

2

POUL KLAUSEN

JAVA 10: JAVA2D,
DRAWING OF THE
WINDOW
SOFTWARE DEVELOPMENT

3

Java 10: Java2D, Drawing of the window: Software Development
1st edition
© 2018 Poul Klausen & bookboon.com
ISBN 978-87-403-1947-7
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

4

Contents

4

CONTENTS

 Foreword 7

1 Introduction 9

 Exercise 1 13

1.1 The class Graphics2D 14

 Exercise 2 20

2 Shapes 22

2.1 Filled shapes 23

 Exercise 3 25

2.2 Lines 26

 Exercise 4 31

 Exercise 5 31

2.3 GeneralPath 32

 Exersice 6 39

2.4 Area 40

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

5

Contents

3 Filling and stroking 44

3.1 GradientPaint 46

 Exercise 7 48

 Exercise 8 49

3.2 TexturePaint 50

3.3 Strokes 54

 Exercise 9 58

4 Rendering 59

4.1 Transformations 59

 Exercise 10 62

 Exercise 11 65

4.2 Compositing 68

4.3 Clipping 68

4.4 Rendering Hints 73

5 Text 74

 Exercise 12 77

 Exercise 13 79

5.1 Fonts 79

 Exercise 14 82

5.2 TextLayout 82

5.3 Glyphs 94

6 Colors 96

6.1 About colors 101

 Problem 1 107

7 Images 108

7.1 Imaging 116

 Exercise 15 124

7.2 BufferedImage 125

7.3 The screen 131

9 Animations 132

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

6

Contents

10 Print 137

10.1 Swing components 143

10.2 PrintServices 146

10.3 Print text 155

11 Maintenance of programs 159

 Problem 2 160

 Problem 3 161

12 PaChart 162

12.1 The library 162

12.2 The test program 177

12.3 Lacks and things that could be improved 178

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

7

Foreword

FOREWORD

This book is the tenth in a series of books on software development. The programming
language is Java, and the language and its syntax and semantics fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. In the previous book, I have relatively detailed treated Swing, and the subject of
this book is Java2D, which is the other half of what Java is making available for developing
applications with a graphical user interface. One can also think of Java2D as the graphical
tools that Swing uses to draw the components in a window. The book is relatively detailed
and addresses issues that are not used so often in everyday programming, but the examples
are, of course, and also the issues are important, to understand how the GUI works. It is
similar to a few other books in this series a book where the focus is on language Java over
the process, and only the final example focuses on system development with the development
of a Java class library. The book assumes knowledge of Java corresponding to the books Java
3 and Java 4 and to some extent knowledge of Swing corresponding to the book Java 2.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

8

Foreword

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

 - NetBeans as IDE for application development
 - MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
 - GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

9

IntroduCtIon

1 INTRODUCTION

When you write a program with a graphical user interface, the programming is based to a
large extent on the use of finished classes for windows, buttons, fonts, etc. From the start,
these classes was gathered in AWT and its subpackages, and the APIs could be seen as two
layers of classes that could be called a user interface toolkit and a drawing toolkit, the first
layer comprised of the classes for components and properties of the components, while the
second layer was consisted of classes for basic geometric tools that could draw lines and
squares and manipulate the individual pixels. Later (starting with Java 2) AWT was split
into two APIs in the form of Swing and Java2D. This book deals with Java2D and thus
how you in Java can program 2-dimensional graphics and manipulate images.

Like other Java APIs includes Java2D a very large number of classes, but overall these are
classes for:

1. Shapes, where you can create arbitrary geometric shapes as combinations of straight
lines, curves, rectangles, ellipses and arcs.

2. Stroking that defines how lines should be drawn in terms of width, dashed or as a
solid stroke. Furthermore, you can specify how the corners will be drawn.

3. Filling that specifies how shapes are filled. You can specify a color, a pattern or a
gradient fill, and in fact you can also use an image.

4. Transformations, where everything that is drawn (shapes, images, text) can be
stretched, scaled and rotated.

5. Alpha compositing, is the process of combining a drawing with a background to
create figures with partial or full transparency.

6. Clipping is an option for limiting the part of a shape to be drawn so as not to
draw on an unwanted area of the window.

7. Anti-aliasing is a technique to avoid uneven lines, where you can see the individual pixels.
8. Text where you can manipulate the text in the same way as other geometric shapes.
9. Color comprising classes and methods to represent colors, so they are hardware independent.
10. Images that provide the ability to manipulate images in the same way as other

geometric shapes. It also includes classes to read images from and save images in files.
11. Image processing, which includes classes to manipulate the individual pixels in images.
12. Animation, which are classes that make services available, so you can animate

geometric shapes, text and images.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

10

IntroduCtIon

The rest of this book, through a number of examples treats the above 12 items, but first I
want to show a program. The program is called HelloJava2D and if you runs the program,
it opens a window, as shown below. The window draws two straight lines, a rectangle and
a large A. The window’s code is as follows:

package hellojava2d;

import java.awt.*;
import java.awt.geom.Line2D;
import java.awt.geom.Rectangle2D;
import javax.swing.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Hello Java 2D");
 setSize(500, 500);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

11

IntroduCtIon

and the only thing that happens in the code is the addition of a single component of the
type Drawing(). As a JFrame as default has a BorderLayout, this component automatically
fills the whole window. The component is defined as follows:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setStroke(new BasicStroke(7));
 g2d.setColor(Color.gray);
 g2d.draw(new Line2D.Double(10, 400, 490, 400));
 Line2D line = new Line2D.Double(20, 20, 50, 400);
 Rectangle2D rect = new Rectangle2D.Double(70, 20, 100, 380);
 g2d.setStroke(new BasicStroke(1));
 g2d.setColor(Color.red);
 g2d.draw(line);
 g2d.setColor(Color.green);
	 g2d.fill(rect);
 g2d.setColor(Color.blue);
 g2d.setFont(new Font("Liberation Sherif", Font.BOLD, 350));
 g2d.drawString("A", 200, 400);
 }
}

It is thus a custom Swing component. A component has a method, called paintComponent(),
and it is the method that draws the component. The method’s parameter has the type
Graphics, and it is an object that provides drawing tools available and represents the program’s
graphics. The type has been around all the time, Java has existed, but with the introduction
of Java2D is defined a derived class called Graphics2D, which expands with new graphics
methods. Therefore starts the method paintComponent() to type cast the parameter to a
Graphics2D object. Then the method can draw on the graphic object, and basically the
following happens.

The following statements defines to be drawn with a gray pen with a width of 7 pixels, and
the third statement draws a straight line between two points:

g2d.setStroke(new BasicStroke(7));
g2d.setColor(Color.gray);
g2d.draw(new Line2D.Double(10, 400, 490, 400));

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

12

IntroduCtIon

12

The next two statements defines two geometric shapes, which are, respectively, a line and
a rectangle:

Line2D line = new Line2D.Double(20, 20, 50, 400);
Rectangle2D rect = new Rectangle2D.Double(70, 20, 100, 380);

The next three statements defines to draw with a red pen of 1 pixel, and the third statement
draws the above straight line:

g2d.setStroke(new BasicStroke(1));
g2d.setColor(Color.red);
g2d.draw(line);

The next two statements again tells that there should be painted with a green color, and
the above rectangle is filled with the color green:

g2d.setColor(Color.green);
g2d.fill(rect);

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

13

IntroduCtIon

Final the last three statements says that the color should be blue, the text should be drawn
with a bold font at 350 points, and finally drawn a large A:

g2d.setColor(Color.blue);
g2d.setFont(new Font("Liberation Sherif", Font.BOLD, 350));
g2d.drawString("A", 200, 400);

Of course one can not know that the statements should be written that way, but when you
see the individual statements, they are easy enough to understand.

EXERCISE 1

Write a program that you can call Java2DShapes. The program should open a window, as
shown below:

The program can be written in the same manner as above. The triangle is drawn as three
straight lines. Try it yourself (using the Java documentation) to find out how to draw a
circle. The type is Ellipse2D.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

14

IntroduCtIon

1.1 THE CLASS GRAPHICS2D

Before addressing the examples I will say a few words about the class Graphics2D and thus
slightly concerning the technique.

The process of drawing in a window is based on a number of objects as shapes, images,
text, etc. that able you to determine which colors the individual pixels on a screen or a
printer should have, and this process is called rendering, and thus rendering is the process
to show the results of graphic primitives on an output device. The class Graphics2D can
be perceived as Java2D’s rendering engine. In addition a Graphics2D object represents a
graphics surface in the form of a collection of pixels each having a color. How the object
converts graphics primitives to the pixels and which the colors they get are determined by
the state of the object, which includes seven concepts:

1. paint, that determines which colors to use for drawing and filling a shape and also
including text

2. stroke, indicating the thickness of the line that shapes are drawn with by the
method draw()

3. font to indicate how text should be rendered
4. transformation that specifies how primitive graphical objects should be transformed

(moved, rotated, stretched) before being rendered, including how the logical coordinates
must be converted to physical coordinates (by default 72 logical coordinates are
transformed to an inch on the physical device)

5. compositing used to determine how colors are to be combined with the existing
color on the drawing surface

6. clipping, which definnes restrictions on the area to be rendered (default is null,
which means the entire drawing surface)

7. rendering hints, there are techniques that tells how objects should be rendered

There are four general methods used for rendering geometric primitive:

1. fill(), which fills the interior of a shape
2. draw(), that draws the perimeter of a shape
3. drawString(), that draws a text
4. drawImage(), which is used to show an image

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

15

IntroduCtIon

15

The rendering process consists of several steps which are in principle independent of the
above four methods and performed in the following order:

1. transformation
2. rasterizing
3. clipping
4. paint
5. compositing

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

16

IntroduCtIon

When a given figure needs to be rendered, for example on a screen, it is an approximation,
and the shape may not necessarily be presented exactly. The screen represents a shape using
dots (pixels), and you can for example not produce an exact circle with points (one can see
that the periphery consists of points and not a bow). For determining the points that must
be part of a specific shape, the computer applies one of two ways. Default is aliasing, where
the points whose center is within the figure are colored. That is, the individual pixels are
either part of the figure, or else they are not. The result is a shape in which edges occur
pixilated. The advantage of aliasing is that it is an effective and quick way to draw a shape
and in most cases the result is fully satisfactory. The second method is called antialiasing,
and here the computer determines for each pixel the intersection of the figure and the
current pixel. The pixel is colored with a saturation determined by the degree to which it
is a part of the figure. The result is a figure where lines and arches not to the same degree
occurs pixilatted. In the figure below the circle to the left is rendered with aliasing, while
the circle to the right is rendered with antialiasing.

Also note the difference between text. The disadvantage of antialiasing is, of course, that it
is a comprehensive rendering process, as to be carried out many calculations.

The code for the below window is the following where you primarily need to note how to
specify that the Graphics2D object must use antialiasing:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

17

IntroduCtIon

package aliasing;

import java.awt.*;
import java.awt.geom.Ellipse2D;
import javax.swing.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Aliasing og antialliasing");
 setSize(500, 350);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Ellipse2D cirkel1 = new Ellipse2D.Double(20, 20, 200, 200);
 Ellipse2D cirkel2 = new Ellipse2D.Double(260, 20, 200, 200);
 Graphics2D g2d = (Graphics2D)g;
 g2d.setStroke(new BasicStroke(5));
 g2d.draw(cirkel1);
 g2d.setFont(new Font("Liberation Sherif", Font.PLAIN, 36));
 g2d.drawString("Aliasing", 50, 270);
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.draw(cirkel2);
 g2d.drawString("Antialiasing", 250, 270);
 }
}

Above, I mentioned that the rendering process includes rasterizing and compositing, and
it indicates the degree to which a figure’s pixels have to cover the drawing surface’s pixels.
This value is called the alpha value and is a number between 0.0 (not visible or transparent)
and 1.0 (fully covered or opaque). As an example, shows the following window two straight
lines and three rectangles where the two lines are drawn first:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

18

IntroduCtIon

18

The first rectangle is drawn with an alpha value of 1 and would therefore total cover the
underlying pixels. The result is that the two lines are covered of the rectangle. The middle
rectangle has an alpha value of ½, and thus it does not cover the lines completely. The result
is that the red color is combined partly with the black lines and and the gray background.
The last rectangle have an alpha value of 0 and is thus completely transparent and therefore
not visible. The code is as follows:

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

19

IntroduCtIon

package alphaprogram;

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Alpha");
 setSize(500, 300);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Dimension size = getSize();
 Graphics2D g2d = (Graphics2D)g;
 g2d.setStroke(new BasicStroke(10));
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 Line2D line1 = new Line2D.Double(0, 0, size.width, size.height);
 Line2D line2 = new Line2D.Double(0, size.height, size.width, 0);
 double width = size.width / 7.0;
 Rectangle2D rect1 = new Rectangle2D.Double(width, 0, width, size.height);
 Rectangle2D rect2 = new Rectangle2D.Double(3 * width, 0, width, size.height);
 Rectangle2D rect3 = new Rectangle2D.Double(5 * width, 0, width, size.height);
 g2d.draw(line1);
 g2d.draw(line2);
 g2d.setColor(Color.red);
	 g2d.fill(rect1);
 g2d.setColor(new Color(1.0F, 0F, 0F, 0.5F));
	 g2d.fill(rect2);
 g2d.setColor(new Color(1.0F, 0F, 0F, 0F));
	 g2d.fill(rect3);
 g2d.setStroke(new BasicStroke(1));
 g2d.setColor(Color.black);
 g2d.draw(rect1);
 g2d.draw(rect2);
 g2d.draw(rect3);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

20

IntroduCtIon

If you test the program, noting that both the lines and the rectangles follows the window size.

When working with Java 2D and in general with computer graphics you have a coordinate
system. The window’s upper left corner is (0,0), and the x axis is oriented to the right,
while the y-axis is oriented downwards. It is a logical coordinate system called user space,
and when the objects to be drawn on a physical display or printer, you have a different
coordinate system, called device space. The rendering therefore requires a conversion of
coordinates from user space to device coordinates, and for the screen this conversion usually
is performed directly where 1 unit in user space corresponds to one pixel, but generally aim
for conversion where 72 units (in user space) are converted into 1 inch.

EXERCISE 2

You must write a program (my solution is called AlphaValue), which opens a window,
as shown above, where is painted a square and a circle. At the top is a slider, and if you
move the slider, the figure should be covered by a green rectangle that eventually covers
the figure completely:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

21

IntroduCtIon

You must associate an event handler to the slider, that redraw the component when the
slider is moved. If Drawing refers to the component with the figures, the event handler can
be defined as an object of the following inner class:

private class ChangeHandler implements ChangeListener
{
 public void stateChanged(ChangeEvent e)
 {
 drawing.repaint();
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

22

shapes

22

2 SHAPES

In this chapter I will show how to define and draw geometric shapes, what I already did with
the examples above, for example a rectangle. Its type is Rectangle2D, but it is an abstract class,
and there are two concrete derived classes, which are called respectively Rectangle2D.Float
and Rectangle2D.Double. The difference is about the figure’s attributes and where they are
defined by the type float or type double. This pattern is used for all primitive Shape objects.

There is a helper class, called Point2D (and Point2D.Float and Point2D.Double) that represents
a point. A Point2D object has no size and can not be rendered, and an object is used only
to define attributes for other objects. The basic geometric classes are shown in the following
figure, and they are all defined by a common interface called Shape. This interface defines
a few important methods where I will mention

 - getBounds2D(), which returns a circumscribing rectangle
 - contains(), that tests where a point or rectangle is included in the shape
 - intersects(), that tests where a rectangel overlaps the current shape

http://s.bookboon.com/elearningforkids

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

23

shapes

2.1 FILLED SHAPES

The last four are simple to use, and the difference is mainly the parameters you have to enter
to create an object. Generally a figure is defined by a rectangle, that is the circumscribing
rectangle which indicate the upper left corner and the width and height. The program
Figures opens the following window:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

24

shapes

24

As regards the types Rectangle2D and Ellipse2D there is not much more to tell, but for a
RoundRectangle2D you must beyond the circumscribing rektangle specify how the corners
are rounded – in fact, in terms of a width and a height of a rectangle. Then there is the
green shape, which is an Arc2D. First you have to define the circumscribing rectangle, and
here one must be aware that the rectangle is the rectangle that circumscribes the ellipse, that
the shape is a part of. In addition to the rectangle you must specify the angle (in degrees),
where the range should start and how large an angle the range should span. Finally, you
must specify how the slice should appear where there are the following options:

 - Arc2D.PIE, that shows the shape in this example
 - Arc2D.OPEN, which only shows the arc
 - Arc2D.CHORD, that shows the arc and the chord of the arc’s end points

The code for the above window is:

package	figures;

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

25

shapes

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Figures");
 setSize(500, 300);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 draw(g2d, new Rectangle2D.Double(20, 20, 200, 100), Color.blue);
 draw(g2d, new RoundRectangle2D.Double(240, 20, 200, 100, 50, 30),
 Color.yellow);
 draw(g2d, new Ellipse2D.Double(20, 140, 200, 100), Color.red);
 draw(g2d, new Arc2D.Double(240, 140, 200, 200, 30, 45, Arc2D.PIE),
 Color.green);
 }

 private void draw(Graphics2D g, Shape shape, Color color)
 {
 g.setColor(color);
	 g.fill(shape);
 g.setColor(Color.black);
 g.draw(shape);
 }
}

EXERCISE 3
Make a copy of the above project, which opens the window with the four figures. You
must change the program so that if you click on a shape, you should get a message box
as shown below telling you which figure is clicked. Note that the only thing you need is
to add an event handler for mouse clicks, which determines whether there is clicked on a
figure and if so, what.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

26

shapes

2.2 LINES

I will then look at the three types Line2D, QuadCurve2D and CubicCurve2D, each representing
a line segment. Line2D represents a straight line between two points, and there is not much
to explain. To create a Line2D object, you must only indicate the endpoints of the segment.

A QuadCurve2D represents a path between two points, which has an associated control point
so that the lines from the control point of the curve’s endpoints are tangents to the curve:

If you need to create a QuadCurve2D, one must therefore indicate three points. A
CubicCurve2D is in principle the same, but here there are two control points, one for each
of the two end points:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

27

shapes

27

One must therefore specify four points to create a CubicCurve2D. It can be a little difficult
to find out the result of these curves. The following program opens a window, as shown
below. The blue curve is a CubicCurve2D, while the red is a QuadCurve2D. In addition
to the endpoints, the drawing shows the control points, as well as the tangents and the
purpose of the program is, that you can point on one of the points with the mouse and
dragging it, and in that way to get an idea of what happens to the shapes, if you change
the end points or control points.

The code for the window is shown below, and you must mainly observe how to create
respectively a QuadCurve2D and a CubicCurve2D:

package curves;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

28

shapes

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Curves");
 setSize(500, 500);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

class Drawing extends JComponent
{
 private Point2D[] points = {
 new Point2D.Double(50, 125), new Point2D.Double(100, 250),
 new Point2D.Double(375, 10), new Point2D.Double(450, 125),
 new Point2D.Double(50, 375), new Point2D.Double(300, 150),
 new Point2D.Double(450, 375) };

 private Point2D current = null;

 public Drawing()
 {
 addMouseListener(new ClickHandler());
 addMouseMotionListener(new MoveHandler());
 }

 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setColor(Color.gray);
 g2d.draw(new Line2D.Double(points[0], points[1]));
 g2d.draw(new Line2D.Double(points[2], points[3]));
 g2d.setColor(Color.blue);
 g2d.draw(new CubicCurve2D.Double(points[0].getX(), points[0].getY(),
 points[1].getX(), points[1].getY(), points[2].getX(),
 points[2].getY(), points[3].getX(), points[3].getY()));
 g2d.setColor(Color.gray);
 g2d.draw(new Line2D.Double(points[4], points[5]));
 g2d.draw(new Line2D.Double(points[5], points[6]));
 g2d.setColor(Color.red);
 g2d.draw(new QuadCurve2D.Double(points[4].getX(), points[4].getY(),
 points[5].getX(), points[5].getY(), points[6].getX(), points[6].getY()));
 for (int i = 0; i < points.length; ++i)
 {

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

29

shapes

 g2d.setColor(points[i].equals(current) ? Color.magenta : Color.gray);
	 g2d.fill(getPoint(points[i]));
 }
 }

 private Shape getPoint(Point2D p)
 {
 int side = 4;
 return new Rectangle2D.Double(
 p.getX() – side / 2, p.getY() – side / 2, side, side);
 }

 private class ClickHandler extends MouseAdapter
 {
 public void mousePressed(MouseEvent e)
 {
 current = null;
 for (int i = 0; i < points.length; ++i)
 {
 Shape shape = getPoint(points[i]);
 if (shape.contains(e.getPoint()))
 {
 current = points[i];
 break;
 }
 }
 repaint();
 }
 }

 private class MoveHandler extends MouseMotionAdapter
 {
 public void mouseDragged(MouseEvent e)
 {
 if (current != null)
 {
 current.setLocation(e.getPoint());
 repaint();
 }
 }
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

30

shapes

30

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

31

shapes

EXERCISE 4

Create a copy of the project Curves and modify the program so that the bottom of the
window shows the mouse coordinates when you drag the points, and the two curves must
be drawn with a thicker line. This means that you must use a Stroke object when the curves
are drawn, for example

private Stroke stroke3 = new BasicStroke(3);

To display the mouse coordinates you can add a JLabel component to the bottom of the
window and update it every time you drag one of the points.

