that MVC and the Java EE web tier patterns together facilitate the architectural foundation
for building reusable, maintainable, and extensible web applications. As developers gather more
experience, they start discovering generic objects that can be used over and over, and patterns begin
to emerge. Once you have a collection of such generic objects, a framework begins to emerge. A
framework is a collection of generic objects and other supporting classes that provide the infrastructure
for application development. Frameworks are, essentially, a collection of design patterns guarded by the
basic framework principles discussed next. A Java framework uses two types of patterns.

OO patterns 	

Java EE patterns 	

A framework uses OO patterns for its own construction to address the architectural problem domain,
such as extensibility, maintainability, reusability, performance, and scalability. Both OO patterns
and Java EE patterns address the business problem domain areas, such as processing requests,
authentication, validation, session management, and view management to name a few. .Frameworks
address these two major architectural and business problem areas by providing patterns based
generic objects and supporting classes, closely guarded by the following key principles:

	Configurability: Configurability is the ability of the framework to be able to use
the metadata to alter the behavior of the framework.

	Inversion of control: In traditional programming style, the problem domain code
controls the flow of the application execution. Inversion of control refers to the
technique where reusable code controls the execution of the problem domain
code, thus controlling the flow of the application execution.

	Loose coupling: This principle refers to the independence of the collaborating
classes in the framework with which each collaborating class can be altered
without influencing the other collaborating class.

	Separation of concerns: This principle refers to the need to classify the problem
domain areas and deal with them in an isolated manner so that the concerns of
one problem area do not influence the concerns of another problem area. The
multitiered Java EE architecture we saw in Chapter 1 is driven by the principle of
the separation of concerns.

	Automating common functionalities: A framework provides mechanisms for
automated solutions to the mundane functionalities of the domain.

159CHAPTER 3: Best Practices in Java EE Web Development

Why Use a Framework?
While Java EE does a great job of standardizing the enterprise infrastructure and providing an
application model, there are few major problems associated with it.

Interacting directly with the Java EE components often results in massive 	
boilerplate code and even code redundancy.

You have to write code for dealing with common business domain problems.	

You have to write code for solving architectural domain problems.	

You could roll your own framework to address the problems associated with building Java EE based
web applications using OO patterns and Java EE patterns. But writing an in-house framework
entails efforts that are orthogonal to the business goals of the application; in addition, the in-house
framework is unlikely to be upgraded, and the new versions of the in-house framework will never see
the sun, unlike mainstream frameworks that continuously evolve instead of falling into architectural
entropy. With that in mind, it’s time to look at some of the available JVM-based web frameworks (see
Table 3-25). This table is far from exhaustive; a myriad of frameworks are available, but this book will
cover the most successful JVM-based web frameworks listed in the table.

Table 3-25.  JVM-Based Web Frameworks

Web Frameworks Category Language Download From

Struts 2 Request-based framework Java http://struts.apache.org/
download.cgi#struts2314

Spring Web MVC Request-based framework Java www.springsource.org/spring-
community-download

JSF 2 Component-based framework Java www.oracle.com/technetwork/java/
javaee/downloads/index.html

Grails 2 Rapid web development
framework

Groovy www.grails.org/download

Play 2 Rapid web development
framework

Java and Scala www.playframework.com/download

All the web frameworks listed in Table 3-25 follow the MVC Model-2 architecture, the basic
architectural pattern you learned about in Chapter 2. In a typical web application, there are several
tasks that you want to do for every incoming request, such as encryption. A single controller for
the web application lets you centralize all the tasks that the controller has to perform in a web
application, such as the following:

Centralizing the logic for dispatching requests to views	

Checking whether the user requesting an operation has valid authorization	

As the MVC-based web application grows larger with more and more views to display, the controller
in the MVC-application model becomes a procedural object that takes too many decisions to render
those views. This problem can be alleviated by using the front controller and configuration metadata,
instead of using pure MVC architecture. This solution is illustrated in Figure 3-19.

http://struts.apache.org/download.cgi%23struts2314
http://struts.apache.org/download.cgi%23struts2314
http://www.springsource.org/spring-community-download
http://www.springsource.org/spring-community-download
http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.grails.org/download
http://www.playframework.com/download

160 CHAPTER 3: Best Practices in Java EE Web Development

When the HTTP request arrives from the client, the front controller looks up in the configuration
metadata file to decide on the right application controller that should handle theHTTP request. The
application controller consists ofthe business logic invocations and presentation logic controls for
the HTTP request.The difference between using pure MVC and the Front Controller pattern with MVC
is that the front controller servlet looks up the configuration metadata to figure out the application
controller that handles the HTTP request processing instead of itself deciding to call specific HTTP
request handler objects.

In essence, this is the pattern that is common to many leading web frameworks. For instance, Struts 2
and Spring Web MVC are front controller–based MVC frameworks that delegate the control to the
application controller using configuration metadata stored in, for example , an XML file. In Struts 2,
the ServletFilter is a manifestation of the front controller in Figure 3-19. In JSF 2, it’s FacesServlet;
in Spring Web MVC, it’s DispatcherServlet; and in Grails 2, it’s the subclass of DispatcherServlet.

This concludes the chapter. From the next chapter onwards, this book will navigate through the
labyrinth of Web frameworks that capitalize on the strengths of Java EE and JVM.

Summary
This chapter focused on evolving the technologies and tools used in a Java EE project. The chapter
introduced you to the common problems associated with developing a web application and showed
how these problems can be solved and how web applications can be made reusable, maintainable,
and extensible by using tools (such as unified EL) available with Java EE.

EL and JSTL are two picture-perfect implementations of the theory of the separation of business
and view concerns, and they can be used to build reusable, easy-to-maintain, function-rich web
applications. This chapter also introduced you to the Java EE web tier patterns and how these
JavaEE patterns provide solutions to the recurring problems in a particular context. Then the chapter
showed how frameworks address architectural and business problem areas by providing patterns-based
generic objects and supporting classes. Finally, the chapter showed how web frameworks relinquish you
from using Java EE design patterns by providing you out-of-the-box best-practice solutions.

Client

Request

Response

Returning
control

View

Rendering Response

Servlet Container

Response Rendering Delegation

Request handling Delegation

Front
Controller

Application
ControllerModel

Model

Figure 3-19.  MVC with front controller

161

Chapter 4
Building a Web Application
Using Struts 2

A wounded deer leaps the highest.

—Emily Dickinson

The Struts framework is an old living tree whose ring patterns tell the story of the legacy Java web
forests. Struts, released in June 2001, pioneered an essential evolution of the Model-2 development
model to address the vicissitudes of web development. You can see Struts’ DNA assimilated in many
other architecturally diverse action-based frameworks that evolved to address Model-2 development.
Struts gave birth to the Tiles framework, which can now be used with a myriad of web frameworks.

The growth in Struts’ popularity began to lose momentum because of the ever-increasing complexities
of web applications and because of the competition from other evolving web frameworks. The WebWork
framework that was built on classic Struts later unified with it to create the Struts 2 framework. Struts 2 is
a complete rewrite of the architecture of classic Struts, aimed at addressing the aforementioned needs.
Struts 2 provides the architectural foundations for web applications, provides architectural mechanisms
to automate recurring tasks and to separate cross-cutting concerns, and saves developers from
maintaining a plethora of configuration code by means of convention over configuration.

One chapter is not enough to demonstrate the full capabilities of any framework, so my intention
here is to demonstrate the fundamentals of Struts 2 web framework. Beginning with this chapter and
through the subsequent chapters, you will progressively learn how modern web frameworks provide
architectural foundations centered on Java EE web tier patterns.

Struts 2 Framework Overview
Table 4-1 describes the key features of the Struts 2 framework.

162 CHAPTER 4: Building a Web Application Using Struts 2

Before diving into Struts 2, it is worthwhile to understand the architecture of classic Struts
(hereafter referred to as Struts). Struts is an MVC-based framework. The central component of a
Struts framework is the ActionServlet, which implements the Front Controller web-tier Java EE
pattern. Figure 4-1 illustrates the architecture of Struts.

Table 4-1.  Key Features of the Struts 2 Framework

Features Description

Ajax support Struts 2 integrates Ajax support. Besides out-of-the-box Ajax, Struts 2 also
supports a myriad of Ajax-centric plug-ins.

Convention over
configuration

Struts 2 adheres to the principle of convention over configuration and eliminates
unnecessary configuration.

Declarative architecture
using annotations

Struts 2’s declarative architecture using annotations reduces XML configuration
and keeps the configuration closer to the action class.

Data conversion Struts 2 provides automatic type conversion of string-based form field values to
objects or primitivetypes, removing the need to provide conversion code in the
action class.

Dependency injection Struts 2 uses dependency injection for the action to collaborate with the
components it needs.

Extensibility Struts 2 is extensible, in that the classes in the framework are interface based.

Plug-in architecture The core Struts 2behavior can be enhanced with plug-ins. You can find a number
of plug-ins available for Struts 2 here:

https://cwiki.apache.org/S2PLUGINS/home.html

POJO forms and actions Unlike classic Struts that used ActionForms, in Struts 2 you can use any POJO
to receive the form input. And any POJO can work as an action.

View technologies Struts 2supports multiple views such as JSP, FreeMarker, Velocity, XSLT, and
so on.

Figure 4-1.  Architecture of the Struts framework

https://cwiki.apache.org/S2PLUGINS/home.html

163CHAPTER 4: Building a Web Application Using Struts 2

The sequence of events in Struts is as follows:

1.	 The ActionServlet delegates request processing to a RequestProcessor.

2.	 The RequestProcessor processes the request and stores the form values in
the ActionForm.

3.	 The RequestProcessor then invokes the Action class.

4.	 The Action class accesses the ActionForm to retrieve the form values.

5.	 The Action class invokes the call to the service layer.

6.	 The Action class returns the ActionForward, which is used to encapsulate
the response view.

Struts 2, however, is different from Struts. Unlike Struts, which follows a push-MVC architecture
where data is expected to be present in the page or scope, Struts 2is a pull-MVC architecture; that
is, the data can be pulled from the Action. Table 4-2 shows a one-to-one mapping of the Struts and
Struts 2 framework elements.

Table 4-2.  One-to-One Mapping of Struts and Struts 2Framework Elements

Struts Framework Elements Struts 2 Framework Elements

ActionServlet Servlet filter

RequestProcessor Interceptor

Action Action

ActionForm Action or POJOs

ActionForward Result

Note  You can find a comprehensive list of similarities and differences between Struts and Struts 2 at
http://struts.apache.org/release/2.3.x/docs/comparing-struts-1-and-2.html.

Figure 4-2 illustrates the key elements of Struts 2 that provide a cleaner implementation of MVC.

http://struts.apache.org/release/2.3.x/docs/comparing-struts-1-and-2.html

164 CHAPTER 4: Building a Web Application Using Struts 2

As you can see from Figure 4-2, Struts 2 is also an MVC-based framework that implements the Front
Controller pattern. The sequence of events in Struts 2 framework is as follows:

1.	 The request is mapped to the configuration metadata.

2.	 The request passes through a stack of interceptors that provide
preprocessing and postprocessing for the request and cross-cutting features.

3.	 The Action and the method in the Action that provides the logic to process
this request is invoked.

4.	 The Result is invoked to render the response.

5.	 The response is returned to the user.

The key elements of Struts 2 illustrated in Figure 4-2 are discussed next.

Action
Actions are the core of the action-oriented Struts 2 framework because they provide the necessary
logic for request processing. Actions are not required to implement any interface or extend any
class, and actions can be POJOs. Listing 4-1 illustrates the action called HelloWorldAction.

Listing 4-1.  An Action as a POJO

public class HelloWorldAction{
//...
public String execute() {
return "success";
}
}
 

Figure 4-2.  Architecture of Struts 2

165CHAPTER 4: Building a Web Application Using Struts 2

This action class is configured in the struts.xml file, as illustrated in Listing 4-2.

Listing 4-2.  Configuring the Action Class in struts.xml

<package name="helloWorld" " extends="struts-default" namespace="/ >
 
<action name="hello" class=" HelloWorldAction">
<result name="success"> /hello.jsp</result>
</action>
 
<package>
 
The action mapping in Listing 4-2 uses the name attribute to define the name of the action you
can use to access this action class and uses the result tag to define which result page should be
returned to the user. Now you can access the action via an .action extension.
 
http://localhost:8080/helloWorldExample//hello.action
 
Even though you can use POJO actions, Struts 2 provides two action helpers that can be used: the
Action interface and the ActionSupport class.

Action Interface
Struts 2 comes with an optional Action interface, as illustrated in Listing 4-3.

Listing 4-3.  Action Interface

package com.opensymphony.xwork2;
 
public interface Action {
public static final String ERROR = "error";
public static final String INPUT = "input";
public static final String LOGIN = "login";
public static final String NONE = "none";
public static final String SUCCESS = "success";
 
public String execute();
}
 
This interface provides the common string-based return values as constants and the default
execute() method that should be implemented by the implementing classes.

The action class that implements this interface can use the constant value directly, as illustrated
in Listing 4-4.

http://localhost:8080/helloWorldExample//hello.action

166 CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-4.  Using the Action Interface

import com.opensymphony.xwork2.Action;
public class HelloWorldAction implements Action{
//..
public String execute() {
return SUCCESS;
}
}

ActionSupport Class
The ActionSupport class implements the Action interface and provides an implementation of the
execute() method that returns the SUCCESS value. The ActionSupport class also implements some
interfaces that provide support for validation, localization, and internationalization, as illustrated in
the code fragment of the ActionSupport class in Listing 4-5.

Listing 4-5.  ActionSupportClass

public class ActionSupport implements Action, Validateable, ValidationAware,TextProvider,
LocaleProvider, Serializable {
...
public String execute(){
return SUCCESS;
}
}
 
Listing 4-6 shows the code fragment through which the ActionSupport class can be used to provide
validation.

Listing 4-6.  Using ActionSupport

import com.opensymphony.xwork2.ActionSupport;
 
public class LoginAction extends ActionSupport{
private String username;
private String password;
public String getPassword() {
return password;
}
public void setPassword(String password) {
this.password = password;
}
 
public String getUsername() {
return username;
}
 
public void setUsername(String username) {
this.username = username;
}
 

167CHAPTER 4: Building a Web Application Using Struts 2

//getters and setters
// ...
public String execute() {
return "SUCCESS";
}
 
public void validate(){
if("".equals(getUsername())){
addFieldError("username", getText("username.required"));
}
if("".equals(getPassword())){
addFieldError("password", getText("password.required"));
}
}
}

Interceptors
Interceptors promote the separation of concerns by separating the implementation of the cross-cutting
concerns from the action. Struts 2 comes with a set of prebuilt interceptors and interceptor stacks
that you can use out of the box. Listing 4-7 illustrates the declaration of an action that belongs to a
package that extends the struts-default package, which contains the default set of interceptors.

Listing 4-7.  Declaring an Action

<package name="default" namespace="/" extends="struts-default">
<action name="helloAction"
class="HelloWorldAction" >
<result name="success">/hello.jsp</result>
</action>
</package>
 
When you extend your package from the struts-default package, by default the defaultStack will
be used for all the actions in your package. The defaultStack is configured in the struts-default.xml
file, and it provides all the core Struts 2 functionality. The struts-default.xml file is located in the
struts 2-core.jar file. To map other interceptors to an action, you can use the interceptor-ref
element, as illustrated in Listing 4-8.

Listing 4-8.  Mapping Interceptors to the Action

<package name="default" namespace="/" extends="struts-default">
<action name="helloAction"
class="HelloWorldAction" >
<interceptor-ref name="logger"/>
<result name="success">/hellot.jsp</result>
</action>
</package>
 

168 CHAPTER 4: Building a Web Application Using Struts 2

In Listing 4-8, the action mapping maps the logger interceptors to the HelloWorldAction action class
via the interceptor-ref element. Since the HelloWorldAction is declared its own interceptors, it
loses the default set of interceptors, and you have to explicitly declare the defaultStack in order to
use it, as illustrated in Listing 4-9.

Listing 4-9.  Declaring a Default Stack

<package name="default" namespace="/" extends="struts-default">
<action name="helloAction"
class="HelloWorldAction" >
<interceptor-ref name="logger"/>
<interceptor-ref name="defaultStack"/>
<result name="success">/hello.jsp</result>
</action>
</package>

ValueStack and OGNL
The Object-Graph Navigation Language (OGNL1) is a powerful expression language that is used to
set and get properties from JavaBeans and to invoke methods from Java classes. It also helps in
data transfer and type conversion. OGNL is similar to EL and JSTL, which evaluate expressions and
navigate object graphs using dot notation. As you saw in Figure 4-2, OGNL and the ValueStack,
though not part of MVC, are at the core of the Struts 2 framework. All the MVC components interact
with ValueStack to provide contextual data. These components access ValueStack using OGNL
syntax, and OGNL and ValueStack work together in Struts 2 to handle a request. Specifically, when
a request is sent to the Struts 2 application, a ValueStack object is created for that request, and
the references to all the objects that are created to serve that request as well as scope attributes
are maintained in the ValueStack. All these objects are available to the view through OGNL. You will
not find OGNL difficult to use because it is similar to EL and JSTL (which are covered in Chapter 3).
Listing 4-10 illustrates how OGNL looks. Notice that OGNL uses #, unlike JSP EL, which uses $.

Listing 4-10.  Using OGNL

<s:property value="#book.bookTitle" />

ResultType and Result
In Struts 2, the rendering of the response consists of the result type and the result. The result type
provides the implementation details for the type of view that is returned to the user. Each method on
an action returns a result, which includes specifying the result type. If no result type is specified, then
the default result type is used, which forwards to a JSP page, as illustrated in Listing 4-11.

Listing 4-11.  Default Result Type

<result name="success">
 /hello.jsp
</result>
 

1http://commons.apache.org/proper/commons-ognl/

http://commons.apache.org/proper/commons-ognl/

169CHAPTER 4: Building a Web Application Using Struts 2

Struts 2 comes with a number of predefined result types. Struts allows you to use other view
technologies to present the results including Velocity, FreeMarker, and Tiles, as illustrated in Listing 4-12.

Listing 4-12.  Declaring Tiles as the Result Type

<action name="login" class="com.apress.bookstore.action.LoginAction">
<result name="success" type="tiles">home</result>
<result name="error" type="tiles">login</result>
</action>

Struts 2 Tags
The Struts 2 framework provides a high-level and portable tag API that you can use with JSP.
You will learn how the tags work and how to use OGNL to reference values on the ValueStack in the
sections that follow. Table 4-3 describes the different categories of Struts 2 tag libraries.

Table 4-3.  Struts 2Tags

Struts 2 Tags Description

Ajax tags Struts 2provides Ajax support by means of Ajax tags.

Control tags These are tags that provide ways to manipulate collections of elements.

Data tags These are tags that render data from the action, internationalized text, and URLs.

Form tags These are tags that provide wrappers for HTML form tags, as well as additional
widgets such as a date picker.

Non form UI tags The tags in this group are used in forms but are not directly form entry elements.
They include error message displays, tabbed panels, and tree views.

Note  You can find the full list of Struts 2 tags in the online documentation at
http://struts.apache.org/release/2.3.x/docs/tag-reference.html.

Getting Started with Struts 2
In this section, you will develop a HelloWorld Struts 2 application. You will use the build and
dependency management tool called Maven.2 Maven is a command-line tool that is used to build
and package projects and to manage dependencies. It makes life easier for developers working
across multiple projects by providing the same directory structure across multiple projects.

2http://maven.apache.org/

http://struts.apache.org/release/2.3.x/docs/tag-reference.html
http://maven.apache.org/

170 CHAPTER 4: Building a Web Application Using Struts 2

The dependencies, explicitly configured and transitive, described in the Maven configuration file
(pom.xml) will be accessed from a local repository or downloaded to the local repository during the
build process. This feature allows developers to create new projects without creating the common
directory structure, creating the configuration files, and coding default classes and tests from
scratch. The benefit of using Maven for runtime dependencies is that you don’t need to remember
and search for required dependencies manually. You will use Maven 4 to import Struts 2 runtime
dependencies. Maven 4 is integrated with Eclipse-kepler, as mentioned in Chapter 1. So, you do not
have to install the Maven plug-in for Eclipse. To create the Maven project, click New ➤ Other, as
illustrated in Figure 4-3.

Figure 4-3.  Selecting a Maven project

Select Maven Project in the wizard, as illustrated in Figure 4-4.

171CHAPTER 4: Building a Web Application Using Struts 2

Click Next and configure the options as illustrated in Figure 4-5.

Figure 4-4.  Selecting the option Maven Project

Figure 4-5.  Configuring a Maven project

172 CHAPTER 4: Building a Web Application Using Struts 2

Click Next and as illustrated in Figure 4-6 select Catalog, GroupId, and ArtifactId.

Figure 4-6.  Selecting archetypes

Click Next and enter the group ID, artifact ID, and package details, as illustrated in Figure 4-7.

173CHAPTER 4: Building a Web Application Using Struts 2

Click Finish. The project with the name described in the Artifact Id field in Figure 4-7 is created.
Figure 4-8 shows the directory structure of the project created.

Figure 4-7.  Specifying archetype parameters

Figure 4-8.  Directory structure of the created project

174 CHAPTER 4: Building a Web Application Using Struts 2

The directory structure illustrated in Figure 4-8 follows the normal Maven directory structure.

Table 4-4 describes the directory structure of the HelloWorld application.

Table 4-4.  Directory Structure of a Maven-Based Application

Directory Description

Src All source

: - main Main source directory

: : - java Java source

: : - helloworld Package defined by the groupID parameter

: : - action The package from the archetype

: :- resources Resources(configuration, properties, and so on)

: - webapp Web application files

: : - WEB-INF WEB-INF folder

Table 4-5.  Directory Structure of a Non-Maven-Based Application

Directory Description

Src All source

: - helloworld Helloworld package

: - action Action package

- struts.xml Resources(configuration, properties, and so on)

Web Web application files

: - WEB-INF WEB-INF folder

The directory structure of a non-Maven HelloWorld application might look like Table 4-5.

You need to add the struts 2-core dependency to the generated pom.xml file of the HelloWorld
application. Listing 4-13 shows the code fragment to add to pom.xml.

Listing 4-13.  struts 2-core Dependency

<dependency>
<groupId>org.apache.struts</groupId>
<artifactId>struts 2-core</artifactId>
<version>2.3.15.1</version>
<type>jar</type>
<scope>compile</scope>
</dependency>
 

175CHAPTER 4: Building a Web Application Using Struts 2

Your pom.xml file will look like Listing 4-14.

Listing 4-14.  pom.xml

1.<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2. xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
3.<modelVersion>4.0.0</modelVersion>
4.<groupId>com.apress</groupId>
5.<artifactId>helloworldStruts2</artifactId>
6.<packaging>war</packaging>
7.<version>0.0.1-SNAPSHOT</version>
8.<name>helloworldStruts2Maven Webapp</name>
9.<url>http://maven.apache.org</url>
10.<dependencies>
11.<dependency>
12.<groupId>junit</groupId>
13.<artifactId>junit</artifactId>
14.<version>3.8.1</version>
15.<scope>test</scope>
16.</dependency>
17.<dependency>
18.<groupId>org.apache.struts</groupId>
19.<artifactId>struts2-core</artifactId>
20.<version>2.3.15.1</version>
21.<type>jar</type>
22.<scope>compile</scope>
23.</dependency>
24.</dependencies>
25.<build>
26.<finalName>helloworldStruts2</finalName>
27.</build>
28. </project> 

Note  You can find the list of dependencies of Struts 2 at
http://struts.apache.org/development/2.x/struts2-core/dependencies.html.

Listing 4-15 shows the empty deployment descriptor created in the project.

Listing 4-15.  web.xml

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >
<web-app>
<display-name>Archetype Created Web Application</display-name>
</web-app>
 

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org</url
http://struts.apache.org/development/2.x/struts2-core/dependencies.html
http://java.sun.com/dtd/web-app_2_3.dtd

176 CHAPTER 4: Building a Web Application Using Struts 2

You need to configure the servlet filter in the deployment descriptor, as illustrated in Listing 4-16.

Listing 4-16.  web.xml

1.<!DOCTYPE web-app PUBLIC
2. "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
3. "http://java.sun.com/dtd/web-app_2_3.dtd" >
4.
5.<web-app>
6.<display-name>Hello World Struts2 Web App</display-name>
7.<filter>
8.<filter-name>struts2</filter-name>
9.<filter-class>org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter</filter-class>
10.</filter>
11.
12.<filter-mapping>
13.<filter-name>struts2</filter-name>
14.<url-pattern>/*</url-pattern>
15.</filter-mapping>
16.</web-app>
 

	Lines 7 to 10: These lines define the StrutsPrepareAndExecuteFilter that is used
as the servlet filter in Struts 2 to which all URLs are mapped.

Note  The FilterDispatcher (org.apache.struts2.dispatcher.FilterDispatcher) was used
in early Struts 2 development, and it has been deprecated since Struts 2.1.3.

Listing 4-17 illustrates the struts.xml file.

Listing 4-17.  struts.xml

1.<?xml version="1.0" encoding="UTF-8"?>
2.<!DOCTYPE struts PUBLIC
3. "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
4. "http://struts.apache.org/dtds/struts-2.0.dtd">
5.
6.<struts>
7.<constant name="struts.devMode" value="true" />
8.<package name="basicstruts2" extends="struts-default">
9.<action name="index">
10.<result>/index.jsp</result>
11.</action>
12.</package>
13.</struts>
 

	Lines 9 to 11: These lines define the index action, which renders the result
index.jsp.

http://java.sun.com/dtd/web-app_2_3.dtd
http://struts.apache.org/dtds/struts-2.0.dtd

177CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-18 illustrates index.jsp.

Listing 4-18.  index.jsp

<html>
<body>
<h2>Hello World!</h2>
</body>
</html>
 
Deploy the web application to the servlet container Tomcat 7, open a web browser, and access
http://localhost:8080/helloworldStruts2/, as illustrated in Figure 4-9.

Figure 4-9.  Running the HelloWorld application

The HelloWorld application you developed didn’t comprise any actions but a single JSP file that was
generated when you created the project. The purpose of the HelloWorld application you created was
to test the configuration of Struts 2. You will create actions in the following section.

You will create a HelloWorld project that displays a welcome message to the user, as illustrated in
Figure 4-10.

http://localhost:8080/helloworldStruts2/

178 CHAPTER 4: Building a Web Application Using Struts 2

When you submit an HTML form in a Struts 2 web application, the input is sent to the Java class
called Action. After the action executes, a result selects a resource to render the response, as
illustrated in Figure 4-11.

Figure 4-10.  Form of the HelloWorld project

Figure 4-11.  Greeting the user

Let’s modify the HelloWorld project you created earlier to add an action, the form that accepts a
user’s input, and the view that greets the user, as illustrated in the directory structure shown in
Figure 4-12.

179CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-19 illustrates the form that allows the user to enter a name and submit it.

Listing 4-19.  index.jsp

1.<html>
2.<body>
3.
4.<form action="hello">
5.<label for="name">Enter your name</label>
<input type="text"
6.name="name" /><input type="submit" value="Submit" />
7.</form>
8.</body>
9.</html>
 

	Line 4: When the user submits the form, the action name hello is sent to the
container.

You need a mapping to map the URL to the HelloWorldAction controller. The mapping tells the
Struts 2 framework which class will respond to the user’s action, which method of that class will be
executed, and which view will be rendered as the response. Listing 4-20 illustrates this mapping file.

Listing 4-20.  struts.xml

1.<?xml version="1.0" encoding="UTF-8"?>
2.<!DOCTYPE struts PUBLIC
3. "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
4. "http://struts.apache.org/dtds/struts-2.0.dtd">
5.

Figure 4-12.  The directory structure of the project

http://struts.apache.org/dtds/struts-2.0.dtd

180 CHAPTER 4: Building a Web Application Using Struts 2

6.<struts>
7.<constant name="struts.devMode" value="true" />
8.<package name="basicstruts2" extends="struts-default"
9.namespace="/">
10.
11.<action name="index">
12.<result>/index.jsp</result>
13.</action>
14.
15.<action name="hello" class="com.apress.helloworld.action.HelloWorldAction"
16.method="execute">
17.<result name="success">/hello.jsp</result>
18.</action>
19.</package>
20.</struts>
 

	Line 15: This line declares the action mapping for
HelloWorldAction. HelloWorldAction is mapped to the action name hello.

	Line 16: This line declares that the execute() method of the action is to
be executed.

	Line 17: This line declares that hello.jsp is designated as a success page and
will be rendered as the response.

We need an Action class to act as the controller. The Action class responds to a user action
of submitting the form and sending the hello action to the container. Listing 4-21 illustrates
HelloWorldAction.

Listing 4-21.  HelloWorldAction.java

1.package com.apress.helloworld.action;
2.
3.public class HelloWorldAction {
4.private String name;
5.
6.public String execute() throws Exception {
7.return "success";
8.}
9.
10.public String getName() {
11.return name;
12.}
13.
14.public void setName(String name) {
15.this.name = name;
16.}
17.}
18.
 

	Lines 6 to 7: The Struts 2 framework will create an object of the HelloWorldAction
class and call the execute method in response to a user’s action. And the execute
method returns the success string, which is mapped to hello.jsp in struts.xml.

181CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-22 illustrates hello.jsp.

Listing 4-22.  hello.jsp

1.<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
2.pageEncoding="ISO-8859-1"%>
3.<%@ taglib prefix="s" uri="/struts-tags"%>
4.<html>
5.<head>
6.<title>Hello World</title>
7.</head>
8.<body>
9.Hello
10.<s:property value="name" />
11.</body>
12.</html>
 

	Line 3: The taglib directive tells the servlet container that this page will be using
the Struts 2 tags.

	Line 10: The s:property tag displays the value returned by calling the method
getName of the HelloWorldAction class. The getName method returns a String.
It is this String returned by getName that will be displayed by the s:property tag.

Now you will learn a different technique of declarative configuration provided by Struts 2:
annotations. You can create the new project or modify the project created earlier. Figure 4-13
illustrates the directory structure.

Figure 4-13.  HelloWorld project using Struts 2 annotations

182 CHAPTER 4: Building a Web Application Using Struts 2

To use Struts 2 annotations, you need the plug-in called struts 2-convention-plugin. Add the
dependency to the pom.xml file using the fragment illustrated in Listing 4-23.

Listing 4-23.  struts 2-convention-plugin

<dependency>
<groupId>org.apache.struts</groupId>
<artifactId>struts2-convention-plugin</artifactId>
<version>2.3.15.1</version>
</dependency>
 
Listing 4-24 illustrates HelloWorldAction configured with Struts 2 annotations.

Listing 4-24.  HelloWorldAction

1.package com.apress.helloworld.action;
2.
3.import org.apache.struts2.convention.annotation.Action;
4.import org.apache.struts2.convention.annotation.Result;
5.
6.@Action(value = "/hello", results = { @Result(name = "success", location = "/hello.jsp") })
7.public class HelloWorldAction {
8.private String name;
9.
10.public String execute() throws Exception {
11.return "success";
12.}
13.
14.public String getName() {
15.return name;
16.}
17.
18.public void setName(String name) {
19.this.name = name;
20.}
21.}
 

	Line 6: @Action defines the URL of an action. Since the value of the action
annotation is "/hello", the action will be invoked for the request URL "/hello".

	Line 6: @Result defines a result for an action. The result annotation maps the
result code to the result page. Here the result code "success" is mapped to the
result "/hello.jsp".

Listing 4-24 uses action and result annotations just to show you how to use them. You can also use
the intelligent defaults provided by the Convention plug-in. If you set the actionPackages filter init
parameter to a comma-separated list of packages containing action classes in web.xml, as illustrated
in Listing 4-25, the packages and their subpackages will be scanned. All classes in the designated
packages that implement Action or the POJO actions that don’t implement the Action interface and
end with Action are examined.

183CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-25.  actionPackages Init Parameter

<init-param>
<param-name>actionPackages</param-name>
<param-value>com.apress.helloworld.action</param-value>
</init-param>
 
The Convention plug-in uses the Action class name to map the action URL. The Convention plug-in
first removes the word Action at the end of the class name and then converts the camel-case name
to dashes. So, by default HelloWorldAction will be invoked for the request URL hello-world. But
if you want the action to be invoked for a different URL, then you can do this by using the action
annotation.

Tip  You can find the list of all Struts 2 annotations at http://struts.apache.org/release/2.3.x/
docs/annotations.html.

In the section that follows, you will develop the bookstore web application using Struts 2.

Bookstore Web Application
In this section, you will progressively develop the bookstore application including the following
functionality:

The login functionality 	

Templates 	

Integration with the data access layer 	

Login via a database 	

Selection of categories from a database 	

Listing books by category	

The complete code for the application is available in the downloadable archive on the Apress website.

The Login Functionality
Figure 4-14 shows the initial login screen.

http://struts.apache.org/release/2.3.x/docs/annotations.html
http://struts.apache.org/release/2.3.x/docs/annotations.html

184 CHAPTER 4: Building a Web Application Using Struts 2

When the user submits a valid name and password combination, the user will be logged in, and the
user’s name is displayed as illustrated in Figure 4-15.

Figure 4-14.  Login page of the bookstore application

Figure 4-15.  Login successful

If the user enters an incorrect username or password, an error message will be displayed to the user,
as illustrated in Figure 4-16.

185CHAPTER 4: Building a Web Application Using Struts 2

Figure 4-17 illustrates the directory structure of the application. You can download the source code
for the application from the Apress website, and then as you move along with each section, you can
refer to the source for imports and other artifacts.

Figure 4-16.  Login failed

Figure 4-17.  Directory structure of the bookstore application

186 CHAPTER 4: Building a Web Application Using Struts 2

You can add the struts 2-core dependency to your pom.xml file, as illustrated in Listing 4-26.

Listing 4-26.  struts 2-core Dependency

<dependency>
<groupId>org.apache.struts</groupId>
<artifactId>struts 2-core</artifactId>
<version>2.3.15.1</version>
<type>jar</type>
<scope>compile</scope>
</dependency>
 
You can use the same web.xml file used earlier in the HelloWorld project. Modify the welcome-file-list
file, as illustrated in Listing 4-27.

Listing 4-27.  Welcome File

<welcome-file-list>
<welcome-file>login.jsp</welcome-file>
</welcome-file-list>
 
Listing 4-28 illustrates the login.jsp file.

Listing 4-28.  login.jsp

1.<%@ page contentType="text/html; charset=UTF-8"%>
2.<%@ taglib prefix="s" uri="/struts-tags"%>
3.<html>
4.<head>
5.<title>Bookstore Login</title>
6.</head>
7.<body>
8.<h3>Login Bookstore</h3>
9.<s:actionerror />
10.<s:form action="login.action" method="post">
11.<s:textfield name="username" key="label.username" size="30" />
12.<s:password name="password" key="label.password" size="30" />
13.<s:submit method="execute" align="center" />
14.</s:form>
15.</body>
16.</html>
 
Listing 4-28 illustrates the usage of several Struts 2 tags. This is a login form that allows the user
to input a username and password. In line 10, the name of the action login is sent to the container
when the user submits the form. This action name is mapped to LoginAction via struts.xml,
as illustrated in Listing 4-29.

187CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-29.  struts.xml

1.<?xml version="1.0" encoding="UTF-8" ?>
2.<!DOCTYPE struts PUBLIC
3."-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
4."http://struts.apache.org/dtds/struts-2.3.dtd">
5.
6.
7.<struts>
8.<constant name="struts.enable.DynamicMethodInvocation" value="false" />
9.<constant name="struts.devMode" value="true" />
10.<constant name="struts.custom.i18n.resources" value="ApplicationResources" />
11.
12.<package name="default" extends="struts-default" namespace="/">
13.<action name="login" class="com.apress.bookstore.action.LoginAction">
14.<result name="success">view/home.jsp</result>
15.<result name="error">login.jsp</result>
16.</action>
17.</package>
18.</struts>
 
In Listing 4-29, line 13 maps the LoginAction class of the login name to the URL, and line 14
renders home.jsp when the String success is returned by the LoginAction class. If the LoginAction
class returns the String error, then login.jsp is rendered again with the error message.

Listing 4-30 illustrates LoginAction.

Listing 4-30.  LoginAction.java

1.package com.apress.bookstore.action;
2.import com.opensymphony.xwork2.ActionSupport;
3.public class LoginAction extends ActionSupport {
4.private String username;
5.private String password;
6.public String execute() {
7.if (this.username.equals("vishal") && this.password.equals("password")) {
8.return "success";
9.} else {
10.addActionError(getText("error.login"));
11.return "error";
12.}
13.}
14.public String getUsername() {
15.return username;
16.}
17.public void setUsername(String username) {
18.this.username = username;
19.}
20.
21.public String getPassword() {
22.return password;
23.}
24.

http://struts.apache.org/dtds/struts-2.3.dtd

188 CHAPTER 4: Building a Web Application Using Struts 2

25.public void setPassword(String password) {
26.this.password = password;
27.}
28.}
 
In lines 7 to 9 of Listing 4-30, the username and password are hard-coded. Later you will see how
to authenticate against a database. If the username or password is invalid, the addActonError
method in line 10 gets the error.login message mapped to the ApplicationResources.properties,
illustrated in Listing 4-31, and returns the String error.

Listing 4-31.  ApplicationResources.properties

label.username= Username
label.password= Password
error.login= Invalid Username/Password
 
Listing 4-32 illustrates home.jsp, which is rendered when the LoginAction class returns the String
success.

Listing 4-32.  home.jsp

1.<%@ page contentType="text/html; charset=UTF-8"%>
2.<%@ taglib prefix="s" uri="/struts-tags"%>
3.<html>
4.<head>
5.<title>Home</title>
6.</head>
7.<body>
8.<s:property value="username" />
9.</body>
10.</html>
 
Listing 4-32 displays the username using the s:property tag when LoginAction returns the
String success.

Developing Templates
In this section, you will see how to integrate the Tiles framework with Struts 2. We will add Tiles support
to the HelloWorld Struts application created in the previous section. Tiles is a templating system that
reduces code duplication and maintains a consistent look and feel across all the pages of a web
application. With Tiles, you define a common layout in a configuration file, and this layout is extended
across all the webpages of the web application. This means you can change the look and feel of all the
pages of a web application by changing just the template file, instead of changing all the pages. For the
bookstore application, you will add a header and menu, as illustrated in Figure 4-18.

189CHAPTER 4: Building a Web Application Using Struts 2

Figure 4-19 illustrates the login screen with the header. When the authentication is successful, the
user is logged in, and the home page with the menu bar is rendered, as illustrated in Figure 4-20.
If the username or password is invalid, the user remains on the login screen, and an error message is
displayed, as illustrated in Figure 4-21.

Figure 4-18.  Template for the bookstore application

Figure 4-19.  Login screen with header

190 CHAPTER 4: Building a Web Application Using Struts 2

Figure 4-20.  Menu displayed on successful login

Figure 4-21.  Login failed with header

191CHAPTER 4: Building a Web Application Using Struts 2

When the user is logged in, the user’s name is displayed on the header, and the menu appears,
as illustrated in Figure 4-20.

Figure 4-22 illustrates the directory structure with the template files.

Figure 4-22.  The directory structure with the template files

You need to modify the pom.xml file with struts 2-tiles3-plugin and slf4j-log4j12, as illustrated in
Listing 4-33. These plug-ins are required to integrate Tiles with Struts 2.

Listing 4-33.  struts-tiles and slf4j-log4j12 Plug-Ins

<dependency>
<groupId>org.apache.struts</groupId>
<artifactId>struts2-tiles3-plugin</artifactId>
<version>2.3.15.1</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.5.6</version>
</dependency>
 

192 CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-34 illustrates the struts.xml file.

Listing 4-34.  struts.xml

1.<?xml version="1.0" encoding="UTF-8" ?>
2.<!DOCTYPE struts PUBLIC
3."-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
4."http://struts.apache.org/dtds/struts-2.3.dtd">
5.
6.
7.<struts>
8.<constant name="struts.enable.DynamicMethodInvocation" value="false" />
9.<constant name="struts.devMode" value="true" />
10.<constant name="struts.custom.i18n.resources" value="ApplicationResources" />
11.
12.<package name="default" extends="struts-default" namespace="/">
13.<result-types>
14.<result-type name="tiles"
15.class="org.apache.struts2.views.tiles.TilesResult" />
16.</result-types>
17.<action name="*Link" method="{1}"
18.class="com.apress.bookstore.action.LinkAction">
19.<result name="login" type="tiles">login</result>
20.<result name="allBooks" type="tiles">allBooks</result>
21.</action>
22.<action name="login" class="com.apress.bookstore.action.LoginAction">
23.<result name="success" type="tiles">home</result>
24.<result name="error" type="tiles">login</result>
25.</action>
26.<action name="logout">
27.<result name="success" type="tiles">logout</result>
28.</action>
29.</package>
30.</struts>
 

	Lines 19, 20, 23, 24, and 27: These lines define the result type as Tiles and the
tile name, such as home and login, which is defined in tiles.xml. Depending
on the result string returned by the action, in other words, success or error, the
corresponding JSP file defined in tiles.xml is mapped with the definition name
in tiles.xml to the tile name in struts.xml.

Listing 4-35 illustrates the tiles.xml file.

Listing 4-35.  tiles.xml

1.<?xml version="1.0" encoding="UTF-8" ?>
2.
3.<!DOCTYPE tiles-definitions PUBLIC "-//Apache Software Foundation//DTD Tiles Configuration 3.0//EN"
"http://tiles.apache.org/dtds/tiles-config_3_0.dtd">
4.
5.<tiles-definitions>
6.

http://struts.apache.org/dtds/struts-2.3.dtd
http://tiles.apache.org/dtds/tiles-config_3_0.dtd

193CHAPTER 4: Building a Web Application Using Struts 2

7.<definition name="baseLayout" template="/template/baseLayout.jsp">
8.<put-attribute name="title" value="Template" />
9.<put-attribute name="header" value="/template/header.jsp" />
10.<put-attribute name="menu" value="/template/menu.jsp" />
11.<put-attribute name="body" value="/template/body.jsp" />
12.</definition>
13.
14.<definition name="login" extends="baseLayout">
15.<put-attribute name="title" value="Log in" />
16.<put-attribute name="menu" value="" />
17.<put-attribute name="body" value="/login.jsp" />
18.</definition>
19.<definition name="error" extends="baseLayout">
20.<put-attribute name="title" value="Log in" />
21.<put-attribute name="menu" value="" />
22.<put-attribute name="body" value="/login.jsp" />
23.</definition>
24.<definition name="home" extends="baseLayout">
25.<put-attribute name="title" value="Log in" />
26.<put-attribute name="menu" value="/template/menu.jsp" />
27.<put-attribute name="body" value="/view/home.jsp" />
28.</definition>
29.<definition name="logout" extends="baseLayout">
30.<put-attribute name="title" value="Log in" />
31.<put-attribute name="menu" value="" />
32.<put-attribute name="body" value="/login.jsp" />
33.</definition>
34.
35.<definition name="allBooks" extends="baseLayout">
36.<put-attribute name="title" value="All Books" />
37.<put-attribute name="body" value="/allBooks.jsp" />
38.</definition>
39.
40.
41.</tiles-definitions>
 
Listing 4-36 illustrates the baselayout.jsp file, which defines where the header, footer, and body
content should be inserted.

Listing 4-36.  Base layout

1.<%@ taglib uri="http://tiles.apache.org/tags-tiles" prefix="tiles"%>
2.<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
3. "http://www.w3.org/TR/html4/loose.dtd">
4.
5.<html>
6.<head>
7.<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8.<link rel="stylesheet" href="css/bookstore.css" type="text/css" />
9.<script type="text/javascript" src="js/jquery-1.9.1.js"></script>
10.<script src="js/bookstore.js"></script>
11.<title><tiles:insertAttribute name="title" ignore="true" /></title>
12.</head>

http://tiles.apache.org/tags-tiles
http://www.w3.org/TR/html4/loose.dtd

194 CHAPTER 4: Building a Web Application Using Struts 2

13.<body>
14.<div id="centered">
15.
16.
17.<tiles:insertAttribute name="header" />
18.
19.<tiles:insertAttribute name="menu" />
20.
21.<tiles:insertAttribute name="body" />
22.
23.
24.</div>
25.</body>
26.</html>
 
Listing 4-37 illustrates the header.jsp file.

Listing 4-37.  header.jsp

1.<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
2.pageEncoding="ISO-8859-1"%>
3.<%@ taglib prefix="s" uri="/struts-tags"%>
4.
5.<div class="header">
6.<h2>
7.BOOK
8.STORE
9.
10.</h2>
11.
12.
13.
14.<s:if test="%{username!=null && !hasActionErrors() }">Welcome <s:property value="username" /> |
<a href='<s:url action="logout.action"/>'>Log out</s:if>
15.<s:else>
16.Login
17.</s:else>
18.
19.
20.
21.
22.
23.
24.</div>
25.
 
Lines 14 to 17 use Struts 2 s:if, s:else, and s:property tags to welcome the user when logged in
and allow the user to log out. Since this code is in the header, this functionality will be available to all
the pages in the application.

195CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-38 illustrates the web.xml file.

Listing 4-38.  web.xml

1.<!DOCTYPE web-app PUBLIC
2. "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
3. "http://java.sun.com/dtd/web-app_2_3.dtd" >
4.
5.<web-app>
6.<display-name>Archetype Created Web Application</display-name>
7.<context-param>
8.<param-name>org.apache.tiles.impl.BasicTilesContainer.DEFINITIONS_CONFIG</param-name>
9.<param-value>/WEB-INF/tiles.xml</param-value>
10.</context-param>
11.
12.<filter>
13.<filter-name>struts2</filter-name>
14.<filter-class>org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter</filter-class>
15.</filter>
16.<filter-mapping>
17.<filter-name>struts2</filter-name>
18.<url-pattern>/*</url-pattern>
19.</filter-mapping>
20.<listener>
21.<listener-class>org.apache.tiles.extras.complete.CompleteAutoloadTilesListener</listener-class>
22.</listener>
23.<welcome-file-list>
24.<welcome-file>index.jsp</welcome-file>
25.</welcome-file-list>
26.
27.</web-app>
 
Lines 7 to 10 and lines 21 to 22 are required to configure Tiles with Struts 2.

Integrating the Data Access Layer
In this section, you will integrate the web application you created with the data access layer. You
can use the data access layer you created in Chapter 1. You will then authenticate the user against
the database. Next, you will show the categories in the bookstore database on the menu bar. Then
you will retrieve the list of books from the database by category. Figure 4-23 illustrates the directory
structure of the application.

http://java.sun.com/dtd/web-app_2_3.dtd

196 CHAPTER 4: Building a Web Application Using Struts 2

As you can see in the directory structure there is a single BookController in the application.
The methods in this controller are illustrated in the Listing 4-39.

