

2

POUL KLAUSEN

JAVA 12: WWW AND
DEVELOPMENT OF THE
CLIENT PART
SOFTWARE DEVELOPMENT

3

Java 12: WWW and development of the client part: Software Development
1st edition
© 2018 Poul Klausen & bookboon.com
ISBN 978-87-403-1974-3
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

4

Contents

4

CONTENTS

 Foreword 6

1 Introduction 8

2 HTML 10

2.1 HTML forms 13

2.2 Scalable Vector Graphics 15

 Problem 1 16

3 Cascading style sheets 17

3.1 More selectors 22

3.2 Styles 25

 Problem 2 30

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

5

Contents

4 JavaScript 31

4.1 Nature of Languages 34

4.2 Basic syntax 55

 Exercise 1 76

 Exercise 2 81

4.3 Global objects and functions 89

 Exercise 3 90

4.4 DOM 92

 Problem 3 107

5 JavaServer Faces and Ajax 110

5.1 Valdation of fields 112

 Exercise 4 115

5.2 Submit fields without reload 115

5.3 Converters 119

5.4 JSF Listeners 122

6 Component libraries 125

6.1 How to poll the server 136

6.2 A p:autocomplete element 138

8 WebSheet 143

8.1 The program’s functions 144

8.2 Design 145

8.3 Programming 149

8.4 Conclusion 154

 Appendix A: jQuery 155

 Appendix B: JSON 167

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

6

Foreword

FOREWORD

This book is the twelfth in a series of books on software development. The programming
language is Java, and the language and its syntax and semantics fills obviously much,
but the books have also largely focus on the process and how to develop good and
robust applications. This book is similar to the book Java 11 about development of web
applications, but focusing on the client side. This means that key topics are style sheets and
JavaScript, and in particular, the last part fills. Another topic is Ajax, like the book gives
a brief introduction to PrimeFacses. The primary purpose of the book is to show that it is
possible to perform complex client-side programming using JavaScript. The book requires
knowledge of programming of the server side similar to what has been dealt with in the
previous book, and together, the two books provide a relatively basic introduction to web
application development.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

7

Foreword

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

1. NetBeans as IDE for application development
2. MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
3. GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

8

IntroduCtIon

1 INTRODUCTION

In the book Java 11, I have provided a basic introduction to Web Application Development
in Java. I have primarily processed the server side, where a browser sending a request to
a web server, that dynamically dependent on the data sent with the request, creates the
HTML document to be sent as a response to the client. This client/server principle is also
the whole idea of web applications and, in fact, you can stop here as all web applications
could in principle be developed according to the pattern outlined in Java 11. However,
there are much more to learn and here I would like to mention:

1. The visual and the possibilities for developing web applications (web sites) with
an attractive user interface, and especially user interfaces that are easy to maintain.

2. Client programming, where part of the code is executed by the browser for the
purpose of preventing a request to the server every time something happens on
the client page.

The first is primarily a matter of which components (items) are provided and what options
are available to customize them to exactly the look and feel that you may be interested in.
It’s about cascading style sheets and HTML5. Both of them do not have anything to do with
Java, but are subjects that you as a web developer must be aware of. And then the visual,
that more than anything else is a question about skill and knowledge about what is a good
user interface and how to design web user interfaces. Unfortunately, I only have limited
knowledge about what is a good user interface, so I just have to introduce the technique.

The other is primarily about JavaScript, which is program code sent as script (text) along
with the server’s response, and which is code executed by the browser without sending
requests to the server. That it’s script code means that it’s only text and not binary code,
why it is generally perceived as harmless and can not contain malicious code, but also
because it’s limited what to do with JavaScript and basically you can only manipulate the
HTML document’s elements. JavaScript has gained interest, among other things, because the
browsers interpreters to JavaScript have been optimized, why JavaScript today is effective,
but also because the language has evolved so that today you can write advanced JavaScript
that also can be maintained. In spite of the name, JavaScript is not Java, and it is important
to make it clear that it is a simple script language, but with the same syntax as Java – and
hence the name. JavaScript will fill a part in this book.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

9

IntroduCtIon

I will also mention Java applets, that are program code, which are performed by the browser,
but this is common binary Java code downloaded from the server, and the browser can then
use a plugin to execute the code. One should note that you have the full Java available and
that an applet can, in principle, perform all that is possible with a Java application. For
that reason, many people are not excited about Java applets, as applets has a major security
risk, and there are also examples that the fear is justified. Java applets are currently used to
a limited extent and are not dealt with further in this book.

The book will also contain topics that relate to the server, and in particular I will look at Ajax
in connection with facelets, but the book also deals with other topics related to JavaFaces.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

10

HtML

2 HTML

In the book Java 11, I have said that I do not want to treat HTML, and the following
is also just an ultra short presentation that merely highlights the most important HTML
concepts, but as the browser basically receives HTML, it’s useful with a short introduction
to the subject. This is especially true after the use of HTML5, as this standard adds some
subjects and princips, and the standard is gradually supported by most browsers.

HTML is very closely linked to cascading style sheets, also known as CSS, and the goal
is that HTML using markup should structure data while CSS defines how the individual
elements should be displayed in the browser. Styling of HTML elements should occur in
its own document, calling a Cascading Style Sheet, while the HTML document alone must
take care of structuring the data. That way, web pages are much easier to maintain.

A HTML document has the basic form:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

10

HTML

2 HTML

In the book Java 11, I have said that I do not want to treat HTML, and the following
is also just an ultra short presentation that merely highlights the most important HTML
concepts, but as the browser basically receives HTML, it’s useful with a short introduction
to the subject. This is especially true after the use of HTML5, as this standard adds some
subjects and princips, and the standard is gradually supported by most browsers.

HTML is very closely linked to cascading style sheets, also known as CSS, and the goal
is that HTML using markup should structure data while CSS defines how the individual
elements should be displayed in the browser. Styling of HTML elements should occur in
its own document, calling a Cascading Style Sheet, while the HTML document alone must
take care of structuring the data. That way, web pages are much easier to maintain.

A HTML document has the basic form:

<!DOCTYPE html>
<html>
 <head>
 <title>HTML Application</title>
 <meta charset="UTF-8">
 </head>
 <body>
 …
 </body>
</html>

but many development tools add their own elements to the header. HTML define more
structural elements where the most important are:

 - section, that represents a section in a document, and it can together with h1–h6 elements
be used to indicate the document’s structure, and a section must start with a h element

 - article, that represents an independent piece of content in a document and as the
name says an article, and an article must start with a h element

 - aside, that represents a content that is only slightly related to the rest of the page
 - header, that represents a header section
 - footer, that represents a footer section and will often contain information about the

author, copyright information and so on
 - nav, that represents a section in the document intended for navigation (links)
 - dialog, that is used to mark up a conversation
 - figure, that can be used to associate a caption together with some embedded content,

such as a graphic or a video

but many development tools add their own elements to the header. HTML define more
structural elements where the most important are:

 - section, that represents a section in a document, and it can together with h1–h6 elements
be used to indicate the document’s structure, and a section must start with a h element

 - article, that represents an independent piece of content in a document and as the
name says an article, and an article must start with a h element

 - aside, that represents a content that is only slightly related to the rest of the page
 - header, that represents a header section
 - footer, that represents a footer section and will often contain information about the

author, copyright information and so on
 - nav, that represents a section in the document intended for navigation (links)
 - dialog, that is used to mark up a conversation
 - figure, that can be used to associate a caption together with some embedded content,

such as a graphic or a video

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

11

HtML

It is not a requirement that a HTML document uses these elements (which are introduced
in HTML5), but it is recommended, among other things, that they can be styled in a style
sheet. Similarly, the following structure is recommended for an HTML document, where
there may be more sections and where some elements can be omitted completely:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

11

HTML

It is not a requirement that a HTML document uses these elements (which are introduced
in HTML5), but it is recommended, among other things, that they can be styled in a style
sheet. Similarly, the following structure is recommended for an HTML document, where
there may be more sections and where some elements can be omitted completely:

<!DOCTYPE html>
<html>
 <head>
 <title>Html5Document</title>
 <meta charset="UTF-8">
 </head>
 <body>
 <h1>HTML5 Document</h1>
 <header>
 <h2>Content</h2>
 <nav>

 For example a menu

 </nav>
 </header>
 <section>
 <h2>Section title</h2>
 <article>
 <header>
 <h2>Article title</h2>
 <p>Introdoction to this title</p>
 </header>
 <p>Here is the text.</p>
 </article>
 <article>
 <header>
 <h2>Article title</h2>
 <p>Introdoction to this title</p>
 </header>
 <p>Here is the text.</p>
 </article>
 </section>
 <aside>
 <h2>About this section</h2>
 <p>References or other.</p>
 </aside>
 <footer>
 <p>Copyright and similar</p>
 </footer>
 </body>
</html>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

12

HtML

12

There are many other HTML elements, and there are many new elements in HTML5,
but I do not want to mention the elements here. General is the form of a HTML element

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

12

HTML

12

There are many other HTML elements, and there are many new elements in HTML5,
but I do not want to mention the elements here. General is the form of a HTML element

<elem attr … >content</elem>

where there may be a number of attributes. If there is no content, it is allowed to write:

<elem attr … />

even though it is not actually intended to use this notation in HTML5. A very specific
example could be:

<h1 class="header1>That is a header</h1>

where there may be a number of attributes. If there is no content, it is allowed to write:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

12

HTML

12

There are many other HTML elements, and there are many new elements in HTML5,
but I do not want to mention the elements here. General is the form of a HTML element

<elem attr … >content</elem>

where there may be a number of attributes. If there is no content, it is allowed to write:

<elem attr … />

even though it is not actually intended to use this notation in HTML5. A very specific
example could be:

<h1 class="header1>That is a header</h1>

even though it is not actually intended to use this notation in HTML5. A very specific
example could be:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

12

HTML

12

There are many other HTML elements, and there are many new elements in HTML5,
but I do not want to mention the elements here. General is the form of a HTML element

<elem attr … >content</elem>

where there may be a number of attributes. If there is no content, it is allowed to write:

<elem attr … />

even though it is not actually intended to use this notation in HTML5. A very specific
example could be:

<h1 class="header1>That is a header</h1>

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

13

HtML

where there is one attribute that refers to a class in a style sheet. As a starting point for this
chapter, I have created a web application called HTMLApplication, which for the moment
only has a single page index.html. I do not want to display the content here as the page
fills a lot, and the page should show only how the above structure elements are used to
structure the content of a HTML document. When you test the document, note that the
structural elements have no visual effect. They are used solely to structure the text, and the
visual effects are solely intended to header elements (h1–h6) as well as a list of links. In
any case, the visual effect is what is default.

It should also be mentioned that it is allowed to define custom attributes and, if necessary,
they should start with the word data- and the application is that they can be referenced
from JavaScript, but also from a style sheet.

2.1 HTML FORMS

In the book Java 11, I have shown the use of HTML forms, and it is generally not associated
with the big challenges, but HTML actually defines a lot more about forms. Consider the
following document that is part of the HTMLApplication project:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

13

HTML

where there is one attribute that refers to a class in a style sheet. As a starting point for this
chapter, I have created a web application called HTMLApplication, which for the moment
only has a single page index.html. I do not want to display the content here as the page
fills a lot, and the page should show only how the above structure elements are used to
structure the content of a HTML document. When you test the document, note that the
structural elements have no visual effect. They are used solely to structure the text, and the
visual effects are solely intended to header elements (h1–h6) as well as a list of links. In
any case, the visual effect is what is default.

It should also be mentioned that it is allowed to define custom attributes and, if necessary,
they should start with the word data- and the application is that they can be referenced
from JavaScript, but also from a style sheet.

2.1 HTML FORMS

In the book Java 11, I have shown the use of HTML forms, and it is generally not associated
with the big challenges, but HTML actually defines a lot more about forms. Consider the
following document that is part of the HTMLApplication project:

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 </head>
 <body>
 <h1>Shows the use of the input element.</h1>
 <form method="post">
 <table>
 <tr>
 <td>Enter line</td>
 <td>
	 <input	type="text"	id="linefield"	required	placeholder="Enter	text"	/>
 </td>
 </tr>
 <tr>
 <td>Enter password</td>
 <td><input type="password" id="password" /></td>
 </tr>
 <tr>
 <td>Enter number</td>
	 <td><input	type="number"	id="numberfield"	step="5"	/></td>
 </tr>
 <tr>
 <td>Enter range</td>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

14

HtMLJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

14

HTML

	 <td><input	type="range"	id="rangefield"	min="100"	max="999"	/></td>
 </tr>
 <tr>
 <td>Enter email</td>
 <td>
	 <input	type="email"	id="mailfield"
 placeholder="poul.klausen@mail.dk" />
 </td>
 </tr>
 <tr>
 <td>Enter URL</td>
	 <td><input	type="url"	id="urlfield"	/></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit" /></td>
 </tr>
 </table>
 </form>
 </body>
</html>

The basic form element is input, and you specifies with a type attribut how to render the
element on the screen and what else it should be able to do with the element. The default
type is text, which means you can enter a single text line. Note (the first input element) that
you can specify required and that with a placeholder you can specify a hint for the text to
be entered. In particular, note the number and range types that indicate that you can only
enter numbers (the last is rendered as a slider), and note the two last ones to enter an email
address and a URL, respectively.

The basic form element is input, and you specifies with a type attribut how to render the
element on the screen and what else it should be able to do with the element. The default
type is text, which means you can enter a single text line. Note (the first input element) that
you can specify required and that with a placeholder you can specify a hint for the text to
be entered. In particular, note the number and range types that indicate that you can only
enter numbers (the last is rendered as a slider), and note the two last ones to enter an email
address and a URL, respectively.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

15

HtML

15

Note that the form is used solely as an example of which input elements exists and how to
validate data before sending to the server.

2.2 SCALABLE VECTOR GRAPHICS

In HTML5, it is also possible to work with geometric shapes like circles and rectangles.
Consider the following page:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

15

HTML

15

Note that the form is used solely as an example of which input elements exists and how to
validate data before sending to the server.

2.2 SCALABLE VECTOR GRAPHICS

In HTML5, it is also possible to work with geometric shapes like circles and rectangles.
Consider the following page:

<!DOCTYPE html>
<html>
 <head>
 <title>Graphics</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 </head>
 <body>
 <h1>Scalable Vector Graphics</h1>
 <svg height="200" width="500" xmlns="http://www.w3.org/2000/svg">
	 <circle	cx="50"	cy="50"	r="50"	fill="red"	/>
	 <rect	x="120"	y="0"	width="200"	height="100"	fill="blue"	/>

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

16

HtMLJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

16

HTML

 <line x1="0" y1="120" x2="320" y2="120" stroke-width="2"
 stroke="darkgreen" />
	 <polygon	points="390,0	440,120,	320,120"	fill="orange"	/>
 </svg>
 </body>
</html>

Opening the page in the browser gives you the result:

The code is easy enough to understand and you are encouraged to investigate what else
is available.

PROBLEM 1

The directtory for this book contains a document java12, that is a text document with the
text for the two first chapters in this book, where the text is saved as plan text without
formatting. The directory also has two png-files called screen1.png and screen2.png. The files
are the screen dumps shown in this chapter. The task is to create a web application with a
HTML document, that shows the content of the file java12 and the two images. The page
should only structure the text (display the content), you should not format the text. This
is the subject of a later problem.

Opening the page in the browser gives you the result:

The code is easy enough to understand and you are encouraged to investigate what else
is available.

PROBLEM 1

The directtory for this book contains a document java12, that is a text document with the
text for the two first chapters in this book, where the text is saved as plan text without
formatting. The directory also has two png-files called screen1.png and screen2.png. The files
are the screen dumps shown in this chapter. The task is to create a web application with a
HTML document, that shows the content of the file java12 and the two images. The page
should only structure the text (display the content), you should not format the text. This
is the subject of a later problem.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

17

CasCadIng styLe sHeets

3 CASCADING STYLE SHEETS

After the above about HTML, I’m ready for a short introduction on style sheets, and I will
take as the starting point the same program as in the previous chapter. I have added a new
HTML document to the project and called it styleddoc.html. The content is the same as
index.html and the goal is to show how the document’s visual presentation can be changed
using a style sheet. Initially I have created a directory resources and including a subdirectory
css and added a style sheet named styles.css:

Initially, it is nothing but an empty file. The document that has to use a style sheet must
have a link element in the header:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

17

CASCADINg STyLE SHEETS

3 CASCADING STYLE SHEETS

After the above about HTML, I’m ready for a short introduction on style sheets, and I will
take as the starting point the same program as in the previous chapter. I have added a new
HTML document to the project and called it styleddoc.html. The content is the same as
index.html and the goal is to show how the document’s visual presentation can be changed
using a style sheet. Initially I have created a directory resources and including a subdirectory
css and added a style sheet named styles.css:

Initially, it is nothing but an empty file. The document that has to use a style sheet must
have a link element in the header:

<head>
 <title>HTML Application</title>
 <meta charset="UTF-8">
 <link href="resources/css/styles.css" rel="stylesheet" type="text/css"/>
</head>

The syntax should be correct and you can easily drag the file into the document with the
mouse, and NetBeans will automatically insert the correct link.

The idea of style sheets is as mentioned to separate content and presentation. A style sheet
consists of styles identified by selectors, and as an example, I have added the following style
for a h1 selector to the style sheet:

h1 {
 font-size: 36pt;
 font-weight: bold;
 color: darkslateblue;
}

The syntax should be correct and you can easily drag the file into the document with the
mouse, and NetBeans will automatically insert the correct link.

The idea of style sheets is as mentioned to separate content and presentation. A style sheet
consists of styles identified by selectors, and as an example, I have added the following style
for a h1 selector to the style sheet:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

17

CASCADINg STyLE SHEETS

3 CASCADING STYLE SHEETS

After the above about HTML, I’m ready for a short introduction on style sheets, and I will
take as the starting point the same program as in the previous chapter. I have added a new
HTML document to the project and called it styleddoc.html. The content is the same as
index.html and the goal is to show how the document’s visual presentation can be changed
using a style sheet. Initially I have created a directory resources and including a subdirectory
css and added a style sheet named styles.css:

Initially, it is nothing but an empty file. The document that has to use a style sheet must
have a link element in the header:

<head>
 <title>HTML Application</title>
 <meta charset="UTF-8">
 <link href="resources/css/styles.css" rel="stylesheet" type="text/css"/>
</head>

The syntax should be correct and you can easily drag the file into the document with the
mouse, and NetBeans will automatically insert the correct link.

The idea of style sheets is as mentioned to separate content and presentation. A style sheet
consists of styles identified by selectors, and as an example, I have added the following style
for a h1 selector to the style sheet:

h1 {
 font-size: 36pt;
 font-weight: bold;
 color: darkslateblue;
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

18

CasCadIng styLe sHeets

18

Such a selector is called a type selector or an element selector and means that all of the
document’s h1 elements will use the style that the selector defines. You can thus define how
the headers of the document should be presented, and it will apply to all documents that
use that style sheet. Typically, you also wants to define a style for the body element, such
as defining the font to be used as default:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

18

CASCADINg STyLE SHEETS

18

Such a selector is called a type selector or an element selector and means that all of the
document’s h1 elements will use the style that the selector defines. You can thus define how
the headers of the document should be presented, and it will apply to all documents that
use that style sheet. Typically, you also wants to define a style for the body element, such
as defining the font to be used as default:

body {
 font-family: serif;
 font-size: 10pt;
}

You can also define styles for descendent selectors that occur with a space between two selectors:

section p {
 margin-left: 20px;
}

This selector indicates that a paragraph element must have a left indentation of 20, but
only for paragraphs that are nested in a section element.

You can also define styles for descendent selectors that occur with a space between two selectors:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

18

CASCADINg STyLE SHEETS

18

Such a selector is called a type selector or an element selector and means that all of the
document’s h1 elements will use the style that the selector defines. You can thus define how
the headers of the document should be presented, and it will apply to all documents that
use that style sheet. Typically, you also wants to define a style for the body element, such
as defining the font to be used as default:

body {
 font-family: serif;
 font-size: 10pt;
}

You can also define styles for descendent selectors that occur with a space between two selectors:

section p {
 margin-left: 20px;
}

This selector indicates that a paragraph element must have a left indentation of 20, but
only for paragraphs that are nested in a section element.
This selector indicates that a paragraph element must have a left indentation of 20, but
only for paragraphs that are nested in a section element.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

19

CasCadIng styLe sHeets

You can also define a so-called ID selector, known as it starts with the character #

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

19

CASCADINg STyLE SHEETS

You can also define a so-called ID selector, known as it starts with the character #

#content-list {
	font-size:	14pt;
 font-weight: bold;
 color: darkgray;
}

This selector is used by an element whose id is content-list, and as element’s id attribute
should be unique, there is only one element in a document that directly can use this style.
In this case, it is the following element:

<p id="content-list">Content</p>

Finally, you can define class selectors, starting with a point:

.default-text {
 width: 800px;
 color: #222222;
}

An element can use a class selector by directly specifying it with a class attribute:

<p class="default-text">In the book Java 11, … </p>

As another example of selectors, there is defined a class with the name forword that defines
the color as green:

.forword {
 color: darkgreen;
}

.forword h5 {
 color: darkred;
}

This selector is used by an element whose id is content-list, and as element’s id attribute
should be unique, there is only one element in a document that directly can use this style.
In this case, it is the following element:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

19

CASCADINg STyLE SHEETS

You can also define a so-called ID selector, known as it starts with the character #

#content-list {
	font-size:	14pt;
 font-weight: bold;
 color: darkgray;
}

This selector is used by an element whose id is content-list, and as element’s id attribute
should be unique, there is only one element in a document that directly can use this style.
In this case, it is the following element:

<p id="content-list">Content</p>

Finally, you can define class selectors, starting with a point:

.default-text {
 width: 800px;
 color: #222222;
}

An element can use a class selector by directly specifying it with a class attribute:

<p class="default-text">In the book Java 11, … </p>

As another example of selectors, there is defined a class with the name forword that defines
the color as green:

.forword {
 color: darkgreen;
}

.forword h5 {
 color: darkred;
}

Finally, you can define class selectors, starting with a point:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

19

CASCADINg STyLE SHEETS

You can also define a so-called ID selector, known as it starts with the character #

#content-list {
	font-size:	14pt;
 font-weight: bold;
 color: darkgray;
}

This selector is used by an element whose id is content-list, and as element’s id attribute
should be unique, there is only one element in a document that directly can use this style.
In this case, it is the following element:

<p id="content-list">Content</p>

Finally, you can define class selectors, starting with a point:

.default-text {
 width: 800px;
 color: #222222;
}

An element can use a class selector by directly specifying it with a class attribute:

<p class="default-text">In the book Java 11, … </p>

As another example of selectors, there is defined a class with the name forword that defines
the color as green:

.forword {
 color: darkgreen;
}

.forword h5 {
 color: darkred;
}

An element can use a class selector by directly specifying it with a class attribute:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

19

CASCADINg STyLE SHEETS

You can also define a so-called ID selector, known as it starts with the character #

#content-list {
	font-size:	14pt;
 font-weight: bold;
 color: darkgray;
}

This selector is used by an element whose id is content-list, and as element’s id attribute
should be unique, there is only one element in a document that directly can use this style.
In this case, it is the following element:

<p id="content-list">Content</p>

Finally, you can define class selectors, starting with a point:

.default-text {
 width: 800px;
 color: #222222;
}

An element can use a class selector by directly specifying it with a class attribute:

<p class="default-text">In the book Java 11, … </p>

As another example of selectors, there is defined a class with the name forword that defines
the color as green:

.forword {
 color: darkgreen;
}

.forword h5 {
 color: darkred;
}

As another example of selectors, there is defined a class with the name forword that defines
the color as green:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

19

CASCADINg STyLE SHEETS

You can also define a so-called ID selector, known as it starts with the character #

#content-list {
	font-size:	14pt;
 font-weight: bold;
 color: darkgray;
}

This selector is used by an element whose id is content-list, and as element’s id attribute
should be unique, there is only one element in a document that directly can use this style.
In this case, it is the following element:

<p id="content-list">Content</p>

Finally, you can define class selectors, starting with a point:

.default-text {
 width: 800px;
 color: #222222;
}

An element can use a class selector by directly specifying it with a class attribute:

<p class="default-text">In the book Java 11, … </p>

As another example of selectors, there is defined a class with the name forword that defines
the color as green:

.forword {
 color: darkgreen;
}

.forword h5 {
 color: darkred;
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

20

CasCadIng styLe sHeets

The last style means that a h5 element under an element whose style is forword appears in
red text:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

20

CASCADINg STyLE SHEETS

The last style means that a h5 element under an element whose style is forword appears in
red text:

<article class="forword">
	<h4	id="forword">Forword</h4>
 <section>
 <h5>About this book</h5>
 <p>Here is the text</p>
 </section>
</article>

You can also define selectors that relates to attributes. As an example, the following style means:

h4[id]	{
 color: darkred;
}

that all h4 elements that have an id attribute must be displayed with a dark red text. As
another example, the HTML element abbr can be used to display a tooltip:

<h5>HTML <abbr title="Introduction to HTML syntax">syntax</abbr></h5>

Here, the value of the attribute title will be displayed as a tooltip if the mouse is pointing
to the word syntax. Consider the following styles:

abbr[title]	{
 color: gray;
}

abbr[title]:hover	{
 color: red;
}

They define that for all abbr elements with a title attribute, the text should appear gray and
holding the mouse over the text (mouse ower), the text should appear red.

You can also define selectors that relates to attributes. As an example, the following style means:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

20

CASCADINg STyLE SHEETS

The last style means that a h5 element under an element whose style is forword appears in
red text:

<article class="forword">
	<h4	id="forword">Forword</h4>
 <section>
 <h5>About this book</h5>
 <p>Here is the text</p>
 </section>
</article>

You can also define selectors that relates to attributes. As an example, the following style means:

h4[id]	{
 color: darkred;
}

that all h4 elements that have an id attribute must be displayed with a dark red text. As
another example, the HTML element abbr can be used to display a tooltip:

<h5>HTML <abbr title="Introduction to HTML syntax">syntax</abbr></h5>

Here, the value of the attribute title will be displayed as a tooltip if the mouse is pointing
to the word syntax. Consider the following styles:

abbr[title]	{
 color: gray;
}

abbr[title]:hover	{
 color: red;
}

They define that for all abbr elements with a title attribute, the text should appear gray and
holding the mouse over the text (mouse ower), the text should appear red.

that all h4 elements that have an id attribute must be displayed with a dark red text. As
another example, the HTML element abbr can be used to display a tooltip:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

20

CASCADINg STyLE SHEETS

The last style means that a h5 element under an element whose style is forword appears in
red text:

<article class="forword">
	<h4	id="forword">Forword</h4>
 <section>
 <h5>About this book</h5>
 <p>Here is the text</p>
 </section>
</article>

You can also define selectors that relates to attributes. As an example, the following style means:

h4[id]	{
 color: darkred;
}

that all h4 elements that have an id attribute must be displayed with a dark red text. As
another example, the HTML element abbr can be used to display a tooltip:

<h5>HTML <abbr title="Introduction to HTML syntax">syntax</abbr></h5>

Here, the value of the attribute title will be displayed as a tooltip if the mouse is pointing
to the word syntax. Consider the following styles:

abbr[title]	{
 color: gray;
}

abbr[title]:hover	{
 color: red;
}

They define that for all abbr elements with a title attribute, the text should appear gray and
holding the mouse over the text (mouse ower), the text should appear red.

Here, the value of the attribute title will be displayed as a tooltip if the mouse is pointing
to the word syntax. Consider the following styles:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

20

CASCADINg STyLE SHEETS

The last style means that a h5 element under an element whose style is forword appears in
red text:

<article class="forword">
	<h4	id="forword">Forword</h4>
 <section>
 <h5>About this book</h5>
 <p>Here is the text</p>
 </section>
</article>

You can also define selectors that relates to attributes. As an example, the following style means:

h4[id]	{
 color: darkred;
}

that all h4 elements that have an id attribute must be displayed with a dark red text. As
another example, the HTML element abbr can be used to display a tooltip:

<h5>HTML <abbr title="Introduction to HTML syntax">syntax</abbr></h5>

Here, the value of the attribute title will be displayed as a tooltip if the mouse is pointing
to the word syntax. Consider the following styles:

abbr[title]	{
 color: gray;
}

abbr[title]:hover	{
 color: red;
}

They define that for all abbr elements with a title attribute, the text should appear gray and
holding the mouse over the text (mouse ower), the text should appear red.
They define that for all abbr elements with a title attribute, the text should appear gray and
holding the mouse over the text (mouse ower), the text should appear red.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

21

CasCadIng styLe sHeets

21

Attributes as selectors can be especially interesting for custom attributes. Consider the
following paragraph:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

21

CASCADINg STyLE SHEETS

21

Attributes as selectors can be especially interesting for custom attributes. Consider the
following paragraph:

<p data-marked>Here is the text</p>

For example, if you want all paragraphs with this attribute to appear with a large font, you
can write:

p[data-marked]	{
	font-size:	48pt;
}

You are encouraged to study the final result (the document styleddoc.html) and especially
the finished style sheet.

For example, if you want all paragraphs with this attribute to appear with a large font, you
can write:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

21

CASCADINg STyLE SHEETS

21

Attributes as selectors can be especially interesting for custom attributes. Consider the
following paragraph:

<p data-marked>Here is the text</p>

For example, if you want all paragraphs with this attribute to appear with a large font, you
can write:

p[data-marked]	{
	font-size:	48pt;
}

You are encouraged to study the final result (the document styleddoc.html) and especially
the finished style sheet.
You are encouraged to study the final result (the document styleddoc.html) and especially
the finished style sheet.

http://s.bookboon.com/elearningforkids

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

22

CasCadIng styLe sHeets

3.1 MORE SELECTORS

The example StyledDocument consists of a single HTML document as well as a style sheet.
If you open the document in the browser, the result is:

I do not want to show the document here, as there is not much news of explaining. The
style sheet is as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

22

CASCADINg STyLE SHEETS

3.1 MORE SELECTORS

The example StyledDocument consists of a single HTML document as well as a style sheet.
If you open the document in the browser, the result is:

I do not want to show the document here, as there is not much news of explaining. The
style sheet is as follows:

p {
 margin-left: 30px;
 font-size: 10px;
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

23

CasCadIng styLe sHeetsJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

23

CASCADINg STyLE SHEETS

.queens	{
 margin-left: 10px;
}

.queens	>	article	>	h2	{
 margin-left: 20px;
 font-size: 18px;
 color: red;
}

#regent + p {
 color: blue;
}

p > span {
 font-weight: bold;
 color: darkgreen;
}

#blueking ~ p {
 font-size: 12px;
}

* {
 color: gray;
}

.king {
 margin-left: 20px;
}

.king > * {
 color: orange;
}

p[data-info="to"]	{
 color: magenta;
}

p[data-info="from"]	{
 color: maroon;
}

p[data-info*="th"]	{
 color: pink;
 font-weight: bold;
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

24

CasCadIng styLe sHeets

24

The first two styles do not require further explanation. The third identifies elements with
the class queens including child elements of the type article and again including h2 child
elements, and then h2 elements under article elements under elements with the class .queens.

The fourth style defines a paragraph that is next sibling to an element with id regent. The
fifth style is used by a span element, which is child of a paragraph element. The sixth style
is used by all elements that are siblings of an element with id blueking.

A * is used as a selector for all elements (rarely used directly), but in combination with
other selectors it can be used to style all elements in a subtree. In this case, means

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

24

CASCADINg STyLE SHEETS

24

The first two styles do not require further explanation. The third identifies elements with
the class queens including child elements of the type article and again including h2 child
elements, and then h2 elements under article elements under elements with the class .queens.

The fourth style defines a paragraph that is next sibling to an element with id regent. The
fifth style is used by a span element, which is child of a paragraph element. The sixth style
is used by all elements that are siblings of an element with id blueking.

A * is used as a selector for all elements (rarely used directly), but in combination with
other selectors it can be used to style all elements in a subtree. In this case, means

.king > *

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

25

CasCadIng styLe sHeets

all elements under elements with the class king. Finally, there are the three last styles that
relate to attributes. Here they are used two a paragraph with the attribute data-info, and
in particular you can select the attributes text:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

25

CASCADINg STyLE SHEETS

all elements under elements with the class king. Finally, there are the three last styles that
relate to attributes. Here they are used two a paragraph with the attribute data-info, and
in particular you can select the attributes text:

 - [attr^="text"] attributes which starts with text
 - [attr$="text"] attributes which ends with text
 - [attr*="text"] attributes which contains text

and there are actually a few more options.

3.2 STYLES

Above I have shown examples of how to refer from a style sheet to the individual elements
in the HTML tree, but there are quite a few other areas where styles are available, and
where you should know what they means – and there are really many. Styling an HTML
document is an extensive topic, and an adequate processing of styles is beyond the scope of
this book. In this section I will outline some of the basic principles, but there is much more,
and in general, in software development it is an area that requires considerable expertise
before designing modern web applications. However, I would like to emphasize once again
that the development tool usually supports styling and is a significant help in practice,
although it is by no means always easy to understand the effects of the many possibilities.

Basics styling includes:

 - how much the elements fill in the browser
 - where the elements are located
 - how the content of the individual elements is formatted, including fonts and colors

Basically, an HTML element appears as a box:

and there are actually a few more options.

3.2 STYLES

Above I have shown examples of how to refer from a style sheet to the individual elements
in the HTML tree, but there are quite a few other areas where styles are available, and
where you should know what they means – and there are really many. Styling an HTML
document is an extensive topic, and an adequate processing of styles is beyond the scope of
this book. In this section I will outline some of the basic principles, but there is much more,
and in general, in software development it is an area that requires considerable expertise
before designing modern web applications. However, I would like to emphasize once again
that the development tool usually supports styling and is a significant help in practice,
although it is by no means always easy to understand the effects of the many possibilities.

Basics styling includes:

 - how much the elements fill in the browser
 - where the elements are located
 - how the content of the individual elements is formatted, including fonts and colors

Basically, an HTML element appears as a box:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

26

CasCadIng styLe sHeets

In the middle you have the content (if there is a content) and without having padding, which
indicates how much space there should be outside of the content. For an element with a
style, the width and height will in most cases mean the size of the content area inclusive
padding, but it can be changed with box-sizing. Around the padding there may be a border,
and finally there may be a margin about all of it. For example, if you specify a background
color, it will relate to the entire padding area. You should especially note that the margin
area is transparent and is thus only used to create spaces between the elements. You should
be aware that if elements are vertically aligned and two margins (top and bottom) meet,
they are automatically collapsed to one whose height is the largest of the two.

Many elements such as p, h, and article elements behave as described above and show the
contents as a block and are therefore called block boxes. Others such as strong and span are
called inline boxes as they format the content of a line. How the different elements show their
content can be defined by display and thus override how they as default shows their content.
Elements can be laid out by the browser in several ways, but the default is static, and for
block boxes, it means that they are placed vertically underneath each other, whereas for inline
boxes it means that they are laid out horizontally on the same line and wraps as required.

As mentioned, the position of elements is defined as static, which means that the elements
float in the window, but you can define other options, as are best illustrated by an example.
If you open the application PositionDocument in the browser, you get the window:

The elements are all span elements that are rendered in the following order:

1. Gorm den gamle
2. Harald Blåtand
3. Svend Tveskæg
4. Harald d. 2.
5. Knud den store
6. Hardeknud

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

27

CasCadIng styLe sHeets

27

Unless otherwise stated, they would be laid out in one row which would wrap if the line
was too long. In this case, the two first and the last are laid out in default (static) positions,
while the third has relative position, which means that it is laid out relative to the previous
element, as is Harald Blåtand. You should note that the last element (Hardeknud) is laid
out as if the element Svend Tveskeg was laid out in default position and that the position
of the previous two is ignored as they are laid out as absolute and fixed position respectively.
Absolute means that the element is placed in a fixed position relative to the upper left corner
of the document. Fixed is a variant, but here the element is also placed in a fixed position,
but this time relative to the part of the document that is visible. You can illustrate the
difference by changing the size of the window and then scrolling it:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

28

CasCadIng styLe sHeets

The code is shown below:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

28

CASCADINg STyLE SHEETS

The code is shown below:

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <style>
 .normal {
 background: yellow;
 border: 1px solid gray;
 padding: 5px;
 }
 .relative {
 background: magenta;
 color: white;
 border: 1px solid black;
 padding: 10px;
 position: relative;
 left: 50px;
 top: 30px;
 }
 .absolute {
 background: red;
 color: white;
 border: 1px solid blue;
 padding: 15px;
 position: absolute;
 left: 50px;
 top: 80px;
 }
	 .fixed	{
 background: blue;
 color: white;
 border: 1px solid black;
 padding: 2px;
	 position:	fixed;
 left: 150px;
 top: 80px;
 }
 </style>
 </head>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

29

CasCadIng styLe sHeetsJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

29

CASCADINg STyLE SHEETS

 <body>
 Gorm den gamle
 Harald Blåtand
 Svend Tveskæg
 Harald d. 2.
	 Knud	den	store
 Hardeknud
 </body>
</html>

Styling includes much more than what has been said in this chapter, but the above should
be enough to get an idea of what is possible. Often you are in the situation that you want
to achieve a certain effect on an element, but you do not know what to write. Here is the
best source actually the Internet, where there are countless examples of how to style different
HTML elements. As a conclusion, I have added a document called styledform.html to the
project HtmlApplication. The document shows the same form as previously mentioned, but
this time no table is used and the elements are placed only by styling:

You are encouraged to study the document and especially the corresponding style sheet,
and how the individual elements are styled.

Styling includes much more than what has been said in this chapter, but the above should
be enough to get an idea of what is possible. Often you are in the situation that you want
to achieve a certain effect on an element, but you do not know what to write. Here is the
best source actually the Internet, where there are countless examples of how to style different
HTML elements. As a conclusion, I have added a document called styledform.html to the
project HtmlApplication. The document shows the same form as previously mentioned, but
this time no table is used and the elements are placed only by styling:

You are encouraged to study the document and especially the corresponding style sheet,
and how the individual elements are styled.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

30

CasCadIng styLe sHeets

30

PROBLEM 2

Start with a copy of the project from problem 1. You must then add a style sheet to the
project so you uses styles to format the document so it looks like the finished version of
the book. All styles should be in the style sheet and you must expand the document with
the necessary ID and class definitions.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

31

JavasCrIpt

4 JAVASCRIPT

I will then give an introduction to JavaScript, which is the preferred language for code on
the client side. The language has essentially the same syntax as Java, but otherwise the two
languages do not have anything in common, and JavaScript is even a language that is very
different from Java, but if you want to work professional as a web developer, you has to
know JavaScript. Therefore, this chapter.