EXERCISE 5

Write a program that you can call StraightLines, which opens the following window shown
below. The slider should represent the values from 0 to 100 and start at 25. The window
must draw the number of straight lines that the slider indicates, and alternates between six
colors. A line start at the upper left corner to a point at the bottom of the window, where
the bottom is divided in a number of points determinded be the slider. Similarly, a line
starts in the lower right corner to a point on the left edge which is divided into a number
of points corresponding to the value of the slider.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

32

shapes

2.3 GENERALPATH

Line2D, QuadCurve2D, CubicCurve2D, Rectangle2D, RoundRectangle2D, Ellipse2D and Arc2D
are the basic geometric primitives in Java2D, but from the above class diagram it appears
that there are two other classes, and they may be used to define more complex shapes.

The class GeneralPath defines a shape by means of a number of points, where between each
of these points may be a line either of the type Line2D, QuadCurve2D or CubicCurve2D.
A GeneralPath defines an arbitrary shape, which does not necessarily have to be closed or
coherent. You can think of the shape on that way, that you draw it with a pen, and you
can do two things:

1. You can lift the pen and move it to a point.
2. You can draw a line from the point where the pen is, to another point.

For that you uses the methods: moveTo(), lineTo(), quadTo(), cubicTo() and closePath().

The window below shows three shapes of the type GeneralPath where the red is formed by
three line segments, a quad segment and a cubic segment. The two other shapes are solely
formed by the line segments:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

33

shapes

33

http://s.bookboon.com/EOT

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

34

shapes

Generally, it is simple enough to create a GeneralPath, and there is only one thing that is
complex, namely to determine the interior of shapes. If the shape is bounded by a simple
closed curve (as the red), there is not much to be in doubt, but if the shape is formed
by lines that intersects, it is more difficult, and it can happen in two ways, which you
specify with a parameter to the constructor. If you considers the blue figure, it is defined
as GeneralPath.WIND_EVEN_ODD. The straight lines divide the shape into a number of
closed regions (five in this case). If you have to decide which of these areas belong to the
figure, you can draw a straight line that cuts through the figures areas:

If you starts outside the shape and follows the line and counts a counter up by 1 each time
you pass a segment, so the rule is that an area belongs to the figure, if the counter is odd
and does not belong, if the counter is even. The green figure is defined as GeneralPath.
WIND_NON_ZERO (which incidentally is the default). If you here must determine if a part
of the figure belongs, one can similarly draw a line that intersects the figure’s areas. When
the line crosses one of the figure’s segments, the rule is that the counter is incremented by
1 if the segment is drawn from left to right, and decremented by 1 if the segment is drawn
from right to left. The areas that is part of the figure, are the areas in which the counter
is not 0.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

35

shapes

The program’s code is:

package pathprogram;

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Path");
 setSize(800, 500);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 GeneralPath path1 = new GeneralPath();
 path1.moveTo(50, 50);
 path1.lineTo(250, 100);
 path1.quadTo(400, 200, 250, 300);
 path1.curveTo(500, 300, 200, 400, 450, 450);
 path1.lineTo(100, 400);
 path1.closePath();
 g2d.setColor(Color.red);
	 g2d.fill(path1);
 g2d.setColor(Color.black);
 g2d.draw(path1);

 GeneralPath path2 = new GeneralPath(GeneralPath.WIND_NON_ZERO);
 path2.moveTo(500, 150);
 path2.lineTo(650, 50);
 path2.lineTo(600, 250);
 path2.lineTo(500, 200);
 path2.lineTo(700, 150);

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

36

shapes

36

 path2.lineTo(620, 100);
 path2.lineTo(580, 220);
 path2.closePath();
 g2d.setColor(Color.green);
	 g2d.fill(path2);
 g2d.setColor(Color.black);
 g2d.draw(path2);

 GeneralPath path3 = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
 path3.moveTo(500, 350);
 path3.lineTo(650, 250);
 path3.lineTo(600, 450);
 path3.lineTo(500, 400);
 path3.lineTo(700, 350);
 path3.lineTo(620, 300);
 path3.lineTo(580, 420);
 path3.closePath();
 g2d.setColor(Color.blue);
	 g2d.fill(path3);
 g2d.setColor(Color.black);
 g2d.draw(path3);
 }
}

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

37

shapes

Besides creating a GeneralPath using segments, you can also create a GeneralPath as composed
of other shapes. The window below shows a GeneralPath that draw a triangle, but also
consists of another GeneralPath (which also represents a triangle) and a Rectangle2D. If you
click on one of the three shapes, you get a message box, and the goal is to show that the
three figures are all part of the same Shape object.

The code is as follows:

package triangles;

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;
import java.awt.event.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Triangles");
 setSize(500, 400);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

38

shapes

class Drawing extends JComponent
{
 private Shape shape;

 public Drawing()
 {
 addMouseListener(new ClickHandler());
 }

 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 GeneralPath path1 = new GeneralPath();
 path1.moveTo(50, 150);
 path1.lineTo(250, 50);
 path1.lineTo(100, 200);
 path1.closePath();

 GeneralPath path = new GeneralPath();
 path.moveTo(200, 150);
 path.lineTo(300, 50);
 path.lineTo(400, 200);
 path.closePath();
 path.append(path1, false);
 path.append(new Rectangle2D.Double(20, 250, 400, 50), false);
 g2d.setColor(Color.red);
	 g2d.fill(path);
 g2d.setColor(Color.black);
 g2d.draw(path);

 shape = path;
 }

 private class ClickHandler extends MouseAdapter
 {
 public void mouseClicked(MouseEvent e)
 {
 Point2D point = new Point2D.Double(e.getX(), e.getY());
 if (shape.contains(point)) JOptionPane.showMessageDialog(Drawing.this,
	 "You	have	clicked	on	the	figure");
 }
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

39

shapes

39

EXERSICE 6

Write a program that you can call Polygons where it must open a window, as shown below
(where the lower shape is not a polygon). The three shapes, should all be defined as a
GeneralPath in which the bottom is defined by two quad segments. Finally, if you click on
one of the three figures you should get a message box telling you which of the shapes you
are clicking on:

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

40

shapes

2.4 AREA

The last class for geometric shapes is called Area. It is a type that combines one or more
shapes, but where you can specify how they should overlap each other.

The following window draws a circle and a square, which overlap. These figures are used
to define the four other figures by means of an Area object. Here you should notice the
four methods that creates the Area objects, but also how they are placed in the window by
translating the graphic object. This takes place with a transformation, which are discussed
later, but in this case the figures is placed by a simple translation.

package areaprogram;

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("Area's");
 setSize(500, 400);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

41

shapes

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 Ellipse2D cirk = new Ellipse2D.Double(20, 20, 100, 100);
 Rectangle2D rect = new Rectangle2D.Double(70, 70, 100, 100);
 g2d.draw(cirk);
 g2d.draw(rect);
 union(g2d, cirk, rect, 170, 0);
 intersection(g2d, cirk, rect, 170, 0);
 subtraction(g2d, cirk, rect, -340, 170);
 exclusive(g2d, cirk, rect, 170, 0);
 }

 private void union(Graphics2D g, Shape shape1,
Shape shape2, int x, int y)
 {
 Area area1 = new Area(shape1);
 Area area2 = new Area(shape2);
 area1.add(area2);
 g.translate(x, y);
 g.setColor(Color.green);
	 g.fill(area1);
 g.setColor(Color.black);
 g.draw(area1);
 }

 private void intersection(Graphics2D g, Shape shape1, Shape shape2, int x, int y)
 {
 Area area1 = new Area(shape1);
 Area area2 = new Area(shape2);
 area1.intersect(area2);
 g.translate(x, y);
 g.setColor(Color.blue);
	 g.fill(area1);
 g.setColor(Color.black);
 g.draw(area1);
 }

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

42

shapes

42

 private void subtraction(Graphics2D g, Shape shape1, Shape shape2, int x, int y)
 {
 Area area1 = new Area(shape1);
 Area area2 = new Area(shape2);
 area1.subtract(area2);
 g.translate(x, y);
 g.setColor(Color.yellow);
	 g.fill(area1);
 g.setColor(Color.black);
 g.draw(area1);
 }

http://s.bookboon.com/GTca

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

43

shapes

 private void exclusive(Graphics2D g, Shape shape1, Shape shape2, int x, int y)
 {
 Area area1 = new Area(shape1);
 Area area2 = new Area(shape2);
 area1.exclusiveOr(area2);
 g.translate(x, y);
 g.setColor(Color.red);
	 g.fill(area1);
 g.setColor(Color.black);
 g.draw(area1);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

44

FIllIng and strokIng

3 FILLING AND STROKING

In the previous chapter, I described how Java2D defines geometric shapes, and how to draw
them in a window. To draw a shape includes

1. how should the figure’s circumference be drawn
2. how should the interior of the figure be filled (if there is an interior)

and both are the subject of this chapter.

If you has a closed shape, such as a rectangle you can draw its perimeter with draw(), and
you can fill the shape with fill(). In the window below is drawn two rectangles

The goal is to show how the perimeter is drawn. The first rectangle is drawn as follows:

Rectangle2D rect1 = new Rectangle2D.Double(20, 20, 200, 100);
g2d.setPaint(Color.black);
g2d.draw(rect1);
g2d.setPaint(Color.yellow);
g2d.fill(rect1);

You should note that I first draw the perimeter and then fills the rectangle with a yellow
color. The result is that the perimeter is overwritten at the top and to the left while it is
visible on the right and at the bottom. When the frame is drawn, 4 straight lines are drawn:

 - a line from (20, 20) to (220, 20), that is the top edge
 - a line from (20, 20) to (20, 120), that is the left edge
 - a line from (20, 120) to (220, 120), that is the bottom edge
 - a line from (220, 20) to (220, 120), that is the right edge

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

45

FIllIng and strokIng

45

When the rectangle is filled, the area where the upper left corner is (20, 20) while the
lower right corner is (219, 119) is colored. It is important to be aware of this fact, and the
general rule is that you have to fill a figure before to draw the perimeter.

You should note that I in the program above have defined the color with setPaint() instead
of setColor(). In this case there is no particular reason for it, but the class Graphics2D have
a variable of type Paint, representing how a shape or line should be colored. There are
three options:

1. a Color
2. a GradientPaint
3. a TexturePaint

The three options are illustrated below, but Paint is an interface that the class Color
implements, and therefore you can used setPaint() instead of setColor().

 .

http://s.bookboon.com/AlcatelLucent

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

46

FIllIng and strokIng

The second shape in the window below are drawn as follows:

Rectangle2D rect2 = new Rectangle2D.Double(240, 20, 200, 100);
Ellipse2D ellip1 = new Ellipse2D.Double(238, 18, 5, 5);
Ellipse2D ellip2 = new Ellipse2D.Double(438, 118, 5, 5);
g2d.setPaint(Color.orange);
g2d.fill(rect2);
g2d.setPaint(Color.black);
g2d.draw(rect2);
g2d.setPaint(Color.black);
g2d.fill(ellip1);
g2d.fill(ellip2);

and should again illustrate where the edge is drawn. In order to clarify the two corners of
the rectangle, I have drawn two circles, both of which have a diameter of 5. The first has
in its center (240, 20) and thus in the upper left corner of the rectangle. The second circle
has its center at (440, 120) and thus in the lower right corner of the rectangle defining
the shape.

3.1 GRADIENTPAINT

You can also fill a shape (and even draw a line with) a GradientPaint. Here you mix two
colors along a straight line. Consider the following window:

showing three squares with a straight line. The straight lines are only drawn to explain the
principle. The first figure mixes the colors red and yellow along the displayed line such that
you start with red in the upper left corner and ending with yellow in the bottom right
corner. The middle figure blends similar colors red and yellow, but this time the line does
not span across the hole square. The result is that all before the starting of the line is red,
while all after the line is yellow. The final shape is similar in principle, but this time the
pattern is repeated. The component representing the three squares are:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

47

FIllIng and strokIng

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 Rectangle2D rect1 = new Rectangle2D.Double(20, 20, 200, 200);
 Rectangle2D rect2 = new Rectangle2D.Double(240, 20, 200, 200);
 Rectangle2D rect3 = new Rectangle2D.Double(460, 20, 200, 200);
 g2d.setPaint(new GradientPaint(20, 20, Color.red, 220, 220, Color.yellow));
	 g2d.fill(rect1);
 g2d.setPaint(Color.black);
 g2d.draw(rect1);
 g2d.draw(new Line2D.Double(20, 20, 220, 220));
 g2d.setPaint(new GradientPaint(310, 90, Color.red, 370, 150, Color.yellow));
	 g2d.fill(rect2);
 g2d.setPaint(Color.black);
 g2d.draw(rect2);
 g2d.draw(new Line2D.Double(310, 90, 370, 150));
 g2d.setPaint(new GradientPaint(
 530, 90, Color.red, 590, 150, Color.yellow, true));
	 g2d.fill(rect3);
 g2d.setPaint(Color.black);
 g2d.draw(rect3);
 g2d.draw(new Line2D.Double(530, 90, 590, 150));
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

48

FIllIng and strokIng

48

EXERCISE 7

Write a program that you can call Circles, which paints the window as shown above. Here
is the left ellipse is filled with a GradientPaint that mixes the colors light gray and dark
gray along the horizontal diameter, while the right ellipse mixes the colors blue and white
along the vertical diameter. The two ellipses must follow the window size and change when
the size of the window changes.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

49

FIllIng and strokIng

EXERCISE 8

In this exercise, you must write a program, you can call GradientBackground which opens
the following window:

The window shows a rectangle (which follows the window size), which is filled with a
GradientPaint that mixes white and black along the diagonal from the upper left corner.
The window has three JSlider components respectively at the top and the bottom. They
are used to define respectively the “white” and the “black” color. When you move the
sliders, the result could, for instance be as shown below. Note that when the component
representing the rectangle must refer to the six JSlider components, you can facilitate the
work by defining the class Drawing as an inner class in the MainWindow.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

50

FIllIng and strokIng

3.2 TEXTUREPAINT

It is also possible to fill a figure with an image. The following program draws a rektangle and
fills the entire window and the rectangle is filled with repetition of an icon of 64x64 pixels:

The project has a sub-package called images, and it contains the icon (a png file that is
copied here, so the picture is a resource and packaged with the program’s classes). The code
for the window is:

package texturebackground;

import java.awt.*;
import java.awt.image.*;
import java.awt.geom.*;
import javax.swing.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("TextureBackground");
 setSize(600, 400);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

51

FIllIng and strokIng

51

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Dimension d = getSize();
 Graphics2D g2d = (Graphics2D)g;
 Rectangle2D rect = new Rectangle2D.Double(0, 0, d.width, d.height);
 BufferedImage image = createImage();
 g2d.setPaint(
 new TexturePaint(image,
 new Rectangle2D.Double(0, 0, image.getWidth(), image.getHeight())));
	 g2d.fill(rect);
 }

 public BufferedImage createImage()
 {
 java.net.URL imgURL =
 Drawing.class.getResource("/texturebackground/images/Bean.png");
 ImageIcon icon = new ImageIcon(new ImageIcon(imgURL, "").
 getImage().getScaledInstance(64, 64, Image.SCALE_SMOOTH), "");
 BufferedImage image = new BufferedImage(icon.getIconWidth(),
 icon.getIconHeight(), BufferedImage.TYPE_INT_RGB);
 Graphics g = image.createGraphics();

http://s.bookboon.com/BI

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

52

FIllIng and strokIng

 icon.paintIcon(null, g, 0,0);
 g.dispose();
 return image;
 }
}

The method createImage() creates a BufferedImage. This class is explained later, but you can
think of it as a class, that allows you to manimulere the pixels in an image. In this case, the
image is in the application’s jar file and is loaded as an ImageIcon object. Next, the metode
creates a BufferedImage of the same size as the object, and the object’s Graphics object is
used to draw the object. With this object available you in paintComponent() can define a
TexturePaint to fill the rectangle.

As another example of using a TexturePaint is shown below a window with a circle. The
code window is:

package textureborder;

import java.awt.*;
import java.awt.image.*;
import java.awt.geom.*;
import javax.swing.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("TextureBorder");
 setSize(500, 550);
 setLocationRelativeTo(null);
 add(new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Dimension d = getSize();
 Graphics2D g2d = (Graphics2D)g;
 Ellipse2D ellip = new Ellipse2D.Double(50, 50, 400, 400);
 BufferedImage image = createImage();

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

53

FIllIng and strokIng

 g2d.setPaint(new TexturePaint(image,
 new Rectangle2D.Double(0, 0, image.getWidth(), image.getHeight())));
 g2d.setStroke(new BasicStroke(60));
 g2d.draw(ellip);
 }

 public BufferedImage createImage()
 {
 BufferedImage image = new BufferedImage(20, 20, BufferedImage.TYPE_INT_RGB);
 Graphics2D g = (Graphics2D)image.createGraphics();
 g.setColor(Color.red);
 g.draw(new Ellipse2D.Double(0, 0, 20, 20));
 g.dispose();
 return image;
 }
}

The method createImage() creates a BufferedImage of 20×20 pixels, where is drawen a red
circle. You can create and manipulate a BufferedeImage without loading an image from a
file. The BufferedImage is created in paintComponent() to create a TexturePaint, and then
draw a circle with a stroke on 60 pixels.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

54

FIllIng and strokIng

54

In addition to show how to create a BufferedImage from scratch, the example also shows
that the perimeter of a figure in itself is a Shape that can be filled (by the method draw())
with a Paint object.

3.3 STROKES

In the above examples, I have shown how to define a BasicStroke object and thus indicate
how thick a line has to be drawn. Default is 1. However, there are two things concerning
strokes, you must have knowledge of:

 - how the line’s endpoints must be
 - how line segments are put together and thus how corners must be

where these concepts only have interest if you has to draw thick lines. Finally, one must
know how to draw a dotted line. The following window shows most of the options available:

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

55

FIllIng and strokIng

As regards the line’s endpoints are three possibilities:

1. BasicStroke.CAP_SQUARE (that is default)
2. BasicStroke.CAP_ROUND
3. BasicStroke.CAP_BUTT

The first line (the black) is drawn with default values and otherwise a stroke at 19.
Furthermore, there is drawn a rectangle that is the line’s circumscribing rectangle. Concerning
the endpoints, the style is CAP_SQUARE that expands the line with a rectangle whose length
is half the line thickness. The blue line has corresponding the endpoint CAP_ROUND that
expands the line with a half-circle whose radius is half the line thickness. Finally, there is
CAP_BUTT that is used by the green line and who simply do not expand the line.

The three figures on the right have all type GeneralPath and is drawn with a stroke on 19
and the option CAP_SQUARE for the endpoints, and also is defined how the corners will
be drawn. Again, there are three options:

1. JOIN_MITER (that is default)
2. JOIN_ROUND
3. JOIN_BEVEL

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

56

FIllIng and strokIng

The orange path is drawn with default values and thus the style JOIN_MITER. It mixes the
segments by extending the outer edges until they intersect. The magenta line uses JOIN_
ROUND which simply means that the line segments endpoints are using CAP_ROUND.
Finally, JOIN_BEVEL is used by the gray path. Here the line segments endpoints uses
CAP_BUTT and the outer edges are connected.