Listing 4-39.  BookController

1. public class BookController extends ActionSupport {
2.
3. //properties
4. 
5. public String login() {}
6.
7. public String executelogin() {}
8.
9. public String error() {}
10.
11. public String allBooks() {}
12.
13. public String booksByCategory() {}
14.

Figure 4-23.  Directory structure with the data access layer

197CHAPTER 4: Building a Web Application Using Struts 2

15. public String searchByKeyword() {}
16.
17. public String home() {}
18.
19. public String selectedBooks(){}
20.
21. public String logout() {}
22.
23. // getters and setters
24.
25. }
 

	Line 5: responsible for displaying the login form.

	Line 7: authenticates the user against the database.

	Line 9: displays the error message, for example if the user is invalid.

	Line 11: lists all the books in the bookstore.

	Line 13: lists the books by category.

	Line 15: allows user to search the books by keyword: book title or
author’s name.

	Line 17: displays the home page when clicked on home link.

	Line 19: displays the list of selected books.

	Line 21: allows the user to log out.

Login Using Database
Listing 4-40 illustrates the executelogin() method responsible for authenticating user against the
database. For this you need to add the USER table to the data model you developed in chapter 1
using the following DDL:

CREATE TABLE USER(
ID INT NOT NULL AUTO_INCREMENT,
FIRST_NAME VARCHAR(60) NOT NULL,
LAST_NAME VARCHAR(60) NOT NULL,
USERNAME VARCHAR(60) NOT NULL,
PASSWORD VARCHAR(60) NOT NULL,
PRIMARY KEY (ID)
);

Listing 4-40.  executelogin( )method in the BookController

1. public String executelogin() {
2. String executelogin = "failed";
3. session = ActionContext.getContext().getSession();
4. dao = new BookDAOImpl();
5. user = new User();
6. user.setUserName(getUsername());

198 CHAPTER 4: Building a Web Application Using Struts 2

7. user.setPassword(getPassword());
8. setUser(user);
9. if (dao.isUserAllowed(user)) {
10.
11. setCategoryList(dao.findAllCategories());
12. session.put("username", username);
13. session.put("categoryList", getCategoryList());
14. executelogin = "success";
15. }
16. else {
17. addActionError(getText("error.login"));
18. return "error";
19. }
20. // return result;
21. return "executelogin";
22. }

Figure 4-24 illustrates the USER table.

Figure 4-24.  USER table

	Line 9: The user is authenticated against the database. As you can see in the
Line 9 replaces the hard-coded username and password in the Listing 4-31 by
invoking isUserAllowed() on the DAO The isUserAllowed() method selects
the username and password from the USER table (as shown in Figure 4-24) in
the resultset based on the username and password entered in the login form.

	Line 11-14: If the user is valid, categories are retrieved from the database, and
the list of categories is stored in the session.

	Lines 16-19: Line 16 sets the valid boolean variable to true if the resultset
contains the username and password If the user is not valid, the String error is
returned.

Displaying Categories Retrieved from the Database
Listing 4-41 illustrates the menu that shows the categories returned from the database. In Listing 4-40,
you retrieved the categories and stored them in the session for a valid user. These categories will be
displayed in menu.jsp.

199CHAPTER 4: Building a Web Application Using Struts 2

Listing 4-41.  menu.jsp

1.<div>
2.
3.
4.<a href="<s:url action=""/>">Categories
5.</div>
6.
7.<s:form action=" booksByCategoryLink">
8.
9.<s:select name="category" list="#session['categoryList']"
10.listValue="categoryDescription" listKey="id" />
11.<s:submit value="Select" />
12.</s:form><span class="label"
13.style="margin-left: 30px;">
14.
15.
 

	Lines 9 to 10: These lines display the categories in the list that was stored in the
session in LoginAction using the expression language of Struts 2.

	Line 11: When the user clicks the select button, the selected category and the
action name in line 7, booksByCategoryLink, are sent to the container, and then
mapped via struts.xml to the action, which retrieves the list of books.

Listing Books by Category
In this section, you will retrieve the list of books by category from the database. The selected
category and the action name booksByCategoryLink are sent to the container, and then mapped via
struts.xml to BookController. Listing 4-42 illustrates the code fragment of struts.xml.

Listing 4-42.  Declaring BookController in struts.xml

1. <action name="*Link" method="{1}"
2. class="com.apress.bookstore.controller.BookController">
3. <result name="login" type="tiles">login</result>
4. <result name="allBooks" type="tiles">booklist</result>
5. <result name="booksByCategory" type="tiles">booklist</result>
6. <result name="searchByKeyword" type="tiles">booklist</result>
7. <result name="home" type="tiles">home</result>
8. <result name="executelogin" type="tiles">executelogin</result>
9. <result name="selectedBooks" type="tiles">selectedBooks</result>
10. <result name="logout" type="tiles">logout</result>
11. <result name="error" type="tiles">error</result>
12. </action>
 
The * in the Line 1 of the Listing 4-42 is the wildcard character. Any action name values that end in
Link will be handled by this action mapping. Whatever value is before Link will be the value used for
the method attribute (the {1} place holder will be replaced with that value). So instead of writing nine
separate action mapping nodes in the configuration file for this simple application you can simply
use the wildcard character, *, in your name value and an attribute value place holder ({1}) for the

200 CHAPTER 4: Building a Web Application Using Struts 2

method value. This enables the Struts 2 framework to dynamically select the correct method to call
at runtime. Listing 4-43 illustrates booksByCategory().

Listing 4-43.  booksByCategory( )

public String booksByCategory() {
 dao = new BookDAOImpl();
 setBookList(dao.findBooksByCategory(category));
 return "booksByCategory";
 }
 
When booksByCategory() in the Listing 4-43 returns it is mapped to the tile name booklist as it was
illustrated in Line 5 of Listing 4-42. This maps to booklist defined in the tiles.xml as illustrated in
Listing 4-44 which renders the booklist.jsp file. Listing 4-44 illustrates the code fragment in
tiles.xml.

Listing 4-44.  tiles.xml

1.<definition name="booklist" extends="baseLayout">
2.<put-attribute name="title" value="Log in"/>
3.<put-attribute name="menu" value="/menu.jsp"/>
4.<put-attribute name="body" value="/view/bookList.jsp"/>
5.</definition>
 
Listing 4-45 illustrates the bookList.jsp.

Listing 4-45.  booklist.jsp

1.<%@ taglib uri="/struts-tags" prefix="s"%>
3.<body>
5.<div id="centered">
8.<s:form action=" selectedbooksLink" theme="simple">
9.<center>
10.<table id="grid">
11.<thead>
12.<tr>
13.<th id="th-title">Book Title</th>
14.<th id="th-author">Author</th>
15.<th id="th-price">Price</th>
16.</tr>
17.</thead>
20.<tbody>
22.<s:iterator value="bookList" id="book">
23.<tr>
25.<td>
26.<s:checkboxname="selectedBooks" fieldValue="%{bookId}" />
27. <s:propertyvalue="#book.bookTitle" />
29.</td>

201CHAPTER 4: Building a Web Application Using Struts 2

30.<td>
31.<s:iterator value="#book.authors" id="author">
32.<s:if test="%{#book.id == #author.bookId}">
33.<s:property value="#author.firstName" />
34.<s:property value="#author.lastName" />
35.</s:if>
36.</s:iterator>
37.</td>
39.<td><s:property value="price" /></td>
40.</tr>
42.</s:iterator>
43.</tbody>
45</table>
47.</center>

49.<s:submit value="Add to the shopping cart" />
51.</s:form>
52.
53.</div>
54.</body>
 
Listing 4-45 illustrates the usage of Struts 2 tags and how Struts 2 OGNL is used to navigate the
property bookTitle on line 27 and the properties firstName and lastName (of the author) on
lines 33 and 34. Line 31 illustrates the usage of a simple and nested s:iterator. Line 26 allows the
user to select books to add to the shopping cart. The user can check the books to select and submit
them by clicking the button on line 49. When the user clicks the Add to Cart button, the action
name selectedbooksLink on line 8 and the bookId on line 26 are sent to the container, which is then
mapped to theAddToCartaction via struts.xml. The AddToCart action then stores the book to the cart
in the database, and the AddToCart action returns the String success, which is mapped via action
mapping in struts.xml and the tile in the tiles.xml file to the view selectedBooks.jsp. The user
can click the Purchase button on the selectedBooks.jsp page to call PurchaseAction in the same
manner. This chapter sketched a brief overview of Struts 2. For more detailed coverage of Struts 2,
I recommend Practical Apache Struts 2 Web 2.0 Projects by Ian Roughley.

Summary
In this chapter, you saw the Struts 2 framework’s core components, which follow the MVC design
pattern, and you saw how Struts 2separates the cross-cutting concerns by means of interceptors. You
saw how the Struts 2 framework provides a declarative architecture in two forms: XML and annotations.
In the next chapter, you will learn another action-oriented framework, called Spring Web MVC.

203

Chapter 5
Building Java Web Applications
with Spring Web MVC

Anything you can do, I can do Meta.

—Daniel Dennett

Mark Twain once said, “In the spring, I have counted 136 different kinds of weather.” Almost
certainly, he wasn’t referring to the Spring Framework. Or was he clairvoyant? The Spring
Framework has grown to become an ecosystem of projects; it includes many distinct modules,
integrates numerous frameworks and libraries, and provides a varied range of capabilities in diverse
areas such as Flash, enterprise applications, web services, data stores, OSGi,1 and even .NET.
Spring applications are supported on all popular cloud platforms such as Cloud Foundry,2 Google
App Engine, and Amazon EC23 and can leverage traditional RDBMSs as well as new NoSQL4
solutions and data stores like PostgreSQL,5 MySQL, MongoDB,6 and Redis.7 Unlike many other
frameworks such as Struts, which is confined to developing web applications, the Spring Framework
can be used to build stand-alone, web, and JEE applications. Spring provides support for building
modern web applications including REST, HTML5, and Ajax, as well as mobile client platforms
including Android and iPhone. The Spring Framework has remarkably changed the enterprise Java
landscape forever by connecting components with systems so that you do not have to write the
plumbing code, thus allowing you to focus on the business of the application.

1www.osgi.org/Main/HomePage
2www.cloudfoundry.com/
3http://aws.amazon.com/ec2/
4http://nosql-database.org/
5www.postgresql.org/
6www.mongodb.org/
7http://redis.io/

http://www.osgi.org/Main/HomePage
http://www.cloudfoundry.com/
http://aws.amazon.com/ec2/
http://nosql-database.org/
http://www.postgresql.org/
http://www.mongodb.org/
http://redis.io/

204 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Spring Framework Overview
The Spring Framework consists of features in these categories:

AOP and instrumentation	

Core container	

Data access/integration	

Web	

Test	

The modules in each of these categories are described in the following sections.

AOP and Instrumentation
The AOP and instrumentation category consists of the AOP, Aspects, and Instrumentation modules,
as described in Table 5-1.

Table 5-1.  AOP Modules

Module Description

AOP Spring’s AOP module provides an AOP Alliance-compliant aspect-oriented programming
implementation.

Aspects The Aspects module provides integration with AspectJ.

Instrumentation The Instrumentation module provides class instrumentation support and classloader
implementations.

Table 5-2.  Core Modules

Module Description

Beans The Beans module provides IoC and dependency injection features.

Core The Core module provides IoC and dependency injection features.

Context The Context module builds on the Core and Beans modules and adds support for
internationalization, event propagation, resource loading, EJB, and JMX.

Expression Language The Expression Language module provides the Spring expression language.

Core Container
The core container category consists of the Beans, Core, Context, and Expression Language
modules, as described in Table 5-2.

205CHAPTER 5: Building Java Web Applications with Spring Web MVC

Data Access/Integration
The data access/integration layer consists of the JDBC, ORM, OXM, JMS, and Transaction modules,
as described in Table 5-3.

Table 5-3.  Data Access/Integration Modules

Modules Description

JDBC The JDBC module provides a JDBC abstraction layer that removes the need to use pure JDBC.

ORM The ORM module provides integration for ORM frameworks, such as JPA, JDO, Hibernate,
and iBatis.

OXM The OXM module supports object/XML mapping implementations for JAXB, Castor,
XMLBeans, JiBX, and XStream.

JMS The JMS module provides features for producing and consuming messages.

Transaction The Transaction module supports programmatic and declarative transaction management.

Test
The test category consists of the Test module, as described in Table 5-4.

Table 5-4.  Test Module

Modules Description

Test The Test module supports the testing of Spring components with JUnit or TestNG.

Web
The web layer consists of the Web, Web-Servlet, Web-Struts, and Web-Portlet modules, as
described in Table 5-5.

Table 5-5.  Web Modules

Modules Description

Web Spring’s Web module provides basic web-oriented integration features and a web-oriented
application context. It also provides several remoting options such as Remote Method
Invocation (RMI), Hessian, Burlap, JAX-WS, and Spring’s own HTTP invoker.

Web-Servlet The Web-Servlet module contains Spring’s Model-View-Controller (MVC) implementation for
web applications.

Web-Struts The Web-Struts module provides support for integrating a classic Struts web tier within a
Spring application. Note that this support is now deprecated as of Spring 3.0.

Web-Portlet The Web-Portlet module provides the MVC implementation to be used in a portlet environment.

206 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Note  The core of the Spring Framework is based on the principle of Inversion of Control (IoC) that provides
injection of dependencies. However, Spring is not the only framework offering dependency injection
features; there are several other frameworks such as Seam8, Google Guice9, and JEE6 and newer that offer
dependency injection.

POJO Objects

Configured Objects

Configuration Metadata Spring loc
Container

Figure 5-1.  Spring IoC container

At the time of writing, Spring 3.2.2 is expected to be released; Spring 3.1 was released in
December 2011. Spring Framework 4.0 is expected by the end of 2013, with plans to support Java
SE 8, Groovy 2, and some aspects of Java EE 7.

Spring Framework Fundamentals
An application is composed of components such as web components and business logic
components. These components need to collaborate with each other to fulfill the common business
goals of the application, so these components depend on one another. This dependency, if uncontrolled,
often leads to tight coupling between them, resulting in an unmaintainable application. Controlling
this coupling so that it does not result in a tightly coupled application is a nontrivial task. By
contrast, if a component of the application does not depend on another component, it will not have
to look for it, all the components will be fully isolated, and the resulting application will be loosely
coupled. But such an application will not do anything. Essentially, components should depend on
other components but should not look for these components on which they depend. Instead, such
dependencies should be provided to the dependent components. This is the essence of Inversion of
Control. The Spring Framework is one such IoC framework, which provides the dependencies to the
dependent components by means of dependency injection.

8www.seamframework.org/
9http://code.google.com/p/google-guice/
10http://martinfowler.com/bliki/InversionOfControl.html

Note  IoC is based on the Hollywood principle10: “Don’t call us; we’ll call you.”

Figure 5-1 is a high-level view of how Spring works.

http://www.seamframework.org/
http://code.google.com/p/google-guice/
http://martinfowler.com/bliki/InversionOfControl.html

207CHAPTER 5: Building Java Web Applications with Spring Web MVC

As illustrated in Figure 5-1, the Spring IoC container produces fully configured application objects by
using application POJO objects and configuration metadata.

	Application POJO objects: In Spring, the application objects that are managed
by the Spring IoC container are called beans. A Spring bean is an object that is
instantiated, assembled, and managed by a Spring IoC container.

Note  In Spring, components are also called beans. The Spring beans are different from the JavaBeans
convention. The Spring beans can be any plain old Java objects (POJOs). A POJO is an ordinary Java object
without any specific requirements, such as extending a specific class or implementing a specific interface. 

	Configuration metadata: The configuration metadata specifies the objects that
comprise your application and the interdependencies between such objects.
The container reads the configuration metadata and figures out from it which
objects to instantiate, configure, and assemble. The container then injects those
dependencies when it creates the bean. The configuration metadata can be
represented by either XML, annotations, or Java code.

In terms of implementation, the Spring container can inject objects in arguments of instance and
static methods and can inject constructors via dependency injection. Say you have an application
that has a component called ClassA that depends on ClassB. In other words, ClassB is the
dependency. Your standard code would look like Listing 5-1.

Listing 5-1. Tightly Coupled Dependency

1. public class ClassA {
2. private ClassB classB;
3. public ClassA() {
4. classB = new ClassB();
5. }
6. }
 
We create a dependency between ClassA and ClassB in line 3-4 of Listing 5-1. This tightly couples
ClassA with ClassB. This tight coupling can be circumvented using IoC, and in order to that, first we
need to change the code in Listing 5-1 to Listing 5-2.

Listing 5-2.  Removing the Tight Coupling Between ClassA and ClassB

1. public class ClassA {
2. private ClassB classB;
3. public ClassA(ClassB classB) {
4. this.classB = classB;
5. }
6. }
 
As you can see in Listing 5-2, ClassB is implemented independently, and the Spring container
provides this implementation of ClassB to ClassA at the time of instantiation of ClassA, and the
dependency (in other words, class ClassB) is injected into class ClassA through a constructor. Thus,

208 CHAPTER 5: Building Java Web Applications with Spring Web MVC

the control has been removed from ClassA and kept elsewhere (that is, in an XML configuration file,
illustrated in Listing 5-3) and thus “inverted” by dependency injection (DI) because the dependency
is delegated to an external system, in other words, the configuration metadata. Listing 5-3 illustrates
a typical Spring configuration metadata file.

Listing 5-3.  Configuration Metadata

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. <beans xmlns="http://www.springframework.org/schema/beans"
 3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4. xsi:schemaLocation="http://www.springframework.org/schema/beans
 5. http://www.springframework.org/schema/beans/spring-beans-3.2.xsd">
 6.
 7.
 8. <bean id=" .." class=".."/>
 9.
10. <!-- more bean definitions -- >
11.
12. </beans>
 

	Line 2: To use tags such as <beans>, <bean>, and so on, certain namespaces
need to be declared. The core Spring Framework comes with ten configuration
namespaces. For now let’s concentrate on the beans namespace; as the
chapter progresses, other namespaces will be used. However, in this book we
require only the aop, beans, and context schemas, so if you are interested in
using others, you can find them at http://static.springsource.org/spring/
docs/3.2.2.RELEASE/spring-framework-reference/html/xsd-config.html.

	Line 2: When describing beans in an XML-based configuration, the root element
of the XML file is <beans> from Spring’s bean schema. The entire Spring
configuration, including <bean> declarations, is placed in the top-level <beans>.

	Line 8: <bean> is the most basic configuration unit in Spring. It tells Spring to
create an object for the application. These <bean> definitions correspond to the
actual objects that make up the application.

	Line 8: The id attribute is a string that helps identify the individual bean
definition. The class attribute defines the type of the bean and uses the fully
qualified class name. The value of the id attribute refers to the collaborating
objects.

Note  While XML is a classic way for defining configuration metadata, you can use annotations (from
Spring 2.5 and newer) or Java code (from Spring 3.0 and newer).

Listing 5-4 illustrates the bean definition that should be included in the configuration metadata file
illustrated in Listing 5-3 to inject the classB dependency in Listing 5-2.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
http://static.springsource.org/spring/docs/3.2.2.RELEASE/spring-framework-reference/html/xsd-config.html
http://static.springsource.org/spring/docs/3.2.2.RELEASE/spring-framework-reference/html/xsd-config.html

209CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-4.  Configuring Dependency

1. <!-- Definition for classA bean -->
2. <bean id="classA" class="ClassA">
3. <constructor-arg ref="classB"/>
4. </bean>
5.
6. <!-- Definition for classB bean -->
7. <bean id="classB" class="ClassB">
8. </bean>
 

	Line 2: This specifies the classA bean to be created and managed by the Spring
container.

	Line 3: <constructor-arg> configures bean properties via constructor injection
by declaring them in the elements.

	Line 7: This specifies that classB bean should be created and managed by the
Spring container.

The dependency injection depicted in Listing 5-4 is called constructor-based dependency injection.
Constructor-based DI is accomplished when the container invokes a class constructor with a
number of arguments, each representing a dependency on another class. There is another variant of
DI called setter-based dependency injection. In setter-based DI, the container, after invoking a no-
argument constructor or no-argument static factory method to instantiate your bean, calls the setter
methods on your beans. To use setter-based DI, you need to modify Listing 5-2 to look like Listing 5-5.

Listing 5-5.  Setter Method to Inject Dependency

 1. public class ClassA{
 2. private ClassB classB;
 3.
 4. // a setter method to inject the dependency.
 5. public void setClassB(ClassB classB) {
 6. this.classB = classB;
 7. }
 8. // a getter method to return classB
 9. public ClassB getClassB() {
10. return classB;
11. }
12.
13. }
 
In Listing 5-5, the DI takes place through setter methods of the ClassA class in which the ClassB
instance is created, and this instance is used to call setter methods to initialize ClassA’s properties.
Listing 5-6 illustrates the bean definition that should be included in the configuration metadata file
illustrated in Listing 5-3 to achieve the setter-based dependency injection required in Listing 5-5.

210 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-6.  Configuring Dependency Through Setter-Based DI

<bean id="classA" class="ClassA">
<property name="classB" ref="classB" />
</bean>
<bean id="classB" class="ClassB" />
 
The <property> tag defines a property for dependency injection. Listing 5-6 can be translated into
the Java code illustrated in Listing 5-7.

Listing 5-7.  Java Code Equivalent of Listing 5-6

ClassA classA = new ClassA();
ClassB classB = new ClassB();
classA.setClassB(classB); 

Tip  Constructor-based and setter-based DI can be used simultaneously, but it is recommended to use
constructor arguments for mandatory dependencies and setters for optional dependencies.

The Spring container is essentially a factory that creates objects encapsulating the creation of
objects and configures these objects using the configuration metadata that contains information
about the collaborating objects in the application that must be created. Spring provides two types of
IoC container implementation.

Bean factories (defined by the 	 org.springframework.beans.factory.
BeanFactory interface)

Application contexts (defined by the 	 org.springframework.context.
ApplicationContext interface)

Bean factories are the simplest of containers and provide basic support for DI. ApplicationContext
is a subinterface of BeanFactory that provides application framework services, such as the following:

The ability to resolve textual messages from a properties file	

The ability to publish application events to interested event listeners	

The application-layer specific contexts such as the 	 WebApplicationContext to be
used in the web tier

Note  Web applications have their own WebApplicationContext. The WebApplicationContext
will be explained when we discuss web-based Spring applications later in this chapter.

211CHAPTER 5: Building Java Web Applications with Spring Web MVC

Application Context
Spring comes with several implementations of the ApplicationContext interface out of the box.
The three most commonly used are the following:

	ClassPathXmlApplicationContext: Loads a context definition from an XML file
located in the class path

	FileSystemXmlApplicationContext: Loads a context definition from an XML file
in the file system

	XmlWebApplicationContext: Loads context definitions from an XML file
contained within a web application

In stand-alone applications, it is common to create an instance of ClassPathXmlApplicationContext
or FileSystemXmlApplicationContext.

Following Figure 5-1, you have to instantiate the Spring IoC container (ApplicationContext) for it to
create bean instances by reading their configurations (configuration metadata). Then, you can get
the bean instances from the IoC container to use.

Listing 5-8 illustrates the instantiation of the ClassPathXmlApplicationContext, an implementation
of ApplicationContext. The ClassPathXmlApplicationContext implementation builds an application
context by loading an XML configuration file from the class path.

Listing 5-8.  Instantiation of ClassPathXmlApplicationContext

ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
  
Listing 5-9 illustrates the instantiation of the FileSystemXmlApplicationContext.

Listing 5-9.  Instantiation of the FileSystemXmlApplicationContext

ApplicationContextcontext=new FileSystemXmlApplicationContext("c:/beans.xml");

Note  The FileSystemXmlApplicationContext looks for beans.xml in a specific location within the
file system, whereas ClassPathXmlApplicationContext looks for beans.xml anywhere in the class
path (including JAR files).

In the section that follows, you will learn how to use the application context when you create your
first Spring-based stand-alone application.

212 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Key Objectives of the Spring Framework
Dependency injection is not the only key benefit of using the Spring Framework. The goal of
the Spring Framework is to simplify the complexity of developing an enterprise application. This
complexity manifests itself in an enterprise application in several ways, and most enterprise
applications prior to the Spring Framework were inadvertently afflicted with few or even all of the
following tribulations:

Tight coupling	

Cross-cutting concerns	

Boilerplate code	

Fundamentally, Spring enables you to build applications from POJOs and apply enterprise services
nonintrusively to POJOs so that the domain model has no dependencies on the framework itself.
Thus, the driving force behind the Spring Framework was to promote best practices in Java EE
development by enabling a POJO-based programming model.

Dealing with Tight Coupling Using Dependency Injection
Now let’s see how Spring enables loose coupling through dependency injection with the help of a
simple stand-alone application. The code for this application is available in a downloadable archive
on the Apress web site. In addition, this application will be a preamble into the Spring forest. Listing
5-10, 5-11, and 5-12 illustrate the hierarchy of service provider objects and the dependencies of the
VehicleService illustrated in Listing 5-13.

Listing 5-10.  Vehicle Interface

public interface Vehicle {
public String drive();
} 

Listing 5-11.  Vehicle Implementation: Bike

public class Bike implements Vehicle{
 public String drive() {
 return " driving a bike";
 }
} 

Listing 5-12.  Vehicle Implementation: Car

public class Car implements Vehicle {
 
 public String drive() {
 return " driving a car";
 }
}
 
These service provider objects are used by the class VehicleService, as illustrated in Listing 5-13,
which is then used by the client object, as illustrated in Listing 5-14.

213CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-13.  Vehicle Service

 1. public class VehicleService {
 2.
 3. private Vehicle vehicle = new Bike();
 4.
 5. public void driver() {
 6. System.out.println(vehicle.drive());
 7.
 8. }
 9.
10. }
 

	Line 3: In Listing 5-13, class Bike is the dependency of class VehicleService
and is instantiated on line 3. This is a case of tight coupling because the class
VehicleService is implementation-aware of the Vehicle object, which is Bike in
this case.

Listing 5-14 illustrates the stand-alone VehicleApp.

Listing 5-14.  Stand-Alone VehicleApp

1. public class VehicleApp {
2. public static void main(String[] args) {
3. VehicleService service = new VehicleService();
4. service.driver();
5. }
6. }
 
As illustrated in Listing 5-14, VehicleService is implementation-aware of the Vehicle object and
hence tightly coupled to it. Now let’s decouple this application through the Spring Framework’s DI.
The first step is to create a Java project using the Eclipse IDE. Select File ➤ New ➤ Project and
then select Java Project Wizard from the wizard list. Name your project looselyCoupledApplication
using the wizard, as illustrated in Figure 5-2.

214 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Now you need to add the Spring Framework and common logging API libraries in your project.
You can download the Spring Framework libraries from http://projects.spring.io/spring-framework/.
You can use Maven as explained in the previous chapter to configure the Spring Framework in your
project. When using Maven, you need to add following to your pom.xml file:
 
<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>3.2.5.RELEASE</version>
 </dependency>
</dependencies>
 
Using Maven is much easier, but to know which key libraries are used for the three applications
you will make in this section, you can manually configure the libraries in Eclipse. These libraries are
available in the downloadable archive available from the Source Code/Download tab on the book’s
Apress webpage (www.apress.com/9781430259831).

Figure 5-2.  Creating the Java project

http://projects.spring.io/spring-framework/
http://www.apress.com/9781430259831

215CHAPTER 5: Building Java Web Applications with Spring Web MVC

To add the Spring Framework to your project, right-click your project and select Build Path ➤ Configure
Build Path to display the Java Build Path window as illustrated in Figure 5-3. Now add the external
JARs that you downloaded in your file system from the Apress website.

Figure 5-3.  Adding external JARs

Now let’s create actual source files under the looselyCoupledApplication project. First we need to
create a package called com.apress.decoupled. To do this, right-click src in the Package Explorer
section, select New ➤ Package, and create the package com.apress.decoupled. Then create
Vehicle.java, Car.java, and Bike.java, which is the code illustrated in Listings 5-10, 5-11,
and 5-12, under the com.apress.decoupled package.

Then create the class VehicleService as illustrated in Listing 5-15.

Listing 5-15.  Loosely Coupled VehicleService

1. package com.apress.decoupled;
2.
3. public class VehicleService {
4.
5. private Vehicle vehicle;
6.
7. public void setVehicle(Vehicle vehicle) {
8. this.vehicle = vehicle;
9. }

216 CHAPTER 5: Building Java Web Applications with Spring Web MVC

10.
11. public void driver() {
12. System.out.println(vehicle.drive());
13.
14. }
15.
16. }
17.
 

	Line 7: In Listing 5-15, we have removed total control from the class
VehicleService and kept it in the XML configuration file, and the dependency is
being injected into the class VehicleService through a setter method on line 7.

Now create a client class VehicleApp, as illustrated in Listing 5-16.

Listing 5-16.  Vehicle Application

 1. package com.apress.decoupled;
 2. import org.springframework.context.ApplicationContext;
 3. import org.springframework.context.support.ClassPathXmlApplicationContext;
 4.
 5. public class VehicleApp {
 6.
 7. public static void main(String[] args) {
 8. ApplicationContext context = new ClassPathXmlApplicationContext(
 9. "beans.xml");
10. VehicleService contestService = (VehicleService) context
11. .getBean("vehicleService");
12. contestService.driver();
13. }
14.
15. }
 

	Lines 8 to 9: These lines instantiate the application context and pass the
configuration file.

	Lines 10 to 11: These lines get the bean from the configuration file. To get a
declared bean from a bean factory or an application context, you make a call to
the getBean() method, pass in the unique bean name, and cast the return type
to its actual type before using it.

Now, you need to create a bean configuration file, which is an XML file (as illustrated in Listing 5-17),
that connects the beans.

Listing 5-17.  Configuration File

1. <?xml version="1.0" encoding="UTF-8"?>
2. <beans xmlns="http://www.springframework.org/schema/beans"
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4. xsi:schemaLocation="http://www.springframework.org/schema/beans
5. http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
6. <bean id="car" class="com.apress.decoupled.Car" />

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

217CHAPTER 5: Building Java Web Applications with Spring Web MVC

 7. <bean id="bike" class="com.apress.decoupled.Bike" />
 8. <bean id="vehicleService" class="com.apress.decoupled.VehicleService">
 9. <property name="vehicle">
10. <ref local="car" />
11. </property>
12. </bean>
13. </beans>
 
You can choose any name you like for beans.xml. You have to make sure that this file is available in
CLASSPATH and use the same name in the main application while creating the application context, as
shown in the VehicleApp.java file. Figure 5-4 shows the directory structure of the application.

Figure 5-4.  Directory structure

Addressing Cross-Cutting Concerns Using AOP
A separation of concerns is achieved in Spring by means of aspect-oriented programming (AOP).
AOP encapsulates the cross-cutting concerns in separate, reusable components called aspects
and adds them to the application. This process is called weaving. This results in the cohesive
components that concentrate on the business functions and are totally unaware of system services
such as logging, security, transaction, and so on. To understand how aspects can be applied in
Spring, you will now create a simple BookService that retrieves a list of all books, adding a basic
logging aspect to the BookService. The code for this application is available in a downloadable
archive on the Apress web site. Listing 5-18 illustrates the BookService.

218 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-18.  BookService Interface

package com.apress.aop;
 
import java.util.List;
 
public interface BookService {
 public List<Book> getAllBooks();
 
}
 
Listing 5-19 illustrates the implementation of this BookService.

Listing 5-19.  BookService Implementation

 1. package com.apress.aop;
 2.
 3. import java.util.ArrayList;
 4. import java.util.List;
 5.
 6. public class BookServiceImpl implements BookService{
 7. private static List<Book> bookList;
 8. static {
 9.
10. Book book1 = new Book();
11. book1.setId((long)1);
12. book1.setBookTitle("Modern Java");
13.
14. Book book2 = new Book();
15. book2.setId((long)2);
16. book2.setBookTitle("Beginning Groovy");
17.
18. Book book3 = new Book();
19. book3.setId((long)2);
20. book3.setBookTitle("Beginning Scala");
21.
22. bookList = new ArrayList<Book>();
23. bookList.add(book1);
24. bookList.add(book2);
25. bookList.add(book3);
26. }
27.
28.
29. public List<Book> getAllBooks() {
30. for(Book b: bookList){
31. System.out.println("Books:"+b.getBookTitle());
32. }
33. return bookList;
34. }
35. }
 

219CHAPTER 5: Building Java Web Applications with Spring Web MVC

Logging is not the concern of BookServiceImpl. For logging, create an aspect as illustrated in
Listing 5-20 that will be woven into the BookService object, providing the logging wherever needed.

Listing 5-20.  Aspect for Logging

 1. package com.apress.aop;
 2.
 3. public class LoggingAspect {
 4. public void logBefore() {
 5.
 6. System.out.println("Before calling getAllBooks");
 7. }
 8.
 9. public void logAfter() {
10. System.out.println("After calling getAllBooks");
11. }
12. }
13.
 

	Line 3: LoggingAspect is a simple class with two methods.

	Line 4: The logBefore() method that should be invoked before getAllBooks()
is called.

	Line 9: the logAfter() method that should be invoked after the getAllBooks()
is called.

The LoggingAspect does its job without the BookServiceImpl asking it to do so. Furthermore,
because the BookServiceImpl does not need to know about the LoggingAspect, you are not
required to inject the LoggingAspect into the BookServiceImpl. This removes the unneeded
complexity from the BookServiceImpl code of having to inject LoggingAspect and having to check
whether LoggingAspect is null. As you may have noticed, LoggingAspect is a POJO. It becomes
an aspect when it is declared as an aspect in the Spring context. LoggingAspect can be applied
to the BookServiceImpl without the BookServiceImpl needing to explicitly call on it. In fact,
BookServiceImpl remains totally unaware of LoggingAspect’s existence. To make LoggingAspect
work as an aspect, all you need to do is declare it as one in the Spring configuration file.
Listing 5-21 illustrates the application context XML file that declares LoggingAspect as an aspect.

Listing 5-21.  Configuration File

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. <beans xmlns="http://www.springframework.org/schema/beans"
 3. �xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context=

"http://www.springframework.org/schema/context"
 4. xmlns:aop="http://www.springframework.org/schema/aop"
 5. xsi:schemaLocation="http://www.springframework.org/schema/beans
 6. http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
 7. http://www.springframework.org/schema/context
 8. http://www.springframework.org/schema/context/spring-context-3.2.xsd
 9. http://www.springframework.org/schema/aop
10. http://www.springframework.org/schema/aop/spring-aop-3.2.xsd">
11.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.2.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.2.xsd

220 CHAPTER 5: Building Java Web Applications with Spring Web MVC

12.
13. <bean id="bookService" class="com.apress.aop.BookServiceImpl"/>
14.
15. <bean id="logAspect" class="com.apress.aop.LoggingAspect"/>
16.
17. <aop:config>
18. <aop:aspect ref = "logAspect">
19. <aop:pointcut id = "log"
20. expression="execution(* *.getAllBooks())" />
21. <aop:before pointcut-ref = "log"
22. method="logBefore" />
23. <aop:after pointcut-ref = "log"
24. method="logAfter" />
25. </aop:aspect>
26. </aop:config>
27. </beans>
 

	Lines 9 to 10: You use Spring’s aop configuration namespace to declare that the
LoggingAspect bean is an aspect.

	Line 15: You declare the LoggingAspect as a bean. Even if the Spring Framework
transforms a POJO to an aspect by declaring it as an aspect in the context, it
still has to be declared as a Spring <bean>.

	Line 18: Then you refer to that bean in the <aop:aspect> element.

	Lines 19 to 20: The pointcut is defined in the preceding <pointcut> element with
an expression attribute set to select where the advice should be applied. The
expression syntax is AspectJ’s pointcut expression language.

	Lines 21 to 22: You declare (using <aop:before>) that before the getAllBooks()
method is executed, the LoggingAspect’s logBefore method should be called.
This is called before advice. The pointcut-ref attribute refers to a pointcut
named log.

	Lines 23 to 24: You (using <aop:after>) declare that the logAfter method should
be called after getAllBooks() has executed. This is known as after advice. The
pointcut-ref attribute refers to a pointcut named log.

Listing 5-22 illustrates the stand-alone Java application.

Listing 5-22.  Stand-Alone Java Application

1. package com.apress.aop;
2. import org.springframework.context.ApplicationContext;
3. import org.springframework.context.support.ClassPathXmlApplicationContext;
4.
5. public class Driver {
6.
7. public static void main(String...args){
8. ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
9.

221CHAPTER 5: Building Java Web Applications with Spring Web MVC

10. BookService bookService = (BookService)context.getBean("bookService");
11. bookService.getAllBooks();
12.
13. }
14. }
 
Figure 5-5 illustrates the directory structure of this application.

Figure 5-5.  Directory structure

Thus, Spring AOP can be employed to provide services such as transactions and security
declaratively without tangling up your code that, in first place, should remain concerned only with its
business functions.

Removing Boilerplate Code Using Templates
In Chapter 1 we built the data access layer of the bookstore application and used pure JDBC in the
BookDAOImpl to connect to the database. In this section, you will see how the Spring Framework, by
means of Spring’s JDBCTemplate, transforms the BookDAOImpl, eliminating the boilerplate code that
results from using pure JDBC to obtain a connection to a data store, and cleans up resources. The
code for this application is available in the downloadable archive on the Apress web site. Listing 5-23
illustrates the BookService.

222 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-23.  BookService

package com.apress.books.service;
 
import java.util.List;
 
import com.apress.books.model.Book;
 
public interface BookService {
 public List<Book> getAllBooks();
 
}
 
Listing 5-24 illustrates the BookService implementation.

Listing 5-24.  BookService Implementation

package com.apress.books.service;
 
import java.util.List;
 
import com.apress.books.dao.BookDAO;
import com.apress.books.model.Book;
 
public class BookServiceImpl implements BookService{
 
 private BookDAO bookDao ;
  
 public void setBookDao(BookDAO bookDao) {
 this.bookDao = bookDao;
 }
  
 public List<Book> getAllBooks() {
 List<Book> bookList = bookDao.findAllBooks();
 
 return bookList;
 }
}
 
Listing 5-25 illustrates the BookDAO.

Listing 5-25.  BookDAO

package com.apress.books.dao;
 
import java.util.List;
 
import com.apress.books.model.Book;
import com.apress.books.model.Category;
 

223CHAPTER 5: Building Java Web Applications with Spring Web MVC

public interface BookDAO {
 public List<Book> findAllBooks();
 
}
 
Listing 5-26 illustrates the BookDAO implementation.

Listing 5-26.  BookDAO Implementation

 1. package com.apress.books.dao;
 2.
 3. import java.sql.Connection;
 4. import java.sql.DriverManager;
 5. import java.sql.PreparedStatement;
 6. import java.sql.ResultSet;
 7. import java.sql.SQLException;
 8. import java.sql.Statement;
 9. import java.util.ArrayList;
10. import java.util.List;
11.
12. import javax.sql.DataSource;
13.
14. import org.springframework.beans.factory.annotation.Autowired;
15. import org.springframework.jdbc.core.JdbcTemplate;
16.
17. import com.apress.books.model.Author;
18. import com.apress.books.model.Book;
19. import com.apress.books.model.Category;
20.
21. public class BookDAOImpl implements BookDAO {
22.
23.
24. DataSource dataSource;
25.
26.
27. public void setDataSource(DataSource dataSource) {
28. this.dataSource = dataSource;
29. }
30.
31. public List<Book> findAllBooks() {
32. List<Book> bookList = new ArrayList<>();
33.
34. String sql = "select * from book inner join author on book.id = author.book_id";
35.
36. JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
37. bookList = jdbcTemplate.query(sql, new BookRowMapper());
38. return bookList;
39. }
40.
41. }
 

224 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Compare this findAllBooks() method of BookDAOImpl with the findAllBooks() method of Chapter 1,
and you will see that JDBCTemplate eliminates the boilerplate code that results from using pure JDBC
to obtain a connection to our data store and cleans up resources.

	Line 36: This creates a JDBCTemplate using the data source passed to it.
Note the JDBCTemplate is instantiated this way for the sake of explanation. In a
production ready application you should inject JDBCTemplate as a dependency
like any other dependency as explained in Listing 5-15.

	Line 37: A row mapper implementation is used. The BookRowMapper is explained next.

Listing 5-27 illustrates the BookRowMapper object to query one or more rows and then transform each
row into the corresponding domain object instead of retrieving a single value.

Listing 5-27.  The BookMapper Object

 1. package com.apress.books.dao;
 2.
 3. import java.sql.ResultSet;
 4. import java.sql.SQLException;
 5.
 6. import org.springframework.jdbc.core.RowMapper;
 7.
 8. import com.apress.books.model.Book;
 9.
10. public class BookRowMapper implements RowMapper<Book> {
11.
12. @Override
13. public Book mapRow(ResultSet resultSet, int line) throws SQLException {
14. BookExtractor bookExtractor = new BookExtractor();
15. return bookExtractor.extractData(resultSet);
16. }
17.
18. }
 

	Line 10: Spring’s RowMapper<T> interface (under the package
org.springframework.jdbc.core) provides a simple way for you to perform
mapping from a JDBC resultset to POJOs.

	Line 14: This uses BookExtractor to extract the data.

Listing 5-28 illustrates the BookExtractor object.

Listing 5-28.  BookExtractor Object

 1. package com.apress.books.dao;
 2.
 3. import java.sql.ResultSet;
 4. import java.sql.SQLException;
 5. import java.util.ArrayList;
 6. import java.util.List;
 7.

225CHAPTER 5: Building Java Web Applications with Spring Web MVC

 8. import org.springframework.dao.DataAccessException;
 9. import org.springframework.jdbc.core.ResultSetExtractor;
10.
11. import com.apress.books.model.Author;
12. import com.apress.books.model.Book;
13.
14. public class BookExtractor implements ResultSetExtractor<Book> {
15.
16. public Book extractData(ResultSet resultSet) throws SQLException,
17. DataAccessException {
18.
19. Book book = new Book();
20. Author author = new Author();
21. List<Author> authorList = new ArrayList<>();
22.
23. book.setId(resultSet.getLong(1));
24. book.setCategoryId(resultSet.getLong(2));
25. book.setBookTitle(resultSet.getString(3));
26. book.setPublisherName(resultSet.getString(4));
27. book.setAuthorId(resultSet.getLong(5));
28. author.setBookId(resultSet.getLong(6));
29. author.setFirstName(resultSet.getString(7));
30. author.setLastName(resultSet.getString(8));
31. authorList.add(author);
32. book.setAuthors(authorList);
33.
34. return book;
35. }
36.
37. }
 

	Line 14: BookExtractor implements ResultSetExtractor provided by Spring
(under the package org.springframework.jdbc.core). The RowMapper is suitable
only for mapping to a single domain object. But since we are joining two tables
in Listing 5-26 on line 34, we need to use the ResultSetExtractor interface to
transform the data to a nested domain object.

Listing 5-29 illustrates the configuration file for this stand-alone application.

Listing 5-29.  Configuration File

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. <beans xmlns="http://www.springframework.org/schema/beans"
 3. �xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context=

"http://www.springframework.org/schema/context"
 4. xmlns:aop="http://www.springframework.org/schema/aop"
 5. xsi:schemaLocation="http://www.springframework.org/schema/beans
 6. http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
 7. http://www.springframework.org/schema/context
 8. http://www.springframework.org/schema/context/spring-context-3.2.xsd
 9. http://www.springframework.org/schema/aop
10. http://www.springframework.org/schema/aop/spring-aop-3.2.xsd">
11.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.2.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.2.xsd

226 CHAPTER 5: Building Java Web Applications with Spring Web MVC

12. <!-- telling container to take care of annotations stuff -->
13. <context:annotation-config />
14.
15. <!-- declaring base package -->
16. <context:component-scan base-package="com.apress.books" />
17.
18.
19. <bean id="dao" class="com.apress.books.dao.BookDAOImpl" >
20. <property name="dataSource" ref="dataSource">
21. </property>
22. </bean>
23.
24. <bean id="service" class="com.apress.books.service.BookServiceImpl">
25. <property name="bookDao" ref="dao">
26. </property>
27. </bean>
28.
29. <bean id="dataSource"
30. class="org.springframework.jdbc.datasource.DriverManagerDataSource">
31. <property name="driverClassName" value="com.mysql.jdbc.Driver" />
32. <property name="url" value="jdbc:mysql://localhost:3306/books" />
33. <property name="username" value="root" />
34. <property name="password" value="password" />
35. </bean>
36. </beans>
 

	Line 20: Configures dao with the data source

In this way, the Spring Framework eliminates the boilerplate code. Now with a stand-alone Java
application you can query the new data access layer that we built using the Spring Framework.
Listing 5-30 illustrates the stand-alone Java application that queries the data access through the
service-layer component BookService.

Listing 5-30.  Stand-Alone Application

package com.apress.books.client;
import java.util.List;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.apress.books.model.Book;
import com.apress.books.service.BookService;
 
public class BookApp {
 
 public static void main(String[] args) {
 ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
 BookService bookService = (BookService)context.getBean("service");
 // List all books
 System.err.println("Listing all Books:");
 List<Book> bookList= bookService.getAllBooks();

227CHAPTER 5: Building Java Web Applications with Spring Web MVC

 for(Book b: bookList){
 System.out.println(b.getId()+"--"+b.getBookTitle());
 }
 }
}
 
In this section, you learned the key objectives of the Spring Framework, which aims to simplify the
complexity that trickles into any enterprise application via tight coupling, cross-cutting concerns,
and boilerplate code. In the next section, we will implement the web layer using the Web MVC
module of the Spring Framework.

Building Web Application with Spring Web MVC
In Chapter 1, Spring Web MVC provided the Model-View-Controller architecture and myriad of
components that together help you develop loosely coupled web applications built on the Spring
IoC container.

Spring Web MVC Architecture
Spring’s Web MVC framework, like many other web MVC frameworks, is request-driven, designed
around a central servlet called DispatcherServlet that dispatches requests to controllers and
offers other functionality that facilitates the development of web applications. DispatcherServlet
implements one of the Java EE web-tier patterns, called Front Controller. As such,
DispatcherServlet acts as the front controller of the Spring MVC framework, and every web request
has to go through it so that it can control and administer the entire request-handling process. The
request-processing workflow of the Spring Web MVC DispatcherServlet is illustrated in Figure 5-6.

