

2

POUL KLAUSEN

JAVA 13: DISTRIBUTED
PROGRAMMING
AND JAVA EE
SOFTWARE DEVELOPMENT

3

Java 13: Distributed programming and Java EE: Software Development
1st edition
© 2018 Poul Klausen & bookboon.com
ISBN 978-87-403-2098-5
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Contents

44

CONTENTS

 Foreword 6

1 Introduction 8

2 Java persistence API 10

2.1 An improved address program 19

 Exercise 1 30

2.2 Related tables 33

 Problem 1 49

3 Enterprise Java Beans 53

3.1 A stateful session bean 65

3.2 A remote Singleton session bean 71

 Exercise 2 79

3.3 EJB and JPA 82

 Exercise 3 87

3.4 Transactions 87

3.5 Interception 88

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Contents

5

3.6 A timer service 90

3.7 CRUD with one table 96

3.8 CRUD with more tables 103

 Problem 2 115

4 CDI 116

4.1 Qualifiers 121

4.2 Contexts 125

5 Web services 133

 Exercise 4 139

 Exercise 5 141

5.1 An EJB as a web service 142

 Exercise 6 147

6 REST Web services 148

6.1 ChangeAddress again 160

 Exercise 7 169

7 Security 170

7.1 The demo application 171

7.2 Container managed authentication and authorization 174

7.3 Form authentication 182

7.4 Client certificate 187

7.5 Programmer defined authentication 192

8 A final example 202

8.1 Analysis 202

8.2 Design 204

8.3 Programming 216

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Foreword

6

FOREWORD

This book is the thirteenth in a series of books on software development. The programming
language is Java, and the language and its syntax and semantics fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. This book is a continuation of the subjects in Java 11, but with focus on the
development of enterprise applications. They are programs that performs their work using
components or services hosted on different computers and located on different places,
which communicate and coordinate their work over a network. Primary topics are Java EE
technologies as JPA, EJB and Web Services. The book requires knowledge of programming
of web applications similar to what has been dealt with in the books Java 11 and Java 12.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Foreword

7

The programming language is, as mentioned Java, and besides the books use the following
products:

1. NetBeans as IDE for application development
2. MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
3. GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT IntroduCtIon

8

1 INTRODUCTION

In the previous two books, I have been working on developing web applications, and this
book is a natural continuation, but focusing on the development of distributed programs.
They are programs that perform their work using components or services hosted on different
computers, which communicate and coordinate their work over a network. The whole idea
is that these components largely have their own lives and live independently of each other
and generally without knowing the clients who uses the services they provide. In fact, it is
not easy to precisely define what we understand with a distributed program, but typically
we will understand a program that is characterized by

1. that there are several independent computing units (computers), each of which has
their own local memory

2. the computing units communicate by sending messages to each other over a network

The goal of a distributed program (or system) may be to solve a particular task, and users
will then perceive the family of computing units as a single device (or system), but instead,
they may be a service-oriented system that offers a range of services which users can use and
perceive as shared resources. Distributed programs will also be characterized by parallelity,
where multiple activities are performed simultaneously on multiple computers and locations.

You can also sometimes see distributed programming described as a further development of
object-oriented programming. An object-oriented program consists of objects with each of
their internal data and logic hidden from the outside world and only known through the
services that the object makes available in the form of public methods. These objects then
work together to solve the task to be solved. Similarly, you can see a distributed program
as a program that solves the task by providing a number of services that live independently
of each other on computers around the world where applications can use them if they
otherwise will be allowed.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT IntroduCtIon

9

In addition to showing how to develop distributed programs in practice (or perhaps more
in relation to this), the goal is also to describe more specific technologies as in headings are

 - Java Persistence API
 - Java Enterprise Beans
 - Contexts and Dependency Injection
 - Java Web Services
 - RESTFul web services
 - Java EE security

As it appears, the book describes a number of Java APIs, and much of the substance is
directly related to NetBeans and GlassFish.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

10

2 JAVA PERSISTENCE API

In the previous books (from Java 6 onwards) and including Java 11 on web applications, I
have considered several examples that uses databases. It has always included programming
an object oriented encapsulation of the database in the form of model classes for each of
the database tables and one or more classes that encapsulates the SQL statements that will
manipulate the content of the relational database. This has meant that for each example,
many lines have been required to write the Java code, and although it may be affordable,
as it is in principle the same thing that should happen every time, it can be done easier
(and better) , as Java EE offers an API called Java Persistence API, which has the exact task
of offering an object-oriented interface to a relational database. The aim of this chapter
is to give an introduction to this API, and the content largely characterizes “how to do”.

I will start with a copy of the project ChangeAddress3 from the book Java 11, where I have
called the copy ChangeAddress1. If you open the application in the browser, you get the
following window, where you can to enter an address, and if you click on the bottom link,
you get another window that shows an overview of the addresses that were entered.

When entering addresses, they are stored in a list of Person objects. However, data is not
stored persistently. As I have shown in previous examples, it is relatively simple to create

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

11

a database with a table, and then save data in this table. In this example, I will show you
how to do it using JPA.

In this example, I want to use JavaDB as database product. Primarily to show this database,
since it is useful and easy to use in many contexts where you need a simple database. It is
a standard SQL database server, supported by the Glassfish server, which does not require
any special installation, and the product is also supported by NetBeans.

The method is basically defining an entity class for each database table, and I would like
to start by associating a class to the model package. It must be an Entity Class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

12

and it should be called Address:

You should note that the correct package name has been selected (can be entered if it is
not in the list) and that the Create Persistence Unit has been ticked. A persistence unit is an
XML configuration file called persistence.xml, created by NetBeans. When you click Next in
the window above, you get a window to initialize this XML file. You can change the name
if you wish, and note that Use Java Transaction APIs have been ticked. By default, Create
has been selected, which means that the database must be created if it is not already.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

13

However, the most important is the Data Source field, which is a reference to the current
database. Here you can choose an existing data source, or you can create a new one:

If you click on New Data Source, you get a window to create a data source:

where I have entered the name addresses. A connection to the database must also be defined.
Here you can either choose an existing one or create a new one. In this case, you must
create a new one, and choose a driver where I have selected Java DB (Network):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

1414

When clicking Next, enter information about the database:

The database server – the Glassfish server – runs on localhost and uses 1527 as port number.
I have chosen that the database should be called addresses. Java DB has a default user called

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

15

APP, and I have entered a password (1234). Then I click Next twice and finally Finish, after
which the data source has been created:

When I click OK, the Entity class is created:

and then I click Finish, NetBeans has created the following class (where I have removed
comments and modified equals() a bit):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

15

APP, and I have entered a password (1234). Then I click Next twice and finally Finish, after
which the data source has been created:

When I click OK, the Entity class is created:

and then I click Finish, NetBeans has created the following class (where I have removed
comments and modified equals() a bit):

package changeaddress.models;

import java.io.Serializable;
import javax.persistence.*;

@Entity
public class Address implements Serializable
{
	private	static	final	long	serialVersionUID	=	1L;
	@Id
	@GeneratedValue(strategy	=	GenerationType.AUTO)
	private	Long	id;

	public	Long	getId()	
 {
 return id;
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

16

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

16

	public	void	setId(Long	id)	
 {
	 this.id	=	id;
 }

	@Override
	public	int	hashCode()	
 {
	 int	hash	=	0;
	 hash	+=	(id	!=	null	?	id.hashCode()	:	0);
 return hash;
 }

	@Override
	public	boolean	equals(Object	object)	
 {
	 if	(!(object	instanceof	Address))	return	false;
	 return	id.equals(((Address)object).id);
 }

	@Override
	public	String	toString()	
 {
	 return	"changeaddress.models.Address[id="	+	id	+	"]";
 }
}

The result is a class with a single property ID of the type Long. You should note that this
property is decorated with two annotations, first indicating that it is a primary key, while
the other tells that the value should be assigned by the database server as an auto number.
Finally, you should note that the class is also decorated with an annotation that tells that
it is an entity class. The class must then be expanded with the following properties:

private	String	firstname;
private String lastname;
private String address;
private String code;
private String city;
private String email;
private String date;
private String title;

with associated get and set methods. Then I have deleted the model class Person, and in
IndexController, all references to Person must be changed to Address, and the code in the
add() method should be deleted. After that, the program can be opened in the browser again.

The result is a class with a single property ID of the type Long. You should note that this
property is decorated with two annotations, first indicating that it is a primary key, while
the other tells that the value should be assigned by the database server as an auto number.
Finally, you should note that the class is also decorated with an annotation that tells that
it is an entity class. The class must then be expanded with the following properties:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

16

	public	void	setId(Long	id)	
 {
	 this.id	=	id;
 }

	@Override
	public	int	hashCode()	
 {
	 int	hash	=	0;
	 hash	+=	(id	!=	null	?	id.hashCode()	:	0);
 return hash;
 }

	@Override
	public	boolean	equals(Object	object)	
 {
	 if	(!(object	instanceof	Address))	return	false;
	 return	id.equals(((Address)object).id);
 }

	@Override
	public	String	toString()	
 {
	 return	"changeaddress.models.Address[id="	+	id	+	"]";
 }
}

The result is a class with a single property ID of the type Long. You should note that this
property is decorated with two annotations, first indicating that it is a primary key, while
the other tells that the value should be assigned by the database server as an auto number.
Finally, you should note that the class is also decorated with an annotation that tells that
it is an entity class. The class must then be expanded with the following properties:

private	String	firstname;
private String lastname;
private String address;
private String code;
private String city;
private String email;
private String date;
private String title;

with associated get and set methods. Then I have deleted the model class Person, and in
IndexController, all references to Person must be changed to Address, and the code in the
add() method should be deleted. After that, the program can be opened in the browser again.

with associated get and set methods. Then I have deleted the model class Person, and in
IndexController, all references to Person must be changed to Address, and the code in the
add() method should be deleted. After that, the program can be opened in the browser again.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

1717

In IndexController, you must add some additional statements:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

1717

In IndexController, you must add some additional statements:

package changeaddress.beans;

import java.util.*;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import javax.persistence.*;

import javax.transaction.*;

import javax.annotation.*;

import javax.persistence.criteria.CriteriaQuery;

import changeaddress.models.*;

@Named(value	=	"indexController")
@SessionScoped
public	class	IndexController	implements	Serializable	
{
 @PersistenceUnit

 EntityManagerFactory emf;

 @PersistenceContext

 EntityManager em;

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

18

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

18

 @Resource

 UserTransaction utx;

	private	Address	person	=	new	Address();
	private	List<Address>	persons	=	new	ArrayList();

 …

	public	List<Address>	getPersons()
 {
 try

 {

 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();

 cq.select(cq.from(Address.class));

 Query q = em.createQuery(cq);

 return persons = q.getResultList();

 }

 catch (Exception ex)

 {

 }

 return persons;

 }

	public	void	add()
 {
 try

 {

 utx.begin();

 em.persist(person);

 utx.commit();

 person = new Address();

 }

 catch (Exception ex)

 {

 try

 {

 utx.rollback();

 }

 catch (Exception e)

 {

 }

 }

 }
}

At the start of the class, three objects are defined each decorated with an annotation. The
exact meaning of this notation is explained in chapter 4, but as example, the variable em
At the start of the class, three objects are defined each decorated with an annotation. The
exact meaning of this notation is explained in chapter 4, but as example, the variable em

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

19

has the type EntityManager and the preceding annotation means that, on the basis of the
Persistence Unit for the project, JPA instantiates an object to the type EntityManager that is
a JPA type, which represents a database table and offers services that can perform database
operations. The last variable utx defines a transaction for a database operation. These objects
are used in the methods getPersons() and add(). For example, if you look at the last one, it
starts a transaction and then the method persist() writes the object person to the database.
Before the application can be used, the database must be created. It happens under Services
by right-click Java DB:

and here you choose Create Database. With these changes, the program works the same as
in the book Java 11, but now the addresses are stored in a database table.

2.1 AN IMPROVED ADDRESS PROGRAM

In this section, I want to show another version of the above program that has been changed
in two areas:

1. The database is this time an existing MySQL database.
2. The database operations have been moved to a database controller.

Before I get the task done, I have to create the database:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

19

has the type EntityManager and the preceding annotation means that, on the basis of the
Persistence Unit for the project, JPA instantiates an object to the type EntityManager that is
a JPA type, which represents a database table and offers services that can perform database
operations. The last variable utx defines a transaction for a database operation. These objects
are used in the methods getPersons() and add(). For example, if you look at the last one, it
starts a transaction and then the method persist() writes the object person to the database.
Before the application can be used, the database must be created. It happens under Services
by right-click Java DB:

and here you choose Create Database. With these changes, the program works the same as
in the book Java 11, but now the addresses are stored in a database table.

2.1 AN IMPROVED ADDRESS PROGRAM

In this section, I want to show another version of the above program that has been changed
in two areas:

1. The database is this time an existing MySQL database.
2. The database operations have been moved to a database controller.

Before I get the task done, I have to create the database:

use mysql;

create database addresses;

use addresses;

create	table	address	(
 id int not null auto_increment,
	firstname	varchar(50),
	lastname	varchar(30),
	address	varchar(50),

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

2020

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

2020

	code	varchar(4),
	city	varchar(30),
	mail	varchar(50),
	date	varchar(10),
	title	varchar(50),
	primary	key	(id)
);

and the result is a database with the same content as in the previous example.

The starting point is a copy of the above program, called ChangeAddress2. First, I have
deleted the following files:

1. The model class Address
2. The configuration file glassfish-resources.xml
3. The configuration file persistence.xml

Then I have created the model class again (and with the same name), but this time as an
Entity Class from Database (see below). When I click Next, I get the window below, where I
have selected a Data Source. This happens in the same way as in the previous example, but

and the result is a database with the same content as in the previous example.

The starting point is a copy of the above program, called ChangeAddress2. First, I have
deleted the following files:

1. The model class Address
2. The configuration file glassfish-resources.xml
3. The configuration file persistence.xml

Then I have created the model class again (and with the same name), but this time as an
Entity Class from Database (see below). When I click Next, I get the window below, where I
have selected a Data Source. This happens in the same way as in the previous example, but

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

21

this time, for database connection, a MySQL driver must be selected to specify the database
(addresses), database user and password.

Once done, the data source’s (as I have called addresses) tables are shown under Available
Tables, and it should then be added to Selected Tables. Then click Next twice and accept all
settings and finally click Finish. Then, the class Address is created again.

There is a small problem, however, because the class’s Address property for email address is
called mail instead of email, and therefore a few names must be changed in IndexController.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

22

Then the program can run again and the only difference is that the application now uses
the MySQL database.

You should examine the class Address, where many annotations have been added (all
properties are decorated), but you can easily understand the meaning. You must note that
all annotations are determined by NetBeans by retrieving information from the database.
Also try to examine the glassfish resource resources.xml configuration file.

I will make a single change. With an EntityManager object and a UserTransaction object, you
can perform database operations without the need to write very much and without knowing
SQL. Since it’s the same thing that’s going to happen every time, you can encapsulate these
operations into a class that can be used no matter what database table it is. This happens
by adding a database controller (here to changeaddress.models), which is a class of the type
JPA Controller Classes from Entity:

When you click Next, you must select the entity class for which the object should be
controller for:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

2323

In this case, there is only one option, and when added to Selected Entity Classes, you can
create the controller class. The class is called AddressJpaController and it encapsulates what
is necessary to maintain the database table as well as methods so that you can read the row
with a particular primary key as well as a few methods to retrieve multiple rows. The code
is shown below:

http://s.bookboon.com/elearningforkids

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

24

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

24

package changeaddress.models;

import changeaddress.models.exceptions.*;
import java.io.Serializable;
import	java.util.List;
import javax.persistence.*;
import javax.persistence.criteria.*;
import	javax.transaction.UserTransaction;
public class AddressJpaController implements Serializable
{
	private	UserTransaction	utx	=	null;
	private	EntityManagerFactory	emf	=	null;

	public	AddressJpaController(UserTransaction	utx,	EntityManagerFactory	emf)	
 {
	 this.utx	=	utx;
	 this.emf	=	emf;
 }

	public	EntityManager	getEntityManager()	
 {
	 return	emf.createEntityManager();
 }

	public	void	create(Address	address)	throws	RollbackFailureException,	Exception
 {
	 EntityManager	em	=	null;
 try
 {
	 utx.begin();
	 em	=	getEntityManager();
	 em.persist(address);
	 utx.commit();
 }
	 catch	(Exception	ex)	
 {
 try
 {
	 utx.rollback();
 }
	 catch	(Exception	re)	
 {
	 throw	new	RollbackFailureException("	…	",	re);
 }
	 throw	ex;
 }
	 finally	
 {

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

25

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

25

	 if	(em	!=	null)	
 {
	 em.close();
 }
 }
 }

	public	void	edit(Address	address)	throws	NonexistentEntityException,
	 RollbackFailureException,	Exception	
 {
	 EntityManager	em	=	null;
 try
 {
	 utx.begin();
	 em	=	getEntityManager();
	 address	=	em.merge(address);
	 utx.commit();
 }
	 catch	(Exception	ex)	
 {
 try
 {
	 utx.rollback();
 }
	 catch	(Exception	re)	
 {
	 throw	new	RollbackFailureException("	…	",	re);
 }
	 String	msg	=	ex.getLocalizedMessage();
	 if	(msg	==	null	||	msg.length()	==	0)	
 {
	 Integer	id	=	address.getId();
	 if	(findAddress(id)	==	null)	
 {
	 throw	new	NonexistentEntityException("	…	");
 }
 }
	 throw	ex;
 }
	 finally	
 {
	 if	(em	!=	null)	
 {
	 em.close();
 }
 }
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

2626

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

2626

	public	void	destroy(Integer	id)	throws	NonexistentEntityException,
	 RollbackFailureException,	Exception	
 {
	 EntityManager	em	=	null;
 try
 {
	 utx.begin();
	 em	=	getEntityManager();
 Address address;
 try
 {
	 address	=	em.getReference(Address.class,	id);
	 address.getId();
 }
	 catch	(EntityNotFoundException	enfe)	
 {
	 throw	new	NonexistentEntityException("	…	",	enfe);
 }
	 em.remove(address);
	 utx.commit();
 }
	 catch	(Exception	ex)	
 {
 try

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

27

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

27

 {
	 utx.rollback();
 }
	 catch	(Exception	re)	
 {
	 throw	new	RollbackFailureException("	…	",	re);
 }
	 throw	ex;
 }
	 finally	
 {
	 if	(em	!=	null)	
 {
	 em.close();
 }
 }
 }

	public	List<Address>	findAddressEntities()	
 {
	 return	findAddressEntities(true,	-1,	-1);
 }

	public	List<Address>	findAddressEntities(int	maxResults,	int	firstResult)	
 {
	 return	findAddressEntities(false,	maxResults,	firstResult);
 }

	private	List<Address>	findAddressEntities(boolean	all,	int	maxResults,
	 int	firstResult)	
 {
	 EntityManager	em	=	getEntityManager();
 try
 {
	 CriteriaQuery	cq	=	em.getCriteriaBuilder().createQuery();
	 cq.select(cq.from(Address.class));
	 Query	q	=	em.createQuery(cq);
	 if	(!all)	
 {
	 q.setMaxResults(maxResults);
	 q.setFirstResult(firstResult);
 }
	 return	q.getResultList();
 }
	 finally	
 {
	 em.close();
 }
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

28

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

28

	public	Address	findAddress(Integer	id)	
 {
	 EntityManager	em	=	getEntityManager();
 try
 {
	 return	em.find(Address.class,	id);
 }
	 finally	
 {
	 em.close();
 }
 }

	public	int	getAddressCount()	
 {
	 EntityManager	em	=	getEntityManager();
 try
 {
	 CriteriaQuery	cq	=	em.getCriteriaBuilder().createQuery();
	 Root<Address>	rt	=	cq.from(Address.class);
	 cq.select(em.getCriteriaBuilder().count(rt));
	 Query	q	=	em.createQuery(cq);
	 return	((Long)	q.getSingleResult()).intValue();
 }
	 finally	
 {
	 em.close();
 }
 }
}

The code fills, but the class is easy enough to understand and the most important thing is
that everything about updates to the database is encapsulated in methods, including the
necessary logic for rollback. In addition, the class defines some simple find() methods that
can return an object with a specific id or list of objects that typically will be all objects. These
find() methods uses a private find() method, and here you should note the CriteriaQuery
and Query types as explained below, but based on the names (and the application) you can
see that these are the types that will be used to build a SQL SELECT. Finally, note that
the class also has a method that returns the number of rows in the database table.