JavaScript is an interpreted programming language, and the source code are as Java just text,
but unlike Java, the code is not translated, but is sent as text to the browser, which has a
built-in interpreter that interprets the JavaScript code. It is a real interpreter who interprets
the code statement for statement and execute each statement before the next is interpreted
and performed. To show what JavaScript is, I want to start with a very simple example,
called LoadingDocument. There is only one file index.html whose content is:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

31

JAVASCRIPT

4 JAVASCRIPT

I will then give an introduction to JavaScript, which is the preferred language for code on
the client side. The language has essentially the same syntax as Java, but otherwise the two
languages do not have anything in common, and JavaScript is even a language that is very
different from Java, but if you want to work professional as a web developer, you has to
know JavaScript. Therefore, this chapter.

JavaScript is an interpreted programming language, and the source code are as Java just text,
but unlike Java, the code is not translated, but is sent as text to the browser, which has a
built-in interpreter that interprets the JavaScript code. It is a real interpreter who interprets
the code statement for statement and execute each statement before the next is interpreted
and performed. To show what JavaScript is, I want to start with a very simple example,
called LoadingDocument. There is only one file index.html whose content is:

<!DOCTYPE html>
<html>
 <head>
 <title>LoadingDocument</title>
 <meta charset="UTF-8">
 <script>
 hello = 'Hello';

 function show() {
 alert(hello);
 hello += ' World';
 }
 </script>
 </head>
 <body>
 <h1>Welcome</h1>
 <script>show();</script>
 <h2>Go on</h2>
 <script>alert(hello);</script>
	 <h3>OK</h3>
 </body>
</html>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

32

JavasCrIpt

In the head section there is a script element and it is an element that can contain JavaScript
code. In this case, a variable and a function are defined. The variable is called hello, and it is
initialized with the text “Hello”. In principle, JavaScript uses variables as other programming
languages, including Java, but you should primarily note that the variable has no type.
The script block also has a function that basically works as a method in Java and can be
executed by calling it. In this case the function is called show() and it has two statements.
The first is an alert() which opens a simple popup that shows the value of the variable
hello. The next statement changes the value of the variable, and here you should notice that
the syntax is, as you know it from Java. If the application is opend in the browser, it will
render the body of the document from start to finish, starting with the following window
where the h1 element is rendered (see below). After the h1 element is rendered there is a
new script element

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

32

JAVASCRIPT

In the head section there is a script element and it is an element that can contain JavaScript
code. In this case, a variable and a function are defined. The variable is called hello, and it is
initialized with the text “Hello”. In principle, JavaScript uses variables as other programming
languages, including Java, but you should primarily note that the variable has no type.
The script block also has a function that basically works as a method in Java and can be
executed by calling it. In this case the function is called show() and it has two statements.
The first is an alert() which opens a simple popup that shows the value of the variable
hello. The next statement changes the value of the variable, and here you should notice that
the syntax is, as you know it from Java. If the application is opend in the browser, it will
render the body of the document from start to finish, starting with the following window
where the h1 element is rendered (see below). After the h1 element is rendered there is a
new script element

<script>show();</script>

which calls the JavaScript function show(), that means that the browser stops and opens
a popup:
which calls the JavaScript function show(), that means that the browser stops and opens
a popup:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

33

JavasCrIpt

33

The browser will continue to render the document when clicking OK, and the browser will
then render the h2 element:

http://s.bookboon.com/EOT

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

34

JavasCrIpt

Then immediately a script element follows, which this time just performs an alert() which
in a popup shows the value of the variable hello:

Here you should note that the variable has been changed in the show() function. After the
above popup is displayed, the browser resumes until clicked on OK, after which the browser
renders the last h3 element, and only then the entire document is parsed and displayed in
the browser:

The above example shows a bit about what JavaScript is and how to add JavaScript to an
HTML document, but not what JavaScript can be used for what is the goal of the following.
First, however, I would like to see a little more on the syntax of the language.

4.1 NATURE OF LANGUAGES

When you start with JavaScript and come from other languages such as Java, there are
primarily three things that may seem very different:

 - Variables scope
 - Types
 - Objects and inheritance

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

35

JavasCrIpt

and it’s actually the three things that make programming in JavaScript much different than,
for example, Java programming. As mentioned, JavaScript is an interpreted language and
JavaScript code is sent to the browser along with the HTML code. The browser then has
a built-in interpreter that interprets and executes the code’s statements. The execution ends
when all the code is executed correctly or when the interpreter comes to a statement that
fails. It is not, therefore, as a Java program, where the entire program is translated to Java
Byte Code before the program can be run by the Java runtime system. JavaScript is a type-
weak language, where variables should not be declared by a particular type. It is not the same
as that the language is typeless, but it means that a variable can change type and that the
current type is determined by the value of the variable and how the variable is used. There
are a number of rules for the language’s type compatibility, rules that are quite complex and
some of the things that I will explain below. JavaScript is not object-oriented in classical
sense, but conversely, objects play a major role in the language. However, compared to Java,
for example, there is a very big difference in how to create and inherit objects. Perhaps the
biggest difference between JavaScript and other languages are functions, since functions are
actually objects that may have properties and methods.

The aim of this section is to illustrate some of these many concepts without having all the
details, but to such an extent that you can use JavaScript in connection with web application
development. When the browser parses a HTML document, it builds a tree consisting of
the document’s elements. The tree is called DOM (for Document Object Model), and the
purpose of JavaScript is accurately to modify this tree.

The DOM tree

JavaScript can be placed anywhere in the document, but when the document is loaded, the
browser parses the document and builds the DOM tree. If the browser meets any JavaScript,
it will also perform it, and therefore it may only work if the element that the script refers
to is already part of the DOM tree. Consider the following example:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

35

JAVASCRIPT

and it’s actually the three things that make programming in JavaScript much different than,
for example, Java programming. As mentioned, JavaScript is an interpreted language and
JavaScript code is sent to the browser along with the HTML code. The browser then has
a built-in interpreter that interprets and executes the code’s statements. The execution ends
when all the code is executed correctly or when the interpreter comes to a statement that
fails. It is not, therefore, as a Java program, where the entire program is translated to Java
Byte Code before the program can be run by the Java runtime system. JavaScript is a type-
weak language, where variables should not be declared by a particular type. It is not the same
as that the language is typeless, but it means that a variable can change type and that the
current type is determined by the value of the variable and how the variable is used. There
are a number of rules for the language’s type compatibility, rules that are quite complex and
some of the things that I will explain below. JavaScript is not object-oriented in classical
sense, but conversely, objects play a major role in the language. However, compared to Java,
for example, there is a very big difference in how to create and inherit objects. Perhaps the
biggest difference between JavaScript and other languages are functions, since functions are
actually objects that may have properties and methods.

The aim of this section is to illustrate some of these many concepts without having all the
details, but to such an extent that you can use JavaScript in connection with web application
development. When the browser parses a HTML document, it builds a tree consisting of
the document’s elements. The tree is called DOM (for Document Object Model), and the
purpose of JavaScript is accurately to modify this tree.

The DOM tree

JavaScript can be placed anywhere in the document, but when the document is loaded, the
browser parses the document and builds the DOM tree. If the browser meets any JavaScript,
it will also perform it, and therefore it may only work if the element that the script refers
to is already part of the DOM tree. Consider the following example:

<!DOCTYPE html>
<html>
 <head>
 <title>Simple HTML5 document</title>
 <style type="text/css">
 h1.blueStyle {
 color: blue;
 }
 span.boldStyle {
 font-weight: bold;
 }
 p.redStyle {

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

36

JavasCrIpt

36

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

36

JAVASCRIPT

36

 color: red;
 }
 </style>

 <script>
 function print(name) {
 document.write("<p>" + name + "</p>");
 }
 </script>
 </head>
 <body>
 <h1 id="idHeader" class="blueStyle">DOM</h1>
 <p id="idParagraph">This article deals with
 Regnar Lodbrog</p>
 <p>A Danish vikings</p>
 <script>
 alert(document.title);
 alert(document.getElementById("idParagraph").innerText);
 var pars = document.getElementsByTagName("p");
 for (var i = 0; i < pars.length; ++i) {
	 pars[i].className	=	"redStyle";
 }
 alert(pars.length);

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

37

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

37

JAVASCRIPT

 var spans = document.getElementsByTagName("span");
 for (var i = 0; i < spans.length; ++i) {
	 spans[i].style.color	=	"green";
 }
 var classes = document.getElementsByClassName("boldStyle");
 for (var i = 0; i < classes.length; ++i) {
	 classes[i].style.fontStyle	=	"italic";
 }
 </script>
 <div id="names">
 <p>Svend</p>
	 <p>Knud</p>
 <p>Valdemar</p>
 </div>
 <script>
 var nodes = document.getElementById("names").childNodes;
 print(nodes.length);
 for (var i = 0; i < nodes.length; ++i) {
	 print(nodes[i].nodeName);
 }
 var parent = document.getElementById("names");
	 for	(var	node	=	parent.firstChild.nextSibling;	;	node	=	node.nextSibling)	{
 print(node.innerText);
 node = node.nextSibling;
 if (node == parent.lastChild) {
 break;
 }
 }
 </script>
 </body>
</html>

The example should show what happens when the browser loads a document with JavaScript
and how to refer to an item in the DOM hierarchy. Note first that a style sheet has been
defined in the header. In addition, a script element has been defined that defines a single
JavaScript function called print(). The function prints a name as a paragraph, which means that
the function inserts a paragraph element in the place where the function is called. The browser
will not perform the function at this location, it is only a definition of a function. The body
part starts with a h1 element and two paragraphs, and the browser starts displaying these items

The example should show what happens when the browser loads a document with JavaScript
and how to refer to an item in the DOM hierarchy. Note first that a style sheet has been
defined in the header. In addition, a script element has been defined that defines a single
JavaScript function called print(). The function prints a name as a paragraph, which means that
the function inserts a paragraph element in the place where the function is called. The browser
will not perform the function at this location, it is only a definition of a function. The body
part starts with a h1 element and two paragraphs, and the browser starts displaying these items

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

38

JavasCrIpt

38

It’s not that much mystery in it, but after the browser has interpreted the above elements,
a script part comes, and here an alert() that shows a text. This means, as shown in the
previous example, that the browser stops and waits for the user to click on OK. When
that happens, the browser continues to process the document and the next element is
another alert() that shows the text in the first paragraph. You should note how to refer to
an element with a specific ID and how to refer to the element’s text with innerText. The
alert() shows the entire text, including the text in the span element, but the last part is not
bold, as JavaScript does not interpret HTML. When you click OK, the browser continues
to interpret and execute JavaScript statements. Here is pars an array of all p elements – at
that time there are 2 – and the subsequent loop sets their class to redStyle, after which the
text becomes red – also the text in the 2 span elements. Once that happens, a new alert()
is performed, which shows the length of the array pars, and the primary purpose is to have
the parser stop so that you can see that all the text in the two paragraphs is red:

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

39

JavasCrIpt

When you click OK, the browser continues to perform JavaScript. spans is similarly an array
with all span elements (there are 2) and the following loop sets the text to green.

The last part of the script starts by determining an array classes that contain all elements
with the class boldStyle. Next, the font for these elements is italicized, and the result is that
the browser shows the following:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

40

JavasCrIpt

The three names of Danish kings are simple HTML paragraphs, and they help to show
that the browser first inserts these elements into the DOM tree after the first script block
is completed. Then follow another script block. Here, nodes are an array with all child
nodes to a div element. There are 7 child nodes that were not what you would expect, but
the reason is that the plain text between the individual paragraphs also counts as a node.
Next, a variable parent is created that refers to the div element. The subsequent loop iterates
over all child nodes to parent starting from the first node. The loop skips the blank text
elements and prints the text for paragraph elements. Please note that the loop stops with
a break when you get to lastChild.

There are a few things that you should notice. JavaScript uses the dot notation to refer to
objects’ properties and methods – just as it is known from Java. In addition, please note
that an alert() stops the browser’s parsing of the document, and alert() may therefore be a
useful tool for debugging JavaScript.

Objects in JavaScript

JavaScript is an object-oriented language, but there is nothing similar to a class, and the
only method of constructing new objects is by prototyping, which is a form of copying
an existing object. In this way, a new object is created, which one can best think of as a
copy of another object. A bit more precisely, any object in JavaScript has a property called
prototype, and this property refers to all properties (properties and methods) inherited
from the parent object. This means that if you try to refer to a property or method of an
object, the interpreter will first check if that property is defined for the object in question.
If this is not the case, the object to which prototype refers is checked, and neither is the
property found in the hierarchy until it reaches an object where the property is defined or
the interpreter can conclude that the object is undefined. Properties and methods can be
overridden, and any overrides will affect the object where the override is defined and down
in the inheritance hierarchy. It is best to think of this form of inheritance as a simple list,
where prototype refers to the previous (parent) element. An important consequence of this
inheritance is that a change of property of an object is important for all objects down in
the hierarchy hierarchy.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

41

JavasCrIpt

The following example should illustrate some of these concepts, and especially the syntax
for how to create objects:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

41

JAVASCRIPT

The following example should illustrate some of these concepts, and especially the syntax
for how to create objects:

<!DOCTYPE html>
<html>
 <head>
 <title>Prototypal inheritance</title>
 <script>
 var obj0 = {
 a: 23,
	 b:	29
 }

 var obj1 = Object.create(obj0);
 var obj2 = Object.create(obj1);
 </script>
 </head>
 <body>
 <h1>Prototypal arv</h1>
 <script>
 alert(obj2.a);
	 obj0.a	=	19;
 alert(obj1.a);
 alert(obj2.a);
	 obj1.c	=	41;
 alert(obj0.c);
 alert(obj1.c);
 alert(obj2.c);
 obj0.toString =
 function () { return this.a + this.b + this.c; }
 alert(obj1);
 alert(obj0);
 </script>
 </body>
</html>

In the document’s header is a script block that creates three objects. The first is obj0 and
has two properties with the values 23 and 29 respectively. Next, two objects obj1 and obj2
are created, both of which are extensions of obj0, but at that time the three objects have
the same properties.

In the document’s header is a script block that creates three objects. The first is obj0 and
has two properties with the values 23 and 29 respectively. Next, two objects obj1 and obj2
are created, both of which are extensions of obj0, but at that time the three objects have
the same properties.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

42

JavasCrIpt

42

The body part starts rendering an h1 element, but otherwise the rest is a script block. Next,
an alert() is used to show the value of the property a at obj0 and the result is a popup
that displays the value 13. Next, a is changed to 19 and then the value of a for obj1 and
obj2 are shown, which in both cases is 19, corresponding to that obj1 and obj2 inherit the
value from obj0. As a next step is assigned a property c to obj1 with the value 41. Here you
should note that you can immediately create a property for an object and assign it a value,
and this property is not known from the parent object. Therefore, the three next alert()
statements will show undefined, 41 and 41, since c is not known from obj0, but from obj1
and obj2 (obj2 inherit obj1).

obj0 inherits an empty top object called Object and thus particular has a toString() method.
Therefore, both obj1 and obj2 have a toString() method and the next statement overrides
toString() for obj0. The two last alert() statements will show 89 (the sum of the three
properties a, b and c, known from obj1) and NaN, since toString() can not perform the
function from obj0, where c is not known.

http://s.bookboon.com/GTca

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

43

JavasCrIpt

Scope

In JavaScript, there are slightly different rules for the scope of variables than in Java, since
variables have functional scope. That is to say, a variable defined in a function is known
only in the function, but in return throughout the function wherever it is defined. The
variable is also known in any nested functions. You should also be aware that JavaScript
uses hoisting, which means that a variable can be used anywhere in the function where it is
created – even before it is defined. The reason is that the interpreter starts creating variables
as that the variables all were defined at the start of the function. However, you must note
that a variable at that time is not necessarily assigned a value.

A variable can also have global scope, which is the case if it is defined outside of a function,
and such a variable can be used anywhere in the document. Normally, you write var in
front of a variable when created, but it is actually not necessary (but can be recommended).
A variable defined without var has automatic global scope wherever it is created.

In most programming languages, a variable is removed when the program leave the scope
where the variable is defindes, and it is also the case in JavaScript. That is, variables are
created when the function in which they are defined is performed. It is at least the basic
rule, but it does not necessarily apply. The reason is that in JavaScript a function is itself an
object, and a function can thus return a function, and for example it can return an internal
function. This inner function can refer to a variable in the enclosing function, and thus
there may be a reference to a local variable after a function has been completed. If so, the
variable will not be removed, a fact called closures.

Basically, in JavaScript, there are not so many challenges regarding variables’ scope (maybe
just except closures), and the following document, called ScopeDocument, should illustrate
the most important scope rules:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

43

JAVASCRIPT

Scope

In JavaScript, there are slightly different rules for the scope of variables than in Java, since
variables have functional scope. That is to say, a variable defined in a function is known
only in the function, but in return throughout the function wherever it is defined. The
variable is also known in any nested functions. You should also be aware that JavaScript
uses hoisting, which means that a variable can be used anywhere in the function where it is
created – even before it is defined. The reason is that the interpreter starts creating variables
as that the variables all were defined at the start of the function. However, you must note
that a variable at that time is not necessarily assigned a value.

A variable can also have global scope, which is the case if it is defined outside of a function,
and such a variable can be used anywhere in the document. Normally, you write var in
front of a variable when created, but it is actually not necessary (but can be recommended).
A variable defined without var has automatic global scope wherever it is created.

In most programming languages, a variable is removed when the program leave the scope
where the variable is defindes, and it is also the case in JavaScript. That is, variables are
created when the function in which they are defined is performed. It is at least the basic
rule, but it does not necessarily apply. The reason is that in JavaScript a function is itself an
object, and a function can thus return a function, and for example it can return an internal
function. This inner function can refer to a variable in the enclosing function, and thus
there may be a reference to a local variable after a function has been completed. If so, the
variable will not be removed, a fact called closures.

Basically, in JavaScript, there are not so many challenges regarding variables’ scope (maybe
just except closures), and the following document, called ScopeDocument, should illustrate
the most important scope rules:

<!DOCTYPE html>
<html>
 <head>
 <title>Scope</title>
 <script>
	 var	c	=	4;

 function test1() {
 var a = 1;
 var b = 3;
 function test2() {
 var a = 2;
 alert(a);

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

44

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

44

JAVASCRIPT

 alert(b);
 c = 5;
 alert(c);
 }
 test2();
 alert(a);
 }

 function power2() {
 var n = 1;
 function next() {
 n *= 2;
 return n;
 }
 return next;
 }
 </script>
 </head>
 <body>
 <h1>Test scope</h1>
 <script>
 test1();
 alert(c);
 // alert(a);
 var f = power2();
 var g = power2();
 document.write("<p>");
 for (var i = 0; i < 5; ++i) document.write(f() + " ");
 document.write("</p>");
 document.write("<p>");
 for (var i = 0; i < 5; ++i) document.write(g() + " ");
 document.write("</p>");
 document.write("<p>");
 for (var i = 0; i < 5; ++i) document.write(f() + " ");
 document.write("</p>");
 document.write("<p>");
 for (var i = 0; i < 5; ++i) document.write(g() + " ");
 document.write("</p>");
 </script>
 </body>
</html>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

45

JavasCrIpt

45

If you start in the script block in the header of the document, a variable c is defined. It
is defined outside of all functions and has global scope and is known everywhere. Next,
a function test1() is defined with two local variables a and b. They are known only in the
function test1() and are thus also known in principle in the nested function test2(). However,
only b applies, since test2() also defines a local variable a that hides the variable a defined
in test1(). The function test2() shows the value of its local variable a and the local variable
b from test1(). In addition, test2() initializes the global variable c and shows its value. The
function test2() is called from the external function test1(), which finally shows the value
of its local variable a.

There is also defined a function power2(), which will illustrate the term closure. power2()
has a local variable n, and it returns a function next() that uses (refers) to this variable. This
means that there is a reference to the variable n after prowe2() terminates and hence n is
not removed – that is called closure.

The body part starts with an h1 element, after which test1() is called. Note that this means
that the internal function test2() is also performed. Next, the value of the global variable c
is displayed. If you try to show the value of the variable a, it is not defined in this location,
and rendering of the document would be interrupted.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

46

JavasCrIpt

As the next step, two references f and g are defined for power2() and the result is that the
function power2() is performed twice, and partly that f and g refer to a function with each
their copy of the local variable n. It is illustrated by the following loops that perform the
functions that f and g refers to, and thus each works on their copy of the local variable n. If
the page is opened in the browser, the following popups will appear and shows the values:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

46

JAVASCRIPT

As the next step, two references f and g are defined for power2() and the result is that the
function power2() is performed twice, and partly that f and g refer to a function with each
their copy of the local variable n. It is illustrated by the following loops that perform the
functions that f and g refers to, and thus each works on their copy of the local variable n. If
the page is opened in the browser, the following popups will appear and shows the values:

2
3
5
1
5

and finally the page shows

Data typer

When you meet JavaScript, it may seem that the language is typeless, but it is not the
case. It is only a matter of the interpreter deciding the type of variables from the context,
which means, among other things, that a variable can change its type. In the next section
on syntax, I will describe the type concept in JavaScript in more detail, but basically there
are four types:

1. Boolean, which are variables or expressions whose value is false or true
2. Number, which is numbers and everywhere is 64 bits floating numbers
3. String, to strings
4. Object, which are collections consisting of properties and methods, which cover

anything other than the above three types

This type system involves several things, including, among other things, that there constantly
must occurs type conversions. It’s far from simple and something that I want to look at in
the next section, but below is an example (TypeDocument) that can illustrate a bit about
types and JavaScript:

and finally the page shows

Data typer

When you meet JavaScript, it may seem that the language is typeless, but it is not the
case. It is only a matter of the interpreter deciding the type of variables from the context,
which means, among other things, that a variable can change its type. In the next section
on syntax, I will describe the type concept in JavaScript in more detail, but basically there
are four types:

1. Boolean, which are variables or expressions whose value is false or true
2. Number, which is numbers and everywhere is 64 bits floating numbers
3. String, to strings
4. Object, which are collections consisting of properties and methods, which cover

anything other than the above three types

This type system involves several things, including, among other things, that there constantly
must occurs type conversions. It’s far from simple and something that I want to look at in
the next section, but below is an example (TypeDocument) that can illustrate a bit about
types and JavaScript:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

47

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

47

JAVASCRIPT

<!DOCTYPE html>
<html>
 <head>
 <title>TypeDocument</title>
 <meta charset="UTF-8">
 <script>
 function add(a, b) {
 return a + b;
 }
 </script>
 </head>
 <body>
 <h1>Types</h1>
 <script>
	 var	arr	=	["Knud",	3.14,	3	==	"3",	1024,	{}];
 for (var i = 0; i < arr.length; ++i)
	 document.write(arr[i]	+	",	"	+	(typeof	arr[i])	+	"
");
 document.write(arr + ", " + (typeof arr) + "
");
 document.write(add(2, 3) + ", " + (typeof add) + "
");
 </script>
 </body>
</html>

Note that in the header is defined a simple function with two parameters. The parameters
have no type and all you can see is that the function performs the plus operator on the
two parameters and returns the value. The script block in the body section creates an array
of 5 elements of the following types:

1. the first is a String
2. the second is a Number
3. the third is a Boolean (that is true due to special conversion rules in JavaScript)
4. the fourth is a Number
5. the last is an Object

You should note that the array arr itself is an Object. The next statement, which is a for
loop, prints the array’s elements as well as their types, and the next statement again does
the same for the array. Note the typeof operator, which determines the type of a variable.
Finally, there is the last statement that performs the function add() and prints its type. The
type of function is Object, but you should note that typeof displays it as a function. If the
page is shown in the browser the result is:

Note that in the header is defined a simple function with two parameters. The parameters
have no type and all you can see is that the function performs the plus operator on the
two parameters and returns the value. The script block in the body section creates an array
of 5 elements of the following types:

1. the first is a String
2. the second is a Number
3. the third is a Boolean (that is true due to special conversion rules in JavaScript)
4. the fourth is a Number
5. the last is an Object

You should note that the array arr itself is an Object. The next statement, which is a for
loop, prints the array’s elements as well as their types, and the next statement again does
the same for the array. Note the typeof operator, which determines the type of a variable.
Finally, there is the last statement that performs the function add() and prints its type. The
type of function is Object, but you should note that typeof displays it as a function. If the
page is shown in the browser the result is:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

48

JavasCrIpt

48

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

49

JavasCrIpt

Patterns

In this section I have shown some basic concepts regarding JavaScript, and of course there
are many more details, but the above should be sufficient to illustrate that JavaScript is a
much different language than Java. In the time that JavaScript has existed, the language
has developed a lot, and at the same time there have been several patterns for how to write
JavaScript code. In particular, it appears that a function is an object, and when a function
defines a scope, it allows functions to implement a form of data encapsulation. I would
like to illustrate that with the following example.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

49

JAVASCRIPT

Patterns

In this section I have shown some basic concepts regarding JavaScript, and of course there
are many more details, but the above should be sufficient to illustrate that JavaScript is a
much different language than Java. In the time that JavaScript has existed, the language
has developed a lot, and at the same time there have been several patterns for how to write
JavaScript code. In particular, it appears that a function is an object, and when a function
defines a scope, it allows functions to implement a form of data encapsulation. I would
like to illustrate that with the following example.

<!DOCTYPE html>
<html>
 <head>
 <title>Patterns</title>
 <script>
 var triple = (function () {
 var t = 0;

 function swap1() {
 t = public.a;
 public.a = public.b;
 public.b = t;
 }

 function swap2() {
 t = public.b;
 public.b = public.c;
 public.c = t;
 }

 public = {};
 public.a = 0;
 public.b = 0;
 public.c = 0;

 function build() {
 return "<p>" + public.a + ", " + public.b + ", " + public.c + "</p>";
 }

 public.print = function () {
 document.writeln(build());
 }

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

50

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

50

JAVASCRIPT

 public.sort = function () {
 if (public.a > public.b) swap1();
 if (public.b > public.c) swap2();
 if (public.a > public.b) swap1();
 }

 return public;
 })()
 </script>
 </head>
 <body>
 <h1>Patterns</h1>
 <h3>The least number</h3>
 <p>
 <script>
 document.write((function(a, b) { return a < b ? a : b })(5, 3));
 </script>
 </p>
 <h3>Is it a prime?</h3>
 <p>
 <script>
 document.write((function(n) {
	 var	m	=	Math.sqrt(n);
 return n + " is " + ((function() {
 if (n === 2 || n === 3 || n === 5 || n === 7) return true;
 if (n < 11 || n % 2 === 0) return false;
 for (var t = 3; t <= m; t += 2) if (n % t === 0) return false;
 return true;
 })() ? "a prime number" : "not a prime number");
 })(123));
 </script>
 </p>
 <p>
 <script>
 document.write((function (n) {
 var t1 = 0;
 var t2 = 1;
 while (n-- > 1) {
 var t3 = t1 + t2;
 t1 = t2;
 t2 = t3;
 }
 return t2;
 })(30));

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

51

JavasCrIpt

51

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

51

JAVASCRIPT

51

 triple.print();
 triple.a = 7;
 triple.b = 3;
 triple.c = 5;
 triple.sort();
 triple.print();

 triple = (function (tpl) {
 tpl.sum = function () {
 return tpl.a + tpl.b + tpl.c;
 }
 return tpl;
 })(triple);
 document.writeln("<p>" + triple.sum() + "</p>");

 triple.sub = (function () {
 public = {};

 public.max = function () {
 var m = triple.a;
 if (triple.b > m) m = triple.b;
 if (triple.c > m) m = triple.c;
 return m;
 }

http://s.bookboon.com/BI

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

52

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

52

JAVASCRIPT

 return public;
 })();

	 triple.a	=	19;
 triple.b = 13;
 triple.c = 17;
 document.writeln("<p>" + triple.sub.max() + "</p>");
 </script>
 </p>
 </body>
</html>

There are many details, and I will start with the script block in the body section. Generally,
a function encapsulates a code that is executed when the function is executed, but puts
parentheses without the entire function as

(function() { … })();

the function, as here an anonymous function, will be performed immediately. As an example,
the statement

document.write((function(a, b) { return a < b ? a : b })(5, 3));

insert the least of numbers the 3 and 5 into the document by performing an anonymous
function. Of course, that does not make much sense, but if the parameters instead were
variables, it could make sense. Thus, it is very common to insert the value of an expression
by evaluating a function. Immediately it seems a bit strange to write a method in this way,
but it is quite useful, although it may result in code that is difficult to read what the next
expression shows:

<script>
 document.write((function(n) {
	 var	m	=	Math.sqrt(n);
 return n + " is " + ((function() {
 if (n === 2 || n === 3 || n === 5 || n === 7) return true;
 if (n < 11 || n % 2 === 0) return false;
 for (var t = 3; t <= m; t += 2) if (n % t === 0) return false;
 return true;
 })() ? "a prime number" : "not a prime number");
 })(123));
</script>

There are many details, and I will start with the script block in the body section. Generally,
a function encapsulates a code that is executed when the function is executed, but puts
parentheses without the entire function as

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

52

JAVASCRIPT

 return public;
 })();

	 triple.a	=	19;
 triple.b = 13;
 triple.c = 17;
 document.writeln("<p>" + triple.sub.max() + "</p>");
 </script>
 </p>
 </body>
</html>

There are many details, and I will start with the script block in the body section. Generally,
a function encapsulates a code that is executed when the function is executed, but puts
parentheses without the entire function as

(function() { … })();

the function, as here an anonymous function, will be performed immediately. As an example,
the statement

document.write((function(a, b) { return a < b ? a : b })(5, 3));

insert the least of numbers the 3 and 5 into the document by performing an anonymous
function. Of course, that does not make much sense, but if the parameters instead were
variables, it could make sense. Thus, it is very common to insert the value of an expression
by evaluating a function. Immediately it seems a bit strange to write a method in this way,
but it is quite useful, although it may result in code that is difficult to read what the next
expression shows:

<script>
 document.write((function(n) {
	 var	m	=	Math.sqrt(n);
 return n + " is " + ((function() {
 if (n === 2 || n === 3 || n === 5 || n === 7) return true;
 if (n < 11 || n % 2 === 0) return false;
 for (var t = 3; t <= m; t += 2) if (n % t === 0) return false;
 return true;
 })() ? "a prime number" : "not a prime number");
 })(123));
</script>

the function, as here an anonymous function, will be performed immediately. As an example,
the statement

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

52

JAVASCRIPT

 return public;
 })();

	 triple.a	=	19;
 triple.b = 13;
 triple.c = 17;
 document.writeln("<p>" + triple.sub.max() + "</p>");
 </script>
 </p>
 </body>
</html>

There are many details, and I will start with the script block in the body section. Generally,
a function encapsulates a code that is executed when the function is executed, but puts
parentheses without the entire function as

(function() { … })();

the function, as here an anonymous function, will be performed immediately. As an example,
the statement

document.write((function(a, b) { return a < b ? a : b })(5, 3));

insert the least of numbers the 3 and 5 into the document by performing an anonymous
function. Of course, that does not make much sense, but if the parameters instead were
variables, it could make sense. Thus, it is very common to insert the value of an expression
by evaluating a function. Immediately it seems a bit strange to write a method in this way,
but it is quite useful, although it may result in code that is difficult to read what the next
expression shows:

<script>
 document.write((function(n) {
	 var	m	=	Math.sqrt(n);
 return n + " is " + ((function() {
 if (n === 2 || n === 3 || n === 5 || n === 7) return true;
 if (n < 11 || n % 2 === 0) return false;
 for (var t = 3; t <= m; t += 2) if (n % t === 0) return false;
 return true;
 })() ? "a prime number" : "not a prime number");
 })(123));
</script>

insert the least of numbers the 3 and 5 into the document by performing an anonymous
function. Of course, that does not make much sense, but if the parameters instead were
variables, it could make sense. Thus, it is very common to insert the value of an expression
by evaluating a function. Immediately it seems a bit strange to write a method in this way,
but it is quite useful, although it may result in code that is difficult to read what the next
expression shows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

52

JAVASCRIPT

 return public;
 })();

	 triple.a	=	19;
 triple.b = 13;
 triple.c = 17;
 document.writeln("<p>" + triple.sub.max() + "</p>");
 </script>
 </p>
 </body>
</html>

There are many details, and I will start with the script block in the body section. Generally,
a function encapsulates a code that is executed when the function is executed, but puts
parentheses without the entire function as

(function() { … })();

the function, as here an anonymous function, will be performed immediately. As an example,
the statement

document.write((function(a, b) { return a < b ? a : b })(5, 3));

insert the least of numbers the 3 and 5 into the document by performing an anonymous
function. Of course, that does not make much sense, but if the parameters instead were
variables, it could make sense. Thus, it is very common to insert the value of an expression
by evaluating a function. Immediately it seems a bit strange to write a method in this way,
but it is quite useful, although it may result in code that is difficult to read what the next
expression shows:

<script>
 document.write((function(n) {
	 var	m	=	Math.sqrt(n);
 return n + " is " + ((function() {
 if (n === 2 || n === 3 || n === 5 || n === 7) return true;
 if (n < 11 || n % 2 === 0) return false;
 for (var t = 3; t <= m; t += 2) if (n % t === 0) return false;
 return true;
 })() ? "a prime number" : "not a prime number");
 })(123));
</script>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

53

JavasCrIpt

The script determines whether 123 is a prime number or not and inserts a corresponding
text in the document. The example should show that it can be done by evaluating an
anonymous function, and partly that JavaScript can use loops and conditions with the same
syntax as in Java, which is further elaborated in the following section. The code is not so
easy to read, but the text that is inserted is the value of an anonymous method with one
parameter n. This method has a local variable m, which is initialized with the square root of
n. Also note that it is written in the same way as in Java. The anonymous function returns
a value, which is a text, but the value is determined by an inner anonymous function
without parameters, a function that, using the usual prime algorithm, determines whether
n is a prime. In this case, the use of anonymous function is a bit exaggerated, but it is in
some way common when writing JavaScript.

If you look at the header section then it uses an anonymous function to embed variables
and functions in a namespace, and the variables and functions will become local to this
namespace. An anonymous method used in that way is usually called a module, and triple
is thus an example of a module. Modules can be perceived as a pattern to implement a
form of data encapsulation in JavaScript, and among other things, names are local to the
module, so you are independent of which names others may have used.

If you examine the module triple, t is a local variable in the anonymous function and thus
in the module, and it will thus work as a private variable. Similarly, the two functions
swap1() and swap2() are private functions for the module triple. The module further defines
a variable called public. Here, you should note that this variable is an Object (which has no
properties at present), and it has a global scope and is thus known outside of the module.
After the object has been created, three properties are defined, which from the outside act
as public properties by the object triple (explanation follows below). Next, another private
function build() is defined, and then two functions that are functions of the object public,
which will thus act as public functions of the object triple. When they do, it is in the same
way as for the three properties of the object public, because the anonymous function is
returning the object public.

Then there is the last script block in the body section, which should primarily show how
the module triple is used, but first the block shows another use of an anonymous function
that is performed without being called explicit. The function determines the 30th Fibonacci
number. The remaining part of the block uses the object (module) triple and its public
properties in terms of properties and function. First, the triple object’s print() method is called
that just prints three 0-values (the three properties). Next, the three properties are assigned
a value and the method sort() is executed, after which the method print() is executed again.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

54

JavasCrIpt

54

You can use the syntax with an anonymous function to expand a module with a new feature.
Below is how to expand triple with a new function:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

54

JAVASCRIPT

54

You can use the syntax with an anonymous function to expand a module with a new feature.
Below is how to expand triple with a new function:

triple = (function (tpl) {
 tpl.sum = function () {
 return tpl.a + tpl.b + tpl.c;
 }
 return tpl;
})(triple);

An anonymous function has a parameter tpl, and the function interprets it as an object and
expands it with a new property, which is a function (returning the sum of three properties).
Finally, the anonymous function returns the parameter tpl (which has now got a new
function), and is the anonymous function called with triple as the actual parameter and
triple is assigned the return value, the result is that triple is expanded with a new function
called sum().

You can also by the same pattern expand triple with a sub-module (triple is an object). Here
it is a sub module sub, which expands with a new function.

An anonymous function has a parameter tpl, and the function interprets it as an object and
expands it with a new property, which is a function (returning the sum of three properties).
Finally, the anonymous function returns the parameter tpl (which has now got a new
function), and is the anonymous function called with triple as the actual parameter and
triple is assigned the return value, the result is that triple is expanded with a new function
called sum().

You can also by the same pattern expand triple with a sub-module (triple is an object). Here
it is a sub module sub, which expands with a new function.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

55

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

55

JAVASCRIPT

triple.sub = (function () {
 public = {};

 public.max = function () {
 var m = triple.a;
 if (triple.b > m) m = triple.b;
 if (triple.c > m) m = triple.c;
 return m;
 }
 return public;
})();

The result of all is that functions can be used to define a module term which is a namespace
that can have private properties and provide public properties and methods available. If you
perform the program, the result is as shown below:

4.2 BASIC SYNTAX

The following deals with the basic JavaScript syntax, and although the syntax is illustrated
with examples, the review has to some extent character of a reference. Much of the following
has already been mentioned in the previous section.

The result of all is that functions can be used to define a module term which is a namespace
that can have private properties and provide public properties and methods available. If you
perform the program, the result is as shown below:

4.2 BASIC SYNTAX

The following deals with the basic JavaScript syntax, and although the syntax is illustrated
with examples, the review has to some extent character of a reference. Much of the following
has already been mentioned in the previous section.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

56

JavasCrIpt

Basically, JavaScript uses the same syntax as the language Java or language inspired by C.
Therefore, I would like to write JavaScript in much the same way as I have written Java
code and thus apply the same rules for blocks ({ and }) and the same rules for indentation.
Regarding blocks, many choose (and also many development tools) to write

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

56

JAVASCRIPT

Basically, JavaScript uses the same syntax as the language Java or language inspired by C.
Therefore, I would like to write JavaScript in much the same way as I have written Java
code and thus apply the same rules for blocks ({ and }) and the same rules for indentation.
Regarding blocks, many choose (and also many development tools) to write

function f() {
 // kode
}

instead of

function f()
{
 // kode
}

I will follow that convention – primarily because my development tool does. There is also
a tradition for (inspired by Java) that let function names start with a lowercase letter, and
I will also adhere to that.

In JavaScript, a statement is terminated as in Java with a semicolon, but it is actually not
necessary, as most interpreters are able to set the missing semicolon itself. Of course, if
you do not terminate statements with a semicolon, it requires that you follow a number
of rules for how the code is written, but newer interpreters are very good to automatically
determining where statements end – they simply inserts a semicolon indirectly where it
is necessary for the code to makes sense. However, I want to put semicolons everywhere,
partly because I am used to it from other languages and partly because I think it increases
readability, but even more importantly, missing semicolons may in some cases result in the
interpreter’s misunderstanding of the code.

Expressions and statements

An expression is simply a code that has a value. Examples include:

23
"Hello World"
33	+	29
(13 + 17)/(5 + 5)
Math.sqrt(100)
(str === "Svend") && (tal > 10)

instead of

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

56

JAVASCRIPT

Basically, JavaScript uses the same syntax as the language Java or language inspired by C.
Therefore, I would like to write JavaScript in much the same way as I have written Java
code and thus apply the same rules for blocks ({ and }) and the same rules for indentation.
Regarding blocks, many choose (and also many development tools) to write

function f() {
 // kode
}

instead of

function f()
{
 // kode
}

I will follow that convention – primarily because my development tool does. There is also
a tradition for (inspired by Java) that let function names start with a lowercase letter, and
I will also adhere to that.