Handler Mapping

Controller

Request

Request

Request

ModelAndView

Controller

View Resolver

View

View Name

View

Model

Response

Response

Dispatcher
 Servlet

Figure 5-6.  Request-processing workflow of the Spring Web MVC DispatcherServlet

228 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Following from Figure 5-6, the high-level overview of the workflow is as follows:

1.	 The client sends a request to the web container in the form of an HTTP request.

2.	 DispatcherServlet intercepts the request to figure out the appropriate
handler mappings.

3.	 With the help of handler mappings thus figured out, the DispatcherServlet
dispatches the request to the appropriate controller.

4.	 The controller processes the request and returns the model and view objects
to DispatcherServlet in the form of a ModelAndView instance.

5.	 DispatcherServlet then resolves the View (which can be JSP, FreeMarker,
Velocity, and so on) by consulting the ViewResolver object.

6.	 The selected view is then rendered back to the client.

DispatcherServlet is the heart of Spring Web MVC framework, but before you dive into
DispatcherServlet, first you must look at ApplicationContext in a web application. As mentioned
earlier, a web application has its own specialized WebApplicationContext that must be loaded before
DispatcherServlet is initialized. When the Spring Web MVC application starts and before the web
application is ready to serve the requests, the WebApplicationContext and DispatcherServlet come
into action, as explained here:

1.	 The servlet container initializes the web application and then triggers the
contextInitialized event, which is listened to by the ContextLoaderListener.

2.	 ContextLoaderListener creates the root WebApplicationContext.

3.	 The DispatcherServlet is initialized, creating its own WebApplicationContext
and nesting it inside the root WebApplicationContext.

4.	 DispatcherServlet searches for components such as ViewResolvers and
HandlerMappings. If a component is found, it will be initialized; otherwise, the
default for the component is initialized.

You will look at these steps in greater detail in the sections that follow.

WebApplicationContext
In web applications, the ApplicationContext used is called WebApplicationContext, and it
is a specialized ApplicationContext that is aware of the servlet environment. It is the root
ApplicationContext in a web application and must be loaded before DispatcherServlet initializes
to ensure that all of the services such as the data source are available that are required by the web
application. WebApplicationContext is configured in the web.xml file using ContextLoaderListener,
as illustrated in Listing 5-31.

229CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-31.  Configuring ContextLoaderListener in web.xml

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>
 
By default, ContextLoaderListener loads the application context file stored in your WEB-INF directory.
This location can be overridden by defining the contextConfigLocation context parameter in
web.xml, as shown in Listing 5-32.

Listing 5-32.  File Locations Using the contextConfigLocation Parameter

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
classpath:service-context.xml
classpath:data-access-context.xml
</param-value>
</context-param>
 
At this point, the configuration of WebApplicationContext in web.xml looks like Listing 5-33.

Listing 5-33.  Web.xml with ContextLoaderListener and contextConfigLocation

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
classpath:service-context.xml
classpath:data-access-context.xml
</param-value>
</context-param>
<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener> 

Note  ContextLoaderListener by default looks for a /WEB-INF/applicationContext.xml file if
you do not specify a <context-param> named contextConfigLocation.

Now that you know how to configure WebApplicationContext in a web application, we can move on
to the second object, DispatcherServlet, that is configured in the web.xml file.

230 CHAPTER 5: Building Java Web Applications with Spring Web MVC

The DispatcherServlet
Like any servlet, DispatcherServlet needs to be configured in web.xml to be able to handle requests.
Configuring and using the DispatcherServlet requires the following:

1.	 You have to indicate to the container to load DispatcherServlet and map it to
URL patterns.

2.	 After the DispatcherServlet is loaded, it creates its own
org.springframework.web.context.WebApplicationContext.

3.	 The DispatcherServlet then detects the SpringMVC components from this
application context, and if not found, it will use the default. These SpringMVC
components and their defaults will be explained later.

4.	 DispatcherServlet then delegates tasks to each of the SpringMVC
components (or their defaults) depending on the request.

Note  DispatcherServlet creates its own WebApplicationContext, which contains the web-specific
components such as Controllers and ViewResolver. This WebApplicationContext is then nested inside
the root WebApplicationContext, which is loaded before the DispatcherServlet is initialized to ensure
that the web components in WebApplicationContext of DispatcherServlet can find their dependencies.

DispatcherServlet, like any other servlet, is declared in the web.xml file of your web application.
You need to map requests that you want DispatcherServlet to handle, by using a URL mapping in
the same web.xml file. Listing 5-34 illustrates a DispatcherServlet declaration and mapping.

Listing 5-34.  Declaring and Mapping DispatcherServlet

<web-app>
<servlet>
<servlet-name>bookstore</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>bookstore</servlet-name>
<url-pattern>/bookstore/*</url-pattern>
</servlet-mapping>
</web-app>
 
In a Servlet 3.0 and newer environment, you can also use WebApplicationInitializer, an interface
provided by the Spring MVC framework, to configure the servlet container programmatically.
Listing 5-35 illustrates the programmatic equivalent of the previous web.xml example.

231CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-35.  Programmatic Equivalent of Listing 5-43

public class ExampleWebApplicationInitializer implements WebApplicationInitializer {
 @Override
 public void onStartup(ServletContext container) {
 �ServletRegistration.Dynamic registration = container.addServlet("dispatcher",

new DispatcherServlet());
 registration.setLoadOnStartup(1);
 registration.addMapping("/bookstore/*");
 }
}
 
By default, DispatcherServlet looks for a file named WEB-INF/<servlet-name>-servlet.xml,
where <servlet-name> is replaced with the value declared in web.xml in the <servlet-name> tag.
DispatcherServlet uses this <servlet-name>-servlet.xml file to create WebApplicationContext.

Spring MVC Components
As mentioned earlier, DispatcherServlet searches the SpringMVC components from the
WebApplicationContext it created, and if not found, it uses the default. These Spring MVC
components are expressed as interfaces. Table 5-6 gives an overview of all the main component
types involved in the request-processing workflow.

Table 5-6.  Spring MVC Components

Bean type Explanation

HandlerMapping Maps incoming requests to handlers and interceptors

HandlerAdapter For extending DispatcherServlet to customize the web workflow

HandlerExceptionResolver Maps exceptions to views

ViewResolver Resolves logical view names to actual views

LocaleResolver Resolves the locale a client is using for internationalized views

ThemeResolver Resolves themes for personalizing layouts

MultipartResolver Parses multipart for file uploads

FlashMapManager Supports FlashMap to pass attributes from one request to another

The Spring DispatcherServlet uses Spring MVC components that need to be configured in
WebApplicationContext to process requests. However, if you don’t configure these components,
Spring Web MVC uses the default. Table 5-7 lists the default implementation of the components.

232 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Table 5-7.  The DispatcherServlet’s Default Components

Component Default Implementation

MultipartResolver No default; explicit configuration required

LocaleResolver AcceptHeaderLocaleResolver

ThemeResolver FixedThemeResolver

HandlerMapping BeanNameUrlHandlerMapping
DefaultAnnotationHandlerMapping

HandlerAdapter HttpRequestHandlerAdapter
SimpleControllerHandlerAdapter
AnnotationMethodHandlerAdapter

HandlerExceptionResolver AnnotationMethodHandlerExceptionResolver
ResponseStatusExceptionResolver
DefaultHandlerExceptionResolver

RequestToViewNameTranslator DefaultRequestToViewNameTranslator

ViewResolver InternalResourceViewResolver

FlashMapManager SessionFlashMapManager

Getting Started with a Spring Web MVC Application
In this section, I will walk you through the steps of creating a Hello World Spring MVC application
using Spring Tool Suite (an Eclipse-based IDE). You will learn the fundamental concepts of Spring
MVC while building the sample application. The tools used in this application include the following:

Spring Framework 3.2.1	

Spring Tool Suite IDE 3.2.0 (based on Eclipse Juno 4.2.2)	

vFabric tc Server Developer Edition v2.8 (based on Apache Tomcat and 	
optimized for Spring applications)

Spring Tool Suite (STS) is an Eclipse-based IDE that is actively developed and maintained by
the SpringSource community. STS provides project templates such as Spring Batch, Spring
Integration, Spring Persistence (Hibernate + JPA), Spring MVC, and so on. In addition, STS always
gets the latest update of Spring artifacts from the Maven repository.

You can choose to download and install STS in one of three ways:

Download and install STS from the installer program.	

Install STS through an Eclipse update.	

Download and extract the zip archive.	

Start STS in your own workspace. From the main menu, select File ➤ New ➤ Spring Template
Project (see Figure 5-7).

233CHAPTER 5: Building Java Web Applications with Spring Web MVC

In the New Template Project dialog, select Spring MVC Project (see Figure 5-8).

Figure 5-7.  Selecting a SpringTemplate project

Figure 5-8.  Selecting a SpringMVC project

234 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Figure 5-9.  Downloading the update

Figure 5-10.  New Spring MVC Project dialog

Click Yes to download the update, which should bring up the New Spring MVC Project dialog.

Enter the following information in the window illustrated in Figure 5-10:

	Project name: helloworld

	Top-level package: com.apress.helloworld

Click Next, which requires downloading an update of the template, as shown in Figure 5-9 (for the
first time you use this template or whenever an update is available).

235CHAPTER 5: Building Java Web Applications with Spring Web MVC

Click Finish, and STS will create a Spring MVC-based project with some defaults for the controller,
views, and configuration. We didn’t write any lines of code yet, but the application is ready to be
deployed and run.

Right-click in the Servers view and select New ➤ Server.

In the New Server dialog, select VMware ➤ VMware vFabric tc Server..., as shown in Figure 5-11.

Figure 5-11.  Defining a new server

Click Next. On the next screen, keep the option “Create new instance” selected (see Figure 5-12).

236 CHAPTER 5: Building Java Web Applications with Spring Web MVC

Click Next. On the next screen, type tcServer as name for the new instance and select base as the
template (see Figure 5-13).

Figure 5-12.  Creating a new instance

237CHAPTER 5: Building Java Web Applications with Spring Web MVC

Add helloworld and click Finish to complete the server setup (see Figure 5-14). Now deploy the
helloworld application.

Figure 5-13.  Specifying instance parameters

238 CHAPTER 5: Building Java Web Applications with Spring Web MVC

The application is deployed on the server if we see it under the server name, as illustrated in Figure 5-15.

Figure 5-14.  Configuring resources on the server

Figure 5-15.  Deployed application

Start the server and run the application using the URL http://localhost:8080/helloworld
(see Figure 5-16).

http://localhost:8080/helloworld

239CHAPTER 5: Building Java Web Applications with Spring Web MVC

Now let’s explore what has been created by the Spring MVC Project template. Expand the branches
in the Project Explorer view to see how the project is structured, as illustrated in Figure 5-17.

Figure 5-16.  Running the application

Figure 5-17.  Directory structure of the Hello World application

240 CHAPTER 5: Building Java Web Applications with Spring Web MVC

We will go through each of the components illustrated in Figure 5-17. Figure 5-18 illustrates the
content of the generated web.xml file.

Figure 5-18.  Generated web.xml

This is the typical configuration for a Spring MVC-based application with a declaration for the following:

Spring’s 	 ContextLoaderListener

Spring’s 	 DispatcherServlet

Spring configuration file 	 root-context.xml

Spring configuration file 	 servlet-context.xml

The URL mapping for Spring’s 	 DispatcherServlet

We will look at the use of each one of these, but before that, we will modify web.xml. In the Spring
MVC template project, the web.xml file it generates supports Servlet 2.5. In this chapter, we will use
Servlet 3.0 (the tcServer that comes with STS is built on top of Apache Tomcat 7, which already
supports Servlet 3.0), so we need to change the XML header from 2.5 to 3.0 too. Listing 5-36 shows
the revised <web-app> tag.

241CHAPTER 5: Building Java Web Applications with Spring Web MVC

Listing 5-36.  The Web Deployment Description for Spring MVC

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. �<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"
 3. �xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 4. version="3.0">
 5.
 6. <!-- The definition of the Root Spring Container shared by all Servlets and Filters -->
 7. <context-param>
 8. <param-name>contextConfigLocation</param-name>
 9. <param-value>/WEB-INF/spring/root-context.xml</param-value>
10. </context-param>
11.
12. <!-- Creates the Spring Container shared by all Servlets and Filters -->
13. <listener>
14. <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
15. </listener>
16.
17. <!-- Processes application requests -->
18. <servlet>
19. <servlet-name>appServlet</servlet-name>
20. <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
21. <init-param>
22. <param-name>contextConfigLocation</param-name>
23. <param-value>/WEB-INF/spring/appServlet/servlet-context.xml</param-value>
24. </init-param>
25. <load-on-startup>1</load-on-startup>
26. </servlet>
27.
28. <servlet-mapping>
29. <servlet-name>appServlet</servlet-name>
30. <url-pattern>/</url-pattern>
31. </servlet-mapping>
32.
33. </web-app>
 

	Lines 2 to 4: In the <web-app> tag, the version attribute and the corresponding
URL are changed to version 3.0 to indicate to the web container that the web
application will use Servlet 3.0.

	Lines 7 to 10: In the <context-param> tag, the contextConfigLocation param
is provided, which defines the location of Spring’s root WebApplicationContext
configuration file.

	Lines 13 to 15: A listener of class org.springframework.web.context.
ContextLoaderListener is defined. This is for Spring to load the root
WebApplicationContext.

	Lines 18 to 26: One dispatcher servlet (called appServlet) is defined. We use the
one generated by the template project for the application’s presentation layer.
The WebApplicationContext for the dispatcher servlet is located at
/src/main/webapp/WEB-INF/spring/appServlet/servlet-context.xml.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

242 CHAPTER 5: Building Java Web Applications with Spring Web MVC

The servlet-context.xml file is loaded by the Spring’s DispatcherServlet, which receives all
requests coming into the application. Listing 5-37 illustrates servlet-context.xml.

Listing 5-37.  The servlet-context.xml of the Hello World Application

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. <beans:beans xmlns="http://www.springframework.org/schema/mvc"
 3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4. xmlns:beans="http://www.springframework.org/schema/beans"
 5. xmlns:context="http://www.springframework.org/schema/context"
 6. xsi:schemaLocation="http://www.springframework.org/schema/mvc
 7. http://www.springframework.org/schema/mvc/spring-mvc.xsd
 8. http://www.springframework.org/schema/beans
 9. http://www.springframework.org/schema/beans/spring-beans.xsd
10. http://www.springframework.org/schema/context
11. http://www.springframework.org/schema/context/spring-context.xsd">
12.
13. <!-- DispatcherServlet Context: defines this servlet's request-processing
14. infrastructure -->
15.
16. <!-- Enables the Spring MVC @Controller programming model -->
17. <annotation-driven />
18.
19. <!-- Handles HTTP GET requests for /resources/** by efficiently serving up
20. static resources in the ${webappRoot}/resources directory -->
21. <resources mapping="/resources/**" location="/resources/" />
22.
23. <!-- Resolves views selected for rendering by @Controllers to .jsp resources
24. in the /WEB-INF/views directory -->
25. <beans:bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
26. <beans:property name="prefix" value="/WEB-INF/views/" />
27. <beans:property name="suffix" value=".jsp" />
28. </beans:bean>
29.
30. <context:component-scan base-package="com.apress.helloworld" />
31.
32.
33.
34. </beans:beans>
 

	Line 17: <annotation-driven /> tells the framework to use an
annotations-based approach to scan files in the packages. Thus, we can use
the @Controller annotation for the controller class instead of declaring XML
elements.

	Line 21: <resources mapping=.../> maps static resources directly with HTTP
GET requests. For example, images, JavaScript, and CSS resources do not
have to go through controllers.

http://www.springframework.org/schema/mvc
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

243CHAPTER 5: Building Java Web Applications with Spring Web MVC

	Lines 25 to 28: This bean declaration tells the framework how to find physical
JSP files according to logical view names returned by the controllers, by
attaching the prefix and the suffix to a view name. For example, if a controller’s
method returns home as logical view name, then the framework will find a
physical file home.jsp under the /WEB-INF/views directory.

	Line 30: <context:component-scan .../> tells the framework which packages
to be scanned when using an annotations-based strategy. Here the framework
will scan all classes under the package com.apress.helloworld. When the
application grows, you can add more configurations for business beans, DAOs,
transactions, and so on.

Now that we have the infrastructure in place to detect the controller that will handle the request,
it’s time to look at the controller.

Note  Prior to Spring 2.5, one of the interface-based controllers was used. As of Spring 3.0, the interface-based
controllers have been deprecated in favor of annotated classes.

Listing 5-38 illustrates the code of the controller class HomeController generated by STS.

Listing 5-38.  HomeController of the Hello World Application

 1. package com.apress.helloworld;
 2.
 3. import java.text.DateFormat;
 4. import java.util.Date;
 5. import java.util.Locale;
 6.
 7. import org.slf4j.Logger;
 8. import org.slf4j.LoggerFactory;
 9. import org.springframework.stereotype.Controller;
10. import org.springframework.ui.Model;
11. import org.springframework.web.bind.annotation.RequestMapping;
12. import org.springframework.web.bind.annotation.RequestMethod;
13.
14. /**
15. * Handles requests for the application home page.
16. */
17. @Controller
18. public class HomeController {
19.
20. private static final Logger logger = LoggerFactory.getLogger(HomeController.class);
21.
22. /**
23. * Simply selects the home view to render by returning its name.
24. */
25. @RequestMapping(value = "/", method = RequestMethod.GET)
26. public String home(Locale locale, Model model) {

244 CHAPTER 5: Building Java Web Applications with Spring Web MVC

27. logger.info("Welcome home! The client locale is {}.", locale);
28.
29. Date date = new Date();
30. �DateFormat dateFormat = DateFormat.getDateTimeInstance(DateFormat.LONG,

DateFormat.LONG, locale);
31.
32. String formattedDate = dateFormat.format(date);
33.
34. model.addAttribute("serverTime", formattedDate);
35.
36. return "home";
37. }
38.
39. }
 

	Line 17: The @Controller annotation is used to specify that this class is a Spring
controller. DispatcherServlet scans such annotated classes for mapped handler
methods by means of @RequestMapping annotations.

	Line 25: The @RequestMapping annotation specifies that the home() method will
handle a GET request with the URL / (the default page of the application).

	Line 26 to 37: The home() method creates a String object to hold the current
date based on the current locale and adds this object to the model with the
name serverTme. And finally the method returns a view named home, which will
be resolved by the view resolver specified in the servlet-context.xml file, to
find the actual view file. In one controller class, we can write many methods to
handle different URLs.

@Controller and @RequestMapping and a number of other annotations form the basis for the Spring
MVC implementation. To define a controller class in Spring 3.0 and newer, you have to mark the
class with the @Controller annotation. When an @Controller-annotated class receives a request,
it looks for an appropriate handler method to handle the request. Each method to which the request
is to be mapped is decorated with the @RequestMapping annotation, making the method a handler
method to which the request is mapped by means of handler mappings.

As you saw in Listing 5-38, the home() method in HomeController returns a view named home, which
is resolved by the view resolver specified in servlet-context.xml. Now it is time to look at the view,
which is the home.jsp file generated in the /WEB-INF/views directory. Listing 5-39 illustrates home.jsp.

Listing 5-39.  home.jsp of the Hello World Application

 1. <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
 2. <%@ page session="false" %>
 3. <html>
 4. <head>
 5. <title>Home</title>
 6. </head>
 7. <body>
 8. <h1>
 9. Hello world!
10. </h1>

http://java.sun.com/jsp/jstl/core

245CHAPTER 5: Building Java Web Applications with Spring Web MVC

11.
12. <P> The time on the server is ${serverTime}. </P>
13. </body>
14. </html>
 
Listing 5-39 looks familiar. This is a simple JSP file that uses an EL expression on line 12 to print the
value of the variable serverTime that is passed by the controller.

As you may have noticed, STS created two Spring configuration files: root-context.xml and
servlet-context.xml. We have not looked at root-context.xml yet because our Hello World
application does not require this file to display the content of home.jsp. This file is empty by default,
as illustrated in Figure 5-19.

Figure 5-19.  Generated root-context.xml

This file, as the name suggests, specifies the root configuration for the Spring container.
The root-context.xml file is loaded by the Spring’s ContextLoaderListener upon the application’s
start-up, as you learned in the previous section.

So far, we have gone through all the files generated by the Spring MVC Project template, so you
should be equipped enough to dive deeper, building the bookstore application along the way.

Implementing Spring Web MVC in the Bookstore Application
In this section, you will learn how to develop the bookstore web application using the Spring Web
MVC framework. The code for the application is available as a downloadable archive from the
Apress web site. As mentioned earlier, all incoming requests flow through DispatcherServlet.
Hence, like any other servlet in a Java EE application, the Java EE container needs to be informed
to load this servlet on start-up via web.xml. You have to create a new Spring MVC project first.
Listing 5-40 illustrates web.xml of the bookstore application.

Listing 5-40.  web.xml

1. <?xml version="1.0" encoding="UTF-8"?>
2. �<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"
3. �xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
4. version="3.0">

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

246 CHAPTER 5: Building Java Web Applications with Spring Web MVC

 5. <!-- Processes application requests -->
 6. <servlet>
 7. <servlet-name>bookstore</servlet-name>
 8. <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 9. <init-param>
10. <param-name>contextConfigLocation</param-name>
11. <param-value>/WEB-INF/spring/bookstore/bookstore-servlet.xml</param-value>
12. </init-param>
13. <load-on-startup>1</load-on-startup>
14. </servlet>
15.
16. <servlet-mapping>
17. <servlet-name>bookstore</servlet-name>
18. <url-pattern>*.html</url-pattern>
19. </servlet-mapping>
20.
21. <welcome-file-list>
22. <welcome-file>/list_book.html</welcome-file>
23. </welcome-file-list>
24. </web-app>
 

	Lines 7 to 8: DispatcherServlet is registered as a servlet called bookstore.

	Line 10: The Spring configuration file can be explicitly specified in the
contextConfigLocation servlet parameter to ask Spring to load the
configurations besides the default <servletname>-servlet.xml.

Listing 5-41 illustrates bookstore-servlet.xml.

Listing 5-41.  bookstore-servlet.xml

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. <beans:beans xmlns="http://www.springframework.org/schema/mvc"
 3. �xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:beans=

"http://www.springframework.org/schema/beans"
 4. xmlns:context="http://www.springframework.org/schema/context"
 5. �xsi:schemaLocation="http://www.springframework.org/schema/mvc

http://www.springframework.org/schema/mvc/spring-mvc.xsd
 6. �http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd
 7. �http://www.springframework.org/schema/context http://www.springframework.org/schema/

context/spring-context.xsd">
 8.
 9. <!-- DispatcherServlet Context: defines this servlet's request-processing
10. infrastructure -->
11.
12. <beans:bean name="/list_book.html"
13. class="com.apress.bookstore.controller.BookController" />
14.
15. <!-- Resolves views selected for rendering by @Controllers to .jsp resources
16. in the /WEB-INF/views directory -->
17. <beans:bean

http://www.springframework.org/schema/mvc
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/context/spring-context.xsd

247CHAPTER 5: Building Java Web Applications with Spring Web MVC

18. class="org.springframework.web.servlet.view.InternalResourceViewResolver">
19. <beans:property name="prefix" value="/WEB-INF/views/" />
20. <beans:property name="suffix" value=".jsp" />
21. </beans:bean>
22. </beans:beans>
23.
 
As soon as the user requests a list of books using http://localhost:8080/bookstore, the request
hits the servlet engine, which routes the call to the bookstore web app, which is deployed in the
servlet container. The web.xml file shown in Listing 5-40 provides the welcome file that should serve
the request.
 
21. <welcome-file-list>
22. <welcome-file>/list_book.html</welcome-file>
23. </welcome-file-list>
 
The URL in the welcome file matches the URL pattern that has been registered for DispatcherServlet,
and the request is routed to it. Based on the configuration available in bookstore-servlet.xml, the
request is routed to a specific controller, illustrated in line 12 of Listing 5-41. Here the list_book.html
file is declared as a bean and mapped to the BookController class. This means if a URL with
/list_book.html is requested, it will ask the BookController to handle the request. Listing 5-42
illustrates the interface-based BookController. Later you will see how to replace this interface-based
controller with an annotated controller.

Listing 5-42.  Interface-Based Controller for the Bookstore Application

 1. package com.apress.bookstore.controller;
 2.
 3. import javax.servlet.http.HttpServletRequest;
 4. import javax.servlet.http.HttpServletResponse;
 5.
 6. import org.springframework.web.servlet.ModelAndView;
 7. import org.springframework.web.servlet.mvc.Controller;
 8.
 9. import com.apress.bookstore.service.BookService;
10.
11. public class BookController implements Controller{
12.
13. @Override
14. public ModelAndView handleRequest(HttpServletRequest arg0,
15. HttpServletResponse arg1) throws Exception {
16. BookService bookservice = new BookService();
17. ModelAndView modelAndView = new ModelAndView("bookList");
18. modelAndView.addObject("bookList", bookservice.getBookList());
19. return modelAndView;
20. }
21. }
 
The controller instantiates the BookService that is responsible for returning the required book data.
ModelAndView("booklist") calls the view named bookList by passing bookList to Spring’s view

http://localhost:8080/bookstore

248 CHAPTER 5: Building Java Web Applications with Spring Web MVC

resolver to identify which view should be returned to the user. In this case, the BookController
returns a ModelAndView object named bookList. The fragment of the view resolver in
bookstore-servlet.xml (from Listing 5-41) is shown here:
 
17. <beans:bean
18. class="org.springframework.web.servlet.view.InternalResourceViewResolver">
19. <beans:property name="prefix" value="/WEB-INF/views/" />
20. <beans:property name="suffix" value=".jsp" />
21. </beans:bean>
 
Based on the definition, the view resolver finds the file using the following mechanism:
 
Prefix + ModelAndView name + suffix, which translates to : /WEB-INF/jsp/bookList.jsp
 
ModelAndView.addObject("bookList", bookService.getBookList()) adds the book data returned by
getBookList() to the model named bookList, which is formatted and rendered by the view.

Finally, the servlet engine renders the response via the specified JSP illustrated in Listing 5-43.

Listing 5-43.  View

 1. <%@page contentType="text/html" pageEncoding="UTF-8"%>
 2. <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
 3. <!DOCTYPE html>
 4. <html>
 5. <head>
 6. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 7. <title>Your Book store</title>
 8. </head>
 9. <body>
10. <h1>Books List</h1>
11. <table border="1">
12. <tr>
13. <th align="left">Author</th>
14. <th align="left">Book Title</th>
15. </tr>
16. <c:forEach items="${bookList}" var="book">
17. <tr>
18. <td>${book.author.authorName}</td>
19.
20. <td>${book.bookTitle}</td>
21. </tr>
22. </c:forEach>
23. </table>
24. </body>
25. </html>
 
Figure 5-20 illustrates the directory structure of the bookstore application.

http://java.sun.com/jsp/jstl/core

249CHAPTER 5: Building Java Web Applications with Spring Web MVC

Let’s replace the interface-based controller in Listing 5-42 with an annotations-based controller.
Listing 5-44 illustrates the annotations-based BookController.

Listing 5-44.  Annotations-Based BookController

1. package com.apress.bookstore.controller;
2. import com.apress.bookstore.service.BookService;
3. import org.springframework.stereotype.Controller;
4. import org.springframework.web.bind.annotation.RequestMapping;
5. import org.springframework.web.bind.annotation.RequestMethod;
6. import org.springframework.web.servlet.ModelAndView;
7.
8. @Controller
9. @RequestMapping("/list_book.html")

Figure 5-20.  Directory structure of the bookstore application

250 CHAPTER 5: Building Java Web Applications with Spring Web MVC

10. public class BookController {
11. @RequestMapping(method = RequestMethod.GET)
12. public ModelAndView bookListController() {
13. BookService bookManager = new BookService();
14. ModelAndView modelAndView = new ModelAndView("bookList");
15. modelAndView.addObject("bookList", bookManager.getBookList());
16. return modelAndView;
17. }
18. }
 

	Line 8: In an annotations-based application, a form controller is created using
@Controller. @Controller indicates that a particular class serves the role of
a controller. @Controller also allows for autodetection, aligned with Spring’s
general support for detecting the component classes in the class path and
autoregistering bean definitions for them. In this example, the @Controller
annotation indicates that the BookListControler class is a controller class.

	Line 9: @RequestMapping is used to map URLs such as /list_book.html onto an
entire class or a particular handler method. @RequestMapping on the class level
indicates that all handling methods on this controller are relative to the
/list_book.html path.

	Line 13: @RequestMapping on the method level indicates that the method accepts
only GET requests; in other words, an HTTP GET for /list_book.html involves
bookListController().

Listing 5-45 illustrates the modified bookstore-servlet.xml to have the annotations-based
BookController discovered.

Listing 5-45.  bookstore-servlet.xml to Support Annotations-Based Controller

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. <beans:beans xmlns="http://www.springframework.org/schema/mvc"
 3. �xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:beans=

"http://www.springframework.org/schema/beans"
 4. xmlns:context="http://www.springframework.org/schema/context"
 5. �xsi:schemaLocation="http://www.springframework.org/schema/mvc

http://www.springframework.org/schema/mvc/spring-mvc.xsd
 6. �http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
 7. �http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">
 8.
 9. <!-- DispatcherServlet Context: defines this servlet's request-processing
10. infrastructure -->
11.
12. <context:component-scan base-package="com.apress.bookStore.controller" />
13. <beans:bean name="/list_book.html"
14. class="com.apress.bookstore.controller.BookController" />
15.
16.
17. <!-- Resolves views selected for rendering by @Controllers to .jsp resources
18. in the /WEB-INF/views directory -->

http://www.springframework.org/schema/mvc
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

251CHAPTER 5: Building Java Web Applications with Spring Web MVC

19. <beans:bean
20. class="org.springframework.web.servlet.view.InternalResourceViewResolver">
21. <beans:property name="prefix" value="/WEB-INF/views/" />
22. <beans:property name="suffix" value=".jsp" />
23. </beans:bean>
24. </beans:beans>
 

	Line 12: <context:component-scan> of the dispatcher servlet registers @
Controller-annotated classes as beans. The BookListController class is
automatically discovered and registered as a bean.

Working with Forms Using Annotations
Form processing is greatly simplified with annotations-driven configuration in Spring Web MVC.
Spring removes the need for traditional form handling via the data binding mechanism that
automatically populates Java objects from the submitted form and by supporting validation and
error reports. Listing 5-46 demonstrates using a form and then processing the user-entered data.
Figure 5-21 illustrates the new files added to the bookstore directory structure.

Figure 5-21.  New files in the application for form processing

252 CHAPTER 5: Building Java Web Applications with Spring Web MVC

A new controller, AddBookController, is added that takes care of all the form processing using
annotations. Listing 5-46 illustrates the AddBookController.

Listing 5-46.  AddBookController for Form Processing

 1. package com.apress.bookstore.controller;
 2.
 3. import java.util.List;
 4.
 5. import org.springframework.stereotype.Controller;
 6. import org.springframework.ui.ModelMap;
 7. import org.springframework.validation.BindingResult;
 8. import org.springframework.web.bind.WebDataBinder;
 9. import org.springframework.web.bind.annotation.InitBinder;
10. import org.springframework.web.bind.annotation.ModelAttribute;
11. import org.springframework.web.bind.annotation.RequestMapping;
12. import org.springframework.web.bind.annotation.RequestMethod;
13. import org.springframework.web.bind.support.SessionStatus;
14. import org.springframework.web.context.request.WebRequest;
15.
16. import com.apress.bookstore.model.Author;
17. import com.apress.bookstore.model.Book;
18. import com.apress.bookstore.service.AuthorService;
19. import com.apress.bookstore.service.BookService;
20.
21. @Controller
22. @RequestMapping("/addBook.html")
23. public class AddBookController {
24. @RequestMapping(value="/addBook.html", method = RequestMethod.GET)
25. public String initForm(ModelMap model) {
26. Book book = new Book();
27. book.setBookTitle("Add Book :");
28. model.addAttribute("book", book);
29. return "addBook";
30. }
31.
32. @InitBinder
33. public void initBinder(WebDataBinder binder, WebRequest request) {
34. binder.setDisallowedFields(new String[] {"author"});
35. Book book = (Book)binder.getTarget();
36. AuthorService authorService = new AuthorService();
37. Long authorId = null;
38. try {
39. authorId = Long.parseLong(request.getParameter("author"));
40. } catch (Exception e) {}
41. if (authorId != null) {
42. Author author = authorService.getAuthorById(authorId);
43. book.setAuthor(author);
44. }
45. }
46.

253CHAPTER 5: Building Java Web Applications with Spring Web MVC

47. @ModelAttribute("authorList")
48. public List<Author> populateAuthorList() {
49. AuthorService authorService = new AuthorService();
50. return authorService.getAuthorList();
51. }
52.
53. @RequestMapping(method = RequestMethod.POST)
54. �public String processSubmit(@ModelAttribute("book") Book book, BindingResult result,

SessionStatus status) {
55. BookService bookService = new BookService();
56. bookService.createBook(book);
57. return "redirect:/list_book.html";
58. }
59. }
 

	Line 22: The AddBookController class is annotated with
@RequestMapping("/addBook.html"), which means that all the methods in
this class will handle the request for the URL"/ addBook.html".

	Line 24: The initialization for binding is done by annotating the method name
with @RequestMapping(method=RequestMethod.GET).

	Line 25: initForm() handles the GET request type and shows the add new
book form.

	Line 28: initForm() also adds a new instance to the model map so that the new
instance can be associated with the form.

	Line 32: Binding is defined by annotating the method name with @InitBinder.

Annotating controller methods with 	 @InitBinder allows configuring the web data
binding directly within the controller class. @InitBinder identifies methods that
initialize the WebDataBinder that is used to populate the command and form object
arguments of annotated handler methods. Such init-binder methods support all
arguments that @RequestMapping supports, except for command/form objects and
the corresponding validation result objects. Init-binder methods that are declared
must not have a return value. Thus, they are usually declared as void.

	Line 33: Typical arguments include WebDataBinder in combination with WebRequest
or java.util.Locale, allowing code to register context-specific editors.

Data binding is configured using the 	 WebDataBinder class. WebDataBinder is
a special DataBinder for data binding from web request parameters to
JavaBean objects.

Spring injects an instance of this class into any controller method that has been 	
annotated with @InitBinder. This object is then used to define the data binding
rules for the controller.

	WebRequest allows for generic request parameter access as well as
request/session attribute access without ties to the native Servlet API.

	Line 34: setDisallowedFields() registers the fields that are not allowed
for binding.

254 CHAPTER 5: Building Java Web Applications with Spring Web MVC

	Line 47: The reference data is put into the model so that the form view can
access it, by annotating the method name with @ModelAttribute.

When 	 @ModelAttribute is placed on a method parameter, it maps a model
attribute to the specific annotated method parameter. This is how the controller
gets a reference to the object holding the data entered in the form.

	 @ModelAttribute annotation informs the Spring MVC framework that the
authorList instance should be assigned as an instance of the Author class
and should be passed to populate the AuthorList().

	Line 53: The form submission is handled by annotating the method name with
@RequestMapping(method= RequestMethod.POST).

	Line 54: processSubmit() accepts POST requests; that is, an HTTP POST for
/new_book.html invokes processSubmit(). processSubmit() processes the form
data. processSubmit() takes three parameters:

	 @ModelAttribute(value="book") Book book: The model attribute annotation
informs the Spring MVC framework that the Book model instance should be
assigned as an instance of the Book class and should be passed to the method
processSubmit().

	 BindingResult result: Spring determines errors, if any, during the creation
of the Book class. If it finds errors, its description is passed to the method as
a BindingResult instance.

	 SessionStatus status: SessionStatus is a status handle for marking form
processing as complete.

	Line 57: The redirect: prefix in the return statement triggers an HTTP redirect
back to the browser. This is necessary when delegating the response to another
controller, rather than just rendering the view.

Listing 5-47 illustrates the modified service layer of the bookstore application for form processing.

Listing 5-47.  BookService

package com.apress.bookstore.service;
 
import java.util.LinkedList;
import java.util.List;
 
import com.apress.bookstore.model.Author;
import com.apress.bookstore.model.Book;
 
public class BookService {
 
 private static List<Book> bookList;
 
 static {
 
 Author author1 = new Author();
 author1.setAuthorId((long) 1);

255CHAPTER 5: Building Java Web Applications with Spring Web MVC

 author1.setAuthorName("Vishal Layka");
 Book book1 = new Book();
 book1.setBookId((long) 1);
 book1.setBookTitle("Beginning Groovy, Grails and Griffon");
 book1.setAuthor(author1);
 
 Book book2 = new Book();
 book2.setBookId((long) 2);
 book2.setBookTitle("Modern Java Web Development");
 book2.setAuthor(author1);
 
 bookList = new LinkedList<Book>();
 bookList.add(book1);
 bookList.add(book2);
 }
 
 public List<Book> getBookList() {
 return bookList;
 }
  
 public Book createBook(Book b) {
 Book book = new Book();
 book.setBookId((long)bookList.size() + 1);
 book.setAuthor(b.getAuthor());
 book.setBookTitle(b.getBookTitle());
 bookList.add(book);
 return book;
 }
 
}
 
Listing 5-48 illustrates the modified bookList.jsp of the bookstore application for form processing.

Listing 5-48.  bookList.jsp

 1. <%@page contentType="text/html" pageEncoding="UTF-8"%>
 2. <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
 3. <!DOCTYPE html>
 4. <html>
 5. <head>
 6. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 7. <title>Your Book store</title>
 8. </head>
 9. <body>
10. <h1>Books List</h1>
11. <table border="1">
12. <tr>
13. <th align="left">Author</th>
14. <th align="left">Book Title</th>
15. </tr>
16. <c:forEach items="${bookList}" var="book">

http://java.sun.com/jsp/jstl/core

256 CHAPTER 5: Building Java Web Applications with Spring Web MVC

17. <tr>
18. <td>${book.author.authorName}</td>
19.
20. <td>${book.bookTitle}</td>
21. </tr>
22. </c:forEach>
23. </table>
24.

25. Add books.
26. </body>
27. </html>
 

	Line 25: The form controller is called using addBook.html, which is mapped on
lines 22 and 24 of the AddBookController in Listing 5-46.

Listing 5-49 illustrates the new JSP page of the bookstore application for form processing that will be
displayed when the AddBookController is invoked using Add books.
on line 25 of Listing 5-48.

Listing 5-49.  addBook.jsp

 1. <%@page contentType="text/html" pageEncoding="UTF-8"%>
 2. <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
 3. <%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
 4.
 5. <!DOCTYPE html>
 6. <html>
 7. <head>
 8. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 9. <title>Your Book store</title>
10. </head>
11. <body>
12. <h1>Add Book</h1>
13. <form:form method="post" commandName="book">
14. Author

15. <form:select path="author">
16. <form:options items="${authorList}" itemValue="authorId" itemLabel="authorName" />
17. </form:select>
18.

19. Book Name

20. <form:input path="bookTitle"/>

21.

22. <input type="submit" value="Submit">
23. </form:form>
24. </body>
25. </html>
 
Listing 5-49 illustrates the form displayed. It also shows the usage of Spring form tags.

http://java.sun.com/jsp/jstl/core
http://www.springframework.org/tags/form

257CHAPTER 5: Building Java Web Applications with Spring Web MVC

Annotations-Based Validation
The following section demonstrates how you can validate the user-entered data using annotations.
Figure 5-22 illustrates the modified files and newly added files in the application.

Listing 5-50 illustrates the BookValidator.

Listing 5-50.  Validations in the BookValidator

1. package com.apress.bookstore.validator;
2.
3. import org.springframework.validation.Errors;
4. import org.springframework.validation.ValidationUtils;
5. import org.springframework.validation.Validator;
6.

Figure 5-22.  Modified files and new files in the directory structure for annotations-based validation

258 CHAPTER 5: Building Java Web Applications with Spring Web MVC

 7. import com.apress.bookstore.model.Book;
 8.
 9. public class BookValidator implements Validator {
10. @Override
11. public boolean supports(Class clazz) {
12. return Book.class.equals(clazz);
13. }
14.
15. @Override
16. public void validate(Object obj, Errors errors) {
17. Book book = (Book) obj;
18. �ValidationUtils.rejectIfEmptyOrWhitespace(errors, "bookTitle", "field.required",

"Required Field");
19. if (! errors.hasFieldErrors("bookTitle")) {
20. if (book.getBookTitle().isEmpty())
21. errors.rejectValue("Title", "", "Cannot be left empty!");
22. }
23. }
24.
25.
26. }
 

	Lines 19 to 23: Typical validations in the application

The controller named AddBookController is updated for the validation, as shown in Listing 5-51.

Listing 5-51.  Updating the AddBookController

 1. package com.apress.bookstore.controller;
 2.
 3. import java.util.List;
 4.
 5. import org.springframework.beans.factory.annotation.Autowired;
 6. import org.springframework.stereotype.Controller;
 7. import org.springframework.ui.ModelMap;
 8. import org.springframework.validation.BindingResult;
 9. import org.springframework.web.bind.WebDataBinder;
10. import org.springframework.web.bind.annotation.InitBinder;
11. import org.springframework.web.bind.annotation.ModelAttribute;
12. import org.springframework.web.bind.annotation.RequestMapping;
13. import org.springframework.web.bind.annotation.RequestMethod;
14. import org.springframework.web.bind.support.SessionStatus;
15. import org.springframework.web.context.request.WebRequest;
16.
17. import com.apress.bookstore.model.Author;
18. import com.apress.bookstore.model.Book;
19. import com.apress.bookstore.service.AuthorService;
20. import com.apress.bookstore.service.BookService;
21. import com.apress.bookstore.validator.BookValidator;
22.

259CHAPTER 5: Building Java Web Applications with Spring Web MVC

23. @Controller
24. @RequestMapping("/addBook.html")
25. public class AddBookController {
26. BookValidator bookValidator;
27.
28. @Autowired
29. public AddBookController(BookValidator bookValidator) {
30. this.bookValidator = bookValidator;
31. }
32.
33. @RequestMapping(value="/addBook.html", method = RequestMethod.GET)
34. public String initForm(ModelMap model) {
35. Book book = new Book();
36. book.setBookTitle("Add Book :");
37. model.addAttribute("book", book);
38. return "addBook";
39. }
40.
41. @InitBinder
42. public void initBinder(WebDataBinder binder, WebRequest request) {
43. binder.setDisallowedFields(new String[] {"author"});
44. Book book = (Book)binder.getTarget();
45. AuthorService authorService = new AuthorService();
46. Long authorId = null;
47. try {
48. authorId = Long.parseLong(request.getParameter("author"));
49. } catch (Exception e) {}
50. if (authorId != null) {
51. Author author = authorService.getAuthorById(authorId);
52. book.setAuthor(author);
53. }
54. }
55.
56. @ModelAttribute("authorList")
57. public List<Author> populateAuthorList() {
58. AuthorService authorService = new AuthorService();
59. return authorService.getAuthorList();
60. }
61.
62. @RequestMapping(method = RequestMethod.POST)
63. �public String processSubmit(@ModelAttribute("book") Book book, BindingResult result,

SessionStatus status) {
64. BookService bookService = new BookService();
65. bookService.createBook(book);
66. if(result.hasErrors()) {
67. return "addBook";
68. } else {
69. bookService.createBook(book);
70. return "redirect:/list_book.html";
71. }
72.
73. }
74. }
 

260 CHAPTER 5: Building Java Web Applications with Spring Web MVC

	Line 29: The BookValidator class is injected using the setter method.

	Line 63: In processSubmit(), validate() of the BookValidator is called to check
whether the book details are entered by the user. validate() is passed the value
of the Book model and the BindingResult object to hold errors, if any.

	Line 66: A check is made whether the result variable holds any errors. If there
are errors, then the application displays the same page with the error messages.
If there are no errors, that is, the user has entered all the correct data, then the
application displays the list of the book details along with the newly entered
book details.

Configuring the Validator
Now you have to declare the validator for the URL addBook.html in bookstore-servlet.xml, as illustrated
in Listing 5-52.

Listing 5-52.  Declaring the BookValidator

 1. <?xml version="1.0" encoding="UTF-8"?>
 2. <beans:beans xmlns="http://www.springframework.org/schema/mvc"
 3. �xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:beans=

"http://www.springframework.org/schema/beans"
 4. xmlns:context="http://www.springframework.org/schema/context"
 5. �xsi:schemaLocation="http://www.springframework.org/schema/mvc http://www.springframework.org/

schema/mvc/spring-mvc.xsd
 6. �http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd
 7. �http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">
 8.
 9. <!-- DispatcherServlet Context: defines this servlet's request-processing
10. infrastructure -->
11.
12. <context:component-scan base-package="com.apress.bookstore.controller" />
13. <beans:bean class="com.apress.bookstore.validator.BookValidator" />
14.
15. <!-- Resolves views selected for rendering by @Controllers to .jsp resources
16. in the /WEB-INF/views directory -->
17. <beans:bean
18. class="org.springframework.web.servlet.view.InternalResourceViewResolver">
19. <beans:property name="prefix" value="/WEB-INF/views/" />
20. <beans:property name="suffix" value=".jsp" />
21. </beans:bean>
22. </beans:beans>
 

	Line 13: The BookValidator class is defined. The container creates the
BookValidator class by calling its constructor.

http://www.springframework.org/schema/mvc
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/context/spring-context.xsd

261CHAPTER 5: Building Java Web Applications with Spring Web MVC

Summary
This chapter first briefly introduced the Spring Framework and went on to show how you can deal
with tight coupling, cross-cutting concerns, and boilerplate code. This chapter transformed the
data access layer built in Chapter 1 to eliminate the boilerplate code resulting from using pure
JDBC. Then it discussed Spring MVC’s architecture, including its request-handling life cycle. Next
it showed you how to develop a Hello World application using Spring Web MVC. Then it began
implementing the bookstore application using Spring Web MVC, and as the application progressed,
it introduced the annotations programming model of Spring Web MVC and processing forms in the
web application.

263

Chapter 6
Component-Based Web
Development Using JSF 2

It’s so beautifully arranged on the plate—you just know someone’s fingers have been
all over it.

—Julia Child

JavaServer Faces (JSF) is a component-based framework for developing web applications. The
distinctive feature that sets component-based frameworks apart is the ability to create and distribute
reusable UI components. In general, a component represents an abstraction, a well-defined contract
with the implementation details hidden from the user of the component. That is, the user of the
component does not need to know the internal mechanisms of the component in order to be able
to use it. Struts and Spring Web MVC alleviate the increasing complexities of building sophisticated
user interfaces for the Web, but these web frameworks are not component-centric and therefore
unqualified for engineering truly reusable UI components. To that end, different web frameworks,
such as Tapestry and Wicket, emerged to offer a component-centric approach to web application
development. However, because of a lack of existing standards for component-centric development,
the ways in which these web frameworks implemented reusable UI components appeared to an
experienced web developer to be tedious or limited.