After the class has been added to the project, the IndexController class must be changed:

The code fills, but the class is easy enough to understand and the most important thing is
that everything about updates to the database is encapsulated in methods, including the
necessary logic for rollback. In addition, the class defines some simple find() methods that
can return an object with a specific id or list of objects that typically will be all objects. These
find() methods uses a private find() method, and here you should note the CriteriaQuery
and Query types as explained below, but based on the names (and the application) you can
see that these are the types that will be used to build a SQL SELECT. Finally, note that
the class also has a method that returns the number of rows in the database table.

After the class has been added to the project, the IndexController class must be changed:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

2929

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

2929

public	class	IndexController	implements	Serializable	
{
 @PersistenceUnit

 EntityManagerFactory emf;

 @Resource

 UserTransaction utx;

	private	Address	person	=	new	Address();
	private	List<Address>	persons	=	new	ArrayList();

	public	IndexController()
 {
 }

 …

	public	List<Address>	getPersons()
 {
 try

 {

 AddressJpaController ctrl = new AddressJpaController(utx, emf);

	 persons	=	ctrl.findAddressEntities();

 }

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

30

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

30

 catch (Exception ex)

 {

 }

 return persons;

 }

	public	void	add()
 {
 try

 {

 AddressJpaController ctrl = new AddressJpaController(utx, emf);

 ctrl.create(person);

 person = new Address();

 }

 catch (Exception ex)

 {

 }

 }
}

Here, the most important are the first two statements, which define an EntityManagerFactory
and a UserTransaction. In particular, note the two annotations that defines the two objects
to be instantiated. You should also note that the two methods that returns all addresses
and create an address now have been changed so that the entire logic regarding database
operations has been moved to the controller class.

If you look at the example, you should note that everything about SQL is gone and has
been moved to code that is part of the JPA API. As a result, the code to be written is
significantly reduced, and in particular, you should note that the AddressJpaController class
is autogenerated by NetBeans.

EXERCISE 1

In this exercise you must write a web application that opens and displays the content of
the table zipcode in the database padata when the application has to use JPA. Start with a
new web application project, which you can call ZipcodePage. You must then add an entity
class as an Entity Classes from Datebase. You must define a Data Source for database padata
and after you have done so, you should be able to view all tables in the database. Here you
have to choose the table zipcode. When you get to the next window (see below), you must
select a package and remove some checkmarks, but not the last checkmark. After you run
the wizard, you’ve created an entity class named Zipcode, and when you examine the code,
you should note that fewer named queries have been created this time. The reason is that
the following window is not checked for Generate Named Query Annotations for Persistent

Here, the most important are the first two statements, which define an EntityManagerFactory
and a UserTransaction. In particular, note the two annotations that defines the two objects
to be instantiated. You should also note that the two methods that returns all addresses
and create an address now have been changed so that the entire logic regarding database
operations has been moved to the controller class.

If you look at the example, you should note that everything about SQL is gone and has
been moved to code that is part of the JPA API. As a result, the code to be written is
significantly reduced, and in particular, you should note that the AddressJpaController class
is autogenerated by NetBeans.

EXERCISE 1

In this exercise you must write a web application that opens and displays the content of
the table zipcode in the database padata when the application has to use JPA. Start with a
new web application project, which you can call ZipcodePage. You must then add an entity
class as an Entity Classes from Datebase. You must define a Data Source for database padata
and after you have done so, you should be able to view all tables in the database. Here you
have to choose the table zipcode. When you get to the next window (see below), you must
select a package and remove some checkmarks, but not the last checkmark. After you run
the wizard, you’ve created an entity class named Zipcode, and when you examine the code,
you should note that fewer named queries have been created this time. The reason is that
the following window is not checked for Generate Named Query Annotations for Persistent

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

3131

Fields. Note that a Named Query is an example of a SELECT statement written as a variant
of SQL called JPQL.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

32

As a next step, you need to add a database controller, named ZipcodeJpaController, for your
entity class like in the previous example.

You must create a named bean for index.xhtml when the result must be the above window,
which shows a table with the zip codes. The bottom entry fields should act as a filter:

1. the content of the first field must match all zip codes starting with the value
2. the content of the second field must match all city names that contains the value

The Clear link should clear the two entry fields (but should not update the table), while
the Update link should update the table corresponding to the content of the filter. Loading
the database table should only take place, when the program starts. You can do that in your
bean to write a method init() and decorate it as shown below:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

33

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

33

@PostConstruct
private	void	init()
{
	ZipcodeJpaController	ctrl	=	new	ZipcodeJpaController(utx,	emf);
	zipcodes	=	ctrl.findZipcodeEntities();
}

It is a method that is performed immediately after the object is instantiated.

2.2 RELATED TABLES

Writing a web application like the above is because of JPA quite simple, but of course it
is also a simple application and primarily because the database has only one single table.
In this section I will show an example where the database has more tables and where there
are relationships between the individual tables, and here the benefits of JPA become even
more pronounced.

As an example, I will use the Database Library from the book Java 7:

I will only use the four entities book, publisher, category and author. Here you should note
that there is a many-to-one relationship between publisher and book as well as between
category and book. In addition, there is a many-many relationship between book and author.
The example is a web application called PaBooks, and it should generally be able to maintain
the tables corresponding to the above four entities. It should be noted that the user interface
is simple – simply to keep focus on database transactions and JPA. In the following, as in
the first two examples of this chapter, I will primarily focus on how the program is made,
and especially how to use a JPA to develop a database application.

It is a method that is performed immediately after the object is instantiated.

2.2 RELATED TABLES

Writing a web application like the above is because of JPA quite simple, but of course it
is also a simple application and primarily because the database has only one single table.
In this section I will show an example where the database has more tables and where there
are relationships between the individual tables, and here the benefits of JPA become even
more pronounced.

As an example, I will use the Database Library from the book Java 7:

I will only use the four entities book, publisher, category and author. Here you should note
that there is a many-to-one relationship between publisher and book as well as between
category and book. In addition, there is a many-many relationship between book and author.
The example is a web application called PaBooks, and it should generally be able to maintain
the tables corresponding to the above four entities. It should be noted that the user interface
is simple – simply to keep focus on database transactions and JPA. In the following, as in
the first two examples of this chapter, I will primarily focus on how the program is made,
and especially how to use a JPA to develop a database application.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

34

The start is a web application called PaBooks, and after the application has been created, I
have selected Entity Classes from Database, and here I created a data source booklibrary that
creates a connection to the library database and after doing that, you get an overview of
the database tables:

Here are the tables

 - author
 - book
 - category
 - publisher
 - written

added to Selected Tables:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

3535

http://s.bookboon.com/EOT

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

36

Note especially that the table written appears as bold, and it is because it is a relationship
table between book and author. When you click Next, you get the following window:

Here you can see that four entity classes are created, and note that you can change the
name of those classes if you wish. I will not in this case. Also note the name of the package
where the classes should be created, which I have called pabooks.models. When you click
Next, you get the following window:

and when you click Finish, the four entity classes are created. Generally, it is rarely necessary
to change these entity classes, but sometimes I change the classes’ toString() method, which I
have also done in this case for the classes Author, Category and Publisher. You are encouraged
to study the code. Here you should note, among other things, that the Publisher class has a

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

37

collection bookCollection for Book objects. It represents a foreign key to Book objects and thus
references to the Book objects published on this publisher. The same goes for the Category
class. If you study the Book class, you should note that it has a reference to a Publisher
object and a Category object, and thus the other side of the two many-to-one relationships.
The Book class also has a collection authorCollection with Author objects that represent the
many-to-many relationship between book and author. Examining the class Author will you
see that this class has a corresponding collection bookCollection for Book objects that is the
other side of the many-to-many relationship. When examining the classes, pay attention to
the annotations that decorate the above properties for the relationships.

After adding entity classes, I want to add controller classes by selecting JPA Controller Classes
from Entity Classes:

A controller must be created for all four entity classes that are added to Selected Entity
Classes, and after clicking Next and selecting the desired package (here pabooks.models) and
clicking Finish, the four controller classes are created:

 - AuthorJpaController
 - BookJpaController
 - CategoryJpaController
 - PublisherJpaController

Generally, these classes are not changed, however, it may be necessary to expand the
classes with methods for queries on the database, and in this case, I have extended the
BookJpaController class with a new method. However, it requires some syntax for how to
write a SQL SELECT statement in JPA.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

3838

Criteria API

If you look at how I have written database applications so far, some of the most comprehensive
types of typing are SQL SELECT statements – at least to write them correctly, and the
same applies to JPA. To write and execute SELECT statements, you have to use a Query
object, and JPA defines an SQL similar language, called JPQL. The language has essentially
the same syntax as SQL and will not be treated explicitly in this book. When it is difficult
to write SQL SELECT statements correctly, it is because it is only text and therefore the
syntax can not be validated by the compiler. The problems are the same with JPQL, and
to help with that, an API is defined called Criteria API. In fact, it is not easier to write
SELECT statements using this API, but the different parts of a SELECT expression are
defined using Java classes, and the compiler can thus validate if the expression is written
correctly. In this book, I will use this Criteria API in most places, and the following is a
brief introduction to the syntax.

The API is used to define criteria queries, which basically is an object graph, and you
define a criteria query by building such a graph. This happens with an object of the type
CriteriaBuilder that can create the parts that a criteria query consists of, and since it is all
about representing a SELECT statement, it means object-oriented representation of tables,

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

39

columns, and conditions for which rows to extract from the database. For example, you
can get a CriteriaBuilder from an EntityManager by a statement of the form:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

39

columns, and conditions for which rows to extract from the database. For example, you
can get a CriteriaBuilder from an EntityManager by a statement of the form:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

where em is an EntityManager. Such a builder has three methods that return a criteria query:

 - CriteriaQuery<T> createQuery(Class<T>)
 - CriteriaQuery<Tuple> createTupleQuery()
 - CriteriaQuery<Object> createQuery()

and the difference is what kind of objects the query returns. After having a criteria builder
that has created a query, the task is to initialize this query, and this is where the API comes
on the path.

I want to start with the first of the above methods that creates a query where the parameter
type indicates the expected type of objects that are the result of the query, and in principle
it can be any arbitrary object type. As an example, below is shown a criteria query that
determines all books in the library database, where pages have the value 520:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(root);
cq.where(cb.equal(root.get(Book_.pages),	520));
return	em.createQuery(cq).getResultList();

Note how to create a CriteriaBuilder (em is an EntityManager) and how it is used to create
a criteria query for Book objects. For this query, a root is created for the object graph, and it
is defined that the query object must extract objects from this root. root then corresponds to
the FROM section in a SQL SELECT statement. Next, it is defined by the method select()
which properties are part of the result, and here is the root which means Book objects. The
select() function thus indicates which columns are to be included. Finally, it is defined that
objects must only be extracted where the page number is 520, and thus corresponds to the
WHERE section in a SELECT statement. The result is a collection of these objects. You
should especially note how to refer to the column pages (the property pages in Book). The
query can also be written as follows:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	root	=	cq.from(Book.class);
return	em.createQuery(
	cq.select(root).where(cb.equal(root.get("pages"),	520))).getResultList();

where em is an EntityManager. Such a builder has three methods that return a criteria query:

 - CriteriaQuery<T> createQuery(Class<T>)
 - CriteriaQuery<Tuple> createTupleQuery()
 - CriteriaQuery<Object> createQuery()

and the difference is what kind of objects the query returns. After having a criteria builder
that has created a query, the task is to initialize this query, and this is where the API comes
on the path.

I want to start with the first of the above methods that creates a query where the parameter
type indicates the expected type of objects that are the result of the query, and in principle
it can be any arbitrary object type. As an example, below is shown a criteria query that
determines all books in the library database, where pages have the value 520:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

39

columns, and conditions for which rows to extract from the database. For example, you
can get a CriteriaBuilder from an EntityManager by a statement of the form:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

where em is an EntityManager. Such a builder has three methods that return a criteria query:

 - CriteriaQuery<T> createQuery(Class<T>)
 - CriteriaQuery<Tuple> createTupleQuery()
 - CriteriaQuery<Object> createQuery()

and the difference is what kind of objects the query returns. After having a criteria builder
that has created a query, the task is to initialize this query, and this is where the API comes
on the path.

I want to start with the first of the above methods that creates a query where the parameter
type indicates the expected type of objects that are the result of the query, and in principle
it can be any arbitrary object type. As an example, below is shown a criteria query that
determines all books in the library database, where pages have the value 520:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(root);
cq.where(cb.equal(root.get(Book_.pages),	520));
return	em.createQuery(cq).getResultList();

Note how to create a CriteriaBuilder (em is an EntityManager) and how it is used to create
a criteria query for Book objects. For this query, a root is created for the object graph, and it
is defined that the query object must extract objects from this root. root then corresponds to
the FROM section in a SQL SELECT statement. Next, it is defined by the method select()
which properties are part of the result, and here is the root which means Book objects. The
select() function thus indicates which columns are to be included. Finally, it is defined that
objects must only be extracted where the page number is 520, and thus corresponds to the
WHERE section in a SELECT statement. The result is a collection of these objects. You
should especially note how to refer to the column pages (the property pages in Book). The
query can also be written as follows:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	root	=	cq.from(Book.class);
return	em.createQuery(
	cq.select(root).where(cb.equal(root.get("pages"),	520))).getResultList();

Note how to create a CriteriaBuilder (em is an EntityManager) and how it is used to create
a criteria query for Book objects. For this query, a root is created for the object graph, and it
is defined that the query object must extract objects from this root. root then corresponds to
the FROM section in a SQL SELECT statement. Next, it is defined by the method select()
which properties are part of the result, and here is the root which means Book objects. The
select() function thus indicates which columns are to be included. Finally, it is defined that
objects must only be extracted where the page number is 520, and thus corresponds to the
WHERE section in a SELECT statement. The result is a collection of these objects. You
should especially note how to refer to the column pages (the property pages in Book). The
query can also be written as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

39

columns, and conditions for which rows to extract from the database. For example, you
can get a CriteriaBuilder from an EntityManager by a statement of the form:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

where em is an EntityManager. Such a builder has three methods that return a criteria query:

 - CriteriaQuery<T> createQuery(Class<T>)
 - CriteriaQuery<Tuple> createTupleQuery()
 - CriteriaQuery<Object> createQuery()

and the difference is what kind of objects the query returns. After having a criteria builder
that has created a query, the task is to initialize this query, and this is where the API comes
on the path.

I want to start with the first of the above methods that creates a query where the parameter
type indicates the expected type of objects that are the result of the query, and in principle
it can be any arbitrary object type. As an example, below is shown a criteria query that
determines all books in the library database, where pages have the value 520:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(root);
cq.where(cb.equal(root.get(Book_.pages),	520));
return	em.createQuery(cq).getResultList();

Note how to create a CriteriaBuilder (em is an EntityManager) and how it is used to create
a criteria query for Book objects. For this query, a root is created for the object graph, and it
is defined that the query object must extract objects from this root. root then corresponds to
the FROM section in a SQL SELECT statement. Next, it is defined by the method select()
which properties are part of the result, and here is the root which means Book objects. The
select() function thus indicates which columns are to be included. Finally, it is defined that
objects must only be extracted where the page number is 520, and thus corresponds to the
WHERE section in a SELECT statement. The result is a collection of these objects. You
should especially note how to refer to the column pages (the property pages in Book). The
query can also be written as follows:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	root	=	cq.from(Book.class);
return	em.createQuery(
	cq.select(root).where(cb.equal(root.get("pages"),	520))).getResultList();

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

40

It has no special advantages besides being a bit shorter, and so it may look more like a SQL
SELECT statement. However, you must note that I have defined the column (pages) in
another way, namely, as a string, which should be the name of that property in the Book class.

If you look at the code, you can notice that a criteria query object has the following methods:

 - from()
 - select()
 - where()

where the meaning is known from a SELECT statement, and if you examine the type
CriteriaQuery, you will see that there are methods for the other parts of a SELECT as
ORDER BY, GROUP BY, and more. Finally, you can note that the CriteriaBuilder class, in
addition to creating CriteriaQuery objects, has methods that define conditions – predicates –
and many others (in the example above equals), where a few are illustrated below.

As another example, the query below determines the page number of all books, where the
title contains the text Fedora:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

40

It has no special advantages besides being a bit shorter, and so it may look more like a SQL
SELECT statement. However, you must note that I have defined the column (pages) in
another way, namely, as a string, which should be the name of that property in the Book class.

If you look at the code, you can notice that a criteria query object has the following methods:

 - from()
 - select()
 - where()

where the meaning is known from a SELECT statement, and if you examine the type
CriteriaQuery, you will see that there are methods for the other parts of a SELECT as
ORDER BY, GROUP BY, and more. Finally, you can note that the CriteriaBuilder class, in
addition to creating CriteriaQuery objects, has methods that define conditions – predicates –
and many others (in the example above equals), where a few are illustrated below.