In JavaScript, a statement is terminated as in Java with a semicolon, but it is actually not
necessary, as most interpreters are able to set the missing semicolon itself. Of course, if
you do not terminate statements with a semicolon, it requires that you follow a number
of rules for how the code is written, but newer interpreters are very good to automatically
determining where statements end – they simply inserts a semicolon indirectly where it
is necessary for the code to makes sense. However, I want to put semicolons everywhere,
partly because I am used to it from other languages and partly because I think it increases
readability, but even more importantly, missing semicolons may in some cases result in the
interpreter’s misunderstanding of the code.

Expressions and statements

An expression is simply a code that has a value. Examples include:

23
"Hello World"
33	+	29
(13 + 17)/(5 + 5)
Math.sqrt(100)
(str === "Svend") && (tal > 10)

I will follow that convention – primarily because my development tool does. There is also
a tradition for (inspired by Java) that let function names start with a lowercase letter, and
I will also adhere to that.

In JavaScript, a statement is terminated as in Java with a semicolon, but it is actually not
necessary, as most interpreters are able to set the missing semicolon itself. Of course, if
you do not terminate statements with a semicolon, it requires that you follow a number
of rules for how the code is written, but newer interpreters are very good to automatically
determining where statements end – they simply inserts a semicolon indirectly where it
is necessary for the code to makes sense. However, I want to put semicolons everywhere,
partly because I am used to it from other languages and partly because I think it increases
readability, but even more importantly, missing semicolons may in some cases result in the
interpreter’s misunderstanding of the code.

Expressions and statements

An expression is simply a code that has a value. Examples include:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

56

JAVASCRIPT

Basically, JavaScript uses the same syntax as the language Java or language inspired by C.
Therefore, I would like to write JavaScript in much the same way as I have written Java
code and thus apply the same rules for blocks ({ and }) and the same rules for indentation.
Regarding blocks, many choose (and also many development tools) to write

function f() {
 // kode
}

instead of

function f()
{
 // kode
}

I will follow that convention – primarily because my development tool does. There is also
a tradition for (inspired by Java) that let function names start with a lowercase letter, and
I will also adhere to that.

In JavaScript, a statement is terminated as in Java with a semicolon, but it is actually not
necessary, as most interpreters are able to set the missing semicolon itself. Of course, if
you do not terminate statements with a semicolon, it requires that you follow a number
of rules for how the code is written, but newer interpreters are very good to automatically
determining where statements end – they simply inserts a semicolon indirectly where it
is necessary for the code to makes sense. However, I want to put semicolons everywhere,
partly because I am used to it from other languages and partly because I think it increases
readability, but even more importantly, missing semicolons may in some cases result in the
interpreter’s misunderstanding of the code.

Expressions and statements

An expression is simply a code that has a value. Examples include:

23
"Hello World"
33	+	29
(13 + 17)/(5 + 5)
Math.sqrt(100)
(str === "Svend") && (tal > 10)

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

57

JavasCrIpt

57

A statement, on the other hand, is a sequence of expressions that result in some action, for
example an assignment statement. A statement can particular be composed as a block of
statements, which is an important term in cases of control statements. Note in particular
that a block is not necessarily a statement. For example is an object

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

57

JAVASCRIPT

57

A statement, on the other hand, is a sequence of expressions that result in some action, for
example an assignment statement. A statement can particular be composed as a block of
statements, which is an important term in cases of control statements. Note in particular
that a block is not necessarily a statement. For example is an object

{
 t1: 23,
	t2:	29
}

not a statement but an expression.

Operators works on expressions and JavaScript has a good deal of the way the same operators
as Java. The main operators are assignment, calculating operators and comparison operators.
Operators also use the same precedence rules, known from other languages, including Java.
Below is a table of all operators in JavaScript and their precedence. L/R means that operators
evaluate from left to right, while R/L means that operators evaluate from right to left.

not a statement but an expression.

Operators works on expressions and JavaScript has a good deal of the way the same operators
as Java. The main operators are assignment, calculating operators and comparison operators.
Operators also use the same precedence rules, known from other languages, including Java.
Below is a table of all operators in JavaScript and their precedence. L/R means that operators
evaluate from left to right, while R/L means that operators evaluate from right to left.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

58

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

58

JAVASCRIPT

Operator Precedence Associativity Remark

() 0 Parenthesis

.	[] 1 L/R Member and index

new R/L

() 2 L/R Function call

++ -- 3

! ~ 4 R/L

+ - R/L Sign

typeof void delete R/L

*/% 5 L/R

+ - 6 L/R Addtion and subtraktion

<< >> >>> 7 L/R

< <= > >= in instanceof 8 L/R

== != === !== 9 L/R

& 10 L/R

^ 11 L/R

| 12 L/R

&& 13 L/R

|| 14 L/R

? 15 R/L

yield 16 R/L

= += -= *= /= %= <<=
>>=	>>>=	&=	^=	!=

17 R/L

, 18 L/R

Variables

You declare variables with or without the use of the word var:

var t1 = 23;
t2	=	29;

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

59

JavasCrIpt

In both cases, a variable has been created, and the difference is important for the variable’s
scope. It is allowed to declare several variables in the same statement

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

59

JAVASCRIPT

In both cases, a variable has been created, and the difference is important for the variable’s
scope. It is allowed to declare several variables in the same statement

var	obj	=	{},	counter	=	0,	str	=	"Knud",	flag	=	true;

JavaScript has functional scope. This means that if you create a variable with var, its scope
is limited to the function where the variable is created or for internal functions. It can be
illustrated with the following function:

function f()
{
 var t = "Here"; // t's scope is the function f and other scopes in f

 function g() // g() creates a new acope in the function f()
 {
 alert(t); // t is known here
 }
 g();
}

f(); // will alert "Here"
alert(t); // results in an error, when t is not known

The scope where a variable is defined is often called for its local scope. When referring to a
variable, the runtime system will search for the variable in the current scope. If the variable
is not found here, the system will search for the variable in the containing scope, and this
will continue until the system finds the variable or comes to the top scope, commonly called
the global scope. The process is sometimes called scope chain lookup. Variables that are not
declared in a function will always have global scope, and the same applies to variables that
are declared without the use of var.

Variables are always created at the start of a scope – even if the declaration itself is first
written later in the code:

function f()
{
 alert(t);
 var t = 2;
}

JavaScript has functional scope. This means that if you create a variable with var, its scope
is limited to the function where the variable is created or for internal functions. It can be
illustrated with the following function:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

59

JAVASCRIPT

In both cases, a variable has been created, and the difference is important for the variable’s
scope. It is allowed to declare several variables in the same statement

var	obj	=	{},	counter	=	0,	str	=	"Knud",	flag	=	true;

JavaScript has functional scope. This means that if you create a variable with var, its scope
is limited to the function where the variable is created or for internal functions. It can be
illustrated with the following function:

function f()
{
 var t = "Here"; // t's scope is the function f and other scopes in f

 function g() // g() creates a new acope in the function f()
 {
 alert(t); // t is known here
 }
 g();
}

f(); // will alert "Here"
alert(t); // results in an error, when t is not known

The scope where a variable is defined is often called for its local scope. When referring to a
variable, the runtime system will search for the variable in the current scope. If the variable
is not found here, the system will search for the variable in the containing scope, and this
will continue until the system finds the variable or comes to the top scope, commonly called
the global scope. The process is sometimes called scope chain lookup. Variables that are not
declared in a function will always have global scope, and the same applies to variables that
are declared without the use of var.

Variables are always created at the start of a scope – even if the declaration itself is first
written later in the code:

function f()
{
 alert(t);
 var t = 2;
}

The scope where a variable is defined is often called for its local scope. When referring to a
variable, the runtime system will search for the variable in the current scope. If the variable
is not found here, the system will search for the variable in the containing scope, and this
will continue until the system finds the variable or comes to the top scope, commonly called
the global scope. The process is sometimes called scope chain lookup. Variables that are not
declared in a function will always have global scope, and the same applies to variables that
are declared without the use of var.

Variables are always created at the start of a scope – even if the declaration itself is first
written later in the code:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

59

JAVASCRIPT

In both cases, a variable has been created, and the difference is important for the variable’s
scope. It is allowed to declare several variables in the same statement

var	obj	=	{},	counter	=	0,	str	=	"Knud",	flag	=	true;

JavaScript has functional scope. This means that if you create a variable with var, its scope
is limited to the function where the variable is created or for internal functions. It can be
illustrated with the following function:

function f()
{
 var t = "Here"; // t's scope is the function f and other scopes in f

 function g() // g() creates a new acope in the function f()
 {
 alert(t); // t is known here
 }
 g();
}

f(); // will alert "Here"
alert(t); // results in an error, when t is not known

The scope where a variable is defined is often called for its local scope. When referring to a
variable, the runtime system will search for the variable in the current scope. If the variable
is not found here, the system will search for the variable in the containing scope, and this
will continue until the system finds the variable or comes to the top scope, commonly called
the global scope. The process is sometimes called scope chain lookup. Variables that are not
declared in a function will always have global scope, and the same applies to variables that
are declared without the use of var.

Variables are always created at the start of a scope – even if the declaration itself is first
written later in the code:

function f()
{
 alert(t);
 var t = 2;
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

60

JavasCrIpt

60

If you perform this function, it will display undefined with the alert(). The variable t is thus
created, but it is not initialized. However, if you remove the word var, you will get an error
as you refer to a variable that has not been created. This corresponds to the interpreter’s
perception of the above function as:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

60

JAVASCRIPT

60

If you perform this function, it will display undefined with the alert(). The variable t is thus
created, but it is not initialized. However, if you remove the word var, you will get an error
as you refer to a variable that has not been created. This corresponds to the interpreter’s
perception of the above function as:

function f()
{
 var t;
 alert(t);
 t = 2;
}

As it can sometimes lead to hard-to-see results, it is recommended that you consistently
create and initialize variables at the beginning of functions.

When a function terminates, its scope will disappear and at the same time, the runtime
system will remove all local variables that the function has created. If the function is called
again, its local variables will be re-created. It is at least the normal behavior, but consider
the following document:

As it can sometimes lead to hard-to-see results, it is recommended that you consistently
create and initialize variables at the beginning of functions.

When a function terminates, its scope will disappear and at the same time, the runtime
system will remove all local variables that the function has created. If the function is called
again, its local variables will be re-created. It is at least the normal behavior, but consider
the following document:

http://s.bookboon.com/Subscrybe

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

61

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

61

JAVASCRIPT

<!DOCTYPE html>
<html	xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script>
 function f()
 {
 var t = 1;
 function g()
 {
 alert(t++);
 }
 return g;
 }
 </script>
</head>
<body>
 <script>
 var h = f();
 h();
 h();
 </script>
</body>
</html>

If it opens in the browser, the first alert() will show 1 and the next alert() show 2. If you
consider the function f(), it has a local variable t that is assigned the value 1. The internal
function g() shows the value of this variable, after which it is counted up with 1. The function
f() returns the internal function g(). Note that it is legal, since a function is specifically an
object. In the body section, the function f() is performed and its return value is stored in
the variable h, which now refers to a function and the function f() terminates. Next, h()
is performed, which means that it is the function g() that is performed as with an alert()
shows the value 1, which is the value of the local variable t in f(). When h() is executed the
second time, it will display 2. There it is still the value of t and you can see that t is not
initialized again and thus not removed after f() is terminated. The reason is that there is an
indirect reference to t via g(). When f() terminates, t is not removed since h refers to g()
which refers to t. That a local variable in this way will not be removed after the function
that creates the variable terminates is called closures.

If it opens in the browser, the first alert() will show 1 and the next alert() show 2. If you
consider the function f(), it has a local variable t that is assigned the value 1. The internal
function g() shows the value of this variable, after which it is counted up with 1. The function
f() returns the internal function g(). Note that it is legal, since a function is specifically an
object. In the body section, the function f() is performed and its return value is stored in
the variable h, which now refers to a function and the function f() terminates. Next, h()
is performed, which means that it is the function g() that is performed as with an alert()
shows the value 1, which is the value of the local variable t in f(). When h() is executed the
second time, it will display 2. There it is still the value of t and you can see that t is not
initialized again and thus not removed after f() is terminated. The reason is that there is an
indirect reference to t via g(). When f() terminates, t is not removed since h refers to g()
which refers to t. That a local variable in this way will not be removed after the function
that creates the variable terminates is called closures.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

62

JavasCrIpt

Types

In JavaScript, you should not specify any data type when creating a variable. It is said that
it is a type-weak language. However, it is not the same as JavaScript does not have types
and there are basically 4 types:

 - Boolean, which are variables or expressions that are either false or true
 - Number, which are numbers, that are 64 bits floiting points
 - String, which are random sequences of characters
 - Object, which are families of properties and methods

That the language is type-weak means that the runtime system based on variables and
expression values automatically determines the type. This means, in particular, that the type
of a variable can be changed over its lifetime and is always determined by the value of the
variable. For example the following code

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

62

JAVASCRIPT

Types

In JavaScript, you should not specify any data type when creating a variable. It is said that
it is a type-weak language. However, it is not the same as JavaScript does not have types
and there are basically 4 types:

 - Boolean, which are variables or expressions that are either false or true
 - Number, which are numbers, that are 64 bits floiting points
 - String, which are random sequences of characters
 - Object, which are families of properties and methods

That the language is type-weak means that the runtime system based on variables and
expression values automatically determines the type. This means, in particular, that the type
of a variable can be changed over its lifetime and is always determined by the value of the
variable. For example the following code

var	arr	=	["Knud",	47,	true,	{},	f];
for	(var	i	=	0;	i	<	arr.length;	i++)	alert(typeof	arr[i]);
alert(typeof arr);

where the function f() is as above, will alert the following type names (the operator typeof)

 - string
 - number
 - boolean
 - object
 - function
 - object

Here you should note that for f, the result is function, even if the type is formally object,
and that the type of an array is an object.

The value of a variable can be a primitive where there are the following options

 - true or false and then a boolean
 - a number and then all possible numbers
 - a string
 - null, that means that the variable has no value
 - undefined, that means that the variable is defined, but not initialized

where the function f() is as above, will alert the following type names (the operator typeof)

 - string
 - number
 - boolean
 - object
 - function
 - object

Here you should note that for f, the result is function, even if the type is formally object,
and that the type of an array is an object.

The value of a variable can be a primitive where there are the following options

 - true or false and then a boolean
 - a number and then all possible numbers
 - a string
 - null, that means that the variable has no value
 - undefined, that means that the variable is defined, but not initialized

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

63

JavasCrIpt

63

Everything that is not a primitive is an object, and it therefore special means arrays
and functions.

Consider the following code where the function f() again is as above:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

63

JAVASCRIPT

63

Everything that is not a primitive is an object, and it therefore special means arrays
and functions.

Consider the following code where the function f() again is as above:

var	arr	=	[47,	true,	"Knud",	{},	f];
var	v	=	19;
for	(var	i	=	0;	i	<	arr.length;	i++)	v	+=	arr[i];
alert(v);

If you perform this code, you get the result:
If you perform this code, you get the result:

http://s.bookboon.com/volvo

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

64

JavasCrIpt

The variable v has the value 19, which has the type number. When you loop over the array,
you first determines the sum of v and the value 47. They are two numbers and the result
is 66. Next, add true, which is a boolean, and here occurs an automatic type conversion to
a number where the value true is converted to 1 and the result of the sum is 67. In the
third iteration, the plus is performed on a number and a string, and this time occurs an
automatic conversion to a string for both operands. In the fourth iteration, the operator is
executed on a string and an object, and the result is a string concatenation. The same goes
for the last time, since f() is also an object, but the string – the result of toString() – is this
time the code of the function itself.

The example should show that as JavaScript is type-weak, an expression may well consist of
different types of operands, and consequently implicit type conversions are always ongoing.
This can naturally lead to unexpected results, and the rules are also complex. Basically, the
following applies.

Note first that a variable of the type object has two methods toString() and valueOf() (which
can be overridden), where the first returns the value of the object as a string, while the other
returns the value as a primitive. For example, if you consider the following code:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

64

JAVASCRIPT

The variable v has the value 19, which has the type number. When you loop over the array,
you first determines the sum of v and the value 47. They are two numbers and the result
is 66. Next, add true, which is a boolean, and here occurs an automatic type conversion to
a number where the value true is converted to 1 and the result of the sum is 67. In the
third iteration, the plus is performed on a number and a string, and this time occurs an
automatic conversion to a string for both operands. In the fourth iteration, the operator is
executed on a string and an object, and the result is a string concatenation. The same goes
for the last time, since f() is also an object, but the string – the result of toString() – is this
time the code of the function itself.

The example should show that as JavaScript is type-weak, an expression may well consist of
different types of operands, and consequently implicit type conversions are always ongoing.
This can naturally lead to unexpected results, and the rules are also complex. Basically, the
following applies.

Note first that a variable of the type object has two methods toString() and valueOf() (which
can be overridden), where the first returns the value of the object as a string, while the other
returns the value as a primitive. For example, if you consider the following code:

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <script>
 var obj1 = {
 a: 2,
 b: 3
 };
 var obj2 = {
 x: 3.13,

 toString: function() {
 return "PI = " + this.x;
 },

 valueOf: function() {
 return this.x;
 }
 }
 </script>
 </head>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

65

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

65

JAVASCRIPT

 <body>
 <script>
 document.write("toString(): " + obj1.toString() + "
");
 document.write("valueOf(): " + obj1.valueOf() + "
");
 document.write("toString(): " + obj2.toString() + "
");
 document.write("valueOf(): " + obj2.valueOf() + "
");
 </script>
 </body>
</html>

there are defined two objects where the latter overrides toString() and valueOf(). Opening
the code in the browser is the result:

Here you can see that toString() and valueOf() as default return the string [object object],
but otherwise the value of the overridden methods.

For automatic type conversion, JavaScript uses three internal methods called toPrimitive(),
toNumber() and toBoolean(). toPrimitive() has an argument and returns a primitive following
the algorithm:

1. if the argument is an object returns valueOf() if it is a primitive, and else returns
toString() if it returns a primitive and else reports an error

2. if the argument is a primitive return the argument

toNumber() also has an argument and returns a number according to the following algorithm:

1. if the argument has the type Number returns the argument
2. if the argument has the type Boolean returns 1, if the value is true and else 0
3. if the argument is Null returns 0
4. if the argument has the type object returns toNumber(toPrimitive(argument))
5. it the argument is undefined returns NaN
6. if the argument is a string returns the value of parseInt(), if the argument can be

parsed to a Number and else NaN

there are defined two objects where the latter overrides toString() and valueOf(). Opening
the code in the browser is the result:

Here you can see that toString() and valueOf() as default return the string [object object],
but otherwise the value of the overridden methods.

For automatic type conversion, JavaScript uses three internal methods called toPrimitive(),
toNumber() and toBoolean(). toPrimitive() has an argument and returns a primitive following
the algorithm:

1. if the argument is an object returns valueOf() if it is a primitive, and else returns
toString() if it returns a primitive and else reports an error

2. if the argument is a primitive return the argument

toNumber() also has an argument and returns a number according to the following algorithm:

1. if the argument has the type Number returns the argument
2. if the argument has the type Boolean returns 1, if the value is true and else 0
3. if the argument is Null returns 0
4. if the argument has the type object returns toNumber(toPrimitive(argument))
5. it the argument is undefined returns NaN
6. if the argument is a string returns the value of parseInt(), if the argument can be

parsed to a Number and else NaN

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

66

JavasCrIpt

66

Allso toBoolean() has an argument and returns a boolean according to the following algorithm:

1. it the argument has the type boolean returns the argument
2. if the argument is Null returns false
3. if the argument is undefined returns false
4. if the argument has the type object returns true
5. if the argument has the type number returns false if the value is 0 or NaN and

else true
6. if the argument has the type string returns false if the string is empty and else true

As can be seen from these rules, it may be difficult to figure out the value of an expression,
but in practice it rarely presents the big problems, since the value will usually be the expected,
almost the value of a condition (an expression of the type Boolean) as well sometimes may
results in a value other than expected, and here it is especially the operator == which causes
problems. For this operator, the following table is used:

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

67

JavasCrIpt

arg1 arg2 result

Null Undefined true

Undefined Null true

Number String arg1 == toNumber(arg2)

String Number toNumber(arg1) == arg2

Boolean any toNumber(arg1) == ang2

any Boolean arg1 == toNumber(arg2)

String or Number Object arg1 == toPrimitive(arg2)

Object String or Number toPrimitive(arg1) == arg2

A classic example of the problems that comparison may cause are the following code:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

67

JAVASCRIPT

arg1 arg2 result

Null Undefined true

Undefined Null true

Number String arg1 == toNumber(arg2)

String Number toNumber(arg1) == arg2

Boolean any toNumber(arg1) == ang2

any Boolean arg1 == toNumber(arg2)

String or Number Object arg1 == toPrimitive(arg2)

Object String or Number toPrimitive(arg1) == arg2

A classic example of the problems that comparison may cause are the following code:

<script>
 if ("Hello") {
 alert("Hello" == true);
 alert("Hello" == false);
 }
</script>

If you try the code, you will get two alert(), both of which will show false and it is not
entirely obvious. The condition for if has the value true, which immediately follows from
the toBoolean() algorithm. The first alert() will apply the third last row in the above table
and will thus evaluate

"Hello" == toNumber(true)
"Hello" == 1
toNumber("Hello") == 1
NaN == 1

that is false. The last alert() essentially makes the same thing:

"Hello" == toNumber(true)
"Hello" == 0
toNumber("Hello") == 0
NaN == 0

If you try the code, you will get two alert(), both of which will show false and it is not
entirely obvious. The condition for if has the value true, which immediately follows from
the toBoolean() algorithm. The first alert() will apply the third last row in the above table
and will thus evaluate

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

67

JAVASCRIPT

arg1 arg2 result

Null Undefined true

Undefined Null true

Number String arg1 == toNumber(arg2)

String Number toNumber(arg1) == arg2

Boolean any toNumber(arg1) == ang2

any Boolean arg1 == toNumber(arg2)

String or Number Object arg1 == toPrimitive(arg2)

Object String or Number toPrimitive(arg1) == arg2

A classic example of the problems that comparison may cause are the following code:

<script>
 if ("Hello") {
 alert("Hello" == true);
 alert("Hello" == false);
 }
</script>

If you try the code, you will get two alert(), both of which will show false and it is not
entirely obvious. The condition for if has the value true, which immediately follows from
the toBoolean() algorithm. The first alert() will apply the third last row in the above table
and will thus evaluate

"Hello" == toNumber(true)
"Hello" == 1
toNumber("Hello") == 1
NaN == 1

that is false. The last alert() essentially makes the same thing:

"Hello" == toNumber(true)
"Hello" == 0
toNumber("Hello") == 0
NaN == 0

that is false. The last alert() essentially makes the same thing:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

67

JAVASCRIPT

arg1 arg2 result

Null Undefined true

Undefined Null true

Number String arg1 == toNumber(arg2)

String Number toNumber(arg1) == arg2

Boolean any toNumber(arg1) == ang2

any Boolean arg1 == toNumber(arg2)

String or Number Object arg1 == toPrimitive(arg2)

Object String or Number toPrimitive(arg1) == arg2

A classic example of the problems that comparison may cause are the following code:

<script>
 if ("Hello") {
 alert("Hello" == true);
 alert("Hello" == false);
 }
</script>

If you try the code, you will get two alert(), both of which will show false and it is not
entirely obvious. The condition for if has the value true, which immediately follows from
the toBoolean() algorithm. The first alert() will apply the third last row in the above table
and will thus evaluate

"Hello" == toNumber(true)
"Hello" == 1
toNumber("Hello") == 1
NaN == 1

that is false. The last alert() essentially makes the same thing:

"Hello" == toNumber(true)
"Hello" == 0
toNumber("Hello") == 0
NaN == 0

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

68

JavasCrIpt

The result is that it is not always easy to find out the result of a comparison with == (or
!=). Therefore, the operator === has been introduced (and !==) which simply means
comparison without type conversion, and many prefer to use === rather than ==.

Another thing that can cause problems is null and undefined. null means that a variable
has no value and you can assign a variable the value null. undefined means that a variable
is not yet assigned a value, and for example, the code will

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

68

JAVASCRIPT

The result is that it is not always easy to find out the result of a comparison with == (or
!=). Therefore, the operator === has been introduced (and !==) which simply means
comparison without type conversion, and many prefer to use === rather than ==.

Another thing that can cause problems is null and undefined. null means that a variable
has no value and you can assign a variable the value null. undefined means that a variable
is not yet assigned a value, and for example, the code will

<script>
 var a;
 document.write(a);
 document.write("
");
 a = null;
 document.write(a);
</script>

results in

undefined
null

As an example of some of the above conversion rules, you can consider the document:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>CastDocument</title>
 <script>
 var obj1 = {
 a: 23,
	 b:	3.14,
 toString: function () {
 return this.a;
 }
 }
 var obj2 = {
 a: 23,
	 b:	3.14,
 valueOf: function () {
 return this.b;
 },
 toString: function () {
 return this.a;
 }
 }

results in

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

68

JAVASCRIPT

The result is that it is not always easy to find out the result of a comparison with == (or
!=). Therefore, the operator === has been introduced (and !==) which simply means
comparison without type conversion, and many prefer to use === rather than ==.

Another thing that can cause problems is null and undefined. null means that a variable
has no value and you can assign a variable the value null. undefined means that a variable
is not yet assigned a value, and for example, the code will

<script>
 var a;
 document.write(a);
 document.write("
");
 a = null;
 document.write(a);
</script>

results in

undefined
null

As an example of some of the above conversion rules, you can consider the document:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>CastDocument</title>
 <script>
 var obj1 = {
 a: 23,
	 b:	3.14,
 toString: function () {
 return this.a;
 }
 }
 var obj2 = {
 a: 23,
	 b:	3.14,
 valueOf: function () {
 return this.b;
 },
 toString: function () {
 return this.a;
 }
 }

As an example of some of the above conversion rules, you can consider the document:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

68

JAVASCRIPT

The result is that it is not always easy to find out the result of a comparison with == (or
!=). Therefore, the operator === has been introduced (and !==) which simply means
comparison without type conversion, and many prefer to use === rather than ==.

Another thing that can cause problems is null and undefined. null means that a variable
has no value and you can assign a variable the value null. undefined means that a variable
is not yet assigned a value, and for example, the code will

<script>
 var a;
 document.write(a);
 document.write("
");
 a = null;
 document.write(a);
</script>

results in

undefined
null

As an example of some of the above conversion rules, you can consider the document:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>CastDocument</title>
 <script>
 var obj1 = {
 a: 23,
	 b:	3.14,
 toString: function () {
 return this.a;
 }
 }
 var obj2 = {
 a: 23,
	 b:	3.14,
 valueOf: function () {
 return this.b;
 },
 toString: function () {
 return this.a;
 }
 }

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

69

JavasCrIpt

69

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

69

JAVASCRIPT

69

 var obj3 = {
 a: 23,
	 b:	3.14
 }
 </script>
 </head>
 <body>
 <script>
	 document.write(obj1	+	29);
 document.write("
");
	 document.write(obj2	+	29);
 document.write("
");
	 document.write(obj3	+	29);
 document.write("
");
 var t = 3;
 var u;
 document.write(3 + (t == 2));
 document.write("
");
 document.write(3 + (t == 3));
 document.write("
");
 document.write(3 == "3");
 document.write("
");
 document.write(3 === "3");
 document.write("
");

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

70

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

70

JAVASCRIPT

 (function () {
 document.write(obj1 + obj2 + obj3);
 })();

 </script>
 </body>
</html>

If the document is opened in the browser, you get the result:

Objects

An object is simply a collection of properties that may be of some value. The type of a
property can be anything and especially an object, and since a function is an object, an
object can also contain functions. You creates an object as follows:

var obj1 =
{
 a: 2,
 b: 3,
 c: 5
}
var obj2 = {}

where two objects have been created. The first has three properties, while the other is an
empty object. In JavaScript, you do not have classes, as you know it from Java, and you
can not inherit the same way you know from this language, but in JavaScript you use a
form of inheritance called prototyping that in short means that you can create objects by
expanding existing objects. For example, if you write

var obj3 = Object.create(obj1);
obj3.d = 7;

If the document is opened in the browser, you get the result:

Objects

An object is simply a collection of properties that may be of some value. The type of a
property can be anything and especially an object, and since a function is an object, an
object can also contain functions. You creates an object as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

70

JAVASCRIPT

 (function () {
 document.write(obj1 + obj2 + obj3);
 })();

 </script>
 </body>
</html>

If the document is opened in the browser, you get the result:

Objects

An object is simply a collection of properties that may be of some value. The type of a
property can be anything and especially an object, and since a function is an object, an
object can also contain functions. You creates an object as follows:

var obj1 =
{
 a: 2,
 b: 3,
 c: 5
}
var obj2 = {}

where two objects have been created. The first has three properties, while the other is an
empty object. In JavaScript, you do not have classes, as you know it from Java, and you
can not inherit the same way you know from this language, but in JavaScript you use a
form of inheritance called prototyping that in short means that you can create objects by
expanding existing objects. For example, if you write

var obj3 = Object.create(obj1);
obj3.d = 7;

where two objects have been created. The first has three properties, while the other is an
empty object. In JavaScript, you do not have classes, as you know it from Java, and you
can not inherit the same way you know from this language, but in JavaScript you use a
form of inheritance called prototyping that in short means that you can create objects by
expanding existing objects. For example, if you write

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

70

JAVASCRIPT

 (function () {
 document.write(obj1 + obj2 + obj3);
 })();

 </script>
 </body>
</html>

If the document is opened in the browser, you get the result:

Objects

An object is simply a collection of properties that may be of some value. The type of a
property can be anything and especially an object, and since a function is an object, an
object can also contain functions. You creates an object as follows:

var obj1 =
{
 a: 2,
 b: 3,
 c: 5
}
var obj2 = {}

where two objects have been created. The first has three properties, while the other is an
empty object. In JavaScript, you do not have classes, as you know it from Java, and you
can not inherit the same way you know from this language, but in JavaScript you use a
form of inheritance called prototyping that in short means that you can create objects by
expanding existing objects. For example, if you write

var obj3 = Object.create(obj1);
obj3.d = 7;

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

71

JavasCrIpt

an object has been created that inherits obj1 and expands this object with an additional
property. For example, if you performs the following statements:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

71

JAVASCRIPT

an object has been created that inherits obj1 and expands this object with an additional
property. For example, if you performs the following statements:

alert(obj3.a + obj3.b + obj3.c + obj3.d);
obj1.a = 11;
alert(obj3.a + obj3.b + obj3.c + obj3.d);

the first alert() will show 17 and the other 26. Here, you should note that changing the
value of the property a on the object obj1 also has an effect on the object obj3, which
justifies the relationship between obj1 and obj3 being a form of inheritance. Technically, it
is implemented by the fact that each object has a property called prototype. This property
refers to properties inherited from the parent object (the object from which the current
object is created based on). When you try to refer a property on an object, the interpreter
will first search for this property in the current object and if it not find the property the
interpreter will search in its parent via prototype. This continues until you either find the
desired property or can not find it. This chain may be interrupted by overriding a property.
As an example is shown another object that expands obj1 using a method:

var	obj4	=	Object.create(obj1);
obj4.f	=	function	(t)	{	return	t	*	(this.a	+	this.b	+	this.c);	}

Note that although the method f() is a property in the object obj4 which extends obj1, the
method can not immediately refer to the object’s other properties, but it can be solved with
this as referring to the current object. The following statement

alert(obj4.f(2));

will alert() the value 20. As another example of how to define an object using a method,
you can consider the following:

var obj5 =
{
	x:	3.14,
	y:	1.41,
 g: function (z) { return (this.x + this.y)/z; }
}

If you perform the following statement

alert(obj5.g(3));

you get the result 1.5166666666666.

the first alert() will show 17 and the other 26. Here, you should note that changing the
value of the property a on the object obj1 also has an effect on the object obj3, which
justifies the relationship between obj1 and obj3 being a form of inheritance. Technically, it
is implemented by the fact that each object has a property called prototype. This property
refers to properties inherited from the parent object (the object from which the current
object is created based on). When you try to refer a property on an object, the interpreter
will first search for this property in the current object and if it not find the property the
interpreter will search in its parent via prototype. This continues until you either find the
desired property or can not find it. This chain may be interrupted by overriding a property.
As an example is shown another object that expands obj1 using a method:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

71

JAVASCRIPT

an object has been created that inherits obj1 and expands this object with an additional
property. For example, if you performs the following statements:

alert(obj3.a + obj3.b + obj3.c + obj3.d);
obj1.a = 11;
alert(obj3.a + obj3.b + obj3.c + obj3.d);

the first alert() will show 17 and the other 26. Here, you should note that changing the
value of the property a on the object obj1 also has an effect on the object obj3, which
justifies the relationship between obj1 and obj3 being a form of inheritance. Technically, it
is implemented by the fact that each object has a property called prototype. This property
refers to properties inherited from the parent object (the object from which the current
object is created based on). When you try to refer a property on an object, the interpreter
will first search for this property in the current object and if it not find the property the
interpreter will search in its parent via prototype. This continues until you either find the
desired property or can not find it. This chain may be interrupted by overriding a property.
As an example is shown another object that expands obj1 using a method:

var	obj4	=	Object.create(obj1);
obj4.f	=	function	(t)	{	return	t	*	(this.a	+	this.b	+	this.c);	}

Note that although the method f() is a property in the object obj4 which extends obj1, the
method can not immediately refer to the object’s other properties, but it can be solved with
this as referring to the current object. The following statement

alert(obj4.f(2));

will alert() the value 20. As another example of how to define an object using a method,
you can consider the following:

var obj5 =
{
	x:	3.14,
	y:	1.41,
 g: function (z) { return (this.x + this.y)/z; }
}

If you perform the following statement

alert(obj5.g(3));

you get the result 1.5166666666666.

Note that although the method f() is a property in the object obj4 which extends obj1, the
method can not immediately refer to the object’s other properties, but it can be solved with
this as referring to the current object. The following statement

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

71

JAVASCRIPT

an object has been created that inherits obj1 and expands this object with an additional
property. For example, if you performs the following statements:

alert(obj3.a + obj3.b + obj3.c + obj3.d);
obj1.a = 11;
alert(obj3.a + obj3.b + obj3.c + obj3.d);

the first alert() will show 17 and the other 26. Here, you should note that changing the
value of the property a on the object obj1 also has an effect on the object obj3, which
justifies the relationship between obj1 and obj3 being a form of inheritance. Technically, it
is implemented by the fact that each object has a property called prototype. This property
refers to properties inherited from the parent object (the object from which the current
object is created based on). When you try to refer a property on an object, the interpreter
will first search for this property in the current object and if it not find the property the
interpreter will search in its parent via prototype. This continues until you either find the
desired property or can not find it. This chain may be interrupted by overriding a property.
As an example is shown another object that expands obj1 using a method:

var	obj4	=	Object.create(obj1);
obj4.f	=	function	(t)	{	return	t	*	(this.a	+	this.b	+	this.c);	}

Note that although the method f() is a property in the object obj4 which extends obj1, the
method can not immediately refer to the object’s other properties, but it can be solved with
this as referring to the current object. The following statement

alert(obj4.f(2));

will alert() the value 20. As another example of how to define an object using a method,
you can consider the following:

var obj5 =
{
	x:	3.14,
	y:	1.41,
 g: function (z) { return (this.x + this.y)/z; }
}

If you perform the following statement

alert(obj5.g(3));

you get the result 1.5166666666666.

will alert() the value 20. As another example of how to define an object using a method,
you can consider the following:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

71

JAVASCRIPT

an object has been created that inherits obj1 and expands this object with an additional
property. For example, if you performs the following statements:

alert(obj3.a + obj3.b + obj3.c + obj3.d);
obj1.a = 11;
alert(obj3.a + obj3.b + obj3.c + obj3.d);

the first alert() will show 17 and the other 26. Here, you should note that changing the
value of the property a on the object obj1 also has an effect on the object obj3, which
justifies the relationship between obj1 and obj3 being a form of inheritance. Technically, it
is implemented by the fact that each object has a property called prototype. This property
refers to properties inherited from the parent object (the object from which the current
object is created based on). When you try to refer a property on an object, the interpreter
will first search for this property in the current object and if it not find the property the
interpreter will search in its parent via prototype. This continues until you either find the
desired property or can not find it. This chain may be interrupted by overriding a property.
As an example is shown another object that expands obj1 using a method:

var	obj4	=	Object.create(obj1);
obj4.f	=	function	(t)	{	return	t	*	(this.a	+	this.b	+	this.c);	}

Note that although the method f() is a property in the object obj4 which extends obj1, the
method can not immediately refer to the object’s other properties, but it can be solved with
this as referring to the current object. The following statement

alert(obj4.f(2));

will alert() the value 20. As another example of how to define an object using a method,
you can consider the following:

var obj5 =
{
	x:	3.14,
	y:	1.41,
 g: function (z) { return (this.x + this.y)/z; }
}

If you perform the following statement

alert(obj5.g(3));

you get the result 1.5166666666666.

If you perform the following statement

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

71

JAVASCRIPT

an object has been created that inherits obj1 and expands this object with an additional
property. For example, if you performs the following statements:

alert(obj3.a + obj3.b + obj3.c + obj3.d);
obj1.a = 11;
alert(obj3.a + obj3.b + obj3.c + obj3.d);

the first alert() will show 17 and the other 26. Here, you should note that changing the
value of the property a on the object obj1 also has an effect on the object obj3, which
justifies the relationship between obj1 and obj3 being a form of inheritance. Technically, it
is implemented by the fact that each object has a property called prototype. This property
refers to properties inherited from the parent object (the object from which the current
object is created based on). When you try to refer a property on an object, the interpreter
will first search for this property in the current object and if it not find the property the
interpreter will search in its parent via prototype. This continues until you either find the
desired property or can not find it. This chain may be interrupted by overriding a property.
As an example is shown another object that expands obj1 using a method:

var	obj4	=	Object.create(obj1);
obj4.f	=	function	(t)	{	return	t	*	(this.a	+	this.b	+	this.c);	}

Note that although the method f() is a property in the object obj4 which extends obj1, the
method can not immediately refer to the object’s other properties, but it can be solved with
this as referring to the current object. The following statement

alert(obj4.f(2));

will alert() the value 20. As another example of how to define an object using a method,
you can consider the following:

var obj5 =
{
	x:	3.14,
	y:	1.41,
 g: function (z) { return (this.x + this.y)/z; }
}

If you perform the following statement

alert(obj5.g(3));

you get the result 1.5166666666666.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

72

JavasCrIpt

72

Since obj1 is as above, you usually refer to the individual properties using the dot notation,
but you can also use array notation, which uses the name of the property as an index:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

72

JAVASCRIPT

72

Since obj1 is as above, you usually refer to the individual properties using the dot notation,
but you can also use array notation, which uses the name of the property as an index:

alert(obj1.a);
alert(obj1["a"]);

Both of these statement will display an alert() with the value 2. The main application of
the last notation is that it allows to loope over an object’s properties without knowing
their names:

for	(var	t	in	obj1)	alert(obj1[t]);

This statement will alert 2, 3 and 5.