JSF standardizes component-based web development and provides numerous and broad-ranging UI
components to reduce the complexities in web application development. JSF provides out-of-the-box
reusable UI components so that the application developers can concentrate on the application’s
business logic rather than striving to develop and maintain dynamic and rich user interfaces. JSF is
the evolution of a few frameworks such as Struts and was inspired by Swing’s component model.
JSF represents, and requires, a paradigm shift to let you think in terms of components instead of
requests and responses. Its goal is to make web development rapid by promoting and standardizing
an ecosystem to engineer reusable UI components.

264 CHAPTER 6: Component-Based Web Development Using JSF 2

The Architecture of JSF
A JSF web framework uses the Model-View-Controller (MVC) design pattern like request-based web
frameworks such as Struts and SpringMVC do. Figure 6-1 shows a high-level architecture of the JSF
framework.

Controller

FacesServlet

delegated

Renderer

Converter

Validator

request

response

direct

View

Client
Model

Managed
bean

UI Component
VDL
JSF EL
JSF tag libraries

Figure 6-1.  A high-level architecture of the JSF framework

Figure 6-1 presents several important parts of JSF that make its architecture rich and flexible.
This architecture allows you to do the following:

Plug in any view declaration language (VDL) such as JSP and Facelets	

Render the display in different devices, such as desktops, tablets, and so on	

Create pages using components	

FacesServlet
FacesServlet is the controller in the MVC, as shown in Figure 6-1, and implements the Front
Controller pattern that intercepts every interaction between Facelets (the view) and the model.
FacesServlet is configured through annotations on managed beans, converters, components,
renderers, and validators or optionally through the faces-config.xml descriptor file.

Managed Bean
Managed beans serve as the model for the UI component. They are responsible for the following:

Synchronizing data with components	

Processing business logic	

Handling navigation between pages	

265CHAPTER 6: Component-Based Web Development Using JSF 2

VDL
JSF uses a view declaration language (VDL) to display a page to the client on various devices such
as the desktop, portables, and so on. The default VDL for JavaServer Faces (JSF) is Facelets,
but JSF allows multiple VDLs, such as JSP.

JSF EL
In the Hello World application in Chapter 5, you saw how to access managed bean properties and
invoke managed bean actions using EL expressions with the delimiters #{ and }. The EL used in JSF
1.0 and 1.1 (and later in JSP versions 1.2 and 2.0) was an extension of the EL that was part of the
JSP Standard Tag Library (JSTL), as explained in Chapter 3. The difference in JSF EL and the JSP
EL is that of evaluation. In JSP, as you have seen in Chapter 3, any ${} expression that appears in
the page is evaluated immediately during page rendering. Such expressions are called immediate
expressions.

JSF allows expressions to be available both during the rendering of the page and when that is
posted back again. This type of expression in JSF is called a deferred expression and is expressed
with the delimiters #{}.

JSF Tag Library
The standard JSF library consists of four parts that the page needs to access in order to use the JSF
components.

	HTML components library: This defines elements that represent common HTML
user interface components. The standard HTML library is accessible in Facelets
and JSP as a tag library with a URI of http://java.sun.com/jsf/html and a
default prefix of h.

	JSF core library: The standard core library is associated with the f: namespace
and provides common application development utilities for validation and
conversion.

	Facelets library: The standard Facelets templating library is accessible in
Facelets as a tag library with a URI of http://java.sun.com/jsf/facelets and a
default prefix of ui.

	Composite library: The standard composite component library is accessible in
Facelets as a tag library with a URI of http://java.sun.com/jsf/composite and
a default prefix of composite.

The standard JSF component libraries are part of the specification and also come with any standard
JSF implementation such as the reference implementation or the MyFaces implementation. The
section that follows shows how to download and install the JSF implementation, known as Mojarra,
and integrate it into a web application.

http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/composite

266 CHAPTER 6: Component-Based Web Development Using JSF 2

UI Component
JSF has a rich component model provided in a standard UI component framework, as illustrated in
Figure 6-2. The JSF component model includes the following:

A rendering model that defines a myriad of forms in which the component can 	
be rendered such as for desktop application devices and mobile app devices

An event and event listener model that define how to handle component events	

A conversion model that defines the ways to register data converters to a 	
component for data conversion

A validation model that defines the ways to register validators to a component 	
for the server-side validation

Model

UIComponent

ConverterValidator

Renderer Event and
EventListener

has

has

has

has

binding Navigation

Figure 6-2.  The JSF component model

The UI component model is the core of JSF; it allows you to develop the view of a web application
from collections of standard, out-of-the-box UI components. These UI components are responsible
for the behavior and are utilized in the JSF pages by including four tag libraries provided by JSF,
depending on the type of UI component you want to use.

Renderer
The renderer is responsible for displaying a component, in other words, rendering the markup to
the client and translating a user’s input into the component’s value. JSF supports two programming
models for displaying components.

	Direct renderer model: When the direct model is used, components decode
from, and encode to, the view. The decoding and encoding processes are
explained in the next section.

	Delegated renderer model: When the delegated model is used, the decoding
and encoding are delegated to a renderer.

267CHAPTER 6: Component-Based Web Development Using JSF 2

Converter and Validator
JSF provides out-of-the-box converters to convert its UI component’s data to objects used in a
managed bean, and vice versa. For example, they convert a component’s Date value to and from
String values that come from the HTML markup.

JSF also provides out-of-the-box validators to validate its UI components to ensure that the value
entered by the user is valid. These tags can, for example, validate a range of Long or the length
of a string.

Events and Event Listeners
When the user clicks a button or link on the JSF page, a JSF UI component triggers an event. To
handle such an event, an event listener is registered on the managed bean. The UI component calls
the event notification on the event listener for the specific event.

As you have seen, JSF pages consist of a tree of components. This tree of components is managed
by the JSF request-processing life cycle behind the scenes. To understand the JSF request-
processing life cycle, first you will create a Hello World web application, and then through this
application you will learn how the JSF life cycle works behind the scenes.

Getting Started with JSF
In this section, you will create a simple Hello World JSF web application using Eclipse 3.8 or
newer, which supports JSF2.x. Create a dynamic web project as illustrated in Figure 6-3 by
selecting File ➤ New ➤ Project ➤ Web ➤ Dynamic Web Project. Specify Apache Tomcat v7.0
in Target Runtime, select JavaServer Faces Project in the configuration, and click Next.

268 CHAPTER 6: Component-Based Web Development Using JSF 2

Configure the project for building a Java application, as illustrated in Figure 6-4, and click Next.

Figure 6-3.  Creating a JSF project

269CHAPTER 6: Component-Based Web Development Using JSF 2

Figure 6-4.  Configuring a dynamic web project

Figure 6-5.  Configuring the web module settings

Configure the web module settings, as illustrated in Figure 6-5, and click Next.

270 CHAPTER 6: Component-Based Web Development Using JSF 2

You need to select the JSF implementation library, as illustrated in Figure 6-6. You can do so by
downloading the library by clicking Download.

Figure 6-6.  Downloading JSF implementation libraries

As illustrated in Figure 6-7, MyFaces and Mojarra are listed as two open source reference
implementations of JSF 2.0.

271CHAPTER 6: Component-Based Web Development Using JSF 2

Select Mojarra, click Next, and accept the license terms, as illustrated in Figure 6-8.

Figure 6-7.  JSF implementation libraries

Figure 6-8.  Accept the terms of license

272 CHAPTER 6: Component-Based Web Development Using JSF 2

Click Finish. Mojarra will be listed as the selected implementation library, as illustrated in Figure 6-9.

Figure 6-9.  Adding JSF capabilities

Figure 6-10.  Directory structure of the created JSF project

Click Finish. The project is created, as illustrated in Figure 6-10.

273CHAPTER 6: Component-Based Web Development Using JSF 2

You will create the following files in the project:

	Managed bean: HelloBean.java.

	form.xhtml: This is a view file that comprises JSF core tags and deferred EL.
When the application is run, the form.xhtml file looks like Figure 6-11. This
screen provides an input field and a Submit button.

Figure 6-11.  The form to enter the name

Figure 6-12.  Hello screen

	hello.xhtml: When users enter a name and click the Submit button in form.xhtml,
they are greeted by name. hello.xhtml displays the name of the user entered in
form.xhtml along with the greeting, as illustrated in Figure 6-12.

274 CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-1 illustrates the code of the form.xhtml file.

Listing 6-1.  form.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html >
3. <html xmlns="http://www.w3.org/1999/xhtml"
4. xmlns:h="http://java.sun.com/jsf/html">
5.
6. <h:head>
7. <title>First JSF app</title>
8. </h:head>
9. <h:body>
10. <h3>Enter your name:</h3>
11.
12. <h:form>
13. <h:inputText value="#{helloBean.name}"></h:inputText>
14. <h:commandButton value="Submit" action="hello"></h:commandButton>
15. </h:form>
16. </h:body>
17. </html>
 

	Line 4: The xmlns attribute declares the JSF namespace.

	Lines 6, 9, 12, 13, and 14: Some tags have prefixes, such as h:head and
h:inputText. These are JSF tags. The h:inputText and h:commandButton tags
correspond to the text field and Submit button in Figure 6-11.

	Line 13: The input fields are linked to object properties. For example,
attributevalue="#{helloBean.name}" tells the JSF implementation to link the
text field with the name property of a user object.

	Line 14: The #{...} delimiters enclose expressions in the JSF expression
language.

	Line 14: When you enter the name and click the Submit button, the hello.xhtml
file is displayed, as specified in the action attribute of the h:commandButton tag.

Listing 6-2 illustrates the code of the hello.xhtml file.

Listing 6-2.  hello.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html>
3. <html xmlns="http://www.w3.org/1999/xhtml"
4. xmlns:h="http://java.sun.com/jsf/html">
5.
6. <h:head>
7. <title>Hello world</title>
8. </h:head>
9. <h:body>
10. <h2>Hello #{helloBean.name}</h2>
11. </h:body>
12. </html>
 

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

275CHAPTER 6: Component-Based Web Development Using JSF 2

	Line 10: When the page is submitted, JSF will find the helloBean and set
the submitted name value via the setName() method. When hello.xhtml is
displayed, JSF will find the helloBean and display the name property value via its
getName() method.

Listing 6-3 illustrates the helloBean.

Listing 6-3.  Managed Bean

1. package com.apress.jsf.helloworld;
2. import javax.faces.bean.ManagedBean;
3. import javax.faces.bean.SessionScoped;
4. import java.io.Serializable;
5.
6. @ManagedBean
7. @SessionScoped
8. public class HelloBean implements Serializable {
9.
10. private static final long serialVersionUID = 1L;
11.
12. private String name;
13.
14. public String getName() {
15. return name;
16. }
17. public void setName(String name) {
18. this.name = name;
19. }
20. }
 

	Line 6: A managed bean is a Java bean that is accessed from a JSF page. The
@ManagedBean annotation specifies the name by which an object of this class is
referenced in the JSF pages.

	Line 7: A managed bean must have a name and a scope. Session scope
signifies that the bean object is available for one user across multiple pages.

Note  There are two annotations for naming a bean. @Named is the best choice with a Java EE 6 and newer
application server.

Like Struts and Spring MVC web applications, when you deploy a JSF web application
inside an application server, you need to provide a deployment descriptor file named web.xml.
Listing 6-4 shows this file. For the sake of brevity, the web-app declaration and the list of files in the
welcome-file-list are not completely shown.

276 CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-4.  web.xml

1. <web-app >
2. <display-name>helloWorldJSF</display-name>
3. <welcome-file-list>
4. ...
5. </welcome-file-list>
6. <servlet>
7. <servlet-name>Faces Servlet</servlet-name>
8. <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
9. <load-on-startup>1</load-on-startup>
10. </servlet>
11. <servlet-mapping>
12. <servlet-name>Faces Servlet</servlet-name>
13. <url-pattern>/faces/*</url-pattern>
14. </servlet-mapping>
15. <servlet-mapping>
16. <servlet-name>Faces Servlet</servlet-name>
17. <url-pattern>*.faces</url-pattern>
18. </servlet-mapping>
19. <context-param>
20. <description>State saving method: 'client' or 'server' (=default). See JSF Specification
2.5.2</description>
21. <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
22. <param-value>client</param-value>
23. </context-param>
24. <context-param>
25. <param-name>javax.servlet.jsp.jstl.fmt.localizationContext</param-name>
26. <param-value>resources.application</param-value>
27. </context-param>
28. <listener>
29. <listener-class>com.sun.faces.config.ConfigureListener</listener-class>
30. </listener>
31. </web-app>
 

	Lines 11 to 14: The servlet-mapping element makes certain that all URLs with
the prefix /faces are processed by FacesServlet.

	Lines 15 to 18: The servlet-mapping element makes certain that all URLs ending
with the faces extension are processed by FacesServlet.

Figure 6-13 shows the directory structure of the Hello World web application.

277CHAPTER 6: Component-Based Web Development Using JSF 2

Life Cycle of a JSF Application
Unlike Struts and Spring Web MVC, the JSF life cycle performs the following request-processing
tasks in well-defined phases during which specific tasks are performed:

Checking whether the incoming data is valid	

Triggering application logic to fulfill the request	

Binding the field properties directly to properties of the model and having their 	
values updated upon form submissions

Rendering the response to the client	

The following are the six phases of the JSF application life cycle, as illustrated in Figure 6-14:

Restore View phase	

Apply Request Values phase	

Process Validation phase	

Update Model phase	

Invoke Application phase	

Render Response phase	

Figure 6-13.  Directory structure of the Hello World web application

278 CHAPTER 6: Component-Based Web Development Using JSF 2

Phase 1: Restore View
JSF begins the Restore View phase as soon as a link or button is clicked and JSF receives a request.
During this phase, JSF does the following:

Builds a component tree from the page. This component tree contains the 	
information associated with all components of the page. If the page is requested
for the first time, JSF creates an empty view.

Wires event handlers and validators to UI components.	

Saves the view in the 	 FacesContext instance.

Phase 2: Apply Request Values
After the component tree is created/restored, the JSF runtime runs the decode method of each
component in the component tree that extracts the values from the request parameters. The values
that are extracted by the decode method are stored in the component, after performing data conversion
if necessary. If the conversion fails, an error message is generated and queued on FacesContext.

Phase 3: Process Validation
During this phase, the JSF runtime processes validators registered on the component tree during the
Restore View phase. If there are validation errors, JSF adds an error message to the FacesContext
instance, skips the fourth and fifth phases, enters the Render Response phase, and displays the
error messages.

Phase 4: Update Model
If there are no validation errors in the Process Validation phase, the JSF runtime updates the
managed bean’s properties that are bound to the UI components with the new values of the UI
components. The conversion is also performed in this phase if necessary.

Request

Render response
on First request

Response

Restore View

Render
Response

Invoke
Application

Apply Request
Value

Update Model

Process
Validation

Figure 6-14.  The phases of the JSF life cycle

279CHAPTER 6: Component-Based Web Development Using JSF 2

Phase 5: Invoke Application
During this phase, the JSF runtime processes the application events by executing the corresponding
event listeners. When the user submits a form, the JSF FacesServlet generates an application event
that returns an outcome string that is passed to the navigation handler. The navigation handler looks
up the next page to be rendered.

Phase 6: Render Response
In this phase, each component in the component tree renders itself, and the state of the response
is saved so that the FacesServlet can access it during the Restore View phase, which will occur if
subsequent requests are made to the same page.

Let’s look behind the scenes of the Hello World application from the viewpoint of the request-
processing life cycle.

1.	 The browser first connects to http://localhost:8080/helloWorldJSF/form.faces.

2.	 The JSF implementation initializes the JSF code and reads the form.xhtml
page. That page contains tags, such as h:form, h:inputText, and
h: commandButton. Each tag has an associated tag handler class. When the
page is read, the tag handler class associated with each tag is executed, and
a component tree is constructed. This is the first phase: Restore View. Since
this is the first request and the component tree does not already exist, a new
but empty component tree is created instead of restoring the component
tree. Figure 6-15 shows the component tree for the code fragment of the
form.xhtml file in Listing 6-1.

 
<h:form>
<h:inputText value="#{helloBean.name}"></h:inputText>
<h:commandButton value="Submit" action="hello"></h:commandButton>
</h:form>
 

UIForm

UIInput UICommand

Figure 6-15.  The component tree of form.xhtml

http://localhost:8080/helloWorldJSF/form.faces

280 CHAPTER 6: Component-Based Web Development Using JSF 2

3.	 Now the JSF runtime enters the second phase: Apply Request Values. The
UIForm object corresponds to the h:form, the UIInput object corresponds to
the h:inputText, and the UICommand object corresponds to h:commandButton
in the JSF file. Since this is the first request to this page and there are no
request parameters available or events to process, nothing to update the
model with, nothing to convert and validate, and no application-level events,
the JSF runtime skips the second, third, fourth, and fifth phases and enters
the sixth phase: Render Response. Each component object in the created
component tree has a renderer that generates HTML. This process of
generating HTML by the renderer of the component is called encoding. This
encoded page is then displayed in the browser.

4.	 The user now fills in the name field in the form and clicks the Submit button.

5.	 The browser sends the form data to the web server, formatted as a POST
request. The JSF runtime enters the first phase again, Restore View, and the
component tree is restored to reflect the values the user entered in the form.
And then the JSF runtime enters the second phase, Apply Request Values.

6.	 In the Apply Request Values phase, the JSF runtime performs the process
called decoding in which each component in the component tree decodes
the form data and the component stores this value. If the conversion fails
while storing, an error message is generated and queued on FacesContext.

7.	 The JSF runtime enters the third phase: Process Validation. At this point, the
JSF runtime processes the validators registered with the component tree
during the first phase. If there are any validation errors, such as if the name
field in the Hello World application is empty, JSF adds an error message
to the FacesContext instance, skips the other phases, and enters the sixth
phase: Render Response. It also displays the error messages, such as
“name field cannot be empty.” Since there is no validation in the Hello World
application, the JSF runtime enters the fourth phase: Update Model.

8.	 In the Update Model phase, the JSF runtime updates the managed bean,
namely, helloBean’s property name, with the value entered on the form.
The UIInput component updates the helloBean property name referenced
in the value attribute and invokes the setter methods with the value that
the user entered. In this phase, conversion is also performed if necessary
via the converters registered with the component. Since the conversion is
not necessary in this case, the JSF runtime enters the fifth phase, Invoke
Application, or triggers an action event.

281CHAPTER 6: Component-Based Web Development Using JSF 2

9.	 In the Invoke Application phase, the UICommand component checks whether
the button was clicked. If so, it triggers an action event, namely, the hello
action referenced in the action attribute, which tells the navigation handler to
look for the hello.xhtml page, and the JSF runtime enters the sixth phase:
Render Response.

10.	 FacesServlet creates a response component tree, and each component
renders itself as the JSF runtime goes through the corresponding JSF
tags. At the end of this phase, the state of the response is saved so that
FacesServlet can access it during the Restore View phase of subsequent
requests to the same page.

Managed Beans
A managed bean is a regular JavaBean class registered with JSF and managed by the JSF
framework and serves as the model for the UI component. The managed bean contains the getter
and setter methods, business logic, or a backing bean that is a bean that contains all the values of
the form. The managed beans are responsible for the following:

Synchronizing server-side data with components in the component tree	

Processing business logic	

Handling navigation between pages	

The component is associated with a specific managed bean property or action by means of the
EL. As you saw in the Hello World application, you do not need to write any code to construct and
manipulate the HelloBean. The JSF runtime constructs the beans and accesses them. Managed
beans can be easily registered in a JSF configuration file (that is, faces-config.xml) or using
annotations.

Listing 6-5 illustrates registering a managed bean using XML configuration.

Listing 6-5.  Registering a Managed Bean Using XML

<managed-bean>
<managed-bean-name>helloWorld</managed-bean-name>
<managed-bean-class>com..apress.jsf.helloWorld.HelloBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
 
Listing 6-6 illustrates registering a managed bean using an annotation.

Listing 6-6.  Registering Managed Bean Using an Annotation

@ManagedBean
@SessionScoped
public class HelloWorld {
  
}
 

282 CHAPTER 6: Component-Based Web Development Using JSF 2

Facelets
Facelets was created to replace the use of JSP as a view declaration language for JSF; it was
designed exclusively for JSF and provides templating and extensible tag libraries to refrain from
using scriptlets (Java code) in the HTML pages. The significant differences between Facelets and
JSP are that Facelets provides the ability to write pages in pure HTML markup and provides
server-side templating.

Templating with Facelets
You learned templating in Chapter 4 using the Tiles framework where you saw how templates
encapsulate common layout to be used across all the pages, and you now understand how
templates work. Facelets is similar to the Tiles framework for templating and composing pages.
Consequently, templating is very much the same, other than six tags provided by Facelets for
templating in the ui: tag library.

	ui:composition

	ui:decorate

	ui:define

	ui:include

	ui:insert

	ui:param

ui:composition
The ui:composition tag is used in template client files acting as template clients and indicates that
enclosing content should be included in the UIComponent hierarchy at the specific point in the page.
Listing 6-7 illustrates the syntax of ui:composition.

Note  Contexts and dependency injection (CDI) beans are much more powerful than managed beans.
You should use CDI beans if you deploy your application in a Java EE application server such as Glassfish.
A Java EE 6 and newer application server automatically supports CDI. The CDI beans are used in the same
way as managed beans but instead of @ManagedBean, they are declared with the @Named annotation,
as shown here:

@Named("helloBean")

@SessionScoped

public class HelloBean implements Serializable {

...
}

283CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-7.  ui:composition Tag

<ui:composition template="optional">
 
The optional attribute declares a template to which the enclosed content should be applied using
the template attribute.

ui:decorate
The difference between the ui:decorate tag and the ui:composition tag is that, unlike
ui:composition, ui:decorate causes surrounding content to be included in the page as well. Listing
6-8 illustrates the syntax of ui:decorate.

Listing 6-8.  ui:decorate Tag

<ui:decorate template="required">
 

ui:define
The ui:define tag is used inside a ui:composition tag in template client files to define a region
that will be inserted into the composition at the point provided by the ui:insert tag. Listing 6-9
illustrates the syntax of ui:define.

Listing 6-9.  ui:define Tag

<ui:define name="required">
 

ui:insert
The ui:insert tag is used in the template files to indicate where the ui:define in the template client
should be inserted. Listing 6-10 illustrates the syntax of ui:insert.

Listing 6-10.  ui:insert Tag

<ui:insert name="optional">
 
If no name is specified, the content in the body of the ui:insert tag is added to the view.

ui:include
The ui:include can be used in the template files or template client files. Listing 6-11 illustrates the
syntax of ui:include.

Listing 6-11.  ui:include Tag

<ui:include src="required">

284 CHAPTER 6: Component-Based Web Development Using JSF 2

ui:param
The ui:param tag is used inside ui:include tags to define name-value pairs for parameterized
inclusion of the pages. Listing 6-12 illustrates the syntax of ui:param.

Listing 6-12.  ui:param Tag

<ui:param name="required" value="required">
 
Next you will implement templating with Facelets. Create a JSF project similar to the Hello World
project in the earlier section. In this application, you will create the header and sidebar template
that will be used in the bookstore application. Figure 6-16 illustrates the directory structure of the
application.

Figure 6-16.  Directory structure of the JSFTemplate application

Listing 6-13 illustrates the template file common.xhtml.

Listing 6-13.  common.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <html xmlns="http://www.w3.org/1999/xhtml"
3. xmlns:h="http://java.sun.com/jsf/html"
4. xmlns:ui="http://java.sun.com/jsf/facelets">
5. <h:head>
6. <link rel="stylesheet" href="css/bookstore.css" type="text/css" />
7. </h:head>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets

285CHAPTER 6: Component-Based Web Development Using JSF 2

8. <h:body>
9. <div id="centered">
10. <div>
11. <ui:insert name="header">
12. <ui:include src="/templates/header.xhtml" />
13. </ui:insert>
14. </div>
15. <div>
16. <ui:insert name="sideBar">
17. <ui:include src="/templates/sideBar.xhtml" />
18. </ui:insert>
19. </div>
20. <div>
21. <ui:insert name="content">
22. <ui:include src="/templates/contents.xhtml" />
23. </ui:insert>
24. </div>
25. </div>
26. </h:body>
27. </html>
 

	Line 3: Declares the namespace for the HTML library

	Line 4: Declares the namespace for the Facelet library

	Line 5 to 7: Show the usage of the h:head tag instead of using the markup
<head/>

	Line 8: Shows the usage of the h:body tag instead of using the markup <body/>

	Lines 11 to 13: Show the usage of the u:insert tag for templating the body
content of the <ui:insert> tag that is added to the view

	Line 12: Shows the usage of the ui:include tag for the inclusion
of header.xhtml

	Line 17: Shows the usage of the ui:include tag for the inclusion of
sideBar.xhtml

	Line 22: Shows the usage of the ui:include tag for the inclusion of
contents.xhtml

Listing 6-14 illustrates the template client header.xhtml.

Listing 6-14.  header.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <html xmlns="http://www.w3.org/1999/xhtml"
3. xmlns:h="http://java.sun.com/jsf/html"
4. xmlns:ui="http://java.sun.com/jsf/facelets">

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets

286 CHAPTER 6: Component-Based Web Development Using JSF 2

5. <h:body>
6. <ui:composition>
7. <div class="header">
8. <h2>
9. BOOK
10. STORE
11.
12. </h2>
13. </div>
14. </ui:composition>
15. </h:body>
16. </html>
 

	Line 6: The ui:composition tag indicates to the Facelets system that the
enclosing children will be grafted into the UIComponent hierarchy where header.
xhtml is inserted in common.xhtml.

Listing 6-15 illustrates sideBar.xhtml.

Listing 6-15.  sideBar.xhtml

1. <div class="leftbar">
2. <ul id="menu">
3. <div>
4. <span class="label"
5. style="margin-left: 15px;">Home
6.
7. </div>
8. <div>
9. All Books
11. </div>
12. <div>
13. Categories
14. </div>
15.
16. <span class="label"
17. style="margin-left: 30px;">
18.
19. <div>
20. Contact Us
21. </div>
22.
23. </div>
 
Listing 6-15 is the same sidebar file used in Chapter 2.

Listing 6-16 illustrates the template client contents.xhtml.

287CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-16.  contents.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <html xmlns="http://www.w3.org/1999/xhtml"
3. xmlns:ui="http://java.sun.com/jsf/facelets">
4. <body>
5. <ui:composition>
6. <h1>Book Store Home</h1>
7. </ui:composition>
8. </body>
9. </html>
 

	Line 5: The ui:composition tag indicates to the Facelets system that the
enclosing children should be grafted into the UIComponent hierarchy at the point
where contents.xhtml is inserted.

Listing 6-17 illustrates the home.xhtml file that defines content.xhtm.

Listing 6-17.  home.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html>
3. <html xmlns="http://www.w3.org/1999/xhtml"
4. xmlns:h="http://java.sun.com/jsf/html"
5. xmlns:ui="http://java.sun.com/jsf/facelets">
6. <h:body>
7. <ui:composition template="templates/common.xhtml">
8. <ui:define name="content">
9. <ui:include src="/contents.xhtml" />
10. </ui:define>
11. </ui:composition>
12. </h:body>
13. </html>
 
 

	Line 7: The ui:composition tag declares the template common.xhtml to which
the enclosed content contents.xhtml should be applied using the template
attribute.

You can now run this application using the URL http://localhost:8080/JSFTemplate/home.faces,
as shown in Figure 6-17.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets
http://localhost:8080/JSFTemplate/home.faces

288 CHAPTER 6: Component-Based Web Development Using JSF 2

Building the Bookstore Application Using JSF 2
In this section, you will develop the bookstore application using JSF. In Chapter 1 you developed
the data access layer for the bookstore application and queried it via a stand-alone application
developed using Java. In Chapter 5 you refactored the stand-alone application to integrate it with
the Spring Framework in order to use the robust features offered by Spring’s JDBCTemplate. Then
you used the Spring JDBCTemplate with a Spring Web MVC web application. In this chapter, you
will use the same Spring JDBCTemplate with a JSF-based web application to leverage the benefits
of the Spring template discussed in Chapter 5. To do so, you need to integrate JSF with the Spring
Framework. In the section that follows, you will learn to integrate JSF with Spring. Then you will
develop the web layer of the application using JSF. You will develop this application in the following
four steps:

1.	 Integrate JSF with the Spring Framework.

2.	 Access the database from the web layer via Spring JDBCTemplate.

3.	 Develop templates reusing the templates developed earlier.

4.	 Develop the user interface using UI components and JSF EL.

Figure 6-18 illustrates the directory structure of the application you are going to develop.

Figure 6-17.  Header and sidebar using templates

289CHAPTER 6: Component-Based Web Development Using JSF 2

Figure 6-18.  Directory structure of the bookstore web application

290 CHAPTER 6: Component-Based Web Development Using JSF 2

Integrating JSF with Spring Framework
To integrate JSF with the Spring dependency injection framework, you have to do the following:

Add the 	 ContextLoaderListener and RequestContextListener listeners provided
by the Spring Framework in web.xml

Add an 	 el-resolver entry in faces-config.xml to point to the Spring class
SpringBeansFacesELResolver

Listing 6-18 illustrates adding ContextLoaderListener and RequestContextListener in the
web.xml file.

Listing 6-18.  web.xml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/
ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://
java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" metadata-
complete="true" version="3.0">
3. <display-name>JSFBooks</display-name>
4. <servlet>
5. <servlet-name>Faces Servlet</servlet-name>
6. <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
7. <load-on-startup>1</load-on-startup>
8. </servlet>
9. <servlet-mapping>
10. <servlet-name>Faces Servlet</servlet-name>
11. <url-pattern>/faces/*</url-pattern>
12. </servlet-mapping>
13. <servlet-mapping>
14. <servlet-name>Faces Servlet</servlet-name>
15. <url-pattern>*.jsf</url-pattern>
16. </servlet-mapping>
17. <servlet-mapping>
18. <servlet-name>Faces Servlet</servlet-name>
19. <url-pattern>*.faces</url-pattern>
20. </servlet-mapping>
21. <context-param>
22. <description>State saving method: 'client' or 'server' (=default). See JSF Specification
2.5.2</description>
23. <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
24. <param-value>client</param-value>
25. </context-param>
26. <context-param>
27. <param-name>javax.servlet.jsp.jstl.fmt.localizationContext</param-name>
28. <param-value>resources.application</param-value>
29. </context-param>
30. <listener>
31. <listener-class>com.sun.faces.config.ConfigureListener</listener-class>
32. </listener>

http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

291CHAPTER 6: Component-Based Web Development Using JSF 2

33. <listener>
34. <listener-class>
35. org.springframework.web.context.ContextLoaderListener
36. </listener-class>
37. </listener>
38. <listener>
39. <listener-class>
40. org.springframework.web.context.request.RequestContextListener
41. </listener-class>
42. </listener>
43. </web-app>
 

	Line 33 to 37: Configures ContextLoaderListener

	Line 38 to 42: Configures RequestContextListener

SpringBeanFacesELResolver is an ELResolver implementation that delegates to Spring’s
WebApplicationContext and the default resolver of the underlying JSF implementation. Listing 6-19
illustrates adding the el-resolver.

Listing 6-19.  faces-config.xml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <faces-config
3. xmlns="http://java.sun.com/xml/ns/javaee"
4. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5. xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
6. version="2.0">
7. <application>
8. <el-resolver>
9. org.springframework.web.jsf.el.SpringBeanFacesELResolver
10. </el-resolver>
11. </application>
12. </faces-config>
 

	Lines 7 to 11: Configures Spring EL resolver

JSF is now integrated with the Spring Framework, and you should be able to access the database
via Spring JDBCTemplate.

Accessing a Database from the Web Layer via Spring JDBCTemplate
Next you will create the managed bean to access the database from the web layer. You already
created the Spring JDBCTemplate in Chapter 5. The managed bean you are going to create now will
use the JDBCTemplate created earlier via the BookService, which was also created in Chapter 5. In
other words, we will create the managed bean to access the database via the service layer and data
access layer created in Chapter 5. Listing 6-20 illustrates the BookController managed bean.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd

292 CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-20.  BookController.java

1. package com.apress.books.controller;
2.
3. import javax.faces.bean.ManagedBean;
4. import javax.faces.bean.RequestScoped;
5. import com.apress.books.model.Book;
6. import com.apress.books.service.BookService;
7. import java.util.List;
8.
9. @ManagedBean
10. @RequestScoped
11. public class BookController {
12.
13. private BookService bookService ;
14. private List<Book> bookList;
15.
16. public String listAllBooks() {
17. bookList = bookService.getAllBooks();
18. return "bookList.xhtml";
19. }
20.
21. public BookService getBookService() {
22. return bookService;
23. }
24.
25. public void setBookService(BookService bookService) {
26. this.bookService = bookService;
27. }
28.
29. public List<Book> getBookList() {
30. return bookList;
31. }
32. public void setBookList(List<Book> bookList) {
33. this.bookList = bookList;
34. }
35. }
 

	Line 17: Invokes the getAllBooks() method on bookService

	Line 18: Returns the booklist.xhtml file that is composed with the template and
list.xhtml, which displays the list of books see later in Figure 6-20

Listing 6-21 illustrates the configuration metadata that is provided to the Spring IoC container. This
file is the same as created in Chapter 5 with a slight modification to configure the managed bean
BookController with the BookService.

293CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-21.  applicationContext.xml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <beans xmlns="http://www.springframework.org/schema/beans"
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
4. xmlns:aop="http://www.springframework.org/schema/aop"
5. xsi:schemaLocation="http://www.springframework.org/schema/beans
6. http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
7. http://www.springframework.org/schema/context
8. http://www.springframework.org/schema/context/spring-context-3.2.xsd
9. http://www.springframework.org/schema/aop
10. http://www.springframework.org/schema/aop/spring-aop-3.2.xsd">
11.
12. <!-- telling container to take care of annotations stuff -->
13. <context:annotation-config />
14.
15. <!-- declaring base package -->
16. <context:component-scan base-package="com.apress.books" />
17.
18. <bean id="bookController" class="com.apress.books.controller.BookController">
19. <property name="bookService" ref="service"></property>
20. </bean>
21.
22. <bean id="dao" class="com.apress.books.dao.BookDAOImpl" >
23. <property name="dataSource" ref="dataSourceBean">
24. </property>
25. </bean>
26.
27. <bean id="service" class="com.apress.books.service.BookServiceImpl">
28. <property name="bookDao" ref="dao">
29. </property>
30. </bean>
31.
32. <bean id="dataSourceBean"
33. class="org.springframework.jdbc.datasource.DriverManagerDataSource">
34. <property name="driverClassName" value="com.mysql.jdbc.Driver" />
35. <property name="url" value="jdbc:mysql://localhost:3306/books" />
36. <property name="username" value="root" />
37. <property name="password" value="password" />
38. </bean>
39. </beans>
 

	Lines 18 to 20: Configures bookController with bookService

Developing Templates
You will reuse the template and the template client file developed earlier for the header and
sidebar of the bookstore application. However, you need to modify sideBar.xhtml to invoke the
listOfAllBooks action in the bookController bean, as illustrated in Listing 6-22.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.2.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.2.xsd

294 CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-22.  sideBar.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html >
3. <html xmlns="http://www.w3.org/1999/xhtml"
4. xmlns:h="http://java.sun.com/jsf/html"
5. xmlns:ui="http://java.sun.com/jsf/facelets">
6. <h:form>
7. <div class="leftbar">
8. <ul id="menu">
9. <div>
10. <span class="label"
11. style="margin-left: 15px;">Home
12.
13. </div>
14. <div>
15. <h:commandLink class="link1" action="#{bookController.listAllBooks}">
16. All Books
17. </h:commandLink>
18. </div>
19. <div>
20. Categories
21. </div>
22.
23. <span class="label"
24. style="margin-left: 30px;">
25.
26. <div>
27. Contact Us
28. </div>
29.
30. </div>
31. </h:form>
32.
33. </html>
 

	Line 6: Shows the usage of the h:form tag instead of using the markup <form>

	Line 15: Shows the usage of the h:commandlink tag that triggers the
listAllBooks action on the bookController managed bean using the deferred EL

Developing the User Interface Using UI Components and JSF EL
Now you will develop the UI of the application. Figure 6-19 illustrates the home page of the
application. When the user clicks All Books in the sidebar, the list of all books is displayed,
as illustrated in Figure 6-20.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets

295CHAPTER 6: Component-Based Web Development Using JSF 2

Figure 6-19.  Home page of the bookstore web application

Figure 6-20.  List of books

296 CHAPTER 6: Component-Based Web Development Using JSF 2

Listing 6-23 illustrates the code for Figure 6-19.

Listing 6-23.  home.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html>
3. <html xmlns="http://www.w3.org/1999/xhtml"
4. xmlns:h="http://java.sun.com/jsf/html"
5. xmlns:ui="http://java.sun.com/jsf/facelets">
6. <h:body>
7. <ui:composition template="templates/common.xhtml">
8. <ui:define name="content">
9. <ui:include src="/contents.xhtml" />
10. </ui:define>
11. </ui:composition>
12. </h:body>
13. </html>
 

	Line 9: The usage of the ui:include tag for the inclusion of contents.xhtml

When the user clicks All Books in the sidebar of the home page, the list of all books is displayed, as
illustrated in Figure 6-20.

Listing 6-24 and Listing 6-25 illustrate the code for Figure 6-20.

Listing 6-24.  bookList.html

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html>
3. <html xmlns="http://www.w3.org/1999/xhtml"
4. xmlns:h="http://java.sun.com/jsf/html"
5. xmlns:ui="http://java.sun.com/jsf/facelets">
6. <h:body>
7. <ui:composition template="templates/common.xhtml">
8. <ui:define name="content">
9. <ui:include src="/list.xhtml" />
10. </ui:define>
11. </ui:composition>
12. </h:body>
13. </html>
 

	Line 9: The usage of the ui:include tag for the inclusion of list.xhtml

Listing 6-25 illustrates the list.xhtml file for the list of the books displayed in Figure 6-20.

Listing 6-25.  list.xhtml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html>
3. <html xmlns="http://www.w3.org/1999/xhtml"
4. xmlns:h="http://java.sun.com/jsf/html"
5. xmlns:ui="http://java.sun.com/jsf/facelets"
6. xmlns:f="http://java.sun.com/jsf/core">

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core

297CHAPTER 6: Component-Based Web Development Using JSF 2

7. <h:head>
8. <title>List of All books</title>
9. <link rel="stylesheet" href="css/bookstore.css" type="text/css" />
10. <script type="text/javascript" src="js/jquery-1.9.1.js"></script>
11. <script src="js/bookstore.js"></script>
12. </h:head>
13. <h:body>
14. <h:dataTable id="grid" value="#{bookController.bookList}" var="book">
15. <h:column>
16. <f:facet name="header" id="th-title">
17. <h:outputText value="Title" />
18. </f:facet>
19. <h:outputText value="#{book.bookTitle}" />
20. </h:column>
21. <h:column>
22. <f:facet name="header" id="th-author">
23. <h:outputText value="Author" />
24. </f:facet>
25. <ui:repeat value="#{book.authors}" var="content">
26. <h:outputText value="#{content.firstName} #{content.lastName}" />
27. </ui:repeat>
28. </h:column>
29. <h:column>
30. <f:facet name="header" id="th-price">
31. <h:outputText value="Publisher" />
32. </f:facet>
33. <h:outputText value="#{book.publisherName}" />
34. </h:column>
35. </h:dataTable>
36. </h:body>
37. </html>
 

	Line 6: Declares the namespace for the JSF core library

	Line 14: Shows the usage of the h:dataTable tag instead of using the markup
<table/>

	Line 14: Shows the deferred EL expression that uses the bookList property of
the managed bean bookController

	Line 15: Shows the usage of h:column instead of using the markup <td/>

	Line 16: Shows the usage of the f:facet tag to add the facet

	Line 17: Shows the usage of h:outputText that displays the book title

298 CHAPTER 6: Component-Based Web Development Using JSF 2

Summary
JSF is a component-based MVC framework, at the heart of which is the UI component model; this model
allows the development of a web application’s view from collections of standard, out-of-the-box,
reusable UI components. Unlike Struts and Spring Web MVC, the JSF lifelife cycle performs
mundane and recurring request-processing tasks in well-defined phases, allowing the developer to
concentrate on the business logic of the web application.

299

Chapter 7
Rapid Web Development
with Grails

Live in fragments no longer, only connect.

—Edgar Morgan Foster

Grails takes web development to the next level of abstraction. The fact that Java EE was not
written with an application level of abstraction led to the development and subsequent popularity
of Java frameworks such as Spring, Hibernate, and so on. But most of the Java frameworks take
a fragmented approach toward web development. You have to maintain the configuration for each
layer. Grails embraces convention over configuration and wraps these powerful frameworks with a
layer of abstraction via the Groovy language, thus providing a complete development platform that
allows you to take full advantage of Java and the JVM.

This chapter will reach under the covers of the Grails machine and look at its parts: its wheels and
gears all moving in a coordinated motion, its workability, its leading-edge engine, and its underlying
form. It will take a closer look at the interactions in the Grails ecosystem. It will show how controllers
handle, manage, direct, and orchestrate the logical flow of the application and how they handle
requests, redirect requests, execute and delegate actions, or render views as the need arises. It
will explore views and unravel how Grails uses SiteMesh, the page decoration framework, to give a
consistent look to pages, as well as how views draw on Grails’ built-in tags and dynamic tags in its tag
library to create well-formed markup and promote a clean separation of concerns. It’s quite a machine.

Grails Features
Grails is a request-based, MVC, open-source web development framework. More than just that,
though, it is a complete development platform in which everything runs on top of the robust Java
and Java EE platforms as illustrated in Figure 7-1. It leverages the existing popular Java frameworks,

300 CHAPTER 7: Rapid Web Development with Grails

and it includes a web container, database, build system, and test harness that exploit the dynamism
of the Groovy language.

Figure 7-1.  Grails platform

Grails provides best practices, such as convention over configuration, and unit testing using
frameworks such as Spring, Hibernate, and SiteMesh, to name a few. This section will highlight
some of the important best practices.

Convention over Configuration
Rather than configuration, Grails gives precedence to convention. Convention over configuration, in
simple terms, means writing configuration code only when you deviate from the convention. These
ingenious conventions correspond to the directory structure; Grails brings into play the name and
location of the files instead of relying on explicit configuration via the wiring of XML configuration files.
This means if you create a class following the Grails conventions, Grails will wire it into Spring or treat
it as a Hibernate entity. If you create a new domain class called Book, Grails will automatically create
a table called book in the database. By using the convention-over-configuration paradigm, Grails
can envisage a component from its name and its location in the directory structure. One immediate
consequence of this, other than speeding up application development, is that you have to configure a
particular aspect of a component only when that configuration deviates from the standard.

Scaffolding
The Grails scaffolding generates an application’s CRUD functionality from the domain classes, at
either runtime or development time. The generated application consists of the controller and GSP
views associated with the domain class. The scaffolding also generates the database schema,
including tables for each of the domain classes.

Object-Relational Mapping
Grails includes a powerful object-relational mapping (ORM) framework called Grails Object Relational
Mapping (GORM). Like most ORM frameworks, GORM maps objects to relational databases; but
unlike other ORM frameworks, GORM is based on a dynamic language. Therefore GORM can inject
the CRUD methods right into the class without having to implement them or inherit them from
persistent superclasses.

301CHAPTER 7: Rapid Web Development with Grails

1www.h2database.com/html/main.html
2http://wiki.sitemesh.org/display/sitemesh/Home

Note  ORM is a way to map objects from the OO world onto tables in a relational database and provides an
abstraction above SQL.

Plug-Ins
Instead of providing out-of-the-box solutions for every possible requirement, Grails offers a plug-in
architecture, and you can find plug-ins for a plethora of functionalities.

Unit Testing
For improving the quality of the deliverables, Grails provides unit tests, integration tests, and functional
tests for automating the web interface.

Integrated Open Source
Grails integrates industry-standard and proven open source frameworks, several of which are briefly
described in this section.

Table 7-1 illustrates the frameworks that Grails leverages.

Table 7-1.  Frameworks That Grails Leverages

Integrated Open
Source Technology

Description

Ajax frameworks Grails ships with the jQuery library but also provides support for other frameworks
such as Prototype, Dojo, Yahoo UI, and the Google Web Toolkit through the plug-in
system.

Hibernate Hibernate is an ORM framework that provides the foundation for GORM.

H2 Grails uses the in-memory H21 database and enables the H2 database console in
development mode (at the URI /dbconsole) so that the in-memory database can be
easily queried from the browser.

Spring Spring Framework provides an application level of abstraction on top of the Java
EE API. Grails developers can build an application that internally uses Spring and
Hibernate without knowing these frameworks. Grails abstracts most of the details of
these frameworks from Grails developers.

SiteMesh SiteMesh2 is a layout-rendering framework that implements the Decorator design
pattern for rendering HTML with headers, footers, and navigation elements. Grails
abstracts most of the SiteMesh details from the Grails developer.

Tomcat By default, Grails uses an embedded Tomcat container.

http://www.h2database.com/html/main.html
http://wiki.sitemesh.org/display/sitemesh/Home

302 CHAPTER 7: Rapid Web Development with Grails

Installing Grails
Before installing Grails, you will need as a minimum a Java Development Kit (JDK) version 1.6 or
newer. Download the appropriate JDK for your operating system, run the installer, and then set up an
environment variable called JAVA_HOME pointing to the location of this installation.

Note  A JDK is required in your Grails development environment. A JRE is not sufficient.

The first step to getting up and running with Grails is to install the distribution. To do so, follow these
steps:

1.	 Download a binary distribution of Grails from http://grails.org/ and extract
the resulting ZIP file to a location of your choice.

2.	 Set the GRAILS_HOME environment variable to the location where you extracted
the ZIP file.

On Unix/Linux-based systems, this is typically a matter of adding something 	
like the following to your profile: export GRAILS_HOME=/path/to/grails.

On Windows, this is typically a matter of setting an environment variable 	
under My Computer/Advanced/Environment Variables.

3.	 Then add the bin directory to your PATH variable.

On Unix/Linux-based systems, this can be done by adding 	
export PATH="$PATH:$GRAILS_HOME/bin" to your profile.