Then there are the three dashed lines. The red is drawn with a stroke that is defined as follows:

new BasicStroke(5,
	BasicStroke.CAP_BUTT,	BasicStroke.JOIN_BEVEL,	0,	new	float[]	{	10,	10	},	0)

A dotted line is drawn by switching between a line segment and a blank segment. The
last array defines that the two pieces should each be at length of 10. The last parameter is
explained by the next example (the line pink):

new BasicStroke(3,
	BasicStroke.CAP_BUTT,	BasicStroke.JOIN_BEVEL,	0,	new	float[]	{	10,	5	},	5)

Here the last parameter indicates, how long you have to start inside the first segment.
Therefore, the first segment only has the length 5. Finally, the last example show that you
can specify multiple segment lengths:

new BasicStroke(3, BasicStroke.CAP_BUTT,
	BasicStroke.JOIN_BEVEL,	0,	new	float[]	{	5,	10,	15,	20	},	0)

That is, first draw a line segment at 5, then a gap of 10, a segment of 15 and finally a gap
of 20. Then repeat the pattern until the entire line is drawn. The code for the component
is shown below:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 draw(g2d, 20, 20, 120, 70, new BasicStroke(19), Color.black, true);
 draw(g2d, 20, 120, 120, 170, new BasicStroke(19, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_BEVEL), Color.blue, true);
 draw(g2d, 20, 220, 120, 270, new BasicStroke(19, BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_BEVEL), Color.green, true);
 draw(g2d, 200, 70, 300, 20, 400, 70, new BasicStroke(19), Color.orange);

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

57

FIllIng and strokIng

57

 draw(g2d, 200, 170, 300, 120, 400, 170, new BasicStroke(19,
 BasicStroke.CAP_SQUARE,BasicStroke.JOIN_ROUND), Color.magenta);
 draw(g2d, 200, 270, 300, 220, 400, 270,
 new BasicStroke(19, BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_BEVEL), Color.gray);
 draw(g2d, 20, 320, 400, 320, new BasicStroke(5, BasicStroke.CAP_BUTT,
	 BasicStroke.JOIN_BEVEL,	0,	new	float[]	{	10,	10	},	0),	Color.red,	false);
 draw(g2d, 20, 350, 400, 350, new BasicStroke(3, BasicStroke.CAP_BUTT,
	 BasicStroke.JOIN_BEVEL,	0,	new	float[]	{	10,	5	},	5),	Color.pink,	false);
 draw(g2d, 20, 380, 400, 380, new BasicStroke(3, BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_BEVEL, 0,
	 new	float[]	{	5,	10,	15,	20	},	0),	Color.darkGray,	false);
 }

 private void draw(Graphics2D g, double x1, double y1, double x2, double y2,
 Stroke stroke, Color color, boolean showBound)
 {
 g.setStroke(stroke);
 g.setPaint(color);
 Line2D line = new Line2D.Double(x1, y1, x2, y2);
 g.draw(line);
 if (showBound)
 {

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

58

FIllIng and strokIng

 g.setStroke(new BasicStroke(0.5F));
 g.draw(line.getBounds2D());
 }
 }

 private void draw(Graphics2D g, double x1,
double y1, double x2, double y2,
 double x3, double y3, Stroke stroke, Color color)
 {
 g.setStroke(stroke);
 g.setPaint(color);
 GeneralPath path = new GeneralPath();
 path.moveTo(x1, y1);
 path.lineTo(x2, y2);
 path.lineTo(x3, y3);
 g.draw(path);
 g.setStroke(new BasicStroke(0.5F));
 g.draw(path.getBounds2D());
 }
}

EXERCISE 9

Write a program, that opens the folowing window:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

59

renderIng

4 RENDERING

In the previous chapter, I have discussed how to define geometric shapes. In this chapter I
will look at how Java2D renders figures. That is how the follewing is:

1. transformation
2. compositing
3. clipping
4. rendering hints

4.1 TRANSFORMATIONS

A transformation is defined by the class called AffineTransform, and an affine transformation
is a transformation that preserves parallel lines. The class Graphics2D has an instance of an
AffineTransform applicable to all geometric shapes, when rendered. This transfomation can
be changed in two ways. One can partly replace it with another one:

void	setTransform(AffineTransform	tr)

and you can change the existing transformation

void	transform(AffineTransform	Tx)

It is generally recommended that you use the latter approach, and examples shows how.
The class Graphics2D also has methods that directly perform simple transformations. There
are four types of transformations

 - translation (there is a parallel displacement)
 - rotation (that rotates the figure around a point)
 - scaling (that scales a figure)
 - shearing (that shears a figure)

Translation

The program TranslateDemo opens a window as shown below. The window draws 4 rectangles
and draw first the black rectangle. The other three are the same rectangle, but are drawn after
a parallel shift of the graphics (drawing surface). Immediately it is simple, but if you made
several transformations (as in this case), the result can be difficult to grasp. The component’s
code is as follows and should also show that a parallel shift can be defined in several ways:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

60

renderIng

60

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 Rectangle2D rect = new Rectangle2D.Double(20, 20, 200, 100);
 g2d.draw(rect);
	 AffineTransform	start	=	g2d.getTransform();
 g2d.translate(100, 50);
 g2d.setPaint(Color.red);
 g2d.draw(rect);
	 AffineTransform	trans	=	g2d.getTransform();
 trans.translate(100, 50);
 g2d.transform(trans);
 g2d.setPaint(Color.blue);
 g2d.draw(rect);
 g2d.setTransform(start);
	 AffineTransform	translate	=	AffineTransform.getTranslateInstance(50,	200);

http://s.bookboon.com/Subscrybe

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

61

renderIng

 g2d.transform(translate);
 g2d.setPaint(Color.green);
 g2d.draw(rect);
 }
}

First, is defined a rectangle rect, that is drawn with default settings, and the result is the
black rectangle. Next, a reference start is added for the current transformation. The goal is
to enable the transformation of the drawing surface to be reset to default, after performing
other transformations. Next the method performs the statement

g2d.translate(100, 50);

and the rectangle is drawn with a red color. It is a parallel shift of 100 in the x- axis direction
and 50 in the y-axis direction. This means that the coordinate system’s start point (the upper
left corner) is shifted to (100, 50). You should note that after the method is performed,
the Graphics2D object’s AffineTransform is changed. As the next step is defined a reference
trans to the current AffineTransform and then a parallel shift to (100, 50), that is used to
modify g2d object’s transformation, and the rectangle is drawn again, but this time with a
blue color. Here, the result is not entirely obvious since it is a composite transformation.
First performs the parallel (100, 50), which moves the current start point (100, 50) to (200,
100). Next, the first transformation, which is also a parallel shift (100, 50), that moves the
start point (200,100) to (300, 150). The result is that the blue rectangle has the upper left
corner in (320,170). After the blue rectangle is drawn, the transformation is reset to default,
and a new parallel shift using a static method in the class AffineTransform is defined. The
results in the green rectangle.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

62

renderIng

EXERCISE 10

Write a program that creates the following window:

when the blue and the green circle must be transformations (parallel shifts) of the yellow.

Rotation

Rotations works in principle in the same way as the parallel shift and can likewise be defined
in three different ways. In the following example, I’ve only used one way, but the two other
methods works just like with parallel shifts. A rotation rotates the coordinate system, and
thereby the drawing surface about a point. By default it is the point (0, 0), but you can
also rotate about any other point, and the result is a parallel shift followed by a rotation.
The rotation is specified by an angle measured in radians.

Below is a window that rotates two rectangles (the black rectangles). One rectangle (the
blue) is rotated � �⁄ around the zero point (upper left corner of the rectangle), whereas
the second (the red rectangle) is rotated the angle �� �⁄ around the rectangle’s lower right
corner. The magenta rectangle is a rotation of another black rectangle with �� �⁄ angle
around the lower right corner.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

63

renderIng

63

http://s.bookboon.com/volvo

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

64

renderIng

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 Rectangle2D rect1 = new Rectangle2D.Double(0, 0, 200, 100);
 Rectangle2D rect2 = new Rectangle2D.Double(220, 120, 200, 100);
 g2d.setPaint(Color.darkGray);
 g2d.draw(rect1);
 g2d.draw(rect2);
	 AffineTransform	start	=	g2d.getTransform();
 g2d.rotate(Math.PI / 6);
 g2d.setPaint(Color.blue);
 g2d.draw(rect1);
 g2d.setTransform(start);
 g2d.rotate(-Math.PI / 6, 200, 100);
 g2d.setPaint(Color.red);
 g2d.draw(rect1);
 g2d.setTransform(start);
 g2d.rotate(-Math.PI / 2, 420, 220);
 g2d.setPaint(Color.magenta);
 g2d.draw(rect2);
 }
}

Scaling

It is a transformation in which a figure is resized – both horizontally and vertically. The
following example scales a rectangle:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

65

renderIng

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 Rectangle2D rect = new Rectangle2D.Double(170, 70, 200, 100);
 g2d.setPaint(Color.darkGray);
 g2d.draw(rect);
	 AffineTransform	start	=	g2d.getTransform();
 g2d.scale(2, 2);
 g2d.setPaint(Color.blue);
 g2d.draw(rect);
 g2d.setTransform(start);
 g2d.scale(0.5, 0.5);
 g2d.setPaint(Color.magenta);
 g2d.draw(rect);
 g2d.setTransform(start);
 g2d.scale(1, 0.5);
 g2d.setPaint(Color.red);
 g2d.draw(rect);
 }
}

The rectangle that is scaled, is the black rectangle. You should note that when you scale
a figure, it is both the figures shape and location that are changed. When the location is
changed, it is because it is all distances from the coordinate system start point that is scaled.
The black rectangle’s upper left corner is (170, 70), and the blue rectangle has its left upper
corner at (340, 140) and the width of 400 and the height of 200. Similarly, the upper left
corner of the magenta rectangle’s coordinates is (85, 35) and the width 100 and the height
50, and the red rectangle is the only scale vertically, and its top left corner is (170, 35).
The width is unchanged 200 while the height is 50.

EXERCISE 11

Create a copy of the project ScaleDemo (the program above). You must modify the program
so that all scaling is based on the black rectangle’s upper left corner.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

66

renderIng

66

Stretching

The last of the basic transformations is called shearing, where the x-axis, y-axis, or both axes
are stretched. The window below shows how to stretch a rectangle (the black rectangle). In
all three cases the transformation is a parallel shift of a rectangle with the upper left corner
in (0, 0) followed by a shear transformation. This means that all three transformations are
a composite transformation. In principle, it is simple enough to compose transformations,
but the result can be difficult to understand, and the order is of significance.

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 Rectangle2D rect = new Rectangle2D.Double(0, 0, 200, 100);
	 AffineTransform	start	=	g2d.getTransform();
 g2d.translate(20, 20);
 g2d.setPaint(Color.darkGray);
 g2d.draw(rect);
 g2d.shear(1, 0);

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

67

renderIng

 g2d.setPaint(Color.blue);
 g2d.draw(rect);
 g2d.setTransform(start);
 g2d.translate(20, 140);
 g2d.setPaint(Color.darkGray);
 g2d.draw(rect);
 g2d.setPaint(Color.green);
 g2d.shear(0, 0.3);
 g2d.draw(rect);
 g2d.setTransform(start);
 g2d.translate(340, 20);
 g2d.setPaint(Color.darkGray);
 g2d.draw(rect);
 g2d.setPaint(Color.red);
 g2d.shear(1, 0.3);
 g2d.draw(rect);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

68

renderIng

4.2 COMPOSITING

Compositing refers to the process to put two images together and appears each time a shape
or image is drawn. Graphics2D representing as mentioned a drawing surface, and every time
you on this surface draw a shape, some text or an image, this adds a new element to the
drawing surface. This takes place in principle using three operations:

1. Rasterizing produce from the current figure alpha values that you can think of as
a grid of pixels, each having an alpha value. In principle, this grid corresponds to
the entire drawing surface and are referred to below for the source. In contrast,
the drawing surface is called the destination.

2. For each pixel in the source is determined the color based either on the current
Paint object used by the Graphics2D object or an image.

3. Source and destination (color and alpha value) are combined pixel by pixel to form
the image on the drawing surface. The combination of source and destination is
done from a compositing rule that exactly specify how color and alpha values has
to be used.

If, for example you look at what happens when a black figure is rendered on a white drawing
surface and using the default compositing rule, you can describe the process as follows.
Rasterizing convert the figure to an array of alpha values where pixels completely out of the
shape are given the value 0.0 (interpreted as transparent), and the corresponding pixels in
the destination will remain unchanged. Similarly, pixels in the interior of the figure have
the alpha value 1.0, and the corresponding pixels in the destination will get the same color
as sourcens pixels, and the result will in this case be a black color.

Then there are the pixels, which is located on the edge, that get an alpha value between
0.0 and 1.0 (assuming the use antialiasing). They have a color that is a combination of the
colors of pixels in the source and destination, and in this case it will be a combination of
black and white and thus a shade of gray. The exact color is determined by the alpha value
in the source. A pixel with an alpha value of 0.9, for example give a very dark gray color.

The above is referred to as the compositing default rule, but actually others may be used
in special cases. They are called Porter-Duff rules, but are not discussed here.

4.3 CLIPPING

Sometimes one is not interested that you can draw on the entire drawing area. When you
build complex shapes, there is often a need to ensure that you does not draw on other
figures, and it can be ensured by specifying a clip area. Consider the following window,
which is taken from an earlier example:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

69

renderIng

69

The difference is only that there has been added a button at the top of the window. If you
click the button, the window is redrawn, and the result is as shown below, which draw a
triangle. This is done by defined a clip area as a triangle, and it is only that part of the
component that is redrawn. Click the button once, the result is an ellipse, as there is now
defined a clip area is an ellipse. Clicking a third time, you return to the start. It is simple
to define a clip area as the code below shows, and you should note that the area can be
any Shape:

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

70

renderIng

package clipdemo;

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.awt.geom.*;
import javax.swing.*;

public class MainWindow extends JFrame
{
 private JButton cmdClip = new JButton("Klip");
 private int state = 0;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

71

renderIng

 public MainWindow()
 {
 super("Clipping");
 setSize(650, 370);
 setLocationRelativeTo(null);
 add(cmdClip, BorderLayout.NORTH);
 add(new Drawing());
 cmdClip.addActionListener(new ClickHandler());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 class ClickHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 state = (state + 1) % 3;
 repaint();
 }
 }

 class Drawing extends JComponent
 {
 public void paintComponent(Graphics g)
 {
 Dimension d = getSize();
 Graphics2D g2d = (Graphics2D)g;
 Rectangle2D rect = new Rectangle2D.Double(0, 0, d.width, d.height);
 g2d.setPaint(Color.white);
	 g2d.fill(rect);
 BufferedImage image = createImage();
 g2d.setPaint(new TexturePaint(image,
 new Rectangle2D.Double(0, 0, image.getWidth(), image.getHeight())));
 if (state == 1)
 {
 GeneralPath path = new GeneralPath();
 path.moveTo(d.width / 2, 50);
 path.lineTo(d.width – 50, d.height – 50);
 path.lineTo(50, d.height – 50);
 path.closePath();
 g2d.setClip(path);
 }
 else if (state == 2)
 {

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

72

renderIng

72

 Ellipse2D ellip =
 new Ellipse2D.Double(50, 50, d.width – 100, d.height – 100);
 g2d.setClip(ellip);
 }
	 g2d.fill(rect);
 }

 public BufferedImage createImage()
 {
 java.net.URL imgURL = Drawing.class.getResource("/clipdemo/images/Bean.png");
 ImageIcon icon = new ImageIcon(new ImageIcon(imgURL, "").
 getImage().getScaledInstance(64, 64, Image.SCALE_SMOOTH), "");
 BufferedImage image = new BufferedImage(icon.getIconWidth(),
 icon.getIconHeight(), BufferedImage.TYPE_INT_RGB);
 Graphics g = image.createGraphics();
 icon.paintIcon(null, g, 0,0);
 g.dispose();
 return image;
 }
 }
}

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

73

renderIng

4.4 RENDERING HINTS
As the last thing in this chapter I mention rendering hints, as I have already mentioned
with antialiasing. It is an opportunity to check the quality of the figure being drawn.
The renderings mechanism of Graphics2D can do most things in more than one way, and
rendering hints are the programmer’s wants respect to quality, but it is not certain that the
mechanism can deliver the quality you wishes. You can define rendering hints as key / value
pairs, and the possibilities is shown in the following table:

Key Value

KEY_ANTIALIASING VALUE_ANTIALIAS_ON
VALUE_ANTIALIAS_OFF
VALUE_ANTIALIAS_DEFAULT

KEY_RENDERING VALUE_RENDER_QUALITY
VALUE_RENDER_SPEED
VALUE_RENDER_DEFAULT

KEY_DITHERING VALUE_DITHER_DISABLE
VALUE_DITHER_ENABLE
VALUE_DITHER_DEFAULT

KEY_COLOR_RENDERING VALUE_COLOR_RENDER_QUALITY
VALUE_COLOR_RENDER_SPEED
VALUE_COLOR_RENDER_DEFAULT

KEY_FRACTIONALMETRICS VALUE_FRACTIONALMETRICS_ON
VALUE_FRACTIONALMETRICS_OFF
VALUE_FRACTIONALMETRICS_DEFAULT

KEY_TEXT_ANTIALIASING VALUE_TEXT_ANTIALIAS_ON
VALUE_TEXT_ANTIALIAS_OFF
VALUE_TEXT_ANTIALIAS_DEFAULT

KEY_INTERPOLATION VALUE_INTERPOLATION_BICUBIC
VALUE_INTERPOLATION_BILINEAR
VALUE_INTERPOLATION_NEAREST_NEIGHBOR

KEY_ALPHA_INTERPOLATION VALUE_ALPHA_INTERPOLATION_QUALITY
VALUE_ALPHA_INTERPOLATION_SPEED
VALUE_ALPHA_INTERPOLATION_DEFAULT

So far I have only used

g2d.setRenderingHint(
RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

but I will later use other.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

74

text

5 TEXT

Also text must be drawn, and even if one usually works with text in relation to Swing
components, where you do not have to do anything, then text also somewhere must be
drawn, a task which Java2D has to take care of. Actually, there are attached many details
to text, which is the subject of this chapter, but basically text graphical objects can be
manipulated in the same way as other graphic objects and shapes.

Text contains characters encoded as unicodes, and to draw a text, therefore, for each character
the figure that represents the character must be found and rendered. Such a figure is called
a glyph, and a font contains glyphs for all the characters that the font supports. Attached to
a font you have font metrics indicating the sizes of each character. For the height there is
three sizes. Characters are drawn on a baseline (the characters are standing on the baseline).
Descent indicates how much the characters must fill below the baseline and ascent how
much they can fill over the baseline. Finally specify leading how much space that should
be between lines, and the three sizes together is called the font height. As an example of
some of all that you can consider the following window:

Here is the black line is the baseline, while the distance between the black and the red line
is the descent, the distance between the black and the magenta line is the ascent and the
distance between the magenta line and the blue is the leading.

The component code is as shown below.

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 String text = "Frode Fredegod";
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

75

text

75

 Font font = new Font("Times New Roman", Font.PLAIN, 64);
 g2d.setFont(font);
 g2d.drawString(text, 50, 100);
 g2d.draw(new Line2D.Double(25, 100, 500, 100));
 FontMetrics metrics = g2d.getFontMetrics();
 g2d.setPaint(Color.blue);
 g2d.draw(new Line2D.Double(25, 100 – metrics.getAscent() -
 metrics.getLeading(), 500, 100 – metrics.getAscent() -
 metrics.getLeading()));
 g2d.setPaint(Color.magenta);
 g2d.draw(new Line2D.Double(25, 100 – metrics.getAscent(), 500, 100 -
 metrics.getAscent()));
 g2d.setPaint(Color.red);
 g2d.draw(new Line2D.Double(25, 100 + metrics.getDescent(), 500, 100 +
 metrics.getDescent()));
 int width = metrics.stringWidth(text);
	 g2d.fill(new	Rectangle2D.Double(width	+	60,	90,	10,	10));
 }
}

Here you should specifically note the class FontMetrics, which contains information about a
font, and you should note the method stringWidth(), which is used to measure how much
a string fills in the current font.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

76

text

One can in fact more with text, and for example you can associate an iterator to a text that
can be used to manipulate the individual characters or a portion of a string. The program
AttributedText opens a window as shown below:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Font serifFont = new Font("Serif", Font.PLAIN, 48);
 Font monoFont = new Font("Monospaced", Font.PLAIN, 48);
 String text = "Frode Fredegod, konge,,";
 AttributedString str = new AttributedString(text);
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 str.addAttribute(TextAttribute.FONT, serifFont);
 str.addAttribute(TextAttribute.FONT, monoFont, 6, 14);
 str.addAttribute(TextAttribute.FOREGROUND, Color.red, 6, 14);
 str.addAttribute(TextAttribute.UNDERLINE, TextAttribute.UNDERLINE_ON, 6, 14);
 GeneralPath shape = new GeneralPath();
 shape.moveTo(0, -21);
 shape.lineTo(10, -40);
 shape.lineTo(20, -21);
 shape.closePath();
 shape.moveTo(0, -19);
 shape.lineTo(10, 0);
 shape.lineTo(20, -19);
 shape.closePath();
 ShapeGraphicAttribute shapeAttribute = new ShapeGraphicAttribute(shape,
 GraphicAttribute.ROMAN_BASELINE, ShapeGraphicAttribute.FILL);
 str.addAttribute(TextAttribute.CHAR_REPLACEMENT, shapeAttribute, 14, 15);
 str.addAttribute(TextAttribute.FOREGROUND, Color.gray, 14, 15);
 Shape space = new Rectangle2D.Double(0, 0, 60, 0);
 ShapeGraphicAttribute spaceAttribute = new ShapeGraphicAttribute(space,
 GraphicAttribute.ROMAN_BASELINE, ShapeGraphicAttribute.FILL);
 str.addAttribute(TextAttribute.CHAR_REPLACEMENT, spaceAttribute,

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

77

text

 text.length() – 2, text.length() – 1);
 Image image = createImage();
 ImageGraphicAttribute imageAttribute =
 new ImageGraphicAttribute(image, GraphicAttribute.TOP_ALIGNMENT);
 str.addAttribute(TextAttribute.CHAR_REPLACEMENT, imageAttribute,
 text.length() – 1, text.length());
 g2d.drawString(str.getIterator(), 40, 80);
 }

 public Image createImage()
 {
 java.net.URL imgURL =
 Drawing.class.getResource("/attributedtext/images/Bean.png");
 ImageIcon icon = new ImageIcon(new ImageIcon(imgURL, "").
 getImage().getScaledInstance(48, 48, Image.SCALE_SMOOTH), "");
 return icon.getImage();
 }
}

The method createImage() is a method that loads the file Bean.png from the jar file and
the result is an icon of 48×48 pixels. Then there is paintComponent(), which this time is
complex. First the method defines two fonts and a string. You must note that the string ends
with two commas. It is not essential that it is a comma, but the two characters are replaced
subsequently to something else. As a next step is defined an AttributedString for that string,
and it is an object which allows for manipulating a string at the wide variety of ways. First
is attached a serif font for the text, and the text will then generally be drawn on the basis
of this font, but then is assigned a mono font, but only for the characters from position 6
and up to and including position 13, that is the word Fredegod. Also the method defines
that this substring should be red and underlined. Next is defined a Shape as a GeneralPath
which is a figure of two triangles. This figure is represented as a ShapeGraphicAttribute which
indicate its location in the text (here at the baseline) and that it should be drawn as a filled
figure. It is now inserted in the text at position 14, to replace the first comma (the comma
after the word Fredegod). As a next step is defined a rectangle and it is inserted in the same
way on the penultimate place. The rectangle does not fill anything, and it should only show
how to add space in a text. Finnaly the icon is inserted in the last place. It happens in the
same way, just is this time used another object that has the type ImageGraphicAttribute.
The example shows how to build a very complex string, and there are many other options
than what is shown above.