You can create objects in three ways. You can create objects directly as shown above with
obj1 and obj5, that is, you directly write the properties that the object should have. You can
also create an object with Object.create() such as obj3 and obj4, where an object is created as
an extension of another object. Finally, you can create objects using a constructor. Consider
the following function:

Both of these statement will display an alert() with the value 2. The main application of
the last notation is that it allows to loope over an object’s properties without knowing
their names:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

72

JAVASCRIPT

72

Since obj1 is as above, you usually refer to the individual properties using the dot notation,
but you can also use array notation, which uses the name of the property as an index:

alert(obj1.a);
alert(obj1["a"]);

Both of these statement will display an alert() with the value 2. The main application of
the last notation is that it allows to loope over an object’s properties without knowing
their names:

for	(var	t	in	obj1)	alert(obj1[t]);

This statement will alert 2, 3 and 5.

You can create objects in three ways. You can create objects directly as shown above with
obj1 and obj5, that is, you directly write the properties that the object should have. You can
also create an object with Object.create() such as obj3 and obj4, where an object is created as
an extension of another object. Finally, you can create objects using a constructor. Consider
the following function:

This statement will alert 2, 3 and 5.

You can create objects in three ways. You can create objects directly as shown above with
obj1 and obj5, that is, you directly write the properties that the object should have. You can
also create an object with Object.create() such as obj3 and obj4, where an object is created as
an extension of another object. Finally, you can create objects using a constructor. Consider
the following function:

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

73

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

73

JAVASCRIPT

function pointConstructor(x, y)
{
 this.x = x;
 this.y = y;
 this.dist = function (p) {
	 return	Math.sqrt((this.x	–	p.x)	*	(this.x	–	p.x)	+
	 (this.y	–	p.y)	*	(this.y	–	p.y));	
 }
 this.toString = function() { return "(" +
this.x + ", " + this.y + ")"; }
}

The function creates an object with 4 properties, where the last two are methods. An object
is perceived as a point in a coordinate system, and the method dist() has a parameter that
is to be interpreted as a point. The method returns the distance between the current point
and the parameter p. The last method is an override of toString(). You should note that
the method has parameters, but it is not necessary. Below is how to use the constructor
method to create two objects:

var p1 = new pointConstructor(2, 3);
var p2 = new pointConstructor(5, 7);

The following statement

alert(p1 + "\n" + p2 + "\n" + p1.dist(p2));

will opens a popup as shown belove:

In principle, it does not matter whether an object is created in one way or another and you
use the most appropriate way. However, you must note that the constructor way resembles
how to create objects in Java.

The function creates an object with 4 properties, where the last two are methods. An object
is perceived as a point in a coordinate system, and the method dist() has a parameter that
is to be interpreted as a point. The method returns the distance between the current point
and the parameter p. The last method is an override of toString(). You should note that
the method has parameters, but it is not necessary. Below is how to use the constructor
method to create two objects:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

73

JAVASCRIPT

function pointConstructor(x, y)
{
 this.x = x;
 this.y = y;
 this.dist = function (p) {
	 return	Math.sqrt((this.x	–	p.x)	*	(this.x	–	p.x)	+
	 (this.y	–	p.y)	*	(this.y	–	p.y));	
 }
 this.toString = function() { return "(" +
this.x + ", " + this.y + ")"; }
}

The function creates an object with 4 properties, where the last two are methods. An object
is perceived as a point in a coordinate system, and the method dist() has a parameter that
is to be interpreted as a point. The method returns the distance between the current point
and the parameter p. The last method is an override of toString(). You should note that
the method has parameters, but it is not necessary. Below is how to use the constructor
method to create two objects:

var p1 = new pointConstructor(2, 3);
var p2 = new pointConstructor(5, 7);

The following statement

alert(p1 + "\n" + p2 + "\n" + p1.dist(p2));

will opens a popup as shown belove:

In principle, it does not matter whether an object is created in one way or another and you
use the most appropriate way. However, you must note that the constructor way resembles
how to create objects in Java.

will opens a popup as shown belove:

In principle, it does not matter whether an object is created in one way or another and you
use the most appropriate way. However, you must note that the constructor way resembles
how to create objects in Java.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

74

JavasCrIpt

I will finish this section on objects with an example of a cup object representing a 5-cube
rafle cup where a cube should be represented by a cube object. The example applies in
addition more control statements (loops) and also arrays that are dealt with in the next
section. The example will also use the module concept described in the previous section.
The code is as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

74

JAVASCRIPT

I will finish this section on objects with an example of a cup object representing a 5-cube
rafle cup where a cube should be represented by a cube object. The example applies in
addition more control statements (loops) and also arrays that are dealt with in the next
section. The example will also use the module concept described in the previous section.
The code is as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>CubesProgram</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <script>
 var cup = (function() {
 function cube() {
 this.eyes = 1;
 this.roll = function () {
	 this.eyes	=	Math.floor(Math.random()	*	6)	+	1;
 };
 this.valueOf = function () {
 return this.eyes;
 }
 };

 public = {
	 cubes:	[new	cube(),	new	cube(),	new	cube(),	new	cube(),	new	cube()],

 toss: function () {
	 for	(var	i	=	0;	i	<	this.cubes.length;	++i)	this.cubes[i].roll();
 },

 yatzy: function () {
	 var	t	=	this.cubes[0].eyes;
 for (var i = 1; i < this.cubes.length; ++i)
	 if	(this.cubes[i]	!=	t)	return	false;
 return true;
 },

 toString: function () {
	 var	str	=	this.cubes[0].eyes;
 for (var i = 1; i < this.cubes.length; ++i)
	 str	+=	"	"	+	this.cubes[i].valueOf();
 return str;
 }

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

75

JavasCrIpt

75

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

75

JAVASCRIPT

75

 };

 return public;
 })();
 </script>
 </head>
 <body>
 <h1>Play Yatzy</h1>
 <script>
 var count = 0;
 do {
 cup.toss();
 document.write(cup + "
");
 ++count;
 }
 while (!cup.yatzy());
 </script>
 <h3>You've got yatzy after <script>document.write(count)</script> attempts</h3>
 </body>
</html>

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

76

JavasCrIpt

In the header section is defined a module called cup, which represented a cup with 5 cubes
and three public attributes:

1. toss(), that is a method, which simulates the use of the cup
2. yatzy(), which is a method, that tests where all 5 cube values are the same
3. toString(), that is an override of toString()

Initially, a constructor method is defined that creates a cube object. An object public is
defined which uses the constructor method to create an array of 5 cube objects. The public
object has three functions that implement the above methods. The body part simulates
using the cup until all cubes have the same value.

EXERCISE 1

Create a copy of the program CupProgram. You must then create a folder resources and a
subfolder js and to that folder a JavaScript file:

You must then move all your script code from index.xhtml to tools.js – but without the
script elements. index.xhtml must have a link in the header to the JavaScript file. You du
that by draging til file name to the header. The result of index.xhtml should be:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

76

JAVASCRIPT

In the header section is defined a module called cup, which represented a cup with 5 cubes
and three public attributes:

1. toss(), that is a method, which simulates the use of the cup
2. yatzy(), which is a method, that tests where all 5 cube values are the same
3. toString(), that is an override of toString()

Initially, a constructor method is defined that creates a cube object. An object public is
defined which uses the constructor method to create an array of 5 cube objects. The public
object has three functions that implement the above methods. The body part simulates
using the cup until all cubes have the same value.

EXERCISE 1

Create a copy of the program CupProgram. You must then create a folder resources and a
subfolder js and to that folder a JavaScript file:

You must then move all your script code from index.xhtml to tools.js – but without the
script elements. index.xhtml must have a link in the header to the JavaScript file. You du
that by draging til file name to the header. The result of index.xhtml should be:

<!DOCTYPE html>
<html>
 <head>
 <title>CubesProgram</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <script src="resources/js/tools.js" type="text/javascript"></script>
 </head>
 <body>
 <h1>Play Yatzy</h1>
 <script>
 var count = 0;
 do {
 cup.toss();

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

77

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

77

JAVASCRIPT

 document.write(cup + "
");
 ++count;
 }
 while (!cup.yatzy());
 </script>
 <h3>You've got yatzy after <script>document.write(count)</script> attempts</h3>
 </body>
</html>

Test the program, at it should works as before.

When using JavaScript, you will usually place the code in its own file, as shown in this exercise.

Arrays

Arrays works immediately in the same way as in other programming languages and with
the same syntax known from Java, but there are also important differences. In JavaScript
arrays are dynamic and should not be allocated for a certain size. The following function
opens a popup that shows the length of an array as well as the array’s elements:

function show(arr)
{
 var str = arr.length + "\n";
	for	(var	i	=	0;	i	<	arr.length;	++i)	str	+=	"\n"	+	arr[i];
 alert(str);
}

If you consider this function, note that syntactically, an array is used in the same way as
in Java. An array has a length property, and the individual elements are referenced via an
0-based index.

var	arr1	=	["Svend",	"Knud",	"Valdemar"];

The statement creates an array of three elements and sends this array to the function show(),
you receives an alert as shown below:

Test the program, at it should works as before.

When using JavaScript, you will usually place the code in its own file, as shown in this exercise.

Arrays

Arrays works immediately in the same way as in other programming languages and with
the same syntax known from Java, but there are also important differences. In JavaScript
arrays are dynamic and should not be allocated for a certain size. The following function
opens a popup that shows the length of an array as well as the array’s elements:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

77

JAVASCRIPT

 document.write(cup + "
");
 ++count;
 }
 while (!cup.yatzy());
 </script>
 <h3>You've got yatzy after <script>document.write(count)</script> attempts</h3>
 </body>
</html>

Test the program, at it should works as before.

When using JavaScript, you will usually place the code in its own file, as shown in this exercise.

Arrays

Arrays works immediately in the same way as in other programming languages and with
the same syntax known from Java, but there are also important differences. In JavaScript
arrays are dynamic and should not be allocated for a certain size. The following function
opens a popup that shows the length of an array as well as the array’s elements:

function show(arr)
{
 var str = arr.length + "\n";
	for	(var	i	=	0;	i	<	arr.length;	++i)	str	+=	"\n"	+	arr[i];
 alert(str);
}

If you consider this function, note that syntactically, an array is used in the same way as
in Java. An array has a length property, and the individual elements are referenced via an
0-based index.

var	arr1	=	["Svend",	"Knud",	"Valdemar"];

The statement creates an array of three elements and sends this array to the function show(),
you receives an alert as shown below:

If you consider this function, note that syntactically, an array is used in the same way as
in Java. An array has a length property, and the individual elements are referenced via an
0-based index.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

77

JAVASCRIPT

 document.write(cup + "
");
 ++count;
 }
 while (!cup.yatzy());
 </script>
 <h3>You've got yatzy after <script>document.write(count)</script> attempts</h3>
 </body>
</html>

Test the program, at it should works as before.

When using JavaScript, you will usually place the code in its own file, as shown in this exercise.

Arrays

Arrays works immediately in the same way as in other programming languages and with
the same syntax known from Java, but there are also important differences. In JavaScript
arrays are dynamic and should not be allocated for a certain size. The following function
opens a popup that shows the length of an array as well as the array’s elements:

function show(arr)
{
 var str = arr.length + "\n";
	for	(var	i	=	0;	i	<	arr.length;	++i)	str	+=	"\n"	+	arr[i];
 alert(str);
}

If you consider this function, note that syntactically, an array is used in the same way as
in Java. An array has a length property, and the individual elements are referenced via an
0-based index.

var	arr1	=	["Svend",	"Knud",	"Valdemar"];

The statement creates an array of three elements and sends this array to the function show(),
you receives an alert as shown below:
The statement creates an array of three elements and sends this array to the function show(),
you receives an alert as shown below:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

78

JavasCrIpt

78

Since an array has no type, an array can contain elements of different types:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

78

JAVASCRIPT

78

Since an array has no type, an array can contain elements of different types:

var	arr2	=	["Gorm",	3.13,	{	x:	2,	y:	3	},	obj1];

where the array contains a string, a number and two objects. You can also create an array
with a constructor function:

var arr3 = new Array();
show(arr3);

and the result is an empty array. If you have an array, you can immediately add items, and
the array will dynamically expand:

arr3[0]	=	11;
arr3[1]	=	13;
arr3[2]	=	17;
arr3[3]	=	19;
show(arr3);

where the array contains a string, a number and two objects. You can also create an array
with a constructor function:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

78

JAVASCRIPT

78

Since an array has no type, an array can contain elements of different types:

var	arr2	=	["Gorm",	3.13,	{	x:	2,	y:	3	},	obj1];

where the array contains a string, a number and two objects. You can also create an array
with a constructor function:

var arr3 = new Array();
show(arr3);

and the result is an empty array. If you have an array, you can immediately add items, and
the array will dynamically expand:

arr3[0]	=	11;
arr3[1]	=	13;
arr3[2]	=	17;
arr3[3]	=	19;
show(arr3);

and the result is an empty array. If you have an array, you can immediately add items, and
the array will dynamically expand:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

78

JAVASCRIPT

78

Since an array has no type, an array can contain elements of different types:

var	arr2	=	["Gorm",	3.13,	{	x:	2,	y:	3	},	obj1];

where the array contains a string, a number and two objects. You can also create an array
with a constructor function:

var arr3 = new Array();
show(arr3);

and the result is an empty array. If you have an array, you can immediately add items, and
the array will dynamically expand:

arr3[0]	=	11;
arr3[1]	=	13;
arr3[2]	=	17;
arr3[3]	=	19;
show(arr3);

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

79

JavasCrIpt

and the array now have 4 elements:

An array may also have “holes”, and thus elements that are not defined:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

79

JAVASCRIPT

and the array now have 4 elements:

An array may also have “holes”, and thus elements that are not defined:

arr1[5]	=	"Erik";
show(arr1);

Constructor functions can have parameters:

var	arr4	=	new	Array(4);
var	arr5	=	new	Array(23,	29,	31,	37);

and here the first creates an array of length 4 with 4 undefined elements, while the other
creates an array with 4 elements. Finally, you should note that you can change the value
of the property length and thus delete items in an array. As mentioned, you reference the
elements in an array using a numeric index, but indexing is actually more flexible than you
would expect. Consider the following code:

var arr = new Array();
arr[0]	=	2;
arr[1]	=	3;
arr["3"]	=	5;
arr["abc"]	=	7;
show(arr);

Constructor functions can have parameters:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

79

JAVASCRIPT

and the array now have 4 elements:

An array may also have “holes”, and thus elements that are not defined:

arr1[5]	=	"Erik";
show(arr1);

Constructor functions can have parameters:

var	arr4	=	new	Array(4);
var	arr5	=	new	Array(23,	29,	31,	37);

and here the first creates an array of length 4 with 4 undefined elements, while the other
creates an array with 4 elements. Finally, you should note that you can change the value
of the property length and thus delete items in an array. As mentioned, you reference the
elements in an array using a numeric index, but indexing is actually more flexible than you
would expect. Consider the following code:

var arr = new Array();
arr[0]	=	2;
arr[1]	=	3;
arr["3"]	=	5;
arr["abc"]	=	7;
show(arr);

and here the first creates an array of length 4 with 4 undefined elements, while the other
creates an array with 4 elements. Finally, you should note that you can change the value
of the property length and thus delete items in an array. As mentioned, you reference the
elements in an array using a numeric index, but indexing is actually more flexible than you
would expect. Consider the following code:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

79

JAVASCRIPT

and the array now have 4 elements:

An array may also have “holes”, and thus elements that are not defined:

arr1[5]	=	"Erik";
show(arr1);

Constructor functions can have parameters:

var	arr4	=	new	Array(4);
var	arr5	=	new	Array(23,	29,	31,	37);

and here the first creates an array of length 4 with 4 undefined elements, while the other
creates an array with 4 elements. Finally, you should note that you can change the value
of the property length and thus delete items in an array. As mentioned, you reference the
elements in an array using a numeric index, but indexing is actually more flexible than you
would expect. Consider the following code:

var arr = new Array();
arr[0]	=	2;
arr[1]	=	3;
arr["3"]	=	5;
arr["abc"]	=	7;
show(arr);

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

80

JavasCrIpt

First, note that the code does not fail and it will display the following alert:

If the index is not a number, the interpreter will try to convert it to an integer and the
result of

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

80

JAVASCRIPT

First, note that the code does not fail and it will display the following alert:

If the index is not a number, the interpreter will try to convert it to an integer and the
result of

arr["3"]	=	5;

is therefore the element with index 3. On the other hand, it is not immediately clear what

arr["abc"]	=	7;

means when “abc” can not be converted to a number. An array is an object, and therefore
you can specifically define its own properties. This is exactly what happens here as arr[“abc”]
is interpreted as a property named abc, which then gets the value 7. There is reason to be
aware of this interpretation as it is easy to accidentally add properties to an array. In this
case the statement

alert(arr.abc);

will show 7. The elements in an array can be anything and hence especially other arrays.
It allows to simulate multidimensional arrays. For example will the following code display
an alert with the value 130:

var	v1	=	[2,	3,	6,	7];
var	v2	=	[11,	13,	17,	19];
var	v3	=	[23,	29];
var	v	=	[v1,	v2,	v3];
var s = 0;
for	(var	i	=	0;	i	<	v.length;	++i)	for	(var	j	=	0;	j	<	v[i].length;	++j)	s	+=	v[i][j];
alert(s);

is therefore the element with index 3. On the other hand, it is not immediately clear what

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

80

JAVASCRIPT

First, note that the code does not fail and it will display the following alert:

If the index is not a number, the interpreter will try to convert it to an integer and the
result of

arr["3"]	=	5;

is therefore the element with index 3. On the other hand, it is not immediately clear what

arr["abc"]	=	7;

means when “abc” can not be converted to a number. An array is an object, and therefore
you can specifically define its own properties. This is exactly what happens here as arr[“abc”]
is interpreted as a property named abc, which then gets the value 7. There is reason to be
aware of this interpretation as it is easy to accidentally add properties to an array. In this
case the statement

alert(arr.abc);

will show 7. The elements in an array can be anything and hence especially other arrays.
It allows to simulate multidimensional arrays. For example will the following code display
an alert with the value 130:

var	v1	=	[2,	3,	6,	7];
var	v2	=	[11,	13,	17,	19];
var	v3	=	[23,	29];
var	v	=	[v1,	v2,	v3];
var s = 0;
for	(var	i	=	0;	i	<	v.length;	++i)	for	(var	j	=	0;	j	<	v[i].length;	++j)	s	+=	v[i][j];
alert(s);

means when “abc” can not be converted to a number. An array is an object, and therefore
you can specifically define its own properties. This is exactly what happens here as arr[“abc”]
is interpreted as a property named abc, which then gets the value 7. There is reason to be
aware of this interpretation as it is easy to accidentally add properties to an array. In this
case the statement

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

80

JAVASCRIPT

First, note that the code does not fail and it will display the following alert:

If the index is not a number, the interpreter will try to convert it to an integer and the
result of

arr["3"]	=	5;

is therefore the element with index 3. On the other hand, it is not immediately clear what

arr["abc"]	=	7;

means when “abc” can not be converted to a number. An array is an object, and therefore
you can specifically define its own properties. This is exactly what happens here as arr[“abc”]
is interpreted as a property named abc, which then gets the value 7. There is reason to be
aware of this interpretation as it is easy to accidentally add properties to an array. In this
case the statement

alert(arr.abc);

will show 7. The elements in an array can be anything and hence especially other arrays.
It allows to simulate multidimensional arrays. For example will the following code display
an alert with the value 130:

var	v1	=	[2,	3,	6,	7];
var	v2	=	[11,	13,	17,	19];
var	v3	=	[23,	29];
var	v	=	[v1,	v2,	v3];
var s = 0;
for	(var	i	=	0;	i	<	v.length;	++i)	for	(var	j	=	0;	j	<	v[i].length;	++j)	s	+=	v[i][j];
alert(s);

will show 7. The elements in an array can be anything and hence especially other arrays.
It allows to simulate multidimensional arrays. For example will the following code display
an alert with the value 130:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

80

JAVASCRIPT

First, note that the code does not fail and it will display the following alert:

If the index is not a number, the interpreter will try to convert it to an integer and the
result of

arr["3"]	=	5;

is therefore the element with index 3. On the other hand, it is not immediately clear what

arr["abc"]	=	7;

means when “abc” can not be converted to a number. An array is an object, and therefore
you can specifically define its own properties. This is exactly what happens here as arr[“abc”]
is interpreted as a property named abc, which then gets the value 7. There is reason to be
aware of this interpretation as it is easy to accidentally add properties to an array. In this
case the statement

alert(arr.abc);

will show 7. The elements in an array can be anything and hence especially other arrays.
It allows to simulate multidimensional arrays. For example will the following code display
an alert with the value 130:

var	v1	=	[2,	3,	6,	7];
var	v2	=	[11,	13,	17,	19];
var	v3	=	[23,	29];
var	v	=	[v1,	v2,	v3];
var s = 0;
for	(var	i	=	0;	i	<	v.length;	++i)	for	(var	j	=	0;	j	<	v[i].length;	++j)	s	+=	v[i][j];
alert(s);

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

81

JavasCrIpt

81

In particular, note how to iterates the array v as a 2-dimensional array, but it is the
programmer’s responsibility that the elements in v are actually arrays. Otherwise, you will
get an error. Also note that v illustrates a heterogeneous array and thus an array where the
rows do not have the same length.

In fact, JavaScript is quite flexible as to how to define an array. Below is defined an array
consisting of two arrays, and these arrays have elements of different types. The one even
has an element that is not defined.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

81

JAVASCRIPT

81

In particular, note how to iterates the array v as a 2-dimensional array, but it is the
programmer’s responsibility that the elements in v are actually arrays. Otherwise, you will
get an error. Also note that v illustrates a heterogeneous array and thus an array where the
rows do not have the same length.

In fact, JavaScript is quite flexible as to how to define an array. Below is defined an array
consisting of two arrays, and these arrays have elements of different types. The one even
has an element that is not defined.

var	konger	=	[["Gorm",	,	958],	["Harald	Blåtand",	958,	986]];
for	(var	i	=	0;	i	<	konger.length;	++i)	show(konger[i]);

You should note that there are a number of standard functions for arrays that I mentions
in a later section.

EXERCISE 2

The Fibonacci numbers are, as you know, the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, ….

You should note that there are a number of standard functions for arrays that I mentions
in a later section.

EXERCISE 2

The Fibonacci numbers are, as you know, the following sequence:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

81

JAVASCRIPT

81

In particular, note how to iterates the array v as a 2-dimensional array, but it is the
programmer’s responsibility that the elements in v are actually arrays. Otherwise, you will
get an error. Also note that v illustrates a heterogeneous array and thus an array where the
rows do not have the same length.

In fact, JavaScript is quite flexible as to how to define an array. Below is defined an array
consisting of two arrays, and these arrays have elements of different types. The one even
has an element that is not defined.

var	konger	=	[["Gorm",	,	958],	["Harald	Blåtand",	958,	986]];
for	(var	i	=	0;	i	<	konger.length;	++i)	show(konger[i]);

You should note that there are a number of standard functions for arrays that I mentions
in a later section.

EXERCISE 2

The Fibonacci numbers are, as you know, the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, ….

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

82

JavasCrIpt

Create a new project, that you can call FiboProgram. The project must have a start page
index.html that shows the first 95 fibonacci numbers in a table (se the window belove). The
program should be written as follows:

1. The project must have a JavaScript file, that contains a module called fibonacci,
which automatically creates a private array, that contains the fibonacci numbers.
The module must have two public properties, where the first is called length, and is
a simple property whose value is the length of the array, while the other property
is a function get(n), that returns the n’th fibonacci number.

2. The table and the header text should be styled by a simple style sheet.
3. The start page index.html must dynamic generate the table in JavaScript.

Functions

In JavaScript is a function as mentioned an object. That means more things, for example
that a function can be return value from another function and that a function can be a
parameter to another function. It also means that a function may have properties and
methods like any other object. These relationships means that functions in many ways are
different from functions in other languages like Java.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

83

JavasCrIpt

A function is usually created with the reserved word function:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

83

JAVASCRIPT

A function is usually created with the reserved word function:

function factorial(n)
{
}

and the function may have an arbitrary number of parameters and especially none. Since
a function can refer to all variables in its own scope, the function can specifically refer to
itself and you can therefore write recursive functions:

function factorial(n)
{
 if (n < 1) return 1;
	return	n	*	factorial(n	–	1);
}

It is allowed to declare a function multiple times in the same scope, which simply means
that the function name is given a different value. It can also give unexpected results. For
example, if you consider the following code:

function f()
{
 return 23;
}
alert(f());
function f()
{
	return	29;
}

it will alert 29. The reason is that JavaScript collects all definitions at the start of a scope
and the above is thus equivalent to:

function f()
{
 return 23;
}
function f()
{
	return	29;
}
alert(f());

and the function may have an arbitrary number of parameters and especially none. Since
a function can refer to all variables in its own scope, the function can specifically refer to
itself and you can therefore write recursive functions:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

83

JAVASCRIPT

A function is usually created with the reserved word function:

function factorial(n)
{
}

and the function may have an arbitrary number of parameters and especially none. Since
a function can refer to all variables in its own scope, the function can specifically refer to
itself and you can therefore write recursive functions:

function factorial(n)
{
 if (n < 1) return 1;
	return	n	*	factorial(n	–	1);
}

It is allowed to declare a function multiple times in the same scope, which simply means
that the function name is given a different value. It can also give unexpected results. For
example, if you consider the following code:

function f()
{
 return 23;
}
alert(f());
function f()
{
	return	29;
}

it will alert 29. The reason is that JavaScript collects all definitions at the start of a scope
and the above is thus equivalent to:

function f()
{
 return 23;
}
function f()
{
	return	29;
}
alert(f());

It is allowed to declare a function multiple times in the same scope, which simply means
that the function name is given a different value. It can also give unexpected results. For
example, if you consider the following code:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

83

JAVASCRIPT

A function is usually created with the reserved word function:

function factorial(n)
{
}

and the function may have an arbitrary number of parameters and especially none. Since
a function can refer to all variables in its own scope, the function can specifically refer to
itself and you can therefore write recursive functions:

function factorial(n)
{
 if (n < 1) return 1;
	return	n	*	factorial(n	–	1);
}

It is allowed to declare a function multiple times in the same scope, which simply means
that the function name is given a different value. It can also give unexpected results. For
example, if you consider the following code:

function f()
{
 return 23;
}
alert(f());
function f()
{
	return	29;
}

it will alert 29. The reason is that JavaScript collects all definitions at the start of a scope
and the above is thus equivalent to:

function f()
{
 return 23;
}
function f()
{
	return	29;
}
alert(f());

it will alert 29. The reason is that JavaScript collects all definitions at the start of a scope
and the above is thus equivalent to:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

83

JAVASCRIPT

A function is usually created with the reserved word function:

function factorial(n)
{
}

and the function may have an arbitrary number of parameters and especially none. Since
a function can refer to all variables in its own scope, the function can specifically refer to
itself and you can therefore write recursive functions:

function factorial(n)
{
 if (n < 1) return 1;
	return	n	*	factorial(n	–	1);
}

It is allowed to declare a function multiple times in the same scope, which simply means
that the function name is given a different value. It can also give unexpected results. For
example, if you consider the following code:

function f()
{
 return 23;
}
alert(f());
function f()
{
	return	29;
}

it will alert 29. The reason is that JavaScript collects all definitions at the start of a scope
and the above is thus equivalent to:

function f()
{
 return 23;
}
function f()
{
	return	29;
}
alert(f());

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

84

JavasCrIpt

84

In JavaScript, you can also define a function as an expression:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

84

JAVASCRIPT

84

In JavaScript, you can also define a function as an expression:

var show = function (arr)
{
 var str = arr.length + "\n";
	for	(var	i	=	0;	i	<	arr.length;	++i)	str	+=	"\n"	+	arr[i];
 alert(str);
}
show([2,	3,	5,	7]);

The Varablen show refers to an anonymous function, and the use of anonymous functions
is widely used in JavaScript. Consider the following example:

function validate(x, ok)
{
 if (ok(x)) return true;
 alert(x + " er en ulovlig værdi");
 return false;
}

The Varablen show refers to an anonymous function, and the use of anonymous functions
is widely used in JavaScript. Consider the following example:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

84

JAVASCRIPT

84

In JavaScript, you can also define a function as an expression:

var show = function (arr)
{
 var str = arr.length + "\n";
	for	(var	i	=	0;	i	<	arr.length;	++i)	str	+=	"\n"	+	arr[i];
 alert(str);
}
show([2,	3,	5,	7]);

The Varablen show refers to an anonymous function, and the use of anonymous functions
is widely used in JavaScript. Consider the following example:

function validate(x, ok)
{
 if (ok(x)) return true;
 alert(x + " er en ulovlig værdi");
 return false;
}

http://s.bookboon.com/elearningforkids

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

85

JavasCrIpt

The function has two parameters, the latter being interpreted as a function that will validate
the first parameter. The function could, for example, be used as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

85

JAVASCRIPT

The function has two parameters, the latter being interpreted as a function that will validate
the first parameter. The function could, for example, be used as follows:

validate(1234,	function	(t)	{	return	t	>=	100	&&	t	<=	999;	});

where the function should validate if the first argument is a 3-digit number. The validation
function is sent as an anonymous function.

When a function is performed, it occurs in a given context, and the function has access
to variables, objects, and other functions in this context through its scope. Internally, this
context is referenced by the this pointer, which is indirectly transferred to the function
when it is called. In this context, it is necessary to distinguish between a function and a
method where a method is a function defined as a property in an object. If you perform
a usual function, its context will be the window object, while the context of a method is
the parent object. It can be illustrated by the following code, where m is a method in the
object obj, while f() is a global function with an inner function g().

var obj =
{
 m : function() { alert(this === obj); }
}
function f()
{
 alert(this === window);
 function g()
 {
 alert(this === window);
 };
 g();
}
obj.m();
f();

If you execute the code, it will display true in an alert() three times. First, the method m()
is executed and its context is the object obj. Next, f() is executed and it starts performing
the internal function g() whose context is the window object in the same way as the external
function f().

The most frequent use of this is in connection with methods and constructor functions.
If you have a function and type new in front of the function, it means creating an empty
object, and this will then refer to the context for this object. As an example, below is shown
a constructor function that creates a point:

where the function should validate if the first argument is a 3-digit number. The validation
function is sent as an anonymous function.

When a function is performed, it occurs in a given context, and the function has access
to variables, objects, and other functions in this context through its scope. Internally, this
context is referenced by the this pointer, which is indirectly transferred to the function
when it is called. In this context, it is necessary to distinguish between a function and a
method where a method is a function defined as a property in an object. If you perform
a usual function, its context will be the window object, while the context of a method is
the parent object. It can be illustrated by the following code, where m is a method in the
object obj, while f() is a global function with an inner function g().

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

85

JAVASCRIPT

The function has two parameters, the latter being interpreted as a function that will validate
the first parameter. The function could, for example, be used as follows:

validate(1234,	function	(t)	{	return	t	>=	100	&&	t	<=	999;	});

where the function should validate if the first argument is a 3-digit number. The validation
function is sent as an anonymous function.

When a function is performed, it occurs in a given context, and the function has access
to variables, objects, and other functions in this context through its scope. Internally, this
context is referenced by the this pointer, which is indirectly transferred to the function
when it is called. In this context, it is necessary to distinguish between a function and a
method where a method is a function defined as a property in an object. If you perform
a usual function, its context will be the window object, while the context of a method is
the parent object. It can be illustrated by the following code, where m is a method in the
object obj, while f() is a global function with an inner function g().

var obj =
{
 m : function() { alert(this === obj); }
}
function f()
{
 alert(this === window);
 function g()
 {
 alert(this === window);
 };
 g();
}
obj.m();
f();

If you execute the code, it will display true in an alert() three times. First, the method m()
is executed and its context is the object obj. Next, f() is executed and it starts performing
the internal function g() whose context is the window object in the same way as the external
function f().

The most frequent use of this is in connection with methods and constructor functions.
If you have a function and type new in front of the function, it means creating an empty
object, and this will then refer to the context for this object. As an example, below is shown
a constructor function that creates a point:

If you execute the code, it will display true in an alert() three times. First, the method m()
is executed and its context is the object obj. Next, f() is executed and it starts performing
the internal function g() whose context is the window object in the same way as the external
function f().

The most frequent use of this is in connection with methods and constructor functions.
If you have a function and type new in front of the function, it means creating an empty
object, and this will then refer to the context for this object. As an example, below is shown
a constructor function that creates a point:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

86

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

86

JAVASCRIPT

function createPoint(x, y)
{
 this.x = x;
 this.y = y;

 this.move = function (p) { this.x = p.x; this.y = p.y; };
 this.add = function (p) { this.x += p.x; this.y += p.y; };
 this.scale = function (t) { this.x *= t, this.y *= t; };
 this.dist = function (p) {
	 return	Math.sqrt((this.x	–	p.x)	*	(this.x	–	p.x)	+
	 (this.y	–	p.y)	*	(this.y	–	p.y));	};
 this.toString = function() { return "(" +
this.x + ", " + this.y + ")"; }
}

The following code uses the function to create two objects, and you should note in particular
that the objects do not inherit each other and each have there own variables on which they
work on:

var p1 = new createPoint(0, 0);
var str = p1.toString();
var p2 = new createPoint(2, 3);
str += "\n" + p2;
p1.move(p2);
str += "\n" + p1;
p1.add(p2);
str += "\n" + p1;
p1.scale(2);
str += "\n" + p1;
str += "\n" + p1.dist(p2);
alert(str);

Also note that the above recalls the class concept from an object-oriented programming
language, but it has nothing to do with classes – JavaScript has only objects.

The following code uses the function to create two objects, and you should note in particular
that the objects do not inherit each other and each have there own variables on which they
work on:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

86

JAVASCRIPT

function createPoint(x, y)
{
 this.x = x;
 this.y = y;

 this.move = function (p) { this.x = p.x; this.y = p.y; };
 this.add = function (p) { this.x += p.x; this.y += p.y; };
 this.scale = function (t) { this.x *= t, this.y *= t; };
 this.dist = function (p) {
	 return	Math.sqrt((this.x	–	p.x)	*	(this.x	–	p.x)	+
	 (this.y	–	p.y)	*	(this.y	–	p.y));	};
 this.toString = function() { return "(" +
this.x + ", " + this.y + ")"; }
}

The following code uses the function to create two objects, and you should note in particular
that the objects do not inherit each other and each have there own variables on which they
work on:

var p1 = new createPoint(0, 0);
var str = p1.toString();
var p2 = new createPoint(2, 3);
str += "\n" + p2;
p1.move(p2);
str += "\n" + p1;
p1.add(p2);
str += "\n" + p1;
p1.scale(2);
str += "\n" + p1;
str += "\n" + p1.dist(p2);
alert(str);

Also note that the above recalls the class concept from an object-oriented programming
language, but it has nothing to do with classes – JavaScript has only objects.

Also note that the above recalls the class concept from an object-oriented programming
language, but it has nothing to do with classes – JavaScript has only objects.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

87

JavasCrIpt

87

Usually, a function is performed by specifying parentheses after the function name, if
any, the actual parameters are written between parentheses. The parentheses () are in this
context called for the function invokes operator. However, there is an alternative to calling
a function. You can use apply() or call(), where you can specify the context in which the
function should work within. Consider the following code:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

87

JAVASCRIPT

87

Usually, a function is performed by specifying parentheses after the function name, if
any, the actual parameters are written between parentheses. The parentheses () are in this
context called for the function invokes operator. However, there is an alternative to calling
a function. You can use apply() or call(), where you can specify the context in which the
function should work within. Consider the following code:

var scale = 10;
var obj1 =
{
 scale: 100
}
var obj2 =
{
 scale: 1000
}
function sum(x, y, z)
{
 return this.scale * (x + y + z);
}
alert(sum(2, 3, 5));
alert(sum.apply(obj1,	[2,	3,	5]));
alert(sum.call(obj2, 2, 3, 5));

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

88

JavasCrIpt

It will show with an alert 100, 1000 and 10000 respectively. At the top is defined a variable
called scale that has the value 10. Next, two objects are defined which each have a property
called scale and their values are 100 and 1000 respectively. These objects each define their
context (scope). The function sum() has three parameters and returns the sum of these
parameters after multiplying the sum with the value of a variable scale from the current
context. The first alert shows the value of this function by calling it in the normal way,
and since it is a global function, its context will be the window object, and that is why
the global scale variable is used. The next alert() performs the function again, but this time
using apply(). The first parameter is the context in which the function should work, and
here it is obj1. That is that scale this time is the property scale from obj1 that has the value
100. Note that the parameters are transmitted as an array. The last alert works in principle
in the same way, but this time the function call() is used and obj2 is used as a context. The
difference between apply() and call() is that in the first one you specify parameters for the
function as an array, while the other indicates the parameters as a list.

Programkontrol

As the last section regarding the basic syntax and semantics I want to show the language’s
control statements, and here is not much to explain. Secondly, I have already used most of
the control statements several times, and basically, there are the same statements as in Java.

Regarding conditions, JavaScript has an if statement, which has the same syntax as in Java,
and the semantics are also the same. The only difference is the condition, which should
be an expression that evaluates a boolean, and here corresponding to the conversion rules
described above, there is somewhat greater flexibility (and possibilities of errors) than the
case is in Java.

JavaScript also has a switch statement that also works in the same way as in Java. The same
goes for while and do loops. The most commonly used loop is as in Java the for loop, and
the classic for loop works exactly the same as in Java:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

88

JAVASCRIPT

It will show with an alert 100, 1000 and 10000 respectively. At the top is defined a variable
called scale that has the value 10. Next, two objects are defined which each have a property
called scale and their values are 100 and 1000 respectively. These objects each define their
context (scope). The function sum() has three parameters and returns the sum of these
parameters after multiplying the sum with the value of a variable scale from the current
context. The first alert shows the value of this function by calling it in the normal way,
and since it is a global function, its context will be the window object, and that is why
the global scale variable is used. The next alert() performs the function again, but this time
using apply(). The first parameter is the context in which the function should work, and
here it is obj1. That is that scale this time is the property scale from obj1 that has the value
100. Note that the parameters are transmitted as an array. The last alert works in principle
in the same way, but this time the function call() is used and obj2 is used as a context. The
difference between apply() and call() is that in the first one you specify parameters for the
function as an array, while the other indicates the parameters as a list.