On Windows, this is done by modifying the 	 PATH environment variable
under My Computer/Advanced/Environment Variables.

If Grails is working correctly, you should now be able to type grails -version in the terminal window
and see output similar to this:

E:\>grails -version
Grails version: 2.2.4

Hello World Application
In this section, you will create your first Grails web application. To create a Grails application, you
need to familiarize yourself with the usage of the grails command:
 
grails [command name]
 
Run create-app to create an application.
 
grails create-app helloworld
 

http://grails.org/

303CHAPTER 7: Rapid Web Development with Grails

This will create a new directory called helloworld inside the current one that contains the project, in
other words, your workspace. Navigate to this directory in your console:
 
cd helloworld
 
Change into the helloworld directory you just created and start the Grails interactive console by
typing the grails command.
 
\grails2-workspace\helloworld>grails
 
This will download several resources, and then you should see a prompt, as illustrated in Figure 7-2.

Figure 7-2.  Grails interactive console

What we want is a simple page that just prints the message “Hello World” to the browser. In Grails,
whenever you want a new page, you create a new controller action for it. Since we don’t yet have a
controller, let’s create one now with the create-controller command.
 
grails> create-controller hello
 
The previous command will create a new controller called HelloController.groovy as illustrated in
Listing 7-1, in the grails-app/controllers/helloworld directory.

Listing 7-1.  HelloController.groovy

package helloworld
 
class HelloController {
 
 def index() { }
}
 
We now have a controller, so let’s add an action to generate the “Hello World” page. The code looks
like Listing 7-2.

Listing 7-2.  Modifying the Index Action

def index() { render "Hello World" } }
 
The action is simply a method. In this particular case, it calls a special method provided by Grails to
render the page.

To see your application in action, you need to start up a server with another command called
run-app.
 
grails> run-app
 

304 CHAPTER 7: Rapid Web Development with Grails

This will start an embedded server on port 8080 that hosts your application. You should now be able
to access your application at the URL http://localhost:8080/helloworld/. The result will look like
Figure 7-3.

Figure 7-3.  Welcome screen of Grails

This is the Grails introduction page that is rendered by the grails-app/view/index.gsp file. It detects
the presence of your controllers and provides links to them. Click the HelloController link to see our
custom page containing the text “Hello World.” You have your first working Grails application.

Note  In Figure 7-3 there is a link to the Dbdoc controller. Clicking this link will produce an error message,
as the controller is not implemented. The purpose of the DbdocController is to generate static HTML
files to view change log information. You can enable it from conf/Config.groovy by setting
dbDocController.enabled = true

http://localhost:8080/helloworld/

305CHAPTER 7: Rapid Web Development with Grails

Bookstore Application
In this chapter, you will be learning to leverage the Grails conventions and scaffolding to create
a simple but functional version of the bookstore application. This initial version of the application
will not be production-ready, however; the objective of this application is to show you how, with
scaffolding, you can render a CRUD web application with almost no code other than your domain
class code. In addition, Grails will generate a database schema and populate a database with the
schema when the application is run.

Creating the Bookstore Application
To create the bookstore application, you need to execute the create-app target using an optional
project name on the command line, as shown here:
 
>grails create-app bookstore
 
The entire line in the preceding command line is a command, where create-app is a target. A target
is a specific task that you want Grails to execute.

Note  Using the help command yields a list of available targets: >grails help.

If you don’t supply the project name when using create-app, you will be prompted for one.

After the create-app target has run, you have a new directory matching the name of your project.
This is the root of your new project, and you must make all subsequent Grails command-line calls
from within this directory. It’s a good idea to use the cd command to get into the directory now so
you don’t forget. Within the new project directory, you will find a structure matching the directory
structure shown in Figure 7-4.

306 CHAPTER 7: Rapid Web Development with Grails

Instead of creating the application from the command line, you can use the IDE of your choice.
We recommend the Groovy/GrailsTool Suite (GGTS), which you can download from
www.springsource.org/downloads/sts-ggts. This book uses the latest version, GGTS 3.0. GGTS
provides the best Eclipse-powered development environment for building Groovy and Grails
applications. GGTS provides support for the latest versions of Groovy and Grails and comes on top
of the latest Eclipse releases. Figure 7-5 shows how to configure Grails in GGTS. Under Preferences,

Figure 7-4.  Directory structure of the bookstore application

http://www.springsource.org/downloads/sts-ggts

307CHAPTER 7: Rapid Web Development with Grails

Figure 7-5.  Configuring GGTS with Grails

click Grails and then the Add button. In the window Configure Grails Installation, browse for Grails by
clicking the Browse button, which opens the Grails Installation directory window. Select your Grails
installation directory and click OK.

308 CHAPTER 7: Rapid Web Development with Grails

To create a new project in GGTS, use the menu option File ➤ New ➤ Grails Project, as illustrated
in Figure 7-7.

Figure 7-6.  Grails in the build path

Grails is now added to the build path, as illustrated in Figure 7-6. Click OK. Now the GGTS is
configured with Grails, and you can create a Grails project.

309CHAPTER 7: Rapid Web Development with Grails

Since you have already created the project from the command line, you can import the created
project in GGTS. Select Existing Projects into Workspace in the Import window, as illustrated in
Figure 7-8.

Figure 7-7.  Creating a new project

310 CHAPTER 7: Rapid Web Development with Grails

Click Next. Select the root directory of the project, as illustrated in Figure 7-9.

Figure 7-8.  Importing an existing project

311CHAPTER 7: Rapid Web Development with Grails

Click Finish. Figure 7-10 illustrates the directory structure of the bookstore application in GGTS.

Figure 7-9.  Selecting a directory to search for existing Eclipse projects

312 CHAPTER 7: Rapid Web Development with Grails

Running the Application
At this point, you have a functional application that you can run and access through a web browser.
It does not do much yet, but running it now will enable you to get instant feedback as you add
domain and controller classes.

To run a Grails application, execute the run-app target from your project root directory, as
shown here:
 
> grails run-app
 

Figure 7-10.  Directory structure of the bookstore application

313CHAPTER 7: Rapid Web Development with Grails

The output of executing the run-app target is shown here:

Server running. Browse to http://localhost:8080/bookstore

Accessing the application at the url http://localhost:8080/bookstore displays the Welcome
screen as illustrated in Figure 7-11.

Figure 7-11.  The Welcome screen of the bookstore application

To run the application in GGTS, click Grails Command History, as highlighted in Figure 7-12. Type
run-app in the command window, and hit Enter. Or you can also right-click the project in the IDE
and select Run As ➤ Grails (run app).

http://localhost:8080/bookstore
http:////Pchns-f01/editorial/Indexing/31_Springer_Apress/2013/10_Oct/Vishal%20Layka%20_Web_59831/02_IndexforQC/Batch%203/url%20http:/localhost:8080/bookstore

314 CHAPTER 7: Rapid Web Development with Grails

Creating the Controller
A controller handles requests and creates or prepares responses. A controller can generate the
response directly or delegate to a view. To create a controller class, use the Grails create-controller
target. This creates a new Grails controller class in the grails-app/controllers directory, as well as
the unit test for the controller class in test/unit. It also creates a grails-app/views/<controller
name> directory if it doesn’t exist already.

To create the BookController class, you need to execute the create-controller target using an
optional class name, as shown here:
 
>grails create-controller book
 
If you don’t supply the class name, you are prompted for one. The output of executing the
create-controller target is shown here:

| Created file grails-app/controllers/bookstore/BookController.groovy
| Created file grails-app/views/book
| Created file test/unit/bookstore/BookControllerTests.groovy

Notice that when running the create-controller with the optional class name, you can leave the
class name in lowercase, and Grails will automatically uppercase it for you so that it follows the
standard Groovy class naming convention.

Figure 7-12.  Grails command history

315CHAPTER 7: Rapid Web Development with Grails

Click Finish. GGTS will generate the controller and tests, as illustrated in the following output:

Loading Grails 2.2.4
| Environment set to development.....
| Created file grails-app/controllers/bookstore/BookController.groovy
| Created file grails-app/views/book
| Compiling 1 source files.....
| Created file test/unit/bookstore/BookControllerTests.groovy

Listing 7-3 illustrates the generated controller.

Listing 7-3.  BookController Generated by Grails

package bookstore
 
class BookController {
 
 def index() {
}
}
 
Now refresh the browser and you can see this controller on the Welcome screen as illustrated in the
Figure 7-14.

Figure 7-13.  Creating a controller using GGTS

To create the controller using GGTS, click the controllers in the bookstore project hierarchy, and then
use New ➤ Controller. Type Book in the Grails Command Wizard, as shown in Figure 7-13.

316 CHAPTER 7: Rapid Web Development with Grails

Modify the code of index(){}, as illustrated in Listing 7-4.

Listing 7-4.  Modifying the Index Action

 def index() {
render "book list"
}
 
Now you can click the BookController link in Figure 7-14, and you will get the simple textual
response illustrated in Figure 7-15.

Figure 7-14.  Welcome screen of the bookstore application

317CHAPTER 7: Rapid Web Development with Grails

Testing the Controller
Listing 7-5 illustrates the BookControllerTests test generated by Grails.

Listing 7-5.  BookControllerTests Generated by Grails

package bookstore
 
import grails.test.mixin.*
import org.junit.*
 
/**
 * See the API for {@link grails.test.mixin.web.ControllerUnitTestMixin} for usage instructions
 */
@TestFor(BookController)
class BookControllerTests {
 
void testSomething() {
 fail "Implement me"
}
}
 

Figure 7-15.  Simple textual response

318 CHAPTER 7: Rapid Web Development with Grails

Modify testSomething() as shown in Listing 7-6.

Listing 7-6.  Adding the Assertion

1.void testSomething() {
2.controller.index()
3.assert "book list" == response.text
4.}
 
Now run the test through the Run as ➤ Grails command (test-app), as illustrated in Figure 7-16.

Figure 7-16.  The test-app command in Grails

On running the command test-app, Grails runs the test, as shown in the following output:

| Loading Grails 2.2.4
| Configuring classpath.
| Environment set to test.....
| Running 1 unit test... 1 of 1
| Completed 1 unit test, 0 failed in 3444ms
| Packaging Grails application.....
| Packaging Grails application.....
| Tests PASSED - view reports in E:\ModernJava\grails2-workspace\bookstore\target\test-reports

319CHAPTER 7: Rapid Web Development with Grails

Note  In this way you can augment the unit test for your Controller in the ControllerTests generated by Grails.

Figure 7-17.  Test report: passed test

The test passed because in Listing 7-6 the assertion made on line 3 was correct. Now replace line 3
in Listing 7-6, as shown here:
 
assert "xyz" == response.text
 
This is an incorrect assertion, because the simple textual response shown in Figure 7-15 is “book
list” and not “xyz.” So this test should fail. To see how Grails reports the failed test, fail the test by
replacing testSomething() with Listing 7-7.

You can generate the report illustrated in Figure 7-17 from the path shown in the last line of the
previous output.

320 CHAPTER 7: Rapid Web Development with Grails

Listing 7-7.  Replacing the Test with an Incorrect Assertion

void testSomething() {
controller.index()
assert "xyz" == response.text
}
 
On running the command test-app, Grails runs the test as shown in the following output:

| Loading Grails 2.2.4
| Configuring classpath.
| Environment set to test.....
| Compiling 1 source files.
| Running 1 unit test... 1 of 1
| Failure: testSomething(bookstore.BookControllerTests)
| Assertion failed:
 
assert "xyz" == response.text
 | | |
 | | book list
 | org.codehaus.groovy.grails.plugins.testing.GrailsMockHttpServletResponse@14cf61d
 false
 
at bookstore.BookControllerTests.testSomething(BookControllerTests.groovy:16)
| Completed 1 unit test, 1 failed in 3210ms
| Packaging Grails application.....
| Packaging Grails application.....
| Tests FAILED - view reports in E:\ModernJava\grails2-workspace\bookstore\target\test-reports

You can generate the report illustrated in Figure 7-18 from the path shown in the last line of the
previous output.

321CHAPTER 7: Rapid Web Development with Grails

Creating a Domain Class
At this point, the application we created doesn’t really do anything; it just renders a simple textual
response. We will move on by creating a domain class. To create a domain class, use the Grails
create-domain-class target. This creates a new Grails domain class in the grails-app/domain
directory, as well as a unit test for the domain class in test/unit.

To create the Book domain class, you need to execute the create-domain-class target using an
optional class name, as shown here:
 
> grails createdomain-class book
 
If you don’t supply the class name, you are prompted for one.

Notice that when running the create-domain-class target with the optional class name, you can
leave the class name in lowercase, and Grails will automatically uppercase it for you so that it follows
the standard Groovy class naming convention.

To create the domain class using GGTS, click “domain” in the project hierarchy and then use
New ➤ Domain Class, as illustrated in Figure 7-19.

Figure 7-18.  Test report: failed test

322 CHAPTER 7: Rapid Web Development with Grails

When you click Domain Class in Figure 7-19, the Grails Command Wizard window is displayed, as
illustrated in Figure 7-20.

Figure 7-19.  Creating a domain class using GGTS

323CHAPTER 7: Rapid Web Development with Grails

Enter the name of the domain class in the name field and click Finish. Grails creates the Book domain
class and BookTests, as shown in the following output:

Loading Grails 2.2.4
| Environment set to development.....
| Created file grails-app/domain/bookstore/Book.groovy
| Compiling 1 source files.....
| Created file test/unit/bookstore/BookTests.groovy

Listing 7-8 illustrates the Book class generated by Grails.

Listing 7-8.  Book Domain Class Generated by Grails

package bookstore
 
class Book {
 
 static constraints = {
 }
}
 
The Book class in Listing 7-8 is empty. Now you can complete this domain class as illustrated
in Listing 7-9.

Figure 7-20.  Creating a domain class using GGTS

324 CHAPTER 7: Rapid Web Development with Grails

Listing 7-9.  Book Domain Class

1.package bookstore
2.
3.class Book {
4.String bookTitle
5.Long price
6.Long isbn
7.
8.static constraints = {
9.bookTitle(blank:false)
10.price(blank:false)
11.}
12.String toString() {
13.bookTitle
14.}
15.}
 
Constraints in lines 8 to 11 in Listing 7-9 provide Grails with a declarative mechanism for defining
validation rules. Table 7-2 illustrates the constraints available with Grails.

Table 7-2.  Constraints Available with Grails

Constraint Description

blank Validates that a String value is not blank

creditCard Validates that a String value is a valid credit card number

email Validates that a String value is a valid e-mail address

inList Validates that a value is within a range or collection of constrained values

matches Validates that a String value matches a given regular expression

max Validates that a value does not exceed the given maximum value

maxSize Validates that a value’s size does not exceed the given maximum value

min Validates that a value does not fall below the given minimum value

minSize Validates that a value’s size does not fall below the given minimum value

notEqual Validates that a property is not equal to the specified value

nullable Allows a property to be set to null; defaults to false

range Uses a Groovy range to ensure that a property’s value occurs within a specified range

scale Sets the desired scale for floating-point numbers (i.e., the number of digits to the right of the
decimal point)

size Uses a Groovy range to restrict the size of a collection or number or the length of a String

unique Constrains a property as unique at the database level

url Validates that a String value is a valid URL

validator Adds custom validation to a field

325CHAPTER 7: Rapid Web Development with Grails

Scaffolding
Scaffolding lets you autogenerate a whole application for a given domain class including views and
controller actions for CRUD operations. Scaffolding can be either static or dynamic; both types
generate the same code. The main difference is that in static scaffolding, the generated code is
available to the user before compilation and thus can be easily modified if necessary. In dynamic
scaffolding, however, the code is generated in memory at runtime and is not visible to the user. In the
section that follows, you will learn about both dynamic and static scaffolding.

Dynamic Scaffolding
As explained earlier, the dynamic scaffolding generates controller actions and views for CRUD
applications at runtime. To dynamically scaffold a domain class, you need a controller. You created a
controller (BookController) in Listing 7-3. To use the dynamic scaffolding, change the index action to
a scaffold property and assign it the domain class, as shown in Listing 7-10. This causes List Page,
Create Page, Edit Page, and Show Page views, as well as delete functionality, to be generated for
the specified domain class.

Listing 7-10.  Dynamic Scaffolding–Enabled BookController

package bookstore
 
class BookController {
 
 static scaffold = Book
}
 
After changing BookController to look like Listing 7-10, execute the run-app target.

The output of executing the run-app target is shown here:

| Loading Grails 2.2.4
| Configuring classpath.
| Environment set to development.....
| Packaging Grails application.....
| Running Grails application
| Server running. Browse to http://localhost:8080/bookstore

Click the BookController link on the welcome page.

Clicking the BookController link brings you to the Book List view shown in Figure 7-21.

http://localhost:8080/bookstore

326 CHAPTER 7: Rapid Web Development with Grails

You can create or add a new book by clicking New Book. Figure 7-22 shows the screen for creating
a new book. Figure 7-22 also shows validation in action for which you did not have to write any
code. The code for this validation was included in the domain class Book, as illustrated in Listing 7-9
on lines 8 to 11.

Figure 7-21.  Book List view

Figure 7-22.  Create view with validation in action

Figure 7-23 illustrates creating a new book by fulfilling all validations.

327CHAPTER 7: Rapid Web Development with Grails

Figure 7-24 illustrates the newly created book.

Figure 7-23.  Create view

Figure 7-24.  Show view

You can edit this newly created book, delete it, or add another book. You can edit the created book
by clicking Update. Figure 7-25 illustrates the Edit view.

328 CHAPTER 7: Rapid Web Development with Grails

Figure 7-26 illustrates the updated book.

Figure 7-25.  Edit view

Figure 7-26.  Show view with updated message

You can add a new book by clicking New Book. Figure 7-27 illustrates a list of books added in this
manner.

329CHAPTER 7: Rapid Web Development with Grails

Static Scaffolding
Static scaffolding provides an excellent learning tool to help you familiarize yourself with the Grails
framework and how everything fits together. Now, it is the time to see static scaffolding in action as a
learning tool. There is no difference in the domain class for both dynamic and static scaffolding. For
quick reference, the Book class is shown in Listing 7-11.

Listing 7-11.  Book Domain Class

package bookstore
 
class Book {
String bookTitle
Long price
Long isbn
 
static constraints = {
bookTitle(blank:false)
price(blank:false)
}
String toString() {
bookTitle
}
}
 
Static scaffolding differs from dynamic scaffolding in the way that views and controllers are generated.
The domain class remains the same in both cases. However, in dynamic scaffolding, you need the
controller to indicate to Grails that you need the dynamic scaffolding to generate the application for
you. If you want Grails to generate the application through static scaffolding, you have to use the
command in Listing 7-12.

Figure 7-27.  List view with list of added books

330 CHAPTER 7: Rapid Web Development with Grails

Listing 7-12.  Command for generating the application through static scaffolding

>grails generate-all bookstore.Book
 
Once you run this command from the command line or GGTS, Grails generates the application as
shown in the following output:

Loading Grails 2.2.4
| Configuring classpath.
| Environment set to development.....
| Packaging Grails application.....
| Packaging Grails application.....
| Generating views for domain class bookstore.Book
| Generating controller for domain class bookstore.Book
| Finished generation for domain class bookstore.Book

If we run the application now, we will have a complete CRUD application. This generate-all
command generates one controller (BookController) and four views for our domain class Book and
generates one unit test for our controller, BookControllerTest. These files, which give us a complete
CRUD application, serve as stubs to which we can add custom code. Let’s take a closer look at the
code we’ve generated. We begin with the BookController illustrated in Figure 7-28.

Figure 7-28.  BookController

331CHAPTER 7: Rapid Web Development with Grails

The first thing you will notice in the BookController code illustrated in Figure 7-28 is that a Grails
controller is a plain Groovy class that does not extend any class or implement any interface. The
next thing you will notice is that the BookController has eight actions.

Create action	

Delete action	

Edit action	

Index action	

List action	

Save action 	

Show action	

Update action	

These actions are the closure properties of the controller. All the work in the controller is done in the
action. Every closure declared in a controller is an action and can be accessed via a URL that, by
default, is mapped to controller actions. The first part of the URL represents the controller name,
and the second part of the URL represents the action name. In the sections that follow, you will
look deeper into each of these actions, but before that, it is necessary to understand how to exit a
controller action. There are three options to properly exit a controller action.

Calling the 	 render() method

Calling the 	 redirect() method

Returning a model or null	

In the section that follows, you will look into these three options before probing each of the actions in
the BookController shown in Figure 7-28.

Calling the render( ) Method
The first option to exit a controller action is to call the render() method to render a view or a textual
response. For the sake of understanding how render() method works, Listing 7-13 shows a simple
Grails controller that, when invoked, greets you.

Listing 7-13.  Rendering a Textual Response

package chapter5
class HelloController {
def index() {
render 'hello'
}
defshow(){}
def someOtherAction(){}
}
 

332 CHAPTER 7: Rapid Web Development with Grails

As illustrated in Listing 7-13, the controller, when invoked with a request to /hello/index, will execute
an index() action defined in the controller, and the index() action will render a textual response,
using the render() method. The full URL to invoke the index() action in the HelloController is
http://localhost:8080/chapter5/hello/index. As shown in the listing, there can be any number of
actions in a controller.

If you specify the view name in the render() method, as shown in Listing 7-14, Grails assumes you
mean a view at the location grails-app/views/hello/hello.gsp and renders a view called hello.

Listing 7-14.  Rendering a View

class HelloController {
...
def show() {
render view: "hello"
}
...
}

Calling the redirect( ) Method
The second option to exit a controller action is to call the redirect() method to issue an HTTP
redirect to another URL. Grails provides all controllers with a redirect() method that accepts a
Map as an argument. The Map should contain all the information that Grails needs to carry out the
redirect, including the name of the action to redirect to.

In addition, the Map can contain the name of the controller to redirect to. Listing 7-15 shows a
standard redirect from the first action to the second action within the same controller.

Listing 7-15.  Redirecting to an Action in the Same Controller

class HelloController {
def first() {
redirect action: "second"
}
def second() {
...
}
}
 
If the redirect is for an action in another controller, you must specify the name of the other controller.
Listing 7-16 demonstrates how to redirect to an action in another controller.

Listing 7-16.  Redirecting to an Action in Another Controller

class HelloController {
def first() {
redirect action: "second", controller: "other"
}
}
 
In Listing 7-16, the first() action in HelloController redirects to the second() action in the
Other Controller.

http://localhost:8080/chapter5/hello/index

333CHAPTER 7: Rapid Web Development with Grails

Returning a Model
The third option to exit a controller action is either to return a model that is a Map containing data, as
illustrated in Listing 7-17.

Listing 7-17.  Returning the Model

class HelloController {
def show() {
 [user: User.get(params.id)]
}
}
 
Grails will attempt to render a view with the same name as the action. It will look for this view in
a directory named after the base name of the controller. In Listing 7-17, returning from the show()
action of the HelloController will cause Grails to render the view /views/hello/show.gsp.

Now you know how the action of the controller can be called and how it can be exited. Fortified with
this knowledge, take a look at Figure 7-28 and let’s start investigating each action one by one. First
let’s get the allowedMethods property out of the way.
 
static allowedMethods = [save: "POST", update: "POST", delete: "POST"]
 
The allowedMethods property provides a simple declarative syntax to specify which HTTP methods
are allowed for your controller actions. By default, all request methods are allowed for all controller
actions. The allowedMethods property is optional and needs to be defined only if the controller has
actions that need to be restricted to certain request methods. This property in the BookController
specifies that only save, update, and delete can be POST methods.

Index Action
The index() action is the default action that is called when you navigate to the BookController. By
default, this action just redirects to the list() action using the redirect() method explained earlier
as illustrated in Listing 7-18.

Listing 7-18.  The Index Action of the BookController

def index() {
 redirect(action: "list", params: params)
 }
 
The redirect() method issues an HTTP redirect to a URL constructed from these parameters. If the
action is not specified, the index() action will be used. The params hold request parameters, if any.

List Action
Listing 7-19 illustrates the list() action of the BookController.

334 CHAPTER 7: Rapid Web Development with Grails

Listing 7-19.  The List Action of the BookController

def list(Integer max) {
 params.max = Math.min(max ?: 10, 100)
 [bookInstanceList: Book.list(params), bookInstanceTotal: Book.count()]
 }
 
The first line of the list closure is working with the params property, which is a Map containing all the
parameters of the incoming request.

The last line returns a Map with two elements: bookInstanceList and bookInstanceTotal. The
bookInstanceList is loaded with a call to Book.list(). The list() is being passed the params
Map, from which it will pull any parameters that it can use. The bookInstanceTotal is loaded with
Book.count().The use of the bookInstanceTotal will be mentioned in the “List View” section later.
The list() action renders the list view using the data in the Map that’s returned from this action.

Create Action
Listing 7-20 illustrates the create() action of the BookController.

Listing 7-20.  The Create Action of the BookController

def create() {
 [bookInstance: new Book(params)]
 }
 
The create() action creates a new Book instance and then assigns the params to bookInstance’s
property because it will be used later, as explained in the “Save Action” section discussed next in
Listing 7-21. Then it returns that instance in a Map with the key of bookInstance. Finally, it renders
the create view.

Save Action
Listing 7-21 illustrates the save() action of the BookController.

Listing 7-21.  The Save Action of the BookController

def save() {
 def bookInstance = new Book(params)
 if (!bookInstance.save(flush: true)) {
 render(view: "create", model: [bookInstance: bookInstance])
 return
 }
 
 flash.message = message(code: 'default.created.message', args: [message(code: 'book.label',
default: 'Book'), bookInstance.id])
 redirect(action: "show", id: bookInstance.id)
 }
 

335CHAPTER 7: Rapid Web Development with Grails

If there are errors, the user is redirected to the create() action. For this redirect to the create()
action, params was assigned to the bookInstance’s property, as mentioned in the create() action
earlier in Listing 7-20. If there are no errors, the show view is rendered with the newly created
instance.

Show Action
Listing 7-22 illustrates the show() action of the BookController.

Listing 7-22.  The Show Action of the BookController

def show(Long id) {
 def bookInstance = Book.get(id)
 if (!bookInstance) {
 flash.message = message(code: 'default.not.found.message',
args: [message(code: 'book.label', default: 'Book'), id])
 redirect(action: "list")
 return
 }
 
 [bookInstance: bookInstance]
 }
 
The show() action expects an id parameter. The first line of the show() action calls the Book.get()
method to retrieve the Book referred to by the id parameter. If no Book instance exists with the id
passed in, an error message is stored in the flash scope, and the user is redirected to the list view.

If a Book instance is found with the id passed in, it is returned in a Map with the key of bookInstance,
and the show() action will render the show view.

Edit Action
Listing 7-23 illustrates the edit() action of the BookController.

Listing 7-23.  The Edit Action of the BookController

def edit(Long id) {
 def bookInstance = Book.get(id)
 if (!bookInstance) {
 flash.message = message(code: 'default.not.found.message', args: [message(code: 'book.
label', default: 'Book'), id])
 redirect(action: "list")
 return
 }
 
 [bookInstance: bookInstance]
 }
 
The edit() action loads the necessary data that will be used during editing and passes it to the edit
view. The edit() action is very much the same as the show() action. The name of the edit() action,
edit, is used to render the edit view.

336 CHAPTER 7: Rapid Web Development with Grails

Update Action
The update() action is called when changes from the edit view are submitted. Listing 7-24 illustrates
the update() action of the BookController.

Listing 7-24.  The Update Action of the BookController

def update(Long id, Long version) {
 def bookInstance = Book.get(id)
 if (!bookInstance) {
 flash.message = message(code: 'default.not.found.message',
args: [message(code: 'book.label', default: 'Book'), id])
 redirect(action: "list")
 return
 }
 
 if (version != null) {
 if (bookInstance.version > version) {
 bookInstance.errors.rejectValue("version", "default.optimistic.locking.failure",
 [message(code: 'book.label', default: 'Book')] as Object[],
 "Another user has updated this Book while you were editing")
 render(view: "edit", model: [bookInstance: bookInstance])
 return
 }
 }
 
 bookInstance.properties = params
 
 if (!bookInstance.save(flush: true)) {
 render(view: "edit", model: [bookInstance: bookInstance])
 return
 }
 
 flash.message = message(code: 'default.updated.message', args: [message(code:
'book.label', default: 'Book'), bookInstance.id])
 redirect(action: "show", id: bookInstance.id)
 }
 
The update() action tries to retrieve a Book instance with the id parameter. The id is provided from
the edit view. If an instance is found, an optimistic concurrency check is performed. If there are no
errors, all the values from the edit view are assigned to the appropriate property of the Book instance,
including any necessary data conversion.
 
bookInstance.properties = params
 
If both of those steps are successful, a “success” message is stored in flash, and the user is
directed to the show view. If either step fails, a “failure” message is stored in flash, and the user is
directed back to the edit view.

337CHAPTER 7: Rapid Web Development with Grails

Delete Action
The delete() action is available, by default, in the edit and show views. Listing 7-25 illustrates the
delete() action of the BookController.

Listing 7-25.  The Delete Action of the BookController

def delete(Long id) {
 def bookInstance = Book.get(id)
 if (!bookInstance) {
 flash.message = message(code: 'default.not.found.message', args: [message(code:
'book.label', default: 'Book'), id])
 redirect(action: "list")
 return
 }
 
 try {
 bookInstance.delete(flush: true)
 flash.message = message(code: 'default.deleted.message', args: [message(code:
'book.label', default: 'Book'), id])
 redirect(action: "list")
 }
 catch (DataIntegrityViolationException e) {
 flash.message = message(code: 'default.not.deleted.message',
args: [message(code: 'book.label', default: 'Book'), id])
 redirect(action: "show", id: id)
 }
}
 
The delete() action attempts to retrieve a Book instance and redirects to the list view if it can’t find
one. If an instance is found, a try/catch block is entered, where deletion of the instance is tried. If
the deletion is successful, a message is stored in flash and redirected to the list view. If there is an
exception, a different message is stored in flash and redirected to the show view.

Now that you have seen all the actions generated in the BookController for the Book class, let’s
examine the views generated by static scaffolding for the Book class.

Grails Views
Grails uses Groovy Server Pages (GSP) for its view layer. Grails also uses SiteMesh, the page
decoration framework, to help with page layout. SiteMesh merges each of the .gsp files into a file
called main.gsp to give a consistent look to all the pages. You will begin the generated views with
main.gsp, which can be found in \views\layouts, followed by the four views generated for the Book
class: list.gsp, show.gsp, create.gsp, and edit.gsp. Listing 7-26 illustrates main.gsp.

Listing 7-26.  main.gsp

1.<!DOCTYPE html>
2.<!--[if lt IE 7]><html lang="en" class="no-js ie6"><![endif]-->
3.<!--[if IE 7]><html lang="en" class="no-js ie7"><![endif]-->
4.<!--[if IE 8]><html lang="en" class="no-js ie8"><![endif]-->

338 CHAPTER 7: Rapid Web Development with Grails

5.<!--[if IE 9]><html lang="en" class="no-js ie9"><![endif]-->
6.<!--[if (gt IE 9)|!(IE)]><!--><html lang="en" class="no-js"><!--<![endif]-->
7.<head>
8.<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
9.<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
10.<title><g:layoutTitle default="Grails"/></title>
11.<meta name="viewport" content="width=device-width, initial-scale=1.0">
12.<link rel="shortcut icon" href="${resource(dir: 'images', file: 'favicon.ico')}"
type="image/x-icon">
13.<link rel="apple-touch-icon" href="${resource(dir: 'images', file: 'apple-touch-icon.png')}">
14.<link rel="apple-touch-icon" sizes="114x114" href="${resource(dir: 'images',
file: 'apple-touch-icon-retina.png')}">
15.<link rel="stylesheet" href="${resource(dir: 'css', file: 'main.css')}" type="text/css">
16.<link rel="stylesheet" href="${resource(dir: 'css', file: 'mobile.css')}" type="text/css">
17.<g:layoutHead/>
18.<r:layoutResources />
19.</head>
20.<body>
21.<div id="grailsLogo" role="banner"><img src="${resource(dir:
'images', file: 'grails_logo.png')}" alt="Grails"/></div>
22.<g:layoutBody/>
23.<div class="footer" role="contentinfo"></div>
24.<div id="spinner" class="spinner" style="display:none;"><g:message code="spinner.alt"
default="Loading…"/></div>
25.<g:javascript library="application"/>
26.<r:layoutResources />
27.</body>
28.</html>
 

	Lines 1 to 6: The main.gsp page starts with <!doctype html>. This is an HTML5
doc type. Grails supports HTML5 out of the box.

	Line 10: <g:layoutTitle> is used in layouts to render the contents of the title tag
of the decorated page. The <g:layoutTitle> tag substitutes the <title> from
the view that is being merged and links it in a style sheet and favicon that will be
used by all views.

	Line 17: The <g:layoutHead> tag merges in the contents of the target view’s
<head> section. <g:layoutHead> is used in layouts to render the contents of the
head tag of the decorated page.

	Line 22: <g:layoutBody> is used in layouts to output the contents of the body
tag of the decorated page. The <g:layoutBody> tag merges in the <body>
contents of the target view.

	Line 25: <g:javascript> includes JavaScript libraries and scripts and provides
a shorthand for inline JavaScript. Specifying a library tells the Ajax tags which
JavaScript provider to use.

http://grails.org"><img

339CHAPTER 7: Rapid Web Development with Grails

The List View
The list View is illustrated in Listing 7-27.

Listing 7-27.  list.gsp

1.<%@ page import="bookstore.Book" %>
2.<!DOCTYPE html>
3.<html>
4.<head>
5.<meta name="layout" content="main">
6.<g:set var="entityName" value="${message(code: 'book.label', default: 'Book')}" />
7.<title><g:message code="default.list.label" args="[entityName]" /></title>
8.</head>
9.<body>
10.<g:message code="default.link.skip.label"
default="Skip to content…"/>
11.<div class="nav" role="navigation">
12.
13.<g:message code="default.home.label"/>
14.<g:link class="create" action="create"><g:message code="default.new.label"
args="[entityName]" /></g:link>
15.
16.</div>
17.<div id="list-book" class="content scaffold-list" role="main">
18.<h1><g:message code="default.list.label" args="[entityName]" /></h1>
19.<g:if test="${flash.message}">
20.<div class="message" role="status">${flash.message}</div>
21.</g:if>
22.<table>
23.<thead>
24.<tr>
25.
26.<g:sortableColumn property="bookTitle" title="${message(code: 'book.bookTitle.label',
default: 'Book Title')}" />
27.
28.<g:sortableColumn property="price" title="${message(code: 'book.price.label', default: 'Price')}" />
29.
30.<g:sortableColumn property="isbn" title="${message(code: 'book.isbn.label', default: 'Isbn')}" />
31.
32.</tr>
33.</thead>
34.<tbody>
35.<g:each in="${bookInstanceList}" status="i" var="bookInstance">
36.<tr class="${(i % 2) == 0 ? 'even' : 'odd'}">
37.
38.<td><g:link action="show" id="${bookInstance.id}">${fieldValue(bean: bookInstance,
field: "bookTitle")}</g:link></td>
39.

340 CHAPTER 7: Rapid Web Development with Grails

40.<td>${fieldValue(bean: bookInstance, field: "price")}</td>
41.
42.<td>${fieldValue(bean: bookInstance, field: "isbn")}</td>
43.
44.</tr>
45.</g:each>
46.</tbody>
47.</table>
48.<div class="pagination">
49.<g:paginate total="${bookInstanceTotal}" />
50.</div>
51.</div>
52.</body>
53.</html>
 

	Line 14: The <g:link> tag creates a link to the create action of the
BookController.

	Line 19: The <g:if> tag checks for the existence of flash.message that was
stored in the action and, if found, displays it.

	Lines 26 to 31: The <g:sortableColumn> tag is used to provide sorting on our
list view.

	Lines 35 to 45: The <g:each> tag iterates over the bookInstanceList. Each item
in the list is assigned to the bookInstance variable. The body of the <g:each>
tag fills in the table row with the properties of the bookInstance. In the line
<tr class="${(i % 2) == 0 ? 'even' : 'odd'}">, a Groovy expression is used
to determine the style class of the <tr>, and the fieldValue() method is used
to render the value of each Book property.

	Line 49: The <g:paginate> tag displays the pagination controls if there are
enough elements in the list view. The bookInstanceTotal is used from
Listing 7-19, as mentioned earlier.

The Create View
The create view is illustrated in Listing 7-28.

Listing 7-28.  create.gsp

1.<%@ page import="bookstore.Book" %>
2.<!DOCTYPE html>
3.<html>
4.<head>
5.<meta name="layout" content="main">
6.<g:set var="entityName" value="${message(code: 'book.label', default: 'Book')}" />
7.<title><g:message code="default.create.label" args="[entityName]" /></title>
8.</head>
9.<body>
10.<g:message code="default.link.skip.label"
default="Skip to content…"/>

341CHAPTER 7: Rapid Web Development with Grails

11.<div class="nav" role="navigation">
12.
13.<g:message code="default.home.label"/>
14.<g:link class="list" action="list"><g:message code="default.list.label" args="[entityName]" />
</g:link>
15.
16.</div>
17.<div id="create-book" class="content scaffold-create" role="main">
18.<h1><g:message code="default.create.label" args="[entityName]" /></h1>
19.<g:if test="${flash.message}">
20.<div class="message" role="status">${flash.message}</div>
21.</g:if>
22.<g:hasErrors bean="${bookInstance}">
23.<ul class="errors" role="alert">
24.<g:eachError bean="${bookInstance}" var="error">
25.<li <g:if test="${error in org.springframework.validation.FieldError}">data-field-id=
"${error.field}"</g:if>><g:message error="${error}"/>
26.</g:eachError>
27.
28.</g:hasErrors>
29.<g:form action="save" >
30.<fieldset class="form">
31.<g:render template="form"/>
32.</fieldset>
33.<fieldset class="buttons">
34.<g:submitButton name="create" class="save" value="${message(code:
'default.button.create.label', default: 'Create')}" />
35.</fieldset>
36.</g:form>
37.</div>
38.</body>
39.</html>
 

	Lines 22 to 28: The <g:hasErrors> tag examines the Book instance assigned to
its bean attribute and renders its body if errors are found.

	Line 29 to 36: The <g:form> tag sets up an HTML form. This tag has an action
that will result in the URL to submit the form to.

	Line 31: <g:render > applies a built-in or user-defined Groovy template against
a model so that templates can be shared and reused. The template in this case
is called form and is located in the views directory as _form.gsp. The leading
underline denotes that the .gsp file is a template.

The Show View
The show view is illustrated in Listing 7-29.

342 CHAPTER 7: Rapid Web Development with Grails

Listing 7-29.  show.gsp

1.<%@ page import="bookstore.Book" %>
2.<!DOCTYPE html>
3.<html>
4.<head>
5.<meta name="layout" content="main">
6.<g:set var="entityName" value="${message(code: 'book.label', default: 'Book')}" />
7.<title><g:message code="default.show.label" args="[entityName]" /></title>
8.</head>
9.<body>
10.<g:message code="default.link.skip.label"
default="Skip to content…"/>
11.<div class="nav" role="navigation">
12.
13.<g:message code="default.home.label"/>
14.<g:link class="list" action="list"><g:message code="default.list.label" args="[entityName]" />
</g:link>
15.<g:link class="create" action="create"><g:message code="default.new.label"
args="[entityName]" /></g:link>
16.
17.</div>
18.<div id="show-book" class="content scaffold-show" role="main">
19.<h1><g:message code="default.show.label" args="[entityName]" /></h1>
20.<g:if test="${flash.message}">
21.<div class="message" role="status">${flash.message}</div>
22.</g:if>
23.<ol class="property-list book">
24.
25.<g:if test="${bookInstance?.bookTitle}">
26.<li class="fieldcontain">
27.<g:message code="book.bookTitle.label"
default="Book Title" />
28.
29.<g:fieldValue
bean="${bookInstance}" field="bookTitle"/>
30.
31.
32.</g:if>
33.
34.<g:if test="${bookInstance?.price}">
35.<li class="fieldcontain">
36.<g:message code="book.price.label"
default="Price" />
37.
38.<g:fieldValue bean="${bookInstance}"
field="price"/>
39.
40.
41.</g:if>
42.

343CHAPTER 7: Rapid Web Development with Grails

43.<g:if test="${bookInstance?.isbn}">
44.<li class="fieldcontain">
45.<g:message code="book.isbn.label"
default="Isbn" />
46.
47.<g:fieldValue bean="${bookInstance}"
field="isbn"/>
48.
49.
50.</g:if>
51.
52.
53.<g:form>
54.<fieldset class="buttons">
55.<g:hiddenField name="id" value="${bookInstance?.id}" />
56.<g:link class="edit" action="edit" id="${bookInstance?.id}"><g:message
code="default.button.edit.label" default="Edit" /></g:link>
57.<g:actionSubmit class="delete" action="delete" value="${message(code:
'default.button.delete.label', default: 'Delete')}" onclick="return
confirm('${message(code: 'default.button.delete.confirm.message', default: 'Are you sure?')}');" />
58.</fieldset>
59.</g:form>
60.</div>
61.</body>
62.</html>
 

	Lines 55 to 56: The ? after the bookInstance reference is a safe navigation
operator. When this expression is evaluated and if bookInstance is null, the
whole expression evaluates to null, and no exception is thrown.

	Line 57: The <g:actionSubmit> tag generates a submit button that maps to a
specific action, which lets you have multiple submit buttons in a single form.
JavaScript event handlers can be added using the same parameter names as in
HTML.

The Edit View
The edit view is illustrated in Listing 7-30.

Listing 7-30.  edit.gsp

1.<%@ page import="bookstore.Book" %>
2.<!DOCTYPE html>
3.<html>
4.<head>
5.<meta name="layout" content="main">
6.<g:set var="entityName" value="${message(code: 'book.label', default: 'Book')}" />
7.<title><g:message code="default.edit.label" args="[entityName]" /></title>
8.</head>

344 CHAPTER 7: Rapid Web Development with Grails

9.<body>
10.<g:message code="default.link.skip.label"
default="Skip to content…"/>
11.<div class="nav" role="navigation">
12.
13.<g:message code="default.home.label"/>
14.<g:link class="list" action="list"><g:message code="default.list.label" args="[entityName]" />
</g:link>
15.<g:link class="create" action="create"><g:message code="default.new.label"
args="[entityName]" /></g:link>
16.
17.</div>
18.<div id="edit-book" class="content scaffold-edit" role="main">
19.<h1><g:message code="default.edit.label" args="[entityName]" /></h1>
20.<g:if test="${flash.message}">
21.<div class="message" role="status">${flash.message}</div>
22.</g:if>
23.<g:hasErrors bean="${bookInstance}">
24.<ul class="errors" role="alert">
25.<g:eachError bean="${bookInstance}" var="error">
26.<li <g:if test="${error in org.springframework.validation.FieldError}">data-field-id=
"${error.field}"</g:if>><g:message error="${error}"/>
27.</g:eachError>
28.
29.</g:hasErrors>
30.<g:form method="post" >
31.<g:hiddenField name="id" value="${bookInstance?.id}" />
32.<g:hiddenField name="version" value="${bookInstance?.version}" />
33.<fieldset class="form">
34.<g:render template="form"/>
35.</fieldset>
36.<fieldset class="buttons">
37.<g:actionSubmit class="save" action="update" value="${message(code:
'default.button.update.label', default: 'Update')}" />
38.<g:actionSubmit class="delete" action="delete" value="${message(code:
'default.button.delete.label', default: 'Delete')}" formnovalidate="" onclick="return
confirm('${message(code: 'default.button.delete.confirm.message', default: 'Are you sure?')}');" />
39.</fieldset>
40.</g:form>
41.</div>
42.</body>
43.</html>
 

	Lines 31 to 32: In Listing 7-24, it was mentioned that the id in the update( )
action is provided from this edit view. The id comes from the <g:hidden field>
tag, as shown in the code.

With this, we have completed all the views generated by static scaffolding for the Book class.

345CHAPTER 7: Rapid Web Development with Grails

H2 Console
As discussed earlier, Grails enables the H2 database console in development mode (at the URI
/dbconsole) so that the in-memory database can be easily queried from the browser. To see the
dbconsole in action, browse to http://localhost:8080/bookstore/dbconsole. The default login
parameters should match the default in grails-app/conf/Datasource.groovy, as illustrated in
Figure 7-29.

Figure 7-29.  Login screen of H2

You can get the user name and password from Datasource.groovy. Figure 7-30 illustrates the H2
console.

http://localhost:8080/bookstore/dbconsole

346 CHAPTER 7: Rapid Web Development with Grails

Now, add a book in our bookstore application and then enter SELECT * from BOOK in the database
console. The user we created in the application will show up, as illustrated in Figure 7-31.

Figure 7-30.  H2 console

347CHAPTER 7: Rapid Web Development with Grails

Creating Domain Relationships
In an application domain, classes have relationships to one another. The domain relationships define
how domain classes interact. Grails provides support for several types of relationships between domain
classes. A one-to-many relationship is when one class, Author, has many instances of the Book class.
With Grails you define such a relationship with the hasMany setting, as illustrated in Listing 7-31.

Listing 7-31.  One-to-Many Relationship Between Author and Book

class Author {
 static hasMany = [books: Book]
 
String name }
 
class Book {
 String title
}
 

Figure 7-31.  Querying the table in H2

348 CHAPTER 7: Rapid Web Development with Grails

In Listing 7-31 there is a unidirectional one-to-many. Grails will, by default, map this kind of relationship
with a join table. Grails will automatically inject a property of type java.util.Set into the domain class
based on the hasMany setting. Grails supports many-to-many relationships by defining a hasMany on
both sides of the relationship and having a belongsTo on the owned side of the relationship.

You will create an application with a many-to-many domain relationship between Author and Book.
You can find the source code for this application in the books project in Chapter 7 of the source
code archive that you can download from the Apress website. Listing 7-32 illustrates the Book class.

Listing 7-32.  Creating a Domain Relationship Between Book and Author

1.package books
2.
3.class Book {
4. static belongsTo = Author
5. static hasMany = [authors:Author]
6. String title
7.Long isbn
8.String publisher
9.static constraints = {
10.title(blank:false)
11.}
12.
13.String toString() {
14.title
15.}
16.}
 

	Line 4: This line informs Grails that the Book class belongs to its owning Author.

	Line 5: This line inform Grails that the Book class has many instances of Author.

Listing 7-33 illustrates the Author class.

Listing 7-33.  Author class.

1.package books
2.
3.class Author {
4.
5. static hasMany = [books:Book]
6. String firstName
7.String lastName
8.static constraints = {
9.firstName(blank:false)
10.lastName(blank:false)
11.}
12.String toString() {
13."$lastName, $firstName"
14.}
15.}
 

	Line 5: This line tells Grails that an Author has many instances of Book.