EXERCISE 12

Text is a graphical object in the same way as all other shapes, and text can thus be transformed
in the same way as other Shape objects. Write a program that will open the following window:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

78

text

78

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

79

text

EXERCISE 13

Write a program that displays a window, as shown below, where the text is drawn with a
TexturePaint and where is drawn with images consisting of 4 small squares:

5.1 FONTS

Java2D contains several classes concerning fonts, and I have already mentioned the classes
Font and FontMetrics. In this section I will show a program that opens a window, as shown
below. The application displays a list box with a list of all the fonts that are available. If
you double click on a line, you get a message box with information about the font.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

80

text

The code is as follows, and there is not much to explain, but you should specifically note
how to determine which fonts are available. Also note the class FontRenderContext, which may
be useful in order to measure how much a string fills when drawing with a particular font:

package fontprogram;

import java.awt.*;
import java.awt.font.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;

public class MainWindow extends JFrame
{
 private DefaultListModel model = new DefaultListModel();

 public MainWindow()
 {
 super("FontProgram");
 setSize(700, 400);
 setLocationRelativeTo(null);
 createWindow();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createWindow()
 {
 Font[] fonts = GraphicsEnvironment.getLocalGraphicsEnvironment().getAllFonts();
 for (Font font : fonts) model.addElement(font);
 JList list = new JList(model);
 add(new JScrollPane(list));
 list.addMouseListener(new MouseHandler());
 }

 class MouseHandler extends MouseAdapter
 {
 public void mouseClicked(MouseEvent e)
 {
 if (e.getClickCount() == 2)
 {
 try
 {
 JList list = (JList)e.getSource();
 int n = list.locationToIndex(e.getPoint());
 Font font = (Font)model.get(n);

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

81

text

81

 StringBuilder builder = new StringBuilder(font.getFamily());
 builder.append("\n");
 builder.append(font.getName());
 Graphics2D g2d = (Graphics2D)list.getGraphics();
 g2d.setFont(new Font(font.getFamily(), font.getStyle(), 24));
 FontRenderContext frc = g2d.getFontRenderContext();
 Rectangle2D rect1 = g2d.getFont().getStringBounds("ABC", frc);
 Rectangle2D rect2 =
 g2d.getFont().getStringBounds("Knud den Hellige", frc);
 builder.append("\n");
 builder.append(rect1);
 builder.append("\n");
 builder.append(rect2);
 JOptionPane.showMessageDialog(MainWindow.this, builder.toString(),
 font.getFontName(), JOptionPane.INFORMATION_MESSAGE);
 }
 catch (Exception ex)
 {
 }
 }
 }
 }
}

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

82

text

EXERCISE 14

Write a program that opens the window below when

1. the filled squares side length is the width of a capital A in the current font
2. the line coincides with the font’s baseline
3. the squares “is” on the baseline for the font
4. the rectangles are text circumscribing rectangles
5. the distance between the rectangle and the square is the width of a large A

As font sizes are used 12, 24, 36 and 72 points.

5.2 TEXTLAYOUT

I will conclude this chapter about text with the class TextLayout, which allows you completely
to control how text should be rendered. In practice, a program may display text using a
JTextField, a JTextArea or a JEditorPane, but if you have very specific needs, where these
components are not adequate, providing a TextLayout additional flexibility. In the following
I will with four examples outline some of the options. A TextLayout is used as an alternative
to drawString(), and you can think of an object of the class as an encapsulation of a string
with expanded opportunities to manipulate the string.

The program TextProgram opens the following window:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

83

text

Here is the first text (the black text) drawn with a TextLayout, while the other one is a Shape
created from the black text, and thus a shape, which is composed of all of the text’s glyphs.
If you click somewhere in the top text (for example on the big H), you get a message box,
as shown below, which shows the character that is clicked on:

The component’s codes is as follows:

class Drawing extends JComponent
{
 private String str = "Knud den Hellige";
 private Font font = new Font("Liberation Serif", Font.BOLD, 36);
 private TextLayout text;
 private int xpos = 20;
 private int ypos = 50;

 public Drawing()
 {
 FontRenderContext context =
	 new	FontRenderContext(new	AffineTransform(),	false,	false);
 text = new TextLayout(str, font, context);
 addMouseListener(new HitTester());
 }

 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 text.draw(g2d, xpos, ypos);
	 Shape	shape	=	text.getOutline(AffineTransform.getTranslateInstance(20,	100));
 g2d.setPaint(Color.yellow);
	 g2d.fill(shape);
 g2d.setPaint(Color.red);
 g2d.draw(shape);
 }

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

84

text

84

 class HitTester extends MouseAdapter
 {
 public void mouseClicked(MouseEvent e)
 {
 Rectangle2D rect = text.getBounds();
 if (rect.contains(e.getX() – xpos, e.getY() – ypos))
 {
 TextHitInfo hit = text.hitTestChar(e.getX() – xpos, e.getY() – ypos);
 JOptionPane.showMessageDialog(
 Drawing.this, str.charAt(hit.getCharIndex()));
 }
 }
 }
}

The class defines an instance variable of type text TextLayout. It is created in the constructor
as an encapsulation of the string str. The constructor for a TextLayout object requires a Font
and a FontRenderContext. You should note, how to create a FontRenderContext. The first
parameter is an AffineTransform that here is just the identity, while the last specifies whether
to use antialiasing and how sizes are to be calculated. Finally, assign the constructor a listener
for mouse clicks, as I’ll explain in a moment.

http://s.bookboon.com/elearningforkids

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

85

text

If you has a TextLayout, one can draw the text in the following manner:

text.draw(g2d, xpos, ypos)

The syntax is a little different than how you else draw a shape or a text. After the figure is
drawn you can with the method getOutline() get a Shape that consists of text’s glyphs. The
method has a transformation which tells how objects are transformed, and the Shape object
can then be treated in the same way as any other Shape objects. In this case, the figure is
filled with a yellow color and drawn with a red.

The component is as specified in the constructor listening for mouse clicks, and the handler
test if the mouse coordinates fall within the TextLayout object. Is that the case is referenced
the object’s TextHitInfo object that returns some important information where the most
important is to convert the mouse’s coordinates to the character that is clicked on. It is not
trivial to determine it, and it is one of the services as a TextLayout provides.

The next example will open the following window, which again shows a text drawn with
a TextLayout:

The program will show how to draw a caret (or cursor/marker), as well as how to move
the cursor using the arrow keys. It sounds simple, but if you thinks about it, the cursor is
(usually) a thin line that is drawn between two letters, and it is not simple to calculate how
this string should be drawn. Fortunately the class TextLayout make the necessary available.
The component’s code is shown below:

class Drawing extends JComponent
{
 private String str = "Knud den Hellige";
 private Font font = new Font("Liberation Serif", Font.BOLD, 36);
 private TextLayout text;
 private int xpos = 20;
 private int ypos = 50;
 private TextHitInfo hit;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

86

text

 public Drawing(MainWindow main)
 {
 FontRenderContext context =
	 new	FontRenderContext(new	AffineTransform(),	false,	false);
 text = new TextLayout(str, font, context);
 hit = text.getNextLeftHit(1);
 main.addKeyListener(new KeyHandler());
 }

 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setRenderingHint(RenderingHints.KEY_FRACTIONALMETRICS,
 RenderingHints.VALUE_FRACTIONALMETRICS_ON);
 text.draw(g2d, xpos, ypos);
 Shape[] carets = text.getCaretShapes(hit.getInsertionIndex());
 if (carets[0] != null)
 {
	 Shape	shape	=	AffineTransform.getTranslateInstance(xpos,
 ypos).createTransformedShape(carets[0]);
 g2d.setStroke(new BasicStroke());
 g2d.draw(shape);
 }
 }

 class KeyHandler extends KeyAdapter
 {
 public void keyPressed(KeyEvent e)
 {
 if (e.getKeyCode() == KeyEvent.VK_RIGHT)
 {
 hit = text.getNextRightHit(hit.getInsertionIndex());
 if (hit == null) hit = text.getNextLeftHit(1);
 repaint();
 }
 else if (e.getKeyCode() == KeyEvent.VK_LEFT)
 {
 hit = text.getNextLeftHit(hit.getInsertionIndex());
 if (hit == null) hit = text.getNextRightHit(text.getCharacterCount() – 1);
 repaint();
 }
 }
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

87

text

87

The code is similar to the previous example, but the constructor has this time a reference
to the main window, then to associate an event handler for the keyboard to the window.
The event handler is defined by the class KeyHandler, which is an inner class in the class
Drawing. The class has this time an instance variable of the type TextHitInfo. It will show
where the cursor must be drawn, and is initialized in the constructor, and then the next hit
is drawn to the left of the character with index 1 – and thus the first character.

Then there is paintComponent(), that this time defines an extra rendering hint. It indicates
how the determination of a character’s limits should happen and with what accuracy. Once
the text is drawn, one determines the position of the cursor:

Shape[] carets = text.getCaretShapes(hit.getInsertionIndex());

A TextLayout are not born with a caret, but it has a logical position that is attached to the hit object
and which can be referred to the method getInsertionIndex(). The method getCaretShapes() returns
a shape to a caret. In fact, it returns two, and the reason is that Java2D supports bidirectional
text, and thus where the text is written from right to left. Therefore returns above method two
Shape objects. With a Shape object to a caret available it must be drawn as any other figure
after a transformation. Here you need to specifically note the method createTransformedShape()
that transforms a figure without transforming the current Graphics2D object.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

88

text

Then there is the event handler for the keyboard, which treat events concerning left and
right arrows. When looking at the handler is easy enough to understand, and it works by
using the two methods getNextRightHit() and getNextLeftHit().

The next example is similar to the above and opens the following window:

The program will show how to select text using the mouse, for example.

If you select some text and release the mouse, you get a message box with the text that
is selected.

class Drawing extends JComponent
{
 private String str = "Knud den Hellige, Danisk king";
 private Font font = new Font("Liberation Serif", Font.BOLD, 36);
 private TextLayout text;
 private int xpos = 20;
 private int ypos = 50;
 private TextHitInfo hit1;
 private TextHitInfo hit2;
 private Rectangle2D rect;

 public Drawing()
 {
 FontRenderContext context =
	 new	FontRenderContext(new	AffineTransform(),	false,	false);
 text = new TextLayout(str, font, context);
 rect = text.getBounds();
 addMouseListener(new HitTester());
 addMouseMotionListener(new MoveTester());
 }

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

89

text

 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setRenderingHint(RenderingHints.KEY_FRACTIONALMETRICS,
 RenderingHints.VALUE_FRACTIONALMETRICS_ON);
 if (hit1 != null && hit2 != null)
 {
 Shape base = text.getLogicalHighlightShape(hit1.getInsertionIndex(),
 hit2.getInsertionIndex());
	 Shape	rect	=	AffineTransform.
 getTranslateInstance(xpos, ypos).createTransformedShape(base);
 g2d.setPaint(Color.orange);
	 g2d.fill(rect);
 }
 g2d.setPaint(Color.black);
 text.draw(g2d, xpos, ypos);
 }

 class HitTester extends MouseAdapter
 {
 public void mousePressed(MouseEvent e)
 {
 hit1 = text.hitTestChar(e.getX() – xpos, e.getY() – ypos);
 hit2 = null;
 repaint();
 }

 public void mouseReleased(MouseEvent e)
 {
 if (hit1 != null && hit2 != null)
 {
 int n1 = hit1.getInsertionIndex();
 int n2 = hit2.getInsertionIndex();
 if (n1 > n2)
 {
 int n = n2;
 n2 = n1;
 n1 = n;
 }
 JOptionPane.showMessageDialog(Drawing.this, str.substring(n1, n2));
 hit2 = null;
 }
 }
 }

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

90

text

90

 class MoveTester extends MouseMotionAdapter
 {
 public void mouseDragged(MouseEvent e)
 {
 if (rect.contains(e.getX() – xpos, e.getY() – ypos))
 {
 hit2 = text.hitTestChar(e.getX() – xpos, e.getY() – ypos);
 repaint();
 }
 }
 }
}

The code is basically simple enough and primarily consists of using two TextHitInfo objects
to determine which part of the text that is selected and fill a corresponding rectangle. The
most difficult thing is actually to control the logic in the event handlers in terms of when
a new selection starts and when the check mark has to disappear again.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

91

text

A TextLayout represents basically a single line of text, and if the text has to fill several lines
you have to do better, but fortunately there are helper classes that can be used. Consider
the following window. The only thing the program does is to display a text in a window
(and of course it would be trivial to do with a JTextArea), but in this case the text is drawn
with a TextLayout.

package multilineprogram;

import java.awt.*;
import java.awt.font.*;
import javax.swing.*;
import java.text.*;

public class MainWindow extends JFrame
{
 public MainWindow()
 {
 super("MultilineProgram");
 setSize(600, 400);
 setLocationRelativeTo(null);
 add(new JScrollPane(new Drawing()));
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

92

text

class Drawing extends JComponent
{
 private String[] str = {
 "Foreword",
 "This book is the tenth in a series of books on software development. The " +
 " programming language is Java, and the language and its syntax and " +
	 "semantics	fills	obviously	much,	but	the	books	have	also	largely	"	+	
 "focus on the process and how to develop good and robust applications. " +
 "In the previous book, I have relatively detailed treated Swing, and " +
 "the subject of this book is Java2D, which is the other half of what " +
 "Java is making available for developing applications with a graphical " +
 "user interface. One can also think of Java2D as the graphical tools that " +
 "Swing uses to draw the components in a window. The book is relatively " +
 "detailed and addresses issues that are not used so often in " +
 "everyday programming, but the examples are, of course, and also the issues " +
 "are important to understand how the GUI works.",
 "It is similar to a few other books in this series a book where the focus " +
	 "is	on	language	Java	over	the	process,	and	only	the	final	example	"	+
 "focuses on system development with the development of Java class library.",
 "The book assumes knowledge of Java corresponding to the books Java 3 and " +
 "Java 4 and to some extent knowledge of Swing corresponding to the book " +
 "Java 2."
 };
 private Font font1 = new Font("Verdana", Font.BOLD, 24);
 private Font font2 = new Font("Times New Roman", Font.PLAIN, 14);
 private Font font3 = new Font("Times New Roman", Font.PLAIN, 18);

 public void paintComponent(Graphics g)
 {
	 float	height	=	0;
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 height =
 draw(g2d, new Insets(5, 5, 20, 5), 0, new AttributedString(str[0]), font1);
 height = draw(g2d, new Insets(0, 5, 10, 5), height,
 new AttributedString(str[1]), font2);
 height = draw(g2d, new Insets(0, 5, 10, 5), height,
 new AttributedString(str[2]), font2);
 height = draw(g2d, new Insets(0, 5, 5, 5), height,
 new AttributedString(str[3]), font3);
 setPreferredSize(new Dimension(0, (int)height));
 }

	private	float	draw(Graphics2D	g,	Insets	margin,	float	y,	AttributedString	str,

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

93

text

93

 Font font)
 {
 str.addAttribute(TextAttribute.FONT, font);
 AttributedCharacterIterator itr = str.getIterator();
 FontRenderContext context = g.getFontRenderContext();
 LineBreakMeasurer lbm = new LineBreakMeasurer(itr, context);
	 float	width	=	getSize().width	–	margin.left	–	margin.right;
	 float	x	=	margin.left;
 y += margin.top;
 while (lbm.getPosition() < itr.getEndIndex())
 {
 TextLayout textLayout = lbm.nextLayout(width);
 y += textLayout.getAscent();
 textLayout.draw(g, x, y);
 y += textLayout.getDescent() + textLayout.getLeading();
 x = margin.left;
 }
 y += margin.bottom;
 return y;
 }
}

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

94

text

The text to be drawn is defined as three strings in an array, and you can think of each
string as a paragraph. The most important thing is the method draw() with the graphic
object to be drawn on. The method has as parameter that is a paragraph in the form of an
AttributedString, the font the text is to be drawn with, the y-position for where to draw,
and an Insets object that indicates how much air there should be outside of the text. The
primary task of the method is to divide the text into lines, and for that purpose the class
LineBreakMeasure is used. In addition to this, the method should control the y position
for each line.

The component is in the main window’s constructor placed in a JScrollPane. Therefore,
paintComponent() must define the component’s size.

The principle of this example can be used if you need to write a custom component that
supports text wrapping.

5.3 GLYPHS

In the previous section I have suggested the possibilities of a TextLayout, and although it
is rare that you need the class’s possibilities, there are examples, for example if you want
to develop your own components. It is relatively complex to use a TextLayout, but you can
actually go even further down and directly manipulate the individual glyps. Rarely – if
ever – you will need it, but the following program should show that it is possible. The
program opens the window shown on the next page. If you have a string, then the class
Font has a method that returns a so-called GlyphVector, which is a collection consisting of
the Glyph objects defined by that string. These objects, each of which are a Shape object,
can then be manipulated in the same way as any other shape.

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 String str = "Knud den Hellige";
 Font font = new Font("Serif", Font.PLAIN, 36);
 FontRenderContext context = g2d.getFontRenderContext();
 g2d.translate(20, 50);
 GlyphVector glyps = font.createGlyphVector(context, str);
 int length = glyps.getNumGlyphs();
 for (int i = 0; i < length; ++i)
 {

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

95

text

95

 Point2D p = glyps.getGlyphPosition(i);
	 AffineTransform	trans	=	
	 AffineTransform.getTranslateInstance(p.getX(),	p.getY());
 trans.rotate(i / (double)(length – 1) * Math.PI / 4);
	 g2d.fill(trans.createTransformedShape(glyps.getGlyphOutline(i)));
 }
 }
}

http://s.bookboon.com/EOT

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

96

Colors

6 COLORS

Colors are treated several places in this series of books, and as a programmer, you usually do
not need to know more than what has already been said. Colors are formed by combining
the values of three colors red, green and blue, why wee are talking about RGB color
encoding. In addition, an alpha value is associated, which tells the extent to which the
color is transparent. Each of the four values is represented by a byte (and thus can have
256 different values), and internally a color is represented by a 32 bit int:

The basic class to represents a color is Color, and it has been used many times before.
Looking at all the previous examples, the use of colors is generally simple, but the reality
is that colors as the same as text are extremely complex, and therefore this section as a brief
introduction to the problems regarding colors. In short, the problems can be explained by
the fact that certain colors can look different (and often do) on different screens, and even
worse, if printed on a color printer. The reasons are that the computer’s color representation
are relative (what does it actually mean a color is 40% red?) and that different hardware
devices (screen and printer) do not display the same color in the same way. I will explain
a little bit below, but first an example.

The ColorProgram application opens the following window:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

97

Colors

showing 39 colored rectangles. The top row shows the color values that are defined as
constants in the Color class, and above the window shows a green and a blue rectangle and
the middle row of rectangles shows how these two colors can be mixed so that the rectangle
on the left is green and as you move to the right, the green color is mixed with the blue
color and finally the last is blue. The bottom row of the rectangles shows (from the right)
the blue color more and more transparent to the far left to be completely transparent and
thus not visible.

At the top there are two buttons, and they are used to open a standard color dialog selection
box (see below), so you can change the two colors that the program manipulates – that is
the colors of the two rectangles at the top of the window. This way you can experiment
and see what happens when colors that are mixed and how a color’s alpha value changes.
The dialog box is relatively complex with many options, but you can create a ColorChooser
object, which is a component that can be configured to show the wanted options.