As another example, the query below determines the page number of all books, where the
title contains the text Fedora:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(root.get(Book_.pages));
cq.where(cb.like(root.get(Book_.title),	"%Fedora%"));
List<Integer>	pages	=	em.createQuery(cq).getResultList();

To compare with SQL, you can say that with Root you specify the table to which you want
to perform a SELECT, and in connection with JPA, it means an entity object. With the
select() method, you specify the columns or properties that will be included in the result.
Here it is only the property for page numbers, and

Book_.pages

means the property pages in an entity object Book. Finally, as mentioned above, you indicate
which entity objects are to be included, and here it is only those objects in which the
property title contains the word Fedora. Note that the result is a list of Integer objects, and
that a CriteriaQuery for Integer objects has been created from the start.

As a further example, a query is shown which determines the largest page number in the
table book, where you should first notice that a criteria builder supports multiple functions
(here the max function) and that the result is determined by getSingleResult() instead of
getResultList():

To compare with SQL, you can say that with Root you specify the table to which you want
to perform a SELECT, and in connection with JPA, it means an entity object. With the
select() method, you specify the columns or properties that will be included in the result.
Here it is only the property for page numbers, and

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

40

It has no special advantages besides being a bit shorter, and so it may look more like a SQL
SELECT statement. However, you must note that I have defined the column (pages) in
another way, namely, as a string, which should be the name of that property in the Book class.

If you look at the code, you can notice that a criteria query object has the following methods:

 - from()
 - select()
 - where()

where the meaning is known from a SELECT statement, and if you examine the type
CriteriaQuery, you will see that there are methods for the other parts of a SELECT as
ORDER BY, GROUP BY, and more. Finally, you can note that the CriteriaBuilder class, in
addition to creating CriteriaQuery objects, has methods that define conditions – predicates –
and many others (in the example above equals), where a few are illustrated below.

As another example, the query below determines the page number of all books, where the
title contains the text Fedora:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(root.get(Book_.pages));
cq.where(cb.like(root.get(Book_.title),	"%Fedora%"));
List<Integer>	pages	=	em.createQuery(cq).getResultList();

To compare with SQL, you can say that with Root you specify the table to which you want
to perform a SELECT, and in connection with JPA, it means an entity object. With the
select() method, you specify the columns or properties that will be included in the result.
Here it is only the property for page numbers, and

Book_.pages

means the property pages in an entity object Book. Finally, as mentioned above, you indicate
which entity objects are to be included, and here it is only those objects in which the
property title contains the word Fedora. Note that the result is a list of Integer objects, and
that a CriteriaQuery for Integer objects has been created from the start.

As a further example, a query is shown which determines the largest page number in the
table book, where you should first notice that a criteria builder supports multiple functions
(here the max function) and that the result is determined by getSingleResult() instead of
getResultList():

means the property pages in an entity object Book. Finally, as mentioned above, you indicate
which entity objects are to be included, and here it is only those objects in which the
property title contains the word Fedora. Note that the result is a list of Integer objects, and
that a CriteriaQuery for Integer objects has been created from the start.

As a further example, a query is shown which determines the largest page number in the
table book, where you should first notice that a criteria builder supports multiple functions
(here the max function) and that the result is determined by getSingleResult() instead of
getResultList():

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

4141

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

4141

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(cb.max(root.get(Book_.pages)));
Integer	pages	=	em.createQuery(cq).getSingleResult();

or shorter:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Integer	pages	=	em.createQuery(
	cq.select(cb.max(cq.from(Book.class).get("pages")))).getSingleResult();

I will then show with some examples how to determine the values for specific columns,
and thus specific properties in the entity class. The next query determines id and title of
all Book objects where the page number are greater than 300:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Object[]>	cq	=	cb.createQuery(Object[].class);
Root<Book>	root	=	cq.from(Book.class);
Path<Integer>	idPath	=	root.get(Book_.id);
Path<String>	titlePath	=	root.get(Book_.title);

or shorter:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

4141

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(cb.max(root.get(Book_.pages)));
Integer	pages	=	em.createQuery(cq).getSingleResult();

or shorter:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Integer	pages	=	em.createQuery(
	cq.select(cb.max(cq.from(Book.class).get("pages")))).getSingleResult();

I will then show with some examples how to determine the values for specific columns,
and thus specific properties in the entity class. The next query determines id and title of
all Book objects where the page number are greater than 300:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Object[]>	cq	=	cb.createQuery(Object[].class);
Root<Book>	root	=	cq.from(Book.class);
Path<Integer>	idPath	=	root.get(Book_.id);
Path<String>	titlePath	=	root.get(Book_.title);

I will then show with some examples how to determine the values for specific columns,
and thus specific properties in the entity class. The next query determines id and title of
all Book objects where the page number are greater than 300:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

4141

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(cb.max(root.get(Book_.pages)));
Integer	pages	=	em.createQuery(cq).getSingleResult();

or shorter:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Integer>	cq	=	cb.createQuery(Integer.class);
Integer	pages	=	em.createQuery(
	cq.select(cb.max(cq.from(Book.class).get("pages")))).getSingleResult();

I will then show with some examples how to determine the values for specific columns,
and thus specific properties in the entity class. The next query determines id and title of
all Book objects where the page number are greater than 300:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Object[]>	cq	=	cb.createQuery(Object[].class);
Root<Book>	root	=	cq.from(Book.class);
Path<Integer>	idPath	=	root.get(Book_.id);
Path<String>	titlePath	=	root.get(Book_.title);

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

42

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

42

cq.select(cb.array(idPath,	titlePath));
cq.where(cb.gt(root.get(Book_.pages),	300));
List<Object[]>	arr	=	em.createQuery(cq).getResultList();

Here you should primarily note how to refer to the individual columns with a Path object.
Also note how to indicate that the result should be a list whose objects are an array and
here are arrays with two elements, which are defined by the method select(). The query can
also be written as

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Object[]>	cq	=	cb.createQuery(Object[].class);
Root<Book>	root	=	cq.from(Book.class);
List<Object[]>	arr	=	em.createQuery(
	cq.select(cb.array(root.get("id"),	root.get("title"))).where(
	 cb.gt(root.get("pages"),	300))).getResultList();

but in this case the expression is not so easy to read, and at least it requires that you get
well into the Criteria API.

The above example is not very type strong – the result is a list of objects of the type arrays.
This can be remedied with a wrapper class:

package pabooks.models;

public	class	BookWrapper	
{
 private int id;
 private String title;

	public	BookWrapper(int	id,	String	title)	
 {
	 this.id	=	id;
	 this.title	=	title;
 }

	public	int	getId()	
 {
 return id;
 }

	public	String	getTitle()	
 {
 return title;
 }

Here you should primarily note how to refer to the individual columns with a Path object.
Also note how to indicate that the result should be a list whose objects are an array and
here are arrays with two elements, which are defined by the method select(). The query can
also be written as

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

42

cq.select(cb.array(idPath,	titlePath));
cq.where(cb.gt(root.get(Book_.pages),	300));
List<Object[]>	arr	=	em.createQuery(cq).getResultList();

Here you should primarily note how to refer to the individual columns with a Path object.
Also note how to indicate that the result should be a list whose objects are an array and
here are arrays with two elements, which are defined by the method select(). The query can
also be written as

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Object[]>	cq	=	cb.createQuery(Object[].class);
Root<Book>	root	=	cq.from(Book.class);
List<Object[]>	arr	=	em.createQuery(
	cq.select(cb.array(root.get("id"),	root.get("title"))).where(
	 cb.gt(root.get("pages"),	300))).getResultList();

but in this case the expression is not so easy to read, and at least it requires that you get
well into the Criteria API.

The above example is not very type strong – the result is a list of objects of the type arrays.
This can be remedied with a wrapper class:

package pabooks.models;

public	class	BookWrapper	
{
 private int id;
 private String title;

	public	BookWrapper(int	id,	String	title)	
 {
	 this.id	=	id;
	 this.title	=	title;
 }

	public	int	getId()	
 {
 return id;
 }

	public	String	getTitle()	
 {
 return title;
 }

but in this case the expression is not so easy to read, and at least it requires that you get
well into the Criteria API.

The above example is not very type strong – the result is a list of objects of the type arrays.
This can be remedied with a wrapper class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

42

cq.select(cb.array(idPath,	titlePath));
cq.where(cb.gt(root.get(Book_.pages),	300));
List<Object[]>	arr	=	em.createQuery(cq).getResultList();

Here you should primarily note how to refer to the individual columns with a Path object.
Also note how to indicate that the result should be a list whose objects are an array and
here are arrays with two elements, which are defined by the method select(). The query can
also be written as

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Object[]>	cq	=	cb.createQuery(Object[].class);
Root<Book>	root	=	cq.from(Book.class);
List<Object[]>	arr	=	em.createQuery(
	cq.select(cb.array(root.get("id"),	root.get("title"))).where(
	 cb.gt(root.get("pages"),	300))).getResultList();

but in this case the expression is not so easy to read, and at least it requires that you get
well into the Criteria API.

The above example is not very type strong – the result is a list of objects of the type arrays.
This can be remedied with a wrapper class:

package pabooks.models;

public	class	BookWrapper	
{
 private int id;
 private String title;

	public	BookWrapper(int	id,	String	title)	
 {
	 this.id	=	id;
	 this.title	=	title;
 }

	public	int	getId()	
 {
 return id;
 }

	public	String	getTitle()	
 {
 return title;
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

43

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

43

	public	void	setId(int	id)	
 {
	 this.id	=	id;
 }

	public	void	setTitle(String	title)	
 {
	 this.title	=	title;
 }
}

which is just a class enclosing id and title for a book. The query can then be written as
follows:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<BookWrapper>	cq	=	cb.createQuery(BookWrapper.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(
	 cb.construct(BookWrapper.class,	root.
get(Book_.id),	root.get(Book_.title)));
cq.where(cb.gt(root.get(Book_.pages),	300));
List<BookWrapper>	list	=	em.createQuery(cq).getResultList();

First, note that you define a criteria query for BookWrapper objects. Next, you use select()
and a construct() method from the builder, which tells you to construct BookWrapper objects.
The rest is in principle the same as in the previous example.

A query can also return Tuple objects, and for the syntax is the biggest difference that the
query object is created with createTupleQuery():

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Tuple>	cq	=	cb.createTupleQuery();
Root<Book>	root	=	cq.from(Book.class);
Path<Integer>	idPath	=	root.get(Book_.id);
Path<String>	titlePath	=	root.get(Book_.title);
cq.multiselect(idPath,	titlePath);
cq.where(cb.gt(root.get(Book_.pages),	300));
List<Tuple>	list	=	em.createQuery(cq).getResultList();	

The advantage is that you do not have to write a wrapper class. Note the use of multiselect()
to specify the columns to be included in the result, which are used to specify multiple
properties in the result. Another thing is how to use the individual Tuple objects. I do not
want to go into details here (and you are encouraged to investigate the type Tuple – which
is an interface), but can you write the following (although the code does not make much
sense in this context):

which is just a class enclosing id and title for a book. The query can then be written as
follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

43

	public	void	setId(int	id)	
 {
	 this.id	=	id;
 }

	public	void	setTitle(String	title)	
 {
	 this.title	=	title;
 }
}

which is just a class enclosing id and title for a book. The query can then be written as
follows:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<BookWrapper>	cq	=	cb.createQuery(BookWrapper.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(
	 cb.construct(BookWrapper.class,	root.
get(Book_.id),	root.get(Book_.title)));
cq.where(cb.gt(root.get(Book_.pages),	300));
List<BookWrapper>	list	=	em.createQuery(cq).getResultList();

First, note that you define a criteria query for BookWrapper objects. Next, you use select()
and a construct() method from the builder, which tells you to construct BookWrapper objects.
The rest is in principle the same as in the previous example.

A query can also return Tuple objects, and for the syntax is the biggest difference that the
query object is created with createTupleQuery():

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Tuple>	cq	=	cb.createTupleQuery();
Root<Book>	root	=	cq.from(Book.class);
Path<Integer>	idPath	=	root.get(Book_.id);
Path<String>	titlePath	=	root.get(Book_.title);
cq.multiselect(idPath,	titlePath);
cq.where(cb.gt(root.get(Book_.pages),	300));
List<Tuple>	list	=	em.createQuery(cq).getResultList();	

The advantage is that you do not have to write a wrapper class. Note the use of multiselect()
to specify the columns to be included in the result, which are used to specify multiple
properties in the result. Another thing is how to use the individual Tuple objects. I do not
want to go into details here (and you are encouraged to investigate the type Tuple – which
is an interface), but can you write the following (although the code does not make much
sense in this context):

First, note that you define a criteria query for BookWrapper objects. Next, you use select()
and a construct() method from the builder, which tells you to construct BookWrapper objects.
The rest is in principle the same as in the previous example.

A query can also return Tuple objects, and for the syntax is the biggest difference that the
query object is created with createTupleQuery():

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

43

	public	void	setId(int	id)	
 {
	 this.id	=	id;
 }

	public	void	setTitle(String	title)	
 {
	 this.title	=	title;
 }
}

which is just a class enclosing id and title for a book. The query can then be written as
follows:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<BookWrapper>	cq	=	cb.createQuery(BookWrapper.class);
Root<Book>	root	=	cq.from(Book.class);
cq.select(
	 cb.construct(BookWrapper.class,	root.
get(Book_.id),	root.get(Book_.title)));
cq.where(cb.gt(root.get(Book_.pages),	300));
List<BookWrapper>	list	=	em.createQuery(cq).getResultList();

First, note that you define a criteria query for BookWrapper objects. Next, you use select()
and a construct() method from the builder, which tells you to construct BookWrapper objects.
The rest is in principle the same as in the previous example.

A query can also return Tuple objects, and for the syntax is the biggest difference that the
query object is created with createTupleQuery():

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Tuple>	cq	=	cb.createTupleQuery();
Root<Book>	root	=	cq.from(Book.class);
Path<Integer>	idPath	=	root.get(Book_.id);
Path<String>	titlePath	=	root.get(Book_.title);
cq.multiselect(idPath,	titlePath);
cq.where(cb.gt(root.get(Book_.pages),	300));
List<Tuple>	list	=	em.createQuery(cq).getResultList();	

The advantage is that you do not have to write a wrapper class. Note the use of multiselect()
to specify the columns to be included in the result, which are used to specify multiple
properties in the result. Another thing is how to use the individual Tuple objects. I do not
want to go into details here (and you are encouraged to investigate the type Tuple – which
is an interface), but can you write the following (although the code does not make much
sense in this context):

The advantage is that you do not have to write a wrapper class. Note the use of multiselect()
to specify the columns to be included in the result, which are used to specify multiple
properties in the result. Another thing is how to use the individual Tuple objects. I do not
want to go into details here (and you are encouraged to investigate the type Tuple – which
is an interface), but can you write the following (although the code does not make much
sense in this context):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

4444

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

4444

for	(Tuple	t	:	list)
{
	Integer	id	=	t.get(idPath);
	String	str1	=	(String)t.get(1);
	String	str2	=	t.get(1,	String.class);
}

A criteria query object defines a query from one or more entities (in the above examples
only one that has been Book each time). Of course, you can specify more entities that
correspond to a join operation in SQL. I will start with a query that determines all books
where the name of the publisher starts with the word Sams:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	books	=	cq.from(Book.class);
Join<Book,	Publisher>	pubs	=	books.join("pubid");
cq.select(books).where(cb.like(pubs.get("name"),	"Sams%"));
return	em.createQuery(cq).getResultList();

First of all, I have created a query for Book objects and defined a root for the entity class
Book – which has been named books this time. There is a one-to-many relationship between

A criteria query object defines a query from one or more entities (in the above examples
only one that has been Book each time). Of course, you can specify more entities that
correspond to a join operation in SQL. I will start with a query that determines all books
where the name of the publisher starts with the word Sams:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

4444

for	(Tuple	t	:	list)
{
	Integer	id	=	t.get(idPath);
	String	str1	=	(String)t.get(1);
	String	str2	=	t.get(1,	String.class);
}

A criteria query object defines a query from one or more entities (in the above examples
only one that has been Book each time). Of course, you can specify more entities that
correspond to a join operation in SQL. I will start with a query that determines all books
where the name of the publisher starts with the word Sams:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);
Root<Book>	books	=	cq.from(Book.class);
Join<Book,	Publisher>	pubs	=	books.join("pubid");
cq.select(books).where(cb.like(pubs.get("name"),	"Sams%"));
return	em.createQuery(cq).getResultList();

First of all, I have created a query for Book objects and defined a root for the entity class
Book – which has been named books this time. There is a one-to-many relationship between
First of all, I have created a query for Book objects and defined a root for the entity class
Book – which has been named books this time. There is a one-to-many relationship between

http://s.bookboon.com/GTca

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

45

books and publishers, so that more books can be published on the same publisher while a
book is always published on a particular publisher. I then define a join between Book and
Publisher (two entity classes) called pubs by specifying the property pubid in the entity class
Book as join property. The rest does not contain anything new, but you should note how to in
the method where() to references the property name in the Publisher class using the name pubs.

The next example is the same join, but the query determines all books where the title
contains the word Fedora or the publisher starts with the word Sams:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

45

books and publishers, so that more books can be published on the same publisher while a
book is always published on a particular publisher. I then define a join between Book and
Publisher (two entity classes) called pubs by specifying the property pubid in the entity class
Book as join property. The rest does not contain anything new, but you should note how to in
the method where() to references the property name in the Publisher class using the name pubs.

The next example is the same join, but the query determines all books where the title
contains the word Fedora or the publisher starts with the word Sams:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	query	=	cb.createQuery(Book.class);
Root<Book>	books	=	query.from(Book.class);
Join<Book,	Publisher>	pubs	=	books.join("pubid");
query.select(books).where(
	cb.or(cb.like(books.get("title"),	"%Fedora%"),
	 cb.like(pubs.get("name"),	"Sams%")));
return	em.createQuery(query).getResultList();

You should primarily note how the the method or() is used to construct a condition.

There is also a one-to-many relationship between Book and Category, so you can also define
a join from Book to Category. The following query determines all Book objects where the
title contains a search value, the name of the publisher contains a search value and the
name of the category contains a search value:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	query	=	cb.createQuery(Book.class);
Root<Book>	books	=	query.from(Book.class);
Join<Book,	Publisher>	pubs	=	books.join("pubid");
Join<Book,	Category>	cats	=	books.join("catid");
Predicate	pc	=	cb.and(cb.like(books.get("title"),	"%"	+	title	+	"%"),
	cb.like(pubs.get("name"),	"%"	+	pubname	+	"%"),	
	cb.like(cats.get("name"),	"%"	+	catname	+	"%"));
query.select(books).where(pc);
return	em.createQuery(query).getResultList();

Note that two join objects are defined for the object graph. Next, a Predicate object is
defined which represents a condition. In this case, there is an and of three equal() functions,
and the predicate is used as parameters for the where() function. You should especially note
how to use variables in search strings.