Programkontrol

As the last section regarding the basic syntax and semantics I want to show the language’s
control statements, and here is not much to explain. Secondly, I have already used most of
the control statements several times, and basically, there are the same statements as in Java.

Regarding conditions, JavaScript has an if statement, which has the same syntax as in Java,
and the semantics are also the same. The only difference is the condition, which should
be an expression that evaluates a boolean, and here corresponding to the conversion rules
described above, there is somewhat greater flexibility (and possibilities of errors) than the
case is in Java.

JavaScript also has a switch statement that also works in the same way as in Java. The same
goes for while and do loops. The most commonly used loop is as in Java the for loop, and
the classic for loop works exactly the same as in Java:

for	(var	i	=	0;	i	<	arr.length;	++i)	s	+=	arr[i];

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

89

JavasCrIpt

In Java, you also have a foreach loop, which is actually an iterator. There is a corresponding
variant of a for loop in JavaScript, sometimes called for-in. It can be used to iterate all
properties in an object. Below is an object with 4 properties and the following loop determines
the sums of these four properties with an for-in loop:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

89

JAVASCRIPT

In Java, you also have a foreach loop, which is actually an iterator. There is a corresponding
variant of a for loop in JavaScript, sometimes called for-in. It can be used to iterate all
properties in an object. Below is an object with 4 properties and the following loop determines
the sums of these four properties with an for-in loop:

var obj =
{
 a: 2,
 b: 3,
 c: 5,
 d: 7
}
var s = 0;
for	(var	t	in	obj)	s	+=	obj[t];
alert(s);

4.3 GLOBAL OBJECTS AND FUNCTIONS

JavaScript is born with several global objects and some global functions that are immediately
available and in terms of methods offers a variety of services. The global objects are

1. Array
2. Boolean
3. Date
4. Math
5. Number
6. RegExp
7. String

I do not want to review these objects and their methods here, but the names tell you a bit
about what you can do with them and you are encouraged to investigate the properties of
the objects (there are many reefs on the internet describing these objects and methods).
Finally, there are the following global functions, whose behavior you are also encouraged
to investigate:

1. eval()
2. isFinite()
3. isNaN()
4. parseFloat()
5. parseInt()

4.3 GLOBAL OBJECTS AND FUNCTIONS

JavaScript is born with several global objects and some global functions that are immediately
available and in terms of methods offers a variety of services. The global objects are

1. Array
2. Boolean
3. Date
4. Math
5. Number
6. RegExp
7. String

I do not want to review these objects and their methods here, but the names tell you a bit
about what you can do with them and you are encouraged to investigate the properties of
the objects (there are many reefs on the internet describing these objects and methods).
Finally, there are the following global functions, whose behavior you are also encouraged
to investigate:

1. eval()
2. isFinite()
3. isNaN()
4. parseFloat()
5. parseInt()

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

90

JavasCrIpt

90

EXERCISE 3

Create a web application, that you can call ScriptLibrary. Create a folder resources and a
subfolder js and add a JavaScript file with the name pascript.js. The file should implements
a module called patools (or whatever name you want), and you should think of the module
as a JavaScript library. The library should have four properties:

1. isInt, that is a function with one parameter, and the function should returns true,
if the parameter is a legal integer.

2. isPrime, that is a function with one parameter, and the function should returns
true, if the parameter is a prime number.

3. isLeapyear, that is a function with one parameter, and the function should returns
true, if the parameter represents a leap year as a year between 1700 and 9999.

4. isDate, that is a function with one parameter, and the function should returns true,
if the parameter represents a legal date between 1700 and 9999. The parameter
must be a string of the form year, month and day (that is YYYY_MM_DD), where
the separation character must be -, /, space or nothing.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

91

JavasCrIpt

When you have written the library methods, you should test the module from index.html
(see belove). The html code could be:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

91

JAVASCRIPT

When you have written the library methods, you should test the module from index.html
(see belove). The html code could be:

<body>
 <h2>Test patools</h2>
 <form>
 <p>Enter a number to test for prime number</p>
 <input type="text" id="txtnumber"/>
 <input type="button" value="Test" onclick="validate1();" />
 <p></p>

	 <p>Enter	date	as	year,	month	and	day	separated	by	/,	–	or	space</p>
 <input type="text" id="txtdate"/>
 <input type="button" value="Test" onclick="validate2();" />
 <p></p>
 </form>
</body>

You must write event handlers for the two buttons. The first must test where the value in
the first input field is a prime number and update til first span element with a message. The
second must do the same, but for the other elements and test where the value is a legal date.

The event handlers should be written in the script block in the header. Note that it is also
necessary to add a link element for your JavaScript library.

You must write event handlers for the two buttons. The first must test where the value in
the first input field is a prime number and update til first span element with a message. The
second must do the same, but for the other elements and test where the value is a legal date.

The event handlers should be written in the script block in the header. Note that it is also
necessary to add a link element for your JavaScript library.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

92

JavasCrIpt

4.4 DOM

DOM stands for Document Object Model and is a W3C standard for how browsers must
build an HTML document as a hierarchy of objects. DOM is not part of JavaScript, but
the DOM objects allow JavaScript to manipulate the objects and thus refer to the contents
of the current document from script code. In combination with JavaScript, DOM is the
key to developing websites where something is happening on the client side. DOM is a
standard, but it is up to the browser vendors to implement this standard and the standard
is no better than to the extent that the browser vendors live up to it. This means that there
may be (and are) differences between different browsers and different versions of the same
browser, but the most basic objects are, however, implemented roughly standard.

The root of the DOM tree is called window and is an object consisting of several properties
and collections. The main property is document that represents the document that the browser
shows. Consider, for example, the following document (DOMTree project):

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

92

JAVASCRIPT

4.4 DOM

DOM stands for Document Object Model and is a W3C standard for how browsers must
build an HTML document as a hierarchy of objects. DOM is not part of JavaScript, but
the DOM objects allow JavaScript to manipulate the objects and thus refer to the contents
of the current document from script code. In combination with JavaScript, DOM is the
key to developing websites where something is happening on the client side. DOM is a
standard, but it is up to the browser vendors to implement this standard and the standard
is no better than to the extent that the browser vendors live up to it. This means that there
may be (and are) differences between different browsers and different versions of the same
browser, but the most basic objects are, however, implemented roughly standard.

The root of the DOM tree is called window and is an object consisting of several properties
and collections. The main property is document that represents the document that the browser
shows. Consider, for example, the following document (DOMTree project):

<!DOCTYPE html>
<html>
 <head>
 <title>DOMTree</title>
 <script>
 tree = "";
 function parse(node)
 {
 tree += node.nodeName;
 if (node.nodeName === "#text" && node.parentNode.nodeName !== "SCRIPT")
 tree += ": " + node.textContent;
 if (node.attributes != null)
 for (var i = 0; i < node.attributes.length; ++i)
	 tree	+=	"	"	+	node.attributes[i].name	+	"="	+	node.attributes[i].value;
 tree += "\n";
 if (node.childNodes != null)
 for (var j = 0; j < node.childNodes.length; ++j)
	 parse(node.childNodes[j]);
 }
 function build()
 {
 parse(document);
 document.getElementById('domTree').value = tree;
 } </script>
 </head>
 <body onload="build()">
 <h1 style="font-weight: normal">DOM Tree</h1>
 <p>DOM = Document Object Model</p>
	 <p><textarea	id="domTree"	style="width:	450px;	height:	500px"></textarea></p>
 </body>
</html>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

93

JavasCrIpt

93

In the DOM tree, each element in the document is represented by a node, and it also applies
to elements that are not visible, such as a script element. The typical use of JavaScript is to
modify the DOM tree, including specifically changing the individual nodes. In this case,
the script element begins by defining a global variable. The function parse() has a node as a
parameter, and it starts by adding this node’s name to the global variable tree. If attributes
are attached to the node, they are also added to the variable as key/value pair. Finally, if
there are child nodes, the function parse() is called recursively for each child node.

You must note the syntax for the function parse(). Of course, it is not so easy to guess
what the individual properties are called, but when you see the result, it’s easy to follow
what happens.

There is another function called build() which calls the above recursive function with the
document object as parameter. When the function parse() is performed, the function build()
will with a reference to the element with id domTree (which is a text area) insert the value
of the global variable tree. The build() function is performed as an event handler for onload
that occurs after the document is loaded and displayed in the browser, and after that the
DOM tree is built.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

94

JavasCrIpt

If you opens the document in a browser, you get the window belove, and here you can see
how each element in the document is represented by a node in the DOM tree.

Refer elements in DOM

With regard to the use of DOM, the first step is to learn how to refer to the individual
elements of the DOM tree and then do something with these elements. This is basically done
by referring to the elements id attributes or the elements class attribute, which is illustrated
in the introduction to this chapter with the example SimpleDocument. The example shows
a little about what options are available to find a particular element or array of elements
in the DOM tree. The basic methods are:

 - getElementById()
 - getElementsByTagName()
 - getElementsByClassName()
 - querySelector()
 - querySelectorAll()

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

95

JavasCrIpt

Here, the last two are the most advanced, as they use CSS selectors as explained in chapter
3 of this book, and the difference is that the first returns the first element that matches
the selector, while the other returns all the elements that match. In addition, a node has
the following properties:

 - firstChild
 - lastChild
 - nextSibling
 - previousSibling

that can be used to traverse the DOM tree.

Modify the DOM tree

It is also possible to modify the DOM tree using JavaScript, and although already done in
the above examples there are many more options. You can modify the elements properties
and change their content, and you can even move an element in the tree. You can also
delete an element, and you can insert new elements. Again, I will illustrate some of the
possibilities with an example:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

95

JAVASCRIPT

Here, the last two are the most advanced, as they use CSS selectors as explained in chapter
3 of this book, and the difference is that the first returns the first element that matches
the selector, while the other returns all the elements that match. In addition, a node has
the following properties:

 - firstChild
 - lastChild
 - nextSibling
 - previousSibling

that can be used to traverse the DOM tree.

Modify the DOM tree

It is also possible to modify the DOM tree using JavaScript, and although already done in
the above examples there are many more options. You can modify the elements properties
and change their content, and you can even move an element in the tree. You can also
delete an element, and you can insert new elements. Again, I will illustrate some of the
possibilities with an example:

<!DOCTYPE html>
<html>
 <head>
 <title>Modify document elements</title>
 <style>
 .blueClass {
 background-color: lightsteelblue;
 }
 .plainClass {
 font-weight: normal;
 }
 </style>
 </head>
 <body>
 <h1>Header</h1>
	 <h3	id="txt">Modifies	DOM	elements	using	Javascript</h3>
 <p id="adr"><a>Torus data</p>
 <p id="par">More text about
 DOM objects</p>
 <script>
 alert(par.innerText);
 alert(par.innerHTML);
	 var	link	=	document.querySelector("#adr	a");
 link.href = "http://bookboon.com";

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

96

JavasCrIpt

96

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

96

JAVASCRIPT

96

 link.style.backgroundColor = "#ff0000";
 link.style.color = "#ffffff";
 link.target = "_blank";
 var txt = document.getElementById("txt");
 txt.classList.add("blueClass");
 txt.classList.add("plainClass");
	 document.getElementsByTagName("h1")[0].innerText	=	"Hello	World";
	 par.innerHTML	=	"SvendKnudValdemar";
 var head = document.head;
 var elem = document.createElement("script");
 elem.innerText =
"function	factorial(n)	{	if	(n	<	2)	return	1;	return	n	*	factorial(n	–	1);	}";
 head.appendChild(elem);
 var body = document.body;
 var text = document.createElement("p");
 text.id = "fact";
 body.appendChild(text);
 document.getElementById(
 "fact").innerHTML = "10! = " + factorial(10) + "</b";
 </script>
 </body>
</html>

http://s.bookboon.com/EOT

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

97

JavasCrIpt

The page defines in the header two classes, called respectively blueClass and plainClass. The
document has 4 elements as a h1 element, a h3 element and two paragraphs. The first
paragraph contains a link and the other a span element. Then follow a script block, starting
with an alert:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

97

JAVASCRIPT

The page defines in the header two classes, called respectively blueClass and plainClass. The
document has 4 elements as a h1 element, a h3 element and two paragraphs. The first
paragraph contains a link and the other a span element. Then follow a script block, starting
with an alert:

alert(par.innerText);

which shows the text in the last paragraph. The paragraph is referred to by its ID, and
you should note that you can do it directly. You should also note that the HTML element
span is not displayed as part of innerText. The result is that after the page is opened, the
browser displays the following:

and next the following alert:

The next alert:

alert(par.innerHTML);

shows the same element, but this time it’s innerHTML. Unlike innerText, innerHTML shows
the entire text including HTML elements:

which shows the text in the last paragraph. The paragraph is referred to by its ID, and
you should note that you can do it directly. You should also note that the HTML element
span is not displayed as part of innerText. The result is that after the page is opened, the
browser displays the following:

and next the following alert:

The next alert:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

97

JAVASCRIPT

The page defines in the header two classes, called respectively blueClass and plainClass. The
document has 4 elements as a h1 element, a h3 element and two paragraphs. The first
paragraph contains a link and the other a span element. Then follow a script block, starting
with an alert:

alert(par.innerText);

which shows the text in the last paragraph. The paragraph is referred to by its ID, and
you should note that you can do it directly. You should also note that the HTML element
span is not displayed as part of innerText. The result is that after the page is opened, the
browser displays the following:

and next the following alert:

The next alert:

alert(par.innerHTML);

shows the same element, but this time it’s innerHTML. Unlike innerText, innerHTML shows
the entire text including HTML elements:
shows the same element, but this time it’s innerHTML. Unlike innerText, innerHTML shows
the entire text including HTML elements:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

98

JavasCrIpt

The first paragraph has an id named adr. This paragraph has a link (an element) as a child
element, and the variable link is set to refer to this element. Here you should especially
note the method querySelector() and the syntax to refer to a child element for the element
with id adr :

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

98

JAVASCRIPT

The first paragraph has an id named adr. This paragraph has a link (an element) as a child
element, and the variable link is set to refer to this element. Here you should especially
note the method querySelector() and the syntax to refer to a child element for the element
with id adr :

var	link	=	document.querySelector("#adr	a");

The following statements are used to modify properties of this element.

The variable txt refers to the h3 element. An HTML element has (in HTML5) a list for
class objects. The reference txt is used to add class objects to the element h3. The result is
that h3 gets a blue background and the text is displayed as normal. The next statement:

document.getElementsByTagName("h1")[0].innerText	=	"Hello	World";

changes the text in the element h1 by changing the element’s innerText. You must primarily
note the reference (the h1 element has no id), and getElementsByTagName() is an array with all
h1 elements, and you get the first (and in this case only) by referring the item with index 0.

par are id for a paragraph containing some HTML and the following statement replaces
this HTML with a list of 3 elements:

par.innerHTML	=	"SvendKnudValdemar";

You can therefore specifically change a DOM object to something completely different.
Next, two variables head and elem are defined, which refer respectively to the document’s
header as well as a new element that is a script element. You can in that way create new
HTML elements:

var elem = document.createElement("script");

The following statements are used to modify properties of this element.

The variable txt refers to the h3 element. An HTML element has (in HTML5) a list for
class objects. The reference txt is used to add class objects to the element h3. The result is
that h3 gets a blue background and the text is displayed as normal. The next statement:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

98

JAVASCRIPT

The first paragraph has an id named adr. This paragraph has a link (an element) as a child
element, and the variable link is set to refer to this element. Here you should especially
note the method querySelector() and the syntax to refer to a child element for the element
with id adr :

var	link	=	document.querySelector("#adr	a");

The following statements are used to modify properties of this element.

The variable txt refers to the h3 element. An HTML element has (in HTML5) a list for
class objects. The reference txt is used to add class objects to the element h3. The result is
that h3 gets a blue background and the text is displayed as normal. The next statement:

document.getElementsByTagName("h1")[0].innerText	=	"Hello	World";

changes the text in the element h1 by changing the element’s innerText. You must primarily
note the reference (the h1 element has no id), and getElementsByTagName() is an array with all
h1 elements, and you get the first (and in this case only) by referring the item with index 0.

par are id for a paragraph containing some HTML and the following statement replaces
this HTML with a list of 3 elements:

par.innerHTML	=	"SvendKnudValdemar";

You can therefore specifically change a DOM object to something completely different.
Next, two variables head and elem are defined, which refer respectively to the document’s
header as well as a new element that is a script element. You can in that way create new
HTML elements:

var elem = document.createElement("script");

changes the text in the element h1 by changing the element’s innerText. You must primarily
note the reference (the h1 element has no id), and getElementsByTagName() is an array with all
h1 elements, and you get the first (and in this case only) by referring the item with index 0.

par are id for a paragraph containing some HTML and the following statement replaces
this HTML with a list of 3 elements:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

98

JAVASCRIPT

The first paragraph has an id named adr. This paragraph has a link (an element) as a child
element, and the variable link is set to refer to this element. Here you should especially
note the method querySelector() and the syntax to refer to a child element for the element
with id adr :

var	link	=	document.querySelector("#adr	a");

The following statements are used to modify properties of this element.

The variable txt refers to the h3 element. An HTML element has (in HTML5) a list for
class objects. The reference txt is used to add class objects to the element h3. The result is
that h3 gets a blue background and the text is displayed as normal. The next statement:

document.getElementsByTagName("h1")[0].innerText	=	"Hello	World";

changes the text in the element h1 by changing the element’s innerText. You must primarily
note the reference (the h1 element has no id), and getElementsByTagName() is an array with all
h1 elements, and you get the first (and in this case only) by referring the item with index 0.

par are id for a paragraph containing some HTML and the following statement replaces
this HTML with a list of 3 elements:

par.innerHTML	=	"SvendKnudValdemar";

You can therefore specifically change a DOM object to something completely different.
Next, two variables head and elem are defined, which refer respectively to the document’s
header as well as a new element that is a script element. You can in that way create new
HTML elements:

var elem = document.createElement("script");

You can therefore specifically change a DOM object to something completely different.
Next, two variables head and elem are defined, which refer respectively to the document’s
header as well as a new element that is a script element. You can in that way create new
HTML elements:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

98

JAVASCRIPT

The first paragraph has an id named adr. This paragraph has a link (an element) as a child
element, and the variable link is set to refer to this element. Here you should especially
note the method querySelector() and the syntax to refer to a child element for the element
with id adr :

var	link	=	document.querySelector("#adr	a");

The following statements are used to modify properties of this element.

The variable txt refers to the h3 element. An HTML element has (in HTML5) a list for
class objects. The reference txt is used to add class objects to the element h3. The result is
that h3 gets a blue background and the text is displayed as normal. The next statement:

document.getElementsByTagName("h1")[0].innerText	=	"Hello	World";

changes the text in the element h1 by changing the element’s innerText. You must primarily
note the reference (the h1 element has no id), and getElementsByTagName() is an array with all
h1 elements, and you get the first (and in this case only) by referring the item with index 0.

par are id for a paragraph containing some HTML and the following statement replaces
this HTML with a list of 3 elements:

par.innerHTML	=	"SvendKnudValdemar";

You can therefore specifically change a DOM object to something completely different.
Next, two variables head and elem are defined, which refer respectively to the document’s
header as well as a new element that is a script element. You can in that way create new
HTML elements:

var elem = document.createElement("script");

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

99

JavasCrIpt

99

Next, this element’s innerText is defined as a JavaScript function. The new script element
is added to the head variable as a child node. This means that in the header part of the
document there dynamically is added a script element with a Javascript function. Next,
two more variables are defined. body is a reference to the body of the document, and txt is
a reference to a paragraph element. The new (and empty) paragraph is assigned an id and
is added to the body of the page, meaning it is inserted as an empty node in the DOM
tree. Finally, the content of the new paragraph is changed to some HTML. Note that it
includes the dynamically added Javascript function being executed and the value is inserted
in the new paragraph:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

99

JAVASCRIPT

99

Next, this element’s innerText is defined as a JavaScript function. The new script element
is added to the head variable as a child node. This means that in the header part of the
document there dynamically is added a script element with a Javascript function. Next,
two more variables are defined. body is a reference to the body of the document, and txt is
a reference to a paragraph element. The new (and empty) paragraph is assigned an id and
is added to the body of the page, meaning it is inserted as an empty node in the DOM
tree. Finally, the content of the new paragraph is changed to some HTML. Note that it
includes the dynamically added Javascript function being executed and the value is inserted
in the new paragraph:

document.getElementById("fact").innerHTML = "10! = " + factorial(10) + "</b";

After clicking OK for the last alert, the page content will be as follows:After clicking OK for the last alert, the page content will be as follows:

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

100

JavasCrIpt

Events

DOM defines exactly as events how to interact with the individual elements. Most events
relates to the mouse, and for a particular event you can associate an event handler with
an element in the document. When a user interacts with an element, the browser checks
whether an event handler has been registered for that element, and if so, the handler is
executed. The elements are in a document part of a hierarchy and an event will bubble up
through the tree of all parent elements, and for all parent elements where an event handler
has been registered for that event, this will be excuted. When the event reaches the top –
and that is, the body element – an event will follow the same path back until it returns to
the element that originally raised the event. The two phases are called the bubbling phase
and the capturing phase respectively, and you can specify the phase in which you wish to
process the event.

When an event handler is performed, it is done in the same way as any other JavaScript
function within a context, and DOM defines that it is the context of the element to which
that particular handler is related. You can therefore refer to the element that the event
concerns with the this reference.

DOM defines the following events:

 - events for the mouse: click, mousedown, mouseup, mousemove, mouseover, mouseout
and more

 - events for the keyboard: keypress, keydown, keyup
 - events for objects: load, error, scroll
 - events for forms: select, change, submit, reset, focus
 - events for user interaction: focusin, focusout

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

101

JavasCrIpt

Consider, for example, a page with the following content:

Here the upper text is a div element, while the three bottom are paragraphs. The code is
as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

101

JAVASCRIPT

Consider, for example, a page with the following content:

Here the upper text is a div element, while the three bottom are paragraphs. The code is
as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>EventDocument</title>
 <script>
 var text;

 function kingCapture()
 {
 text += "\n" + this.innerText + " capture";
 }

 function kingBubble()
 {
 text += "\n" + this.innerText + " bubble";
 }

 function kingsCapture()
 {
	 text	=	"Kings	capture";
 }

 function kingsBubble()
 {
	 text	+=	"\nKings	bubble";
 alert(text);
 }
 </script>
 </head>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

102

JavasCrIpt

102

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

102

JAVASCRIPT

102

 <body>
	 <div>Danish	Kings</div>
 <div>
 <p id="paragraf1">Svend</p>
	 <p	id="paragraf2">Knud</p>
 <p id="paragraf3">Valdemar</p>
 </div>
 <script>
 var p1 = document.getElementById("paragraf1");
 var p2 = document.getElementById("paragraf2");
 var p3 = document.getElementById("paragraf3");
 p1.addEventListener("click", kingBubble);
 p2.addEventListener("click", kingBubble);
 p3.addEventListener("click", kingBubble);
 p1.addEventListener("click", kingCapture, true);
 p2.addEventListener("click", kingCapture, true);
 p3.addEventListener("click", kingCapture, true);
	 document.getElementsByTagName("div")[1].
 addEventListener("click", kingsCapture, true);
	 document.getElementsByTagName("div")[1].
 addEventListener("click", kingsBubble);
 </script>
 </body>
</html>

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

103

JavasCrIpt

In the header are defined two simple event handlers. You should note the use of the this
reference, which will refer to the element that has raised the event. The HTML code
requires no explanations, but it is the subsequent script block that assign event handlers
to the HTML elements. First, there are references to the three paragraphs, and then two
event handlers are assigned for a click event for each paragraph. The one is a handler for
the bubbling phase (false), and the other is a handler for capturing the phase (true). You
should note how to associate an event handler with the method addEventListener(). As a
result, clicking on one of the three paragraphs will cause an alert to show which events
are fired. The last statement in the script block assigns an event handler to the first div
element. Here you should notice how to find the item and how to set the event handler
as an anonymous function.

There is also a method called removeEventListerner() and that has the same parameters as
addEventListener(). This function is used to remove an event handler from an element.

When an event handler is performed, an event object is transferred to the handler. Consider
the following code as example:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

103

JAVASCRIPT

In the header are defined two simple event handlers. You should note the use of the this
reference, which will refer to the element that has raised the event. The HTML code
requires no explanations, but it is the subsequent script block that assign event handlers
to the HTML elements. First, there are references to the three paragraphs, and then two
event handlers are assigned for a click event for each paragraph. The one is a handler for
the bubbling phase (false), and the other is a handler for capturing the phase (true). You
should note how to associate an event handler with the method addEventListener(). As a
result, clicking on one of the three paragraphs will cause an alert to show which events
are fired. The last statement in the script block assigns an event handler to the first div
element. Here you should notice how to find the item and how to set the event handler
as an anonymous function.

There is also a method called removeEventListerner() and that has the same parameters as
addEventListener(). This function is used to remove an event handler from an element.

When an event handler is performed, an event object is transferred to the handler. Consider
the following code as example:

<!DOCTYPE html>
<html>
 <head>
 <title>MoreEvents</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 </head>
 <body>
	 <h3>The	oldest	kings	–	alphabetical	list</h3>
 <p>Click on one of them</p>
 <ul id="list1">
 Gorm den Gamle
 Harald 2.
 Harald Blåtand
 Hardeknud
	 Knud	d.	Store
 Magnus den Gode
 Svend Tveskæg

 <h3>The list of kings</h3>
 <ul class="list2">
 <script>
	 var	list	=	document.querySelector(".list2");
	 var	kings	=	document.querySelectorAll("li");
 for (var i = 0; i < kings.length; i++)
 {

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

104

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

104

JAVASCRIPT

	 kings[i].addEventListener("click",
 function (e) { list.appendChild(e.target); }, false);
 }
 </script>
 </body>
</html>

If the code appears in the browser, the result is:

The list with id list1 has 7 names arranged alphabetically. Next, an empty list is identified
by a class attribute. The following script block sets a reference to the empty list using the
class attribute and then a reference to an array of all li elements. The last loop associates an
anonymous event handler to these li elements. This handler uses the event object – here
called e – to move the element that is clicked to the empty list. Below is the result after
clicking on all names (in the correct order) in the top list:

If the code appears in the browser, the result is:

The list with id list1 has 7 names arranged alphabetically. Next, an empty list is identified
by a class attribute. The following script block sets a reference to the empty list using the
class attribute and then a reference to an array of all li elements. The last loop associates an
anonymous event handler to these li elements. This handler uses the event object – here
called e – to move the element that is clicked to the empty list. Below is the result after
clicking on all names (in the correct order) in the top list:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

105

JavasCrIpt

105

The most important thing about the example is how to transfer a parameter to the event
handlers. It is an object called event and, as illustrated below, it is an advanced object with
many properties and methods.

Properties of the event object

 - event.clientX and event.clientY indicates in the case of a mouse event the coordinates
for the mouse relative to the browser window.

 - event.offsetX and event.offsetY indicates in the case of a mouse event the coordinates
for the mouse relative to the element that has raised the event.

 - event.keyCode indicates in case of a key event code for key pressed.
 - event.target is a pointer to the node in the DOM tree, which has raised the event.
 - event.currentTarget is a pointer to the node in the DOM tree, which is bubbled

or captured
 - event.eventPhase indicates the event phase as 1 for capture, 2 for target, 3 for bubbling.
 - event.type indicates event type such as click, key press, etc.
 - event.relatedTarget indicates for some events (for example mouseout) the element

that originally raised the event.

http://s.bookboon.com/GTca

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

106

JavasCrIpt

 - event.stopPropagation() is a method that can be called to stop an event propagation up
or down in the DOM tree, but other registered event handlers are still performing.

 - event.stopImmediatePropagation() is a method that as event.stopPropagation(), stops
an event propagation up or down in the DOM tree, but it does not performs other
registered event handlers.

 - event.preventDefault() is a method that stops a default event handling if possible.

Looking at the above code nothing happens when you point to the individual elements in
the top list. This can be solved by assigning an event handler for mouseover and mouseout.
I have added the following event handlers:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

106

JAVASCRIPT

 - event.stopPropagation() is a method that can be called to stop an event propagation up
or down in the DOM tree, but other registered event handlers are still performing.

 - event.stopImmediatePropagation() is a method that as event.stopPropagation(), stops
an event propagation up or down in the DOM tree, but it does not performs other
registered event handlers.

 - event.preventDefault() is a method that stops a default event handling if possible.

Looking at the above code nothing happens when you point to the individual elements in
the top list. This can be solved by assigning an event handler for mouseover and mouseout.
I have added the following event handlers:

function blue()
{
 this.setAttribute("style", "color:blue;");
}
function black()
{
 this.setAttribute("style", "color:black;");
}
function	moveKing(e)
{
 e.target.removeEventListener("mouseover", blue, false);
 e.target.removeEventListener("mouseout", black, false);
 e.target.setAttribute("style", "color:black;");
 list.appendChild(e.target);
}

The first two handlers must be used for respectively mouseover and mouseout for the elements
in the top list. You should note that the latter has a parameter that will be a reference to
an event object. The event handler must be used to move an element. When an element
is moved, it will no longer be highlighted when the mouse points to it. Therefore, the two
event handlers for mouseover and mouseout are removed, and you should note that e.target
refers to the element that has raised the event. In addition, the color must be set to black,
and then the element is moved to the bottom list in the same way as above.

The HTML code is the same as above, including the script that associates event handlers:

<script>
	var	list	=	document.querySelector(".list2");
	document.getElementById("list1").addEventListener("click",	moveKing,	false);
	var	kings	=	document.querySelectorAll("li");
 for (var i = 0; i < kings.length; i++)
 {

The first two handlers must be used for respectively mouseover and mouseout for the elements
in the top list. You should note that the latter has a parameter that will be a reference to
an event object. The event handler must be used to move an element. When an element
is moved, it will no longer be highlighted when the mouse points to it. Therefore, the two
event handlers for mouseover and mouseout are removed, and you should note that e.target
refers to the element that has raised the event. In addition, the color must be set to black,
and then the element is moved to the bottom list in the same way as above.

The HTML code is the same as above, including the script that associates event handlers:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

106

JAVASCRIPT

 - event.stopPropagation() is a method that can be called to stop an event propagation up
or down in the DOM tree, but other registered event handlers are still performing.

 - event.stopImmediatePropagation() is a method that as event.stopPropagation(), stops
an event propagation up or down in the DOM tree, but it does not performs other
registered event handlers.

 - event.preventDefault() is a method that stops a default event handling if possible.

Looking at the above code nothing happens when you point to the individual elements in
the top list. This can be solved by assigning an event handler for mouseover and mouseout.
I have added the following event handlers:

function blue()
{
 this.setAttribute("style", "color:blue;");
}
function black()
{
 this.setAttribute("style", "color:black;");
}
function	moveKing(e)
{
 e.target.removeEventListener("mouseover", blue, false);
 e.target.removeEventListener("mouseout", black, false);
 e.target.setAttribute("style", "color:black;");
 list.appendChild(e.target);
}

The first two handlers must be used for respectively mouseover and mouseout for the elements
in the top list. You should note that the latter has a parameter that will be a reference to
an event object. The event handler must be used to move an element. When an element
is moved, it will no longer be highlighted when the mouse points to it. Therefore, the two
event handlers for mouseover and mouseout are removed, and you should note that e.target
refers to the element that has raised the event. In addition, the color must be set to black,
and then the element is moved to the bottom list in the same way as above.

The HTML code is the same as above, including the script that associates event handlers:

<script>
	var	list	=	document.querySelector(".list2");
	document.getElementById("list1").addEventListener("click",	moveKing,	false);
	var	kings	=	document.querySelectorAll("li");
 for (var i = 0; i < kings.length; i++)
 {

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

107

JavasCrIptJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

107

JAVASCRIPT

	 kings[i].addEventListener("mouseover",	blue,	false);
	 kings[i].addEventListener("mouseout",	black,	false);
 }
</script>

Here you should first note that the event handler moveKing() for click events is assigned to
the list itself and not to the individual list elements. Here are used that events bubbles up
and clicking on a list element, the event then bubbles up to the element’s parent, which is
the ul element, that has attached an event handler, and in the handler, e.target will refer to
the list element that have fired the event.

PROBLEM 3

Create a new project that you can call ChangeAddress. The project should only have one
page index.html, and it should basic be a form with component arranged in a table:

When the user enters data, they should be validated, and the validation must take place
every time a field losts focus. Al fields must be validated and for first name, last name,
address, city and title the only requirement is that the fields must not be empty. Zip code
must be 4 digits while email address and date must be a legal email address and a legal
date, respectively. All validation must happen i JavaScript on the client side, and below is
a window where has entered values for first name, last name, zip code, city name and date:

Here you should first note that the event handler moveKing() for click events is assigned to
the list itself and not to the individual list elements. Here are used that events bubbles up
and clicking on a list element, the event then bubbles up to the element’s parent, which is
the ul element, that has attached an event handler, and in the handler, e.target will refer to
the list element that have fired the event.

PROBLEM 3

Create a new project that you can call ChangeAddress. The project should only have one
page index.html, and it should basic be a form with component arranged in a table:

When the user enters data, they should be validated, and the validation must take place
every time a field losts focus. Al fields must be validated and for first name, last name,
address, city and title the only requirement is that the fields must not be empty. Zip code
must be 4 digits while email address and date must be a legal email address and a legal
date, respectively. All validation must happen i JavaScript on the client side, and below is
a window where has entered values for first name, last name, zip code, city name and date:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

108

JavasCrIpt

108

 .

http://s.bookboon.com/AlcatelLucent

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

109

JavasCrIpt

And below a window where the OK button is clicked without data entered:

To validate an email address you should use a regular expression. It is part of the task to
find out how and how the syntax is. To validate a date, you should use the JavaScript library
from exersice 3, and it must be possible to enter a date in the same format as described in
this exercise. The button should be a submit button, and you can with an onsubmit event
for the form element test if a click on the button must result in a submit (it should not be
if not all fields are filled out correctly).

If all fields are correctly filled and clicking on the button, nothing else than an submit must
be done with the result that all fields are blank.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

110

Javaserver FaCes and aJax

5 JAVASERVER FACES AND AJAX

In this book, I have alone looked at the client side, including how to define a layout of a
page using styles, and how to use JavaScript to modify the individual elements of the DOM
tree. It takes place in the browser and without the server’s involvement. In this chapter, I
will again look at the server side where the code is executed on the basis of a request from
the browser and where the server then answers back with a response, which means that
the browser should render the document again. With the help of JavaScript, it is possible
to execute that form of a request/response in such a way that the user does not observes
the page being updated and that the application essentially behave in the same way as a
standard desktop application. This technique is called Ajax.

Ajax is a family of technologies that enable JavaScript to perform tasks asynchronously when
the browser sends requests to the server in the background, which then sends responces back
to the client that can be used to update the DOM tree. The technology is widely used in
all modern web applications.

You can basically associate ajax facilities with a JSF input component with the element
f:ajax, which means an interaction between client and server, based on a particular event,
an interaction performed asynchronously and parallel with the user using the application.
A number of attributes are attached to a f:ajax element, where all if not specified has a
default value:

 - delay, which is a value specified in milliseconds and indicates the maximum size of
a delay between request and response (none disables this feature).

 - disabled, which is a boolean indicating that the function is disabled (false is default).
 - event, which specifies the event for the component that triggers the ajax request.
 - execute, that specifies a list of components to be performed on the server.
 - immediate, which is a boolean that indicates that the input value should be

processed immediately.
 - listener, which specifies the name of a listener method to be performed.
 - onevent, that specifies the name of a JavaScript function to be performed.
 - onerror, that specifies the name of a JavaScript function for error handling.
 - render, which is a list of components to be rendered after the ajax function.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

111

Javaserver FaCes and aJax

111

For the execute and render attributes, the following terms are available for specifying
components:

 - @all, that means all components
 - @form, that means all components in the form, that contains the component for

the ajax function
 - @none, that means none components and is default for render
 - @this, that means the ajax functions parent component
 - The components ID separated by spaces
 - A JSF expression

To illustrate how ajax works, I want to show a number of examples that extend an existing
application with ajax functions, and it will be based on the application ChangeAddress3
from the book Java 11.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

112

Javaserver FaCes and aJax

5.1 VALDATION OF FIELDS

I have started with a copy of the project ChangeAddress3 from Java 11, and I have called
the copy for ChangeAddress1. If you open the application in the browser, you get the
following window:

where a user can enter an address and other information. Clicking the Send button sends
this information to the server where they are stored in a list. If you want to see the content
of the list, you can click on the bottom link. When data is sent to the server, they are
first validated and if there are errors, data is not saved, but the server responds with an
error messages.

It works fine, but it would be more appropriate to validate each field immediately after the
text is entered. As it is the server that validates the fields, a request must be made to the
server for each field, and ajax can help, such that it happens completely transparent to the
user. In fact, it is extremely simple and consists of changing the index.xhtml document as
shown below:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

113

Javaserver FaCes and aJaxJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

113

JAVASERVER FACES AND AJAx

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC … >
<html	xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core">
 <h:head>
	 <meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8"/>
 <title>Change address</title>
 <h:outputStylesheet library="css" name="styles.css"/>
 </h:head>
 <h:body>
 <h1>Change address</h1>
 <h:form>
 <h:panelGrid columns="3" columnClasses="rightalign,leftalign,leftalign">
	 <h:outputLabel	value="First	name:"	for="firstname"/>
	 <h:inputText	id="firstname"	label="First	name"	style="width:	300px"
	 value="#{indexController.firstname}"	>
	 <f:validateRequired/>
	 <f:ajax	event="blur"	render="firstnameError"/>
 </h:inputText>
	 <h:message	for="firstname"	class="error-message"	id="firstnameError"	/>
 <h:outputLabel value="Last name:" for="lastname"/>
 <h:inputText id="lastname" label="Lastname" style="width: 200px"
 value="#{indexController.lastname}" >
	 <f:validateRequired/>
 <f:ajax event="blur" render="lastnameError"/>
 </h:inputText>
 <h:message for="lastname" class="error-message" id="lastnameError"/>
 <h:outputLabel value="Address:" for="address"/>
 <h:inputText id="address" label="Address" style="width: 300px"
 value="#{indexController.address}" >
	 <f:validateRequired/>
 <f:ajax event="blur" render="addressError"/>
 </h:inputText>
 <h:message for="address" class="error-message" id="addressError"/>
 <h:outputLabel value="Zip code:" for="code" />
 <h:inputText id="code" label="Zipcode" style="width: 60px"
 value="#{indexController.code}">
	 <f:validateLength	minimum="4"	maximum="4"/>
 <f:ajax event="blur" render="codeError"/>
 </h:inputText>
 <h:message for="code" class="error-message" id="codeError"/>
 <h:outputLabel value="City:" for="city"/>
 <h:inputText id="city" label="City" style="width: 200px"
 value="#{indexController.city}" >
	 <f:validateRequired/>
 <f:ajax event="blur" render="cityError"/>
 </h:inputText>
 <h:message for="city" class="error-message" id="cityError"/>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

114

Javaserver FaCes and aJax

114

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

114

JAVASERVER FACES AND AJAx

114

 <h:outputLabel value="Email address:" for="email"/>
 <h:inputText id="email" label="Email address" style="width: 300px"
 value="#{indexController.email}">
 <f:validator validatorId="emailValidator"/>
 <f:ajax event="blur" render="emailError"/>
 </h:inputText>
 <h:message for="email" class="error-message" id="emailError"/>
 <h:outputLabel value="Change date:" for="date"/>
	 <h:inputText	id="date"	label="Change	date"	required="true"
 style="width: 100px" value="#{indexController.date}">
 <f:validator validatorId="dateValidator"/>
 <f:ajax event="blur" render="dateError"/>
 </h:inputText>
 <h:message for="date" class="error-message" id="dateError"/>
 <h:outputLabel value="Job titel: " for="title"/>
	 <h:inputText	id="title"	required="false"	style="width:	300px"
 value="#{indexController.title}" />
 <h:panelGroup/>
 <h:commandButton value="Send" action="#{indexController.add()}" />
 </h:panelGrid>
 Show addresses
 </h:form>
 </h:body>
</html>

http://s.bookboon.com/BI

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

115

Javaserver FaCes and aJax

For example, if you consider the first field for entering a first name, you must specify which
validator to perform and then the element:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

115

JAVASERVER FACES AND AJAx

For example, if you consider the first field for entering a first name, you must specify which
validator to perform and then the element:

<f:ajax	event="blur"	render="firstnameError"/>

Here you indicate that the ajax function must be executed after the input field has lost focus,
as well as which element may be rendered in case of an error that is the element of the
error message. When that event occurs, a request is made to the server, but asynchronously
and only for the current input component. As a result, the fields are validated as the form
is completed and the user will experience the form as filling out a form in a conventional
desktop application.