The entire code is also shown below, and it does not contain so much new:

package colorprogram;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

98

Colors

public class MainWindow extends JFrame
{
 private Color leftColor = Color.green;
 private Color rightColor = Color.blue;
 private JLabel lblLeft = new JLabel();
 private JLabel lblRight = new JLabel();
 private Drawing drawing;

 public MainWindow()
 {
 super("ColorProgram");
 setSize(700, 250);
 setLocationRelativeTo(null);
 add(createTop(), BorderLayout.NORTH);
 add(drawing = new Drawing());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private JPanel createTop()
 {
 JPanel panel = new JPanel(new GridLayout(1, 2));
 JPanel left = new JPanel(new BorderLayout());
 JPanel right = new JPanel(new BorderLayout());
 JButton cmdLeft = new JButton("Color");
 JButton cmdRight = new JButton("Color");
 cmdLeft.addActionListener(this::updateLeft);
 cmdRight.addActionListener(this::updateRight);
 lblLeft.setOpaque(true);
 lblLeft.setBackground(leftColor);
 lblRight.setOpaque(true);
 lblRight.setBackground(rightColor);
 left.add(cmdLeft, BorderLayout.WEST);
 left.add(lblLeft);
 right.add(cmdRight, BorderLayout.EAST);
 right.add(lblRight);
 panel.add(left);
 panel.add(right);
 return panel;
 }

 class Drawing extends JComponent
 {
 private Color[] colors = { Color.white, Color.lightGray, Color.gray,
 Color.darkGray, Color.black, Color.red, Color.pink, Color.orange,
 Color.yellow, Color.green, Color.magenta, Color.cyan, Color.blue };

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

99

Colors

99

 public void paintComponent(Graphics gr)
 {
 Dimension d = getSize();
 Graphics2D g2d = (Graphics2D)gr;
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
	 float	t	=	colors.length;
	 float	w	=	d.width	/	t;
	 float	h	=	d.height	/	3.0F;
 for (int i = 0; i < t; ++i)
 {
 g2d.setPaint(colors[i]);
	 g2d.fill(new	Rectangle2D.Float(i	*	w,	0,	w,	h));
 }
 for (int i = 0; i < t; ++i)
 {
	 float	u	=	i	/	t;
 int r = (int)(rightColor.getRed() * u + leftColor.getRed() * (1 – u));
 int g = (int)(rightColor.getGreen() * u + leftColor.getGreen() * (1 – u));
 int b = (int)(rightColor.getBlue() * u + leftColor.getBlue() * (1 – u));
 g2d.setPaint(new Color(r, g, b));
	 g2d.fill(new	Rectangle2D.Float(i	*	w,	h,	w,	h));
 }

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

100

Colors

 for (int i = 0; i < t; ++i)
 {
 int alpha = (int)(255 * i / t);
 g2d.setPaint(new Color(rightColor.getRed(), rightColor.getGreen(),
 rightColor.getBlue(), alpha));
	 g2d.fill(new	Rectangle2D.Float(i	*	w,	2	*	h,	w,	h));
 }
 }
 }

 public void updateLeft(ActionEvent e)
 {
 Color color = JColorChooser.showDialog(this, "Select the left", leftColor);
 if (color != null)
 {
 leftColor = color;
 lblLeft.setBackground(color);
 drawing.repaint();
 }
 }

 public void updateRight(ActionEvent e)
 {
 Color color = JColorChooser.showDialog(this, "Select the right color",
 rightColor);
 if (color != null)
 {
 rightColor = color;
 lblRight.setBackground(color);
 drawing.repaint();
 }
 }
}

However, you should especially note how to mix two colors and how to create color objects.
You should also note how to create a JColorChooser object, thus opening the color selection
dialog, and you should investigate the documentation in what options are available to
customize this dialog. You can choose to disable many of the options and the dialog should
be more manageable.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

101

Colors

6.1 ABOUT COLORS

In the world of physics, colors are light represented by electromagnetic waves, and the color
of the light is determined by the wavelength of light. The human eye is using special cells
capable of capturing these wavelengths and transforming these impressions into our brain,
in fact, by capturing three intensities of the colors red, green and blue and thus a bit the
same as a computer works with RGB colors. However, our eyes are a computer far superior.
A screen must convert the three color values to a particular color, which is done by using
special features, but these features can not form all colors, so colors on a computer screen
or printer will always be approximated to the true color.

A color room is a family of colors that can be displayed on a particular device. For example
has a screen a certain family of colors that it can display. These colors are formed from the
intents of the colors red, green and blue, and in practice there are 256 values for each color.
Two different screens do not have the same color space due to the variations of the red,
green and blue lights and variations of the manufacturer’s electronics. Although two screens
use the same color encoding in the form of RGB, the colors will still vary, and the screens
will each have their color room. It’s all complicated by some printers using a different color
encoding, combining the colors cyan, magenta, yellow and black. This encoding is called
CMYK, and such a printer has a CMYK color room instead. Thus, RGB colors must be
converted to CMYK colors to be displayed on a printer, thus saying differently that the
color room for the current display should be converted to the color room of another device.
The sum of all is that different color rooms show the colors differently.

To solve these problems, the industry has worked to define absolute color rooms that
precisely define what is red, what is green and what is blue. One of them is called sRGB
(for standard RGB), and it is used as the default by Java 2D, which converts colors into
this color room.

It helps to solve the problems with colors, but it does not compensate for differences in
the hardware and used color profiles. It is a table that converts the colors from a standard
color room like sRGB to the color room for a particular physical device. Each physical
device thus has its own color profile. This applies, for example for a screen, and to make
the colors look right, you can calibrate the screen, which means adjusting the color profile
so that the conversion from a specific color space to the profile is correct. It’s not easy and
requires practice and knowledge, but people who work with print do much to calibrate
their equipment properly.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

102

Colors

102

For many applications (most), everything with color rooms and color profiles is uninteresting.
If a program has to draw a figure, it is seldom important to see if the figure appears with
a little different color on another screen, but it is for example if you have to show photos,
where it is very important. Here the colors should be right and if you are writing software
for imaging, the above is important. Although I do not want to go into the subject further,
Java 2D types are available for both color spaces and color profiles, types that have methods
for manipulating details for colors.

To finish this section about colors, I will show a program that fills an ellipse with a gradient
paint, but unlike what I have previously shown, it must be a gradient paint that blends
two colors from the center to the periphery in an ellipse. The program opens a window as
shown below:

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

103

Colors

In the same way as shown in a previous example (Exercise 8), you can change the two
colors using JSlider components at the top and bottom of the window.

Java 2D does not directly have a Paint object for this purpose, and it is therefore necessary to
write a class itself. The class should implement the Paint interface that defines two methods.
The most important is called createContext() and will return a PaintContext object, which
is also an interface where the most important method is called getRaster(), and return a
Raster object to the figure to be drawn. It is the object with all the pixels been modified.

The code for the Paint object is shown below and I do not want to describe the code further,
as the most important is explained by the comments:

package gradientprogram;

import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;

//	Defines	a	Paint	object,	which	is	a	gradient	paint	that	blends	two	colors	from
// a center point and along a radius. The color at the center is color1, whereas
// all points whose distance to the center is greater than or equal to the radius
// is color2. All points, whose distance to the center is less than the radius
// has a gradient color, so that all points with the same distance to the center
// have the same color.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

104

Colors

public class RoundGradient implements Paint
{
 private Point2D point; // the center
 private Point2D radius; // the radius
 private Color color1; // the color at the center
 // color of points whose distance to center is greater than radius
 private Color color2;

 public RoundGradient(Point2D point, Color color1, Point2D radius, Color color2)
 {
 this.point = point;
 this.color1 = color1;
 this.radius = radius;
 this.color2 = color2;
 }

	//	This	method	is	defined	by	the	interface	Paint.
 public PaintContext createContext(ColorModel cm, Rectangle deviceBounds,
	 Rectangle2D	userBounds,	AffineTransform	trans,	RenderingHints	hints)	
 {
 return new RoundContext(trans.transform(point, null), color1,
 trans.deltaTransform(radius, null), color2);
 }

	//	This	method	is	defined	by	the	interface	Paint.
 public int getTransparency()
 {
 int a1 = color1.getAlpha();
 int a2 = color2.getAlpha();
 return (((a1 & a2) == 0xff) ? OPAQUE : TRANSLUCENT);
 }
}

//	PaintContext,	that	defines	how	the	individual	points	should	be	colored
class RoundContext implements PaintContext
{
 private Point2D point; // the center
 private Point2D radius; // the radius
 private Color color1; // the color at the center
 // color of points whose distance to center is greater than radius
 private Color color2;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

105

Colors

105

 public RoundContext(Point2D point, Color color1, Point2D radius, Color color2)
 {
 this.point = point;
 this.color1 = color1;
 this.radius = radius;
 this.color2 = color2;
 }

	//	This	method	is	defined	by	the	interface	PaintContext.
 public void dispose()
 {
 }

	//	This	method	is	defined	by	the	interface	PaintContext.
 public ColorModel getColorModel()
 {
 return ColorModel.getRGBdefault();
 }

http://s.bookboon.com/GTca

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

106

Colors

	//	This	method	is	defined	by	the	interface	PaintContext.
	//	The	method's	parameters	define	the	area	to	be	colored.
 public Raster getRaster(int x, int y, int w, int h)
 {
	 //	defines	a	Raster	with	w*h	pixels
 WritableRaster raster = getColorModel().createCompatibleWritableRaster(w, h);

 // array to color values,
 // there are used 4 places to each pixel (red, green, blue, alpha)
 int[] data = new int[w * h * 4];
 double rad = radius.distance(0, 0);

 // loop over all pixels
 for (int j = 0; j < h; ++j)
 for (int i = 0; i < w; i++)
 {
 // the distance between the center and the current point measured to raidus
 // must max be 1
 double r = point.distance(x + i, y + j) / rad;
 if (r > 1.0) r = 1.0;

 // pixel index
 int b = (j * w + i) * 4;

	 //	define	pixel	values
 // if r is close to 0, color1 is used
 // If r is close to 1, color2 is used
 // else the two colors are mixed
 data[b] = (int)(color1.getRed() + r * (color2.getRed() – color1.getRed()));
 data[b + 1] =
 (int)(color1.getGreen() + r * (color2.getGreen() – color1.getGreen()));
 data[b + 2] =
 (int)(color1.getBlue() + r * (color2.getBlue() – color1.getBlue()));
 data[b + 3] =
 (int)(color1.getAlpha() + r * (color2.getAlpha() – color1.getAlpha()));
 }

 // copy the pixel values to the Raster
 raster.setPixels(0, 0, w, h, data);
 return raster;
 }
}

You should note that the class is relatively general and can be used to paint objects in other
contexts. Note that the center point does not need to be the center. Also note that you can
use the same color for both values, but with different alpha values.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

107

Colors

Below is the component that draws the figure:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Dimension d = getSize();
 Color color1 = new Color(sldFgR.getValue(), sldFgG.getValue(),
 sldFgB.getValue());
 Color color2 = new Color(sldBgR.getValue(), sldBgG.getValue(),
 sldBgB.getValue());
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 Ellipse2D ellip = new Ellipse2D.Double(20, 20, d.width – 40, d.height – 40);
 Point2D rad = d.width < d.height ? new Point2D.Double(20, d.height / 2) :
 new Point2D.Double(d.width / 2, 20);
 g2d.setPaint(new RoundGradient(new Point2D.Double(d.width / 2, d.height / 2),
 color1, rad, color2));
	 g2d.fill(ellip);
 }
}

PROBLEM 1

You must write a program that creates a round button. For example, a window with four
buttons is shown below:

The buttons should be defined as custom components and they must support text wrapping.
There must also be an effect when you click the button, and finally, the component will
naturally fire an action event when clicked on it.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

108

Images

108

7 IMAGES

An image is a 2-dimensional array of colors, each element being called a pixel. In principle,
it looks like any other figure, but there are two important differences

1. pixels do not necessarily respond directly to pixels on the drawing
2. an image has a width and height measured in pixels and a coordinate system that

is independent of the drawing area

The basic class is Image, but there is as follows some others. The first step is to show how to
load an image so that you can display it in a window. I have actually already shown how, for
example by loading an icon or pictures to playing cards, etc. As an example, the following
method reads an image from a file where the parameter is the file’s name (full pathname):

public	static	ImageIcon	loadImageIcon(String	filename)	
{
	return	new	ImageIcon(filename);
}

 .

http://s.bookboon.com/AlcatelLucent

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

109

Images

The image is represented as an ImageIcon, and if you want to refer to the image as an Image,
the class ImageIcon has a method called getImage(). Simpler it can hardly be. The following
method does the same:

public	static	BufferedImage	loadImage(String	filename)
{
 try
 {
	 return	ImageIO.read(new	File(filename));
 }
 catch (IOException e)
 {
 return null;
 }
}

and the main difference is that the method this time returns the image as a BufferedImage
such you can manipulate the image directly. Note, in particular, that a BufferedImage inherits
the class Image and therefore can be used anywhere in which you can use an Image. Instead,
if you want to read the image from the program’s jar file (which is often the case with icons
and smaller images), you can use the following method:

public static ImageIcon createImageIcon(String path)
{
 java.net.URL imgURL = PaGUI.class.getResource(path);
 if (imgURL != null) return new ImageIcon(imgURL, "");
 return null;
}

where the parameter should be the image’s name relative to the package containing the
image. A variation of this method that scales the image to a certain size (and which is
especially useful when loading icons) is:

public static ImageIcon createImageIcon(String path, int width, int height)
{
 java.net.URL imgURL = PaGUI.class.getResource(path);
 if (imgURL != null) return new ImageIcon(new ImageIcon(imgURL, "").
 getImage().getScaledInstance(width, height, Image.SCALE_SMOOTH), "");
 return null;
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

110

Images

Viewing an image in a window is, in principle, simple and the following class shows an image:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 if (image != null)
 {
 Graphics2D g2d = (Graphics2D)g;
	 AffineTransform	trans	=	new	AffineTransform();
 g2d.drawImage(image, trans, this);
 }
 else super.paintComponent(g);
 }
}

and there is not much to explain. Graphics2D has a drawImage() method that shows an
image. The object image is the image, and trans is a transformation that transform the
image before it is displayed. In this case, it’s just the identity that does not matter and the
result is that the image appears unscaled. This means that if the image is larger than the
component, only a small portion of the image will appear, and the result may be as shown
below (where the left button is clicked).

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

111

Images

111

It is a large image (3306×1860 pixels), and you can see only the upper left corner of the
image. You can use the trans parameter to scale the image and I want to show three ways.
Similarly, the program defines the following type:

package imageprogram;

public enum ImageScaling { UNSCALED, STRETCHED, SCALEDTOFIT, SCALEDTOFILL }

as indicates

1. that the image should appear unscaled
2. that the image should be scaled in both directions so it exactly fills the window
3. that the image should be scaled in both directions, but such that the proportions

are retained and the entire image is displayed
4. that the image should be scaled in both directions, but such that the proportions

are retained and the entire window is filled

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

112

Images

The problem with STRETCHED is that the image may be deformed, that is a big problem
with photos. Below is the window where SCALEDTOFIT is selected:

Here is the image scaled, so all may be in the window, and then the whole picture is displayed.
The result is that a part of the window may not be used. The method paintComponent()
has been modified:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 if (image != null)
 {
 Dimension d = getSize();
 Graphics2D g2d = (Graphics2D)g;
	 AffineTransform	trans	=	new	AffineTransform();
 PaGUI.scale(trans, image, d, action);
 g2d.drawImage(image, trans, this);
 }
 else super.paintComponent(g);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

113

Images

and the important is the method PaGUI.scale() which changes the object trans corresponding
to the value of action:

public	static	void	scale(AffineTransform	trans,	Image	image,	Dimension	dim,
 ImageScaling action)
{
 if (action == ImageScaling.UNSCALED) return;
 double scaleX = ((double)dim.width) / image.getWidth(null);
 double scaleY = ((double)dim.height) / image.getHeight(null);
 if (action == ImageScaling.SCALEDTOFIT)
 scaleX = scaleY = Math.min(scaleX, scaleY);
 else if (action == ImageScaling.SCALEDTOFILL)
 scaleX = scaleY = Math.max(scaleX, scaleY);
 trans.setToScale(scaleX, scaleY);
}

I do not want to show the rest of the program, which primarily concerns user interface
and event handlers.

The method drawImage() draws an image that, in principle, can be manipulated in the same
way as any other Shape object. Consider the following window where a text is written on
top of an image:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

114

Images

114

The component’s code is as follows:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Image image = PaGUI.createImageIcon("/drawimage/images/svane.jpg").getImage();
 if (image != null)
 {
 Dimension d = getSize();
 Graphics2D g2d = (Graphics2D)g;
	 AffineTransform	trans	=	new	AffineTransform();
 PaGUI.scale(trans, image, d, ImageScaling.SCALEDTOFILL);
 g2d.drawImage(image, trans, this);
 g2d.setFont(new Font("Serif", Font.BOLD, 272));
 g2d.drawString("ABC", 15, 300);
 }
 else super.paintComponent(g);
 }
}

http://s.bookboon.com/BI

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

115

Images

As another example, the following program draws the same image, but this time the clip
area is defined using a text. The result is that you only see the water and a little of the bird:

class Drawing extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Image image = PaGUI.createImageIcon("/clipimage/images/svane.jpg").getImage();
 if (image != null)
 {
 Dimension d = getSize();
 Graphics2D g2d = (Graphics2D)g;
	 AffineTransform	trans	=	new	AffineTransform();
 PaGUI.scale(trans, image, d, ImageScaling.SCALEDTOFILL);
 g2d.setClip(getClipping(g2d));
 g2d.drawImage(image, trans, this);
 }
 else super.paintComponent(g);
 }

 private Shape getClipping(Graphics2D g2d)
 {
 Font font = new Font("Serif", Font.BOLD, 272);
 GlyphVector glyphs= font.createGlyphVector(g2d.getFontRenderContext(), "ABC");
 return glyphs.getOutline(15, 300);
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

116

Images

7.1 IMAGING

Image editing applications like GIMP and Photoshop are designed to manipulate digital
photos, and Java2D actually contains image processing features, and these features are the
subject of the following. Now no new competitor is suddenly developing for the above
programs (it’s extremely complex programs) and more than what Java2D directly makes
available, but the following can, if nothing else, be used to explain how professional programs
as Photoshop and GIMP works.

Image processing describes how digital images can be manipulated using a process, commonly
called filtering. The idea is that an image called the source is sent through a filter, and the
result is a new image, called the destination. Both source and destination are in Java2D
represented by a BufferedImage. The filter is defined by an interface called BufferedImageOp,
and the main method that this interface defines is filter(). A class that implements this
interface is often called for an image operator. Java2D defines five such image operators:

1. ConvolveOp, used for bluring, sharpening and marking of edges
2. AffineTransformOp, used for geometric transformation
3. LookupOp, used for color reduction and color inversion
4. RescaleOp, used to make a picture brighter or darker
5. ColorConvertOp, used to convert color spaces

You can of course also define your own image operators, which is just a class that implements
BufferedImageOp.

ConvolveOp

It is a filter that modifies each pixel in the source so the corresponding pixel is changed from
the values of neighbor pixels. This is done by means of a so-called Kernel, which defines a
matrix with the pixels to be used. An example might be the following:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

117

Images

117

where a pixel has 8 neighbor pixels. Each of the matrix elements has a value and 0 means
that the pixel in question does not contribute to the result, whereas 1 means that the pixel
is moved unchanged to the destination. The above kernel is thus the identifier and defines
a filter that does not affect the destination. If you want to maintain the light conditions,
the sum of the matrix elements must be 1. If the sum is less than 1, the image darkens
and is the sum is larger than 1, the image becomes brighter. The syntax for creating a
ConvolveOp object is

public ConvolveOp(Kernel kernel, int edgeHint)

Here is the last parameter a constant that indicates what should happen with the edges,
where all neighbor pixels are not necessarily found. There are two options:

1. public static final in EDGE_ZERO_FILL, indicating that pixels on the edge are set
to 0 and thus become a black pixel in the destination

2. public static final int EDGE_NO_OP, which indicates that pixels on the edge are
left unchanged at the destination

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

118

Images

These operations are typically used to make an image sharper or to the opposite, as is
usually called blur. The result, of course, depends on the values of the matrix, but also of
its size, and although in a professional photo editing program it is possible to determine
these values, there are a number of standard examples, for example

0.11 0.11 0.11
0.11 0.11 0.11
0.11 0.11 0.11

that retains the light conditions and results in a blur operation, and as another example,
the following can be used to make an image sharper:

0 -1 0
-1 5 -1
0 -1 0

AffineTransformOp

It is an operation that performs a geometric transformation of an image, but such that the
operation works on each of the image’s pixels. Depending on what transformation, it may
mean that the image is slightly deformed (especially rotations) – a pixel is not necessarily
the same in the source and the destination. Two different algorithms are used, which can
be specified with a parameter:

1. Nearest neighbor, where the color of each pixel in the destination is based on its
neighbor pixels in the source. It is the most effective of the two algorithms.

2. Bilinear interpolation, where the colors of each pixel are determined by combining
the colors of pixels in the source that overlap each other in the destination. This
algorithm is less efficient, but provides a better result.

LookupOp

It is an operation that can often be used as an alternative to ConvolveOp, which is simpler
to define (it is simpler to predict the effect). Here is a so-called lookup table that, in the
form of an array, contains the color of a pixel in the destination. The index of this array is
the value of the corresponding pixel in the source, and the color of a pixel in the destination
is thus determined by a lookup in the table. There is a lookup for each of the three values
red, green and blue. Since there are 256 options for each color, the individual arrays must
have room for 256 values.

When creating a lookup table, it is only necessary to specify a single array, and the values
in the array are then used for all three colors, but you can also specify three arrays.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

119

Images

RescaleOp

It is a very simple operation that simply multiplies all color values by a factor. The applications
may not be so many, but the operation may, for example, be used to make an image brighter
or the opposite. It should be noted that this means that all values are multiplied by the same
factor and that some values can then exceed 256 (or 0) so that the colors become white
or black. It is also possible to specify an offset, which is a value added to the color value.

ColorConvertOp

The last operation is not demonstrated here, but it is used to convert the colors from one
color space to another.