As the last example, I will show how with a query that can find all authors for a particular
book. There is a many-to-many relationship between Book and Author, and that query can
be written as follows:

You should primarily note how the the method or() is used to construct a condition.

There is also a one-to-many relationship between Book and Category, so you can also define
a join from Book to Category. The following query determines all Book objects where the
title contains a search value, the name of the publisher contains a search value and the
name of the category contains a search value:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

45

books and publishers, so that more books can be published on the same publisher while a
book is always published on a particular publisher. I then define a join between Book and
Publisher (two entity classes) called pubs by specifying the property pubid in the entity class
Book as join property. The rest does not contain anything new, but you should note how to in
the method where() to references the property name in the Publisher class using the name pubs.

The next example is the same join, but the query determines all books where the title
contains the word Fedora or the publisher starts with the word Sams:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	query	=	cb.createQuery(Book.class);
Root<Book>	books	=	query.from(Book.class);
Join<Book,	Publisher>	pubs	=	books.join("pubid");
query.select(books).where(
	cb.or(cb.like(books.get("title"),	"%Fedora%"),
	 cb.like(pubs.get("name"),	"Sams%")));
return	em.createQuery(query).getResultList();

You should primarily note how the the method or() is used to construct a condition.

There is also a one-to-many relationship between Book and Category, so you can also define
a join from Book to Category. The following query determines all Book objects where the
title contains a search value, the name of the publisher contains a search value and the
name of the category contains a search value:

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Book>	query	=	cb.createQuery(Book.class);
Root<Book>	books	=	query.from(Book.class);
Join<Book,	Publisher>	pubs	=	books.join("pubid");
Join<Book,	Category>	cats	=	books.join("catid");
Predicate	pc	=	cb.and(cb.like(books.get("title"),	"%"	+	title	+	"%"),
	cb.like(pubs.get("name"),	"%"	+	pubname	+	"%"),	
	cb.like(cats.get("name"),	"%"	+	catname	+	"%"));
query.select(books).where(pc);
return	em.createQuery(query).getResultList();

Note that two join objects are defined for the object graph. Next, a Predicate object is
defined which represents a condition. In this case, there is an and of three equal() functions,
and the predicate is used as parameters for the where() function. You should especially note
how to use variables in search strings.

As the last example, I will show how with a query that can find all authors for a particular
book. There is a many-to-many relationship between Book and Author, and that query can
be written as follows:

Note that two join objects are defined for the object graph. Next, a Predicate object is
defined which represents a condition. In this case, there is an and of three equal() functions,
and the predicate is used as parameters for the where() function. You should especially note
how to use variables in search strings.

As the last example, I will show how with a query that can find all authors for a particular
book. There is a many-to-many relationship between Book and Author, and that query can
be written as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

46

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

46

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Author>	cq	=	cb.createQuery(Author.class);
Root<Author>	root	=	cq.from(Author.class);
Join<Author,	Book>	books	=	root.join("bookCollection");
cq.where(cb.equal(books.get("isbn10"),	"0-672-32584-5"));
cq.select(root);
List<Author>	list	=	em.createQuery(cq).getResultList();

First, a query is created for Author objects while root is defined for the entity class Author.
Next, a join from Author to Book is defined, and with the where() method, it is defined that
all authors who have written the book with isbn 0-672-32584-5 must be selected.

In this case (the example PaBooks), on the start page, I want to show an overview of all
the books in the database, but such that you can filter books by searching for those books

1. where the title contains a specific search text
2. where the name of the publisher contains a specific search text
3. where the name of the category contains a specific search text

I have therefore added the following method to the BookJpaController class:

public	 List<Book>	 findBookEntities(String	 title,	 String	 pubname,	 String	
catname)
{
	EntityManager	em	=	getEntityManager();
 try
 {
	 CriteriaBuilder	cb	=	em.getCriteriaBuilder();
	 CriteriaQuery<Book>	query	=	cb.createQuery(Book.class);
	 Root<Book>	books	=	query.from(Book.class);
	 if	(pubname.length()	>	0	&&	catname.length()	>	0)
 {
	 Join<Book,	Publisher>	pubs	=	books.join("pubid");
	 Join<Book,	Category>	cats	=	books.join("catid");
	 Predicate	pc	=	cb.and(cb.like(books.get("title"),	"%"	+	title	+	"%"),
	 cb.like(pubs.get("name"),	"%"	+	pubname	+	"%"),
	 cb.like(cats.get("name"),	"%"	+	catname	+	"%"));
	 query.select(books).where(pc);
 }
	 else	if	(pubname.length()	>	0)
 {
	 Join<Book,	Publisher>	pubs	=	books.join("pubid");
	 Predicate	pc	=	cb.and(cb.like(books.get("title"),	"%"	+	title	+	"%"),
	 cb.like(pubs.get("name"),	"%"	+	pubname	+	"%"));
	 query.select(books).where(pc);
 }

First, a query is created for Author objects while root is defined for the entity class Author.
Next, a join from Author to Book is defined, and with the where() method, it is defined that
all authors who have written the book with isbn 0-672-32584-5 must be selected.

In this case (the example PaBooks), on the start page, I want to show an overview of all
the books in the database, but such that you can filter books by searching for those books

1. where the title contains a specific search text
2. where the name of the publisher contains a specific search text
3. where the name of the category contains a specific search text

I have therefore added the following method to the BookJpaController class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

46

CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Author>	cq	=	cb.createQuery(Author.class);
Root<Author>	root	=	cq.from(Author.class);
Join<Author,	Book>	books	=	root.join("bookCollection");
cq.where(cb.equal(books.get("isbn10"),	"0-672-32584-5"));
cq.select(root);
List<Author>	list	=	em.createQuery(cq).getResultList();

First, a query is created for Author objects while root is defined for the entity class Author.
Next, a join from Author to Book is defined, and with the where() method, it is defined that
all authors who have written the book with isbn 0-672-32584-5 must be selected.

In this case (the example PaBooks), on the start page, I want to show an overview of all
the books in the database, but such that you can filter books by searching for those books

1. where the title contains a specific search text
2. where the name of the publisher contains a specific search text
3. where the name of the category contains a specific search text

I have therefore added the following method to the BookJpaController class:

public	 List<Book>	 findBookEntities(String	 title,	 String	 pubname,	 String	
catname)
{
	EntityManager	em	=	getEntityManager();
 try
 {
	 CriteriaBuilder	cb	=	em.getCriteriaBuilder();
	 CriteriaQuery<Book>	query	=	cb.createQuery(Book.class);
	 Root<Book>	books	=	query.from(Book.class);
	 if	(pubname.length()	>	0	&&	catname.length()	>	0)
 {
	 Join<Book,	Publisher>	pubs	=	books.join("pubid");
	 Join<Book,	Category>	cats	=	books.join("catid");
	 Predicate	pc	=	cb.and(cb.like(books.get("title"),	"%"	+	title	+	"%"),
	 cb.like(pubs.get("name"),	"%"	+	pubname	+	"%"),
	 cb.like(cats.get("name"),	"%"	+	catname	+	"%"));
	 query.select(books).where(pc);
 }
	 else	if	(pubname.length()	>	0)
 {
	 Join<Book,	Publisher>	pubs	=	books.join("pubid");
	 Predicate	pc	=	cb.and(cb.like(books.get("title"),	"%"	+	title	+	"%"),
	 cb.like(pubs.get("name"),	"%"	+	pubname	+	"%"));
	 query.select(books).where(pc);
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

4747

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

4747

	 else	if	(catname.length()	>	0)
 {
	 Join<Book,	Category>	cats	=	books.join("catid");
	 Predicate	pc	=	cb.and(cb.like(books.get("title"),	"%"	+	title	+	"%"),
	 cb.like(cats.get("name"),	"%"	+	catname	+	"%"));
	 query.select(books).where(pc);
 }
 else
 {
	 query.select(books).where(cb.like(books.get("title"),	"%"	+	title	+	"%"));
 }
	 return	em.createQuery(query).getResultList();
 }
	catch	(Exception	ex)
 {
	 return	new	ArrayList();
 }
	finally	
 {
	 em.close();
 }
}

 .

http://s.bookboon.com/AlcatelLucent

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

48

The method may not be quite simple, but it is primarily because search texts can be blank
and that the database does not necessarily contain a value for the publisher or category.

JSF Pages

With the above in place, only the individual JSF pages are returned, and although there
are some details to be resolved, it basically does not contain anything new, and I would
primarily refer to the completed code. If you opens the application in the browser, you get
the following window (there are three books in the database):

The page has three input fields for entering search text, and furthermore there are four
links that refer to pages

1. book.xhtm, used to create a new book
2. publishers.xhtml, which are used to maintain publishers
3. categories.xhtml, used to maintain categories
4. authors.xhtml, used to maintain authors

Finally, the title of each book is a link and clicked on it, you are sent to book.xhtml with
the option of editing that book.

index.xhtml (the above window) is simple, but has a controller IndexController. The class is
a relatively simple named bean. You should especially note how it calls the method added
to the BookJpaController class, which performs a SQL SELECT.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

49

The other four pages consist of a JSF page and a named bean. When studying the code, pay
special attention to how individual beans implements the action methods for commands
in the JSF pages and how these methods use the database controller classes. Since book.
xhtml and its bean are not quite simple, primarily because it must be possible to maintain
the many-to-many relationship between the book and the author tables. In particular, you
should be aware that the BookJpaController class takes care of everything needed to update
the database, including maintaining the relationships, both in connection with INSERT,
UPDATE and DELETE. It is actually here that you meet the very great benefits of JPA,
as otherwise as it appears from examples in previous books it is necessary to write a lot of
code. In addition, it should be added that the JPA is even extremely effective.

PROBLEM 1

The database padata has three tables

1. world, which contains the names of the continents of this world
2. currency, which contains a currency table
3. country, which contains information about countries

(see possible problem 1 in the book Java 6). As documentation, the databases are created
using the following script:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

49

The other four pages consist of a JSF page and a named bean. When studying the code, pay
special attention to how individual beans implements the action methods for commands
in the JSF pages and how these methods use the database controller classes. Since book.
xhtml and its bean are not quite simple, primarily because it must be possible to maintain
the many-to-many relationship between the book and the author tables. In particular, you
should be aware that the BookJpaController class takes care of everything needed to update
the database, including maintaining the relationships, both in connection with INSERT,
UPDATE and DELETE. It is actually here that you meet the very great benefits of JPA,
as otherwise as it appears from examples in previous books it is necessary to write a lot of
code. In addition, it should be added that the JPA is even extremely effective.

PROBLEM 1

The database padata has three tables

1. world, which contains the names of the continents of this world
2. currency, which contains a currency table
3. country, which contains information about countries

(see possible problem 1 in the book Java 6). As documentation, the databases are created
using the following script:

create table currency
(

	code	char(3)	not	null	primary	key,
	name	varchar(30)	not	null,
	rate	decimal(10,	4)
);

create	table	world
(
	code	char(2)	not	null	primary	key,
	name	varchar(15)	not	null
);

create table country
(
	code2	char(2)	not	null	primary	key,	 #	country	code	on	2	characters
	code3	varchar(3),	 	 	 	 #	country	code	on	3	characters
	name	varchar(50)	not	null,	 	 	 #	country	name
	area	int,	 	 	 	 	 	 #	country's	area	in	square	kilometers
	number	int,	 	 	 	 	 #	country's	number	of	inhabitants

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

5050

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT JAVA PERSISTENCE API

5050

	continent	char(2),	 	 	 	 #	the	continent	this	country	belongs
	currency	char(3),	 	 	 	 #	currency	code
	foreign	key	(continent)	references	world(code),
	foreign	key	(currency)	references	currency(code)
);

insert	into	world	values('AS',	'Asia');
insert	into	world	values('AF',	'Africa');
insert	into	world	values('NA',	'North	America');
insert	into	world	values('SA',	'South	America');
insert	into	world	values('AN',	'Antarctica');
insert	into	world	values('EU',	'Europe');
insert	into	world	values('OC',	'Oceania');

The task is to write a web application that can maintain these tables when the database
operations are to be performed using JPA.

The application must have three pages. The start page should be the following with only
a few countries shown:

The task is to write a web application that can maintain these tables when the database
operations are to be performed using JPA.

The application must have three pages. The start page should be the following with only
a few countries shown:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

51

At the top there is a link to a page that is used to create a country – the same page is used
to edit information about a country if you click on the country code in the list. The link
Currency is used to maintain the currency table. Finally, there is a dropdown box where
you can select a continent, and then clicking on the Update link the list is updated so that
it only shows countries for the selected continent.

The page for maintenance information about countries is the following where the code for
Andora is clicked:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT Java persIstenCe apI

52

Finally, the page for the maintenance of the currency table is shown below (where only a
few currencies are shown):

and the page should be self explanatory.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

5353

3 ENTERPRISE JAVA BEANS

Entreprise Java Beans or EJB’s are components that live on a server and enclose business logic,
and here they can be used by other applications such as web applications and standalone
applications. You could thus think of an EJB as a component that is developed, tested and
hosted on an application server (such as Glassfish), and as other applications may apply. It
is not quite simple to develop EJB’s and get them hosted on an application server, and the
architecture is also not so easy to review, but NetBeans helps as it has projects specifically
aimed for developing EJB’s. In this chapter, I will partly demonstrate how to develop and
use EJB’s using NetBeans and explain the most important concepts.

The advantage of using EJB’s is that, in addition to providing the same services to multiple
applications, the application server addresses a variety of conditions such as transactions and
security issues, and EJB components can thus simplify the development of an enterprise
application. EJB’s therefore play an important role in the development of modern applications,
including distributed applications, but it should be mentioned immediately that they are
no longer playing the same role because of web services.

http://s.bookboon.com/BI

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

54

There are three variants:

 - Stateless, which are components where the state is not preserved between several
calls to the component’s methods.

 - Stateful, that are components where the state is maintained throughout the life of
the component as compared to the current application.

 - Singleton, which is a component that exists in exactly one version relative to
an application.

Having said that it is not easy to write EJB modules, it is not so much to write the individual
EJB classes, as that are no different from writing other classes, but the problems arise in
connection with deployment and the use of the modules from client programs, and thus
relates more to Glassfish than to writing the code. Therefore, I will start simple and create an
Enterprise Application project, consisting of a single EJB module, as well as a web application
that uses this module. The EJB module should consist of a single stateless session bean
that provides five methods (services) available to clients that here are the web application.

In the following I will describe the procedure. I start with a new project by selecting Java
EE and Enterprise Application:

After clicking Next, I will enter the project name in the next window where I have entered
CalcEJB. After clicking Next again, I get the following window, which by default consists
of a single EJB module and a Web Application:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

55

When you click Finish, NetBeans creates an Enterprise Application, which has attached
two projects:

where the first one is an EJB Module project named CalcEJB-ejb, while the other is a Web
Application project called CalcEJB-war. Note that it is NetBeans who has chosen the names
and they can of course be changed if desired.

As a next step, the CalcEJB-ejb project should have an EJB. To do this, right-click on the
project and select Enterprise Javabeans and then Session Bean:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

5656

When you clicks Next you get the following window, where you must enter a name for
your EJB (here CalcSession) and a name on a package (here calcejb.ejbs):

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

57

In addition, choose a Session Type where Stateless has been selected. Finally, Local has been
ticked. This means that an interface that defines the EJB is created. When here selected
Local, it means that it is an EJB that can be used by a web applications hosted on the
same application server (what will often be the case in practice) and, precisely, it means an
application performed by the same JVM as the EJB module. After clicking Finish, NetBeans
creates a class and interface:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

58

The class is as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

58

The class is as follows:

package calcejb.ejbs;

import javax.ejb.Stateless;

@Stateless
public	class	CalcSession	implements	CalcSessionLocal	
{
}

and you can partly see that it implements the interface and that it is decorated with an
annotation telling that it is a stateless session bean. The interface is an empty interface but
decorated with an annotation that tells you that it is a local session bean:

package calcejb.ejbs;

import	javax.ejb.Local;

@Local
public	interface	CalcSessionLocal	
{
}

Next, methods for the EJB class should be added. To do this, right-click on the class name
and choose Insert Code, and in the follow-up menu, choose Add Business Method, after which
you get the following window:

and you can partly see that it implements the interface and that it is decorated with an
annotation telling that it is a stateless session bean. The interface is an empty interface but
decorated with an annotation that tells you that it is a local session bean:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

58

The class is as follows:

package calcejb.ejbs;

import javax.ejb.Stateless;

@Stateless
public	class	CalcSession	implements	CalcSessionLocal	
{
}

and you can partly see that it implements the interface and that it is decorated with an
annotation telling that it is a stateless session bean. The interface is an empty interface but
decorated with an annotation that tells you that it is a local session bean:

package calcejb.ejbs;

import	javax.ejb.Local;

@Local
public	interface	CalcSessionLocal	
{
}

Next, methods for the EJB class should be added. To do this, right-click on the class name
and choose Insert Code, and in the follow-up menu, choose Add Business Method, after which
you get the following window:

Next, methods for the EJB class should be added. To do this, right-click on the class name
and choose Insert Code, and in the follow-up menu, choose Add Business Method, after which
you get the following window:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

5959

Hereafter, NetBeans adds a method to the CalcSession class. The advantage of using the
above tool is that it also updates the interface, which, of course, can also be done manually.
Below is the completed interface that defines 5 methods:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

5959

Hereafter, NetBeans adds a method to the CalcSession class. The advantage of using the
above tool is that it also updates the interface, which, of course, can also be done manually.
Below is the completed interface that defines 5 methods:

package calcejb.ejbs;

import	javax.ejb.Local;

@Local
public	interface	CalcSessionLocal	
{
	int	add(int	a,	int	b);
	int	sub(int	a,	int	b);
	int	mul(int	a,	int	b);
	int	div(int	a,	int	b);
	int	mod(int	a,	int	b);
}

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

60

end below the finished class, which implements all of the interface’s methods:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

60

end below the finished class, which implements all of the interface’s methods:

package calcejb.ejbs;

import javax.ejb.Stateless;

@Stateless
public	class	CalcSession	implements	CalcSessionLocal	
{
	@Override
	public	int	add(int	a,	int	b)	
 {
 return a + b;
 }

	@Override
	public	int	sub(int	a,	int	b)	
 {
 return a – b;
 }

	@Override
	public	int	mul(int	a,	int	b)	
 {
 return a * b;
 }

	@Override
	public	int	div(int	a,	int	b)	
 {
 try
 {
 return a / b;
 }
	 catch	(Exception	ex)
 {
	 return	0;
 }
 }