349CHAPTER 7: Rapid Web Development with Grails

Grails maps a many-to-many relationship using a join table at the database level. The owning side of
the relationship, Author in this application, takes responsibility for persisting the relationship because
Grails uses Hibernate as ORM frameworks and, in Hibernate, only one side of a many-to-many
relationship can take responsibility for managing the relationship.

With the relationship between the domain classes created, all you need to do is to create
BookController and AuthorController and set their scaffold property. In the BookController you
created, replace the index() action with the scaffold property set to Book, as illustrated in Listing 7-34.

Listing 7-34.  BookController

class BookController {
 
 static scaffold = Book
}
 
In the AuthorController, set the scaffold property to Author, as illustrated in Listing 7-35.

Listing 7-35.  AuthorController

class AuthorController {
 
 static scaffold = Author
}
 
Now you can run the application. The scaffolding will generate the application for you and point you
to the URL. Figure 7-32 shows the welcome screen of the application.

Figure 7-32.  Welcome screen of book application

350 CHAPTER 7: Rapid Web Development with Grails

In Figure 7-33, you can create a new author by clicking the New Author link. Figure 7-34 illustrates
the list of authors thus created.

When you click the AuthorController, the Author List screen is displayed, as illustrated in Figure 7-33.

Figure 7-33.  Author List screen

Figure 7-34.  List of authors

351CHAPTER 7: Rapid Web Development with Grails

Now you can view the Book List by clicking the BookController link on the welcome screen, as
illustrated in Figure 7-35.

You can add a new book by clicking the New Book Link. When you click New Book, a Create Book
screen is displayed. If you try to create a book with blank Title and Isbn fields, you will get the validation
message illustrated in Figure 7-36. You did not write any constraints for the ISBN in Listing 7-32, but still
there is validation on the ISBN field because Grails provides constraints by default for some fields, and
ISBN is one of them (as listed in Table 7-2 of this chapter).

Figure 7-35.  Book List screen

Figure 7-36.  Validation error

352 CHAPTER 7: Rapid Web Development with Grails

Now you can create the book by providing values for these fields. Figure 7-37 illustrates the Book
List screen with two books created.

Figure 7-37.  Book List screen

Figure 7-38.  Editing the author

Now you can go to the Author List screen and click the Edit button, as illustrated in Figure 7-38.

353CHAPTER 7: Rapid Web Development with Grails

When you click the Edit button, you will see that two books are available, as illustrated in Figure 7-39.
You can select both books and click the Update button.

Figure 7-39.  Edit Author screen

In this way, you can add the books for all the authors you have created. Now when you go to the
Book List screen and click one of the Book Title links, the Show Book screen is displayed with the
name of all the authors for that book, as illustrated in Figure 7-40.

354 CHAPTER 7: Rapid Web Development with Grails

Figure 7-40.  Show Book screen

This concludes the chapter, which sketched a brief overview of Grails 2. For more detailed coverage,
I recommend Beginning Groovy, Grails, and Griffon by Vishal Layka, Christopher M. Judd, Joseph
Faisal Nusairat, and Jim Shingler (Apress, 2012), as well as The Definitive Guide to Grails 2 by Jeff
Scott Brown and Graeme Rocher (Apress 2012).

Summary
In this chapter, you learned that Grails is a rapid web development framework that combines the
best of Java open source, conventions, the Groovy dynamic language, and the power of the Java
platform. You saw how easy it is to develop a fully functional application using Grails scaffolding to
do most of the work. You used static scaffolding as a learning tool, generating the controller and
views for one domain class (Book). Then you navigated through the controller, and saw that all the
work in the controller is done in the actions. Then you learned the code for each action responsible
for the corresponding view. Finally, you navigated through the views and saw how the views take
advantage of the Grails tag libraries to promote a clean separation of concerns.

355

Chapter 8
Play with Java and Scala

Oh, throw away the worser part of it. And live the purer with the other half.

—William Shakespeare

Java EE continues to evolve in a, sort of, benign continuum. Inspired by frameworks such as Spring,
Java EE introduced features such as annotations and dependency injection to address complex
tasks like transactions and database connectivity. Java EE 7, the latest edition as of this writing,
further reinforces the advancements in the Java Persistence API (JPA) and JAX-RS for REST-based
web services, to name just a few. Most of the complexity involved with Java web development will
continue to be addressed, in many ways, by commercial or open web frameworks’ innovations.

However, the Play 2 web framework meanders off the beaten track. Play 2 is not Java EE–centric
and is not constrained by Java EE. It is part of the Typesafe stack that provides an alternative to the
Java EE stack. Typesafe redefines the layers of modern Java applications formerly defined by
Java EE, and in this new demarcation Play constitutes the web layer.

Play is an open source web application framework, written in Scala and Java, and provides
out-of-the-box support for the modern Web. Play was built for the needs of modern web and
mobile applications, leveraging technologies such as REST, JSON, and Web Sockets, among
others.

Play targets the JVM and focuses on enhancing developer productivity by providing features such
as convention over configuration, hot code reloading, and errors in the browser. Play implements
the MVC architecture by means of a route file that maps HTTP requests to controllers and view
templates that represent the result. Play 2 builds upon the functional paradigm by providing native
support for the Scala programming language and provides an adapted Java-specific API that
formulates a highly reactive web framework.

356 CHAPTER 8: Play with Java and Scala

MVC in Play 2
A Play 2 application follows the MVC architectural pattern. In a Play 2 application, the MVC layers
are defined in the app directory, each one in a separate package (see Figure 8-1).

Features of Play 2
Play 2.0 was released in 2012 in conjunction with the Typesafe stack. Play 2 was built using Scala
as the core language, whereas Play 1 used the Java language and provided support for Scala by
means of plug-ins. Play 2.2 was released in September 2013. Table 8-1 describes the key features
of Play 2.

Table 8-1.  Key Features of Play 2

Feature Description

Asynchronous I/O Play 2 can service long requests asynchronously as a result of using
JBoss Netty1 as its web server.

Built-in web server Play 2 provides the JBoss Netty web server out of the box, but Play web
applications can also be packaged as WAR files to be distributed to Java
EE application servers.

Dependency management Play 2 provides sbt2 for dependency management.

Hot reloading In a Play 2–based application, the code in development mode is checked
for updates each time a new request arrives, and any changed files
are automatically recompiled; if there is any error, the error is displayed
directly in the browser.

In-memory database Like Grails, Play 2 supports H2 out of the box.

Native Scala support Play 2 uses Scala natively but is completely interoperable with Java.

ORM Play 2 provides Ebean3 as the ORM replacement of JPA to access
databases.

Stateless Play 2 is fully RESTful, and there is no Java EE session per connection.

Templating Play 2 uses Scala for the template engine.

Testing framework Play 2 provides a built-in test framework for unit testing and functional
testing such as JUnit and Selenium.4

Web Sockets Play 2 implements Web Sockets out of the box to enable a bi-directional
connection between a client and the server.

1http://netty.io/
2www.scala-sbt.org/
3www.avaje.org/
4www.seleniumhq.org/

http://netty.io/
http://www.scala-sbt.org/
http://www.avaje.org/
http://www.seleniumhq.org/

357CHAPTER 8: Play with Java and Scala

Browser Router Controller

View

Model
Request Invoke

Invoke

Update

Retrieve

Response

Figure 8-1.  MVC in Play 2

The request flow in the MVC architecture illustrated in Figure 8-1 is as follows:

1.	 An HTTP request is received by the router.

2.	 The router finds the action defined in the controller to process this request.

3.	 The controller listens for HTTP requests, extracts relevant data from the
requests, and applies changes to the model.

4.	 The controller renders a template file to generate the view.

5.	 The result of the action method is then written as an HTTP response.

Router
The main entry point of the web application is the conf/routes file that defines the routes needed by
the application. Each route consists of an HTTP method and a URI pattern associated with a call to
an action method. Conf/routes is the configuration file used by the built-in component called Router
that translates each incoming HTTP request to an action call.

Note  The HTTP method can be any of the valid methods supported by HTTP (GET, POST, PUT, DELETE,
and HEAD).

Controller
In a Java EE–based web application, a controller is a Java class that extends the servlet type. Since
Play is not Java EE–centric, a controller in Play 2 is a class in Java or an object in Scala that extends
the controller type (both in Java and Scala). This controller type is provided in the play.api.mvc
package. A controller in Play 2 comprises a public, static method called an action. An action is
basically a method that processes the request parameters and produces a result to be sent to the
client. The controller responds to requests, processes them, and invokes changes on the model.

Controllers are, by default, defined in the controllers package under the source root—the app folder.

358 CHAPTER 8: Play with Java and Scala

Note  A controller is a type that extends the controller provided in the play.api.mvc package.

Model
The model is the domain-specific representation of the information on which the application operates.
The most commonly used object for this representation is the JavaBean. However, JavaBeans lead
to plenty of boilerplate code. Play 2, like Grails, reduces this boilerplate code by generating the
getters and setters for you by means of byte-code enhancement. The model objects may contain
persistence artifacts such as JPA annotations, for instance, if they need to be saved into
persistent storage.

Note  Even if Play 2 uses Ebean for ORM, you can continue to use JPA annotations on your entities.

View
In a Java EE–based web application, the view is usually developed using JSP. That is, the view in
a Java EE–based web application consists of JSP elements and template text. As Play is not Java
EE–centric, the view in Play comprises the template that contains a mix of HTML and Scala code.
In Play 1, the templates were based on Groovy, but starting with Play 2, the templates are based
on Scala. Using Play 2 you can develop both Java- and Scala-based web applications, and the
templates are the same in both of them.

Note  In Play 1 the templates were based on Groovy, but starting with Play 2, the templates are based on Scala.

Getting Started with Play
To run the Play framework, you need JDK 6 or newer. You can download Play 2 from here: www.
playframework.com/download. Play 2 is available in two distributions: standard and Typesafe
Activator.

Download the latest stand-alone Play distribution, extract the archive to a location of your choice,
and update the Path environment variable by adding/editing the Path variable in the Environment
Variables dialog with the path to the Play installation, as illustrated in Figure 8-2.

http://www.playframework.com/download
http://www.playframework.com/download

359CHAPTER 8: Play with Java and Scala

Now enter the following command in the command-line tool to check whether the Play environment
has been correctly set up:
 
> play
 
You should see the output on the console, as illustrated in Figure 8-3, if Play is correctly installed.

Figure 8-2.  Adding/editing the path variable

Figure 8-3.  Verifying whether Play 2 is correctly installed

360 CHAPTER 8: Play with Java and Scala

You can also get some help by executing the help command, as illustrated in Figure 8-4.
 
> play help 

Figure 8-4.  Help in Play 2

Figure 8-5.  Creating the helloworld application

Figure 8-6.  Specifying whether the application is a Scala or Java application

Now you can create your first Java web application with Play. Let’s Play!

Hello World Java Application with Play
To create a new application, you just have to use the play command-line tool with the parameter new
followed by the name of the new application, in this case helloworld, as illustrated in Figure 8-5.

Play 2 will ask you to specify whether your application is a Scala or Java application, as illustrated
in Figure 8-6.

361CHAPTER 8: Play with Java and Scala

You have to specify 2 because you want to create a Java application. Specifying 2 creates the
source files and the structure of the application for the Java language, as illustrated in Figure 8-7.

Figure 8-7.  Creation of the helloworld project

You can run the application using the run command from the helloworld directory. To do this, enter
the Play console, as illustrated in Figure 8-8.
 
> cd helloworld
>play 

Figure 8-8.  Entering the Play console

362 CHAPTER 8: Play with Java and Scala

Now type run. This will start the server that will run your application.
 
$ run
 
The output on the console is shown here: 

[helloworld] $ run
[info] Updating {file:/E:/ModernJava/play2-workspace/helloworld/}helloworld...
[info] Resolving org.scala-lang#scala-library;2.10.2 ...
[info] Resolving com.typesafe.play#play-java-jdbc_2.10;2.2.0 ...
 [info] Resolving com.typesafe.play#play-jdbc_2.10;2.2.0 ...
 [info] Resolving com.typesafe.play#play_2.10;2.2.0 ...
...
 [info] Resolving org.fusesource.jansi#jansi;1.4 ...
[info] Done updating.
--- (Running the application from SBT, auto-reloading is enabled) ---
[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0:9000
(Server started, use Ctrl+D to stop and go back to the console...)

As you can see, the console says that it has started the application, and an HTTP server is listening
for HTTP requests on the port 9000. You can now send a request to this server by going to the
URL http://localhost:9000/. Upon requesting the server, a welcome screen is displayed, as
illustrated in Figure 8-9.

Figure 8-9.  Default welcome page of the Play 2 framework

http://localhost:9000/

363CHAPTER 8: Play with Java and Scala

Figure 8-9 illustrates the default Play 2 welcome page. The default welcome page of the application
is a great source of information for a beginner, and it is recommended that you read it.

The run command creates the structure of the application inside the helloworld directory. The
structure is illustrated in Figure 8-10.

Figure 8-10.  The directory structure of the helloworld application

Each folder in Figure 8-10 is described here:

	app: This is the root of all the server-side source files such as Java and Scala
source code, templates, and compiled assets’ sources. At creation, only two
subfolders will be created: controllers and views for the controller and view
components, respectively, of the MVC architectural pattern. You can add the
directory app/models for the model component of the MVC. There is also an
optional directory called app/assets for compiled assets such as LESS5 sources
and CoffeeScript6 sources.

	conf: The conf directory contains the application’s configuration files meant to
configure the application itself, external services, and so on. There are two main
configuration files:

�� application.conf: The main configuration file for the application, which contains
standard configuration parameters

�� routes: The routes definition file

	project: The project folder is meant to contain all of the necessary files to
configure the Scala build tool SBT.7

	public: This directory contains three standard subdirectories for images, CSS
style sheets, and JavaScript files.

5http://lesscss.org/
6http://jashkenas.github.io/coffee-script/
7www.scala-sbt.org/

http://lesscss.org/
http://jashkenas.github.io/coffee-script/
http://www.scala-sbt.org/

364 CHAPTER 8: Play with Java and Scala

 	 target: The target directory contains everything generated by the build system
such as the following:

�� classes: This contains all the compiled classes (from both Java and Scala
sources).

�� classes_managed: This contains only the classes that are managed by the
framework (such as the classes generated by the router or the template system).

�� resource_managed: This contains generated resources, typically compiled assets
such as LESS CSS and CoffeeScript compilation results.

�� src_managed: This contains generated sources, such as the Scala sources
generated by the template system.

	test: This last folder will contain all the test files along with some samples
provided by the framework.

Now that you have seen the directory structure of the application, you will learn how the default
welcome page is displayed when you test the URL: http://localhost:9000.

Each row in the conf/routes file is a route that defines how to access server components using HTTP.
If you see the generated routes file in the conf/routes file, you will see this first route:
 
GET / controllers.Application.index()
 
This route is composed of three parts:

	GET: This is the first part in the route (row) that contains the HTTP method used
in the request.

	/: This is the second part in the route that contains a relative path.

	controllers.Application.index(): This is the third part in the route that
contains the action to be invoked.

These three parts in the route inform Play 2 that when the web server receives a GET request for
the / path, it must call controllers.Application.index(), which calls the index method in the
Application class that resides in the controllers package.

Now you will see what the controllers.Application.index method looks like. For that, you need to
open the app/controllers/Application.java source file. This file is illustrated in Listing 8-1.

Listing 8-1.  Application Controller

 1. package controllers;
 2.
 3. import play.*;
 4. import play.mvc.*;

Note  Resources stored in the public directory are static assets that will be served directly by the
web server.

http://localhost:9000/

365CHAPTER 8: Play with Java and Scala

 5.
 6. import views.html.*;
 7.
 8. public class Application extends Controller {
 9.
10. public static Result index() {
11. return ok(index.render("Your new application is ready."));
12. }
13.
14. }
 

	Line 8: The Application controller class extends play.mvc.Controller.

	Line 10: The public static index() action returns a Result. All action methods
return a Result. The Result represents the HTTP response to be sent back to
the browser.

	Line 11: Here, the action returns a 200 OK response with an HTML response
body. The HTML content is provided by a template. An action always returns an
HTTP response, which is represented in Play 2 by the Result type. The Result
type must be a valid HTTP response, so it must include a valid HTTP status code.
OK sets it to 200.The render() method references a template file in Play 2.

The template is defined in the app/views/index.scala.html source file. This file is illustrated in
Listing 8-2.

Listing 8-2.  index.scala.html

1. @(message: String)
2.
3. @main("Welcome to Play") {
4.
5. @play20.welcome(message, style = "Java")
6.
7. }
 

	Line 1: The Scala statement starts with the special @ character. The first line
defines the function signature. Here it takes a single String parameter.
A template is like a function, and thus it needs parameters, which are declared
at the top of the template file.

	Line 3: This line invokes a function named main with one string argument.

	Lines 3 to 7: These lines comprise the main function block.

	Line 5: Line 5 uses a function called welcome, provided by Play 2. This function
renders the default welcome HTML page, which is in the file named main.scala.
html also located in apps/views folder.

	Line 5: The welcome function has an extra parameter style that informs the
template that this is a Java-based application, and then this style parameter is
used by the welcome template to show links to documentation.

366 CHAPTER 8: Play with Java and Scala

For importing the project, select File ➤ Import, select General ➤ Existing Projects into Workspace,
and click Next, as illustrated in Figure 8-13.

Configuring Eclipse for Java
Play 2 provides you with the possibility to use the Eclipse IDE. For this you need to ask Play 2 to
generate the Eclipse project configuration. You can do this by invoking Eclipse in the Play console,
as illustrated in Figure 8-11.

Figure 8-12.  Selecting a workspace

Figure 8-11.  Generating the project for Eclipse

Now you can launch Eclipse, as illustrated in Figure 8-11, and import the project into it, as illustrated
in Figure 8-12.

367CHAPTER 8: Play with Java and Scala

Figure 8-13.  Importing the project

Now browse your filesystem, select the project folder helloworld, click OK, and then click Finish,
as illustrated in Figure 8-14.

368 CHAPTER 8: Play with Java and Scala

All the files necessary to configure an Eclipse project are generated. You saw how to create a project and
import it into your development environment. Now you will modify the application. In Application.java,
change the content of the response in the index action, as illustrated in Listing 8-3.

Listing 8-3.  Modifying the Index Action

public static Result index() {
 return ok("Hello world");
}
 
The index action will now respond with “Hello world,” as illustrated in Figure 8-15.

Figure 8-14.  Selecting the root directory

369CHAPTER 8: Play with Java and Scala

Play 2 provides some sample applications in the samples folder in play-2.2.0\samples\java\.
You can run the helloworld application, as illustrated in Figure 8-16.

Figure 8-16.  The sample helloworld application provided by Play 2

Figure 8-15.  “Hello world”

When you click Submit Query, the user’s name is displayed based on the selection, as illustrated
in Figure 8-17.

370 CHAPTER 8: Play with Java and Scala

You can go through the code on your own and improve the application.

Helloworld Scala Application with Play 2
As mentioned earlier, Play 2 allows you to create both Java- and Scala-based web applications. The
procedure for generating a Scala-based application is the same as generating the Java application.
You can create a helloworld-scala application as illustrated in Figure 8-18.

Figure 8-18.  Creating the helloworld-scala application

Figure 8-17.  Running the sample helloworld application

371CHAPTER 8: Play with Java and Scala

Now you can run the helloworld-scala project using the run command from the Play console, as
illustrated in Figure 8-19.

Figure 8-19.  Play console for helloworld-scala application

Now you will look at the controller generated by Play 2 for helloworld-scala (see Listing 8-4). You
can find the controller in helloworld-scala\app\controllers.

Listing 8-4. Application Controller in Scala

 1. package controllers
 2.
 3. import play.api._
 4. import play.api.mvc._
 5.
 6. object Application extends Controller {
 7.
 8. def index = Action {
 9. Ok(views.html.index("Your new application is ready."))
10. }
11.
12. }
 

	Line 6: As you can see on line 6, in Java controller is a class, but in Scala the
controller is an object.

	Line 8: As you can see on line 8, in Java action is a static method, but in Scala
an action is a function (an object’s method).

	Line 9: The return type and keyword are missing if you compare this to the Java
controller.

	Line 9: Scala uses a structure called Action, which is a block of code executor.

Now that you have seen the controller in Scala, which differs from a Java controller syntactically,
it is time to see the template in helloworld-scala (see Listing 8-5), which you can find in
helloworld-scala\app\views.

372 CHAPTER 8: Play with Java and Scala

Listing 8-5.  Template in helloworld-scala

1. @(message: String)
2.
3. @main("Welcome to Play") {
4.
5. @play20.welcome(message)
6.
7. }
 
As you can notice, the template in helloworld and helloworld-scala are the same except for line 5.
The Scala version is not initializing the style argument because its default value is Scala.

Configuring Eclipse for Scala
You can use the Scala IDE for Scala-based applications. The Scala IDE is an Eclipse plug-in,
and you can install this plug-in by selecting Help ➤ Install New Software. In the “Work with”
field, enter the path for the plug-in (http://scala-ide.org/download/current.html), as shown in
Figure 8-20. You can also find detailed instructions for configuring Eclipse for Scala at
http://scala-ide.org/documentation.html.

Figure 8-20.  Installing the Eclipse plug-in for the Scala IDE

http://scala-ide.org/download/current.html
http://scala-ide.org/documentation.html

373CHAPTER 8: Play with Java and Scala

To import the project, you can just repeat the same steps you performed earlier when generating the
project configuration for Eclipse in the helloworld Java application.

Now you can modify the index action in the application controller to display “Hello world,” as shown
in Listing 8-6.

Listing 8-6.  Modifying the Index Action to Display “Hello world”

def index = Action {
 Ok("Hello world")
 }
 

A Basic CRUD Play 2 Java Application
In this section, you will learn to write a simple CRUD application that allows you to create, view, edit,
and delete books. For these operations, you need actions and URLs to invoke these actions. The
code for this application is available in a downloadable archive on the Apress web site.

Defining the Routes
The first step is to define routes for these operations in the conf/routes file, as illustrated in Listing 8-7.

Listing 8-7.  Edit the Conf/Routes File

1. # Home page
2. GET / controllers.Application.index()
3.
4. # Books
5. GET /books controllers.Application.books()
6. POST /books controllers.Application.newBook()
7. POST /books/:id/delete controllers.Application.deleteBook(id: Long)
 

	Line 5: In line 5 you create a route to list all books.

	Line 6: In line 6 you create a route to handle book creation.

	Line 7: In line 7 you create a route to handle deletion. The route to handle book
deletion defines a variable argument ID in the URL path. This value is then
passed to the deleteBook action.

Now if you refresh your browser, you will see that Play 2 cannot compile your routes file, as
illustrated in Figure 8-21.

374 CHAPTER 8: Play with Java and Scala

Play cannot compile your routes file because it references actions that don’t exist. The next step is
to add these actions to the Application.java file.

Creating the Controller and Actions
In this section, you will create the actions, as illustrated in Listing 8-8.

Listing 8-8.  Application Controller in the Books Application

 1. public class Application extends Controller {
 2.
 3. public static Result index() {
 4. return ok(index.render("Your new application is ready."));
 5. }
 6.
 7. public static Result books() {
 8. return TODO;
 9. }
10.

Figure 8-21.  Routes file compilation error

375CHAPTER 8: Play with Java and Scala

11. public static Result newBook() {
12. return TODO;
13. }
14.
15. public static Result deleteBook(Long id) {
16. return TODO;
17. }
18.
19. }
 

	Lines 7, 11, and 15: These lines show the actions that were specified in the
routes file in Listing 8-7.

	Lines 8, 12, and 16: A built-in result TODO is used that returns “Not
implemented” response 503. This result tells Play 2 that the action
implementations will be provided later. When you access the application via
http://localhost:9000/books, you see the result displayed in Figure 8-22.

Figure 8-22.  Built-in TODO result in Play 2

Creating the Model
The next step is to define the model Book that can be stored in a relational database. For this, create
a class in the app/models/Book.java file, as illustrated in the Listing 8-9.

Listing 8-9. Book.java

 1. package models;
 2. import java.util.*;
 3. public class Book {
 4. public Long id;
 5. public String label;
 6. public static List<Book> all() {
 7. return new ArrayList<Book>();

http://localhost:9000/books

376 CHAPTER 8: Play with Java and Scala

 8. }
 9. public static void create(Book book) {
10. }
11. public static void delete(Long id) {
12. }
13. }
 

	Lines 6 to 12: You create static methods to manage CRUD operations on Book.
Later you will implement these operations to store the books in a relational
database.

The Form and the View Template
A Form object encapsulates an HTML form definition, including validation constraints. To create a
form for the Book class, you need to add the following to your application controller:
 
static Form<Book> bookForm = Form.form(Book.class);
 
The previous code is used to define a play.data.Form that wraps an existing class. The type of
bookForm is Form<Book>.

You can add a constraint to the Book type using JSR-303 annotations. Listing 8-10 illustrates how to
make the label field required.

Listing 8-10.  Adding the Validation Constraint

package models;
 
import java.util.*;
 
import play.data.validation.Constraints.*;
 
public class Book {
 
 public Long id;
 
 @Required
 public String label;
 
 ...
 
Now you need to modify the view template to display the screen for creating the book and listing all
the books.

Templates are compiled as standard Scala functions. If you create a views/Application/index.scala.html
template file, Scala will generate a views.html.Application.index class that has a render() method.
Listing 8-11 shows a simple template.

377CHAPTER 8: Play with Java and Scala

Listing 8-11.  Simple Template

@(books: List[Book])

@for(book <- books) {
 @book.getTitle()
}

 
You can then call this from any Java code like you would normally call a method on a class.
 
Content html = views.html.Application.index.render(books);
 
Listing 8-12 illustrates the code for the index.scala.html template that you will find in the
app/views folder.

Listing 8-12.  index.scala.html

 1. @(books: List[Book], bookForm: Form[Book])
 2.
 3. @import helper._
 4.
 5. @main("books") {
 6.
 7. <h1>@books.size() book(s)</h1>
 8.
 9.
10. @for(book <- books) {
11.
12. @book.label
13.
14. @form(routes.Application.deleteBook(book.id)) {
15. <input type="submit" value="Delete">
16. }
17.
18. }
19.
20.
21. <h2>Add a new book</h2>
22.
23. @form(routes.Application.newBook()) {
24.
25. @inputText(bookForm("label"))
26.
27. <input type="submit" value="Create">
28.
29. }
30.
31. }
 

378 CHAPTER 8: Play with Java and Scala

In Listing 8-12, the template takes two parameters. @content is a parameter that represents valid HTML
to be written in the body of the document. The type of content is Html, which is the Scala structure
that can be written as HTML when invoked by the template. The imported helper._ provides the form
creation helpers—that is, the form function that creates the HTML <form> with filled action and method
attributes, and the inputText function that creates the HTML input given as a form field.

Note  The play.data package contains several helpers to handle HTTP form data submission
and validation.

Now you can implement the books() action, as illustrated in Listing 8-13.

Listing 8-13.  Implementing the Books Action

public static Result books() {
 return ok(
 views.html.index.render(Book.all(), bookForm)
);
}
 
The books() action renders a 200 OK result filled with the HTML, which is rendered by the index.
scala.html template called with the books list and the bookForm form.

You can now try to access http://localhost:9000/books in your browser (see Figure 8-23).

Figure 8-23.  Displaying the book creation form

If you submit the book creation form, you will still get the TODO page. You need to implement the
newBook() action to be able to create the book. Listing 8-14 illustrates the implementation of the
newBook() action.

http://localhost:9000/books

379CHAPTER 8: Play with Java and Scala

Listing 8-14.  Implementation of the newBook( ) Action

 1. public static Result newBook() {
 2. Form<Book> filledForm = bookForm.bindFromRequest();
 3. if(filledForm.hasErrors()) {
 4. return badRequest(
 5. views.html.index.render(Book.all(), filledForm)
 6.);
 7. } else {
 8. Book.create(filledForm.get());
 9. return redirect(routes.Application.books());
10. }
11. }
 

	Line 2: We use bindFromRequest to create a new form filled with the request data.

	Lines 3 to 7: If there are any errors in the form, we redisplay it (here we use 400
“Bad Request” instead of 200 “OK”).

	Lines 7 to 10: If there are no errors, we create the book and then redirect to the
books list.

Accessing the Database
Play 2 supports an object-relational mapping (ORM), Ebean, out of the box to fill the gap
between the domain model and the relational database, as illustrated in Figure 8-24. The other
popular options that offer ORM for Java are Hibernate and the Java Persistence API, which is
standardized by Oracle.

Figure 8-24.  Using Ebean to query the database

Like any other ORM, Ebean aims to facilitate the usage of a model when dealing with relational
databases by implementing finders based on the model’s properties. You will use H2, a lightweight
DBMS that comes bundled with Play 2. Play’s configuration contains default settings for using H2
and Ebean, but they’re commented out. So, open the file conf/application.conf in your application’s
directory, and find and uncomment the following lines to enable the database in your application:
 
db.default.driver=org.h2.Driver
db.default.url="jdbc:h2:mem:play"
 
You will use Ebean to query the database. So, you’ll have to enable it in the application.conf file as well:
 
ebean.default="models.*"
 

380 CHAPTER 8: Play with Java and Scala

This will create an Ebean server connected to the default data source, managing all entities found in
the models package.

Now it’s time to transform your Book class to a valid Ebean entity. You can do this by making the Book
class extend the play.db.ebean.Model superclass to have access to Play’s built-in Ebean helper, as
illustrated in Listing 8-15.

Listing 8-15.  Transforming the Book Class to a Valid Ebean Entity

 1. package models;
 2.
 3. import java.util.*;
 4. import play.db.ebean.*;
 5. import play.data.validation.Constraints.*;
 6.
 7. import javax.persistence.*;
 8.
 9. @Entity
10. public class Book extends Model {
11. @Id
12. public Long id;
13. @Required
14. public String label;
15.
16. public static Finder<Long,Book> find = new Finder(
17. Long.class, Book.class
18.);
19.
20.
21. public static List<Book> all() {
22. return find.all();
23. }
24.
25. public static void create(Book book) {
26. book.save();
27. }
28. public static void update(Long id, Book book) {
29. book.update(id);
30. }
31.
32. public static void delete(Long id) {
33. find.ref(id).delete();
34. }
35.
36.
37. }
 

	Line 13: Line 13 adds the persistence annotation.

	Lines 16 to 18: These lines create a finder helper called find to initiate queries.

	Lines 21 to 34: These lines implement the CRUD operations. For instance, when you
call the create() action, Ebean translates the save() method call into one or more
SQL INSERT statements that store a new record in a database table using SQL.

381CHAPTER 8: Play with Java and Scala

Now when you test the URL http://localhost:9000/, you will see the page shown in Figure 8-25.

Figure 8-25.  Applying a script on the default database

When you defined the database connection to connect to the H2 database, it did not automatically
create the schema, in other words, the tables and column definitions. To create the schema, Play 2
generates a SQL script and demands to run it: “Apply this script now.” Once you run this script by
clicking the “Apply this script now” button, you can test the URL http://localhost:9000/books
and the new book, as illustrated in Figure 8-26.

Figure 8-26.  Adding a book

http://localhost:9000/
http://localhost:9000/books

382 CHAPTER 8: Play with Java and Scala

Deleting Books
Now that you can create books, you need to be able to delete them. For this you need to implement
the deleteBook() action, as illustrated in Listing 8-16.

Listing 8-16.  Implementing the Delete Action

1. public static Result deleteBook(Long id) {
2. Book.delete(id);
3. return redirect(routes.Application.books());
4. }
 
This concludes the chapter and this book. One chapter is not enough to cover all the features of
the Play 2 framework (or any framework, for that matter). Meanwhile, frameworks and the web
architecture are evolving at a rapid pace toward real-time processing, integrating more concurrent
real-time data, so web frameworks need to support a full asynchronous HTTP programming model
and need to use the event model through Web Sockets. Play 2 provides an asynchronous HTTP
API instead of the standard Servlet API, thus moving away from standard JEE conventions. Play 2.0
employs the Actor-based model to handle highly concurrent systems through Akka. Akka is the best
implementation of Actor-based models available for both Java and Scala. Play 2.0 provides native
Akka support making it possible to write highly-distributed systems.

The goals of this book were to show you that the wave the Java language ushered into Web
development in late ‘90s was only a beginning of the Typesafe era that is being transcended today
and that the popularity that Java has enjoyed should be accredited to the Java Virtual Machine. It is
quite a machine.

Summary
In this chapter, you took a high-level look at the Play 2 framework. You developed a helloworld web
application for both Java and Scala, and you learned the basics that are common to all the Play
2 web applications: Java and Scala controllers, actions, and even a bit of views. In addition, you
examined the differences between Java and Scala controllers. You saw the best features provided
by Play 2, such as compilation on the fly and errors shown on the browser. Then you developed a
simple Java-based CRUD web application.

383

Appendix A
Introduction to Java

One of the fundamental ways in which complexity can be handled is abstraction, which is applied
in almost every discipline. For instance, abstract art is art that does not represent or imitate external
reality or the objects of nature. As another example, some words are abstract, existing only in the
mind, like truth or justice. In Java, abstraction allows developers to layer complex systems into
manageable pieces by using class hierarchies that highlight the essential properties and behaviors of
an object, differentiating it from other objects.

Classes and Objects
A class is the fundamental building block of object-oriented (OO) programs. Each class generally
represents a real-world object. The class is a template for denoting and creating a category of
objects, thus modeling an abstraction by defining the properties and behavior of the objects
representing that abstraction. A property of an object is defined by a field, which is a variable that
can store the value representing that property. The behavior of an object is defined by a method.
The fields and methods of a class are known as its members. A class definition in Java consists of
member declarations (variable declarations and method declarations) and begins with the class
keyword, as illustrated in Listing A-1.

Listing A-1.  A Java Class

class ClassA {
// members declarations
}
 
An object is an instance of a class. The object is constructed using the class as a blueprint and is a
concrete instance of the abstraction that the class represents. An object must be created before it
can be used in a program. The process of creating objects from a class is called instantiation. When
a class is instantiated, a reference value is returned that denotes the created object. A reference
value denotes a particular object. An object reference (or, simply, reference) is a variable that can
store a reference value and provide a handle to an object. The code in Listing A-2 creates an object
of ClassA. The reference value of this object is stored in the variable var1.

384 APPENDIX A: Introduction to Java

Listing A-2.  Creating the Object

ClassA var1 = new ClassA();
 
The process of creating objects involves declaring a reference variable to store the reference value of
the object and then creating the object using the new keyword followed by initializing the object by a
call to a constructor. The concept of constructor is explained later in the appendix. Listing A-3 splits
Listing A-2 to show the declaration and creation as separate steps.

Listing A-3.  The Declaration and Creation in Separate Steps

1. ClassA var1 ;
2. var1 = new ClassA();
 

Line 1 declares the variable 	 var1. The reference variable var1 can now be
used to manipulate the object whose reference value is stored in the reference
variable.

Line 2 creates the object using the 	 new keyword and initialization by calling a
constructor ClassA().

Variables
In Java, variables store values of primitive data types and reference values of objects.

Listing A-4 illustrates variable declarations that can store primitive values.

Listing A-4.  Variable Declarations

int a, b, c; // a, b and c are integer variables.
boolean flag; // flag is a boolean variable.
int i = 10, // i is an int variable with initial value 10
 
Variables that store reference values of objects are called reference variables. The reference variables
specify the type of reference that can be a class, an array, or an interface. Listing A-5 illustrates the
reference variable declaration.

Listing A-5.  Reference Variable Declarations

ClassA var1 ; // Variable var1 can reference objects of class ClassA.
 
The declaration in the listing A-5 does not create any object of class ClassA; it just creates variable
that can store references of objects of ClassA.

Instance Members
Each object created (as illustrated in Listing A-2) has its own copies of the fields defined in its class.
The fields of an object are called instance variables. The values of the instance variables in an object
make up the object’s state. The methods of an object define its behavior. These methods are called

385APPENDIX A: Introduction to Java

instance methods. Instance variables and instance methods, which belong to objects, are called
instance members (see Listing A-6) to distinguish them from static members, which belong only to
the class.

Listing A-6.  The Instance Members

1. class ClassA{
2. // instance Members
3. int i ; // instance variable
4. void methodA(){// instance method
5. // do something
6. }
7. }
 

In line 3, 	 i is an instance variable of type int, and int is the primitive
data type of i.

In line 4, 	 methodA(){} is an instance method.

Static Members
Static members, declared with the keyword static, are the members that belong only to the class and
not to any specific objects of the class. A class can have static variables and static methods. Static
variables are initialized when the class is loaded at runtime. Similarly, a class can have static methods
that belong to the class and not to any specific objects of the class, as illustrated in Listing A-7.

Listing A-7.  Static Members

1. class ClassA{
2. static int i ;
3. static void methodA(){
4. // do something
5. }
6. }
 
Unlike instance members, static members in a class can be accessed using the class name,
as shown here:

 
ClassA.i // accessing static variable in Line 2 of Listing A-7
 
ClassA.methodA(); // accessing static method in Line 3 of Listing A-7
 
Though static members in a class can be accessed via object references, it is considered bad
practice to do so.

386 APPENDIX A: Introduction to Java

Method Overloading
Each method has a name and a formal parameter list. The name of the method and its formal
parameter list together with the type and the order of the parameter in the parameter list constitute
the signature of the method. As long as the method signatures differ, more than one method can
have the same method name. Such methods with the same method names and different signatures
are called overloaded methods, and this phenomenon is called method overloading. Thus,
overloaded methods are the methods that have the same name but a different parameter list. Listing
A-8 shows five implementations of the method methodA.

Listing A-8.  Overloaded MethodA()

1. void methodA{(int a, double b) }
2. int methodA(int a) { return a; }
3. int methodA() { return 1; }
4. long methodA(double a, int b) { return b; }
5. long methodA(int c, double d) { return a; } // Not ok.
 

The first four implementations of 	 method are overloaded correctly, each time with
a different parameter list and, therefore, different signatures.

The declaration on line 5 has the same signature 	 methodA(int, double) as the
declaration on line 1. Changing just the return type is not enough to overload a
method; the parameter list in the declarations must be different.

Note  Only methods declared in the same class and those that are inherited by the class can be overloaded.

Arrays
An array is a data structure that is comprised of a fixed number of data elements essentially of
the same data type. Any element in the array can be accessed using an index. The first element is
always at index 0, and the last element is at index n-1, where n is the value of the length field in the
array. In Java, arrays are objects where all elements in the array can be of a specific primitive data
type or of a specific reference type. Listing A-9 declares references that refer to the array objects.

Listing A-9.  Array Declarations

int [] intArray;
ClassA[] classAArray ;
 
The two declarations in Listing A-9 declare intArray and classAArray to be reference variables that
can refer to arrays of int values and arrays of ClassA objects. An array can be constructed for a fixed
number of elements of a specific type, using the new operator. Given the previous array declarations,
the arrays can be constructed as follows:
 
intArray = new int[10]; // array for 10 integers
classAArray = new ClassA[5]; // array of 5 objects of ClassA

387APPENDIX A: Introduction to Java

Constructors
When an object is created using a new operator, the constructors are called to set the initial state
of an object. A constructor declaration is comprised of the accessibility modifier followed by the
parameter list with the following declarations:

Modifiers other than an accessibility modifier are not permitted in the 	
constructor header.

Constructors cannot return a value and, therefore, do not specify a return type, 	
not even void, in the constructor header.

The constructor name must be the same as the class name.	

When no constructors are specified in a class, then an implicit default constructor, that is, an
implicit constructor without any parameters, is generated for the class by the compiler that
comprises a call to the superclass’s constructor. The compiler inserts this call to a superclass’s
constructor to ensure that the inherited state of the object is initialized. Listing A-10 illustrates a call
to an implicit default constructor.

Listing A-10.  Implicit Default Constructor

class ClassA {
int i;
}
class ClassB {
 
ClassA var1 = new ClassA(); // (1) Call to implicit default constructor.
}
 
In the listing, the following implicit default constructor is called when a ClassA object is created
in ClassB:
 
ClassA() { super(); }
 
In Listing A-11, the class ClassA provides an explicit default constructor at line 4.

Listing A-11.  Explicit Default Constructor

1. class ClassA {
2. int i ;
3. // Explicit Default Constructor:
4. ClassA() {
5. i = 1;
6. }
7.
8. }
9. class ClassB {
10. // ...
11. ClassA var1 = new ClassA(); // Call of explicit default constructor.
12. }
 

388 APPENDIX A: Introduction to Java

The explicit default constructor ensures that any object created with the object creation expression
new ClassA(), shown in ClassB, will have its field i initialized to 1. If a class defines any explicit
constructors, then the compiler will not generate the implicit default constructor with a call to the
superclass’s constructor, and therefore the state of the object will not be set. In such a case, an
implementation of the default constructor needs to be provided. In Listing A-12, the class ClassA
provides only a nondefault constructor at line 4. It is called at line 8 when an object of the class
ClassA is created with the new operator. Any attempt to call the default constructor will be flagged as
a compile-time error, as shown on line 11.

Listing A-12.  Nondefault Constructor

1. class ClassA {
2. int i;
3. // Only non-default Constructor:
4. ClassA(int i) {
5. this.i = i;
6. }
7. }
8. class ClassB {
9. // ...
10. ClassA var1 = new ClassA(2);
11. //ClassA var2 = new ClassA(); // Compile-time error.
12. }
 
Constructors can be overloaded, like methods, and because the names of all the constructors are
restricted to be the same as the class’s name, the signatures of these constructors can be different
only if their parameter lists are different. In Listing A-13, the class ClassA provides both an explicit
implementation of the default constructor on line 4 and a nondefault constructor on line 8. The
nondefault constructor is called when an object of the class ClassA is created on line 14 and the
default constructor is called on line 15.

Listing A-13.  Both Default and Nondefault Constructor

1. class ClassA {
2. int i;
3. // Explicit Default Constructor:
4. ClassA() {
5. i = 3;
6. }
7. // Non-default Constructor:
8. ClassA(int i) {
9. this.i = i;
10. }
11. }
12. class ClassB {
13. // ...
14. ClassA var1 = new ClassA(4);
15. ClassA var2 = new ClassA();
16. }
 

389APPENDIX A: Introduction to Java

Encapsulation
Encapsulation is the technique to achieve data hiding by preventing the data and the code from
being randomly accessed and manipulated by the external code, that is, from the code outside the
class. In terms of implementation, encapsulation is achieved by making the fields in a class private
and providing access to the fields via public methods. If a field is declared private, it cannot be
accessed by anyone outside the class. Listing A-14 illustrates an encapsulated Book class.

Listing A-14.  Encapsulation

public class Book {
 private String title ;
 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }
 }
 

Inheritance
Inheritance is one of the fundamental principles in object-oriented programming. In Java, all classes
by default extend the java.lang.Object class. A class can extend another class by using the
extends keyword. Java supports single inheritance through implementation inheritance in which a
class inherits state and behaviors from another class through class extension. Java also supports
multiple inheritance in two ways.

A class can inherit behavior from one or more interfaces by means of 	
implementation.

An interface can inherit behavior from one or more interfaces through extension.	

Figure A-1 presents a UML1 class diagram that depicts a parent-child relationship between a class,
ClassA, and a child class, ClassB. ClassB is a referred to as a subclass of ClassA. Note that a line
with an arrow is used to depict generalization, in other words, the parent-child relationship.

1www.uml.org/

http://www.uml.org/

390 APPENDIX A: Introduction to Java

Listing A-15 illustrates how Figure A-1 could be implemented in code. It illustrates implementation
inheritance using the keyword extends in line 26.

Listing A-15 .  Implementation Inheritance

1. package apress.appendix_A
2.
3. public class ClassA {
4.
5. // Instance methods
6. public void method1() {
7. System.out.println(" classA - method1");
8.
9. }
10.
11. private void method2() {
12. System.out.println(" classA - method2");
13.
14. }
15.
16. // Static methods
17. public static void method3() {
18. System.out.println(" classA - method3");
19.
20. }
21.
22. }

Figure A-1.  Parent-child relationship. ClassB extends ClassA

391APPENDIX A: Introduction to Java

23.
24. package apress.appendix_A;
25.
26. public class ClassB extends ClassA {
27.
28.
29. }
 
Listing A-16 is a driver class for testing the inheritance in Listing A-15.

Listing A-16.  Testing Inheritance

package apress.appendix_A;
 
public class Test {
  
 public static void main(String[] args) {
 ClassB var1 = new ClassB();
 
 var1.method1();
 // var1.method2(); // private method not Inherited
 
 ClassB.method3();// static method
 
 }
 
}
 
Listing A-16 illustrates that even if there are no methods defined in ClassB, methods of ClassA are
available in ClassB and can be invoked on the reference variable where the actual object type is of
ClassB. Line 9 shows that private methods are not inherited.

Here is the output:
 

classA - method1

classA - method3

 

Constructor Chaining
When a subclass is instantiated by invoking one of its constructors, the constructor first calls the
no-argument constructor of the superclass. In the superclass, the constructor also calls the constructor
of its superclass. This process repeats itself until the constructor of the java.lang.Object class
is reached. In other words, when you create an object of a subclass, all its superclasses are also
instantiated. Listing A-17 illustrates this constructor chaining.

392 APPENDIX A: Introduction to Java

Listing A-17.  Constructor Chaining

package apress.appendix_A;
 
public class ClassA {
 
 public ClassA() {
 
 System.out.println("Class A no-arg constructor");
 
 }
 
 public ClassA(String title) {
 System.out.println("Class A constructor");
 
 }
 
}
 
package apress.appendix_A;
 
public class ClassB extends ClassA {
  
 public ClassB(String title){
 System.out.println("Class B constructor ");
  
 }
 
} 
 
package apress.appendix_A;
 
public class Test {
 
 /**
 * @param args
 */
 public static void main(String[] args) {
 ClassB var1 = new ClassB("classB");
 
 }
 
}
 
Here is the output:
 

Class A no-arg constructor

Class B constructor

 

393APPENDIX A: Introduction to Java

The output proves that the constructor of the subclass invokes the base class’s no-arg constructor.
The Java compiler changed ClassB’s constructor to the following:
 
public ClassB(String title) {
 super();
 System.out.println("Class B constructor ");
}
 
The keyword super represents an instance of the direct superclass of the current object. Since super
is called from an instance of subclass, super represents an instance of ClassA. You can explicitly
call the parent’s constructor from a subclass’s constructor by using the super keyword, but super
must be the first statement in the constructor. Using the super keyword is handy if you want another
constructor in the superclass to be invoked.
 
public ClassB(String title) {
 super(title);
 System.out.println("Class B constructor ");
}

Polymorphism
Polymorphism is one of the most important principles of OO programming and as such is the heart
of OOP. Polymorphism refers to how an object in Java can take on many forms. To understand
how polymorphism works in Java, let’s look at an example of a class that extends another class
(see Figure A-2).