To test some of the above in practice, you can study the program ImageEditor. If you
open the application, you can open an image, which you can then edit using the operators
described above:

On the left side you have all the operations that you can perform while the right side has
the image. The image is a component of the following type:

class Drawing extends JComponent
{
 private BufferedImage image = null;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

120

Images

120

 public BufferedImage getImage()
 {
 return image;
 }

 public void setImage(BufferedImage image)
 {
 this.image = image;
 }

 public void paintComponent(Graphics g)
 {
 if (image != null)
 {
 Graphics2D g2d = (Graphics2D)g;
	 AffineTransform	trans	=	new	AffineTransform();
 g2d.drawImage(image, trans, this);
 setPreferredSize(new Dimension(image.getWidth(null), image.getHeight(null)));
 }
 else
 {

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

121

Images

 super.paintComponent(g);
 Dimension d = getSize();
 setPreferredSize(new Dimension(d.width, d.height));
 }
 }
}

that represents the image as a BufferedImage. Otherwise, the most important of course
is the method paintComponent(), which draws the image and calculates the component’s
preferred size.

The left side is a list box, and each element (near two) has the type ImageOperation, which
is the following class:

private class ImageOperation implements Comparable<ImageOperation>
{
 private String name;
 private BufferedImageOp operation;

 public ImageOperation(String name, BufferedImageOp operation)
 {
 this.name = name;
 this.operation = operation;
 }

 public BufferedImageOp getOperation()
 {
 return operation;
 }

 public String toString()
 {
 return name;
 }

 public int compareTo(ImageOperation iop)
 {
 return name.compareTo(iop.toString());
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

122

Images

that is an inner class in MainWindow. The class has two variables, where the first is a name
which is the name displayed in the list box, while the other is the actual image processing
operation in the form of a BufferedImageOp object, and thus the operation performed when
the user clicks on an object in listbox. The event handler regarding clicking on an item in
the list box is as follows:

class MouseHandler extends MouseAdapter
{
 public void mouseClicked(MouseEvent e)
 {
 try
 {
 JList list = (JList)e.getSource();
 int n = list.locationToIndex(e.getPoint());
 ImageOperation operation = null;
 if (n == 3) operation = rotate();
 else if (n == 4) operation = scale();
 else operation = (ImageOperation)model.get(n);
 if (operation != null)
 {
 BufferedImageOp opr = operation.getOperation();
 if (opr instanceof LookupOp)
	 opr.filter(drawing.getImage(),	drawing.getImage());
	 else	drawing.setImage(opr.filter(drawing.getImage(),	null));
 drawing.repaint();
 }
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }
}

that is also an inner class. The handler decides which item is clicked. If the index is 3 or
4, a standard dialog box opens, and the user must enter a value (the angle of a rotation,
or a percent, for how much the image should be scaled). In either case, an ImageOperation
object is returned for that image processing. If the index is not 3 or 4, a typecast of the
item that is clicked is performed to an ImageOperation object. With an object available, the
BufferedImageOp object is determined and the appropriate image processing is performed.
Here you should notice two things: How to refer to the image itself and that image processing
is performed by the method filter(), but in two ways depending on which operation it is.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

123

Images

123

Back then, there are the individual BufferedImageOp objects that all must be created. As
an example, below is shown the method that creates the object to make the image sharper
and thus a ConvolveOp object:

private ImageOperation createSharpen()
{
	float[]	sharp	=	{	0f,	-1f,	0f,	-1f,	5f,	-1f,	0f,	-1f,	0f	};
 return new ImageOperation("Skarpere", new ConvolveOp(new Kernel(3, 3, sharp)));
}

The only thing to note is how to create the Kernel object. As another example, below is
shown how to add a LookupOp object to the list box:

model.addElement(new ImageOperation("Remove red",
 new LookupOp(new ShortLookupTable(0, new short[][] { zero, one, one }),
 null)));

http://s.bookboon.com/Subscrybe

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

124

Images

Here is a filter that removes the red color. The two arrays one and zero (for lookup) are
arrays with 256 places, where all places are respectively 1 and 0. As another example, the
following is an example of a RescaleOp filter that scales all color values to half and thus
darkens the image:

model.addElement(new ImageOperation(
 "Rescale 0.5, 0", new RescaleOp(.5f, 0, null)));

Finally, there is shown a method that creates an AffineTransformOp object that scales the
image to 90 percent of the size:

private ImageOperation zoomOut()
{
	AffineTransform	trans	=	AffineTransform.getScaleInstance(0.9,	0.9);
	return	new	ImageOperation("Zoom	out",	new	AffineTransformOp(trans,	null));
}

You are encouraged to test the program and investigate the effect of the different operations.
It’s far from a new GIMP program, but it can explain a bit about how a program like
GIMP works.

EXERCISE 15

Create a copy of the projet ImageEditor. The three top image operations (blur, sharpen and
highlight edges) are all of the type ConvolveOp and a filter using a 3×3 matrix. Add another
operation (for example below the Scale image operation), which is also a ConvolveOp, but
an operation using a 5×5 matrix that you can enter in a dialog box shown below.

Once you’ve added the new operation, try different matrices and investigate the effect.
Note that on the web you can find examples of matrices that others have had “luck” with.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

125

Images

7.2 BUFFEREDIMAGE

In this section, I would like to see a little more on the class BufferedImage, which is the
class that provides the necessary services to manipulate the individual pixels in an image.

A BufferedImage is the central image processing class and is derived from the class Image,
and an object of the type BufferedImage can therefore be used as a parameter for drawImage().
An image and thus an Image object is basically nothing but an array of pixels in different
colors. A BufferedImage can be illustrated as follows:

and basically it consists of a raster and a color model. The raw data is saved as arrays in the
raster portion, while the color model determines how data should be interpreted as colors.
Each pixel in an image is defined by one or more values, called samples. For example has
a black and white image one sample for each pixel, while an RGB image has 3 samples for
each pixel. The buffer contains the current samples stored in arrays of byte or int arrays,
and the raster part also has a sample model that defines how the buffer is organized and
how to refer to a particular pixel in the buffer.

The color model interprets the individual pixels samples as colors. Is it a black and white
image with one sample for each pixel it is interpreted as a grayscale between black and white,
and in an RGB image, the color model uses all three samples for one pixel and interprets
them as intensities of red, green and blue in an RGB color. All samples for a particular
color are called a band or channel. Thus, an RGB image generally has 3 channels, but can
also have a fourth for alpha values.

Consider, for example, a jpg image of 4920×2768 pixels. Since there is an RGB image, there
are three samples for each pixels stored in three byte arrays each with space for 13618560
bytes. Each array is organized in the order of 2768 rows and each row uses 4920 places.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

126

Images

126

There are many details regarding a BufferedImage, and there are classes for all of the above
components. It is rarely necessary to work directly with these classes, and I just want to
show a small example that shows how to directly create a picture using a BufferedImage.
The full code is as follows:

package createpicture;

import java.io.*;
import javax.imageio.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.util.*;
import javax.swing.*;
import javax.swing.border.*;

public class MainWindow extends JFrame
{
 private Drawing drawing;

http://s.bookboon.com/volvo

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

127

Images

 public MainWindow()
 {
 super("CreatePicture");
 setLocationRelativeTo(null);
 createWindow();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 pack();
 setVisible(true);
 }

 private void createWindow()
 {
 JPanel panel = new JPanel(new BorderLayout(0, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 panel.add(createBottom(), BorderLayout.SOUTH);
 panel.add(drawing = new Drawing());
 add(panel);
 }

 private JPanel createBottom()
 {
 JButton cmd1 = new JButton("Tegn billede");
 cmd1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 drawing.draw();
 }
 });
 JButton cmd2 = new JButton("Gem billede");
 cmd2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
	 try	{	File	file	=	new	File("billede.jpg");
	 ImageIO.write(drawing.getImage(),	"jpg",	file);	}	
 catch (Exception ex) {};
 }
 });
 JPanel panel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
 panel.add(cmd2);
 panel.add(cmd1);
 return panel;
 }
}

class Drawing extends JComponent
{
	private	static	final	int	WIDTH	=	500;
	private	static	final	int	HEIGHT	=	300;
 private BufferedImage image = new BufferedImage(WIDTH, HEIGHT,
 BufferedImage.TYPE_INT_RGB);

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

128

Images

 public Dimension getPreferredSize()
 {
 return new Dimension(WIDTH, HEIGHT);
 }

 public BufferedImage getImage()
 {
 return image;
 }

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D)g;
 g2d.drawImage(image, 0, 0, this);
 }

 public void draw()
 {
 int color = 0x00FF0000;
 for (int j = 0; j < 10; ++j)
 for (int i = 20; i < image.getWidth() – 20; ++i)
 image.setRGB(i, 20 + j, color);
 for (int j = image.getHeight() – 30; j < image.getHeight() – 20; ++j)
 for (int i = 20; i < image.getWidth() – 20; ++i) image.setRGB(i, j, color);
 for (int j = 30; j < image.getHeight() – 30; ++j)
 for (int i = 20; i < 30; ++i) image.setRGB(i, j, color);
 for (int j = 30; j < image.getHeight() – 30; ++j)
 for (int i = image.getWidth() – 30; i < image.getWidth() – 20; ++i)
 image.setRGB(i, j, color);
 int[] arr = new int[20000];
	 Arrays.fill(arr,	0x000000FF);
 image.setRGB(150, 100, 200, 100, arr, 0, 200);
 repaint();
 }
}

If you run the program, you will see the window on the next page. The window has a
BorderLayout, where there is a panel with two buttons at the bottom, while the center is a
Drawing component that draws an image. The image is a BufferedImage:

private BufferedImage image =
 new BufferedImage(WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB);

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

129

Images

129

The class has more constructors, but in this case a constructor has been used to describe the
size of the image and its color model. In this case, it is a three-channel RGB model, but
the class BufferedImage defines constants for a number of other color models. As a result, in
this case, an image of 500×300 pixels is created. The image is drawn in paintComponent()
and when the result is a black image, it is because all sample data is 0 and hence the image
buffer consists of three arrays (of length 150000) where all values are 0.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

130

Images

If you click the Draw image button, the draw() method is performed in the class Drawing.
It modifies some pixels using the method setPixel(). It is available in two versions, one of
which modifies a single pixel, while the other modifies a rectangular area of pixels in an
array. The result is, as shown below:

Of course, it is not so often that there is a need to work with an image at this level, but
the example shows that, using a BufferedImage, you can create an image from scratch and
partly how to modify the individual pixels.

The last button is used to save the image as a jpg image, and the image can then be used
as any other jpg image.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

131

Images

131

7.3 THE SCREEN

When working with graphics and images you may need to be able to determine the
resolution of the monitor. This can be done in several ways, but the following program
shows an example:

package screensize;

import java.awt.*;

public class ScreenSize
{
 public static void main(String[] args)
 {
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 double width = screenSize.getWidth();
 double height = screenSize.getHeight();
 System.out.println(width + " x " + height);
 }
}

There is not much to explain besides taking note that you can get the screen resolution in
this way.

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

132

anImatIons

9 ANIMATIONS

As the last topic concerns Java2D, I will look at how to work with animations in a program.
In fact, Java2D does not support animations, and all you can do is simulate animation of
a figure by drawing the figure a little bit later and possibly in a new position. Doing it
often (many times a second) gives you an effect that resembles an animation. The program
AnimationDemo shows a little about what to do. If you open the program, you get the
following window:

I will not mention the code for this window as it is only three buttons and each button
opens a dialog box. The first dialog simulates an animation of a geometric figure, the next
an animation of a text, while the last simulates an animation of an image.

Clicking at the top button gives you the window below which shows an animation of a
relatively complex geometric figure:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

133

anImatIons

At the top there is a toolbar, which includes five checkboxes indicating whether

1. antialiasing is used when drawing the figure
2. a transformation is performed, as a rotation about the center
3. a gradient paint is used (which is the case above)
4. a circumference is drawn around the figure
5. where to use a clip area (there are drawn as a text)

To the right there are two buttons used to start and stop the animation, and finally there
is a slider that is used to adjust the animation speed.

In addition to this toolbar, the dial box contains a JComponent, which is the component
that simulates the animation. I do not want to display the code for the dialog, but the
component with the drawing is defined as an inner class as follows:

class Picture extends JComponent
{
	private	float	x;
	private	float	y;
	private	float	deltax	=	rand.nextFloat();
	private	float	deltay	=	rand.nextFloat();
	private	float	width;
	private	float	height;
	private	float	theta	=	0;
 private BufferedImage image;
 private javax.swing.Timer timer;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

134

anImatIons

 public Picture(BufferedImage image, int delay)
 {
 this.image = image;
 width = this.image.getWidth();
 height = this.image.getHeight();
 x = rand.nextFloat() * width;
 y = rand.nextFloat() * height;
 addComponentListener(new ResizeListener());
 timer = new javax.swing.Timer(delay, this::tick);
 }

 public void setTimer(int time)
 {
 timer.setDelay(time);
 }

 public void start()
 {
 timer.start();
 }

 public void stop()
 {
 timer.stop();
 }

 private void tick(ActionEvent e)
 {
 Dimension d = getSize();
 if (x + deltax < 0) deltax = -deltax;
 else if (x + width + deltax >= d.width) deltax = -deltax;
 if (y + deltay < 0) deltay = -deltay;
 else if (y + height + deltay >= d.height) deltay = -deltay;
 x += deltax;
 y += deltay;
 if (transform)
 {
 theta += Math.PI / 200;
 if (theta > 2 * Math.PI) theta -= (2 * Math.PI);
 }
 repaint();
 }

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

135

anImatIons

135

 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 setTransform(g2d);
	 g2d.drawImage(image,	AffineTransform.getTranslateInstance(x,	y),	null);
 }

 private void setTransform(Graphics2D g2)
 {
 if (transform == false) return;
 Dimension d = getSize();
 g2.rotate(theta, d.width / 2, d.height / 2);
 }

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

136

anImatIons

 class ResizeListener extends ComponentAdapter
 {
 @Override
 public void componentResized(ComponentEvent ce)
 {
 Dimension d = getSize();
 if (x < 0) x = 0;
 else if (x + width >= d.width) x = d.width – width – 1;
 if (y < 0) y = 0;
 else if (y + height >= d.height) y = d.height – height – 1;
 }
 }
}

Note first that the class inherits JComponent and thus is a component. The meaning of the
class’ variables should be self explanatory, but note the timer, which is the “engine” of the
animation. Shapes are created by the method createShape(), and it creates a GeneralPath whit
segments that are cubic curves defined by the points in the array point. The principle is
that every time the timer is ticking, the figure is drawn, but first after the points have been
modified slightly using the values in the delta array. Both the points and delta are initialized
in the constructor, but here is not much to note besides the addition of an event handler
for changing the window size. The handler should ensure that the shape’s coordinates fall
within the window after the size is changed.

The event handler to the timer is called tick() and it modifies the points of the figure and
ends with a repaint(). As a result, the window is repainted each time the timer is ticking.
This means that paintComponent() is performed. Here you should note that it calls a number
of auxiliary methods that set the graphics object for the checkboxes that are selected. Also
note that the method creates the figure by calling createShap(), thus drawing the figure with
the new coordinates.

Clicking in the main window of the other two buttons you get a result that animates a text
and an image. I will not display the code for these components, as they are in principle
are identical to the above, but you are encouraged to try the program, and especially when
animating an image, you may find that it is difficult to the program to draw the image fast
enough. This may be due to the current graphic card, but primarily because the method
drawImage() does not have the desired performance.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

137

prInt

10 PRINT

In this chapter, I will describe how from a program to write to the printer. In our paperless
society, it does not play the same role as before, but there are nevertheless some programs
where you also want to print results on paper, so this chapter. With the development of
Java, it has become easier to write to the physical printer, and among other things, several
of Swing’s components have built-in print facilities, but if you want to have full control
over how data is being printed, some details are associated with the task. The chapter, like
the rest of this book, consists of a number of examples of what you have to write.

I want to start simply with an application that opens the following window:

and clicking on the button you get the following dialog box:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

138

prInt

138

which is Java’s default dialog box for selecting a printer and settings. If you click Print, you
print a single page with the text “Hello world ”. The code for the program’s MainView is:

package helloprinter;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.print.*;

public class MainView extends JFrame implements Printable
{
 public MainView()
 {
 super("Hello printer");
 setSize(200, 100);
 setLayout(new FlowLayout());
 JButton cmdPrint = new JButton("Print");
 cmdPrint.addActionListener(this::print);
 add(cmdPrint);
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

139

prInt

 public int print(Graphics g, PageFormat pf, int page) throws PrinterException
 {
 if (page > 0) return NO_SUCH_PAGE;
 Graphics2D g2d = (Graphics2D)g;
 g2d.translate(pf.getImageableX(), pf.getImageableY());
 g.drawString("Hello world!", 100, 100);
 return PAGE_EXISTS;
 }

 public void print(ActionEvent e)
 {
 PrinterJob job = PrinterJob.getPrinterJob();
 job.setPrintable(this);
 if (job.printDialog())
 {
 try
 {
 job.print();
 }
 catch (PrinterException ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }
 }
}

Regarding creating the window, there is nothing new, but you should note that the class
implements the interface Printable, and you can generally print objects that implements this
interface. The interface defines only a single method called print(), and this is the method
that writes to the printer.

Looking at the event handler for the button Print, it creates a PrinterJob object, and as the
name says, it is an object that represents a pint job. Next, the object to be printed – in
this case this – is associated with the method printDialog(). It is the method that opens
the above print dialog box. If it returns true corresponding to clicking the Print button,
the method print() is performed on the job object, which in turn means that the method

public int print(Graphics g, PageFormat pf,
int page) throws PrinterException

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

140

prInt

is performed. The first parameter is the graphics to be drawn on, while the second is format
of the page (defined in the dialog) and finally the last parameter is page number. The format
defines, among other things, the clip area and the following statement translates the graphics
to the upper left corner of the clip area:

g2d.translate(pf.getImageableX(), pf.getImageableY());

after which the text is drawn as any other text on a Graphics object.

The next example is called PrintPages and is an example of how to print multiple pages.
The program has exactly the same user interface as the first example, so I’ll just show the
code that has to do with print, but first the following method:

private ArrayList<ArrayList<String>> createPages(int lines, int size)
{
 ArrayList<ArrayList<String>> pages = new ArrayList();
 ArrayList<String> page = new ArrayList();
 for (int n = 1; n <= lines; ++n)
 {
 page.add("This is line number " + n);
 if (page.size() == size)
 {
 pages.add(page);
 page = new ArrayList();
 }
 }
 if (page.size() > 0) pages.add(page);
 return pages;
}

which creates an ArrayList with objects of the type ArrayList<String> and simulates an
ArrayList with text pages. The two parameters indicate respectively the total number of lines
and number of lines for each page. The method is trivial and requires no special explanation.

The event handler for the Print button is the same as in the first example and is not shown
here, so it’s the print() method, where there is something to note:

public int print(Graphics g, PageFormat pf,
int page) throws PrinterException
{
 int height = g.getFontMetrics(font).getHeight();
 if (pages == null)
 pages = createPages(200, (int)(pf.getImageableHeight() / height));

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

141

prInt

141

 if (page >= pages.size()) return NO_SUCH_PAGE;
 Graphics2D g2d = (Graphics2D)g;
 g2d.translate(pf.getImageableX(), pf.getImageableY());
 for (int y = 0, i = 0; i < pages.get(page).size(); ++i)
 {
 y += height;
 g.drawString(pages.get(page).get(i), 0, y);
 }
 return PAGE_EXISTS;
}

First, the height of the font used and thus the line height is determined, and it is used in the
call of the method createPages() to determine the number of lines on the page. A PageFormat
object defines the clip area, which is an area called Imageable, and to determine the number
of lines the height of this area is used. Since multiple pages are printed this time, the method
print() is called a corresponding number of times, and you should note that the method
createPages() is called only once. The method print() should return NO_SUCH_PAGE if
there are no more pages, and otherwise the method will return PAGE_EXISTS.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

142

prInt

The rest of the method consists of printing the lines for a single page, which is referred to
with the variable page, which specifies the page number, but otherwise the method only
consists of a loop that loops over all lines and where a variable y keeps track of where to print.

Another example is PrintOptions and is almost identical to the first example and prints the
text “Hello world”. The only difference is the event handler for the Print button, which
shows that you can open a dialog box with the printer settings and print without the usual
printer selection dialog.

public void print(ActionEvent e)
{
 PrinterJob job = PrinterJob.getPrinterJob();
 PrintRequestAttributeSet attr = new HashPrintRequestAttributeSet();
 PageFormat format = job.pageDialog(attr);
 job.setPrintable(this, format);
 try
 {
 job.print(attr);
 }
 catch (PrinterException ex)
 {
 JOptionPane.showMessageDialog(this, ex.getMessage());
 }
}

The next example is called PrintWindow and opens the following window:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

143

prInt

and is thus essentially the same program as the first example in this book, and the example
should primarily show that you can print any graphic figure on the printer and that it is
done in the same way as you print a figure on the screen. The code is essentially the same as
the HelloJava2D program, except what is required for the button and the class implements
Printable. The figure is similarly a JComponent called Drawing. The event handler of the
button is identical to the event handler in the above example, so you should primarily note
the method print() and how you can immediately print a JComponent:

public int print(Graphics g, PageFormat pf,
int page) throws PrinterException
{
 if (page > 0) return NO_SUCH_PAGE;
 Graphics2D g2d = (Graphics2D)g;
 g2d.translate(pf.getImageableX(), pf.getImageableY());
 drawing.paintAll(g);
 return PAGE_EXISTS;
}

10.1 SWING COMPONENTS

Looking at the above examples, it is generally simple to write to the printer, but in the end
it is the responsibility of the programmer that what are printed can be on the paper and
that it is properly divided into pages. It’s what can make print of documents complex, but
several of Swing’s components have built-in facilities to print the content, and here are the
two main examples JTable and JTextComponent.