You should note that as an alternative, all validation functions could be written as JavaScript
functions in this case, but in other cases validation functions require a request to the server.

EXERCISE 4

In this exercise, you should make a change to the above example. Start by creating a copy
of the project ChangeAddress1. You must now change the program so the field for entering
the city name is readonly. The database padata has a table zipcode, which is a list of Danish
zip codes. You must change the validation of the field to zip code, so a zip code is only
legal if there is an existing zip code in the table zipcode. If this is the case, the city name
must be updated with the corresponding city name, and otherwise the city name must be
blank. The validation of the zip code field must still be done using ajax.

5.2 SUBMIT FIELDS WITHOUT RELOAD

As next, I want to show how you with an submit can send all fields to the server, but
without reloading the page. The benefits are not so big, but it gives a quieter window, as it
all happens asynchronously, and the user thus, to a lesser extent, notes that data being sent
to the server, and since the entire document do not has be rendered again. I will use the
same example as above, and I have started with a copy that I have called ChangeAddress2.
In index.xhtml, I’ve changed in two places. The Submit button now has an ajax function:

<h:commandButton value="Send" action="#{indexController.add()}" >
 <f:ajax event="action" execute="@form" render="@all"/>
</h:commandButton>

and you should note that the function is triggered by an action event that the function
should relate to all form fields and that all fields must be rendered. In addition, the last
link must be changed to a h:commandLink:

Here you indicate that the ajax function must be executed after the input field has lost focus,
as well as which element may be rendered in case of an error that is the element of the
error message. When that event occurs, a request is made to the server, but asynchronously
and only for the current input component. As a result, the fields are validated as the form
is completed and the user will experience the form as filling out a form in a conventional
desktop application.

You should note that as an alternative, all validation functions could be written as JavaScript
functions in this case, but in other cases validation functions require a request to the server.

EXERCISE 4

In this exercise, you should make a change to the above example. Start by creating a copy
of the project ChangeAddress1. You must now change the program so the field for entering
the city name is readonly. The database padata has a table zipcode, which is a list of Danish
zip codes. You must change the validation of the field to zip code, so a zip code is only
legal if there is an existing zip code in the table zipcode. If this is the case, the city name
must be updated with the corresponding city name, and otherwise the city name must be
blank. The validation of the zip code field must still be done using ajax.

5.2 SUBMIT FIELDS WITHOUT RELOAD

As next, I want to show how you with an submit can send all fields to the server, but
without reloading the page. The benefits are not so big, but it gives a quieter window, as it
all happens asynchronously, and the user thus, to a lesser extent, notes that data being sent
to the server, and since the entire document do not has be rendered again. I will use the
same example as above, and I have started with a copy that I have called ChangeAddress2.
In index.xhtml, I’ve changed in two places. The Submit button now has an ajax function:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

115

JAVASERVER FACES AND AJAx

For example, if you consider the first field for entering a first name, you must specify which
validator to perform and then the element:

<f:ajax	event="blur"	render="firstnameError"/>

Here you indicate that the ajax function must be executed after the input field has lost focus,
as well as which element may be rendered in case of an error that is the element of the
error message. When that event occurs, a request is made to the server, but asynchronously
and only for the current input component. As a result, the fields are validated as the form
is completed and the user will experience the form as filling out a form in a conventional
desktop application.

You should note that as an alternative, all validation functions could be written as JavaScript
functions in this case, but in other cases validation functions require a request to the server.

EXERCISE 4

In this exercise, you should make a change to the above example. Start by creating a copy
of the project ChangeAddress1. You must now change the program so the field for entering
the city name is readonly. The database padata has a table zipcode, which is a list of Danish
zip codes. You must change the validation of the field to zip code, so a zip code is only
legal if there is an existing zip code in the table zipcode. If this is the case, the city name
must be updated with the corresponding city name, and otherwise the city name must be
blank. The validation of the zip code field must still be done using ajax.

5.2 SUBMIT FIELDS WITHOUT RELOAD

As next, I want to show how you with an submit can send all fields to the server, but
without reloading the page. The benefits are not so big, but it gives a quieter window, as it
all happens asynchronously, and the user thus, to a lesser extent, notes that data being sent
to the server, and since the entire document do not has be rendered again. I will use the
same example as above, and I have started with a copy that I have called ChangeAddress2.
In index.xhtml, I’ve changed in two places. The Submit button now has an ajax function:

<h:commandButton value="Send" action="#{indexController.add()}" >
 <f:ajax event="action" execute="@form" render="@all"/>
</h:commandButton>

and you should note that the function is triggered by an action event that the function
should relate to all form fields and that all fields must be rendered. In addition, the last
link must be changed to a h:commandLink:

and you should note that the function is triggered by an action event that the function
should relate to all form fields and that all fields must be rendered. In addition, the last
link must be changed to a h:commandLink:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

116

Javaserver FaCes and aJaxJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

116

JAVASERVER FACES AND AJAx

<h:commandLink value="Show addresses" action="list.
xhtml" immediate="true" />

and here you should especially note the last attribute that is required because the command
should not validate the form fields.

Finally, the link on the page list.xhtml is changed to a commandLink (what it should have
been all the time).

In this case, all form fields are sent to the server by a submit, and it is all form fields that
are updated after the ajax function is completed. It is not always you are interested in that,
and in fact there could be only a few fields. In this case, I assume the date field should
always be today, and in index.xhtml I have defined the component readonly:

<h:outputLabel value="Current date:" for="date"/>
<h:inputText id="date" label="Change date" readonly="true" tabindex="-1"
 style="width: 100px" value="#{indexController.date}" />

You should note that there is no longer any ajax function associated with the component,
and I have also changed the text in the corresponding label.

In order to initialize the field date I have in the class Person changed the constructor so it
initializes the date field to the current date:

public Person()
{
 Calendar cal = Calendar.getInstance();
	date	=	String.format("%02d-%02d-%04d",	cal.get(Calendar.DATE),
 cal.get(Calendar.MONTH) + 1, cal.get(Calendar.YEAR));
}

Finally, the ajax function of the submit button in index.xhtml is changed:

<h:commandButton value="Send" action="#{indexController.add()}" >
	<f:ajax	event="action"	execute="firstname	lastname	address	code	city	email	title"
	 render="firstname	lastname	address	code	city	email	title"/>
</h:commandButton>

That is, I have now explicitly specified which form fields are to be sent to the server, and
which form fields must be rendered after the function has been completed.

and here you should especially note the last attribute that is required because the command
should not validate the form fields.

Finally, the link on the page list.xhtml is changed to a commandLink (what it should have
been all the time).

In this case, all form fields are sent to the server by a submit, and it is all form fields that
are updated after the ajax function is completed. It is not always you are interested in that,
and in fact there could be only a few fields. In this case, I assume the date field should
always be today, and in index.xhtml I have defined the component readonly:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

116

JAVASERVER FACES AND AJAx

<h:commandLink value="Show addresses" action="list.
xhtml" immediate="true" />

and here you should especially note the last attribute that is required because the command
should not validate the form fields.

Finally, the link on the page list.xhtml is changed to a commandLink (what it should have
been all the time).

In this case, all form fields are sent to the server by a submit, and it is all form fields that
are updated after the ajax function is completed. It is not always you are interested in that,
and in fact there could be only a few fields. In this case, I assume the date field should
always be today, and in index.xhtml I have defined the component readonly:

<h:outputLabel value="Current date:" for="date"/>
<h:inputText id="date" label="Change date" readonly="true" tabindex="-1"
 style="width: 100px" value="#{indexController.date}" />

You should note that there is no longer any ajax function associated with the component,
and I have also changed the text in the corresponding label.

In order to initialize the field date I have in the class Person changed the constructor so it
initializes the date field to the current date:

public Person()
{
 Calendar cal = Calendar.getInstance();
	date	=	String.format("%02d-%02d-%04d",	cal.get(Calendar.DATE),
 cal.get(Calendar.MONTH) + 1, cal.get(Calendar.YEAR));
}

Finally, the ajax function of the submit button in index.xhtml is changed:

<h:commandButton value="Send" action="#{indexController.add()}" >
	<f:ajax	event="action"	execute="firstname	lastname	address	code	city	email	title"
	 render="firstname	lastname	address	code	city	email	title"/>
</h:commandButton>

That is, I have now explicitly specified which form fields are to be sent to the server, and
which form fields must be rendered after the function has been completed.

You should note that there is no longer any ajax function associated with the component,
and I have also changed the text in the corresponding label.

In order to initialize the field date I have in the class Person changed the constructor so it
initializes the date field to the current date:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

116

JAVASERVER FACES AND AJAx

<h:commandLink value="Show addresses" action="list.
xhtml" immediate="true" />

and here you should especially note the last attribute that is required because the command
should not validate the form fields.

Finally, the link on the page list.xhtml is changed to a commandLink (what it should have
been all the time).

In this case, all form fields are sent to the server by a submit, and it is all form fields that
are updated after the ajax function is completed. It is not always you are interested in that,
and in fact there could be only a few fields. In this case, I assume the date field should
always be today, and in index.xhtml I have defined the component readonly:

<h:outputLabel value="Current date:" for="date"/>
<h:inputText id="date" label="Change date" readonly="true" tabindex="-1"
 style="width: 100px" value="#{indexController.date}" />

You should note that there is no longer any ajax function associated with the component,
and I have also changed the text in the corresponding label.

In order to initialize the field date I have in the class Person changed the constructor so it
initializes the date field to the current date:

public Person()
{
 Calendar cal = Calendar.getInstance();
	date	=	String.format("%02d-%02d-%04d",	cal.get(Calendar.DATE),
 cal.get(Calendar.MONTH) + 1, cal.get(Calendar.YEAR));
}

Finally, the ajax function of the submit button in index.xhtml is changed:

<h:commandButton value="Send" action="#{indexController.add()}" >
	<f:ajax	event="action"	execute="firstname	lastname	address	code	city	email	title"
	 render="firstname	lastname	address	code	city	email	title"/>
</h:commandButton>

That is, I have now explicitly specified which form fields are to be sent to the server, and
which form fields must be rendered after the function has been completed.

Finally, the ajax function of the submit button in index.xhtml is changed:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

116

JAVASERVER FACES AND AJAx

<h:commandLink value="Show addresses" action="list.
xhtml" immediate="true" />

and here you should especially note the last attribute that is required because the command
should not validate the form fields.

Finally, the link on the page list.xhtml is changed to a commandLink (what it should have
been all the time).

In this case, all form fields are sent to the server by a submit, and it is all form fields that
are updated after the ajax function is completed. It is not always you are interested in that,
and in fact there could be only a few fields. In this case, I assume the date field should
always be today, and in index.xhtml I have defined the component readonly:

<h:outputLabel value="Current date:" for="date"/>
<h:inputText id="date" label="Change date" readonly="true" tabindex="-1"
 style="width: 100px" value="#{indexController.date}" />

You should note that there is no longer any ajax function associated with the component,
and I have also changed the text in the corresponding label.

In order to initialize the field date I have in the class Person changed the constructor so it
initializes the date field to the current date:

public Person()
{
 Calendar cal = Calendar.getInstance();
	date	=	String.format("%02d-%02d-%04d",	cal.get(Calendar.DATE),
 cal.get(Calendar.MONTH) + 1, cal.get(Calendar.YEAR));
}

Finally, the ajax function of the submit button in index.xhtml is changed:

<h:commandButton value="Send" action="#{indexController.add()}" >
	<f:ajax	event="action"	execute="firstname	lastname	address	code	city	email	title"
	 render="firstname	lastname	address	code	city	email	title"/>
</h:commandButton>

That is, I have now explicitly specified which form fields are to be sent to the server, and
which form fields must be rendered after the function has been completed.
That is, I have now explicitly specified which form fields are to be sent to the server, and
which form fields must be rendered after the function has been completed.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

117

Javaserver FaCes and aJax

117

In this case, the advantage is of course limited, but in other contexts it may matter, and
remember that the whole idea of ajax is only to update that part of a page that is necessary.

I will make another change of the application, and I have started creating a copy that I
have called ChangeAddress3. In index.xhtml the fields are validated with each their ajax
function. You can actually achieve the same by encapsulating the fields to be validated in
a f:ajax element:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

117

JAVASERVER FACES AND AJAx

117

In this case, the advantage is of course limited, but in other contexts it may matter, and
remember that the whole idea of ajax is only to update that part of a page that is necessary.

I will make another change of the application, and I have started creating a copy that I
have called ChangeAddress3. In index.xhtml the fields are validated with each their ajax
function. You can actually achieve the same by encapsulating the fields to be validated in
a f:ajax element:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC … >
<html … >
 <h:head>
 …
 </h:head>
 <h:body>
 <h1>Change address</h1>
 <h:form id="mainForm">
 <h:panelGrid columns="3" columnClasses="rightalign,leftalign,leftalign">
 <f:ajax event="blur" render="firstnameError lastnameError addressError
 codeError cityError emailError">
	 <h:outputLabel	value="First	name:"	for="firstname"/>
	 <h:inputText	id="firstname"	label="First	name"	style="width:	300px"

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

118

Javaserver FaCes and aJaxJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

118

JAVASERVER FACES AND AJAx

	 value="#{indexController.firstname}"	>
	 <f:validateRequired/>
 </h:inputText>
	 <h:message	for="firstname"	class="error-message"	id="firstnameError"	/>
 <h:outputLabel value="Last name:" for="lastname"/>
 <h:inputText id="lastname" label="Lastname" style="width: 200px"
 value="#{indexController.lastname}" >
	 <f:validateRequired/>
 </h:inputText>
 <h:message for="lastname" class="error-message" id="lastnameError"/>
 <h:outputLabel value="Address:" for="address"/>
 <h:inputText id="address" label="Address" style="width: 300px"
 value="#{indexController.address}" >
	 <f:validateRequired/>
 </h:inputText>
 <h:message for="address" class="error-message" id="addressError"/>
 <h:outputLabel value="Zip code:" for="code" />
 <h:inputText id="code" label="Zipcode" style="width: 60px"
 value="#{indexController.code}">
	 <f:validateLength	minimum="4"	maximum="4"/>
 </h:inputText>
 <h:message for="code" class="error-message" id="codeError"/>
 <h:outputLabel value="City:" for="city"/>
 <h:inputText id="city" label="City" style="width: 200px"
 value="#{indexController.city}" >
	 <f:validateRequired/>
 </h:inputText>
 <h:message for="city" class="error-message" id="cityError"/>
 <h:inputText id="email" label="Email address" style="width: 300px"
 value="#{indexController.email}">
 <f:validator validatorId="emailValidator"/>
 </h:inputText>
 <h:message for="email" class="error-message" id="emailError"/>
 </f:ajax>
 <h:outputLabel value="Current date:" for="date"/>
 <h:inputText id="date" label="Change date" readonly="true" tabindex="-1"
 style="width: 100px" value="#{indexController.date}" />
 <h:message for="date" class="error-message" id="dateError"/>
 <h:outputLabel value="Job titel: " for="title"/>
	 <h:inputText	id="title"	required="false"	style="width:	300px"
 value="#{indexController.title}" />
 <h:panelGroup/>
 <h:commandButton value="Send" action="#{indexController.add()}" >
 <f:ajax event="action"
	 execute="firstname	lastname	address	code	city	email	title"
	 render="firstname	lastname	address	code	city	email	title"/>
 </h:commandButton>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

119

Javaserver FaCes and aJaxJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

119

JAVASERVER FACES AND AJAx

 </h:panelGrid>
 <h:commandLink value="Show addresses" action="list.xhtml" immediate="true" />
 </h:form>
 <h:form id="form2">
 </h:form>
 </h:body>
</html>

The validation takes place in the same way, but the writing method is all the more
straightforward. Note that it is necessary to specify the fields (for error messages) to be
rendered. However, there is one difference since validation occurs every time a lost focus
event occurs and hence each time an input field is left. This means that it is only the error
message regarding the relevant input component that appears – which may sometimes also
be the most appropriate.

5.3 CONVERTERS

In the following example I will show the use of converters where you can attach a converter
to an input component. It has not directly to do with the ajax, but is often used in
conjunction with ajax. The example is the same as above, and I have started with a copy of
ChangeAddress3, which I have called ChangeAddress4. As an example of using converters, it
must be such that the city name will automatically be converted to uppercase letters, while
the email address will automatically be converted to lowercase letters. Such a converter can
be written as follows:

package changeaddress.validators;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.FacesConverter;

@FacesConverter("changeaddress.validators.UpperConverter")
public class UpperConverter implements Converter
{
 @Override
 public Object getAsObject
 (FacesContext context, UIComponent component, String value)
 {
 return value.toUpperCase();
 }

The validation takes place in the same way, but the writing method is all the more
straightforward. Note that it is necessary to specify the fields (for error messages) to be
rendered. However, there is one difference since validation occurs every time a lost focus
event occurs and hence each time an input field is left. This means that it is only the error
message regarding the relevant input component that appears – which may sometimes also
be the most appropriate.

5.3 CONVERTERS

In the following example I will show the use of converters where you can attach a converter
to an input component. It has not directly to do with the ajax, but is often used in
conjunction with ajax. The example is the same as above, and I have started with a copy of
ChangeAddress3, which I have called ChangeAddress4. As an example of using converters, it
must be such that the city name will automatically be converted to uppercase letters, while
the email address will automatically be converted to lowercase letters. Such a converter can
be written as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

119

JAVASERVER FACES AND AJAx

 </h:panelGrid>
 <h:commandLink value="Show addresses" action="list.xhtml" immediate="true" />
 </h:form>
 <h:form id="form2">
 </h:form>
 </h:body>
</html>

The validation takes place in the same way, but the writing method is all the more
straightforward. Note that it is necessary to specify the fields (for error messages) to be
rendered. However, there is one difference since validation occurs every time a lost focus
event occurs and hence each time an input field is left. This means that it is only the error
message regarding the relevant input component that appears – which may sometimes also
be the most appropriate.

5.3 CONVERTERS

In the following example I will show the use of converters where you can attach a converter
to an input component. It has not directly to do with the ajax, but is often used in
conjunction with ajax. The example is the same as above, and I have started with a copy of
ChangeAddress3, which I have called ChangeAddress4. As an example of using converters, it
must be such that the city name will automatically be converted to uppercase letters, while
the email address will automatically be converted to lowercase letters. Such a converter can
be written as follows:

package changeaddress.validators;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.FacesConverter;

@FacesConverter("changeaddress.validators.UpperConverter")
public class UpperConverter implements Converter
{
 @Override
 public Object getAsObject
 (FacesContext context, UIComponent component, String value)
 {
 return value.toUpperCase();
 }

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

120

Javaserver FaCes and aJax

120

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

120

JAVASERVER FACES AND AJAx

120

 @Override
 public String getAsString
 (FacesContext context, UIComponent component, Object value)
 {
 return value.toString().toUpperCase();
 }
}

and is relatively trivial. There is a corresponding converter class named LowerConverter. As
an example of using a slightly more interesting converter, the application has been changed
so that you can edit the date field again, but I have preserved that the field is initialized
with today. On the other hand, I want greater flexibility with regard to entering a date, so it
should be allowed to use spaces instead of hyphens. To solve it, I have added the following
converter to the program:

package changeaddress.validators;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.FacesConverter;

and is relatively trivial. There is a corresponding converter class named LowerConverter. As
an example of using a slightly more interesting converter, the application has been changed
so that you can edit the date field again, but I have preserved that the field is initialized
with today. On the other hand, I want greater flexibility with regard to entering a date, so it
should be allowed to use spaces instead of hyphens. To solve it, I have added the following
converter to the program:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

120

JAVASERVER FACES AND AJAx

120

 @Override
 public String getAsString
 (FacesContext context, UIComponent component, Object value)
 {
 return value.toString().toUpperCase();
 }
}

and is relatively trivial. There is a corresponding converter class named LowerConverter. As
an example of using a slightly more interesting converter, the application has been changed
so that you can edit the date field again, but I have preserved that the field is initialized
with today. On the other hand, I want greater flexibility with regard to entering a date, so it
should be allowed to use spaces instead of hyphens. To solve it, I have added the following
converter to the program:

package changeaddress.validators;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.FacesConverter;

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

121

Javaserver FaCes and aJaxJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

121

JAVASERVER FACES AND AJAx

@FacesConverter("changeaddress.validators.DateConverter")
public class DateConverter implements Converter
{
 @Override
 public Object getAsObject
 (FacesContext context, UIComponent component, String value)
 {
	 String[]	elems	=	value.split("-");
 if (elems.length == 3) return value;
 elems = value.split("/");
 if (elems.length == 3) return value.replace('/', '-');
 elems = value.split(" ");
 if (elems.length == 3) return value.replace(' ', '-');
 return value;
 }

 @Override
 public String getAsString
 (FacesContext context, UIComponent component, Object value)
 {
 String text = value.toString();
	 String[]	elems	=	text.split("-");
 if (elems.length == 3) return text;
 elems = text.split("/");
 if (elems.length == 3) return text.replace('/', '-');
 elems = text.split(" ");
 if (elems.length == 3) return text.replace(' ', '-');
 return value.toString();
 }
}

Back there is the application, for example, shown belov is the use of DateConverter:

<h:outputLabel value="Enter date:" for="date"/>
<h:inputText id="date" label="Change date" style="width: 100px"
 value="#{indexController.date}" >
 <f:validator validatorId="dateValidator"/>
 <f:converter converterId="changeaddress.validators.DateConverter"/>
</h:inputText>
<h:message for="date" class="error-message" id="dateError"/>

The other two convertes are used in the same way. Since the value entered in the field must
be updated immediately after the entry, the f:ajax element must also be updated:

<f:ajax	event="blur"	render="city	email	date	firstnameError	lastnameError
 addressError codeError cityError emailError dateError">

Back there is the application, for example, shown belov is the use of DateConverter:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

121

JAVASERVER FACES AND AJAx

@FacesConverter("changeaddress.validators.DateConverter")
public class DateConverter implements Converter
{
 @Override
 public Object getAsObject
 (FacesContext context, UIComponent component, String value)
 {
	 String[]	elems	=	value.split("-");
 if (elems.length == 3) return value;
 elems = value.split("/");
 if (elems.length == 3) return value.replace('/', '-');
 elems = value.split(" ");
 if (elems.length == 3) return value.replace(' ', '-');
 return value;
 }

 @Override
 public String getAsString
 (FacesContext context, UIComponent component, Object value)
 {
 String text = value.toString();
	 String[]	elems	=	text.split("-");
 if (elems.length == 3) return text;
 elems = text.split("/");
 if (elems.length == 3) return text.replace('/', '-');
 elems = text.split(" ");
 if (elems.length == 3) return text.replace(' ', '-');
 return value.toString();
 }
}

Back there is the application, for example, shown belov is the use of DateConverter:

<h:outputLabel value="Enter date:" for="date"/>
<h:inputText id="date" label="Change date" style="width: 100px"
 value="#{indexController.date}" >
 <f:validator validatorId="dateValidator"/>
 <f:converter converterId="changeaddress.validators.DateConverter"/>
</h:inputText>
<h:message for="date" class="error-message" id="dateError"/>

The other two convertes are used in the same way. Since the value entered in the field must
be updated immediately after the entry, the f:ajax element must also be updated:

<f:ajax	event="blur"	render="city	email	date	firstnameError	lastnameError
 addressError codeError cityError emailError dateError">

The other two convertes are used in the same way. Since the value entered in the field must
be updated immediately after the entry, the f:ajax element must also be updated:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

121

JAVASERVER FACES AND AJAx

@FacesConverter("changeaddress.validators.DateConverter")
public class DateConverter implements Converter
{
 @Override
 public Object getAsObject
 (FacesContext context, UIComponent component, String value)
 {
	 String[]	elems	=	value.split("-");
 if (elems.length == 3) return value;
 elems = value.split("/");
 if (elems.length == 3) return value.replace('/', '-');
 elems = value.split(" ");
 if (elems.length == 3) return value.replace(' ', '-');
 return value;
 }

 @Override
 public String getAsString
 (FacesContext context, UIComponent component, Object value)
 {
 String text = value.toString();
	 String[]	elems	=	text.split("-");
 if (elems.length == 3) return text;
 elems = text.split("/");
 if (elems.length == 3) return text.replace('/', '-');
 elems = text.split(" ");
 if (elems.length == 3) return text.replace(' ', '-');
 return value.toString();
 }
}

Back there is the application, for example, shown belov is the use of DateConverter:

<h:outputLabel value="Enter date:" for="date"/>
<h:inputText id="date" label="Change date" style="width: 100px"
 value="#{indexController.date}" >
 <f:validator validatorId="dateValidator"/>
 <f:converter converterId="changeaddress.validators.DateConverter"/>
</h:inputText>
<h:message for="date" class="error-message" id="dateError"/>

The other two convertes are used in the same way. Since the value entered in the field must
be updated immediately after the entry, the f:ajax element must also be updated:

<f:ajax	event="blur"	render="city	email	date	firstnameError	lastnameError
 addressError codeError cityError emailError dateError">

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

122

Javaserver FaCes and aJax

Looking at the input component date, it has both a validator and a converter, and here you
should be aware of the order of when the methods are performed:

1. getAsObject() // the class DateConverter
2. validate() // the class DateValidator
3. getAsString() // the class DateConverter

5.4 JSF LISTENERS

JSF components can raise different events when rendered (where the names tells when the
events occurs):

 - preRenderComponent,
 - postAddToView
 - preValidate
 - postValidate

You can define listeners for these events, which are Java code, which are performed on the
server. As an example, I have created a copy of the project ChangeAddress4 and called the
copy ChangeAddress5. First of all, I have changed the code for index.xhtml so that, like in
ChangeAddress1, it has an ajax function for each input component. As the next step, the
IndexController is expanded with two methods:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

122

JAVASERVER FACES AND AJAx

Looking at the input component date, it has both a validator and a converter, and here you
should be aware of the order of when the methods are performed:

1. getAsObject() // the class DateConverter
2. validate() // the class DateValidator
3. getAsString() // the class DateConverter

5.4 JSF LISTENERS

JSF components can raise different events when rendered (where the names tells when the
events occurs):

 - preRenderComponent,
 - postAddToView
 - preValidate
 - postValidate

You can define listeners for these events, which are Java code, which are performed on the
server. As an example, I have created a copy of the project ChangeAddress4 and called the
copy ChangeAddress5. First of all, I have changed the code for index.xhtml so that, like in
ChangeAddress1, it has an ajax function for each input component. As the next step, the
IndexController is expanded with two methods:

public String isWeekend()
{
	String[]	elems	=	person.getDate().split("-");
	Calendar	date	=	new	GregorianCalendar(Integer.parseInt(elems[2]),
	 Integer.parseInt(elems[1])	–	1,	Integer.parseInt(elems[0]));
	return	date.get(Calendar.DAY_OF_WEEK)	==	Calendar.SUNDAY	||
	 date.get(Calendar.DAY_OF_WEEK)	==	Calendar.SATURDAY	?	"red"	:	"darkgreen";
}

public void checkForWeekend(ComponentSystemEvent event)
{
 UIOutput output = (UIOutput) event.getComponent();
	if	(isWeekend().equals("red"))	output.setValue("Weekend");
 else output.setValue("Everyday");
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

123

Javaserver FaCes and aJax

123

The class Person has a property date initialized with today, and the first method test where
this date is for a weekend (Saturday or Sunday). If that is the case, the method returns the
text red and otherwise the text darkgreen. The next method is a listener method. Its parameter
is an event and the method determines a reference to the component to which the event
relates. If the Person object’s date property is a date of a weekend, the component’s value
is set to Weekend and otherwise to Everyday.

The two methods are basically simple Java methods, and I will now show how they can
be used as event handlers in index.xhtml. The form is expanded with a new element of the
type outputText (the only requirement is that it is a component with a value property):

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

123

JAVASERVER FACES AND AJAx

123

The class Person has a property date initialized with today, and the first method test where
this date is for a weekend (Saturday or Sunday). If that is the case, the method returns the
text red and otherwise the text darkgreen. The next method is a listener method. Its parameter
is an event and the method determines a reference to the component to which the event
relates. If the Person object’s date property is a date of a weekend, the component’s value
is set to Weekend and otherwise to Everyday.

The two methods are basically simple Java methods, and I will now show how they can
be used as event handlers in index.xhtml. The form is expanded with a new element of the
type outputText (the only requirement is that it is a component with a value property):

<h:outputLabel value="Enter date:" for="date"/>
<h:inputText id="date" label="Change date" style="width: 100px"
 value="#{indexController.date}" >
 <f:validator validatorId="dateValidator"/>
 <f:converter converterId="changeaddress.validators.DateConverter"/>
 <f:ajax event="blur" render="dateError weekend"/>
</h:inputText>
<h:message for="date" class="error-message" id="dateError"/>

http://s.bookboon.com/Subscrybe

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

124

Javaserver FaCes and aJaxJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

124

JAVASERVER FACES AND AJAx

<h:panelGroup/>
<h:outputText id="weekend"
 style="font-style: italic; color: #{indexController.isWeekend()};">
 <f:event type="preRenderComponent"
 listener="#{indexController.checkForWeekend}"/>
</h:outputText>
<h:panelGroup/>

The new elements have an id with the value weekend as well as a style attribute, where you
should primarily note that the value of color is determined by the return value from the
method isWeekend(), which is either red or darkgreen. As a result, the text appears either
as red or green. Finally, the element defines an event of the type preRenderComonent. That
is, the event handler (the element’s listener) is performed before the element is rendered
and the handler is the method checkForWeekend() in the controller class. It is executed each
time the element is rendered, which naturally occurs when the page is rendered, but it also
happens when the input component to date is changed, as the ajax function indicates that
the element with id weekend must be rendered.

The new elements have an id with the value weekend as well as a style attribute, where you
should primarily note that the value of color is determined by the return value from the
method isWeekend(), which is either red or darkgreen. As a result, the text appears either
as red or green. Finally, the element defines an event of the type preRenderComonent. That
is, the event handler (the element’s listener) is performed before the element is rendered
and the handler is the method checkForWeekend() in the controller class. It is executed each
time the element is rendered, which naturally occurs when the page is rendered, but it also
happens when the input component to date is changed, as the ajax function indicates that
the element with id weekend must be rendered.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

125

CoMponent LIbrarIes

6 COMPONENT LIBRARIES

As shown in the previous chapter, JSF and especially in combination with Ajax provide a
range of facilities that makes it easy to develop attractive and dynamic web applications, but
there is a lot more to do with, and among other things there are several thirds parts JSF
component libraries. In this chapter I will give an introductory note to one of these libraries,
called PrimeFaces. Basically, it’s a library that essentially defines its own component for each
of the standard JSF components as well as expanding with a skeleton for a web applcatation
that makes it easy to develop a stable application from scratch. The motivation for using
PrimeFaces is primarily to make it easy to develop user-friendly web applications, but also
that the library offers other services that JSF does not immediately provide, and in fact, the
idea is that the user to the least extent should work with style sheets and JavaScript – two
things that in practice can be quite time consuming.

As mentioned, there are other JSF component libraries, but I would like to introduce
PrimeFaces, as the library is directly supported by NetBeans, without the need to install
the libraries in question (which is also quite easy). One can achieve significant benefits with
PrimeFaces, but the price is that you must know the library (a bit like jQuery) and you
should be aware that the developers of PrimeFaces have an idea of how web applications
should look and work, and if you want to deviate from it, it is not always that easy.

I want to start with a usual web application, which I have called ChangeAddress6. When I
come to Frameworks, I’ve chosen JavaFaces as usual, and here I clicked on the Components
tab and chose PrimeFaces:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

126

CoMponent LIbrarIes

126

When I then click Finish, NetBeans as usually creates a web application with three files added:

In addition to index.xhtml and web.xml, another welcomePrimefaces.xhtml page has been
created, which is the application’s start page. The result is a fully completed web application
and opens it in the browser, you get the following window:

http://s.bookboon.com/volvo

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

127

CoMponent LIbrarIes

It is index.xhtml, but clicking on the link opens the window:

which is welcomePrimefaces.xhtml. That is, NetBeans has generated a skeleton for a page,
and it is then the task of the programmer to fill in with something sensible. You should
note that the page’s design is made without the use of style sheets or JavaScript, but all
built into the library.

index.xhtml does not contain anything new or anything about PrimeFaces, and of course,
the goal is to change it for the specific task. The new things are found in welcomePrimes.
xhtml, where NetBeans has created the following page:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

127

COMPONENT LIbRARIES

It is index.xhtml, but clicking on the link opens the window:

which is welcomePrimefaces.xhtml. That is, NetBeans has generated a skeleton for a page,
and it is then the task of the programmer to fill in with something sensible. You should
note that the page’s design is made without the use of style sheets or JavaScript, but all
built into the library.

index.xhtml does not contain anything new or anything about PrimeFaces, and of course,
the goal is to change it for the specific task. The new things are found in welcomePrimes.
xhtml, where NetBeans has created the following page:

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01	Transitional//EN"
	"http://www.w3.org/TR/html4/loose.dtd">
<html	xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:p="http://primefaces.org/ui">
 <f:view contentType="text/html">
 <h:head>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

128

CoMponent LIbrarIesJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

128

COMPONENT LIbRARIES

	 <f:facet	name="first">
	 <meta	content='text/html;	charset=UTF-8'	http-equiv="Content-Type"/>
 <title>PrimeFaces</title>
 </f:facet>
 </h:head>
 <h:body>
 <p:layout fullPage="true">
 <p:layoutUnit position="north" size="100" resizable="true" closable="true"
 collapsible="true">
 Header
 </p:layoutUnit>
 <p:layoutUnit position="south" size="100" closable="true"
 collapsible="true">
 Footer
 </p:layoutUnit>
 <p:layoutUnit position="west" size="175" header="Left" collapsible="true">
 <p:menu>
 <p:submenu label="Resources">
 <p:menuitem value="Demo"
 url="http://www.primefaces.org/showcase-labs/ui/home.jsf" />
 <p:menuitem value="Documentation"
 url="http://www.primefaces.org/documentation.html" />
 <p:menuitem value="Forum" url="http://forum.primefaces.org/" />
 <p:menuitem value="Themes"
 url="http://www.primefaces.org/themes.html" />
 </p:submenu>
 </p:menu>
 </p:layoutUnit>
 <p:layoutUnit position="center">
 Welcome to PrimeFaces
 </p:layoutUnit>
 </p:layout>
 </h:body>
 </f:view>
</html>

If you let your eyes run through the code, you’ll see that it’s all about a template, whatever
it’s all are about. Starting at the top, you should note that a new namespace has been added:

xmlns:p="http://primefaces.org/ui

If you let your eyes run through the code, you’ll see that it’s all about a template, whatever
it’s all are about. Starting at the top, you should note that a new namespace has been added:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

128

COMPONENT LIbRARIES

	 <f:facet	name="first">
	 <meta	content='text/html;	charset=UTF-8'	http-equiv="Content-Type"/>
 <title>PrimeFaces</title>
 </f:facet>
 </h:head>
 <h:body>
 <p:layout fullPage="true">
 <p:layoutUnit position="north" size="100" resizable="true" closable="true"
 collapsible="true">
 Header
 </p:layoutUnit>
 <p:layoutUnit position="south" size="100" closable="true"
 collapsible="true">
 Footer
 </p:layoutUnit>
 <p:layoutUnit position="west" size="175" header="Left" collapsible="true">
 <p:menu>
 <p:submenu label="Resources">
 <p:menuitem value="Demo"
 url="http://www.primefaces.org/showcase-labs/ui/home.jsf" />
 <p:menuitem value="Documentation"
 url="http://www.primefaces.org/documentation.html" />
 <p:menuitem value="Forum" url="http://forum.primefaces.org/" />
 <p:menuitem value="Themes"
 url="http://www.primefaces.org/themes.html" />
 </p:submenu>
 </p:menu>
 </p:layoutUnit>
 <p:layoutUnit position="center">
 Welcome to PrimeFaces
 </p:layoutUnit>
 </p:layout>
 </h:body>
 </f:view>
</html>

If you let your eyes run through the code, you’ll see that it’s all about a template, whatever
it’s all are about. Starting at the top, you should note that a new namespace has been added:

xmlns:p="http://primefaces.org/ui

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

129

CoMponent LIbrarIes

129

which is the namespace that defines all PrimeFaces elements and must be part of any
page that uses PrimeFaces. Then there is the body section where all elements this time are
PrimeFaces (p:) elements. The first is a p:layout element that defines the overall design. This
is done by using nested p:layoutUnit elements that divide the window into five areas:

1. north, which defines an area at the top of the page. The width will automatically
be the entire browser window, while the size attribute indicates the height.

2. west, which defines the left-hand area where the height will automatically be the
part of the browser window, which is not used by north and south, while the width
is defined by size.

3. south, which is the bottom area where the width is automatically the entire browser
window, while the height is determined by the size attribute.

4. east, which is the area to the right, but NetBeans does not insert this area (it is
not used so often). The height of the area is the same as west while the width is
defined by the size attribute.

5. center, which is simply the browser area not used by the four other areas.

That is, a p:layout element divides the window in the same way as it is known from a
BorderLayout in Java.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

130

CoMponent LIbrarIes

Between the individual areas there are lines that you can drag with the mouse and thus
change the size of the area – a bit like a GridSplitter in a Swing window.