Figure A-2.  Extending a class

394 APPENDIX A: Introduction to Java

Figure A-2 shows a superclass-subclass relationship. This relationship allows you to assign an
object to a reference variable whose type is different from the object type, as follows:
 
ClassA var1 = new ClassB();
 
This assigns an object of type ClassB to a reference variable var1 whose reference type is ClassA.
This assignment has different implications at compile time and at runtime. At the compile time,
since the type of the var1 is ClassA, the compiler will not allow calling a method on var1, which is not
in ClassA, even if that method is in ClassB. Listing A-18 shows the code implementation of Figure A-2.

Listing A-18.  Inheritance

package apress.appendix_A;
public class ClassA {
 
 public void methodA() {
 System.out.println("methodA() in ClassA");
 }
 
}
 
package apress.appendix_A;
 
public class ClassB extends ClassA {
 
 public void methodB() {
 System.out.println("methodB() in ClassB");
 }
 
}
 
Listing A-19 illustrates the test.

Listing A-19.  Driver for Listing A-18

package apress.appendix_A;
 
public class Test {
 public static void main(String[] args) {
 
 ClassA var1 = new ClassB();
 // var1.methodB(); uncommenting this code will result in compile time
 // error
 var1.methodA();
 
 }
}
 
On line 2 of Listing A-19, it is not possible to call methodB() on var1 even if methodB() is ClassB,
because the reference type of var1 is ClassA and ClassA does not have methodB().

Now let’s consider the case where ClassB overrides methodA() of ClassA (see Figure A-3).

395APPENDIX A: Introduction to Java

Now the code of ClassB looks like that shown in Listing A-20.

Listing A-20.  Overriding methodA()

package apress.appendix_A;
 
public class ClassB extends ClassA {
 
 public void methodA() {
 System.out.println("methodA() in ClassB");
 }
 
}
 
Now both ClassA and ClassB have the same method, methodA().

The following assignment:
 
ClassA var1 = new ClassB();
 
confirms that it is possible to call methodA() on var1 because ClassA has methodA(). So, the following
test will compile:
 
package apress.appendix_A;
 
public class Test {
 public static void main(String[] args) {
 
 ClassA var1 = new ClassB();
 var1.methodA();
 
 }
}
 

Figure A-3.  Overriding a method

396 APPENDIX A: Introduction to Java

This is, at compile time, the call methodA() on var1 will be checked against a reference type of var1,
ClassA, by the compiler, and the compiler will allow it because the methodA() exists in ClassA.

But what will happen if we run the test; that is, which methodA() will be called, methodA() in ClassA or
methodA() in ClassB? When the test is run, it gives the following output:
 

methodA() in ClassB

 
The compiler checked methodA() in ClassA but executed methodA() in ClassB. This is because at
runtime, the JVM verifies, instead of compiles, methodA() against the actual object type. The actual
object type in the code (ClassA var1 = new ClassB();) is ClassB, while ClassA is a reference type.
So, the JVM checks whether the call methodA() is in ClassB() and calls it. This phenomenon is called
polymorphism. What will happen if methodA() is not in ClassB? To understand this, we implement the
code for Figure A-4.

Figure A-4.  Hierarchy of ClassB

397APPENDIX A: Introduction to Java

Figure A-4 shows InterfaceA, just to illustrate that the reference type could be an interface or
a class (or abstract class), and the compiler will check the existence of the method against the
reference type of any of these in the similar manner. Listing A-21 implements the hierarchy shown in
Figure A-4.

Listing A-21.  Hierachy of Class B

package apress.appendix_A;
public interface InterfaceA {
 
 public void methodA();
  
 
}
 
package apress.appendix_A;
public class ClassA implements InterfaceA{
 
 @Override
 public void methodA() {
 System.out.println("methodA() in ClassA");
 }
}
 
package apress.appendix_A;
public class ClassB extends ClassA {
 public void methodB() {
 System.out.println("methodB() in ClassB");
 }
}
 
In Listing A-21, the call methodA() is verified against reference type InterfaceA, and after checking
that methodA() exists in InterfaceA, the compiler approves the call; that is, there is no compile-time
error. Run the test shown in Listing A-22.

Listing A-22.  Test Application

package apress.appendix_A;
public class Test {
 public static void main(String[] args) {
 InterfaceA var1 = new ClassB();
 var1.methodA();
 }
}
 
You get the following output:

 

methodA() in ClassA

 

398 APPENDIX A: Introduction to Java

The actual object type in line 4 of Listing A-22 is ClassB, so at runtime the JVM checks whether
methodA() exists in ClassB. On not finding methodA() in ClassB (because it does not exist in ClassB),
the JVM checks for the existence of methodA() in the hierarchy of ClassB, because the JVM
considers the fact that there must be methodA() existing somewhere in the hierarchy of ClassB;
otherwise, the compiler would not have approved the call. Since methodA() exists in ClassA, the JVM
executes methodA() in ClassA at runtime.

Summary
This appendix introduced you to the basics of Java and object-oriented programming. You learned
how classes are the basic building blocks of object-oriented programs and how you can instantiate
objects from classes. Next, you were introduced to the three pillars of object-oriented programming:
encapsulation, inheritance, and polymorphism.

399

Appendix B
Introduction to Groovy

Groovy is an agile and dynamic language for the Java Virtual Machine that builds upon the strengths of
Java but has additional powerful features inspired by languages such as Python, Ruby, and Smalltalk.
It seamlessly integrates with all existing Java classes and libraries and compiles to Java bytecode so
you can use it anywhere you can use Java. Groovy provides the ability to statically type check and
statically compile your code for robustness and performance and supports domain-specific languages
and other compact syntax so your code becomes easy to read and maintain.

Groovy makes modern programming features available to Java developers with almost zero learning
curve; increases developer productivity by reducing scaffolding code when developing web, GUI,
database, or console applications; and simplifies testing by supporting unit testing and mocking out
of the box.

Getting Started
Let’s start with a traditional “Hello World” program. But first you need to install Groovy. Groovy
comes bundled as a .zip file or platform-specific installer for Windows, Ubuntu, and Debian (as well
as openSUSE until recent versions). This section explains how to install the zipped version, since it
covers the most platforms.

To install Groovy, follow these steps:

1.	 Download the most recent stable Groovy binary release .zip file from
http://groovy.codehaus.org/Download.

2.	 Uncompress groovy-binary-X.X.X.zip to your chosen location.

3.	 Set a GROOVY_HOME environment variable to the directory in which you
uncompressed the .zip file.

4.	 Add the %GROOVY_HOME%\bin directory to your system path.

http://groovy.codehaus.org/Download

400 APPENDIX B: Introduction to Groovy

Note  Groovy requires Java, so you need to have a version available (while Groovy 1.6 supported JDK 1.4 or
greater, for Groovy 1.7 onward, at a minimum JDK 1.5 is needed).

To validate your installation, open a console and type the following:
 
>groovy -v
 
You should see something like this:

Groovy Version: 2.0.0 JVM: 1.6.0_31 Vendor: Sun Microsystems Inc. OS: Windows 7

Now you can write your first “Hello World” program (see Listing B-1).

Listing B-1.  “Hello World” in Java

1. public class HelloWorld {
2. public static void main(String[] args)
3. System.out.println("Hello World!");
4. }
5. }
 

	Lines 1 to 2: The default visibility of methods and fields is public, so you can
drop the public modifier.

	Line 2: Groovy supports dynamic typing, so you can drop type information and
the return type void on the main().

	Line 3: Every Groovy object has at its disposure println, which can be seen as
a shortcut for System.out.println.

	Line 3: The semicolon at the end of line is optional, so you can drop that too.

In light of these rules, you can transform Listing B-1 to Listing B-2.

Listing B-2.  Transforming “Hello World” Applying Groovy Rules

1. class HelloWorld {
2. static main(args){
3. println "Hello World!"
4. }
5. }
 
As you can see, Listing B-2 is much more compact. You can write and execute Groovy code in the
form of scripts that are also compiled to bytecode. So, you can write the Groovy code illustrated in
Listing B-3 for the “Hello World” program.

Note  Any Java class/object is also a Groovy class/object.

401APPENDIX B: Introduction to Groovy

Listing B-3.  Groovy Script for “Hello World”

println "Hello World!"
 
You can run Groovy scripts and classes through the command line, GroovyShell, or GroovyConsole.

GroovyShell
GroovyShell is an interactive command-line application (shell) that allows you to create, run, save,
and load Groovy scripts and classes. To start GroovyShell, run groovysh. Figure B-1 illustrates using
GroovyShell to execute a simple script.

Figure B-1.  Using GroovyShell

As you can see, the script prints vishal. Then you see ===> null. As a matter of convention,
Groovy always returns the results of methods. In this case, there is no result, so null is returned.
GroovyShell contains a built-in help facility that you can use to learn more about the shell. To access
it, type help at the prompt. Figure B-2 shows the help listing.

402 APPENDIX B: Introduction to Groovy

GroovyConsole
GroovyConsole, shown in Figure B-3, is a graphical version of GroovyShell. It is written using
SwingBuilder, a Groovy module that makes building a Swing user interface easier.

Figure B-2.  Using GroovyShell help

403APPENDIX B: Introduction to Groovy

Figure B-4 shows GroovyConsole with the output detached. You can start GroovyConsole in a
number of ways, depending on your environment and how you installed Groovy. The easiest way is
to execute GroovyConsole, which is located in the Groovy bin directory.

Figure B-3.  GroovyConsole

404 APPENDIX B: Introduction to Groovy

The console provides the ability to create, save, load, and execute classes and scripts. Some of the
nice features of the console are undo/redo and the ability to inspect variables. If you have to choose
between using GroovyShell and GroovyConsole, I recommend GroovyConsole.You can also define
classes in scripts and use them right away, as illustrated in Listing B-4.

Listing B-4.  Defining a Class in the Script

class HelloWorld {
 def hello(name){
 "Hello ${name}!"
 }
}
def hw = new HelloWorld()
println hw.hello("Vishal")
 

The return type of the method 	 hello is not of a specific type, so you use the
reserved keyword def.

The string 	 "Hello" is not a simple java.lang.String. It is, in fact, one of the
Groovy features: a GString. These types of strings allow string interpolation,
as explained in the next section.

Groovy supports two kinds of strings: regular Java strings and GStrings. A string in Groovy is an
instance ofjava.lang.String if it is surrounded by single quotes or if it is surrounded by double or
triple quotes with no unescaped dollar sign ($).

Figure B-4.  Using GroovyConsole with the output detached

405APPENDIX B: Introduction to Groovy

GStrings
GStrings are an instance of groovy.lang.GString and allow placeholders to be included in the
text. GStrings are not a subclass of String because the String class is final and can’t be extended.
A GString is just like a normal string, but it allows the embedding of variables within it using ${..}.
The curly braces are required only if the embedded variable is a placeholder for an expression.
Groovy supports a concept found in many other languages such as Perl and Ruby called string
interpolation, which is the ability to substitute an expression or variable within a string. If you have
experience with Unix shell scripts, Ruby, or Perl, this should look familiar. Java doesn’t support string
interpolation. You must manually concatenate the values. Listing B-5 is an example of the type of
code you need to write in Java, and Listing B-6 shows the same code using a GString.

Listing B-5.  Building Strings with Java

String name = "Vishal" ;
String helloName = "Hello " + name ;
System.out.println(helloName) ;
 

Listing B-6.  String Interpolation in Groovy/GString

1. str1= "Vishal"
2. str2 = "Hello "
3. println "$str2$str1"
 
In line 3, curly braces are not used because curly braces are required only if the embedded variable
is a placeholder for an expression. When Groovy sees a string defined with double quotes or slashes
and an embedded expression, Groovy constructs an org.codehaus.groovy.runtime.GStringImpl
instead of a java.lang.String. When the GString is accessed, the expression is evaluated. Notice
that you can include any valid Groovy expression inside the ${} notation; this includes method calls
or variable names.

Groovy supports single-line strings and the strings that span multiple lines. In the sections that
follow, you will learn a variety of strings supported in Groovy.

Single-Line Strings
Single-line strings can be single quoted or double quoted. A string enclosed in single quotes is taken
literally. Strings defined with single quotes do not interpret the embedded expressions, as illustrated
in Listing B-7.

Listing B-7.  Single-Quote Strings Do Not Interpret Embedded Expressions

name = "vishal"
s1 = 'hello $name'
println s1
Here is the output:
hello $name
 
You can nest a double quote in a single quote, as illustrated in Listing B-8.

406 APPENDIX B: Introduction to Groovy

Listing B-8.  Nested Double Quote in Single Quote

s1 = 'hello "vishal"'
println s1
 
Strings defined using double quotes will interpret embedded expressions within the string, as
illustrated in Listing B-9.

Listing B-9.  Double-Quoted Strings Interpret Embedded Expressions

def name = "vishal"
s1 = "hello $name"
println s1
Here is the output:
hello vishal
 
You can nest single quotes in double quotes, as illustrated in Listing B-10.

Listing B-10.  Nested Single Quote in Double Quote

s1 = "hello 'vishal'"
println s1
Here is the output:
hello 'vishal'

Multiline Strings
Groovy supports strings that span multiple lines. A multiline string is defined by using three
double quotes or three single quotes. Multiline string support is useful for creating templates or
embedded documents (such as XML templates, SQL statements, HTML, and so on). For example,
you could use a multiline string and string interpolation to build the body of an e-mail message,
as shown in Listing B-11. String interpolation with multiline strings works in the same way as it
does with regular strings: multiline strings created with double quotes evaluate expressions, and
single-quoted strings don’t.

Listing B-11.  Using Multiline Strings

def name = "Vishal"
def multiLineString = """
Hello, ${name}
This is a multiline string with double quotes
"""
println multiLineString
 

Hello, Vishal
This is a multiline string with double quotes 

407APPENDIX B: Introduction to Groovy

Slashy Strings
As mentioned earlier, slashes can be used to define strings. The slashy notation has a nice benefit:
additional backslashes are not needed to escape special characters. The only exception is escaping
a backslash: \/. The slashy notation can be helpful when creating a regular expression requiring
a backslash or a path. Listing B-12 illustrates the difference between using regular quotes and
slashes to define a regular expression to match a file system path.

Listing B-12.  Using Slashy Strings

def quotedString = 'Hello Vishal'
def slashyString = /Hello Vishal/
println slashyString 

Hello Vishal 

Listing B-12 defines two variables and assigns them to a directory path. The first variable definition,
quotedString, uses the single-quote notation to define a string. Using the single-quote notation
requires that the embedded backslash be escaped using an additional backslash.

Multiline Slashy Strings
Slashy strings can also span multiple lines. This is particularly useful for multiline regexes when using
the regex freespacing comment style (see Listing B-13).

Listing B-13.  Using Multiline Slashy Strings

1. def name = "vishal"
2. def path= "c:/groovy"
3. def multilineSlashy = /
4. Hello $name
5. path= $path
6. dollar = $
7. path = c:\/groovy
8. /
9. println multilineSlashy
 

Hello vishal
path= c:/groovy
dollar = $
path = c:/groovy

 
Let’s take a look at Listing B-13 in a little more detail.

Line 1 defines a variable, 	 name, and assigns the value "vishal" to it.

Line 2 defines a variable, 	 path, and assigns the value "c:/groovy" to it.

Line 3 defines a variable, 	 multilineSlashy, and assigns a multiline string to it
that includes up to line 8, between the slashes.

408 APPENDIX B: Introduction to Groovy

Line 4 has an expression, 	 $name, that is evaluated to vishal, as shown in
the output.

Line 5 has an expression, 	 $path, that is evaluated to c:/groovy, as shown in
the output.

Line 6 has a 	 $ sign, but it is not an expression, so it is displayed in the output.

Line 7 has a slash, which needs to be escaped.	

Dollar Slashy Strings
In multiline slashy strings, a slash still needs to be escaped. Moreover, in multiline slashy strings, an
unescaped dollar sign that is not an expression results in a MissingPropertyException, as illustrated
in Listing B-14.

Listing B-14.  MissingPropertyException in Multiline Slashy String

1. def name = "vishal"
2. def path= "c:/groovy"
3. def multilineSlashy = /
4. Hello $name
5. path= $path
6. dollar = $test
7. path = c:\/groovy
8. /
9. println multilineSlashy 

Caught: groovy.lang.MissingPropertyException: No such property: test for class:
hello
groovy.lang.MissingPropertyException: No such property: test for class: hello
at hello.run(hello.groovy:3) 

In Listing B-14, there is no such property as test; $test in line 6 is interpreted as an expression,
which results in a MissingPropertyException.

Now, let’s look at the code in Listing B-15, specifically line 6.

Listing B-15.  Unescaped Dollar Sign in Multiline Slashy String

1. def name = "vishal"
2. def path= "c:/groovy"
3. def multilineSlashy = /
4. Hello $name
5. path= $path
6. dollar = $ test
7. path = c:\/groovy
8. /
9. println multilineSlashy
 

409APPENDIX B: Introduction to Groovy

This time Groovy does not interpret $ test in line 6 as an expression because there is an empty
space between $ and test, and it renders the output as follows: 

Hello vishal
path= c:/groovy
dollar = $ test
path = c:/groovy 

With a dollar slashy string, you are no longer required to escape the slash with a preceding
backslash (multiline slashy strings require the slash to be escaped), and you can use $$ to escape a
$ or use $/ to escape a slash if needed, as illustrated in Listing B-16.

Listing B-16.  Using Dollar Slashy String

1. def name = "vishal"
2. def path= "c:/groovy"
3. def dollarSlashy = $/
4. Hello $name
5. path = $path
6. dollar = $$test
7. path = c:/groovy
8. /$
9. println dollarSlashy 

Hello vishal
path= c:/groovy
dollar = $test
path = c:/groovy 

Let’s take a look at Listing B-16 in more detail.

Line 3 defines a 	 dollarSlashy string that includes up to line 8.

Line 6 has a $	 test, which has caused a MissingPropertyException in the case
of the multiline slashy string in Listing B-14, which you now escape using a $.

Collective Datatypes
Groovy supports a number of different collections, including arrays, lists, maps, ranges, and sets.
Let’s look at how to create and use each of the collection types.

410 APPENDIX B: Introduction to Groovy

Arrays
A Groovy array is a sequence of objects, just like a Java array (see Listing B-17).

Listing B-17.  Creating and Using Arrays

1. def stringArray = new String[3]
2. stringArray[0] = "A"
3. stringArray[1] = "B"
4. stringArray[2] = "C"
5. println stringArray
6. println stringArray[0]
7. stringArray.each { println it}
8. println stringArray[-1..-3]
 

Line 1 creates a string array of size 3.	

Lines 2 to 4 use an index to access the array.	

Line 7 illustrates using the 	 each() method to iterate through the array. The
each() method is used to iterate through and apply the closure on every
element.

Line 8 shows something interesting—it uses a range, which will be discussed 	
shortly, to access the array. 

[A, B, C]

A

A

B

C

[C, B, A]

Lists
A Groovy list is an ordered collection of objects, just as in Java. It is an implementation of the
java.util.List interface. Listing B-18 illustrates how to create a list and common usages.

Listing B-18.  Creating and Using Lists

1. def emptyList = []
2. def list = ["A"]
3. list.add "B"
4. list.add "C"
5. list.each { println it }
6. println list[0]
7. list.set(0, "Vishal")
8. println list.get(0)
9. list.remove 2
10. list.each { println it }

411APPENDIX B: Introduction to Groovy

 On line 1, an empty list is created by assigning a property the value of 	 [].

Lines 2 to 4 create a list with an item already in it and add items to the list.	

Line 5 iterates over the list, invoking the closure to print out the contents. The 	
each() method provides the ability to iterate over all elements in the list, invoking
the closure on each element.

Lines 6 illustrates how to use an index to access a list. Lists are zero-based.	

Line 7 shows how to use an index to assign position 0 the value 	 "Vishal".

Line 8 accesses the list using the 	 get() method. 

A

B

C

A

Vishal

Vishal

B

Maps
A Groovy map is an unordered collection of key-value pairs, where the key is unique, just as in
Java. It is an implementation of java.util.Map. Listing B-19 illustrates how to create maps and
common usages.

Listing B-19.  Creating and Using Maps

1. def map = ['a':'Value A', 'b':'Value B ']
2. println map["a"]
3. println map."a"
4. println map.a
5. println map.getAt("b")
6. println map.get("b")
7. println map.get("c", "unknown")
8. println map
9. map.d = "Value D"
10. println map.d
11. map.put('e', 'Value E')
12. println map.e
13. map.putAt 'f', 'Value F'
14. println map.f
15. map.each { println "Key: ${it.key}, Value: ${it.value}" }
16. map.values().each { println it }
 

412 APPENDIX B: Introduction to Groovy

Line 1 illustrates how to define a map with multiple entries. When using the 	
square bracket notation, the colon separates the key from the value.

Lines 2 to 10 show several different techniques for accessing the map.	

Lines 11 to 13 show several different techniques for putting items into the map.	  

Value A

Value A

Value A

Value B

Value B

unknown

[a:Value A, b:Value B , c:unknown]

Value D

Value E

Value F

Key: a, Value: Value A

Key: b, Value: Value B

Key: c, Value: unknown

Key: d, Value: Value D

Key: e, Value: Value E

Key: f, Value: Value F

Value A

Value B

unknown

Value D

Value E

Value F

Ranges
A range is a list of sequential values. Logically, you can think of it as 1 through 10 or as a through z.
As a matter of fact, the declaration of a range is exactly that: 1..10 or 'a'.'z'. A range is a list of
any objects that implement java.lang.Comparable. The objects have next() and previous()
methods to facilitate navigating through the range. Listing B-20 illustrates some of the things you
can do with ranges.

413APPENDIX B: Introduction to Groovy

Listing B-20.  Creating and Using Ranges

1. def numRange = 0..9
2. numRange.each {print it}
3. println ""
4. println numRange.contains(5)
5. def reverseRange = 9..0
6. reverseRange.each {print it}
7. def exclusiveRange = 1..<10
8. println ""
9. exclusiveRange.each {print it}
10. def alphabet = 'a'..'z'
11. println ""
12. println alphabet.size()
13. println alphabet[25]
 

Lines 1, 5, 7, and 10 illustrate how to define ranges.	

Line 1 defines an inclusive range of numbers.	

Line 10 defines an inclusive range of lowercase letters.	

Line 7 defines an exclusive list of numbers. The range results in a range of 	
numbers 1 to 9, excluding 10.

Line 5 creates a range in reverse order, 9 through 0. Frequently, ranges are used for 	
iterating. In Listing B-20, each() was used to iterate over the range. Listing B-21
shows three ways you can use a range to iterate: one in Java and two in Groovy. 

0123456789

true

9876543210

123456789

26

z

Listing B-21.  Iterating with Ranges

for (i in 0..9) {
println i
}
(0..9).each { i->
println i
}
 
The each() method is used to iterate through and apply the closure on every element.

414 APPENDIX B: Introduction to Groovy

Sets
A Groovy set is an unordered collection of objects, with no duplicates, just as in Java. It is an
implementation of java.util.Set. By default, unless you specify otherwise, a Groovy set is a
java.util.HashSet. If you need a set other than a HashSet, you can create any type of set by
instantiating it, as in def TreeSet = new TreeSet(). Listing B-22 illustrates how to create sets and
common usages.

Listing B-22.  Creating and Using Sets

def set = ["A", "B"] as Set
set.add "C"
println set
set.each { println it }
set.remove "B"
set.each { println it } 

[A, B, C]

A

B

C

A

C 

Creating an empty set is similar to creating an empty list. The difference is the addition of the Set
clause. One of the important differences between a list and a set is that a list provides indexed-
based access and a set doesn’t.

Methods
Listing B-23 illustrates defining a method in Groovy the Java way, and Listing B-24 shows the same
thing but using the Groovy syntax instead.

Listing B-23.  Defining a Method the Java Way

public String hello(String name) {
return "Hello, " + name;
}
 

Listing B-24.  Defining a Method Using the Groovy Idiom

def hello(name) {
"Hello, ${name}"
}
 

415APPENDIX B: Introduction to Groovy

The return type and the return statement are not included in the body of the 	
method. Groovy always returns the results of the last expression—in this case,
the GString "Hello, . . .".

The access modifier public is not defined. Unless you specify otherwise, Groovy 	
defaults all classes, properties, and methods to public access.

Closures
Functional programming gives you the right foundation to think about concurrency on the basis
of underlying principles: referential transparency, higher-order functions, and immutable values.
Understanding these key elements is crucial to understanding closures (and other functional features
recently introduced in Groovy). Functional programming is built on the premise of pure functions. In
mathematics, functions are pure in that they lack side effects. Consider the classic function sin(x):
y = sin(x). No matter how many times sin(x) is called, no global or contextual state is modified
internally by sin(x). Such a function is pure, free of side effects, and oblivious to the context. This
obliviousness to the surrounding context is known as referential transparency. If no global state is
modified, concurrent invocation of the function is steadfast. In functional programming, functions
are first-class citizens, meaning functions can be assigned to variables, functions can be passed to
other functions, and functions can be returned as values from other functions. And such functions,
which take functions as arguments or return a function, are called higher-order functions.

Referential transparency, higher-order functions, and immutable values together make functional
programming a better way to write concurrent software. Though functional languages are all about
eliminating side effects, a language that never allowed for side effects would be useless. As a matter
of fact, introducing side effects is crucial to any language. All functional languages have to provide
mechanisms for introducing side effects in a controlled manner because even though functional
languages are about pure programming, a language that does not sanction side effects would be
useless because input and output are essentially the ramification of side effects.

Understanding Closures
One of the techniques to introduce side effects in a controlled manner is a closure. A closure
definition in Groovy follows this syntax:
 
{ [closure parameters ->] closure body}
 
where [closure parameters->] is an optional comma-delimited list of arguments, and the closure
body can be an expression as well as zero or more Groovy statements. The arguments look similar
to a method’s parameter list, and these arguments may be typed or untyped. A Groovy closure is
a block of reusable code within curly braces, {}, which can be assigned to a property or a variable
or passed as a parameter to a method. A closure is executed only when it is called, not when it is
defined. Listing B-25 illustrates this.

416 APPENDIX B: Introduction to Groovy

Listing B-25.  Calling a Closure

1. def closureVar = {println 'Hello world'}
2. println "closure is not called yet"
3. println " "
4. closureVar.call()
 

Line 1: This line has the closure with no parameters and consists of a single 	
println statement. Because there are no parameters, the parameter List
and the -> separator are omitted. The closure is referenced by the identifier
closureVar.

Line 4: This line uses the explicit mechanism via the 	 call() method to invoke
the closure. You may also use the implicit nameless invocation approach:
closureVar(). As shown in the output, the closure prints “Hello world” when it is
called in line 4, not when it is defined in line 1.

Here is the output: 

closure is not called yet
Hello world 

Listing B-26 illustrates the same closure as in Listing B-25 but with the parameter.

Listing B-26.  Closure with Parameter

1. def closureVar = {param -> println "Hello ${param}"}
2. closureVar.call('world')
3. closureVar ('implicit world')
 

	Line 2: This is an explicit call with the actual argument 'world'.

	Line 3: This is an implicit call with the actual argument 'implicit world'. 

Hello world
Hello implicit world 

As Listing B-27 illustrates, the formal parameters to a closure may be assigned default values.

Listing B-27.  Parameters with Default Values

1. def sayHello= {str1, str2= " default world" -> println "${str1} ${str2}" }
2. sayHello("Hello", "world")
3. sayHello("Hello")
 

	Line 1: The sayHello closure takes two parameters, of which one parameter,
str2, has a default value.

	Line 3: Only one actual parameter is provided to the closure, and the default
value of the second parameter is used.

417APPENDIX B: Introduction to Groovy

Here is the output: 

Hello world
Hello default world 

Closures always have a return value. The value may be specified via one or more explicit return
statements in the closure body, as illustrated in Listing B-28, or as the value of the last executed
statement if return is not explicitly specified, as illustrated in Listing B-29.

Listing B-28.  Using Return Keyword

def sum = {list -> return list.sum()}
assert sum([2,2]) == 4
 

Listing B-29.  Return Keyword Optional

def sum = {list -> list.sum()}
assert sum([2,2]) == 4
 
To understand closures, you have to understand the concept of free variables. A closure is formed
when the body of a function refers to one or more free variables. Free variables are variables that
are not local to the function and are not passed as arguments to the function but are defined in the
enclosing scope where the function is defined. Thus, closures refer to variables not listed in their
parameter list (free variables). They are “bound” to variables within the scope where they are defined.
Listing B-30 illustrates this.

Listing B-30.  Free Variables

def myConst = 5
def incByConst = { num -> num + myConst }
assert incByConst(10) == 15
 
The runtime “closes over” the free variable (myConst in Listing B-30) so that it is available when the
function is executed. That is, the compiler creates a closure that envelops the external context of
free variables and binds them.

Implicit Variables
Within a Groovy closure, an implicit variable (it) is defined that has a special meaning. If only one
argument is passed to the closure, the arguments list and the -> symbol can be omitted, and the
closure will have access to it, which represents that one argument, illustrated in Listing B-31.

Listing B-31.  Using it

def closure = {println "Hello ${it}"}
closure.call('world')
 

Hello world 

418 APPENDIX B: Introduction to Groovy

A closure always has at least one argument, which will be available within the body of the closure via
the implicit parameter it if no explicit parameters are defined. The developer never has to declare
the it variable—like the this parameter within objects, it is implicitly available. If a closure is invoked
with zero arguments, then it will be null.

Explicit Declaration of Closure
All closures defined in Groovy are essentially derived from the type Closure. Because groovy.lang
is automatically imported, you can refer to Closure as a type within your code. This is an explicit
declaration of a closure. The advantage of declaring a closure explicitly is that a nonclosure cannot
be inadvertently assigned to such a variable. Listing B-32 illustrates how to declare a closure
explicitly.

Listing B-32.  Explicit Declaration of a Closure

Closure closure = { println it } 

Reusing the Method as a Closure
Groovy provides the method closure operator (.&) for reusing the method as a closure. The method
closure operator allows the method to be accessed and passed around like a closure. Listing B-33
illustrates this.

Listing B-33.  Reusing the Method as a Closure

1. def list = ["A","B","C","D"]
2. String printElement(String element) {
3. println element
4. }
5. list.each(this.&printElement)

Listing B-33 creates a list of names and iterates through the list to print out the names. In line 5, the
method closure operator (.&) causes the method printElement to be accessed as a closure. Here is
the output: 

A

B

C

D 

419APPENDIX B: Introduction to Groovy

Passing a Closure as a Parameter
A closure is an object. You can pass closures around just like any other objects. A common example
is iterating over a collection using a closure (see Listing B-34).

Listing B-34.  Passing a Closure As a Parameter

def list = ["A", "B", "C"]
def x = { println it }
list.each(x) 

A

B

C 

Specialized Operators
Groovy includes several standard operators found in other programming languages, as well as
operators that are specific to Groovy that make it so powerful. In the sections that follow, you will
learn the specialized operators in Groovy such as spread, Elvis, safe navigation, field, method
closure, and diamond operators.

Spread Operator
The spread operator (*.) is a shorthand technique for invoking a method or closure on a collection of
objects. Listing B-35 illustrates the usage of the spread operator for iterating over a list.

Listing B-35.  Using the Spread Operator

1. def map = [1:"A", 2:"B", 3:"C", 4:"D"]
2. def keys = [1, 2, 3, 4]
3. def values = ["A", "B", "C", "D"]
4. assert map*.key == keys
5. assert map*.value == values
 
Line 4 and line 5 use the spread operator to access keys and values of the map.

Elvis Operator
The Elvis operator (?:) is a shorthand version of the Java ternary operator. For example, b= a ?: 1
could be interpreted as follows:

if(a != 0)
b = a
else
b = 1
 

420 APPENDIX B: Introduction to Groovy

Listing B-36 illustrates using the Java ternary and Elvis operators in Groovy.

Listing B-36.  Using the Elvis Operator

def firstName = author.firstName == null ? "unknown" : author.firstName // Java ternary
def firstName2 = author.firstName ?: "unknown" // Groovy Elvis
 
In both cases, if author.firstName is null, then firstName is set to unknown. The author.firstName
fragment of the Elvis operator example is known as the expression. If the expression evaluates to
false or null, then the value after the colon is returned.

Safe Navigation/Dereference Operator
The safe navigation/dereference operator (?.) is used to avoid null pointer exceptions. Consider the
situation where you have an Author object and you want to print the firstName. If the Author object is
null when you access the firstName property, you will get a NullPointerException (see Listing B-37).

Listing B-37.  Using the Safe Navigation/Dereference Operator

class Author {
String firstName
String lastName
def printFullName = {
println "${firstName} ${lastName}"
}
}
Author author
println author.firstName
 
The code in Listing B-37 throws a NullPointerException. In Java, you add a null check this way:
 
if (author != null) {
println "Author FirstName = ${author.firstName}"
}
 
Listing B-38 illustrates how to add the null check using the safe navigation/dereference operator
in Groovy.

Listing B-38.  Using the Safe Navigation/Dereference Operator

class Author {
String firstName
String lastName
def printFullName = {
println "${firstName} ${lastName}"
}
}
Author author
println "Author FirstName = ${author?.firstName}"
 

421APPENDIX B: Introduction to Groovy

Field Operator
Groovy provides a way to bypass the getter and access the underlying field directly. Bypassing the
getter and accessing the underlying field is not recommended, however, because it is a violation of
encapsulation. Listing B-39 shows an example of using the field operator (.@).

Listing B-39.  Using the Field Operator

class Author {
String name
}
def author = new Author(name: "Vishal")
println author.name
println author.@name 

Vishal

Vishal 

In this example, the first println uses the getter to access name, and the second println bypasses
the getter to access name directly.

Method Closure Operator
The method closure operator (.&) allows the method to be accessed and passed around like a
closure (see Listing B-40).

Listing B-40.  Using the Method Closure Operator

def list = ["A","B","C"]
list.each { println it }
String printName(String name) {
println name
}
list.each(this.&printName) 

A

B

C

A

B

C 

422 APPENDIX B: Introduction to Groovy

This example creates a list of names and iterates through the list to print out the names. A printName()
method is created that prints the name parameter. Lastly and the main point of this example, the list
is iterated, executing the printName() method as a closure. Using the method closure operator,
you are able to expose Java methods as closures.

Diamond Operator
The diamond operator (<>) is introduced in Groovy to avoid the repetition of parameterized types.
The parameterized types can be omitted and replaced with pointy brackets, which look like a
diamond. Listing B-41 shows a usual verbose way of defining a list.

Listing B-41.  A Simple Groovy Script: Hello.groovy

List<List<String>> list1 = new ArrayList<List<String>>()

Listing B-42 illustrates how to use the diamond operator. 

Listing B-42.  Using the Diamond Operator

List<List<String>> list1 = new ArrayList<>()
 

Summary
This appendix introduced the basics of Groovy. One appendix is not enough to learn any language
or technology, but that said, the introduction to Groovy in this appendix is substantial enough to
write web applications using Grails. In this appendix, you first learned how to install Groovy; then
it showed how to write a “Hello World” program with Groovy. Then you learned how to run Groovy
scripts and classes and looked at various strings supported in Groovy. Then the chapter briefly
introduced the collective datatypes of Groovy, and you learned what a closure is and how to use it in
Groovy. Lastly, you learned how to use specialized operators available in Groovy.

423

Appendix C
Introduction to Scala

Scala seamlessly integrates object-oriented and functional programming. Scala is a statically typed
language that was conceived in 2001 by Martin Odersky, who also wrote the Java reference compiler
and coauthored Java generics. Scala compiles to byte code for the Java Virtual Machine (JVM),
making it platform independent. That also means that from a Scala program you can use existing
Java libraries, and vice versa.

Getting Started with Scala
You can download Scala from www.scala-lang.org/download/. This Scala software distribution can
be installed on any Unix-like or Windows system. It requires the Java runtime version 1.6 or newer.
 
>scala -version

Scala code runner version 2.10.3 -- Copyright 2002-2013, LAMP/EPFL

 
There are three ways to execute Scala code.

Using the interactive interpreter	

Executing Scala code as a script	

Compiling Scala code	

Using the Interactive Interpreter
The Scala interpreter (called a read-evaluate-print loop, or REPL) is the easiest way to execute a
single line of Scala code. You can start the interactive interpreter using the Scala command-line tool
scala, which is located in the bin folder in the folder where Scala is installed.

http://www.scala-lang.org/download/

424 APPENDIX C: Introduction to Scala

From the command line, enter the following to open the interactive interpreter, shown in Figure C-1.
 
>scala 

Using the interactive interpreter you can run your first “Hello world” program by using the println
method.
 
scala> println("Hello world");

Hello world

 
To quit the interpreter, type exit.
 
scala> exit

Executing Scala Code as a Script
Another way to execute Scala code is to type it into a text file and save it with the extension .scala.
You can then execute that code by typing filename.scala. For instance, you can create a file named
hello.scala with “Hello world” in it.
 
println("Hello world")
 
To execute it, you specify the file name as a parameter to the Scala command-line tool.
 
>scala hello.scala

Compiling Scala Code
You can also execute Scala code by first compiling it using the scalac command-line tool. Then the
code will need to be executed in the context of an application, so you will need to add an object with
a main() method (see Listing C-1).

Listing C-1.  The “Hello world” Program

1. object HelloWorld {
2. def main(args: Array[String]) {
3. println("Hello, world")
4. }
5. }
 

Figure C-1.  The Scala interactive interpreter

425APPENDIX C: Introduction to Scala

Note  The semicolon at the end of a statement is usually optional.

	Line 1: The main() method is defined in an object, not in a class. Scala has an
object construct with which you can declare a singleton object. You will learn
more about singletons later in this appendix.

	Line 2: Scala program processing starts from the main() method, which is a
mandatory part of every Scala program. The main() method is not marked
as static. In Scala, everything is an object. The main() method is an instance
method on a singleton object that is automatically instantiated.

	Line 2: There is no return type. Actually, there is Unit, which is similar to void,
but it is inferred by the compiler. You can explicitly specify the return type by
putting a colon and the type after the parameters.

 
def main(args: Array[String]) : Unit = {
 }
 

	Line 2: There is no access-level modifier in Scala. You have a public modifier in
Java in this context, but Scala does not specify the public modifier because the
default access level is public.

	Line 2: Scala uses the def keyword to tell the compiler that this is a method.

Save the code in Listing C-1 in a file called HelloWorld.scala and compile the code using the
following command:
 
>scalac HelloWorld.scala
 
Now run the program using this command:
 
>scala HelloWorld

Hello, World! 

Note  Java requires you to put a public class in a file named after the class. For example, you should put
class HelloWorld in file HelloWorld.java. In Scala, you can name .scala files anything you want, no
matter what Scala classes or code you put in them. However, it is recommended you name files after the
classes they contain as is done in Java so as to easily locate classes based on file names.

426 APPENDIX C: Introduction to Scala

Variables
Scala allows you to decide whether a variable is immutable (read-only) when you declare it. An
immutable variable is declared with the keyword val. This means it is a variable that cannot be
changed. Listing C-2 illustrates creating an immutable variable, and Figure C-2 shows what happens
when you try to change it.

Listing C-2.  Immutable Variable

val immutableVar : String = "Hello"
immutableVar = "Hi" 

Figure C-3.  var changed successfully

Figure C-2.  Error when trying to change val

Listing C-3 illustrates creating a mutable variable, and Figure C-3 shows it successfully changed.

Listing C-3.  Mutable Variable

var mutableVar = "Hello"
mutableVar = "Hi" 

When you assign an initial value to a variable, the Scala compiler can infer the type of the variable
based on the value assigned to it. This is called type inference, as illustrated in Listing C-4.

Listing C-4.  Type Inference

var var1= 10
var var2 = "Hello world"
 
In Listing C-4, Scala will infer var1 to be of the Int type and var2 to be of the String type variable.

Collections
Scala collections distinguish between mutable and immutable collections. A mutable collection
can be updated or extended in place. This means you can change, add, or remove elements
of a collection as a side effect. Immutable collections, by contrast, never change. You still have

427APPENDIX C: Introduction to Scala

operations that simulate additions, removals, or updates, but those operations will in each case
return a new collection and leave the old collection unchanged. Scala has a rich collections
library. The most commonly used collections are lists, sets, and maps, which are explained in the
following sections. You can find details on Scala’s collection library at http://docs.scala-lang.org/
overviews/collections/introduction.html.

Lists
Lists are immutable, which means the elements of a list cannot be changed by assignment. The type
of a list that has elements of type T is written as List[T], as shown here:
 
val numberList: List[Integer] = List(1, 2, 3)
 
Listing C-5 illustrates how to create and use an immutable list.

Listing C-5.  Creating an Immutable List

val list = List(1, 2, 3, 2, 3)
println (list.head)
println(list.tail)
println(list.length)
println(list.max)
println(list.min)
println(list.sum)
println(list.sorted)
println(list.reverse)

head --- 1

tail --- List(2, 3, 2, 3)

length --- 5

max --- 3

min --- 1

sum --- 11

sorted --- List(1, 2, 2, 3, 3)

reverse--- List(3, 2, 3, 2, 1)

 
Scala defines only an immutable list. However, it also defines some mutable list types, such as
ArrayBuffer. Listing C-6 illustrates how to create a mutable list.

Listing C-6.  Creating a Mutable List

import collection.mutable
val list = mutable.ArrayBuffer(1, 2, 3, 2, 3)
assert (list.length == 5)
 

http://docs.scala-lang.org/overviews/collections/introduction.html
http://docs.scala-lang.org/overviews/collections/introduction.html

428 APPENDIX C: Introduction to Scala

Sets
A set is a collection that contains no duplicate elements. There are two kinds of sets, the immutable
and the mutable. Listing C-7 illustrates how to create an immutable set.

Listing C-7.  Creating an Immutable Set

val set = Set(1, 2, 3, 2, 3)
println ("head -- "+set.head)
println("tail -- "+set.tail)
println("size -- "+set.size)
println("sum -- "+set.sum)

head -- 1

tail -- Set(2, 3)

size -- 3

sum -- 6

 
By default, Scala uses the immutable set. If you want to use the mutable set, you will have to import
scala.collection.mutable.Set. Listing C-8 illustrates how to create and use a mutable set.

Listing C-8.  Creating a Mutable Set

import collection.mutable
val set = mutable.HashSet(1, 2, 3, 2, 3)
assert (set.size == 3)

Maps
A Scala map is a collection of key-value pairs. By default, Scala uses the immutable map. If you
want to use the mutable map, you’ll have to import the scala.collection.mutable.Map class
explicitly. Listing C-9 illustrates how to create and use an immutable map.

Listing C-9.  Creating an Immutable Map

val map = Map("1" -> 1, "2" -> 2, "3" -> 3, "2" -> 2, "3" -> 3)
 
println ("head -- "+map.head)
println("tail -- "+map.tail)
println("size -- "+map.size)
 

head -- (1,1)

tail -- Map(2 -> 2, 3 -> 3)

size -- 3

429APPENDIX C: Introduction to Scala

Classes
Classes in Scala are declared very much like Java classes. One difference is that Scala classes can
have parameters, as illustrated in Listing C-10.

Listing C-10.  Scala Class with Parameters

class Vehicle (speed : Int){
val mph :Int = speed
 def race() = println("Racing")
}
 
The Vehicle class takes one argument, which is the speed of the vehicle. This argument must
be passed when creating an instance of class Vehicle, as follows: new Vehicle(100). The class
contains one method, called race().

Extending a Class
It is possible to override methods inherited from a superclass in Scala, as illustrated in Listing C-11.

Listing C-11.  Extending a Scala Class

1. class Car (speed : Int) extends Vehicle(speed) {
2. override val mph: Int= speed
3. override def race() = println("Racing Car")
4. }
 

	Line 1: The Car class extends the Vehicle class using the keyword extends.

	Lines 2 to 3: The field mph and the method race() need to be overridden using
the keyword override.

Listing C-12 illustrates another class called Bike that extends Vehicle.

Listing C-12.  Extending a Scala Class

class Vehicle (speed : Int){
val mph :Int = speed
 def race() = println("Racing")
}
class Car (speed : Int) extends Vehicle(speed) {
override val mph: Int= speed
override def race() = println("Racing Car")
 
}
class Bike(speed : Int) extends Vehicle(speed) {
override val mph: Int = speed
override def race() = println("Racing Bike")
 
}

430 APPENDIX C: Introduction to Scala

 
Save Listing C-12 in the file vehicle.scala and compile it using the following:
 
>scalac vehicle.scala
 
Now you can enter the REPL using the scala command and create the vehicle object,
as shown here:
 
scala> val vehicle1 = new Car(200)
 
With this command, Scala creates the vehicle1 object, as shown here:
 

vehicle1: Car = Car@19a8942

 
Now you can use this vehicle1 object created by Scala to access the speed of Car.
 
scala> vehicle1.mph
 
The Scala REPL emits the speed of Car, as shown here:
 

res1: Int = 200

 
In the similar manner, you can execute the race() method of vehicle1, as shown here:
 
scala>vehicle1.race()
 
The Scala interpreter emits the output, as shown here:
 

Racing Car

 
Now you can create the Bike object and access its property and method, as shown here:
 
scala> val vehicle2 = new Bike(100)

vehicle2: Bike = Bike@b7ad3

scala>vehicle2.mph

res4: Int = 100

scala> vehicle2.race()

Racing Bike

431APPENDIX C: Introduction to Scala

Traits
Say you want to add another class to your vehicle hierarchy. This time you want to add a batmobile.
A batmobile can race, glide, and fly. But you cannot add glide and fly methods to the Vehicle class
because in a nonfictional world, Car and Bike do not glide or fly. Not yet at least. So, if you want to
add Batmobile to your vehicle hierarchy, you can use a trait. Traits are like interfaces in Java that can
also contain code. In Scala, when a class inherits from a trait, it implements the interface of the trait
and inherits all the code contained in the trait. Listing C-13 shows flying and gliding traits.

Listing C-13.  Scala Traits

trait flying {
 def fly() = println("flying")
}
 
trait gliding {
def gliding() = println("gliding")
}
 
Now you can create the Batmobile class that extends Vehicle class along with the flying and
gliding traits, as shown in Listing C-14.