The program AJTable opens the following window:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

144

prInt

144

and clicking on the Print button will get a the print dialog and you can print the contents
of the table. The code is the following, where I have not shown the data model for the table:

package ajtable;

import java.net.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.print.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.table.*;

public class MainView extends JFrame
{
 private JTable table = new JTable(new Kings());

 public MainView()
 {
 super("A JTable");
 setSize(400, 300);
 createView();

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

145

prInt

 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 setColumnWidth(table.getColumnModel().getColumn(1), 100);
 setColumnWidth(table.getColumnModel().getColumn(2), 100);
 panel.add(new JScrollPane(table));
 JButton cmdPrint = new JButton("Print");
 cmdPrint.addActionListener(this::print);
 JPanel command = new JPanel(new FlowLayout());
 command.add(cmdPrint);
 panel.add(command, BorderLayout.SOUTH);
 add(panel);
 }

 private void setColumnWidth(TableColumn col, int width)
 {
 col.setPreferredWidth(width);
 col.setMinWidth(width);
 col.setMaxWidth(width);
 }

 public void print(ActionEvent e)
 {
 try
 {
 table.print();
 }
 catch (PrinterException ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }
}

In fact, there is not much to explain and the design is quite simple. Note that the class
does not implement Printable, and that the event handler of the button performs only the
following statement:

table.print();

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

146

prInt

The statement opens the print dialog and prints the table contents. The print() method
will automatically create the required number of pages. The method is found in several
overrides, with parameters including, for example, a header and a footer, and it is quite
simple to print a JTabel.

As another example, I will show a program AEditorPane that opens the following window:

The program shows the start of Egil’s Saga in a JEditorPane. The document is a html
document. Clicking on the Print button prints the document and thus the content of
the JEditorPane component, and nicely formatted and divided into the required number
of pages. It all happens quite automatically as in the previous program. I do not want to
display the code here as there is nothing new about print.

10.2 PRINTSERVICES

Java’s print API has evolved continuously, where the first versions of Java does not have
support for print and so into an advanced API with many facilities for initiating print jobs.
As the examples above shows, it is simple to write to a printer today, but when writing the
program, one can not know which printer is located at the other end, and there may also
be a variety of printers available with many different facilities. To handle these options,
Java are expanded with PrintServices, and the following is a brief introduction to what it is.

The principle in a print job is with the new possibilities:

1. select the printer represented by a PrintService object
2. create the job represented by a DocPrintJob object
3. create a Doc object that represents the data to be printed
4. start the job by calling the DocPrintJob object’s print() method

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

147

prInt

147

To select a printer, you uses static methods in the PrintServiceLookup class:

package printservicesprogram;

import javax.print.*;
import javax.print.attribute.*;
import javax.print.attribute.standard.*;

public class PrintServicesProgram
{
 public static void main(String[] args)
 {
 PrintService[] services = { PrintServiceLookup.lookupDefaultPrintService() };
 print(services);
 print(PrintServiceLookup.lookupPrintServices(null, null));
 print(
 PrintServiceLookup.lookupPrintServices(DocFlavor.URL.TEXT_HTML_UTF_8, null));
 AttributeSet attrs = new HashAttributeSet();
 attrs.add(ColorSupported.SUPPORTED);
 attrs.add(OrientationRequested.LANDSCAPE);
 attrs.add(javax.print.attribute.standard.MediaSizeName.ISO_A3);
 print(PrintServiceLookup.lookupPrintServices(null, attrs));
 PrintRequestAttributeSet attr = new HashPrintRequestAttributeSet();

http://s.bookboon.com/elearningforkids

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

148

prInt

 PrintService service =
 ServiceUI.printDialog(null, 100, 100,
 PrintServiceLookup.lookupPrintServices(null, null),
 PrintServiceLookup.lookupDefaultPrintService(), null, attr);
 if (service != null) print(new PrintService[] { service });
 Attribute[] arr = attr.toArray();
 for (Attribute a : arr) System.out.println(a.getName() + ": " + a);
 }

 private static void print(PrintService[] services)
 {
 for (int i = 0; i < services.length; ++i)
 System.out.println(services[i].getName());
 System.out.println();
 }
}

The class PrintServiceLookup has a method lookupPrintServices() that returns an array of
PrintService objects available, and it will be all the printers found. Using the method
without parameters, you simply get all the printers the computer knows, but you can with
two parameters specify which printers to return. The two parameters are respectively a
DocFlavor and a AttributeSet, where the first indicates a MIME type, and thus what kind
of documents the printer should be able to print, while the second indicates what other
features the printer should be able to support. As an example from the above code, the
following statement will return all printers that can print UTF8 encoded HTML:

PrintServiceLookup.lookupPrintServices(DocFlavor.URL.TEXT_HTML_UTF_8, null)

As another example, the following statement returns all printers that have the properties
defined by the last parameter:

PrintServiceLookup.lookupPrintServices(null, attrs)

and in this case, it would be a color printer that should support LANDSCAPE and it
should be an A3 printer.

To select a printer, you can also use ServiceUI.printDialog(), which opens the usual print
dialog. The first three parameters indicate the parent window and the dialog box location
relative to this window. Also note the last parameter, which is a PrintRequestAttributeSet,
which returns the properties that the selected printer supports. You are encouraged to test
the program on your machine. In addition, you are encouraged to investigate the help as
to what constants and types are defined to specify DocFlavor and AttributeSet and there
are many.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

149

prInt

As an example, I will show a program where you can choose an image and print it. The
program opens a custom browser to the file system where you can select an image and print
it on the default printer. The program’s code is as follows:

package printimage;

import java.io.*;
import java.awt.*;
import java.awt.print.*;
import javax.swing.*;
import	javax.swing.filechooser.*;
import javax.imageio.*;
import javax.print.*;

public class PrintImage
{
 private ImageIcon icon = null;

 public static void main(String[] args)
 {
 (new PrintImage()).printImage();
 }

 private void printImage()
 {
 JFileChooser chooser =
 new JFileChooser(new File(System.getProperty("user.home")));
 chooser.setFileFilter(new FileNameExtensionFilter("Picture", "jpg"));
 if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
 {
 icon = loadImage(chooser.getSelectedFile());
 if (icon != null)
 {
 try
 {
 PrintService service = PrintServiceLookup.lookupDefaultPrintService();
 DocPrintJob job = service.createPrintJob();
	 DocFlavor	flavor	=	DocFlavor.SERVICE_FORMATTED.PRINTABLE;
	 SimpleDoc	doc	=	new	SimpleDoc(new	Picture(),	flavor,	null);
 job.print(doc, null);
 }
 catch (Exception ex)
 {
 }
 }
 }
 }

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

150

prInt

150

	private	ImageIcon	loadImage(File	file)
 {
 try
 {
	 return	new	ImageIcon(ImageIO.read(file));
 }
 catch (Exception ex)
 {
 return null;
 }
 }

 class Picture implements Printable
 {
 public int print(Graphics g, PageFormat format, int page)
 {
 if (page > 0) return Printable.NO_SUCH_PAGE;
 Graphics2D g2d = (Graphics2D)g;
 g2d.translate((int)(format.getImageableX()), (int)(format.getImageableY()));
 scaleGraphics(g2d, format);
 g2d.drawImage(icon.getImage(), 0, 0, null);
 return Printable.PAGE_EXISTS;
 }

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

151

prInt

 private void scaleGraphics(Graphics2D g2d, PageFormat format)
 {
 double pageWidth = format.getImageableWidth();
 double pageHeight = format.getImageableHeight();
 double imageWidth = icon.getIconWidth();
 double imageHeight = icon.getIconHeight();
 double scaleX = pageWidth / imageWidth;
 double scaleY = pageHeight / imageHeight;
 double scale = Math.min(scaleX, scaleY);
 g2d.scale(scale, scale);
 }
 }
}

It all happens in the method printImage(), which opens a JFileChooser dialog box where
you can select a jpg file. The file is opened with the method loadImage(), which returns the
image as an ImageIcon. If an image has been opened, a PrintService object is determined
for the default printer:

PrintService service = PrintServiceLookup.lookupDefaultPrintService();

and for this PrintService, a DocPrintJob is created:

DocPrintJob job = service.createPrintJob();

To print the image is defined an inner class Picture, which implements Printable and thus a
page to the printer. The class looks like previous Printable classes and must implement the
method print(), but as the entire image should be on the page, the graphics is scaled so that
there is room for the entire image. You should note how the scaling is done, as it is a task
that is often needed. With this class available, you can define the document to be printed:

SimpleDoc	doc	=	new	SimpleDoc(new	Picture(),	flavor,	null);

and here you should especially note the flavor parameter, whose type is

DocFlavor.SERVICE_FORMATTED.PRINTABLE;

which indicates that a single page must be printed formatted as a Printable object.

I will then show a program called PrintBook, which prints three pages:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

152

prInt

package printbook;

import java.awt.*;
import java.awt.font.*;
import java.awt.print.*;
import java.awt.geom.*;
import javax.print.*;

public class PrintBook
{
 public static void main(String[] args)
 {
 try
 {
 PrintService service = PrintServiceLookup.lookupDefaultPrintService();
 DocPrintJob job = service.createPrintJob();
 PageFormat format = new PageFormat();
 Book book = new Book();
 book.append(new Page0(), format);
 book.append(new Page1(), createFormat1(format));
 book.append(new Page2(), createFormat2(format));
	 DocFlavor	flavor	=	DocFlavor.SERVICE_FORMATTED.PAGEABLE;
	 SimpleDoc	doc	=	new	SimpleDoc(book,	flavor,	null);
 job.print(doc, null);
 }
 catch (Exception ex)
 {
 }
 }

 private static PageFormat createFormat1(PageFormat df)
 {
 PageFormat pf = (PageFormat) df.clone();
 Paper paper = df.getPaper();
 paper.setImageableArea(20, 20, df.getWidth() – 40, df.getHeight() – 40);
 pf.setPaper(paper);
 return pf;
 }

 private static PageFormat createFormat2(PageFormat df)
 {
 PageFormat pf = (PageFormat) df.clone();
 pf.setOrientation(PageFormat.LANDSCAPE);
 return pf;
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

153

prInt

153

class Page0 implements Printable
{
 public int print(Graphics g, PageFormat format, int page) throws PrinterException
 {
 Graphics2D g2d = (Graphics2D) g;
 double width = format.getImageableWidth();
 double height = format.getImageableHeight();
 double xpos = format.getImageableX();
 double ypos = format.getImageableY();
 Ellipse2D ellip = new Ellipse2D.Double(
 width / 2 – 50 + xpos, height / 2 – 50 + ypos, 100, 100);
 g2d.setColor(Color.red);
	 g2d.fill(ellip);
 return Printable.PAGE_EXISTS;
 }
}

class Page1 implements Printable
{
 public int print(Graphics g, PageFormat format, int page) throws PrinterException
 {
 Graphics2D g2d = (Graphics2D) g;
 double width = format.getImageableWidth();

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

154

prInt

 double height = format.getImageableHeight();
 double xpos = format.getImageableX();
 double ypos = format.getImageableY();
 Rectangle2D rect = new Rectangle2D.Double(xpos, ypos, width, height);
 Line2D line1 = new Line2D.Double(xpos, ypos, xpos + width, ypos + height);
 Line2D line2 = new Line2D.Double(xpos, ypos + height, xpos + width, ypos);
 g2d.setColor(Color.blue);
 g2d.draw(rect);
 g2d.draw(line1);
 g2d.draw(line2);
 return Printable.PAGE_EXISTS;
 }
}

class Page2 implements Printable
{
 public int print(Graphics g, PageFormat format, int page) throws PrinterException
 {
 Graphics2D g2d = (Graphics2D) g;
 g2d.translate((int)(format.getImageableX()), (int)(format.getImageableY()));
 double width = format.getImageableWidth();
 double height = format.getImageableHeight();
 TextLayout text = new TextLayout("Hello", new Font("Serif", Font.BOLD, 144),
 g2d.getFontRenderContext());
 Rectangle2D rect = text.getBounds();
 text.draw(g2d, (int)(width – rect.getWidth()) / 2,
 (int)(height + rect.getHeight()) / 2);
 return Printable.PAGE_EXISTS;
 }
}

The three pages are defined as inner classes and are all Printable objects. The first page draws
a filled circle with a radius of 50 centered at the page. The second page draws a frame beyond
the clipping area and two diagonals. Finally, the last page draws a text centered at the page.

main() creates a PrintSevice for the default printer and for this printer creates a print job.
Next, a default PageFormat is created, which is a PORTRAIT page format with a margin
of 1 inch. As the next step is created a Book object, which really is just a collection of
Printable objects, but where each object has a PageFormat. For this collection, the three
pages are assigned, where the first uses the default PageFormat object, while the other page
uses a PageFormat with a margin of 20 points, and finally the last one use a LANDSCAPE
PageFormat. After the Book object is initialized with the three pages, a Doc object is created

SimpleDoc	doc	=	new	SimpleDoc(book,	flavor,	null);

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

155

prInt

that this time has a flavor of the type

DocFlavor.SERVICE_FORMATTED.PAGEABLE

and thus a multi-page document.

10.3 PRINT TEXT

I will finish this chapter on print with an example where it is the programmer that formats
the individual pages from scratch. It’s rarely needed, but vice versa, it gives you total flexibility
with regard to printing on a printer. The program is called HelloEgil.

The task is to print a document with a cover page consisting of a name and a picture and
a text consisting of a number of lines, each line being perceived as a paragraph. Each line
starts with a digit (1, 2 or 3) and indicates the paragraph type that is used in the program
as a code for the font to be used.

The program starts loading the image as an ImageIcon with the name icon, and the text as
an ArrayList<String> named list, where each element is a line (and thus a paragraph). Next,
the following method is performed:

private void print()
{
 PrinterJob job = PrinterJob.getPrinterJob();
 PageFormat format = job.defaultPage();
 Book book = new Book();
 book.append(new FrontPage(), format);
 pagination(book, format);
 job.setPageable(book);
 if (job.printDialog())
 {
 try
 {
 job.print();
 }
 catch (PrinterException ex)
 {
 System.out.println(ex);
 }
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

156

prInt

156

which starts by creating a PrinterJob and a default PageFormat for this job. As a next step,
a Book object is created and a FrontPage object is added, which is a page to the cover
page. FrontPage is an inner class that represents a Printable object, an object that draw the
image scaled and centered on the page. There is another inner class called TextPage, which
represents a text consisting of a number of lines, each line being a TextLayout object. This
class also implements Printable. The main task of the program is to divide the document into
TextPage objects and thus text pages to the printer. This happens in the following method:

private void pagination(Book book, PageFormat format)
{
 try
 {
 TextPage page = new TextPage();
 int width = (int)format.getImageableWidth();
 int height = (int)format.getImageableHeight();
 int pos = 0;
 FontRenderContext frt = new FontRenderContext(null, false, false);
 for (String line : list)
 {
 Font font = font12;
 if (line.length() > 0)
 {

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

157

prInt

 if (line.charAt(0) == '1') font = font36;
 else if (line.charAt(0) == '2') font = font24;
 int lineHeight = font.getSize();
 AttributedString styledText = new AttributedString(line.substring(1));
 styledText.addAttribute(TextAttribute.FONT, font);
 AttributedCharacterIterator charIterator = styledText.getIterator();
 LineBreakMeasurer measurer = new LineBreakMeasurer(charIterator, frt);
 while (measurer.getPosition() < charIterator.getEndIndex())
 {
 if (pos + lineHeight < height) page.add(measurer.nextLayout(width));
 else
 {
 book.append(page, format);
 pos = 0;
 page = new TextPage();
 page.add(measurer.nextLayout(width));
 }
 pos += lineHeight;
 }
 if (pos + lineHeight < height)
 {
 page.add(new TextLayout(" ", font, frt));
 pos += lineHeight;
 }
 else
 {
 book.append(page, format);
 pos = 0;
 page = new TextPage();
 }
 }
 else
 {
 int lineHeight = font.getSize();
 if (pos + lineHeight < height)
 {
 page.add(new TextLayout(" ", font, frt));
 pos += lineHeight;
 }
 else
 {
 book.append(page, format);
 pos = 0;
 page = new TextPage();
 }
 }
 }

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

158

prInt

158

 if (page.getSize() > 0) book.append(page, format);
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());
 }
}

I do not have to review the code here, but it uses the same technique for text manipulation
as I have mentioned in a previous chapter in this book, where it is the task of the program
to measure how much text may be on the individual lines, as well as associates a font with
the text. Then, the Book object is initialized with Printable objects, and the report can be
sent to the printer.

http://s.bookboon.com/EOT

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

159

maIntenanCe oF programs

11 MAINTENANCE OF PROGRAMS

Most programs must be maintained over time. This is one of the reasons why program
design and program quality play a major role as programs with an incomprehensible design
and code that are difficult to read are almost impossible to maintain and at best it may be
time consuming to maintain a program with a bad design.

Many programs live for many years, and this period requires a program to be maintained
at intervals. One reason may be that the program contains errors, which should of course
be corrected. These are rarely the most difficult maintenance tasks, as errors are usually
recognized shortly after the programs are launched, and the errors should typically be
corrected by the same people who have developed the program, and thus by developers who
have an overview of and understand the program code. Other reasons for maintenance is
that the program needs to be expanded with new features or existing features should work
in a different way, and for a large program that will be used over several or many years,
there will certainly be requests for such changes over time. Here, the original design has a
much greater significance for the maintenance task, as the task will typically be performed by
anyone other than the developers who originally developed the program, and although they
should be the same people, it is far from given that they can remember, how the program
is written. In fact, one will be amazed at how fast one forgets how a program is written.
Finally, a reason for maintaining a program may be that you simply want to modernize
the program and market it as a new version, which is quite common for various standard
programs like office suites and so forth.

When there is a maintenance task either because a program needs to be expanded or a
new version of the program has to be developed, it is typically a new development project.
In principle, such a project is like other software development projects, but if it is a good
quality program with a good design, and if the program is to be expanded or part of the
program to be modified, the project can be limited to include what needs to be expanded
or changed while the rest of the program can live on unchanged. If, on the other hand, the
program has been developed without plained for future maintenance, there is a great risk
that changes may affect side effects to large portions of the overall code, and in the worst
case even smaller changes may mean that large portions of the code must be rewritten.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

160

maIntenanCe oF programs

Fortunately, with a good design, it is seldom so bad, but there is always reason to be aware
that changes in a program can easily cause unintended changes to the code elsewhere
with errors. Therefore, maintenance of programs must be planned to ensure that you have
identified the consequences of the changes in question and fully uncovered what is to be
tested subsequently and, if possible, documentation is required, so developers who are
making changes can quickly gain an overview of the program’s architecture and how it is
made. The start of any maintenance task is therefore to read the program documentation
and especially the design document and to get an overview of the full code so that you
know the significance of the individual project files. The result of all that is, that one can
not clearly emphasize the importance of design and program architecture. Otherwise, the
program can not be maintained, and programs that can not be, it is in principle worthless.

Regardless what, the maintenance of programs it is not simple, and similar to the development
of programs from startup, maintenance also starts with an analysis analyzing the changes
to be made and the program to be maintained. Then modify/expand existing design before
coding the changes. In particular, it is important that the documentation is also updated so
it is clear what has been changed, why and when, and finally, the changes must be tested,
with particular attention being paid to the fact that the changes do not cause errors or
inconvenience elsewhere in the program.

As an example, the rest of this chapter will contain two tasks that will illustrate program
maintenance. In one task, you need to implement some extensions of the calendar application
from the book Java 8, and in the second task, you must make two changes to the slot
machine from the book Java 9.

PROBLEM 2

Start by creating a copy of the Calendar project from the book Java 8. Take some time to
test the program so you are sure that you can remember how the program works.

The task now is to add three print features to the program:

1. The toolbar must have two new icons, and if you click on the one the program
should prints a calendar for the current month, while clicking on the other icon
the program should prints a calendar for the current year.

2. The dialog box to maintenance notes must have an additional button and clicking
on the button will allow you to print the note.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

161

maIntenanCe oF programs

161

PROBLEM 3

Start by creating a copy of the SlotMachine project from the book Java 9. Take some time
to test the program so you are sure that you can remember how the program works.

The task is to modify the program:

1. In the existing version, there is no animation of the wheels, but the animation is
simulated by displaying the individual figures quite shortly before the next figure is
selected. You now need to change the program, so instead simulating the rotation
of the reels with an animation in the same way as in chapter 9.