Other attributes are also used, for example, north and south are defined closeable and
collapsible, which means that the area can be collapsed by double clicking on the dividing
line. Similarly, the left area is defined as collapsible, which occurs by clicking the arrow in
the line with the text Left.

NetBeans inserts content into the four areas. For the three, it’s nothing but a text, while for
the left-hand side it’s a meun. Here you should especially note that a menu can be nested.

I will now show how I have modified the application to look like the other ChangeAddress
applications. First, I renamed (the menu item Refcator) the page welcomePrimefaces.xhtml to
start.xhtml. Note that this means that it is manually necessary to change the name in the
page index.xhtml. Then I changed the body part to the following:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

130

COMPONENT LIbRARIES

Between the individual areas there are lines that you can drag with the mouse and thus
change the size of the area – a bit like a GridSplitter in a Swing window.

Other attributes are also used, for example, north and south are defined closeable and
collapsible, which means that the area can be collapsed by double clicking on the dividing
line. Similarly, the left area is defined as collapsible, which occurs by clicking the arrow in
the line with the text Left.

NetBeans inserts content into the four areas. For the three, it’s nothing but a text, while for
the left-hand side it’s a meun. Here you should especially note that a menu can be nested.

I will now show how I have modified the application to look like the other ChangeAddress
applications. First, I renamed (the menu item Refcator) the page welcomePrimefaces.xhtml to
start.xhtml. Note that this means that it is manually necessary to change the name in the
page index.xhtml. Then I changed the body part to the following:

<h:body>
 <f:facet name="last">
 <h:outputStylesheet name="css/styles.css" />
 </f:facet>
 <p:layout fullPage="true">
 <p:layoutUnit position="north" size="100" resizable="true" closable="true"
 collapsible="true">
 <h1>Change address</h1>
 </p:layoutUnit>
 <p:layoutUnit position="south" size="100" closable="true" collapsible="true">
 <h3 style="text-align: center">Enter your address, your job position and from
 when this information applies</h3>
 </p:layoutUnit>
 <p:layoutUnit position="west" size="175" header="Commands" collapsible="true">
 <h:form>
 <p:menu>
 <p:submenu label="Functions">
 <p:menuitem value="Show addresses" ajax="false" action="list.xhtml" />
 </p:submenu>
 </p:menu>
 </h:form>
 </p:layoutUnit>
 <p:layoutUnit position="center">
 <h:form>
 <p:panelGrid columns="3" columnClasses="rightalign,leftalign,leftalign"
 id="panel">
	 <p:outputLabel	value="First	name:"	for="firstname"/>
	 <p:inputText	id="firstname"	label="First	name"	style="width:	300px"

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

131

CoMponent LIbrarIesJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

131

COMPONENT LIbRARIES

	 value="#{indexController.firstname}"	>
	 <f:validateRequired/>
	 <f:ajax	event="blur"	render="firstnameError"	/>
 </p:inputText>
	 <p:message	for="firstname"	id="firstnameError"	/>
 <p:outputLabel value="Last name:" for="lastname"/>
 <p:inputText id="lastname" label="Lastname" style="width: 200px"
 value="#{indexController.lastname}" >
	 <f:validateRequired/>
 <f:ajax event="blur" render="lastnameError"/>
 </p:inputText>
 <p:message for="lastname" id="lastnameError"/>
 <p:outputLabel value="Address:" for="address"/>
 <p:inputText id="address" label="Address" style="width: 300px"
 value="#{indexController.address}" >
	 <f:validateRequired/>
 <f:ajax event="blur" render="addressError"/>
 </p:inputText>
 <p:message for="address" id="addressError"/>
 <p:outputLabel value="Zip code:" for="code" />
 <p:inputText id="code" label="Zipcode" style="width: 60px"
 value="#{indexController.code}">
	 <f:validateLength	minimum="4"	maximum="4"/>
 <f:ajax event="blur" render="codeError"/>
 </p:inputText>
 <p:message for="code" id="codeError"/>
 <p:outputLabel value="City:" for="city"/>
 <p:inputText id="city" label="City" style="width: 200px"
 value="#{indexController.city}" >
	 <f:validateRequired/>
 <f:converter converterId="changeaddress.validators.UpperConverter"/>
 <f:ajax event="blur" render="cityError"/>
 </p:inputText>
 <p:message for="city" id="cityError"/>
 <p:outputLabel value="Email address:" for="email"/>
 <p:inputText id="email" label="Email address" style="width: 300px"
 value="#{indexController.email}">
 <f:validator validatorId="emailValidator"/>
 <f:converter converterId="changeaddress.validators.LowerConverter"/>
 <f:ajax event="blur" render="emailError"/>
 </p:inputText>
 <p:message for="email" id="emailError"/>
 <p:outputLabel value="Enter date:" for="date"/>
 <p:inputText id="date" label="Change date" style="width: 100px"
 value="#{indexController.date}" >
 <f:validator validatorId="dateValidator"/>
 <f:converter converterId="changeaddress.validators.DateConverter"/>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

132

CoMponent LIbrarIes

132

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

132

COMPONENT LIbRARIES

132

 <f:ajax event="blur" render="dateError weekend"/>
 </p:inputText>
 <p:message for="date" id="dateError"/>
 <p:outputLabel/>
 <p:outputLabel id="weekend"
 style="font-style: italic; color: #{indexController.isWeekend()};">
 <f:event type="preRenderComponent"
 listener="#{indexController.checkForWeekend}"/>
 </p:outputLabel>
 <p:outputLabel/>
 <p:outputLabel value="Job titel: " for="title"/>
	 <p:inputText	id="title"	required="false"	style="width:	300px"
 value="#{indexController.title}" />
 <p:outputLabel/>
 <p:commandButton value="Send" actionListener="#{indexController.add}"
 id="commandId" update="panel" />
 </p:panelGrid>
 </h:form>
 </p:layoutUnit>
 </p:layout>
</h:body>

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

133

CoMponent LIbrarIes

Of course there is a lot to note. At the beginning, the loading of a style sheet is defined as I
return to below. Next, you can notice how north and south are changed and that both areas
contains only plain HTML. Also, the west area has been changed so the menu now has only
one menu item with a link to the page that shows an overview of the entered addresses.
With only one menu item, it is probably a little overdone to use a p:menu element, but I
have retained it as an example. The relevant menu item should no longer be translated into
a common link, but instead a reference to another document in the same application (like
a commandLink). This happens by using the attribute action instead of url, but in return,
the menu must be placed in a form, as it should be translated to a submit of this form.

Then there is the center area, which contains most of the code copied from the ChangeAddress5
project. In addition, all Java classes from this project are copied and, moreover, they are
completely unchanged. If you consider the center area in start.xhtml, you can see that essentially
nothing has happened except that all h: elements are changed to p: elements and thus to
PrimeFaces elements. However, there are some other changes. outputText does not exist as a
PrimeFaces element, and here the element is changed to p:outputLabel. Earlier, all message
elements had a class, but it has now been removed since it no longer has effect. The element
groupPanel also does not exist as a PrimeFaces element and is replaced by a p:outputLabel
element. The most important change, however, relates to the element p:commandButton. It
uses as default ajax, but does not know an action event. Instead, an actionListener attribute
must specify the action to be performed as well as update which sections of the user interface
should be updated and here it is the panel containing the input components.

If you see the code you can see that PrimeFaces is quite simple, and the result in web
pages that look nice, but if you want to differ from what PrimeFaces have defined, it’s not
so simple. PrimeFaces is based on style sheets and a number of internal styles, and if you
change a page’s look and feel, the method is of changing these styles. You can also define
styles in the usual way (see the width of the above p:inputText elements), but it’s not always
easy to predict the effect as you can not immediately see what the individual PrimeFaces
elements are translated into. Here it may be helpful to study the source code in the browser.
A p:panelGrid by default sets a thin frame without the individual cells and without the
entire component, and in this case I wants to remove the frame. In addition, I would like
to use a smaller font for error messages, and I have therefore added the following style sheet:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

133

COMPONENT LIbRARIES

Of course there is a lot to note. At the beginning, the loading of a style sheet is defined as I
return to below. Next, you can notice how north and south are changed and that both areas
contains only plain HTML. Also, the west area has been changed so the menu now has only
one menu item with a link to the page that shows an overview of the entered addresses.
With only one menu item, it is probably a little overdone to use a p:menu element, but I
have retained it as an example. The relevant menu item should no longer be translated into
a common link, but instead a reference to another document in the same application (like
a commandLink). This happens by using the attribute action instead of url, but in return,
the menu must be placed in a form, as it should be translated to a submit of this form.

Then there is the center area, which contains most of the code copied from the ChangeAddress5
project. In addition, all Java classes from this project are copied and, moreover, they are
completely unchanged. If you consider the center area in start.xhtml, you can see that essentially
nothing has happened except that all h: elements are changed to p: elements and thus to
PrimeFaces elements. However, there are some other changes. outputText does not exist as a
PrimeFaces element, and here the element is changed to p:outputLabel. Earlier, all message
elements had a class, but it has now been removed since it no longer has effect. The element
groupPanel also does not exist as a PrimeFaces element and is replaced by a p:outputLabel
element. The most important change, however, relates to the element p:commandButton. It
uses as default ajax, but does not know an action event. Instead, an actionListener attribute
must specify the action to be performed as well as update which sections of the user interface
should be updated and here it is the panel containing the input components.

If you see the code you can see that PrimeFaces is quite simple, and the result in web
pages that look nice, but if you want to differ from what PrimeFaces have defined, it’s not
so simple. PrimeFaces is based on style sheets and a number of internal styles, and if you
change a page’s look and feel, the method is of changing these styles. You can also define
styles in the usual way (see the width of the above p:inputText elements), but it’s not always
easy to predict the effect as you can not immediately see what the individual PrimeFaces
elements are translated into. Here it may be helpful to study the source code in the browser.
A p:panelGrid by default sets a thin frame without the individual cells and without the
entire component, and in this case I wants to remove the frame. In addition, I would like
to use a smaller font for error messages, and I have therefore added the following style sheet:

.ui-panelgrid > * > tr, .ui-panelgrid > * > tr > td.ui-panelgrid-cell {
 border: none;
}

.ui-message.ui-widget {
 font-size: 10pt;
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

134

CoMponent LIbrarIes

and here it’s not so easy to know what classes to override. In addition, be aware that the
style sheet must be loaded after PrimeFaces’ own style sheets are used and one way is to
do it at the start the body section as shown in the code above.

Then there is the page list.xhtml:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

134

COMPONENT LIbRARIES

and here it’s not so easy to know what classes to override. In addition, be aware that the
style sheet must be loaded after PrimeFaces’ own style sheets are used and one way is to
do it at the start the body section as shown in the code above.

Then there is the page list.xhtml:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC … >
<html	xmlns="http://www.w3.org/1999/xhtml"	…	>
 <f:view contentType="text/html">
 <h:head>
	 <f:facet	name="first">
	 <meta	content='text/html;	charset=UTF-8'	http-equiv="Content-Type"/>
 <title>Adresses</title>
 </f:facet>
 </h:head>
 <h:body>
 <p:layout fullPage="true">
 <p:layoutUnit position="north" size="100" resizable="true" closable="true"
 collapsible="true">
 <h1>Addresses</h1>
 </p:layoutUnit>
 <p:layoutUnit position="south" size="100" closable="true"
 collapsible="true">
 <h3 style="text-align: center">Enter your address, your job

position and from when this information applies</h3>
 </p:layoutUnit>
 <p:layoutUnit position="east" size="275" resizable="false" header="Bird"
 closable="false" collapsible="true">
 <h:form>

 <p:commandLink value="Back to start" action="start.xhtml"/>
 </h:form>
 </p:layoutUnit>
 <p:layoutUnit position="center">
 <h:form id="mainForm">
 <p:dataTable id="addrTable" var="addr"
 value="#{indexController.persons}"
 rendered="#{indexController.persons.size() > 0}">
 <f:facet name="header">
 Entered addresses in this session
 </f:facet>
 <p:column id="nameCol">
 <f:facet name="header">Name</f:facet>
	 <p:outputLabel	id="name"	value="#{addr.firstname}
 #{addr.lastname}"/>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

135

CoMponent LIbrarIes

135

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

135

COMPONENT LIbRARIES

135

 </p:column>
 <p:column id="addrCol">
 <f:facet name="header">Address</f:facet>
 <p:outputLabel id="addr" value="#{addr.address}"/>
 </p:column>
 <p:column id="cityCol">
 <f:facet name="header">City</f:facet>
 <p:outputLabel id="city" value="#{addr.code} #{addr.city}"/>
 </p:column>
 <p:column id="jobCol">
 <f:facet name="header">Title</f:facet>
 <p:outputLabel id="job" value="#{addr.title}"/>
 </p:column>
 <p:column id="mailCol">
 <f:facet name="header">Mail</f:facet>
 <p:outputLabel id="mail" value="#{addr.email}"/>
 </p:column>
 <p:column id="dateCol">
 <f:facet name="header">Date</f:facet>
 <p:outputLabel id="date" value="#{addr.date}"/>
 </p:column>
 </p:dataTable>
 </h:form>
 </p:layoutUnit>

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

136

CoMponent LIbrarIesJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

136

COMPONENT LIbRARIES

 </p:layout>
 </h:body>
 </f:view>
</html>

Again, the code list.xhtml is similar to ChangeAddress5, and the biggest difference is in
addition to start.xhtml the p:layout elelemtn and most of the h: elements are replaced by p:
elements. The layout is this time expanded with an east area – just to show the syntax. In
the area there is an image (which is added to the application as a resource) and it is only
for there to be something, but also to emphasize that you can perfectly combine PrimeFaces
and usual HTML. When you try out the application, note how the table is formatted, and
it is one of the most important reasons for using PrimeFaces that you generally get a nice
result without having to struggle with style sheets and the like.

6.1 HOW TO POLL THE SERVER

It is always the client (the browser) that addresses the server with a request when something
is going to happen, and it is never the server that takes the initiative to contact the client.
For example, if you want the user interface updated, the client must send a request to the
server. You can automate this behavior using PrimeFaces what the following example will
illustrate. The example is an extension of ChangeAddress6 and is called ChangeAddress7, and
the form start.xhtml has been changed so it displays the clock (see below). In principle, it
is not the big challenges and is primarily a matter of expanding IndexController with the
following property:

public String getTime()
{
 Calendar time = Calendar.getInstance();
 return String.format("%02d:%02d:%02d", time.get(Calendar.HOUR_OF_DAY),
 time.get(Calendar.MINUTE), time.get(Calendar.SECOND));
}

Again, the code list.xhtml is similar to ChangeAddress5, and the biggest difference is in
addition to start.xhtml the p:layout elelemtn and most of the h: elements are replaced by p:
elements. The layout is this time expanded with an east area – just to show the syntax. In
the area there is an image (which is added to the application as a resource) and it is only
for there to be something, but also to emphasize that you can perfectly combine PrimeFaces
and usual HTML. When you try out the application, note how the table is formatted, and
it is one of the most important reasons for using PrimeFaces that you generally get a nice
result without having to struggle with style sheets and the like.

6.1 HOW TO POLL THE SERVER

It is always the client (the browser) that addresses the server with a request when something
is going to happen, and it is never the server that takes the initiative to contact the client.
For example, if you want the user interface updated, the client must send a request to the
server. You can automate this behavior using PrimeFaces what the following example will
illustrate. The example is an extension of ChangeAddress6 and is called ChangeAddress7, and
the form start.xhtml has been changed so it displays the clock (see below). In principle, it
is not the big challenges and is primarily a matter of expanding IndexController with the
following property:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

136

COMPONENT LIbRARIES

 </p:layout>
 </h:body>
 </f:view>
</html>

Again, the code list.xhtml is similar to ChangeAddress5, and the biggest difference is in
addition to start.xhtml the p:layout elelemtn and most of the h: elements are replaced by p:
elements. The layout is this time expanded with an east area – just to show the syntax. In
the area there is an image (which is added to the application as a resource) and it is only
for there to be something, but also to emphasize that you can perfectly combine PrimeFaces
and usual HTML. When you try out the application, note how the table is formatted, and
it is one of the most important reasons for using PrimeFaces that you generally get a nice
result without having to struggle with style sheets and the like.

6.1 HOW TO POLL THE SERVER

It is always the client (the browser) that addresses the server with a request when something
is going to happen, and it is never the server that takes the initiative to contact the client.
For example, if you want the user interface updated, the client must send a request to the
server. You can automate this behavior using PrimeFaces what the following example will
illustrate. The example is an extension of ChangeAddress6 and is called ChangeAddress7, and
the form start.xhtml has been changed so it displays the clock (see below). In principle, it
is not the big challenges and is primarily a matter of expanding IndexController with the
following property:

public String getTime()
{
 Calendar time = Calendar.getInstance();
 return String.format("%02d:%02d:%02d", time.get(Calendar.HOUR_OF_DAY),
 time.get(Calendar.MINUTE), time.get(Calendar.SECOND));
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

137

CoMponent LIbrarIes

However, the clock is updated every second, which means that the client must send a
request to the server every second to update the clock. It is said that the client should pole
the server. This can be implemented using PrimeFaces as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

137

COMPONENT LIbRARIES

However, the clock is updated every second, which means that the client must send a
request to the server every second to update the clock. It is said that the client should pole
the server. This can be implemented using PrimeFaces as follows:

<p:poll id="poll" interval="1" update="timelabel"/>
<div class="time-text">
 <p:outputLabel id="timelabel" value="#{indexController.time}"/>
</div>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

138

CoMponent LIbrarIes

138

You should note that the element p:poll automatically uses ajax, so it is only the current
label that is being updated. To display the clock well, the style sheet is expanded with the
following class:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

138

COMPONENT LIbRARIES

138

You should note that the element p:poll automatically uses ajax, so it is only the current
label that is being updated. To display the clock well, the style sheet is expanded with the
following class:

.time-text {
 margin-top: 30px;
 color: darkmagenta;
 font-weight: bold;
	font-size:	40pt;
}

and again, you should note that conventional web technologies can be combined with
PrimeFaces without difficulty. The opposite also applies to the use of a function such as
p:poll without else using PrimeFaces.

6.2 A P:AUTOCOMPLETE ELEMENT

As another application of PrimeFaces, I want to show a so-called autocomplete. The
application ChangeAddress8 is another extension, and if you in the field for the city name
begin to enter the name, you get a dropdown list with the name that matches:

and again, you should note that conventional web technologies can be combined with
PrimeFaces without difficulty. The opposite also applies to the use of a function such as
p:poll without else using PrimeFaces.

6.2 A P:AUTOCOMPLETE ELEMENT

As another application of PrimeFaces, I want to show a so-called autocomplete. The
application ChangeAddress8 is another extension, and if you in the field for the city name
begin to enter the name, you get a dropdown list with the name that matches:

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

139

CoMponent LIbrarIes

Specifically, the program has been modified so that if you are in the field for zip code and
enter an existing zip code (only existing zip codes are legal), then the city name will be
filled in automatically and if you enter in the city name field and enter text, you will see
above a list of city names that match (contains) the entered text and select a city name,
the field for zip code is automatically updated.

To solve the task I have first added the following class, which is a table of Danish zip codes:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

139

COMPONENT LIbRARIES

Specifically, the program has been modified so that if you are in the field for zip code and
enter an existing zip code (only existing zip codes are legal), then the city name will be
filled in automatically and if you enter in the city name field and enter text, you will see
above a list of city names that match (contains) the entered text and select a city name,
the field for zip code is automatically updated.

To solve the task I have first added the following class, which is a table of Danish zip codes:

package changeaddress.validators;

import java.util.ArrayList;
import java.util.List;

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

140

CoMponent LIbrarIesJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

140

COMPONENT LIbRARIES

public class Zipcodes
{
 public static String getCity(String code)
 {
	 for	(String[]	elem	:	codeArray)	if	(elem[0].equals(code))	return	elem[1];
 return null;
 }

 public static String getCode(String city)
 {
 city = city.toLowerCase();
	 for	(String[]	elem	:	codeArray)
	 if	(elem[1].toLowerCase().equals(city))	return	elem[0];
 return null;
 }

 public static List<String> getCities(String text)
 {
 text = text.toLowerCase();
 List<String> res = new ArrayList();
	 for	(String[]	elem	:	codeArray)
	 if	(elem[1].toLowerCase().contains(text))	res.add(elem[1]);
 return res;
 }

	private	static	String	codeArray	[][]	=	{
 { "0800", "Høje Taastrup" },
	 {	"0900",	"København	C"	},
 …
 }
}

The methods do not require any particular explanation, but a more dynamic solution would
of course be to load the zip codes from a database. A validator class has also been added to
zip codes, which do nothing but test if a zip code is found in the table above. As the class
does not add anything new, I will not display the code here. Next, the controller class is
modified, where I have only shown the code that has changed:

public class IndexController implements Serializable
{
 …

 public void setCode(String code)
 {
 person.setCode(code);

The methods do not require any particular explanation, but a more dynamic solution would
of course be to load the zip codes from a database. A validator class has also been added to
zip codes, which do nothing but test if a zip code is found in the table above. As the class
does not add anything new, I will not display the code here. Next, the controller class is
modified, where I have only shown the code that has changed:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

140

COMPONENT LIbRARIES

public class Zipcodes
{
 public static String getCity(String code)
 {
	 for	(String[]	elem	:	codeArray)	if	(elem[0].equals(code))	return	elem[1];
 return null;
 }

 public static String getCode(String city)
 {
 city = city.toLowerCase();
	 for	(String[]	elem	:	codeArray)
	 if	(elem[1].toLowerCase().equals(city))	return	elem[0];
 return null;
 }

 public static List<String> getCities(String text)
 {
 text = text.toLowerCase();
 List<String> res = new ArrayList();
	 for	(String[]	elem	:	codeArray)
	 if	(elem[1].toLowerCase().contains(text))	res.add(elem[1]);
 return res;
 }

	private	static	String	codeArray	[][]	=	{
 { "0800", "Høje Taastrup" },
	 {	"0900",	"København	C"	},
 …
 }
}

The methods do not require any particular explanation, but a more dynamic solution would
of course be to load the zip codes from a database. A validator class has also been added to
zip codes, which do nothing but test if a zip code is found in the table above. As the class
does not add anything new, I will not display the code here. Next, the controller class is
modified, where I have only shown the code that has changed:

public class IndexController implements Serializable
{
 …

 public void setCode(String code)
 {
 person.setCode(code);

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

141

CoMponent LIbrarIes

141

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

141

COMPONENT LIbRARIES

141

 person.setCity(Zipcodes.getCity(code));
 }
 …

 public List<String> complete(String text)
 {
 return Zipcodes.getCities(text);
 }

 public void select(SelectEvent e)
 {
 String city = e.getObject().toString();
 setCode(Zipcodes.getCode(city));
 }
}

Note that setCode() has been changed so it now also initializes the city name from the zip
code table. The complete() method is the method that returns the list of city names that
match the text entered in the city name field. Finally, there is the select() method, which is
an event handler that is performed when a city name is selected in the list.

Note that setCode() has been changed so it now also initializes the city name from the zip
code table. The complete() method is the method that returns the list of city names that
match the text entered in the city name field. Finally, there is the select() method, which is
an event handler that is performed when a city name is selected in the list.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

142

CoMponent LIbrarIes

Back there is start.xhtml where the fields for zip code and city name are changed:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

142

COMPONENT LIbRARIES

Back there is start.xhtml where the fields for zip code and city name are changed:

<p:outputLabel value="Zip code:" for="code" />
<p:inputText id="code" label="Zipcode" style="width: 60px"
 value="#{indexController.code}">
 <f:validator validatorId="zipcodeValidator"/>
 <f:ajax event="blur" render="codeError city"/>
</p:inputText>
<p:message for="code" id="codeError"/>

<p:outputLabel value="City:" for="city"/>
<p:autoComplete id="city" value="#{indexController.city}" maxResults="10"
 completeMethod="#{indexController.complete}">
 <p:ajax event="itemSelect" listener="#{indexController.select}"
 resetValues="true" update="code" />
</p:autoComplete>
<p:message for="city" id="cityError"/>

Regarding entering the zip code, there is not much new, but note that there is another
validator attached. Note that it is also defined that the field for the city name must be
updated. The most important is by entering city name, where the element has now been
changed to a p:autoComplete element. When you see the syntax, it’s easy enough to figure
out what’s happening, but note the special way to bind the complete() method that returns
data to the list, and also note how to reference the event handler. Finally, note that the
field for entering the zip code must be updated.

Note that the style sheet is also expanded.

The examples in this chapter show a little bit about what is possible with PrimeFaces, but
there is much more, and if you are developing web applications, it’s worth working to
investigate what PrimeFaces offers. Here you should, among other things, be aware that
you can download a documentation from the Internet as pdf:

https://www.primefaces.org/docs/guide/primefaces_user_guide_6_0.pdf

Also, be aware that there is a very good online documentation with examples:

https://www.primefaces.org/showcase/

Finally, I would like to mention that there are other component libraries for JSF, which it
is also worth to look on.

Regarding entering the zip code, there is not much new, but note that there is another
validator attached. Note that it is also defined that the field for the city name must be
updated. The most important is by entering city name, where the element has now been
changed to a p:autoComplete element. When you see the syntax, it’s easy enough to figure
out what’s happening, but note the special way to bind the complete() method that returns
data to the list, and also note how to reference the event handler. Finally, note that the
field for entering the zip code must be updated.

Note that the style sheet is also expanded.

The examples in this chapter show a little bit about what is possible with PrimeFaces, but
there is much more, and if you are developing web applications, it’s worth working to
investigate what PrimeFaces offers. Here you should, among other things, be aware that
you can download a documentation from the Internet as pdf:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

142

COMPONENT LIbRARIES

Back there is start.xhtml where the fields for zip code and city name are changed:

<p:outputLabel value="Zip code:" for="code" />
<p:inputText id="code" label="Zipcode" style="width: 60px"
 value="#{indexController.code}">
 <f:validator validatorId="zipcodeValidator"/>
 <f:ajax event="blur" render="codeError city"/>
</p:inputText>
<p:message for="code" id="codeError"/>

<p:outputLabel value="City:" for="city"/>
<p:autoComplete id="city" value="#{indexController.city}" maxResults="10"
 completeMethod="#{indexController.complete}">
 <p:ajax event="itemSelect" listener="#{indexController.select}"
 resetValues="true" update="code" />
</p:autoComplete>
<p:message for="city" id="cityError"/>

Regarding entering the zip code, there is not much new, but note that there is another
validator attached. Note that it is also defined that the field for the city name must be
updated. The most important is by entering city name, where the element has now been
changed to a p:autoComplete element. When you see the syntax, it’s easy enough to figure
out what’s happening, but note the special way to bind the complete() method that returns
data to the list, and also note how to reference the event handler. Finally, note that the
field for entering the zip code must be updated.

Note that the style sheet is also expanded.

The examples in this chapter show a little bit about what is possible with PrimeFaces, but
there is much more, and if you are developing web applications, it’s worth working to
investigate what PrimeFaces offers. Here you should, among other things, be aware that
you can download a documentation from the Internet as pdf:

https://www.primefaces.org/docs/guide/primefaces_user_guide_6_0.pdf

Also, be aware that there is a very good online documentation with examples:

https://www.primefaces.org/showcase/

Finally, I would like to mention that there are other component libraries for JSF, which it
is also worth to look on.

Also, be aware that there is a very good online documentation with examples:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

142

COMPONENT LIbRARIES

Back there is start.xhtml where the fields for zip code and city name are changed:

<p:outputLabel value="Zip code:" for="code" />
<p:inputText id="code" label="Zipcode" style="width: 60px"
 value="#{indexController.code}">
 <f:validator validatorId="zipcodeValidator"/>
 <f:ajax event="blur" render="codeError city"/>
</p:inputText>
<p:message for="code" id="codeError"/>

<p:outputLabel value="City:" for="city"/>
<p:autoComplete id="city" value="#{indexController.city}" maxResults="10"
 completeMethod="#{indexController.complete}">
 <p:ajax event="itemSelect" listener="#{indexController.select}"
 resetValues="true" update="code" />
</p:autoComplete>
<p:message for="city" id="cityError"/>

Regarding entering the zip code, there is not much new, but note that there is another
validator attached. Note that it is also defined that the field for the city name must be
updated. The most important is by entering city name, where the element has now been
changed to a p:autoComplete element. When you see the syntax, it’s easy enough to figure
out what’s happening, but note the special way to bind the complete() method that returns
data to the list, and also note how to reference the event handler. Finally, note that the
field for entering the zip code must be updated.

Note that the style sheet is also expanded.

The examples in this chapter show a little bit about what is possible with PrimeFaces, but
there is much more, and if you are developing web applications, it’s worth working to
investigate what PrimeFaces offers. Here you should, among other things, be aware that
you can download a documentation from the Internet as pdf:

https://www.primefaces.org/docs/guide/primefaces_user_guide_6_0.pdf

Also, be aware that there is a very good online documentation with examples:

https://www.primefaces.org/showcase/

Finally, I would like to mention that there are other component libraries for JSF, which it
is also worth to look on.
Finally, I would like to mention that there are other component libraries for JSF, which it
is also worth to look on.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

143

websHeet

8 WEBSHEET

As the final example of this book, I will write a web application, which is a simple
spreadsheet. The application is called WebSheet, and if you open it in the browser, you get
the following window:

A spreadsheet requires a high user interaction, where the user must be able to enter numbers
and formulas in the individual cells, and in the case of a formula, the expression must be
evaluated. The client has to do a lot, and the goal of the project is to show how it can be
implemented in JavaScript, thus showing something about what is possible in JavaScript.
To facilitate the work, I have used jQuery, which is a JavaScript library that provides a wide
range of features available, including specially finished elements for the user interface such
as dialog boxes, context menus, and more. If you do not know jQuery, you can read the
book’s appendix A, which gives a brief introduction to jQuery.

As mentioned above, the goal is to show how to use JavaScript to program the client side
of a web application, but it is not a fully functional spreadsheet. Not that the program can
not be used, but there is a lot that is missing or things that could be better.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

144

websHeet

144

8.1 THE PROGRAM’S FUNCTIONS

To enter in a cell, first the cell must be opened that occurs as CTRL + SHIFT and click
with the mouse. Then you can enter a number, a formula or a text. The entry is accepted
either by pressing Tab or Enter.

You can select one or more cells using the mouse and proceed in the usual way by holding
down the left button and drag the mouse, and the CTRL and SHIFT keys have the
usual functionality.

The program has a toolbar with 16 functions, as mentioned from the left has the following
functions:

1. Create a new spreadsheet and enter the number of rows (default 50) and the number
of columns (default 20).

2. Open an existing spreadsheet where you can search among the spreadsheets that
have been created and saved.

3. Save the spreadsheet that you work – if it has been saved. Otherwise, the Saveas
function is called.

4. Save the spreadsheet as a new spreadsheet, which means entering a name.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

145

websHeet

5. Sets the text in the selected cells to bold.
6. Sets the text in the selected cells to italic.
7. Sets the number of decimals for the selected cells.
8. Sets the text in the selected cells to left adjusted.
9. Sets the text in the selected cells to centered.
10. Sets the text in the selected cells to right adjusted.
11. Sets the text color for the selected cells.
12. Sets the background color for the selected cells.
13. Deletes all formatting for the selected cells or for the entire spreadsheet, if no cells

are selected.
14. Copies the selected cells.
15. Deletes the contents of the selected cells and stores the content.
16. Inserts cells that are saved or deleted.

In addition, right-clicking on a row header you get a context menu with four functions:

1. Select all cells in the row.
2. Insert an empty row above the current row.
3. Insert an empty row under the current row.
4. Remove the row.

The same goes for columns:

1. Select all cells in the column.
2. Insert an empty column before the current column.
3. Insert an empty column after the current column.
4. Remove the column.

8.2 DESIGN

The content of a spreadsheet must be saved and that have to be done on the server side. The
content must thus be sent to and from the server. To facilitate this transport, a spreadsheet
is represented as a JSON object. If you do not know about JSON, read this book’s appendix
B, which gives a brief presentation of JSON. A spreadsheet is represented as an object in
the form:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

145

WEbSHEET

5. Sets the text in the selected cells to bold.
6. Sets the text in the selected cells to italic.
7. Sets the number of decimals for the selected cells.
8. Sets the text in the selected cells to left adjusted.
9. Sets the text in the selected cells to centered.
10. Sets the text in the selected cells to right adjusted.
11. Sets the text color for the selected cells.
12. Sets the background color for the selected cells.
13. Deletes all formatting for the selected cells or for the entire spreadsheet, if no cells

are selected.
14. Copies the selected cells.
15. Deletes the contents of the selected cells and stores the content.
16. Inserts cells that are saved or deleted.

In addition, right-clicking on a row header you get a context menu with four functions:

1. Select all cells in the row.
2. Insert an empty row above the current row.
3. Insert an empty row under the current row.
4. Remove the row.

The same goes for columns:

1. Select all cells in the column.
2. Insert an empty column before the current column.
3. Insert an empty column after the current column.
4. Remove the column.

8.2 DESIGN

The content of a spreadsheet must be saved and that have to be done on the server side. The
content must thus be sent to and from the server. To facilitate this transport, a spreadsheet
is represented as a JSON object. If you do not know about JSON, read this book’s appendix
B, which gives a brief presentation of JSON. A spreadsheet is represented as an object in
the form:

var datadefs = (function() {
 public = {};
	public.values	=	[];
 public.options = {

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

146

websHeetJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

146

WEbSHEET

	 bold:	[],
	 italic:	[],
	 align:	[],
	 background:	[],
	 foreground:	[],
	 decimals:	[]
 };

 return public;
})();

values is an array widt the spreadsheets data elements (one element for each data cell). That
is, the array does not contain values for row and column headers. The array has one element
for each row, where each element is an array with data elements of the form

{
 value:
 type:
}

Here value is the cell’s value, and type can be n for number, s for string and e for expression.
As an example, the data presentation for a blank spreadsheet with 3 rows and 2 columns
is shown below.

{
	"values":[
	 [{"value":"","type":"s"},{"value":"","type":"s"}],
	 [{"value":"","type":"s"},{"value":"","type":"s"}],
	 [{"value":"","type":"s"},{"value":"","type":"s"}]
],
 "options":
 {
	 "bold":	[],
	 "italic":	[],
	 "align":	[],
	 "background":	[],
	 "foreground":	[],
	 "decimals":	[]
 }
}

values is an array widt the spreadsheets data elements (one element for each data cell). That
is, the array does not contain values for row and column headers. The array has one element
for each row, where each element is an array with data elements of the form

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

146

WEbSHEET

	 bold:	[],
	 italic:	[],
	 align:	[],
	 background:	[],
	 foreground:	[],
	 decimals:	[]
 };

 return public;
})();

values is an array widt the spreadsheets data elements (one element for each data cell). That
is, the array does not contain values for row and column headers. The array has one element
for each row, where each element is an array with data elements of the form

{
 value:
 type:
}

Here value is the cell’s value, and type can be n for number, s for string and e for expression.
As an example, the data presentation for a blank spreadsheet with 3 rows and 2 columns
is shown below.

{
	"values":[
	 [{"value":"","type":"s"},{"value":"","type":"s"}],
	 [{"value":"","type":"s"},{"value":"","type":"s"}],
	 [{"value":"","type":"s"},{"value":"","type":"s"}]
],
 "options":
 {
	 "bold":	[],
	 "italic":	[],
	 "align":	[],
	 "background":	[],
	 "foreground":	[],
	 "decimals":	[]
 }
}

Here value is the cell’s value, and type can be n for number, s for string and e for expression.
As an example, the data presentation for a blank spreadsheet with 3 rows and 2 columns
is shown below.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

146

WEbSHEET

	 bold:	[],
	 italic:	[],
	 align:	[],
	 background:	[],
	 foreground:	[],
	 decimals:	[]
 };

 return public;
})();

values is an array widt the spreadsheets data elements (one element for each data cell). That
is, the array does not contain values for row and column headers. The array has one element
for each row, where each element is an array with data elements of the form

{
 value:
 type:
}

Here value is the cell’s value, and type can be n for number, s for string and e for expression.
As an example, the data presentation for a blank spreadsheet with 3 rows and 2 columns
is shown below.

{
	"values":[
	 [{"value":"","type":"s"},{"value":"","type":"s"}],
	 [{"value":"","type":"s"},{"value":"","type":"s"}],
	 [{"value":"","type":"s"},{"value":"","type":"s"}]
],
 "options":
 {
	 "bold":	[],
	 "italic":	[],
	 "align":	[],
	 "background":	[],
	 "foreground":	[],
	 "decimals":	[]
 }
}

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

147

websHeet

147

The object options is used for formatting, and bold and italic contains objects of the form

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

147

WEbSHEET

147

The object options is used for formatting, and bold and italic contains objects of the form

{
 row:
 col:
}

that defines a cell ind the table. align contains objects of the form:

{
 row:
 col:
 align:

}

where the value of the last attribute is left, center or right. The two arrays background and
foreground contains objects of the form

{
 row:
 col:
 val:
}

that defines a cell ind the table. align contains objects of the form:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

147

WEbSHEET

147

The object options is used for formatting, and bold and italic contains objects of the form

{
 row:
 col:
}

that defines a cell ind the table. align contains objects of the form:

{
 row:
 col:
 align:

}

where the value of the last attribute is left, center or right. The two arrays background and
foreground contains objects of the form

{
 row:
 col:
 val:
}

where the value of the last attribute is left, center or right. The two arrays background and
foreground contains objects of the form

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

147

WEbSHEET

147

The object options is used for formatting, and bold and italic contains objects of the form

{
 row:
 col:
}

that defines a cell ind the table. align contains objects of the form:

{
 row:
 col:
 align:

}

where the value of the last attribute is left, center or right. The two arrays background and
foreground contains objects of the form

{
 row:
 col:
 val:
}

http://s.bookboon.com/elearningforkids

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

148

websHeet

where the last attribute is a color value. Finally, the last array decimals contains objects of
the form:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

148

WEbSHEET

where the last attribute is a color value. Finally, the last array decimals contains objects of
the form:

{
 row:
 col:
 dec:

}

where the last attribute is the number of decimals.

A spreadsheet must be saved somewhere, and a database has been selected for this:

use sys;
drop database if exists websheet;
create database websheet;
use websheet;

create table sheets (
 id int auto_increment primary key,
 name varchar(256) not null,
 created date not null,
	modified	date	not	null,
 rows int not null,
 cols int not null,
 content longtext not null
);

It is a simple database with only one table. The names tells you what the individual columns
are to be used for, but you should especially note the two columns rows and cols, which
contains the number of rows and the number of columns respectively. Finally, note the last
column content that is for the spreadsheet’s content.

Below is an overview of the project’s files, and thus the overall architecture. There are two
packages for Java classes, and there are two xhtml pages, so it is a very simple application.
Most of the code however, is found under the js folder that contains the JavaScript files.

where the last attribute is the number of decimals.

A spreadsheet must be saved somewhere, and a database has been selected for this:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

148

WEbSHEET

where the last attribute is a color value. Finally, the last array decimals contains objects of
the form:

{
 row:
 col:
 dec:

}

where the last attribute is the number of decimals.