Listing C-14.  Using Traits

1. Batmobile(speed : Int) extends Vehicle(speed) with flying with gliding{
2. override val mph: Int = speed
3. override def race() = println("Racing Batmobile")
4. override def fly() = println("Flying Batmobile")
5. override def glide() = println("Gliding Batmobile")
6.
7. }
 
You can now create a batmobile in the REPL, as illustrated here:

 
scala> val vehicle3 = new Batmobile(300)

vehicle3: Batmobile = Batmobile@374ed5

 
Now you can access the fly() method of Batmobile, as illustrated here:

 
scala> vehicle3.fly()

Flying Batmobile

 
Create a list of vehicles, and then you can use the maxBy() method provided by the Scala collections
library to find the fastest vehicle in the list.

 

432 APPENDIX C: Introduction to Scala

scala> val vehicleList = List(vehicle1, vehicle2, vehicle3)

vehicleList: List[Vehicle] = List(Car@562791, Bike@e80317, Batmobile@374ed5)

scala> val fastestVehicle = vehicleList.maxBy(_.mph)

fastestVehicle: Vehicle = Batmobile@374ed5

Singleton Objects
Scala does not have static members. Instead, Scala has singleton objects. A singleton object
definition looks like a class definition, except instead of the keyword class you use the keyword
object. A singleton is a class that can have only one instance. Listing C-15 illustrates how to use the
singleton object in an application.

Listing C-15.  Using a Singleton Object in an Application

1. class Vehicle (speed : Int){
2. val mph :Int = speed
3. def race() = println("Racing")
4. }
5. class Car (speed : Int) extends Vehicle(speed) {
6. override val mph: Int= speed
7. override def race() = println("Racing Car")
8.
9. }
10. class Bike(speed : Int) extends Vehicle(speed) {
11. override val mph: Int = speed
12. override def race() = println("Racing Bike")
13.
14. }
15. trait flying {
16. def fly() = println("flying")
17. }
18.
19. trait gliding {
20. def glide() = println("gliding")
21. }
22.
23. class Batmobile(speed : Int) extends Vehicle(speed) with flying with gliding{
24. override val mph: Int = speed
25. override def race() = println("Racing Batmobile")
26. override def fly() = println("Flying Batmobile")
27. override def glide() = println("Gliding Batmobile")
28.
29. }
30. object Vehicle {
31. def main(args: Array[String]) {
32. val vehicle1 = new Car(200)

433APPENDIX C: Introduction to Scala

33. val vehicle2 = new Bike(100)
34. val vehicle3 = new Batmobile(300)
35.
36. val vehicleList = List(vehicle1, vehicle2, vehicle3)
37. val fastestVehicle = vehicleList.maxBy(_.mph)
38.
39. printVehicle
40.
41. def printVehicle{
42. println ("speed of Bike : " + vehicle1.mph);
43. println ("speed of Car : " + vehicle2.mph);
44. println ("speed of Batmobile : " + vehicle3.mph);
45. println ("Fastest Vehicle : " + fastestVehicle.mph + " mph");
46.
47. }
48. }
49. }
 
When the previous code is compiled and executed, it produces the following result:

 
>scalac vehicle.scala
>scala Vehicle

speed of Bike : 200 mph

speed of Car : 100 mph

speed of Batmobile : 300 mph

Fastest Vehicle : 300 mph

Summary
This appendix introduced you to the basics of Scala. You learned three ways to interactively
execute Scala code as a script and as a compiled program. Then you learned how to use the Scala
collections library. Finally, you learned how to use traits and how to use a singleton object in an
application.

A■■
Action, Struts 2, 164

Action interface, 165
ActionSupport class, 166

Antipatterns, 158
Arithmetic operators, 110–111
Arrays, 386
Aspect-oriented programming (AOP), 217
Automating common functionalities, 158

B■■
Boilerplate code

BookDAO, 222
BookExtractor object, 224
BookMapper object, 224
BookRowMapper, 224
BookService, 222
configuration file, 225
data source, 226
JDBCtemplate, 221, 224
MVC module, 227
ResultSetExtractor interface, 225
stand-alone application, 226

BookService application, 8
Bookstore application, 19, 288

Author.java, 114–115
BookController.java, 115–116
Book.java, 114–115
controller creation

GGTS, 315
output, 315
simple textual response, 317
welcome screen, 316

creation
build path, 308
command line, 305
directory structure, 306, 312

existing Eclipse projects, 310–311
GGTS configuration, 307
new project, 309

data access layer 25, 33–34, 87
BookController, 196–197
directory structure, 195–196
display categories from database, 198
listing books by category, 199
login using database, 197

data model for
category table, 23
creating tables, 21
entity-relationship diagram, 20
many-to-many relationship,

book vs.author, 20–21
populated author table, 25
populated book table, 24
tables in database, 22
tables structure, 23

directory structure, 88, 117, 289
domain class

book domain class, 323
class generation, 323
constraints, 324
creation, 322–323
optional class name, 321

home page, 88–89
listing all books, 94

doPost( ) method, 95
findAllBooks( ) method, 96

login functionality
ApplicationResources.properties, 188
directory structure, 185
home.jsp, 188
LoginAction.java, 187–188
login failed, 184–185
login.jsp, 186
login screen, 183–184

Index

435

struts 2-core dependency, 186
struts.xml, 187
successful login, 184
welcome file, 186

MVC architecture, 89
accessing jsp model, 93
deployment descriptor, 90
doget( ) method, 92
doPost( ) method, 92
findAllCategories( ), 91
init( ) method, 91
RequestDispatcher, 93

relationship between book and
author, 114–115

running application
command history, 314
welcome screen, 313

search books by category, 96
doPost( ) method, 97
findAllBooks( ) method, 98

searchBooksByKeyword( ) method, 98, 103
accessing CSS and jQuery files, 101
CSS tooltip, 100
doPost( ) method, 102
jQuery image tooltip, 100
jQuery tooltip, 99
searchBooks( ) method, 102
search field markup, 99, 101

Spring framework
faces-config.xml, 291
web.xml file, 290

Spring JDBCTemplate, 288, 291
applicationContext.xml, 293
BookController, 292

stand-alone Java application, 87
template development

base layout, 193–194
directory structure, 191
failed login with header, 190
header and menu, 188–189
header.jsp, 194
login screen with header, 189
slf4j-log4j12 plug-in, 191
struts-tiles plug-in, 191
struts.xml, 192
successful login with menu, 190–191

tiles, 188
tiles.xml, 192–193
web.xml, 195

templates, 293
testing

BookControllerTests, 317
command test-app, 318
failed test, 321
incorrect assertion, 319
passed test, 319
test-app command, 318
testSomething( ), 318

UI components and JSF EL, 294
bookList.html, 296
home.xhtml, 296

web.xml, 116–117

C■■
Classes

Java, 383
Scala, 429

Clojure, 2
Closures

explicit declaration, 418
free variables, 417
higher-order functions, 415
implicit variables, 417
passing, 419
referential transparency, 415
return keyword, 417
reusing, 418
with parameter, 416

Code scattering, 8
Code tangling, 8
Composite view pattern

class diagram, 152
parent and embedded subviews, 152
usage of, 152–153

Conditionals
functional area, 135
<c:choose> action, 136–137
<c:if> action, 135–136
<c:otherwise> action, 137

Configurability, 158
Constructor chaining, 391
Constructors, 387

436 Index

Bookstore application (cont.)

Core tag library, 129–130
conditionals

functional area, 135
<c:choose> action, 136–137
<c:if> action, 135–136
<c:otherwise> action, 137

general-purpose actions
<c:out> action, 130–131
<c:set> action, 132–134
<c:remove> action, 134
<c:catch> action, 134–135

looping and iteration
<c:forEach> action, 138–139
<c:forTokens> action, 140–141

URL-related actions
<c:import> action, 141–142
<c:param> action, 143–144
<c:url> action, 144–145
<c:redirect> action, 145

Cross-cutting concerns, AOP
BookService interface, 218
directory structure, 221
implementation, 218
LoggingAspect, 219

Cross-platform Java, 11
CRUD application

accessing database
applying script, 381
create( ) action, 380
Ebean server, 379
object-relational mapping (ORM), 379
valid Ebean entity, 380

controller and actions, 374
deleteBook( ) action, 382
Form objects, 376
model creation, 375
routes

deleteBook action, 373
file compilation error, 374

view template
bindFromRequest, 379
book creation form, 378
books( ) action, 378
index.scala.html, 377–378
inputText function, 378
render( ) method, 376

CSS3 media queries, 38

D■■
DAOs, 243
Data access layer

BookController, 196–197
directory structure, 195–196
display categories from database, 198
listing books by category, 199
login using database

executelogin( ) method, 197
USER table, 197–198

Design patterns
antipatterns, 158
composite view

class diagram, 152
parent and embedded subviews, 152
usage of, 152–153

dispatcher view
class diagram, 153
dispatcher, 154
front controller, 154
helper, 154
sequence diagram, 154–155
view, 154

front controller
advantages, 149
centralized access mechanism, 149
class diagram, 150
controller component, 150
dispatcher component, 150
sequence diagram, 151
view component, 150

intercepting filter, 147
advantages, 148
init parameters, 149
response filter configuration, 149
simple response filter, 148
use cases, 148

OO patterns, 157
presentation tier, 146–147
problems in web application

development, 146
Service to Worker

class diagram, 156
dispatcher, 156
dynamic content generation, 155
front controller, 156

437Index

helper, 156
sequence diagram, 157

view helper, 151–152
Diamond operator (<>), 422
DispatcherServlet, 228
Dispatcher view pattern

class diagram, 153
dispatcher, 154
front controller, 154
helper, 154
sequence diagram, 154–155
view, 154

Dollar slashy strings, 408
Dot operator, 117–118
Dynamic scaffolding

book list view, 325
edit view, 327–328
enabled BookController, 325
list view, 329
show view, 327
updated message, 328
validation, 326
view creation, 327

Dynamic typing, 2
Dynamic web pages, 4

E■■
Elvis operator (?:), 419
Encapsulation, 389
Entropy, 106
Expression Language (EL)

accessing parameters/headers/cookies, 109
bookstore application

Author.java, 114–115
BookController.java, 115–116
Book.java, 114–115
directory structure, 117
relationship between Book and

Author, 114–115
web.xml, 116–117

deferred evaluation, 109
functions

JSP code, 127
output after invoking function, 127–128
public and static methods, 126
tag library descriptor (TLD) file, 126–127

immediate evaluation, 109
implicit objects

accessing cookie, 125
accessing header, 124
accessing request parameters, 124
accessing scoped attribute, 125
maps, 123
types, 123

literals, 110
object retrieval from scoped

attributes, 109
operators

arithmetic, 110–111
dot, 117–118
inside brackets [ ], 118
logical, 113–114
relational, 111–113

reserved words, 110

F■■
Facelets

templates
common.xhtml, 284
contents.xhtml, 286
headers and sidebar, 288
header.xhtml, 285
home.xhtml, 287
slide.xhtml, 286
ui:composition, 282
ui:decorate, 283
ui:define, 283
ui:include, 283
ui:insert, 283
ui:param, 284

Field operator (@), 421
Filter, 147
Frameworks

architectural problem domain, 158
automating common functionalities, 158
business problem domain, 158
configurability, 158
definition, 158
design patterns, 158
inversion of control, 158
loose coupling, 158
need for, 159
separation of concerns, 158

438 Index

Design patterns (cont.)

Front controller pattern
advantages, 149
centralized access mechanism, 149
class diagram, 150
controller component, 150
dispatcher component, 150
sequence diagram, 151
view component, 150

Functional languages, 3
Functions

JSP code, 127
output after invoking function, 127–128
public and static methods, 126
tag library descriptor (TLD) file, 126–127

G■■
Grails. See Bookstore application
domain relationship

adit author screen, 353
author class, 348
author List screen, 350
book list screen, 351–352
book screen, 353–354
editing author, 352
list of authors, 350
many-to-many relationship, 349
one-to-many relationship, 347–348
validation error, 351
welcome screen, 349

features
convention over configuration, 300
integrated open source, 301
ORM, 300
platform, 300
plug-in architecture, 301
scaffolding, 300
unit testing, 301

H2 console
H2 console window, 345
login screen, 345
querying table, 347

hello world application
command, 302
console, 303
create-controller command, 303
index action modification, 303

interactive console, 303
welcome screen, 304

installation, 302
overview, 299
scaffolding, 325 (see also

Static scaffolding)
Groovy, 2

array, 410
closures. (see Closures)
diamond operator, 422
dollar slashy strings, 408
elvis operator, 419
field operator, 421
GroovyConsole, 402
GroovyShell, 401
GStrings, 405
hello world program, 400
installation, 399
lists, 410
maps, 411
method closure operator, 421
methods, 414
multiline slashy strings, 407
multiline string, 406
ranges, 412
safe navigation/dereference

operator, 420
sets, 414
single-line strings, 405
slashy strings, 407
spread operator, 419

GroovyConsole, 402
Groovy Server Pages (GSP), 337
GroovyShell, 401
GStrings, 405

H■■
H2 console

H2 console window, 345
login screen, 345
querying table, 347

HelloWorld Java application
compilation, 13
entry-point class, 12

Higher-order functions, 415
Hypertext transfer protocol (HTTP), 43

439Index

I■■
Imperative languages, 3
Implicit objects

accessing cookie, 125
accessing header, 124
accessing request parameters, 124
accessing scoped attribute, 125
maps, 123
types, 123

Inheritance, 389
Init-binder, 253
Inside brackets [ ] operator, 118
Intercepting filter pattern, 147

advantages, 148
init parameters, 149
response filter configuration, 149
simple response filter, 148
use cases, 148

Interceptors, Struts 2
action declaration, 167
default stack declaration, 168
mapping interceptors to action, 167

Inversion of control, 158

J, K■■
Java, 2

arrays, 386
class, 383
constructor chaining, 391
constructors, 387
encapsulation, 389
inheritance, 389
object, 383
overloaded methods, 386
polymorphism, 393
variables

instance members, 385
reference variables, 384
static members, 385

Java application
bytecode, 11
creation and running of, 12
JDK, 12
JRE, 12
with integrated development environment

application creation, 15
downloading steps, 13
new project creation, 13

Java application, Play
Eclipse configuration

import project, 367
index action, 369
play console, 366
project creation, 361
root directory, 368
sample application, 369
workspace, 366

play command-line tool, 360
project creation, 360

controllers.Application.index method, 364
default welcome page, 362
directory structure, 363
index.scala.html, 365
play console, 361
public static index( ) action, 365
render( ) method, 365
routes, 364
run command, 361, 363
welcome function, 365

Java Development Kit (JDK), 12
Javadoc comments, 16
Java EE Web development

design patterns, 105
composite view, 152
dispatcher view, 153
front controller, 149
intercepting filter, 147
presentation tier, 146–147
problems, 146
service to worker, 155
view helper pattern, 151

dynamic web pages, 4
entropy, 106
evolution of, 5
frameworks

architectural problem domain, 158
automating common functionalities, 158
business problem domain, 158
configurability, 158
definition, 158
design patterns, 158
inversion of control, 158

440 Index

loose coupling, 158
need for, 159
separation of concerns, 158

platform
description, 4
goals, 5
multitier architecture (see Multitiered

Java EE architecture)
servlet

EL (see Expression Language (EL))
first JSP, 108
first servlet, 107
JSP, 107
JSP standard action and Expression

Language, 108
JSTL (see JSP Standard Tag Library

(JSTL))
presentation(view) vs. business(servlet)

code, 107–108
scriptlet, 108

static web pages, 4
web tier evolution, 106

Java enterprise application
definition, 7
layers in, 8

Java Runtime Environment (JRE), 12
JavaScript Object Notation (JSON), 39
JavaServer Faces (JSF), 263

arichecture, 264
converter, 267
event and event listeners, 267
FacesServlet, 264
managed beans, 264
renderer, 266
UI component framework, 266
validator, 267
view declaration language (VDL), 265

bookstore application, 288
directory structure, 289
Spring framework, 290
Spring JDBCTemplate, 291
templates, 293
UI application andJSF EL, 294

facelets (see Facelets)
library

composite, 265
facelets, 265

HTML components, 265
JSF core, 265

life cycle
phases, 278–279
well-defined phases, 277

managed bean, 281
Spring JDBCTemplate, 288
web page creation, 268

directory structure, 272, 277
dynamic web projet, 269
form.xhtml, 273–274
hello.xhtml, 273–274
JSF capabilities, 272
library function, 270
managed bean, 273, 275
web modules, 269
web.xml, 276

Java server pages (JSP)
declarations, 78
expressions, 79
hello( ) method, 79
implicit objects

application object, 80
config object, 81
exception object, 81
out object, 81
pageContext, 81
page object, 81
request object, 81
response object, 81
session object, 81
usages, 82

directives
include directive, 77
page directive, 76
page directive attributes, 76
taglib directive, 78

scope objects, 80
getAttribute method, 79
setAttribute method, 79

scriptlets, 79
standard action

forward action, 83–84
getProperty, 85
include action, 82–83
setProperty, 85
usebean, 85

441Index

web application, 71
accessing JSP, 75
helloworld.jsp., 73
running server applications, 74

Java Virtual Machine (JVM), 1
languages, 2

designed for, 2
functional gradation of, 3

web frameworks, 11
Java Web Frameworks, 10
JAX-RS, 40
JAX-WS, 40
JRuby, 4
JSF EL expressions, 265
JSP Standard Tag Library (JSTL), 128

core tag library, 129
conditionals, 135
functional areas, 130
general-purpose actions, 130
looping and iteration, 138
URL-related actions, 141

<c:set>action, 129
tag libraries, 128

Jython, 4

L■■
LESS, 38
Literals, 110
Logical operators, 113–114
Looping and iteration

<c:forEach> action, 138–139
<c:forTokens> action, 140–141

Loose coupling, 158

M, N■■
Mashups, 39
Maven, 169, 214

actionPackages Init Parameter, 183
archetype parameters specification, 172–173
archetypes selection, 172
build process, 170
directory structure of HelloWorld project, 179
empty deployment descriptor, 175
hello.jsp, 181
HelloWorldAction, 182

HelloWorldAction.java, 180
HelloWorld application execution, 177
HelloWorld project, Struts 2

annotations, 181
HelloWorld project with welcome

message, 177–178
index.jsp, 176–177, 179
new project creation, 170
non-Maven-based application, 174
pom.xml, 175
project configuration, 171
project creation, 170
project directory structure, 173–174
project selection, 171
runtime dependencies, 170
struts 2-convention-plugin, 182
struts 2-core dependency, 174
StrutsPrepareAndExecuteFilter, 176
struts.xml, 176, 179
web.xml, 175–176

Method closure operator (&), 421
Method overloading, 386
Mobile-first design, 37
Model-view-controller (MVC), 86
Modernizr, 38
Multiline slashy strings, 407
Multiline string, 406
Multitiered Java EE architecture, 5

client tier, 6
Java enterprise application, 7–8
web tier, 6

data access layer, 10
service layer, 10
web layer, 9
Web Profile specification, 7

O■■
Object-Graph Navigation Language

(OGNL), 168
object-relational mapping (ORM), 300, 379
Objects, 383
Operators

arithmetic, 110–111
dot, 117–118
inside brackets [ ], 118
logical, 113–114
relational, 111–113

442 Index

Java server pages (JSP) (cont.)

P, Q■■
Play application, 355

command-line tool, 359
CRUD application (see CRUD application)
definition, 355
features, 356
help command, 360
Java application (see Java

application, Play)
Mvc architecture, 356

controller, 357
model representation, 358
request flow, 357
router, 357
view application, 358

path environment, 358
Scala application (see

Scala application, Play)
Polyfills, 38
Polymorphism, 393
Protocol, 43

R■■
Rapid web development. See Grails
Reactive web application, 39
Read-evaluate-print loop (REPL), 423
Real-time web application, 38
Referential transparency, 415
Relational operators, 111–113
Render response phase

decoding, 280
encoding, 280
FacesContext, 280
FacesServlet, 281
form.xhtml file, 279
Process Validation, 280
UICommand component, 281
Update Model phase, 280

Representational state transfer (REST), 40
Reserved words, 110
Responsive web applications, 35
Rhino, 4
Runtime dependencies, Maven, 170

S■■
Safe navigation/dereference operator (?), 420
Scaffolding. See Static scaffolding

dynamic scaffolding
book list view, 325
edit view, 327–328
enabled BookController, 325
list view, 329
show view, 327
updated message, 328
validation, 326
view creation, 327

Scala application
classes

extends, 429
with parameters, 429

collections, 426
lists, 427
maps, 428
sets, 428

compilation, 424
Ecplise configuration, 372
execution, 424
interactive interpreter, 423
project creation, 370

application controller, 371
play console, 371
static method, 371
template, 371

singleton objects, 432
traits, 431
variables, 426

scalac command-line tool, 424
Secure sockets layer (SSL), 44
Semantic Web, 41
Separation of concerns, 158
Separation of concerns (SoC), 9
Service to worker pattern

class diagram, 156
dispatcher, 156
dynamic content generation, 155
front controller, 156
helper, 156
sequence diagram, 157

443Index

Servlets
context-InitParameters, 64
Expression Language, 109

accessing parameters/
headers/cookies, 109

bookstore application (see Bookstore
application)

deferred evaluation, 109
functions (see Functions)
immediate evaluation, 109
implicit objects (see Implicit objects)
literals, 110
object retrieval from scoped

attributes, 109
operators (see Operators)
reserved words, 110

filters, 65
authentication filters, 66
caching filters, 66
data compression filters, 67
declaration, 66
encryption filters, 67
group of servlets associated, 66
image conversion filters, 67
logging and auditing filters, 67
mapping, 66

first JSP, 108
first servlet, 107
getServletContext( ) method, 64
helloworld servlet

examining the request, 59
HTTP request mapped, 59
HTTP request message, 57
web server home page, 58
web.xml, 59

initialization parameters
getInitparam( ), 63
getServletConfig( ), 63

JSP, 107
JSP standard action and Expression

Language, 108
JSTL (see JSP Standard Tag Library (JSTL))
life-cycle methods, 60

destroy( ), 62
GenericServlet, 61
HttpServlet, 61
init( ), 61
service( ), 62

presentation(view) vs. business(servlet)
code, 107–108

RequestDispatcher
getRequestDispatcher( ) method, 65
sendRedirect( ), 64
ServletContext, 65
ServletRequest, 65

scriptlet, 108
ServletConfig, 63
ServletContext, 63
Servlet interface methods, 45

destroy( ), 46
getServletConfig( ), 46
get ServletInfo( ), 46
init, 46
life-cycle method, 46
service( ), 46

using annotations, configured
application accessed, 71
HelloWorld servlet, 67, 70
initialization parameters, 68
specifying methods, 69
URL mapping, 68

web application
adding server applications, 52
dynamic web project, 48
helloworld servlet, 49, 57
installed JRE, 47
Java class, 50
resource configured, 55
running helloworld application, 56
starting sever application, 56
Tomcat 7, 47
web module settings, 50
Web.xml Deployment Descriptor, 51

Simple Object Access Protocol (SOAP), 40
Single-line strings, 405
Single-page web application (SPA), 38
Singleton object, 432
Slashy strings, 407
Spread operator (*), 419
Spring framework

boilerplate code
BookDAO, 222
BookExtractor object, 224
BookMapper object, 224
BookRowMapper, 224
BookService, 222

444 Index

configuration file, 225
data source, 226
JDBCtemplate, 221, 224
MVC module, 227
ResultSetExtractor interface, 225
stand-alone application, 226

cross-cutting concerns, AOP
BookService interface, 218
configuration file, 219
directory structure, 221
implementation, 218
LoggingAspect, 219
stand-alone application, 220

features
AOP and instrumentation, 204
core container, 204
data access/integration layer, 205
test module, 205
web layer, 205

fundamentals
ApplicationContext interface, 211
attribute, 208
BeanFactory, 210
beans, 207
business logic components, 206
configuration unit, 208
coupling, 206
dependency, 209
encapsulating, 210
inject dependency, 209–210
IoC framework, 206
metadata configuration, 207–208
namespaces, 208
POJO objects, 207
tight coupling, 207
XML-based configuration, 208

tight coupling
API libraries, 214
configuration file, 216
directory structure, 217
getBean( ) method, 216
JARs, 215
loose coupling, 212
project creation, 214
vehicle application, 216
vehicle interface, 212
vehicle service, 213, 215

Spring Tool Suite (STS), 232
Spring Web MVC

application
AddBookController, 252–253, 256, 258
addBook.jsp, 256
annotation-driven, 242
annotations, 257
Annotations-Based BookController, 249
annotations-based strategy, 243
annotations-driven configuration, 251
appServlet, 241
autoregistering bean definitions, 250
bookList.jsp, 255
book service, 254
bookstore, 245
bookstore-servlet.xml, 246–248, 250, 260
BookValidator, 257, 260
contextConfigLocation param, 241
context.xml file, 244
controller annotation, 244
data binding, 251
declaration, 240
deployed, 238
deployment description, 241
directory structure, 248, 257
Eclipse update, 232
GET request, 250, 253
handler method, 244
Hello World, 239, 242
home controller, 243–244
implementation, 244
InitBinder, 253
installer program, 232
instance parameters, 237
Interface Based Bookstore Controller, 247
interface-based controller, 249
Java EE container, 245
JSP file, 243, 245, 248
model attribute, 254
model map, 253
object holding, 254
POST requests, 254
presentation layer, 241
RequestMapping, 250, 253–254
RequestMapping annotation, 244
resources mapping, 242
root-context.xml, 245

445Index

serverTme, 244
servlet-context.xml file, 242
servlet parameter, 246
session status, 254
spring configuration files, 245
Spring MVC-based project, 235
string object, 244
tcServer, 236
template project, 233
triggers, 254
VMware, 235
WebDataBinder, 253
web request, 253
web.xml file, 240, 245
XML header, 240
zip archive, 232

architecture
DispatcherServlet, 227, 230
SpringMVC components, 231
WebApplicationContext, 228
working principle, 227–228

Stand-Alone Bookstore Java App, 33–34
Static scaffolding

book class, 329
BookController, 330
command, 329
controller actions, 331
Grails view

create, 340
edit, 343
list, 339
show, 341
view layer, 337

redirect( ) method, 332
render( ) method calling

rendering view, 332
textual response, 331

returning model
create( ) action, 334
delete( ) action, 337
edit( ) action, 335
index( ) action, 333
list( ) action, 333
save( ) action, 334
show( ) action, 335
update( ) action, 336

Static typing, 2
Static web pages, 4
String interpolation, 405
Struts

ActionServlet, central component, 162
architecture, 162
early history, 161
one-to-one mapping, 163
origin of Struts 2, 161
sequence of events, 163
Tiles framework, 161
vs. Struts 2, 163

Struts. See Struts 2 web framework
Struts 2 web framework

Action interface, 165
ActionSupport class, 166
architecture, 162–164
bookstore application (see Bookstore

application)
early history of Struts, 161
history, 161
interceptors

action declaration, 167
default stack declaration, 168
mapping interceptors to action, 167

key features, 161–162
Maven, 169, 214

actionPackages Init Parameter, 183
archetype parameters

specification, 172–173
archetypes selection, 172
build process, 170
directory structure of HelloWorld

project, 179
empty deployment descriptor, 175
hello.jsp, 181
HelloWorldAction, 182
HelloWorldAction.java, 180
HelloWorld application execution, 177
HelloWorld project, Struts 2

annotations, 181
HelloWorld project with welcome

message, 177–178
index.jsp, 176–177, 179
new project creation, 170
non-Maven-based application, 174
pom.xml, 175

446 Index

Spring Web MVC (cont.)

project configuration, 171
project creation, 170
project directory structure, 173–174
project selection, 171
runtime dependencies, 170
struts 2-convention-plugin, 182
struts 2-core dependency, 174
StrutsPrepareAndExecuteFilter, 176
struts.xml, 176, 179
web.xml, 175–176

OGNL, 168
one-to-one mapping, 163
ResultType and Result, 168–169
sequence of events, 164
sequence of events in Struts, 163
tag API, 169
tiles framework, 161
ValueStack, 168
vs. classic Struts, 163

T■■
Tag API, Struts 2, 169
Tight coupling

API libraries, 214
directory structure, 217
getBean( ) method, 216
JARs, 215
loose coupling, 212
project creation, 214
vehicle application, 216
vehicle interface, 212
vehicle service, 213, 215

Tiles, 188
Tiles framework, 161
Traits, 431
Typesafe Reactive Platform, 39

U■■
Uniform resource locator (URL), 44, 238

patterns, 230
URL-related actions

<c:import> action, 141–142
<c:param> action, 143–144
<c:redirect> action, 145
<c:url> action, 14

Unobtrusive JavaScript, 38

V■■
ValueStack, Struts 2, 168
Variables, 384
View declaration language (VDL), 265
View Helper pattern

class diagram, 152
role of, 151
view, 151
view generation, 151

W, X, Y, Z■■
Web applications, 43

dynamic content, 45
GET method, 45
Hypertext transfer protocol (HTTP), 43
JSP, 45 (see also Java server pages (JSP))
MVC pattern

controller servlet, 86
JavaBeans, 86
Model-1 architecture, 86
Model-2 architecture, 86–87

protocol, 43
servlet container, 45
servlets, 45
servlets (see Servlets)
Spring framework (see Spring framework)
Spring Web MVC (see Spring Web MVC)
Struts 2 (see Struts 2 web framework)
Uniform resource locator (URL), 43–44

Web development. See Java EE Web
development;JavaServer Faces (JSF)

Web services, 39
WebSocket, 38
Web tier evolution, 106

447Index

Learn Java for Web
Development

Vishal Layka

Learn Java for Web Development

Copyright © 2014 by Vishal Layka

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5983-1

ISBN-13 (electronic): 978-1-4302-5984-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie, Chris Nelson, Tom Welsh
Technical Reviewer: Boris Minkin
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To the four stars in my universe: my parents, Shobha and Madan, and my brothers,
Deepak and Nishant.

vii

Contents

About the Author��� xv

About the Technical Reviewer��� xvii

Introduction�� xix

Chapter 1: Introducing Java Web Development■■ ���1

JVM Languages��2

Languages Designed for the JVM �� 2

Languages Ported to the JVM��� 3

Java EE���4

The Java EE Platform�� 5

The Client Tier��� 6

The Web Tier��� 6

Java Web Frameworks���10

Getting Started with Java���11

Setting Up the Development Environment�� 12

Creating and Running Your First Java Application�� 12

Running Your Java Application��� 13

Developing Java Applications with an IDE�� 13

viii Contents

The Bookstore Application��19

Data Model for the Bookstore Application��20

Data Access Layer for the Bookstore Application��� 25

Client for the Data Access Layer �� 33

Trends and Technologies in the Java Web Landscape���35

Responsive Web Applications��� 35

Single-Page Web Application (SPA)�� 38

Real-Time Web Application��� 38

Reactive Web Application��� 39

Mashups and Web Services�� 39

Semantic Web (Web 3.0)��� 41

Summary��41

Chapter 2: Building Web Applications Using Servlets and JSP■■ ��43

Servlets��45

Your First Web Application Using a Servlet �� 47

ServletContext and ServletConfig �� 62

RequestDispatcher��� 64

Filters ��� 65

Configuring Servlet via Annotations��� 67

Java Server Pages��71

Your First Web Application Using JSP �� 71

JSP Basics�� 75

The MVC Pattern���86

Bookstore Application��87

Home Page��� 88

Listing All the Books��� 94

Searching the Books by Category �� 96

Searching the Books by Keyword �� 98

Summary ���103

ixContents

Chapter 3: Best Practices in Java EE Web Development■■ ��105

Best-Practice Solutions: Using EL and JSTL��107

Expression Language��� 109

JSTL�� 128

Best-Practice Solutions: Using Patterns���146

Intercepting Filter��� 147

Front Controller��� 149

View Helper�� 151

Composite View�� 152

Dispatcher View�� 153

Service to Worker��� 155

Java Web Frameworks���158

Why Use a Framework?�� 159

Summary ���160

Chapter 4: Building a Web Application Using Struts 2■■ ���161

Struts 2 Framework Overview ���161

Action���164

Action Interface�� 165

ActionSupport Class��� 166

Interceptors ���167

ValueStack and OGNL ��168

ResultType and Result��168

Struts 2 Tags ���169

Getting Started with Struts 2��169

Bookstore Web Application���183

The Login Functionality ��� 183

Developing Templates��� 188

Integrating the Data Access Layer ��� 195

Summary ���201

x Contents

Chapter 5: Building Java Web Applications with Spring Web MVC■■ ��������������������������������203

Spring Framework Overview��204

AOP and Instrumentation�� 204

Core Container�� 204

Data Access/Integration��� 205

Test��� 205

Web��� 205

Spring Framework Fundamentals ���206

Application Context��� 211

Key Objectives of the Spring Framework���212

Dealing with Tight Coupling Using Dependency Injection��� 212

Addressing Cross-Cutting Concerns Using AOP��� 217

Removing Boilerplate Code Using Templates��� 221

Building Web Application with Spring Web MVC ���227

Spring Web MVC Architecture��� 227

Getting Started with a Spring Web MVC Application��� 232

Implementing Spring Web MVC in the Bookstore Application�� 245

Working with Forms Using Annotations�� 251

Annotations-Based Validation��� 257

Summary��261

Chapter 6: Component-Based Web Development Using JSF 2■■ ���������������������������������������263

The Architecture of JSF��264

FacesServlet��� 264

Managed Bean�� 264

VDL��� 265

JSF EL��� 265

JSF Tag Library��� 265

UI Component��� 266

Renderer��� 266

Converter and Validator�� 267

Events and Event Listeners�� 267

xiContents

Getting Started with JSF��267

Life Cycle of a JSF Application���277

Phase 1: Restore View�� 278

Phase 2: Apply Request Values��� 278

Phase 3: Process Validation�� 278

Phase 4: Update Model �� 278

Phase 5: Invoke Application�� 279

Phase 6: Render Response��� 279

Managed Beans��281

Facelets��282

Templating with Facelets�� 282

Building the Bookstore Application Using JSF 2��288

Integrating JSF with Spring Framework��� 290

Accessing a Database from the Web Layer via Spring JDBCTemplate��� 291

Developing Templates �� 293

Developing the User Interface Using UI Components and JSF EL�� 294

Summary��298

Chapter 7: Rapid Web Development with Grails■■ ���299

Grails Features���299

Convention over Configuration��� 300

Scaffolding��� 300

Object-Relational Mapping��� 300

Plug-Ins�� 301

Unit Testing��� 301

Integrated Open Source�� 301

Installing Grails���302

Hello World Application��302

Bookstore Application��305

Creating the Bookstore Application�� 305

Running the Application�� 312

Creating the Controller��� 314

xii Contents

Testing the Controller �� 317

Creating a Domain Class�� 321

Scaffolding���325

Dynamic Scaffolding��� 325

Static Scaffolding��� 329

H2 Console���345

Creating Domain Relationships ���347

Summary��354

Chapter 8: Play with Java and Scala■■ ��355

Features of Play 2 ���356

MVC in Play 2���356

Router��� 357

Controller�� 357

Model�� 358

View�� 358

Getting Started with Play���358

Hello World Java Application with Play��� 360

Helloworld Scala Application with Play 2 �� 370

A Basic CRUD Play 2 Java Application��373

Defining the Routes�� 373

Creating the Controller and Actions�� 374

Creating the Model��� 375

The Form and the View Template��� 376

Accessing the Database��� 379

Deleting Books�� 382

Summary��382

Appendix A: Introduction to Java■■ ���383

Classes and Objects���383

Variables���384

Instance Members�� 384

Static Members�� 385

xiiiContents

Method Overloading���386

Arrays���386

Constructors���387

Encapsulation���389

Inheritance���389

Constructor Chaining��391

Polymorphism��393

Summary��398

Appendix B: Introduction to Groovy■■ ��399

Getting Started���399

GroovyShell��� 401

GroovyConsole�� 402

GStrings��405

Single-Line Strings��� 405

Multiline Strings��� 406

Slashy Strings��� 407

Multiline Slashy Strings�� 407

Dollar Slashy Strings�� 408

Collective Datatypes���409

Arrays��� 410

Lists�� 410

Maps��� 411

Ranges�� 412

Sets�� 414

Methods���414

Closures���415

Understanding Closures��� 415

Implicit Variables�� 417

Explicit Declaration of Closure�� 418

Reusing the Method as a Closure��� 418

Passing a Closure as a Parameter�� 419

xiv Contents

Specialized Operators��419

Spread Operator��� 419

Elvis Operator��� 419

Safe Navigation/Dereference Operator��� 420

Field Operator��� 421

Method Closure Operator�� 421

Diamond Operator�� 422

Summary��422

Appendix C: Introduction to Scala■■ ��423

Getting Started with Scala���423

Using the Interactive Interpreter��� 423

Executing Scala Code as a Script��� 424

Compiling Scala Code��� 424

Variables���426

Collections��426

Lists�� 427

Sets�� 428

Maps��� 428

Classes���429

Extending a Class��� 429

Traits���431

Singleton Objects���432

Summary��433

Index��435

xv

About the Author

Vishal Layka is the chief technology officer of Star Protocol. He is
involved in the architecture, design, and implementation of distributed
business systems, and his focus is on consulting and training with
the JVM languages. His language proficiencies include Java, Groovy,
Scala, and Haskell. Vishal is also the lead author of Beginning Groovy,
Grails, and Griffon (Apress, 2012). When he needs a break from
technology, Vishal reads eclectically from calculus to star formation.

xvii

About the Technical
Reviewer

Boris Minkin is a senior technical architect at a major financial
corporation. He has more than 20 years of experience working in
various areas of information technology and financial services. Boris
obtained his master’s degree in information systems at Stevens
Institute of Technology in New Jersey. His professional interests
are in Internet technology, service-oriented architecture, enterprise
application architecture and development, cloud computing, distributed
caching, Java, and grid and high-performance computing. You can
contact Boris at bm@panix.com.

http://bm@panix.com

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Introduction
	Chapter 1: Introducing Java Web Development
	JVM Languages
	Languages Designed for the JVM
	Languages Ported to the JVM

	Java EE
	The Java EE Platform
	The Client Tier
	The Web Tier
	Web Layer
	Service Layer
	Data Access Layer

	Java Web Frameworks
	Getting Started with Java
	Setting Up the Development Environment
	Creating and Running Your First Java Application
	Running Your Java Application
	Developing Java Applications with an IDE
	Creating Your First Project in the IDE
	Creating the Application
	Javadoc Comments

	The Bookstore Application
	Data Model for the Bookstore Application
	Data Access Layer for the Bookstore Application
	Client for the Data Access Layer

	Trends and Technologies in the Java Web Landscape
	Responsive Web Applications
	Single-Page Web Application (SPA)
	Real-Time Web Application
	Reactive Web Application
	Mashups and Web Services
	JavaScript Object Notation
	Simple Object Access Protocol
	Representational State Transfer

	Semantic Web (Web 3.0)

	Summary

	Chapter 2: Building Web Applications Using Servlets and JSP
	Servlets
	Your First Web Application Using a Servlet
	Request Flow for the HelloWorld Servlet
	HTTP Request Message
	Examining the Request
	Locating the Servlet

	The Life-Cycle Methods
	GenericServlet
	HttpServlet
	HelloWorld Servlet
	init( )
	service( )
	destroy( )

	ServletContext and ServletConfig
	Initialization Parameters
	Context-Init Parameters

	RequestDispatcher
	Getting a RequestDispatcher from a ServletRequest
	Getting a RequestDispatcher from a ServletContext

	Filters
	Configuring Servlet via Annotations

	Java Server Pages
	Your First Web Application Using JSP
	JSP Basics
	JSP Directives
	Page Directive
	Include Directive
	Taglib Directive

	Declarations
	Expressions
	Scriptlets
	Implicit Objects
	application
	config
	exception
	out
	page
	pageContext
	request
	response
	session

	Standard Actions
	The <jsp:include> Action
	The <jsp:forward> Action
	The <jsp:useBean>, <jsp:getProperty>, and <jsp:setProperty> Actions

	The MVC Pattern
	Bookstore Application
	Home Page
	Step 1: Locating the Servlet from the Request
	Step 2 and Step 3: Accessing DB via DAO to Get the Categories from the Database and Setting the Categories in the Model
	Step 4: Dispatching to the View
	Step 5: Accessing the Model from the View
	Step 6: Sending the Response

	Listing All the Books
	Searching the Books by Category
	Searching the Books by Keyword

	Summary

	Chapter 3: Best Practices in Java EE Web Development
	Best-Practice Solutions: Using EL and JSTL
	Expression Language
	Literals
	Reserved Words
	EL Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators

	Using EL
	The [] and . Operators
	Inside the Brackets

	EL Implicit Objects
	Using EL Implicit Objects
	Accessing Request Parameters
	Accessing the Header
	Accessing Cookie
	Accessing a Scoped Attribute

	EL Functions

	JSTL
	The Core Tag Library
	General-Purpose Actions
	The <c:out> Action
	The <c:set>Action
	Setting the Value of a Scoped Variable in Any JSP Scope
	Setting the Property of a Specified Target Object

	The <c:remove>Action
	The <c:catch> Action

	Conditionals
	The <c:if>Action
	The <c:choose>, <c:when>, and <c:otherwise> Actions

	Looping and Iteration
	The <c:forEach>Action
	The <c:forTokens> Action

	URL-Related Actions
	The <c:import>Action
	The <c:param>Action
	The <c:url>Action
	The <c:redirect>Action

	Best-Practice Solutions: Using Patterns
	Intercepting Filter
	Front Controller
	Controller
	Dispatcher
	View

	View Helper
	View
	View Helper

	Composite View
	Dispatcher View
	Front Controller
	Dispatcher
	Helper
	View

	Service to Worker
	Front Controller
	Dispatcher
	Helper

	Java Web Frameworks
	Why Use a Framework?

	Summary

	Chapter 4: Building a Web Application Using Struts 2
	Struts 2 Framework Overview
	Action
	Action Interface
	ActionSupport Class

	Interceptors
	ValueStack and OGNL
	ResultType and Result
	Struts 2 Tags
	Getting Started with Struts 2
	Bookstore Web Application
	The Login Functionality
	Developing Templates
	Integrating the Data Access Layer
	Login Using Database

	Displaying Categories Retrieved from the Database
	Listing Books by Category

	Summary

	Chapter 5: Building Java Web Applications with Spring Web MVC
	Spring Framework Overview
	AOP and Instrumentation
	Core Container
	Data Access/Integration
	Test
	Web

	Spring Framework Fundamentals
	Application Context

	Key Objectives of the Spring Framework
	Dealing with Tight Coupling Using Dependency Injection
	Addressing Cross-Cutting Concerns Using AOP
	Removing Boilerplate Code Using Templates

	Building Web Application with Spring Web MVC
	Spring Web MVC Architecture
	WebApplicationContext
	The DispatcherServlet
	Spring MVC Components

	Getting Started with a Spring Web MVC Application
	Implementing Spring Web MVC in the Bookstore Application
	Working with Forms Using Annotations
	Annotations-Based Validation
	Configuring the Validator

	Summary

	Chapter 6: Component-Based Web Development Using JSF 2
	The Architecture of JSF
	FacesServlet
	Managed Bean
	VDL
	JSF EL
	JSF Tag Library
	UI Component
	Renderer
	Converter and Validator
	Events and Event Listeners

	Getting Started with JSF
	Life Cycle of a JSF Application
	Phase 1: Restore View
	Phase 2: Apply Request Values
	Phase 3: Process Validation
	Phase 4: Update Model
	Phase 5: Invoke Application
	Phase 6: Render Response

	Managed Beans
	Facelets
	Templating with Facelets
	ui:composition
	ui:decorate
	ui:define
	ui:insert
	ui:include
	ui:param

	Building the Bookstore Application Using JSF 2
	Integrating JSF with Spring Framework
	Accessing a Database from the Web Layer via Spring JDBCTemplate
	Developing Templates
	Developing the User Interface Using UI Components and JSF EL

	Summary

	Chapter 7: Rapid Web Development with Grails
	Grails Features
	Convention over Configuration
	Scaffolding
	Object-Relational Mapping
	Plug-Ins
	Unit Testing
	Integrated Open Source

	Installing Grails
	Hello World Application
	Bookstore Application
	Creating the Bookstore Application
	Running the Application
	Creating the Controller
	Testing the Controller
	Creating a Domain Class

	Scaffolding
	Dynamic Scaffolding
	Static Scaffolding
	Calling the render( ) Method
	Calling the redirect( ) Method
	Returning a Model
	Index Action
	List Action
	Create Action
	Save Action
	Show Action
	Edit Action
	Update Action
	Delete Action

	Grails Views
	The List View
	The Create View
	The Show View
	The Edit View

	H2 Console
	Creating Domain Relationships
	Summary

	Chapter 8: Play with Java and Scala
	Features of Play 2
	MVC in Play 2
	Router
	Controller
	Model
	View

	Getting Started with Play
	Hello World Java Application with Play
	Configuring Eclipse for Java

	Helloworld Scala Application with Play 2
	Configuring Eclipse for Scala

	A Basic CRUD Play 2 Java Application
	Defining the Routes
	Creating the Controller and Actions
	Creating the Model
	The Form and the View Template
	Accessing the Database
	Deleting Books

	Summary

	Appendix A: Introduction to Java
	Classes and Objects
	Variables
	Instance Members
	Static Members

	Method Overloading
	Arrays
	Constructors
	Encapsulation
	Inheritance
	Constructor Chaining
	Polymorphism
	Summary

	Appendix B: Introduction to Groovy
	Getting Started
	GroovyShell
	GroovyConsole

	GStrings
	Single-Line Strings
	Multiline Strings
	Slashy Strings
	Multiline Slashy Strings
	Dollar Slashy Strings

	Collective Datatypes
	Arrays
	Lists
	Maps
	Ranges
	Sets

	Methods
	Closures
	Understanding Closures
	Implicit Variables
	Explicit Declaration of Closure
	Reusing the Method as a Closure
	Passing a Closure as a Parameter

	Specialized Operators
	Spread Operator
	Elvis Operator
	Safe Navigation/Dereference Operator
	Field Operator
	Method Closure Operator
	Diamond Operator

	Summary

	Appendix C: Introduction to Scala
	Getting Started with Scala
	Using the Interactive Interpreter
	Executing Scala Code as a Script
	Compiling Scala Code

	Variables
	Collections
	Lists
	Sets
	Maps

	Classes
	Extending a Class

	Traits
	Singleton Objects
	Summary

	Index