2. The program has an unfortunate administration of the machine’s administrator,
where you can switch to administrator mode by clicking an icon in the toolbar.
It should be changed so that a particular user (player) has administrator right. If
this user has logged in, the icons for administrator tools appear automatically and
otherwise not. It is a part of the task to ensure that there always is an administrator
and that the administrator can not be deleted.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

162

paChart

12 PACHART

By a chart library, you usually understand a family of classes that you can use in a program
to represent numbers using graphs. Examples are histograms, bar charts, pie charts, and
more. A good example of using such tools is a spreadsheet that offers different forms of
graphical representation of numbers. The aim of the following project is to develop such a
library as well as write a program that can illustrate how the library can be used. There are
many such libraries, and they differ as to which graphs there are, how “nice” the graphs are,
which options are possible, and also as the most important how easy the library is to use.

The purpose of the project is not so much the value of the library (there are so much of
that kind), but it is a very good exercise in the use of Java2D, especially if the aim is to
develop “nice” graphs (whatever it may be) and if you focus on developing a user-friendly
library. Regarding the latter, keep in mind that user-friendliness is not the same as the greatest
possible flexibility, but to a greater extent that the library is easy to understand and use.
Finally, it is extremely important that such a library is robust and that the graphs behave
sensibly if used on an incomplete or inappropriate data basis, and it is actually not so easy.

In the following, I would not focus on the process, but instead what is made and how the
library is used.

12.1 THE LIBRARY

Basically, a graph should visualize numbers associated with categories (labels). A classic
example is year numbers, where there are associated a number with each year. The current
library should basically offer the following graphs:

 - Line, where a graph consists of straight lines between points
 - Histogram or a bar chart, which is probably the most commonly used graph
 - Circle or pie chart

Each of these three basic graphs is available in several variants. A line graph has two variants

 - Curve, where the graph is instead drawn as a soft curve
 - Plot where the graph is drawn as points – a point for each category (label), which

may be connected with thin straight lines

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

163

paChart

A bar chart is drawn as default with vertical bars, but there is a variant in which the bars
instead are drawn horizontally, and finally there is a variation of both the vertical and
horizontal bar charts with a simple 3D effect.

Finally, there is a variant of the pie chart, where the chart is drawn as a speedometer – just
to point out that it is only the imagination (and the ability to draw nice graphs) that limit
the graphs, that such a library should contain.

The library thus contains 9 basic (or simple) graphs, which are defined by the following type:

package pagraphs.charts;

public enum GraphType { LINE, CURVE, PLOT, VBAR,
HBAR, VBAR3D, HBAR3D, PIE, SPEED }

In addition, for a plot graph, you can indicate which figure is used to represent the graph’s
points, and these options are defined by the following type, where the names indicate which
figure is used:

package pagraphs.charts;

public enum PlotType { CROSS, STAR, OPENCIRCLE, OPENSQUARE, OPENTRIANGLE,
 OPENRHOMBE, CLOSEDRHOMBE, CLOSEDCIRCLE, CLOSEDSQUARE, CLOSEDTRIANGLE }

A graph as above is called simple (or single-valued) corresponding to the fact that in principle
it is defined by two arrays:

1. labels that is an array of strings and represent the categories and hence the independent
variable or the x axis

2. values which is an array of numbers of the same length as labels and represent the
dependent variable or the y axis

A simple graph is thus a graph for a mathematical function, and in addition to the two
arrays, a graph has attached other parameters, which indicates how the graph is to be drawn.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

164

paChart

164

A graph can also be multi-valued, which means that each label has several numbers and
the difference is that the array values in principle are a 2-dimensional array. A multi-valued
graph is as default drawn as several simple graphs after each other (that is, as a series of
graphs). A multi-valued graph may in particular be merged, which means that the individual
graphs are drawn in the same coordinate system – to the extent that it makes sense. This
is exactly the part that makes the development of the following library both complex and
comprehensive.

Basically, a graph is defined using two data structures. The first is called SingleValues and
represents the y values of a simple graph:

package pagraphs.charts;

import java.awt.*;

public class SingleValues
{
 private String label;
 private String header;
 private GraphType type;
 private double begin;

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

165

paChart

 private double end;
 private int points;
 private int dec;
 private Paint color;
 private PlotType plot;
 private double param1;
 private double param2;
 private boolean onoff;
	private	final	double[]	values;

 public SingleValues(GraphType type, String label, String header, double begin,
 double end, int points, int dec, Paint color,
PlotType plot, double param1,
 double param2, boolean onoff, double … values)
 {
 this.type = type;
 this.label = label;
 this.header = header;
 this.begin = begin;
 this.end = end;
 this.points = points;
 this.dec = dec;
 this.color = color;
 this.plot = plot;
 this.param1 = param1;
 this.param2 = param2;
 this.onoff = onoff;
 this.values = values;
 }
}

In short, the variables means the following:

 - label defines a label for this function and is typical used as a label for the y axis,
default is blank

 - header if a name or description for this graph, default is blank
 - type is the type of this graph, default is VBAR
 - begin defines the minimum value on the y axis, default is 0
 - end defines the maximum value on the y axis, default is 0 and if both begin and

end are 0 the library automatically calculates til values
 - points defines the number of intervals on the y axis, default is 0 and then the library

automatically calculates the value
 - dec defines the number of decimals to be used on the y axis, default is 0 and then

the library automatically calculates the value

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

166

paChart

 - color that defines the color for the graph – if not defined a default color is used
 - plot which defines the figure used for a plot graph (the value is only used for a

plot graph)
 - param1 that is a special parameter whose application depends on the graph type

(is used for a LINE, CURVE and SPEED graph), default is 0
 - param2 that is a special parameter whose application depends on the graph type

(is used for a SPEED graph), default is 0
 - onoff that is a special parameter whose application depends on the graph type (is

used for a PIE and a PLOT graph), default is false
 - values the is values for this graph

The class has the necessary get and set methods, and to make it easier to define simple
graphs, the class has more constructors than shown above.

The class SimpleValues only defines a single dependent variable. A graph that can be single-
valued or multi-valued is defined as follows:

package pagraphs.charts;

import java.util.*;
import java.awt.Color;

public	class	MultiValues	//	defines	a	multi	valued	graph
{
	public	static	final	Color	colors[]	=
 {
 new Color(0x7C, 0xAF, 0xDD),
 new Color(0xF1, 0x9B, 0x5A),
 …
 };

	public	final	List<SingleValues>	list;
	public	final	String	labels[];
 private String label;
 private boolean gitter;
 private boolean merge;
 private boolean same;
 private boolean stacked;
 private double scaleX;
 private double scaleY;
 private double minimum;
 private double maximum;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

167

paChart

167

 public MultiValues(List<SingleValues> list, String label, boolean gitter,
 boolean merge, boolean same, boolean stacked, double scaleX, double scaleY,
 String … labels)
 {
 this.list = list;
 this.label = label;
 this.gitter = gitter;
 this.merge = merge;
 this.same = same;
 this.stacked = stacked;
 this.scaleX = scaleX;
 this.scaleY = scaleY;
 this.labels = labels;
 }
}

http://s.bookboon.com/GTca

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

168

paChart

Initially, an array of default colors is defined, which is used if no colors are defined. Otherwise,
the individual properties means the following:

 - list is a list with objects of the type SingleValues which defines this graph
 - labels is an array of the type String with texts for the independent axis (x axis or

label axis)
 - label that is a label to x axis, default is blank
 - gitter specifies whether to draw grid lines (true that is default) or not (false)
 - merge that indicates whether graphs should be merged into a single graph (false

is default)
 - same that specifies whether all graphs (in a merge graph) must use the same y axis

(true is default) – the property is only used for a merge graph
 - stacked that specifies whether BAR and BAR3D graphs should be stacked (true) or

drawn side by side (false that is default) – the property is only used for a merge
graph

 - scaleX that defines the scaling in the x axis (horizontal) direction (1 is default and
means no scaling)

 - scaleY that defines the scaling in the y axis (vertical) direction (1 is default and
means no scaling)

 - minimum, that is used for a merge graph to calculate the minimum value for the y axix
 - maximum, that is used for a merge graph to calculate the maximum value for the

y axix

The class has the necessary get and set methods, and to make it easier to define graphs, the
class has more constructors than shown above.

As mentioned, there are 9 different graphs, as well as the possibility to merge multiple
graphs in the same coordinate system. The graphs are drawn using Drawer classes, which
are tasked with drawing a particular graph as well as capturing clicks with the mouse. If
you click on a graph with the mouse, it must raise an event:

1. if clicking on a label (on the x axis), the name is associated with the event
2. if clicking on the graph itself, the event has associated both the name on the x axis

label and the corresponding function value

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

169

paChart

An event has the type ChartEvent that has an argument of the following type:

package pagraphs.charts;

public class FunctionValue
{
	private	final	String	name;
	private	final	Double	value;

 public FunctionValue(String name, Double value)
 {
 this.name = name;
 this.value = value;
 }

 public boolean hasValue()
 {
 return value != null;
 }

 public String getName()
 {
 return name;
 }

 public Double getValue()
 {
 return value;
 }
}

Here is value null if a label is clicked. The reason is that a graph may be multi-valued and
thus there may be several values attached to a particular label. A listener object for events
of this type will implement the interface ChartListener, which defines a single event handler.

A graph is a custom component:

public class ChartComponent extends JComponent implements MouseListener
{
 private ArrayList<ChartListener> listeners = new ArrayList();
 private MultiValues data;
 private Color borderColor;
 private int gap;
 private java.util.List<Drawer> drawers;

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

170

paChart

170

 public ChartComponent(MultiValues data, Font font, int gap, Color borderColor)
 {
 this.data = data;
 this.gap = gap;
 this.borderColor = borderColor;
 setFont(font);
 drawers = DrawerFactory.createDrawer(data, getFont());
 addMouseListener(this);
 setBackground(Color.white);
 }

 public Dimension getPreferredSize()
 {
 double width = 0;
 double height = 0;
 for (int n = 0; n < drawers.size(); ++n)
 {
 width += drawers.get(n).getWidth(n) + gap;
 double h = drawers.get(n).getHeight(n);
 if (height < h) height = h;
 }
 return new Dimension((int)width, (int)height);
 }

 .

http://s.bookboon.com/AlcatelLucent

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

171

paChart

 public void paintComponent(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 Dimension size = getSize();
 g2d.setPaint(getBackground());
	 g2d.fill(new	Rectangle2D.Double(0,	0,	size.width,	size.height));
 g2d.setFont(getFont());
 DrawingTools.smootGraphics(g2d);
 double offset = 0;
 if (data.isMerge()) offset =
 ((MergeDrawer)drawers.get(0)).draw(g2d, 0, 0, offset);
 else for (int n = 0; n < data.list.size(); ++n)
 offset += ((SingleDrawer)drawers.get(n)).draw(g2d, n, 0, 0, offset) + gap;
 if (borderColor != null)
 {
 g2d.setStroke(new BasicStroke(0.5f));
 g2d.setPaint(borderColor);
 Dimension dim = getPreferredSize();
 g2d.setClip(new Rectangle2D.Double(0, 0, dim.width + 1, dim.height + 1));
 g2d.draw(new Rectangle2D.Double(0, 0, dim.width, dim.height));
 }
 }
 public void addChartListener(ChartListener listener)
 {
 listeners.add(listener);
 }

 public void removeChartListener(ChartListener listener)
 {
 listeners.remove(listener);
 }

 public void mouseClicked(MouseEvent e)
 {
 for (int n = 0; n < drawers.size(); ++n)
 {
 FunctionValue functionValue =
 drawers.get(n).getClicked(n, e.getX(), e.getY());
 if (functionValue != null)
 {
 ChartEvent event = new ChartEvent(this, functionValue);
 for (ChartListener listener : listeners) listener.chartClicked(event);
 return;
 }
 }
 }
}

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

172

paChart

The component is created on the basis of a MultiValues object and hence the definition of a
graph. In addition, you must specify the font to be used and you can specify a gap between
the individual graphs (if it is a multi-valued graph) and if an edge must be drawn around
the graph. The class has more constructors than shown above. Using the graph definition,
the constructor creates a list of Drawer objects, where there is a Drawer for each graph.
These Drawer objects are created using the class DrawerFactory, which is a simple factory
class. The method paintComponent() uses these Drawer objects to draw the component, and
it is also paintComponent() which draws an edge about the component. Should an edge
be drawn, the preferred size of the component is used, which is also determined using the
Drawer objects. The same applies to the mouse to determine whether a graph is clicked.
That is, the Drawer classes are absolutely key classes:

Drawer is an interface that defines three methods that define the width and height of the
nth graph in a ChartComponent, and also a method that returns a FunctionValue object if
this Drawer is clicked. In general, a graph is drawn as a rectangular figure with a margin.
The margin is used, for example, to the axes of the coordinate system, to a header text, and
what the margin of the figure is used for and thus the size of the margin is so determined
by the current graph (not all graphs have a coordinate system). SingleDrawer is an abstract
class, which implements the interface’s functions as well as methods that determine a graph’s
margin and draw the graph. The class also defines scaling functions, and here you should
be aware that they only scale the graph, but not the margin. As an example, two graphs
are shown below, where the difference only is that the second is scaled:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

173

paChart

173

121

graphs are shown below, where the difference only is that the second is scaled:

The type of the above graph is VBAR, and there is a specific class VbarDrawer, derived from
SingleDrawer. It is this drawer that is used to draw the above graphs. There are correspondingly 8
other specific Drawer classes, which are derived from SingleDrawer. As another example, there is
shown below a multi-valued graph, where the first has the type HBAR and is drawn with a
HbarDrawer, while the other is of the type PIE and is drawn with a PieDrawer:

The code for these 9 concrete drawer classes is similar to each other and, in principle, they arre quite
simple, although there may of course be many details attached to implementing the drawing functions.
The classes use more auxiliary classes, including classes that draw the axes. Here, especially the
classes that draw the y axes are complex, as they typically depend on the actual numbers to make a
sensible division of the axis.

Then there is the class MergeDrawer which is also a concrete class, but it draws the graph using other
Drawer objects. If you have a multi-valued function, you can draw the graphs in the same coordinate
system, which is what I have called a merge graph. As an example, below is shown a merge of a LINE
graph and a VBAR graph:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

174

paChart

The type of the above graph is VBAR, and there is a specific class VbarDrawer, derived
from SingleDrawer. It is this drawer that is used to draw the above graphs. There are
correspondingly 8 other specific Drawer classes, which are derived from SingleDrawer. As
another example, there is shown below a multi-valued graph, where the first has the type
HBAR and is drawn with a HbarDrawer, while the other is of the type PIE and is drawn
with a PieDrawer:

The code for these 9 concrete drawer classes is similar to each other and, in principle, they
arre quite simple, although there may of course be many details attached to implementing
the drawing functions. The classes use more auxiliary classes, including classes that draw the
axes. Here, especially the classes that draw the y axes are complex, as they typically depend
on the actual numbers to make a sensible division of the axis.

Then there is the class MergeDrawer which is also a concrete class, but it draws the graph
using other Drawer objects. If you have a multi-valued function, you can draw the graphs
in the same coordinate system, which is what I have called a merge graph. As an example,
below is shown a merge of a LINE graph and a VBAR graph:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

175

paChart

Now you can not generally merge all graphs. For example, it makes no sense to merge a
histogram (a VBAR graph) and a pia graph, and it makes no sense to merge a VBAR and
a HBAR graph. The MergeDrawer class starts by dividing the graphs into some categories
similar to how they can be merged, and for each of these categories, a Drawer class is defined.
It leads to no less than 14 new Drawer classes, all of which are in principle similar to the
above, but instead, they are derived from the abstract class MultiDrawer, that as a single
drawer this time always draws a multi-valued graph. When there are so many MultiDrawer
classes due to

1. that you can specify whether merged graphs should use the same y axis or each
use there own y axis

2. that you can specify whether bar charts should be drawn side by side or stacked

Specifically, it corresponds to the following MultiDrawer classes:

1. MSLCPBDrawer, which merges LINE, CURVE, PLOT and VBAR graphs with
the same y axis

2. MDLCPBDrawer, which merges LINE, CURVE, PLOT and VBAR graphs with
different y axis

3. MSVBAR3DDrawer, which merges VBAR3D graphs with the same y axis
4. MDVBAR3DDrawer, which merges VBAR3D graphs with different y axis
5. MSHBARDrawer, which merges HBAR graphs with the same y axis
6. MDHBARDrawer, which merges HBAR graphs with different y axis

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

176

paChart

176

7. MSHBAR3DDrawer, which merges HBAR3D graphs with the same y axis
8. MDHBAR3DDrawer, which merges HBAR3D graphs with different y axis
9. MSLCPDrawer, which merges LINE, CURVE and PLOT graphs with the same y

axis, when stack of bar charts are selected
10. MSLCPDrawer, which merges LINE, CURVE and PLOT graphs with the different

y axis, when stack of bar charts are selected
11. SVBARDrawer, which stacks VBAR graphs
12. SHBARDrawer, which stacks HBAR graphs
13. SVBAR3DDrawer, which stacks VBAR3D graphs
14. SHBAR3DDrawer, which stacks HBAR3D graphs

If a multi-valued graph is merged and there is a graph that can not be merged with others,
it is drawn as a SingleValues graph using the corresponding Drawer.

The result of all these is that there is a lot of code related to merge of graphs, but the work
consists primarily of writing the respective Drawer classes, all of which look similar.

http://s.bookboon.com/BI

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

177

paChart

12.2 THE TEST PROGRAM

Then there is the test program that opens a window with a JTable containing numbers –
near the first column, which contains texts to be used as labels for graphs. At the top there
is a toolbar with buttons. Clicking on the first button allows you to specify an interval for
the table’s numbers, and the program will then fill the table with random numbers within
this range. Next, 19 test buttons follows, which open windows I have used for testing
in connection with the development of the library. The most interesting is the button to
the far right. If you select a rectangular area in the table (which does not include the left
column) and clicking the button the program creates a MultiValues object where you can
edit the properties:

Here it has been selected three columns and defined a multi-graph for three graphs. Double-
clicking the column header for one of the three graphs gives you the following dialog box
where you can define settings for the individual graphs:

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

178

paChart

You can thus use the program to define different settings for the individual graphs and test
the effect.

Note that for practical use, the last dialog box must be adapted to the individual graph
types, so you can only enter and select values for the properties that make sense for the
current graph.

12.3 LACKS AND THINGS THAT COULD BE IMPROVED

The graphs can not display all numbers with a reasonable result, and some of the graphs, for
example, are mistaken for negative numbers, especially if you merges graphs. For example,
it does not make sense to stack bar charts if the numbers can be negative. The conclusion is
that several of the graphs have preconditions, which the drawing functions with advantage
could validate and possibly raise an execption if the graph can not be drawn correctly. An
alternative could be to let the Drawer classes return 0 if the graph can not be drawn with
a sufficiently nice result – a strategy that is already partially implemented.

JAVA 10: JAVA2D, DRAWING OF THE
WINDOW AND IMAGE PROCESSING

179

paChart

The actual component ChartComponent can raise a single event if the user clicks on a graph.
The component is drawn based on an object of the type MultiValues, and the component
could be extended as it fires a PropertyChangeEvent if a value for a property is changed in
the MultiValues data structure. In practice, it would typically mean that the component
should be redrawn, and it could also be of significance to the layout manager that contains
the component.

Another question is how easy it is to expand the library with a new graph. If it is a
whole new graph for a single-valued function, it’s simple. In this case, the work consists
primarily of writing a new Drawer derived from SingleDrawer, adding a new graph type
to GraphType and expanding the class DrawingFactory. In addition, the MergeDrawer class
must be expanded (the method merge()) to know the new type. If graphs of the new type
can also be merged, a Drawer derived from MultiDrawer must also be written, and the class
MergeDrawer has to know this Drawer. Even more extensive is the task, if the new graph
type can be merged with existing graphs, which can both cause existing Drawer types to
bc changed as well as possible new Drawer classes to be written. The conclusion is that if
the library is expanded with new graphs, which can be merged with existing graphs, the
work can be quite extensive.

It may be a good practice to improve the library corresponding to the above and optionally
expand with a new graph type.

	Foreword
	1	Introduction
	Exercise 1
	1.1	The class Graphics2D
	Exercise 2

	2	Shapes
	2.1	Filled shapes
	Exercise 3
	2.2	Lines
	Exercise 4
	Exercise 5
	2.3	GeneralPath
	Exersice 6
	2.4	Area

	3	Filling and stroking
	3.1	GradientPaint
	Exercise 7
	Exercise 8
	3.2	TexturePaint
	3.3	Strokes
	Exercise 9

	4	Rendering
	4.1	Transformations
	Exercise 10
	Exercise 11
	4.2	Compositing
	4.3	Clipping
	4.4	Rendering Hints

	5	Text
	Exercise 12
	Exercise 13
	5.1	Fonts
	Exercise 14
	5.2	TextLayout
	5.3	Glyphs

	6	Colors
	6.1	About colors
	Problem 1

	7	Images
	7.1	Imaging
	Exercise 15
	7.2	BufferedImage
	7.3	The screen

	9	Animations
	10	Print
	10.1	Swing components
	10.2	PrintServices
	10.3	Print text

	11	Maintenance of programs
	Problem 2
	Problem 3

	12	PaChart
	12.1	The library
	12.2	The test program
	12.3	Lacks and things that could be improved