	@Override
	public	int	mod(int	a,	int	b)	
 {
 try
 {
	 return	a	%	b;
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

61

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

61

	 catch	(Exception	ex)
 {
	 return	0;
 }
 }
}

Now my session bean is complete, and then the client must be written. First, I have added
a named bean called CalcBean (to the package calcejb.beans). After I’ve added the class, I
have right-clicked on the class name and selected Insert Code and here again Call Enterprise
Bean, after which the result is:

package calcejb.beans;

import	calcejb.ejbs.CalcSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;

@Named(value	=	"calcBean")
@SessionScoped
public	class	CalcBean	implements	Serializable	
{
	@EJB
	private	CalcSessionLocal	calcSession;
	public	CalcBean()	
 {
 }
}

That is, a reference has been made to the EJB module, and the important thing here is
that it is decorated with @EJB. This means that the relevant session bean can be used by
the class’s methods. The finished name bean is as follows:

package calcejb.beans;

import	calcejb.ejbs.CalcSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;

@Named(value	=	"calcBean")
@SessionScoped

Now my session bean is complete, and then the client must be written. First, I have added
a named bean called CalcBean (to the package calcejb.beans). After I’ve added the class, I
have right-clicked on the class name and selected Insert Code and here again Call Enterprise
Bean, after which the result is:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

61

	 catch	(Exception	ex)
 {
	 return	0;
 }
 }
}

Now my session bean is complete, and then the client must be written. First, I have added
a named bean called CalcBean (to the package calcejb.beans). After I’ve added the class, I
have right-clicked on the class name and selected Insert Code and here again Call Enterprise
Bean, after which the result is:

package calcejb.beans;

import	calcejb.ejbs.CalcSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;

@Named(value	=	"calcBean")
@SessionScoped
public	class	CalcBean	implements	Serializable	
{
	@EJB
	private	CalcSessionLocal	calcSession;
	public	CalcBean()	
 {
 }
}

That is, a reference has been made to the EJB module, and the important thing here is
that it is decorated with @EJB. This means that the relevant session bean can be used by
the class’s methods. The finished name bean is as follows:

package calcejb.beans;

import	calcejb.ejbs.CalcSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;

@Named(value	=	"calcBean")
@SessionScoped

That is, a reference has been made to the EJB module, and the important thing here is
that it is decorated with @EJB. This means that the relevant session bean can be used by
the class’s methods. The finished name bean is as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

61

	 catch	(Exception	ex)
 {
	 return	0;
 }
 }
}

Now my session bean is complete, and then the client must be written. First, I have added
a named bean called CalcBean (to the package calcejb.beans). After I’ve added the class, I
have right-clicked on the class name and selected Insert Code and here again Call Enterprise
Bean, after which the result is:

package calcejb.beans;

import	calcejb.ejbs.CalcSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;

@Named(value	=	"calcBean")
@SessionScoped
public	class	CalcBean	implements	Serializable	
{
	@EJB
	private	CalcSessionLocal	calcSession;
	public	CalcBean()	
 {
 }
}

That is, a reference has been made to the EJB module, and the important thing here is
that it is decorated with @EJB. This means that the relevant session bean can be used by
the class’s methods. The finished name bean is as follows:

package calcejb.beans;

import	calcejb.ejbs.CalcSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;

@Named(value	=	"calcBean")
@SessionScoped

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

6262

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

6262

public	class	CalcBean	implements	Serializable	
{
	@EJB
	private	CalcSessionLocal	calcSession;

	private	int	value1;
	private	int	value2;
	private	int	value3;

	public	CalcBean()	
 {
 }

	public	int	getValue1()	{
	 return	value1;
 }

	public	void	setValue1(int	value1)	{
	 this.value1	=	value1;
 }

http://s.bookboon.com/Subscrybe

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

63

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

63

	public	int	getValue2()	{
	 return	value2;
 }

	public	void	setValue2(int	value2)	{
	 this.value2	=	value2;
 }

	public	int	getValue3()	{
	 return	value3;
 }

	public	void	setValue3(int	value3)	{
	 this.value3	=	value3;
 }

	public	void	clear()
 {
	 value1	=	0;
	 value2	=	0;
	 value3	=	0;
 }

	public	void	addition()
 {
	 value3	=	calcSession.add(value1,	value2);
 }

	public	void	subtract()
 {
	 value3	=	calcSession.sub(value1,	value2);
 }

	public	void	multiply()
 {
	 value3	=	calcSession.mul(value1,	value2);
 }

	public	void	divide()
 {
	 value3	=	calcSession.div(value1,	value2);
 }

	public	void	modolus()
 {
	 value3	=	calcSession.mod(value1,	value2);
 }
}

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

64

and the code does not require further explanations. However, note how the class’s methods
refer to the calcSession object, as it was any other object.

I have then deleted the page index.html and created a JSF page with the same name (index.
xhtml) and I have entered the following code:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

64

and the code does not require further explanations. However, note how the class’s methods
refer to the calcSession object, as it was any other object.

I have then deleted the page index.html and created a JSF page with the same name (index.
xhtml) and I have entered the following code:

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h1>Calculations</h1>
	 <h:form>
	 <p>
	 <h:inputText	value="#{calcBean.value1}"	/>
	 <h:inputText	value="#{calcBean.value2}"	/> =
	 <h:inputText	value="#{calcBean.value3}"	/>
	 </p>
	 <p>
	 <h:commandButton	value="CLR"	action="#{calcBean.clear()}"	/>
	 <h:commandButton	value="ADD"	action="#{calcBean.addition()}"	/>
	 <h:commandButton	value="SUB"	action="#{calcBean.subtract()}"	/>
	 <h:commandButton	value="MUL"	action="#{calcBean.multiply()}"	/>
	 <h:commandButton	value="DIV"	action="#{calcBean.divide()}"	/>
	 <h:commandButton	value="MOD"	action="#{calcBean.modolus()}"	/>
	 </p>
	 </h:form>
	</h:body>
</html>

Here’s nothing new to explain and you should notice that my named bean is used in the
usual way.

After the code is written, you must build the projects. Then right-click on the name for
enterprice application CalcEJB and select deploy. If you right-click again and click Run,
you get the following window:

Here’s nothing new to explain and you should notice that my named bean is used in the
usual way.

After the code is written, you must build the projects. Then right-click on the name for
enterprice application CalcEJB and select deploy. If you right-click again and click Run,
you get the following window:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

6565

where values are entered in the first two input fields and the clicked on ADD.

3.1 A STATEFUL SESSION BEAN

In this section I will show an example of a stateful session bean. In fact, it is developed
precisely in the same way as above, but it retains the value of instance variables between
the individual calls of methods. When a stateless or stateful session bean is hosted on the

http://s.bookboon.com/volvo

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

66

server (deployed), the server will create a number of instances of the session bean, which is
commonly referred to as an EJB pool. When a client wants to use an instance of an EJB,
the Glassfish server uses an instance from the pool and gives the client a reference. The
goal of this process is of course performance, as it takes a relatively long time to create an
instance of an EJB. Is it a stateful session bean, the server maintains a conversation with the
client, so it constantly uses the same instance. This is not the case with a stateless session
bean, and for every call of a method there is no guarantee that it is the same instance that
is used. Immediately, it would seem beneficial to use stateful session beans, but for the server
there is an overhead to maintain the state, and therefore should stateful session beans only
be used if there is a need.

The current example opens the following window where is 200 entered as the index and
the clicked on SHOW:

The fibonacci numbers are as known

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

and indexes from 0, the above window shows the fibonacci number with index 200. The
PREV and NEXT buttons are used to change a number back or forth.

To write the program, I have started with an Enterprise Application project named FiboEJB
and said that project must contain an EJB Module and a Web Application – just the same
as in the first project. Next to the EJB module – FiboEJB-ejb – is added a session bean
called FiboSession. Also, it happens as in the first project with only one exception that I
have saying it should be a stateful session bean, but otherwise, as in the first example, it
should have a local interface.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

67

I have then written the interface, but this time I’ve done it manually without using NetBeans
to create the necessary methods:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

67

I have then written the interface, but this time I’ve done it manually without using NetBeans
to create the necessary methods:

package	fiboejb.ejbs;

import	javax.ejb.Local;

@Local
public	interface	FiboSessionLocal	
{
	int	getIndex();
	void	setIndex(int	index)	throws	Exception;
	Object	getValue();
	void	next();
	void	prev()	throws	Exception;
}

The meaning of the individual methods should be explained in the explanation of the above
browser window, but you should note that two of the methods can raise an exception and that
the method getValue() returns an Object – the method returns the current fibonacci number.

The implementation is the following, where the code is written manually:

package	fiboejb.ejbs;

import javax.ejb.Stateful;

import	java.math.BigInteger;

@Stateful
public	class	FiboSession	implements	FiboSessionLocal	
{
	private	int	index	=	0;
	private	BigInteger	value1	=	BigInteger.ZERO;
	private	BigInteger	value2	=	BigInteger.ZERO;

	@Override
	public	int	getIndex()	
 {
 return index;
 }

	@Override
	public	void	setIndex(int	index)	throws	Exception
 {
	 if	(index	<	0)	throw	new	Exception("Index	must	be	none	negative");
	 while	(this.index	>	index)	prev();

The meaning of the individual methods should be explained in the explanation of the above
browser window, but you should note that two of the methods can raise an exception and that
the method getValue() returns an Object – the method returns the current fibonacci number.

The implementation is the following, where the code is written manually:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

67

I have then written the interface, but this time I’ve done it manually without using NetBeans
to create the necessary methods:

package	fiboejb.ejbs;

import	javax.ejb.Local;

@Local
public	interface	FiboSessionLocal	
{
	int	getIndex();
	void	setIndex(int	index)	throws	Exception;
	Object	getValue();
	void	next();
	void	prev()	throws	Exception;
}

The meaning of the individual methods should be explained in the explanation of the above
browser window, but you should note that two of the methods can raise an exception and that
the method getValue() returns an Object – the method returns the current fibonacci number.

The implementation is the following, where the code is written manually:

package	fiboejb.ejbs;

import javax.ejb.Stateful;

import	java.math.BigInteger;

@Stateful
public	class	FiboSession	implements	FiboSessionLocal	
{
	private	int	index	=	0;
	private	BigInteger	value1	=	BigInteger.ZERO;
	private	BigInteger	value2	=	BigInteger.ZERO;

	@Override
	public	int	getIndex()	
 {
 return index;
 }

	@Override
	public	void	setIndex(int	index)	throws	Exception
 {
	 if	(index	<	0)	throw	new	Exception("Index	must	be	none	negative");
	 while	(this.index	>	index)	prev();

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

6868

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

6868

	 while	(this.index	<	index)	next();
 }

	@Override
	public	Object	getValue()	
 {
	 return	value2;
 }

	@Override
	public	void	next()	
 {
	 if	(index	==	0)
 {
	 value1	=	BigInteger.ZERO;
	 value2	=	BigInteger.ONE;
	 index	=	1;
 }
 else
 {
	 BigInteger	value3	=	value1.add(value2);
	 value1	=	value2;
	 value2	=	value3;

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

69

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

69

 ++index;
 }
 }

	@Override
	public	void	prev()	throws	Exception	
 {
	 if	(index	==	0)	throw	new	Exception("Index	is	0");
	 if	(index	==	1)
 {
	 value2	=	BigInteger.ZERO;
	 index	=	0;
 }
 else
 {
	 BigInteger	value3	=	value2.subtract(value1);
	 value2	=	value1;
	 value1	=	value3;
	 --index;
 }
 }
}

First, note that an annotation indicates that it is a stateful session bean. Otherwise, the code
should be easy enough to understand, but in addition to showing an example of a stateful
session bean, the goal is to show a bean that uses a not simple type (here BigInteger), as
well as an example of non trivial algorithms.

Then the session bean in question is finished. To write the client I have started with a named
bean that uses the above session bean. I have created a named bean named FiboBean, and
then I have used NetBeans to create a reference to an EJB instance – just the same as in
the first example. The finished bean is shown below:

package	fiboejb.beans;

import	fiboejb.ejbs.FiboSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;
import java.math.*;

@Named(value	=	"fiboBean")
@SessionScoped
public	class	FiboBean	implements	Serializable	
{

First, note that an annotation indicates that it is a stateful session bean. Otherwise, the code
should be easy enough to understand, but in addition to showing an example of a stateful
session bean, the goal is to show a bean that uses a not simple type (here BigInteger), as
well as an example of non trivial algorithms.

Then the session bean in question is finished. To write the client I have started with a named
bean that uses the above session bean. I have created a named bean named FiboBean, and
then I have used NetBeans to create a reference to an EJB instance – just the same as in
the first example. The finished bean is shown below:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

69

 ++index;
 }
 }

	@Override
	public	void	prev()	throws	Exception	
 {
	 if	(index	==	0)	throw	new	Exception("Index	is	0");
	 if	(index	==	1)
 {
	 value2	=	BigInteger.ZERO;
	 index	=	0;
 }
 else
 {
	 BigInteger	value3	=	value2.subtract(value1);
	 value2	=	value1;
	 value1	=	value3;
	 --index;
 }
 }
}

First, note that an annotation indicates that it is a stateful session bean. Otherwise, the code
should be easy enough to understand, but in addition to showing an example of a stateful
session bean, the goal is to show a bean that uses a not simple type (here BigInteger), as
well as an example of non trivial algorithms.

Then the session bean in question is finished. To write the client I have started with a named
bean that uses the above session bean. I have created a named bean named FiboBean, and
then I have used NetBeans to create a reference to an EJB instance – just the same as in
the first example. The finished bean is shown below:

package	fiboejb.beans;

import	fiboejb.ejbs.FiboSessionLocal;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import	javax.ejb.EJB;
import java.math.*;

@Named(value	=	"fiboBean")
@SessionScoped
public	class	FiboBean	implements	Serializable	
{

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

70

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

70

	@EJB
	private	FiboSessionLocal	fiboSession;

	public	FiboBean()	
 {
 }

	public	int	getIndex()
 {
	 return	fiboSession.getIndex();
 }

	public	void	setIndex(int	index)	throws	Exception
 {
	 fiboSession.setIndex(index);
 }

	public	BigInteger	getValue()
 {
	 return	(BigInteger)fiboSession.getValue();
 }

	public	void	next()
 {
	 fiboSession.next();
 }

	public	void	prev()	throws	Exception
 {
	 fiboSession.prev();
 }
}

The class is simple and consists primarily of methods that delegate work to the EJB instance.
The example shows in many ways the use of enterprice java beans as objects that encapsulate
business logic and move it away from named beans used as controller for the user interface.
In this way, you simplify the individual named beans.

Finally, there is the code for index.xhtml, which contains no new, and which I do not want
to show here.

The class is simple and consists primarily of methods that delegate work to the EJB instance.
The example shows in many ways the use of enterprice java beans as objects that encapsulate
business logic and move it away from named beans used as controller for the user interface.
In this way, you simplify the individual named beans.

Finally, there is the code for index.xhtml, which contains no new, and which I do not want
to show here.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

7171

3.2 A REMOTE SINGLETON SESSION BEAN

In the first two examples, both the session bean and the client application have been part
of the same enterprise application. In this section I will show an example of a session bean
developed as single module and deployed independently to the server. Next, the example
will include a common web application that is developed independently of the above bean,
but uses the session bean. This means that the application and the bean could be hosted
on each application server.

The actual session bean should also be written as a singleton – primarily to show how. A
singleton session bean is a session bean, where there is exactly one instance per. application
server. A typical application is a bean that must initialize some data exactly once, which
should otherwise be available throughout the entire life of the application. Often, the data
in question is initialized from a database, and you want to decorate a method with @
PostConstruct, where data can be initialized. It is not currently used in the present case as
data is hard-coded to make the current bean simple.

In the same way as in the previous two examples I start of creating an Enterprise Application
project named KingsEJB, and when I get to the Server and Settings window, I have cleared
the Create Web Application Module:

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

72

When you click Finish, NetBeans creates an enterprise application, but only with an EJB
module. This time there must be remote access to the EJB, and it must therefore be defined
with an interface. As a next step, I have therefore created a conventional Class Library project
called KingsEJBRemote.