A spreadsheet must be saved somewhere, and a database has been selected for this:

use sys;
drop database if exists websheet;
create database websheet;
use websheet;

create table sheets (
 id int auto_increment primary key,
 name varchar(256) not null,
 created date not null,
	modified	date	not	null,
 rows int not null,
 cols int not null,
 content longtext not null
);

It is a simple database with only one table. The names tells you what the individual columns
are to be used for, but you should especially note the two columns rows and cols, which
contains the number of rows and the number of columns respectively. Finally, note the last
column content that is for the spreadsheet’s content.

Below is an overview of the project’s files, and thus the overall architecture. There are two
packages for Java classes, and there are two xhtml pages, so it is a very simple application.
Most of the code however, is found under the js folder that contains the JavaScript files.

It is a simple database with only one table. The names tells you what the individual columns
are to be used for, but you should especially note the two columns rows and cols, which
contains the number of rows and the number of columns respectively. Finally, note the last
column content that is for the spreadsheet’s content.

Below is an overview of the project’s files, and thus the overall architecture. There are two
packages for Java classes, and there are two xhtml pages, so it is a very simple application.
Most of the code however, is found under the js folder that contains the JavaScript files.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

149

websHeet

8.3 PROGRAMMING

I want to start with the server side and here the package websheet.models, which contains 7
classes. The user name and password for the database is as previously stored in web.xml, and
three of the classes are the same as shown in other examples and are used to retrieve the
user information and create a connection to the database. The most important class is the
class Repository, which is a singleton that provides the necessary database operations available,
and since the database is simple, this class is similar simple. The package also contains a
class Tools with some static helper methods. Finally there are two model classes. The one
is called SheetName and is a class that represents 4 columns from the database table (id,
name, created and modified). The important thing is that it does not represent the content
of a spreadsheet as it can fill a part. The class is used when searching for spreadsheets. The
last model class is called SheetMode and is derived from SheetName and expands with the
last three columns. The class is used to represent the worksheet you are working on.

Then there is the package websheet.beans containing 6 classes, and here is the class
MainController, the most important, which is a named bean used by the two xhtml pages.
Two of the classes are DateValidator and DateConverter, which are used in open.xhtml to
validate a date and convert a date (a Calendar object) to a string, respectively, and does
not contain anything new to what is mentioned in the previous book. Then there are three
classes TableHeader, TableRow and TableCell, which are used to construct the HTML table.
The classes are really redundant (at least the task could be solved without), but they are
included for any extensions of the program, where these classes could be expanded with
new properties.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

150

websHeet

150

Then there is the class MainController, which is a relatively comprehensive class. In principle,
it is simple and the most important thing is that it has actions for the first four functions
in the toolbar, which are the only functions that call the server side. The class is used as
controller for both index.xhtml and open.xhtml, and you should consider whether the class
should be divided into two, so each xhtml document had its own controller.

The rest of the code is client code, primarily as JavaScript and style sheets. Regarding the
latter, there are 4 style sheets, the two being part of jQuery and are not modified. The other
two are relatively simple and are used by index.xhtml (styles.css) and open.xhtml (dialogs.css)
respectively. There are 8 JavaScript files, but only the 3 are written for this project. The
four belongs to jQuery, while the fifth is a standard parser for JSON.

The application largely uses jQuery and in addition to the ability to easily select elements
in the DOM tree, jQuery are used for the following:

 - to select cells in the table using the mouse, for example, by dragging the mouse
 - to open a dialog, either as a simple message box or where the user can enter data
 - to a context menu that opens if the user right-clicking on either a row or column header
 - to open a simple color selector where the user can choose a color for either text

or background

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

151

websHeet

It requires that several files relating to jQuery are downloaded and added to the project. It
should be noted that jQuery offers far more than what is used in this example.

For the sake of the current project, 3 JavaScript files have been added:

1. Expressions.js
2. Websheet.js
3. ColorSelector.js

The first contains a single module expression, which includes all the functions necessary for
formulas. In the book Java 3, in the final example, I have shown a class that has methods
that can parse and evaluate a mathematical expression. The module expression is primarily
a converting of this class to JavaScript, but with two changes:

1. expression supports only two mathematical functions, namely the square root
function and a sum function. However, also the power function is supported by
implementing the operator ^.

2. Instead of common variables, an expression works on cell references, which means
that the parser must be changed a bit.

For the sum function, it may sum up a number of values (constants or cell references),
which are indicated as a comma separated list. You can also specify two cell references in
the same row or column and separated by semicolon, and the function summarizes all
values between these references.

The implementation of expressions (formulas) is thus relatively simple as one can directly
apply the algorithms from Java 3. However, the challenges relate to three situations:

1. When inserting rows or columns, expression’s references to cells may change. For
example, if you insert a row, all references in expressions that are larger than the
index for the new row are counted by 1. The same applies to columns.

2. By copying/pasting formulas, the formula’s cell references must be changed in
relation to how far a formula is moved.

3. Formulas can refer to other formulas via cell references, and thus there is the
possibility of circular references. This problem is partially solved by the fact that
after each entry of a formula, the program checks whether the formula results in
a circular reference.

Some of the module’s methods are used to handle these situations.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

152

websHeet

Several of the methods may raise an exception and, if it happens, the exception action is
an alert(). For a finished application, of course, it makes no sense, but I have maintained
them, as they may be useful if others want to work on the project. In fact, it is relatively
difficult to troubleshoot JavaScript code, and one of the difficulties with JavaScript is that
there are very many posibilities for errors, and it is difficult to test the code for errors. In
an operational situation, you could therefore replace the relevant alert’s with a request to
the server and, using ajax, send the appropriate error messages to the server that could save
them in a log file or a database table. This allows you to check on a regular basis whether
the code results in errors, what has caused the error, that can make the maintenance of the
program considerably easier.

Then there is the JavaScript file websheet.js, which contains all the script that will be used
to handle the user interaction. The file is extensive and consists of three modules:

1. datadefs, which is the data presentation of the current spreadsheet
2. sheet, containing all methods to manipulate the spreadsheet and then all functions

used from the toolbar
3. handlers, that contain event handlers to edit the content of cells

The first I mentioned during the design and the last one is relatively simple. In order to edit
the content of a cell, a cell in the table contains two components, one being a div element
with a span element, which generally shows the text. It is the content of this element that is
formatted according to the selected formats. The other element is an input component that
is generally invisible. Holding down the CTRL and SHIFT keys and clicking the mouse
will change the visibility of these two components, and you can edit the content. When
you click again or enter Tab or Enter switches on visibility again and the user interface is
updated. The latter is not quite simple. First, it may mean that formulas elsewhere in the
spreadsheet must be updated if they depend on the cell that has been changed. Secondly,
in case it is a formula that is entered, it must be validated that it not results in a circular
reference. These are things that are handled by functions in the handlers module.

There is also a function initCells() that is not part of the above modules. The task of the
function is to associate the event handlers in the module Handlers to the table’s cells. This
function is used when the window is initialized by the browser.

An important part of the module sheet relates to formatting, in which you must be able to
format cells, ensure that the formatting are saved and used again when a saved spreadsheet
is loaded. In addition, formatting may be modified if you insert/delete rows and columns.
You should be aware that formatting is not copied in connection with copy/paste.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

153

websHeet

153

Another part concerns the toolbar’s buttons to open and save spreadsheets, where requests are
sent to the server. In particular, be aware that a spreadsheet is saved, asynchronously, using ajax.

Finally, there are the buttons to copy/paste, and especially the event handler for paste is
not simple. The functions do not use the machine’s clipboard, but instead an internal array.
The reason is to make it simple, but you should note that there is actually an API so that
you from JavaScript can use the system clipboard.

Then there is the file ColorSelector.js, which makes nothing but defining a simple object for
color selection. Only a few colors can be chosen, but jQuery offers a more advanced color
selection dialog that would be a good option. When I have chosen to write my own, it is
alone to make the program simple.

Back there are the xhtml pages where there are two. open.xhtml is a simple form that is
used to open a spreadsheet. You can search the database by name and date, and the page
shows a list of spreadsheets that exist and matches the search criteria. Then there is index.
xhtml, which is the home page and the actual spreadsheet. The page does not fill much,
but in addition to the spreadsheet’s table, there is the toolbar and dialog boxes that jQuery
implements using hidden div elements. You should also note that the communication with
the server is primarily done by using hidden fields at the end of the page.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

154

websHeet

8.4 CONCLUSION

As mentioned, the purpose of this project is to show a little about what is possible with
JavaScript, and in fact, it is possible to program complex logic that is performed on the
client side alone. JavaScript is in fact a fairly complex programming language, and there
is a lot more to learn than what this book is about. However, it is not more difficult to
learn JavaScript than another programming language, and if you need to use JavaScript to
a large extent, there is nothing more than going systematically, for example, reading a book
exclusively related to JavaScript. However, there is one thing that should be noted that
since JavaScript is not translated by a compiler, and is not type-strong, there is a high risk
that the code contains errors and, worse, it is both difficult and time consuming to find
the mistakes. The conclusion is, therefore, that JavaScript is a fully-fledged programming
language, but it is far from an effective language for developing major programs.

The current project is not a complete spreadsheet, which can be used as an alternative to,
for example, LibriOffice Calc – nor does it make sense to try to develop such an alternative.
However, the project may have applications, and if you think of a web application that
needs a spreadsheet-like page, the project or parts of it may be used. Should the project
be expanded, so it looks like a real spreadsheet, there are some missing and I will mention
some features that could significantly improve the program. In fact, each feature could be
a task or project in itself.

1. Data entry should be improved as you do not always have to click the mouse to
open a cell. It is primarily a question about to treat events related to the keyboard,
such as arrow keys.

2. The program should apply the system clipboard so that you can copy data to other
programs. It is primarily a matter of getting into the corresponding JavaScript API.

3. The expression module should be expanded with more mathematical functions. It’s
actually a relatively simple task, and the algorithms can be found in the book Java 3.

4. However, the biggest lack is performance where the application becomes ineffective
on large spreadsheets. An option to solve the problem could be to show only a part
of a spreadsheet on the client side and then place some navigation buttons in the
toolbar. This improvement is not quite simple.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

155

appendIx a: JQuery

APPENDIX A: JQUERY

In chapter 4 on JavaScript, I mentioned jQuery, which is a large library of JavaScript
functions, and if you work as a web developer, you can not avoid jQuery and, if nothing
else, jQuery provides so many functions that it is worth the effort to investigate what it
is. So, therefore, a brief introduction, but also because I have actually used jQuery in the
final example in the last chapter.

First, you have to grab the product and that is the latest version, as new versions are
constantly being added. You can go to the page

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

155

APPENDIx A: JQuERy

APPENDIX A: JQUERY

In chapter 4 on JavaScript, I mentioned jQuery, which is a large library of JavaScript
functions, and if you work as a web developer, you can not avoid jQuery and, if nothing
else, jQuery provides so many functions that it is worth the effort to investigate what it
is. So, therefore, a brief introduction, but also because I have actually used jQuery in the
final example in the last chapter.

First, you have to grab the product and that is the latest version, as new versions are
constantly being added. You can go to the page

https://jquery.com/download/

from where you can download the product as a JavaScript file, and thus as a plain text file
with the code (right click on the link and select Save link as). In fact, you must download
two files:

1. jquery-3.2.1.js
2. jquery-3.2.1.min.js

where the version number can of course differ. Both files contains the same JavaScript code,
and the difference is, that the latter is compressed, so it is significantly smaller (about one
third). The goal is that while developing, you can use the first one where the code is written
in readable form and with comments, and when the program is finished, you can replace
it with the last one. Here you must remember that JavaScript is text that is sent along
with the HTML document, and you are therefore for the sake of bandwidth interested in
sending as few data as possible.

After downloading the files, nothing else must happen, and you are ready to use jQuery in
your projects (and that is what of it you want to apply). As an example, I have created a
project named JQueryExample1:

from where you can download the product as a JavaScript file, and thus as a plain text file
with the code (right click on the link and select Save link as). In fact, you must download
two files:

1. jquery-3.2.1.js
2. jquery-3.2.1.min.js

where the version number can of course differ. Both files contains the same JavaScript code,
and the difference is, that the latter is compressed, so it is significantly smaller (about one
third). The goal is that while developing, you can use the first one where the code is written
in readable form and with comments, and when the program is finished, you can replace
it with the last one. Here you must remember that JavaScript is text that is sent along
with the HTML document, and you are therefore for the sake of bandwidth interested in
sending as few data as possible.

After downloading the files, nothing else must happen, and you are ready to use jQuery in
your projects (and that is what of it you want to apply). As an example, I have created a
project named JQueryExample1:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

156

appendIx a: JQuery

156

As you can see, under the directory resources, I have created a subdirectory named js and
placed jquery-3.2.1.js there. The content of index.html is as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

156

APPENDIx A: JQuERy

156

As you can see, under the directory resources, I have created a subdirectory named js and
placed jquery-3.2.1.js there. The content of index.html is as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script	src="resources/js/jquery-3.2.1.js"	type="text/javascript"></script>
 <script>
	 $(document).ready(function()	{
	 $("div").click(function()	{
 alert("Hello world!");
 });
 });
 </script>
 </head>
 <body>
 <div>Click to open an alert()</div>
 </body>
</html>

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

157

appendIx a: JQuery

First, note that in the header there is a script element that refers to the jQuery file. In
addition, there is a script element with some JavaScript code that uses jQuery. Here means

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

157

APPENDIx A: JQuERy

First, note that in the header there is a script element that refers to the jQuery file. In
addition, there is a script element with some JavaScript code that uses jQuery. Here means

$(document).ready

that the following JavaScript code is executed – after the DOM tree is constructed, but
before the tree’s elements are rendered by the browser. In this case, it means performing
an anonymous function that has one statement that associates a click event handler with
an alert() to all div elements. Specifically, note the syntax $(), which is a jQuery function,
which refers to a collection of elements in the DOM tree, and you can then perform a
JavaScript function on these items. In this case, the body part has only a single div element
and if you opens the document in the browser, the result is:

What is not very mysterious, but if you click on the text, you get a popup:

The example shows two things. First of all, what is technically necessary to use jQuery, and
second, what is the idea of jQuery, that is, in an easy way to select items in the DOM tree
and do something with them. The first goes quite easily and you simply copy the library
to the project (in fact there is an option since multiple browser vendors make the library
available and you can just link to the current library). As for the other, it all builds on
the $() function, which is just an alias for jQuery(), and the above script block could be
written as follows:

that the following JavaScript code is executed – after the DOM tree is constructed, but
before the tree’s elements are rendered by the browser. In this case, it means performing
an anonymous function that has one statement that associates a click event handler with
an alert() to all div elements. Specifically, note the syntax $(), which is a jQuery function,
which refers to a collection of elements in the DOM tree, and you can then perform a
JavaScript function on these items. In this case, the body part has only a single div element
and if you opens the document in the browser, the result is:

What is not very mysterious, but if you click on the text, you get a popup:

The example shows two things. First of all, what is technically necessary to use jQuery, and
second, what is the idea of jQuery, that is, in an easy way to select items in the DOM tree
and do something with them. The first goes quite easily and you simply copy the library
to the project (in fact there is an option since multiple browser vendors make the library
available and you can just link to the current library). As for the other, it all builds on
the $() function, which is just an alias for jQuery(), and the above script block could be
written as follows:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

158

appendIx a: JQueryJAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

158

APPENDIx A: JQuERy

<script>
 jQuery(document).ready(function() {
 jQuery("div").click(function() {
 alert("Hello World!");
 });
 });
</script>

(the project JQueryExample2). Viewed from the program, it does not matter what you
write, but it is standard to write $(), what can be recommended. The use of jQuery is so
widespread that most developers perceives $() as jQuery code.

A whole different thing is what you can use as an argument for the function $() and which
functions you can specify should work on the elements (click() is an example) and here
there are simply many options, a lot more than can be accommodated in this book so it is
necessary to read the documentation:

http://www.tutorialspoint.com/jquery/jquery_tutorial.pdf

which provides an adequate and easily readable documentation. I would like to justify, with
a few examples of what you can with jQuery.

Generally, the parameter of $() may be any selector corresponding to what is discussed
in chapter 3 on style sheets. Consider, for example, the following HTML document
(JQueryExample3):

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script	src="resources/js/jquery-3.2.1.js"	type="text/javascript"></script>
 <script>
	 $(document).ready(function()	{
	 var	e	=	$("p");
	 for	(var	i	=	0;	i	<	e.length;	++i)	e[i].style.color	=	'darkgreen';
	 var	c	=	$(".first");
	 for	(var	i	=	0;	i	<	c.length;	++i)	c[i].style.color	=	'blue';
	 var	v	=	$("#viking");
	 for	(var	i	=	0;	i	<	v.length;	++i)	v[i].style.color	=	'red';
 });
 </script>

(the project JQueryExample2). Viewed from the program, it does not matter what you
write, but it is standard to write $(), what can be recommended. The use of jQuery is so
widespread that most developers perceives $() as jQuery code.

A whole different thing is what you can use as an argument for the function $() and which
functions you can specify should work on the elements (click() is an example) and here
there are simply many options, a lot more than can be accommodated in this book so it is
necessary to read the documentation:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

158

APPENDIx A: JQuERy

<script>
 jQuery(document).ready(function() {
 jQuery("div").click(function() {
 alert("Hello World!");
 });
 });
</script>

(the project JQueryExample2). Viewed from the program, it does not matter what you
write, but it is standard to write $(), what can be recommended. The use of jQuery is so
widespread that most developers perceives $() as jQuery code.

A whole different thing is what you can use as an argument for the function $() and which
functions you can specify should work on the elements (click() is an example) and here
there are simply many options, a lot more than can be accommodated in this book so it is
necessary to read the documentation:

http://www.tutorialspoint.com/jquery/jquery_tutorial.pdf

which provides an adequate and easily readable documentation. I would like to justify, with
a few examples of what you can with jQuery.

Generally, the parameter of $() may be any selector corresponding to what is discussed
in chapter 3 on style sheets. Consider, for example, the following HTML document
(JQueryExample3):

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script	src="resources/js/jquery-3.2.1.js"	type="text/javascript"></script>
 <script>
	 $(document).ready(function()	{
	 var	e	=	$("p");
	 for	(var	i	=	0;	i	<	e.length;	++i)	e[i].style.color	=	'darkgreen';
	 var	c	=	$(".first");
	 for	(var	i	=	0;	i	<	c.length;	++i)	c[i].style.color	=	'blue';
	 var	v	=	$("#viking");
	 for	(var	i	=	0;	i	<	v.length;	++i)	v[i].style.color	=	'red';
 });
 </script>

which provides an adequate and easily readable documentation. I would like to justify, with
a few examples of what you can with jQuery.

Generally, the parameter of $() may be any selector corresponding to what is discussed
in chapter 3 on style sheets. Consider, for example, the following HTML document
(JQueryExample3):

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

158

APPENDIx A: JQuERy

<script>
 jQuery(document).ready(function() {
 jQuery("div").click(function() {
 alert("Hello World!");
 });
 });
</script>

(the project JQueryExample2). Viewed from the program, it does not matter what you
write, but it is standard to write $(), what can be recommended. The use of jQuery is so
widespread that most developers perceives $() as jQuery code.

A whole different thing is what you can use as an argument for the function $() and which
functions you can specify should work on the elements (click() is an example) and here
there are simply many options, a lot more than can be accommodated in this book so it is
necessary to read the documentation:

http://www.tutorialspoint.com/jquery/jquery_tutorial.pdf

which provides an adequate and easily readable documentation. I would like to justify, with
a few examples of what you can with jQuery.

Generally, the parameter of $() may be any selector corresponding to what is discussed
in chapter 3 on style sheets. Consider, for example, the following HTML document
(JQueryExample3):

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script	src="resources/js/jquery-3.2.1.js"	type="text/javascript"></script>
 <script>
	 $(document).ready(function()	{
	 var	e	=	$("p");
	 for	(var	i	=	0;	i	<	e.length;	++i)	e[i].style.color	=	'darkgreen';
	 var	c	=	$(".first");
	 for	(var	i	=	0;	i	<	c.length;	++i)	c[i].style.color	=	'blue';
	 var	v	=	$("#viking");
	 for	(var	i	=	0;	i	<	v.length;	++i)	v[i].style.color	=	'red';
 });
 </script>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

159

appendIx a: JQuery

159

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

159

APPENDIx A: JQuERy

159

 </head>
 <body>
 <div>
	 <p	class="first">Gorm	den	gamle</p>
	 <p	class="first">Harald	blåtand</p>
	 <p	id="viking"	class="first">Svend	Tveskæg</p>
 <p>Harald den 2.</p>
	 <p>Knud	den	store</p>
 </div>
 </body>
</html>

The body part is simple and consists of 5 paragraph elements in a div element. You should
note that the first three defines a class attribute (although no equivalent css class is defined
in any place), and the third element has an ID. The JavaScript code (the jQuery function
$().ready()) performs a function that starts by selecting all paragraph elements, and the
result is a collection of 5 elements. The next for loop iterates over these elements and turns
the color to green. Next, the same is done where the color is set to blue, but only for the
elements whose class is first. Finally, the color is set to red, but this time only for those
elements that have a specific id (and there is only one). If the document is opened in the
browser, you get the result:

The body part is simple and consists of 5 paragraph elements in a div element. You should
note that the first three defines a class attribute (although no equivalent css class is defined
in any place), and the third element has an ID. The JavaScript code (the jQuery function
$().ready()) performs a function that starts by selecting all paragraph elements, and the
result is a collection of 5 elements. The next for loop iterates over these elements and turns
the color to green. Next, the same is done where the color is set to blue, but only for the
elements whose class is first. Finally, the color is set to red, but this time only for those
elements that have a specific id (and there is only one). If the document is opened in the
browser, you get the result:

http://s.bookboon.com/EOT

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

160

appendIx a: JQuery

In particular, note that the elements in the DOM tree are processed by the JavaScript code
before the document appears in the browser.

The above is easy enough to understand, but it can be written easier using a jQuery function:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

160

APPENDIx A: JQuERy

In particular, note that the elements in the DOM tree are processed by the JavaScript code
before the document appears in the browser.

The above is easy enough to understand, but it can be written easier using a jQuery function:

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script	src="resources/js/jquery-3.2.1.js"	type="text/javascript"></script>
 <script>
	 $(document).ready(function()	{
	 $("*").css("font-size",	"24pt");
	 $("p").css("color",	"darkgreen");
	 $(".first").css("color",	"blue");
	 $("#viking").css("color",	"red");
	 $(".last,	#viking").css("font-size",	"36pt");
 });
 </script>
 </head>
 <body>
 <div>
	 <p	class="first">Gorm	den	gamle</p>
	 <p	class="first">Harald	blåtand</p>
	 <p	id="viking"	class="first">Svend	Tveskæg</p>
 <p class="last">Harald den 2.</p>
	 <p	class="last">Knud	den	store</p>
 </div>
 </body>
</html>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

161

appendIx a: JQuery

Note that the last two paragraph elements this time has a class last. If you consider the
first select in the JavaScript function, it selects all elements and sets the font size to 24
points, but it is done using the function css(), which is a jQuery function that works on all
elements that are selected. The same applies to the next three statements, which also use the
function css() instead of writing the necessary loops. This is where you meet the strength
of jQuery, and there are simply a large number of functions that you can read all about
in the documentation mentioned above. In particular, note the last statement that sets the
font to 36 points for all elements that either have id viking or class last.

As another example (JQueryExample5), a document similar to the above is shown below,
but where the example shows the use of multiple functions:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

161

APPENDIx A: JQuERy

Note that the last two paragraph elements this time has a class last. If you consider the
first select in the JavaScript function, it selects all elements and sets the font size to 24
points, but it is done using the function css(), which is a jQuery function that works on all
elements that are selected. The same applies to the next three statements, which also use the
function css() instead of writing the necessary loops. This is where you meet the strength
of jQuery, and there are simply a large number of functions that you can read all about
in the documentation mentioned above. In particular, note the last statement that sets the
font to 36 points for all elements that either have id viking or class last.

As another example (JQueryExample5), a document similar to the above is shown below,
but where the example shows the use of multiple functions:

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script	src="resources/js/jquery-3.2.1.js"	type="text/javascript"></script>
 <style>
 .red-class {
 color: red;
 }
 .blue-class {
 color: blue;
 }
 .green-class {
 color: darkgreen;
 }
 </style>
 <script>
	 $(document).ready(function()	{
	 var	text	=	$("p").attr("title");
	 $("h1").text(text	+	"s");
	 $("#viking").attr("title",	"Last	Danish	viking	King")
	 $(".first").addClass("red-class");
	 $(".last").addClass("blue-class");
	 $("#viking").click(function	()	{
	 $(this).toggleClass("green-class");	
 });
	 alert($("h1").html());
	 $("h2").html("but	there	are	more	Kings	and	Queens")
 });
 </script>
 </head>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

162

appendIx a: JQuery

162

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

162

APPENDIx A: JQuERy

162

 <body>
 <div>
 <h1></h1>
	 <p	class="first"	title="The	first	Danish	king">Gorm	den	gamle</p>
	 <p	class="first">Harald	blåtand</p>
	 <p	id="viking"	class="first">Svend	Tveskæg</p>
 <p class="last">Harald den 2.</p>
	 <p	class="last">Knud	den	store</p>
 <h2></h2>
 </div>
 </body>
</html>

Note first that the body part is essentially the same as in the previous example but it is
expanded with a h1 element and a h2 element, both of which are empty. Also note that a
title attribute has been added to the first paragraph element. Then note that three simple
styles are defined with each their class name.

Note first that the body part is essentially the same as in the previous example but it is
expanded with a h1 element and a h2 element, both of which are empty. Also note that a
title attribute has been added to the first paragraph element. Then note that three simple
styles are defined with each their class name.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

163

appendIx a: JQuery

Then the jQuery block (the function). First, the value of the title attribute is saved in a
variable. This is done by selecting all paragraphs and then using the attr() function. It returns
the value of title for the first element, that has a title attribute, and in this case there is only
one element (which is the first). The value of the variable is then used to associate a text
with the h1 element, which occurs with the function text(). The third statement defines a
title attribute of the element with id viking, which again occurs with the attr() function in
an override, which specifies the attribute as well as the value. Then is attached a class red-
class to all elements whose class is first. Please note that an element may have more values
for the class – an element can be of more classes. The next statment performs the same for
all elements whose class is last, but this time the class blue-class is added.

As a next step is added an event handler for click events to the element with id viking. The
result is that if you click on the element, the color will change from red to green and click
again, the color will change back to red. The next last statement shows an alert() with the
value of innerHtml for the element h1 while the last initializes the h2 element. If you open
the document, you first get the following popup and then the following window:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

164

appendIx a: JQuery

Finally, I will show an example that modifies the DOM tree:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

164

APPENDIx A: JQuERy

Finally, I will show an example that modifies the DOM tree:

<!DOCTYPE html>
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script	src="resources/js/jquery-3.2.1.js"	type="text/javascript"></script>
 <script>
 jQuery(document).ready(function() {
	 $("div").append("<p	id='norwegian'>Magnus</p>");
	 $("#norwegian").before("<p>Hardeknud</p>");
	 var	text	=	$("#norwegian").text();
	 $("#norwegian").replaceWith("<h2>"	+	text	+	"	den	gode</h2>");
	 $("span").css("color",	"blue");
 });
 </script>
 </head>
 <body>
 <div>
 <h1></h1>
	 <p	class="first"	title="The	first	Danish	king">Gorm	den	gamle</p>
	 <p	class="first">Harald	blåtand</p>
	 <p	id="viking"	class="first">Svend	Tveskæg</p>
 <p class="last">Harald den 2.</p>
	 <p	class="last">Knud	den	store</p>
 </div>
 </body>
</html>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

165

appendIx a: JQuery

165

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

166

appendIx a: JQuery

As for the body part, there is nothing new compared to the previous element, only that
the h2 element is removed. The jQuery function starts by adding a p element to the div
element. This happens with the function append(), which adds the element as the last child
to the div element. The next statement uses the function before() to add another p element,
but this time an element that is also a child to the div element, but in front of the element
just inserted (the element with the value Magnus). The third statement stores the value of
the element with id norwegian in a variable, and the next statement replaces the element
with id norwegian with another element (an h2 element containing a span element). As the
last changes the color of the element is changed to blue.

The above is only a hint of what is possible with jQuery and you are encouraged to investigate
what else is. In particular, I would like to mention that the library also contains functions
that use ajax. This means that you using JavaScript can communicate asynchronously with
the server, which gives a whole new dimension regarding the use of JavaScript.

In addition to what is mentioned above, there are also more extensions of jQuery, and in
particular I want to mention jQuery UI, which can be downloaded from:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

166

APPENDIx A: JQuERy

As for the body part, there is nothing new compared to the previous element, only that
the h2 element is removed. The jQuery function starts by adding a p element to the div
element. This happens with the function append(), which adds the element as the last child
to the div element. The next statement uses the function before() to add another p element,
but this time an element that is also a child to the div element, but in front of the element
just inserted (the element with the value Magnus). The third statement stores the value of
the element with id norwegian in a variable, and the next statement replaces the element
with id norwegian with another element (an h2 element containing a span element). As the
last changes the color of the element is changed to blue.

The above is only a hint of what is possible with jQuery and you are encouraged to investigate
what else is. In particular, I would like to mention that the library also contains functions
that use ajax. This means that you using JavaScript can communicate asynchronously with
the server, which gives a whole new dimension regarding the use of JavaScript.

In addition to what is mentioned above, there are also more extensions of jQuery, and in
particular I want to mention jQuery UI, which can be downloaded from:

https://jqueryui.com/

It is an extension that defines a number of elements for the user interface such as dialogs
and the ability to select elements using the mouse – and more. When you download the
product, you will get a JavaScript file (jquery-ui.js) and an associated style sheet (jquery-ui.css),
and a project that illustrates the application.

It is an extension that defines a number of elements for the user interface such as dialogs
and the ability to select elements using the mouse – and more. When you download the
product, you will get a JavaScript file (jquery-ui.js) and an associated style sheet (jquery-ui.css),
and a project that illustrates the application.

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

167

appendIx b: Json

APPENDIX B: JSON

JSON is a standard for data exchange primarily between client and server in web applications,
but in principle, JSON can be used in many other contexts, and in relation to data exchange,
JSON can to some extent be seen as an alternative to XML. JSON is characterized by being
easy to write and read (there are very few and simple rules), being text based and being
platform independent.

A JSON document has in principle the same syntax as an object in JavaScript, and an
example could be:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

167

APPENDIx b: JSON

APPENDIX B: JSON

JSON is a standard for data exchange primarily between client and server in web applications,
but in principle, JSON can be used in many other contexts, and in relation to data exchange,
JSON can to some extent be seen as an alternative to XML. JSON is characterized by being
easy to write and read (there are very few and simple rules), being text based and being
platform independent.

A JSON document has in principle the same syntax as an object in JavaScript, and an
example could be:

danish = {
	"kings":	[
 {
 "name":"Gorn den Gamle",
	 "to":	"958"
 },
 {
 "name":"Harald Blåtand",
	 "from":"958",
	 "to":	"987"
 },
 {
 "name":"Svend Tverskæg",
	 "from":"987",
	 "to":	"1014"
 }
]
};

The basic syntax is that data are represented as key/value pair separated by colon. Several
data elements (key/value pairs) can be gathered as objects in a collection where the elements
are separated by commas. Finally, the value of a data element may be an array. In general,
JSON supports the following data types:

1. Number as in JavaScript
2. String that is double-quoted Unicode with backslash as escaping
3. Boolean that is true or false
4. Array which is an ordered sequence of values separated by comma
5. Object that is an unordered collection of key:value pairs

The basic syntax is that data are represented as key/value pair separated by colon. Several
data elements (key/value pairs) can be gathered as objects in a collection where the elements
are separated by commas. Finally, the value of a data element may be an array. In general,
JSON supports the following data types:

1. Number as in JavaScript
2. String that is double-quoted Unicode with backslash as escaping
3. Boolean that is true or false
4. Array which is an ordered sequence of values separated by comma
5. Object that is an unordered collection of key:value pairs

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

168

appendIx b: Json

168

The above can therefore also be written as follows, where there are no quotation marks
around the years:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

168

APPENDIx b: JSON

168

The above can therefore also be written as follows, where there are no quotation marks
around the years:

danish = {
	"kings":	[
 {
 "name": "Gorn den Gamle",
	 "to":	958
 },
 {
 "name": "Harald Blåtand",
	 "from":	958,
	 "to":	987
 },
 {
 "name": "Svend Tverskæg",
	 "from":	987,
	 "to":	1014
 }
]
};

http://s.bookboon.com/GTca

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

169

appendIx b: Json

With regard to escaping of characters in strings, the same symbols are used as in Java and
JavaScript. Put a little differently, a JSON data structure has the same syntax as a JavaScript
object consisting solely of properties.

As an example, is below shown some JavaScript that prints the above JSON data structure:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

169

APPENDIx b: JSON

With regard to escaping of characters in strings, the same symbols are used as in Java and
JavaScript. Put a little differently, a JSON data structure has the same syntax as a JavaScript
object consisting solely of properties.

As an example, is below shown some JavaScript that prints the above JSON data structure:

<script>
 for (var i = 0; i < danish.kings.length; ++i)
 {
	 var	king	=	danish.kings[i];
 document.write(king.name);
 document.write("
");
	 if	(""	+	king.from	!==	'undefined'	&&	""	+	king.to	!==	'undefined')
 document.write("From: " + king.from + " to: " + king.to);
	 else	if	(""	+	king.from	!==	'undefined')	document.write("From:	"	+	king.from);
	 else	if	(""	+	king.to	!==	'undefined')	document.write("To:	"	+	king.to);
 document.write("
");
 document.write("
");
 }
</script>

As another example, is shown a JSON structure that defines a 2-dimensional array:

numbers = {
	"primes"	:	[
	 [2,	3,	5,	7],
	 [11,	13,	17,	19],
	 [23,	29],
	 [31,	37],
	 [41,	43,	47]
]
};

and the following JavaScript block prints the numbers:

<script>
 for (var i = 0; i < numbers.primes.length; ++i)
 {
	 for	(var	j	=	0;	j	<	numbers.primes[i].length;	++j)
	 document.write(numbers.primes[i][j]	+	"	");
 }
 document.write("
");
</script>

As another example, is shown a JSON structure that defines a 2-dimensional array:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

169

APPENDIx b: JSON

With regard to escaping of characters in strings, the same symbols are used as in Java and
JavaScript. Put a little differently, a JSON data structure has the same syntax as a JavaScript
object consisting solely of properties.

As an example, is below shown some JavaScript that prints the above JSON data structure:

<script>
 for (var i = 0; i < danish.kings.length; ++i)
 {
	 var	king	=	danish.kings[i];
 document.write(king.name);
 document.write("
");
	 if	(""	+	king.from	!==	'undefined'	&&	""	+	king.to	!==	'undefined')
 document.write("From: " + king.from + " to: " + king.to);
	 else	if	(""	+	king.from	!==	'undefined')	document.write("From:	"	+	king.from);
	 else	if	(""	+	king.to	!==	'undefined')	document.write("To:	"	+	king.to);
 document.write("
");
 document.write("
");
 }
</script>

As another example, is shown a JSON structure that defines a 2-dimensional array:

numbers = {
	"primes"	:	[
	 [2,	3,	5,	7],
	 [11,	13,	17,	19],
	 [23,	29],
	 [31,	37],
	 [41,	43,	47]
]
};

and the following JavaScript block prints the numbers:

<script>
 for (var i = 0; i < numbers.primes.length; ++i)
 {
	 for	(var	j	=	0;	j	<	numbers.primes[i].length;	++j)
	 document.write(numbers.primes[i][j]	+	"	");
 }
 document.write("
");
</script>

and the following JavaScript block prints the numbers:

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

169

APPENDIx b: JSON

With regard to escaping of characters in strings, the same symbols are used as in Java and
JavaScript. Put a little differently, a JSON data structure has the same syntax as a JavaScript
object consisting solely of properties.

As an example, is below shown some JavaScript that prints the above JSON data structure:

<script>
 for (var i = 0; i < danish.kings.length; ++i)
 {
	 var	king	=	danish.kings[i];
 document.write(king.name);
 document.write("
");
	 if	(""	+	king.from	!==	'undefined'	&&	""	+	king.to	!==	'undefined')
 document.write("From: " + king.from + " to: " + king.to);
	 else	if	(""	+	king.from	!==	'undefined')	document.write("From:	"	+	king.from);
	 else	if	(""	+	king.to	!==	'undefined')	document.write("To:	"	+	king.to);
 document.write("
");
 document.write("
");
 }
</script>

As another example, is shown a JSON structure that defines a 2-dimensional array:

numbers = {
	"primes"	:	[
	 [2,	3,	5,	7],
	 [11,	13,	17,	19],
	 [23,	29],
	 [31,	37],
	 [41,	43,	47]
]
};

and the following JavaScript block prints the numbers:

<script>
 for (var i = 0; i < numbers.primes.length; ++i)
 {
	 for	(var	j	=	0;	j	<	numbers.primes[i].length;	++j)
	 document.write(numbers.primes[i][j]	+	"	");
 }
 document.write("
");
</script>

JAVA 12: WWW AND DEVELOPMENT OF THE
CLIENT PART: SOFTWARE DEVELOPMENT

170

appendIx b: Json

170

As long as you only have to manipulate JSON data on the client page, there is actually
not much else to tell than what appears from the above, but if data has to be sent to or
received from a server, they must be parsed to be used. For example, if you want to send
JSON data from the client to a Java bean on the server side, and afterwards it should be
able to use that data, they must be parsed or decoded to a Java object, using standard
parsers that can be downloaded and used by the server code. Similarly, on the server side,
you can encode beans as JSON data before they are sent to the client, and on the client
side, correspondingly, you must download JavaScript parsers that can decode the data sent
from the server. I do not want to review in this place, but I can mention that it is quite
simple and requires only some browsing on the Internet.

 .

http://s.bookboon.com/AlcatelLucent

	Foreword
	1	Introduction
	2	HTML
	2.1	HTML forms
	2.2	Scalable Vector Graphics
	Problem 1

	3	Cascading style sheets
	3.1	More selectors
	3.2	Styles
	Problem 2

	4	JavaScript
	4.1	Nature of Languages
	4.2	Basic syntax
	Exercise 1
	Exercise 2
	4.3	Global objects and functions
	Exercise 3
	4.4	DOM
	Problem 3

	5	JavaServer Faces and Ajax
	5.1	Valdation of fields
	Exercise 4
	5.2	Submit fields without reload
	5.3	Converters
	5.4	JSF Listeners

	6	Component libraries
	6.1	How to poll the server
	6.2	A p:autocomplete element

	8	WebSheet
	8.1	The program’s functions
	8.2	Design
	8.3	Programming
	8.4	Conclusion

	Appendix A: jQuery
	Appendix B: JSON