An enterprise java bean must now be written, and it must have two services, both returning
an array of strings. The first must return the name of the Danish kings who ruled the year
in question (there may be two kings if the year is the year of a change of faith) on the basis
of a year. The other must work in the same way, but there must be two years as parameters,
and the method must return the names of all kings that have ruled within that period. To
create this bean, I have right-clicked the KingsEJB-ejb module and selected Session Bean.
You will then get the following window where I have entered the name KingsSession as the
package name kingsejb.ejbs. In addition, I have chosen it to be a Singleton. Finally, it has been
stated that both a Local and a Remote Interface must be created. When checking Remote,
select the class library that will contain the interface, and in this case it is KingsEJBRemote.
For the current example, there is no need for a Local interface, and when I have chosen it,
it is only to show that a session bean can have both a Local and a Remote Interface.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

73

After clicking Finish, NetBeans has created the desired session bean as well as both interfaces:

Next, two methods should be added. I have right-clicked the name of the class KingsSession
and selected Insert Code and here again selected Add Business Method (see the window below).
The first method must be called getKing, and should return an array of strings and have a
single parameter of the type int. At the bottom I clicked on the last radio button, which
says that both interfaces should be used. You should note that NetBeans provides a warning
that the method will get the same name in the two interfaces.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

7474

When you click OK, NetBeans will create the method and insert a prototype into both
interfaces. For the sake of the above warning I have renamed them to respectively

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

75

getKingLocal(int year)
getKingRemote(int year)

and the consequence is that the KingsSession class must implement both methods. The other
service must be defined accordingly, and as an example, I have shown the KingsSessionRemote
interface below:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

75

getKingLocal(int year)
getKingRemote(int year)

and the consequence is that the KingsSession class must implement both methods. The other
service must be defined accordingly, and as an example, I have shown the KingsSessionRemote
interface below:

package kingsejb.ejbs;

import	javax.ejb.Remote;

@Remote
public	interface	KingsSessionRemote	
{
	String[]	getKingRemote(int	year);
	String[]	getKingsRemote(int	year1,	int	year2);
}

The methods must be implemented in the KingsSession class, where I have only shown a
few data lines:

package kingsejb.ejbs;

import javax.ejb.Singleton;
import java.util.*;

@Singleton
public	class	KingsSession	implements	KingsSessionRemote,	KingsSessionLocal	
{
	@Override
	public	String[]	getKingRemote(int	year)	
 {
	 return	getKing(year);
 }

	@Override
	public	String[]	getKingsRemote(int	year1,	int	year2)	
 {
	 return	getKings(year1,	year2);
 }

	@Override
	public	String[]	getKingLocal(int	year)	
 {
	 return	getKing(year);
 }

The methods must be implemented in the KingsSession class, where I have only shown a
few data lines:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

75

getKingLocal(int year)
getKingRemote(int year)

and the consequence is that the KingsSession class must implement both methods. The other
service must be defined accordingly, and as an example, I have shown the KingsSessionRemote
interface below:

package kingsejb.ejbs;

import	javax.ejb.Remote;

@Remote
public	interface	KingsSessionRemote	
{
	String[]	getKingRemote(int	year);
	String[]	getKingsRemote(int	year1,	int	year2);
}

The methods must be implemented in the KingsSession class, where I have only shown a
few data lines:

package kingsejb.ejbs;

import javax.ejb.Singleton;
import java.util.*;

@Singleton
public	class	KingsSession	implements	KingsSessionRemote,	KingsSessionLocal	
{
	@Override
	public	String[]	getKingRemote(int	year)	
 {
	 return	getKing(year);
 }

	@Override
	public	String[]	getKingsRemote(int	year1,	int	year2)	
 {
	 return	getKings(year1,	year2);
 }

	@Override
	public	String[]	getKingLocal(int	year)	
 {
	 return	getKing(year);
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

76

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

76

	@Override
	public	String[]	getKingsLocal(int	year1,	int	year2)	
 {
	 return	getKings(year1,	year2);
 }

	private	String[]	getKing(int	year)	
 {
	 List<String>	list	=	new	ArrayList();
	 for	(String[]	king	:	names)
 {
	 int	a	=	king[1].length()	>	0	?	Integer.parseInt(king[1])	:	0;
	 int	b	=	king[2].length()	>	0	?	Integer.parseInt(king[2])	:	9999;
	 if	(a	<=	year	&&	year	<=	b)	list.add(king[0]);
 }
	 String[]	arr	=	new	String[list.size()];
	 return	list.toArray(arr);
 }

	private	String[]	getKings(int	year1,	int	year2)	
 {
	 List<String>	list	=	new	ArrayList();
	 for	(String[]	king	:	names)
 {
	 int	a	=	king[1].length()	>	0	?	Integer.parseInt(king[1])	:	0;
	 int	b	=	king[2].length()	>	0	?	Integer.parseInt(king[2])	:	9999;
	 if	(year2	>=	a	&&	year1	<=	b)	list.add(king[0]);
 }
	 String[]	arr	=	new	String[list.size()];
	 return	list.toArray(arr);
 }

	private	static	String[][]	names	=	{
	 {	"Gorm	den	Gamle",	"",	"958"	},
	 {	"Harald	Blåtand",	"958",	"986"	},
	 {	"Svend	Tveskæg",	"986",	"1014"	},
 …
	 {	"Margrethe	d.	2.",	"1972",	""	}
 };
}

There is nothing new about this session bean except that it is defined as a Singleton session
bean. Note, however, that the class implements both interfaces, thus implementing all
four methods.

The EJB module is complete and can be translated and then it can be deployed to the server.

There is nothing new about this session bean except that it is defined as a Singleton session
bean. Note, however, that the class implements both interfaces, thus implementing all
four methods.

The EJB module is complete and can be translated and then it can be deployed to the server.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

7777

Then there is the client application, where I have created a usual Web Application project
named KingsClient. In order for the application to refer to KingsSession, it must know the
definition of the KingsSessionRemote interface. I have therefore added the jar file with this
interface to the project. As the next step I have defined a named bean:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

7777

Then there is the client application, where I have created a usual Web Application project
named KingsClient. In order for the application to refer to KingsSession, it must know the
definition of the KingsSessionRemote interface. I have therefore added the jar file with this
interface to the project. As the next step I have defined a named bean:

package kingsclient.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.util.*;
import	javax.ejb.EJB;
import	kingsejb.ejbs.KingsSessionRemote;

@Named(value	=	"kingsBean")
@SessionScoped
public	class	KingsBean	implements	java.io.Serializable
{
	@EJB
	private	KingsSessionRemote	kingsSession;

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

78

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

78

	private	int	year1;
	private	int	year2;
	private	List<String>	names	=	new	ArrayList();

	public	KingsBean()	{
 }

	public	int	getYear1()	{
	 return	year1;
 }

	public	void	setYear1(int	year1)	{
	 this.year1	=	year1;
 }

	public	int	getYear2()	{
	 return	year2;
 }

	public	void	setYear2(int	year2)	{
	 this.year2	=	year2;
 }

	public	List<String>	getNames()
 {
 return names;
 }

	public	void	search()
 {
	 String[]	arr	=	year2	>	0	?	kingsSession.getKingsRemote(year1,	year2)	:
	 kingsSession.getKingRemote(year1);
	 names.clear();
	 for	(String	name	:	arr)	names.add(name);
 }
}

Also, here is not much news, but note that the class uses the EJB module KingsEJB. It
happens as in the previous examples by right-clicking on the name of the class, choosing
Insert Code, and then Call Enterprise Bean. The relevant bean is used in the method Search().

If you perform the application (opens it in the browser), you get the following window,
which has been applied to all kings ruling from 1200 to 1300:

Also, here is not much news, but note that the class uses the EJB module KingsEJB. It
happens as in the previous examples by right-clicking on the name of the class, choosing
Insert Code, and then Call Enterprise Bean. The relevant bean is used in the method Search().

If you perform the application (opens it in the browser), you get the following window,
which has been applied to all kings ruling from 1200 to 1300:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

79

I do not want to display the code for index.xhtml as it does not shows anything new.

EXERCISE 2

In this exercise, write a program that performs almost the same as the example above, where
you can search for Danish kings, but the user interface needs to be changed so that it also
shows the rule period:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

8080

Start creating a new project that you can call KingsEJB-ejb, but this time it should not be
an Enterprise Application project, but an EJB Module project:

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

81

Next, you should create a usual Class Library project, as you can call KingsEJBRemote. For
this library you must in a package kingsejb.ejbs add the following class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

81

Next, you should create a usual Class Library project, as you can call KingsEJBRemote. For
this library you must in a package kingsejb.ejbs add the following class:

package kingsejb.ejbs;

import	javax.ejb.Remote;

@Remote
public class King implements java.io.Serializable
{
 private String name;
 private int from;
 private int to;

	public	King(String	name,	int	from,	int	to)	
 {
	 this.name	=	name;
	 this.from	=	from;
	 this.to	=	to;
 }

	public	String	getName()
 {
 return name;
 }

	public	int	getFrom()
 {
 return from;
 }

	public	int	getTo()
 {
 return to;
 }
}

which represents a king. Basically, it’s a common Java class, but you should note that it is
decorated with @Remote and is serializable, which means that objects of this type can be
sent to clients over a network.

To KingsEJB-ejb, you should add a singleton session bean called KingsSession with a remote
interface (but this time no local interface) as in the previous example. The interface must
be created in your class library and the content must be:

which represents a king. Basically, it’s a common Java class, but you should note that it is
decorated with @Remote and is serializable, which means that objects of this type can be
sent to clients over a network.

To KingsEJB-ejb, you should add a singleton session bean called KingsSession with a remote
interface (but this time no local interface) as in the previous example. The interface must
be created in your class library and the content must be:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

82

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

82

package kingsejb.ejbs;

import	javax.ejb.Remote;
import	java.util.List;

@Remote
public	interface	KingsSessionRemote	extends	java.io.Serializable
{
	List<King>	getKing(int	year);
	List<King>	getKings(int	year1,	int	year2);
}

The difference is that the two methods this time returns a list of King objects rather than
strings. It is exactly the purpose of the exercise to show how to write a session bean, which
returns custom types instead of simple java types and strings. The procedure is that the type
must be defined serializable in the remote interface and decorated with @Remote.

You must then implement KingsSession, which should essentially be a copy of the class
from the previous example, with the difference that the two methods will return lists of
King objects.

Finally, you must implement the user interface, which is almost identical to the previous
example, but as shown above, the table has three columns, and the KingsBean class must be
changed slightly corresponding to the new session bean. Finally, add a converter, so years
that are unknown (are 0) are shown as blank.

3.3 EJB AND JPA

In this section I will show an application that creates objects and stores them in a database
when database operations are to be performed in an EJB using JPA. As an example, I will
use the form for entering addresses, and compared to the last version of the previous chapter,
it is only a question that the code for saving data and retrieving data has been moved from
the controller to a session bean.

I have started with an Enterprise Application project with a single EJB module and a Web
Application:

The difference is that the two methods this time returns a list of King objects rather than
strings. It is exactly the purpose of the exercise to show how to write a session bean, which
returns custom types instead of simple java types and strings. The procedure is that the type
must be defined serializable in the remote interface and decorated with @Remote.

You must then implement KingsSession, which should essentially be a copy of the class
from the previous example, with the difference that the two methods will return lists of
King objects.

Finally, you must implement the user interface, which is almost identical to the previous
example, but as shown above, the table has three columns, and the KingsBean class must be
changed slightly corresponding to the new session bean. Finally, add a converter, so years
that are unknown (are 0) are shown as blank.

3.3 EJB AND JPA

In this section I will show an application that creates objects and stores them in a database
when database operations are to be performed in an EJB using JPA. As an example, I will
use the form for entering addresses, and compared to the last version of the previous chapter,
it is only a question that the code for saving data and retrieving data has been moved from
the controller to a session bean.

I have started with an Enterprise Application project with a single EJB module and a Web
Application:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

8383

I have then added an entity class that represents the Address table in database addresses. The
class is identical to what is shown in the previous chapter and is not showed here. Next, I
have added a stateless session bean called AddressSession and with a local interface:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

8383

I have then added an entity class that represents the Address table in database addresses. The
class is identical to what is shown in the previous chapter and is not showed here. Next, I
have added a stateless session bean called AddressSession and with a local interface:

package addressejb.beans;

import	javax.ejb.Local;
import	java.util.List;

@Local
public	interface	AddressSessionLocal	
{
	void	save(Address	address)	throws	Exception;
	List<Address>	getAddresses();
}

Then there is the bean class itself, which implements the interface:

package addressejb.beans;

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

84

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

84

import java.util.*;
import javax.ejb.Stateless;
import javax.persistence.*;

@Stateless
public	class	AddressSession	implements	AddressSessionLocal	
{
	@Override
	public	void	save(Address	address)	throws	Exception
 {
	 EntityManager	em	=	null;
 try
 {
	 em	=	Persistence.createEntityManagerFactory(
	 "AddressEJB-ejbPU").createEntityManager();
	 em.getTransaction().begin();
	 em.persist(address);
	 em.getTransaction().commit();
 }
	 catch	(Exception	ex)
 {
	 throw	new	Exception();
 }
	 finally
 {
	 if	(em	!=	null)	em.close();	
 }
 }

	@Override
	public	List<Address>	getAddresses()
 {
	 List<Address>	list;
	 EntityManager	em	=	null;
 try
 {
	 em	=	Persistence.createEntityManagerFactory(
	 "AddressEJB-ejbPU").createEntityManager();
	 list	=	em.createNamedQuery("Address.findAll").getResultList();
 }
	 catch	(Exception	ex)
 {
	 list	=	new	ArrayList();
 }
	 finally
 {
	 if	(em	!=	null)	em.close();	
 }
 return list;
 }
}

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

85

This time, an EntityManager is created directly without the use of injection (see next chapter).
It requires that I know the persistence unit name, as shown by persistence.xml. In particular,
note the method save() that uses an EntityTransaction and how to start this transaction. Also
note the method getAddresses() that uses a NamedQuery. It was created by NetBeans in the
class Address. The result is that AddressSession is a stateless session bean that encapsulates the
necessary logic to update the database and execute queries. The following named bean for
the user interface thus becomes similarly simpler as it delegates the work to AddressSession:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

85

This time, an EntityManager is created directly without the use of injection (see next chapter).
It requires that I know the persistence unit name, as shown by persistence.xml. In particular,
note the method save() that uses an EntityTransaction and how to start this transaction. Also
note the method getAddresses() that uses a NamedQuery. It was created by NetBeans in the
class Address. The result is that AddressSession is a stateless session bean that encapsulates the
necessary logic to update the database and execute queries. The following named bean for
the user interface thus becomes similarly simpler as it delegates the work to AddressSession:

package addressejb.beans;

import	javax.ejb.EJB;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import	java.util.List;

@Named(value	=	"addressBean")
@SessionScoped
public	class	AddressBean	implements	java.io.Serializable
{
	@EJB
	private	AddressSessionLocal	addressSession;

	private	Address	address	=	new	Address();
	private	List<Address>	addresses;

	public	AddressBean()	{
 }

	public	Address	getAddress()
 {
 return address;
 }

	public	void	setAddress(Address	address)
 {
	 this.address	=	address;
 }

	public	List<Address>	getAddresses()
 {
	 return	addresses	=	addressSession.getAddresses();
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

8686

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

8686

	public	void	save()
 {
 try
 {
	 addressSession.save(address);
	 address	=	new	Address();
 }
	 catch	(Exception	ex)
 {
 }
 }
}

Back there are index.xhtml and list.xhtml, and the pages are essentially unchanged with
the difference that the bean references have been changed. I do not want to show the two
pages here.

Back there are index.xhtml and list.xhtml, and the pages are essentially unchanged with
the difference that the bean references have been changed. I do not want to show the two
pages here.

http://s.bookboon.com/elearningforkids

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

87

EXERCISE 3

In this exercise you must solve the same exercise as in the previous exercise, but with the
difference that the kings should be loaded from a database. The database padata has a table
history that contains information about Danish kings. If the table does not exist, you can
see in the book Java 6 how to create this table – the book’s examples contains scripts that
creates and initializes the table. To solve the exercise, you can proceed as follows:

1. Create a new Enterprise Application project called HistoryEJB, which should only
have an EJB module. NetBeans creates the HistoryEJB-ejb module.

2. Create a Class Library project, which you can call HistoryEJBRemote. In addition,
add the class King from the previous exercise.

3. Add a stateful session bean called HistorySession to HistoryEJB-ejb when it should
have a remote interface that is added to HistoryEJBRemote. The interface should
be the same as in the previous exercise (two methods that return a List<King>).
The implementation must have an instance variable of the type List<King> and
you must initialize it in a @PostConstruct method by loading data from the table
history in the database. This you can do easy in the same way as in the previous
example to create an Entity Class from Database.

4. Translate and deploy HistoryEJB.
5. Create a client, which is basically the same client as in exercise 2.
6. Test the application and that all is working.

3.4 TRANSACTIONS

One of the major advantages of using enterpris java beans is that an EJB uses transactions,
which generally means that the changes a method are performed, if all are executed correctly,
otherwise nothing is done corresponding to a rollback. The latter is the case if there is an
exception. Immediately, it’s fine, but it’s not obvious how it works if a method is called
while a transaction is in progress. Should the method be part of the current transaction,
must the existing transaction be suspended while creating a new transaction for the new
method call? Due to such questions, it is possible to configure how transactions should
work. This happens with an annotation @TransactionAttribute:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

87

EXERCISE 3

In this exercise you must solve the same exercise as in the previous exercise, but with the
difference that the kings should be loaded from a database. The database padata has a table
history that contains information about Danish kings. If the table does not exist, you can
see in the book Java 6 how to create this table – the book’s examples contains scripts that
creates and initializes the table. To solve the exercise, you can proceed as follows:

1. Create a new Enterprise Application project called HistoryEJB, which should only
have an EJB module. NetBeans creates the HistoryEJB-ejb module.

2. Create a Class Library project, which you can call HistoryEJBRemote. In addition,
add the class King from the previous exercise.

3. Add a stateful session bean called HistorySession to HistoryEJB-ejb when it should
have a remote interface that is added to HistoryEJBRemote. The interface should
be the same as in the previous exercise (two methods that return a List<King>).
The implementation must have an instance variable of the type List<King> and
you must initialize it in a @PostConstruct method by loading data from the table
history in the database. This you can do easy in the same way as in the previous
example to create an Entity Class from Database.

4. Translate and deploy HistoryEJB.
5. Create a client, which is basically the same client as in exercise 2.
6. Test the application and that all is working.

3.4 TRANSACTIONS

One of the major advantages of using enterpris java beans is that an EJB uses transactions,
which generally means that the changes a method are performed, if all are executed correctly,
otherwise nothing is done corresponding to a rollback. The latter is the case if there is an
exception. Immediately, it’s fine, but it’s not obvious how it works if a method is called
while a transaction is in progress. Should the method be part of the current transaction,
must the existing transaction be suspended while creating a new transaction for the new
method call? Due to such questions, it is possible to configure how transactions should
work. This happens with an annotation @TransactionAttribute:

@Stateless
public	class	Helloworld
{
	@Override
	@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
	public	String	hello()	
 {

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

88

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

88

	 return	"Hello	World";
 }
}

where the value with TransactionAttribute indicates how the transactions will work. There
are the following options:

1. TransactionAttributeType.MANDATORY: The method can only be performed as
part of an existing transaction. If the method is called outside of a transaction, a
TransactionRequiredException exception is raised.

2. TransactionAttributeType.NEVER: If the method is called from a client, no transaction
is created. If the method is called as part of a transaction, a RemoteException
exception is raised.

3. TransactionAttributeType.NOT_SUPPORTED: If the method is called as part of an
existing transaction, it is suspended and the method is performed outside of the
transaction. If the method is called outside of a transaction, no transaction is created.

4. TransactionAttributeType.REQUIRED: If the method is performed as part of an
existing transaction, the method will be executed as part of this transaction. If the
method is called outside of an existing transaction, a new transaction will be created.

5. TransactionAttributeType.REQUIRES_NEW: If the method is called as part of an
existing transaction, it will be suspended and a new transaction will be created.
After the method is completed, the previous transaction will be resumed. If the
method is called outside of an existing transaction, a new transaction is created.

6. TransactionAttributeType.SUPPORTS: If the method is performed as part of an
existing transaction, it is performed as part of this transaction. If the method is
called outside of a transaction, no new transaction is initiated.

Above is shown how to decorate a method for transactions, but you can also decorate the
class and the decoration will then relate to all class’s methods.

3.5 INTERCEPTION

When performing a method in a session bean, one may sometimes be interested in an action
before the method is executed (when called) and immediately after the method has been
completed. The typical reason is debugging, for example, you can write to in the server’s
log file. As an example, I have added the following class to the AddressEJB-ejb project:

where the value with TransactionAttribute indicates how the transactions will work. There
are the following options:

1. TransactionAttributeType.MANDATORY: The method can only be performed as
part of an existing transaction. If the method is called outside of a transaction, a
TransactionRequiredException exception is raised.

2. TransactionAttributeType.NEVER: If the method is called from a client, no transaction
is created. If the method is called as part of a transaction, a RemoteException
exception is raised.

3. TransactionAttributeType.NOT_SUPPORTED: If the method is called as part of an
existing transaction, it is suspended and the method is performed outside of the
transaction. If the method is called outside of a transaction, no transaction is created.

4. TransactionAttributeType.REQUIRED: If the method is performed as part of an
existing transaction, the method will be executed as part of this transaction. If the
method is called outside of an existing transaction, a new transaction will be created.

5. TransactionAttributeType.REQUIRES_NEW: If the method is called as part of an
existing transaction, it will be suspended and a new transaction will be created.
After the method is completed, the previous transaction will be resumed. If the
method is called outside of an existing transaction, a new transaction is created.

6. TransactionAttributeType.SUPPORTS: If the method is performed as part of an
existing transaction, it is performed as part of this transaction. If the method is
called outside of a transaction, no new transaction is initiated.

Above is shown how to decorate a method for transactions, but you can also decorate the
class and the decoration will then relate to all class’s methods.

3.5 INTERCEPTION

When performing a method in a session bean, one may sometimes be interested in an action
before the method is executed (when called) and immediately after the method has been
completed. The typical reason is debugging, for example, you can write to in the server’s
log file. As an example, I have added the following class to the AddressEJB-ejb project:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

8989

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

8989

package addressejb.beans;

import	javax.interceptor.AroundInvoke;
import	javax.interceptor.InvocationContext;
import	java.lang.reflect.Method;

public	class	AddressInterceptor	
{
	@AroundInvoke
	public	Object	logMethodCall(InvocationContext	
invocationContext)	throws	Exception	
 {
	 Object	interceptedObject	=	invocationContext.getTarget();
	 Method	interceptedMethod	=	invocationContext.getMethod();
	 System.out.println("Entereding:	"	+	interceptedObject.getClass().getName()	+
	 "."	+	interceptedMethod.getName()	+	"()");
	 Object	obj	=	invocationContext.proceed();
	 System.out.println("Leaving:	"	+	interceptedObject.
getClass().getName()	+	"."	+
	 interceptedMethod.getName()	+	"()");
 return obj;
 }
}

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

90

It’s quite common Java class with a simple method and the first thing to notice is that the
method is decorated with an annotation. The method has an InvocationContext parameter
that provides more services. The method getTarget() returns the object that has performed the
method, while getMethod() returns an object representing the method in the interceptedObject
object that has been performed. Finally, there is the method proceed() which performs the
method interceptedMethod(). On both sides of the call to proceed(), a System.out.println()
is executed, which simply means writing a line in the Glassfish server’s log. The result is
that if a method performs logMethodCall(), a line is written in the log file, after which the
method is executed and the log file is written again.

The question is then how to get the method executed and it happens (of course) with an
annotation:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

90

It’s quite common Java class with a simple method and the first thing to notice is that the
method is decorated with an annotation. The method has an InvocationContext parameter
that provides more services. The method getTarget() returns the object that has performed the
method, while getMethod() returns an object representing the method in the interceptedObject
object that has been performed. Finally, there is the method proceed() which performs the
method interceptedMethod(). On both sides of the call to proceed(), a System.out.println()
is executed, which simply means writing a line in the Glassfish server’s log. The result is
that if a method performs logMethodCall(), a line is written in the log file, after which the
method is executed and the log file is written again.

The question is then how to get the method executed and it happens (of course) with an
annotation:

@Override
@Interceptors({AddressInterceptor.class})

public	void	save(Address	address)	throws	Exception
{
	EntityManager	em	=	null;
 try
 {
	 em	=	Persistence.createEntityManagerFactory("AddressEJB-ejbPU").
	 createEntityManager();
	 em.getTransaction().begin();
	 em.persist(address);
	 em.getTransaction().commit();
 }
	catch	(Exception	ex)
 {
	 throw	new	Exception();
 }
	finally
 {
	 if	(em	!=	null)	em.close();	
 }
}

That is, writing in the log file before creating an address and again after the database is updated.

3.6 A TIMER SERVICE

There is a special variant of a session bean that implements a timer. You can therefore have
the actual bean to perform an operation at certain intervals, for example, you can write in
the log file. In this case, I will write a session bean that determines the next prime every

That is, writing in the log file before creating an address and again after the database is updated.

3.6 A TIMER SERVICE

There is a special variant of a session bean that implements a timer. You can therefore have
the actual bean to perform an operation at certain intervals, for example, you can write in
the log file. In this case, I will write a session bean that determines the next prime every

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

91

half second. I start with an Enterprise Application project named PrimesEJB with an EJB
Module and a Web Application. For the EJB Module, I have added an EJB, but this time
it’s a Timer Session Bean:

You will then get the following window, where you should as usual must enter a name (here
PrimesSession) and a package (primesejb.ejbs). I have also selected that it must be a Singleton
and that a Local interface should be created:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

9292

Finally, I have set the time interval for when the timer has to tick. In this case, the pattern
means that the timer must tick every half-minute. After clicking Finish, NetBeans creates
the following class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

9292

Finally, I have set the time interval for when the timer has to tick. In this case, the pattern
means that the timer must tick every half-minute. After clicking Finish, NetBeans creates
the following class:

package primesejb.ejbs;

import javax.ejb.Schedule;
import javax.ejb.Singleton;

@Singleton
public	class	PrimesSession	implements	PrimesSessionLocal	
{
	@Schedule(hour	=	"*",	minute	=	"*",	second	=	"*/30")
	public	void	myTimer()	
 {
 }
}

as well as a defining interface. As can be seen, it is a usual session bean with the only
difference that a timer method has been created, with a @Schedule annotation defining that
it is a timer function and how often it should tick. The finished interface is:

as well as a defining interface. As can be seen, it is a usual session bean with the only
difference that a timer method has been created, with a @Schedule annotation defining that
it is a timer function and how often it should tick. The finished interface is:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

93

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

93

package primesejb.ejbs;

import	javax.ejb.Local;
import	java.math.BigInteger;

@Local
public	interface	PrimesSessionLocal	
{
	public	void	myTimer();
	public	void	reset();
	public	BigInteger	getPrime();
	public	int	getIndex();
}

where in addition to the timer, three methods are defined. The class PrimesSession will
implement the interface:

package primesejb.ejbs;

import	java.math.BigInteger;
import javax.ejb.Schedule;
import javax.ejb.Singleton;

@Singleton
public	class	PrimesSession	implements	PrimesSessionLocal	
{
	private	BigInteger	two	=	new	BigInteger("2");
	private	BigInteger	prime	=	new	BigInteger("2");
	private	int	index	=	0;

	@Schedule(hour	=	"*",	minute	=	"*",	second	=	"*/30")
	public	void	myTimer()	
 {
	 if	(prime.equals(two))	prime	=	new	BigInteger("3");
 else
 {
	 prime	=	prime.add(two);
	 while	(!prime.isProbablePrime(50))	prime	=	prime.add(two);
 }
 ++index;
 }

	public	void	reset()
 {
	 prime	=	two;
	 index	=	0;
 }

where in addition to the timer, three methods are defined. The class PrimesSession will
implement the interface:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

93

package primesejb.ejbs;

import	javax.ejb.Local;
import	java.math.BigInteger;

@Local
public	interface	PrimesSessionLocal	
{
	public	void	myTimer();
	public	void	reset();
	public	BigInteger	getPrime();
	public	int	getIndex();
}

where in addition to the timer, three methods are defined. The class PrimesSession will
implement the interface:

package primesejb.ejbs;

import	java.math.BigInteger;
import javax.ejb.Schedule;
import javax.ejb.Singleton;

@Singleton
public	class	PrimesSession	implements	PrimesSessionLocal	
{
	private	BigInteger	two	=	new	BigInteger("2");
	private	BigInteger	prime	=	new	BigInteger("2");
	private	int	index	=	0;

	@Schedule(hour	=	"*",	minute	=	"*",	second	=	"*/30")
	public	void	myTimer()	
 {
	 if	(prime.equals(two))	prime	=	new	BigInteger("3");
 else
 {
	 prime	=	prime.add(two);
	 while	(!prime.isProbablePrime(50))	prime	=	prime.add(two);
 }
 ++index;
 }

	public	void	reset()
 {
	 prime	=	two;
	 index	=	0;
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

94

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

94

	public	BigInteger	getPrime()	
 {
 return prime;
 }

	public	int	getIndex()
 {
 return index;
 }
}

You should note that the class has three instance variables, and since it is a singleton session
bean, these variables will retain their values from the class PrimesSession is initialized for
the first time until the Glassfish server is stopped. That is, starting the application multiple
times, the state of the session bean will be preserved. The most important thing about the
class is, of course, the timer method, which modifies the value of the variable prime as it
represents the next prime. The timer method also modifies the variable index.

Then the EJB module is complete. I have added a named bean to the web application:

package primesejb.beans;

import javax.inject.Named;
import	javax.enterprise.context.RequestScoped;
import	java.math.BigInteger;
import	javax.ejb.EJB;
import	primesejb.ejbs.PrimesSessionLocal;

@Named(value	=	"primesBean")
@RequestScoped
public	class	PrimesBean	
{
	@EJB
	private	PrimesSessionLocal	primesSession;

	public	PrimesBean()	
 {
 }

	public	BigInteger	getPrime()
 {
	 return	primesSession.getPrime();
 }

You should note that the class has three instance variables, and since it is a singleton session
bean, these variables will retain their values from the class PrimesSession is initialized for
the first time until the Glassfish server is stopped. That is, starting the application multiple
times, the state of the session bean will be preserved. The most important thing about the
class is, of course, the timer method, which modifies the value of the variable prime as it
represents the next prime. The timer method also modifies the variable index.

Then the EJB module is complete. I have added a named bean to the web application:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

94

	public	BigInteger	getPrime()	
 {
 return prime;
 }

	public	int	getIndex()
 {
 return index;
 }
}

You should note that the class has three instance variables, and since it is a singleton session
bean, these variables will retain their values from the class PrimesSession is initialized for
the first time until the Glassfish server is stopped. That is, starting the application multiple
times, the state of the session bean will be preserved. The most important thing about the
class is, of course, the timer method, which modifies the value of the variable prime as it
represents the next prime. The timer method also modifies the variable index.

Then the EJB module is complete. I have added a named bean to the web application:

package primesejb.beans;

import javax.inject.Named;
import	javax.enterprise.context.RequestScoped;
import	java.math.BigInteger;
import	javax.ejb.EJB;
import	primesejb.ejbs.PrimesSessionLocal;

@Named(value	=	"primesBean")
@RequestScoped
public	class	PrimesBean	
{
	@EJB
	private	PrimesSessionLocal	primesSession;

	public	PrimesBean()	
 {
 }

	public	BigInteger	getPrime()
 {
	 return	primesSession.getPrime();
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

9595

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

9595

	public	int	getIndex()
 {
	 return	primesSession.getIndex();
 }

	public	void	reset()
 {
	 primesSession.reset();
 }
}

It’s a very simple bean and there’s not much to notice, but you need to be aware that it uses
my session bean. The JSF page is similarly simple and opens it in the browser, the result is
as shown below, where the link is used to update the user interface:

It’s a very simple bean and there’s not much to notice, but you need to be aware that it uses
my session bean. The JSF page is similarly simple and opens it in the browser, the result is
as shown below, where the link is used to update the user interface:

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

96

3.7 CRUD WITH ONE TABLE

In database contexts, CRUD stands for Create, Read, Update and Delete operations, and in
this section I will show you how to write a program that performs these operations on a
single database table using an EJB. The application must use an EJB with a remote interface.
As an example, I will use the table zipcode from the database padata, and the application
should open a window as shown above, where 78 entered for zip code has been searched.
The meaning of the buttons should be self explanatory and clicking on a link in the table
will insert the zip code into the top two fields where they can be edited. In the following,
I will explain how the program is written and thus the process.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

97

I have started creating an EJB Module project, which I have called ZipcodesEJB. Then I have
created a usual Class Library project, which I have called ZipcodesRemote. For this project, I
have added a class ZipcodeRemote, which should represent the objects to be transmitted between
the web application and the session bean object (I have not shown get and set methods):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

97

I have started creating an EJB Module project, which I have called ZipcodesEJB. Then I have
created a usual Class Library project, which I have called ZipcodesRemote. For this project, I
have added a class ZipcodeRemote, which should represent the objects to be transmitted between
the web application and the session bean object (I have not shown get and set methods):

package zipcodes.beans;

import	javax.ejb.Remote;

@Remote
public	class	ZipcodeRemote	implements	java.io.Serializable
{
 private String code;
 private String city;

	public	ZipcodeRemote()	
 {
 }

Then I have to the project ZipcodesEJB added a remote stateless session bean named
ZipcodesSession, which adds a remote interfaces to the above class library:

package zipcodes.beans;

import	javax.ejb.Remote;
import	java.util.List;

@Remote
public	interface	ZipcodesSessionRemote	
{
	public	boolean	create(ZipcodeRemote	obj);
	public	boolean	update(ZipcodeRemote	obj);
	public	boolean	remove(String	code);
	public	List<ZipcodeRemote>	search(String	code,	String	City);
}

The biggest work is to implement the class ZipcodesSession. In the zipcodes.models package I
have added an entity class Zipcode for the database table. This class is unchanged from the
code generated by NetBeans. I would like to add a class for database operations, but a JPA
controller class can not be directly used from an EJB, so I added my own (which is nothing
but a modified and scaled-down version of the controller class created by NetBeans – see
also the next example), which I have called ZipcodeDAO:

Then I have to the project ZipcodesEJB added a remote stateless session bean named
ZipcodesSession, which adds a remote interfaces to the above class library:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

97

I have started creating an EJB Module project, which I have called ZipcodesEJB. Then I have
created a usual Class Library project, which I have called ZipcodesRemote. For this project, I
have added a class ZipcodeRemote, which should represent the objects to be transmitted between
the web application and the session bean object (I have not shown get and set methods):

package zipcodes.beans;

import	javax.ejb.Remote;

@Remote
public	class	ZipcodeRemote	implements	java.io.Serializable
{
 private String code;
 private String city;

	public	ZipcodeRemote()	
 {
 }

Then I have to the project ZipcodesEJB added a remote stateless session bean named
ZipcodesSession, which adds a remote interfaces to the above class library:

package zipcodes.beans;

import	javax.ejb.Remote;
import	java.util.List;

@Remote
public	interface	ZipcodesSessionRemote	
{
	public	boolean	create(ZipcodeRemote	obj);
	public	boolean	update(ZipcodeRemote	obj);
	public	boolean	remove(String	code);
	public	List<ZipcodeRemote>	search(String	code,	String	City);
}

The biggest work is to implement the class ZipcodesSession. In the zipcodes.models package I
have added an entity class Zipcode for the database table. This class is unchanged from the
code generated by NetBeans. I would like to add a class for database operations, but a JPA
controller class can not be directly used from an EJB, so I added my own (which is nothing
but a modified and scaled-down version of the controller class created by NetBeans – see
also the next example), which I have called ZipcodeDAO:

The biggest work is to implement the class ZipcodesSession. In the zipcodes.models package I
have added an entity class Zipcode for the database table. This class is unchanged from the
code generated by NetBeans. I would like to add a class for database operations, but a JPA
controller class can not be directly used from an EJB, so I added my own (which is nothing
but a modified and scaled-down version of the controller class created by NetBeans – see
also the next example), which I have called ZipcodeDAO:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

9898

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

9898

package zipcodes.models;

import java.util.*;
import javax.persistence.*;

public	class	ZipcodeDAO	
{
	public	EntityManager	getEntityManager()	
 {
	 return	Persistence.
	 createEntityManagerFactory("ZipcodesEJBPU").createEntityManager();
 }

	public	void	create(Zipcode	zipcode)	throws	Exception	
 {
	 EntityManager	em	=	null;
 try
 {
	 em	=	getEntityManager();
	 em.getTransaction().begin();
	 em.persist(zipcode);
	 em.getTransaction().commit();
 }

http://s.bookboon.com/EOT

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

99

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

99

	 catch	(Exception	ex)	
 {
	 if	(em	!=	null)	em.getTransaction().rollback();
	 throw	ex;
 }
	 finally	
 {
	 if	(em	!=	null)	em.close();
 }
 }

	public	void	edit(Zipcode	zipcode)	throws	Exception	
 {
	 EntityManager	em	=	null;
 try
 {
	 em	=	getEntityManager();
	 em.getTransaction().begin();
	 em.merge(zipcode);
	 em.getTransaction().commit();
 }
	 catch	(Exception	ex)	
 {
	 if	(em	!=	null)	em.getTransaction().rollback();
	 throw	ex;
 }
	 finally	
 {
	 if	(em	!=	null)	em.close();
 }
 }

	public	void	destroy(String	code)	throws	Exception	
 {
	 EntityManager	em	=	null;
 try
 {
	 em	=	getEntityManager();
	 em.getTransaction().begin();
 Zipcode zipcode;
 try
 {
	 zipcode	=	em.getReference(Zipcode.class,	code);
	 zipcode.getCode();
 }
	 catch	(Exception	e)	
 {
	 throw	new	Exception("The	zipcode	with	id	"	+	code	+	"	no	longer	exists");
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

100

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

100

	 em.remove(zipcode);
	 em.getTransaction().commit();
 }
	 catch	(Exception	ex)	
 {
	 if	(em	!=	null)	em.getTransaction().rollback();
	 throw	ex;
 }
	 finally	
 {
	 if	(em	!=	null)	em.close();
 }
 }

	public	List<Zipcode>	getZipcodes(String	code,	String	city)	
 {
	 if	(code	==	null)	code	=	"";
	 if	(city	==	null)	city	=	"";
	 EntityManager	em	=	null;
 try
 {
	 em	=	getEntityManager();
	 Query	cq	=	em.createQuery(
	 "SELECT	z	FROM	Zipcode	z	WHERE	z.code	like	:code	AND	z.city	like	:city");
	 cq.setParameter("code",	code	+	"%");
	 cq.setParameter("city",	"%"	+	city	+	"%");
	 return	cq.getResultList();
 }
	 catch	(Exception	ex)
 {
	 return	new	ArrayList();
 }
	 finally	
 {
	 if	(em	!=	null)	em.close();
 }
 }
}

The class is very similar to the DAO (Data Access Object) classes that NetBeans creates, but
you should note how to create an EntityManager object and how to define transactions
associated with Create, Update and Delete. Also note the last method, which is the search
method. Here, JPQL is used instead of the Criteria API. It’s a matter of taste, if you do
one or the other, but if you know SQL, it’s easiest to use JPQL.

With these two classes in place, you can write the class ZipcodesSession, where the code is
actually quite simple as all the work is delegated to the DAO class:

The class is very similar to the DAO (Data Access Object) classes that NetBeans creates, but
you should note how to create an EntityManager object and how to define transactions
associated with Create, Update and Delete. Also note the last method, which is the search
method. Here, JPQL is used instead of the Criteria API. It’s a matter of taste, if you do
one or the other, but if you know SQL, it’s easiest to use JPQL.

With these two classes in place, you can write the class ZipcodesSession, where the code is
actually quite simple as all the work is delegated to the DAO class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

101101

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

101101

package zipcodes.beans;

import java.util.*;
import javax.ejb.Stateless;

import zipcodes.models.*;

@Stateless
public	class	ZipcodesSession	implements	ZipcodesSessionRemote	
{
	@Override
	public	boolean	create(ZipcodeRemote	obj)	
 {
 try
 {
	 (new	ZipcodeDAO()).create(new	Zipcode(obj.getCode(),	obj.getCity()));
 return true;
 }
	 catch	(Exception	ex)
 {
 return false;
 }
 }

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

102

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

102

	@Override
	public	boolean	update(ZipcodeRemote	obj)	
 {
 try
 {
	 (new	ZipcodeDAO()).edit(new	Zipcode(obj.getCode(),	obj.getCity()));
 return true;
 }
	 catch	(Exception	ex)
 {
 return false;
 }
 }

	@Override
	public	boolean	remove(String	code)	
 {
 try
 {
	 (new	ZipcodeDAO()).destroy(code);
 return true;
 }
	 catch	(Exception	ex)
 {
 return false;
 }
 }

	@Override
	public	List<ZipcodeRemote>	search(String	code,	String	City)	
 {
	 return	remoteList((new	ZipcodeDAO()).getZipcodes(code,	City));
 }

	private	List<ZipcodeRemote>	remoteList(List<Zipcode>	zipcodes)
 {
	 List<ZipcodeRemote>	list	=	new	ArrayList();
	 for	(Zipcode	zipcode	:	zipcodes)	
	 list.add(new	ZipcodeRemote(zipcode.getCode(),	zipcode.getCity()));
 return list;
 }
}

Note that the methods contains conversions of objects of type ZipcodeRemote to and from
objects of the entity type Zipcode. It is hardly necessary and the problem could be solved
by defining the entity type in the class library (see the next example).

Note that the methods contains conversions of objects of type ZipcodeRemote to and from
objects of the entity type Zipcode. It is hardly necessary and the problem could be solved
by defining the entity type in the class library (see the next example).

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

103

Then the EJB module is ready and ready to be hosted on the server. Back there is the web
application where I have created a Web Application project named ZipcodesClient. The
application consists only of index.xhtml and a single named bean, and I do not want to
display the code for the application as there is nothing new.

3.8 CRUD WITH MORE TABLES

As the last example of Enterprise Java Beans, I will review the PaBooks program from the
previous chapter. It must be completely the same program with only one change in which
the entire logic of database operations must be moved to an EJB, which uses JPA to maintain
the database. There will be three projects:

1. BooksEJB, which is an Enterprise Java Bean hosted on the server, and which can
maintain the Library database.

2. BooksRemote, which is a class library that defines a remote interface to the above EJB.
3. BooksClient, which is the web application, which uses BooksEJB.

In the following I will describe the process and the main challenges regarding the application
development.

I have started creating an EJB Module project:

I have called the project BooksEJB.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

104104

As a next step, I’ve created a classic class library project called BooksRemote. For this library I
have selected Entity Classes from Database and selected a connection to the library database:

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

105

I have then chosen the 5 tables that I will apply and in the following window I have entered
the name of a package:

When I then click Next and Finish, there are created as before 4 entity classes:

You should note that the four classes are located in the class library so that they can be
used by the client program. The four classes should not be changed in relation to the code
created by NetBeans, except for I, for Author, Publisher and Category, have changed toString().

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

106

As a next step, I have added to the project BooksEJB a stateless session bean:

I have defined that a remote interface has to be added to my class library, and the result is
that NetBeans creates an interface named LibraryDAORemote.

In the BooksEJB project I have created a package called booksejb.daos. For this package I
have added a JPA Controller Classes from Entity Classes:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

107107

These 4 classes are all modified a bit, but it is solely a question that the constructor has
been removed that the getEntityManager() method has been changed and the transactions
are defined differently. The code for these classes fills a lot and I do not want to show them
here, but below is the start of the class CategoryDAO and the method create():

http://s.bookboon.com/GTca

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

108

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

108

public	class	CategoryDAO
{

	public	EntityManager	getEntityManager()	
 {
 return Persistence.createEntityManagerFactory("BooksRemotePU").

 createEntityManager();

 }

	public	void	create(Category	category)	throws	Exception	
 {
	 if	(category.getBookCollection()	==	null)	
	 category.setBookCollection(new	ArrayList<Book>());
	 EntityManager	em	=	null;
 try
 {
	 em	=	getEntityManager();
 em.getTransaction().begin();

	 Collection<Book>	attachedBookCollection	=	new	ArrayList<Book>();
	 for	(Book	bookCollectionBookToAttach	:	category.getBookCollection())	
 {
	 bookCollectionBookToAttach	=
	 em.getReference(bookCollectionBookToAttach.getClass(),
	 bookCollectionBookToAttach.getId());
	 attachedBookCollection.add(bookCollectionBookToAttach);
 }
	 category.setBookCollection(attachedBookCollection);
	 em.persist(category);
	 for	(Book	bookCollectionBook	:	category.getBookCollection())	
 {
	 Category	oldCatidOfBookCollectionBook	=	bookCollectionBook.getCatid();
	 bookCollectionBook.setCatid(category);
	 bookCollectionBook	=	em.merge(bookCollectionBook);
	 if	(oldCatidOfBookCollectionBook	!=	null)	
 {
	 oldCatidOfBookCollectionBook.getBookCollection().
	 remove(bookCollectionBook);
	 oldCatidOfBookCollectionBook	=	em.merge(oldCatidOfBookCollectionBook);
 }
 }
 em.getTransaction().commit();

 }
	 catch	(Exception	ex)	
 {
 if (em != null) em.getTransaction().rollback();

	 throw	ex;
 }
	 finally	
 {
	 if	(em	!=	null)	em.close();
 }
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

109

In addition, I have changed the classes so that they alone raises an Exception and deleted
the other exception types. Of course, there is no special reason for and is something of an
attitude question, but I feel that it results in a code that is slightly easier to read.

Finally, the BookDAO class has added a method that determines Book objects for the search
criteria used, but it is the same method that is written in the PaBooks program.

Note that until this place I have not written quite a lot of code, but NetBeans has essentially
created it all. All that is missing is to define the LibraryDAORemote interface and implement
LibraryDAO. The interface is defined as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

109

In addition, I have changed the classes so that they alone raises an Exception and deleted
the other exception types. Of course, there is no special reason for and is something of an
attitude question, but I feel that it results in a code that is slightly easier to read.

Finally, the BookDAO class has added a method that determines Book objects for the search
criteria used, but it is the same method that is written in the PaBooks program.

Note that until this place I have not written quite a lot of code, but NetBeans has essentially
created it all. All that is missing is to define the LibraryDAORemote interface and implement
LibraryDAO. The interface is defined as follows:

package booksejb.beans;

import	javax.ejb.Remote;
import	java.util.List;

@Remote
public	interface	LibraryDAORemote	
{
	public	boolean	addCategory(Category	category);
	public	boolean	modCategory(Category	category);
	public	boolean	delCategory(Category	category);
	public	List<Category>	getCategories();
	public	boolean	addPublisher(Publisher	publisher);
	public	boolean	modPublisher(Publisher	publisher);
	public	boolean	delPublisher(Publisher	publisher);
	public	List<Publisher>	getPublishers();
	public	boolean	addAuthor(Author	author);
	public	boolean	modAuthor(Author	author);
	public	boolean	delAuthor(Author	author);
	public	List<Author>	getAuthors();
	public	boolean	addBook(Book	book);
	public	boolean	modBook(Book	book);
	public	boolean	delBook(Book	book);
	public	List<Book>	getBooks(String	title,	String	pubname,	String	catname);
}

The names of the individual methods should explain what they should be used for. Since
there are 12 methods (4 for each entity), the LibraryDAO’s code is a part, but since the
implementation is essentially the same for each entity, I will show only the code for the
entity Category:

The names of the individual methods should explain what they should be used for. Since
there are 12 methods (4 for each entity), the LibraryDAO’s code is a part, but since the
implementation is essentially the same for each entity, I will show only the code for the
entity Category:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

110110

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

110110

package booksejb.beans;

import javax.ejb.Stateless;
import	java.util.List;

import booksejb.daos.*;

@Stateless
public	class	LibraryDAO	implements	LibraryDAORemote	
{
	@Override
	public	boolean	addCategory(Category	category)
 {
 try
 {
	 CategoryDAO	dao	=	new	CategoryDAO();
	 dao.create(category);
 return true;
 }
	 catch	(Exception	ex)	
 {
 return false;
 }
 }

 .

http://s.bookboon.com/AlcatelLucent

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

111

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

111

	@Override
	public	boolean	modCategory(Category	category)
 {
 try
 {
	 CategoryDAO	dao	=	new	CategoryDAO();
	 dao.edit(category);
 return true;
 }
	 catch	(Exception	ex)	
 {
 return false;
 }
 }

	@Override
	public	boolean	delCategory(Category	category)
 {
 try
 {
	 CategoryDAO	dao	=	new	CategoryDAO();
	 dao.destroy(category.getId());
 return true;
 }
	 catch	(Exception	ex)	
 {
 return false;
 }
 }

	@Override
	public	List<Category>	getCategories()
 {
		List<Category>	list	=	(new	CategoryDAO()).findCategoryEntities();
		for	(Category	c	:	list)	c.getBookCollection().size();
 return list;
 }
}

The code is simple, as all work is performed by the DAO classes, and in principle, it is about
creating an DAO object and calling the current DAO’s methods. However, there is a single
problem that requires a special solution. JPA uses what is called LAZY update. For example,
if you take the entity class Category, it has a collection bookCollection that contains a Book
object for all the books that are categorized under that category. These objects must thus
be initialized when you read the database, and since these objects are far from always used,
JPA use a technique where the objects are first created (by reading in the database) when
referring to them. Of course, the reason is performance, and you should keep in mind that

The code is simple, as all work is performed by the DAO classes, and in principle, it is about
creating an DAO object and calling the current DAO’s methods. However, there is a single
problem that requires a special solution. JPA uses what is called LAZY update. For example,
if you take the entity class Category, it has a collection bookCollection that contains a Book
object for all the books that are categorized under that category. These objects must thus
be initialized when you read the database, and since these objects are far from always used,
JPA use a technique where the objects are first created (by reading in the database) when
referring to them. Of course, the reason is performance, and you should keep in mind that

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

112

all categories have such a collection, and the same goes for publishers, authors and books.
It is this technique, that is called LAZY update, but there is a problem when objects are
to be serialized of a remote client, as they can risk the objects being serialized before the
relevant collections are updated. There are various suggestions on how to solve this problem,
and one of them is – and probably the simplest, but perhaps not the best – that before the
objects are serialized, the method performs the size() method of the collections in question
(resulting in the objects being initialized by reading in the database). This is the purpose
of the loop that occurs in the method getCategories().

After the LibraryDAO class is implemented, BooksEJB is complete and can be translated
and hosted on the server.

Back there is the client program, which can be copied essentially from PaBooks. I have
created a Web Application project named BooksClient. The project should have a reference
to BooksRemote, but otherwise there should be the following files that can be copied
from PaBooks:

However, the five named bean classes must be changed a bit, and as an example, I have
shown CategoryBean, which is a named bean for categories.xhtml:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

113113

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

113113

package booksclient.beans;

import	booksejb.beans.LibraryDAORemote;
import	javax.ejb.EJB;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.util.*;

import booksejb.beans.*;

@Named(value	=	"categoryBean")
@SessionScoped
public	class	CategoryBean	implements	java.io.Serializable
{
	@EJB
	private	LibraryDAORemote	libraryDAO;
	private	Category	category	=	new	Category();
	private	String	error	=	"";

	public	CategoryBean()	
 {
 }

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

114

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

114

	public	int	getId()
 {
	 return	category.getId()	==	null	?	0	:	category.getId();
 }

	public	String	getName()	
 {
	 return	category.getName();
 }

	public	void	setName(String	name)	
 {
	 this.category.setName(name);
 }

	public	String	getError()
 {
 return error;
 }

	public	Collection<Category>	getCategories()	
 {
	 return	libraryDAO.getCategories();
 }

	public	void	select(Category	cat)
 {
	 category	=	cat;
 }

	public	void	clear()
 {
	 error	=	"";
	 category	=	new	Category();
 }

	public	void	add()
 {
	 error	=	"";
	 if	(libraryDAO.addCategory(category))	category	=	new	Category();
	 else	error	=	"Category	could	not	be	created!";
 }

	public	void	update()
 {
	 error	=	"";
	 if	(libraryDAO.modCategory(category))	category	=	new	Category();

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT enterprIse Java Beans

115

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

115

	 else	error	=	"Category	could	not	be	updated!";
 }

	public	void	remove()
 {
	 error	=	"";
	 if	(libraryDAO.delCategory(category))	category	=	new	Category();
	 else	error	=	"Category	could	not	be	deleted!";
 }
}

After BooksClient is translated and hosted on the server, the program can be tested and the
result should be the same as the PaBooks application.

At the beginning of this chapter, I noticed that it may be difficult to develop and test
Enterprise Java Beans. As for writing the code, it is not very different from other Java code,
but it may be problematic to get a project deployed to the server and in case of trouble to
find out what the reason is. Here you should note the log file:

/usr/local/glassfish-4.1.1/glassfish/domains/domian1/logs

or where the Glassfish server should now be installed. The server writes in this log file every
time you deploy a project and especially if not succeed and in that context also the cause
of the problem. This log file is a very important source of debugging (can also be accessed
from NetBeans).

PROBLEM 2

You must solve the same task as in problem 1, but with the difference that the program
should be written in the same way as shown in the previous example, where the database
operations are moved to an EJB, which maintains the database using JPA. You must thus
write three projects:

1. WorldRemote, which is a remote interface
2. WorldEJB, which is a EJB Module projct
3. WorldClient, which is a web applicationen

After BooksClient is translated and hosted on the server, the program can be tested and the
result should be the same as the PaBooks application.

At the beginning of this chapter, I noticed that it may be difficult to develop and test
Enterprise Java Beans. As for writing the code, it is not very different from other Java code,
but it may be problematic to get a project deployed to the server and in case of trouble to
find out what the reason is. Here you should note the log file:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT ENTERPRISE JAVA BEANS

115

	 else	error	=	"Category	could	not	be	updated!";
 }

	public	void	remove()
 {
	 error	=	"";
	 if	(libraryDAO.delCategory(category))	category	=	new	Category();
	 else	error	=	"Category	could	not	be	deleted!";
 }
}

After BooksClient is translated and hosted on the server, the program can be tested and the
result should be the same as the PaBooks application.

At the beginning of this chapter, I noticed that it may be difficult to develop and test
Enterprise Java Beans. As for writing the code, it is not very different from other Java code,
but it may be problematic to get a project deployed to the server and in case of trouble to
find out what the reason is. Here you should note the log file:

/usr/local/glassfish-4.1.1/glassfish/domains/domian1/logs

or where the Glassfish server should now be installed. The server writes in this log file every
time you deploy a project and especially if not succeed and in that context also the cause
of the problem. This log file is a very important source of debugging (can also be accessed
from NetBeans).

PROBLEM 2

You must solve the same task as in problem 1, but with the difference that the program
should be written in the same way as shown in the previous example, where the database
operations are moved to an EJB, which maintains the database using JPA. You must thus
write three projects:

1. WorldRemote, which is a remote interface
2. WorldEJB, which is a EJB Module projct
3. WorldClient, which is a web applicationen

or where the Glassfish server should now be installed. The server writes in this log file every
time you deploy a project and especially if not succeed and in that context also the cause
of the problem. This log file is a very important source of debugging (can also be accessed
from NetBeans).

PROBLEM 2

You must solve the same task as in problem 1, but with the difference that the program
should be written in the same way as shown in the previous example, where the database
operations are moved to an EJB, which maintains the database using JPA. You must thus
write three projects:

1. WorldRemote, which is a remote interface
2. WorldEJB, which is a EJB Module projct
3. WorldClient, which is a web applicationen

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

116116

4 CDI

CDI stands for Context and Dependency Injection and describes how the application server
creates and remove objects, and especially what you can and should write in the code. For
example, if you consider a JSF page with a backing bean, which is just a common Java
class, then you do not need to do anything to create an object of the class and how long
the object lives is determined by its scope with an annotation.

A JavaBean is just a class that is written from a specific and simple pattern, and the
programmer creates an object (a bean) using the new operator. After that, it is the garbage
collector who is responsible for removing the object when there are no longer any references
to it. In contrast, a managed bean is a bean, where it is the container in the form of the
application server, which is responsible for creating an object and removing the object
again when the program goes out of the the object’s scope. Such a bean is also called a
CDI object. You can not create a managed bean with new. CDI objects are instead created
using a technique called injection, which means that it is the container that takes care of it.
When defining a bean with injection, the container will examine whether the bean is created
and if not, it will instantiate a new object and perform injection on all beans to which the
current bean depends and finally, a method decorated with @PostConstruct is performed.

http://s.bookboon.com/BI

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

117

Then you can use the object’s methods. When the bean has to be removed, the container
will first perform a method decorated with @PreDestroy, after which it is the container that
remove the object. It can be illustrated by the following figure:

CDI objects have a scope that is called context, and it can basically be

 - request
 - session
 - application
 - conversation

As an example, below is shown a simple managed bean:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

117

Then you can use the object’s methods. When the bean has to be removed, the container
will first perform a method decorated with @PreDestroy, after which it is the container that
remove the object. It can be illustrated by the following figure:

CDI objects have a scope that is called context, and it can basically be

 - request
 - session
 - application
 - conversation

As an example, below is shown a simple managed bean:

package cdiprogram.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
@Named(value	=	"person")
@SessionScoped
public	class	Person	implements	Serializable	
{
	private	String	firstName;
 private String lastName;

	public	Person()
 {
 }

	public	String	getFirstName()	
 {
	 return	firstName;
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

118

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

118

	public	void	setFirstName(String	firstName)	
 {
	 this.firstName	=	firstName;
 }

	public	String	getLastName()	
 {
 return lastName;
 }

	public	void	setLastName(String	lastName)	
 {
	 this.lastName	=	lastName;
 }
}

That it’s a managed bean you can see from @Named, where you can see that NetBeans
has assigned the name for the class written with lower case. An annotation is generally
an interface, and in this case it is an interface with a single attribute value (whose default
value is blank, meaning that the container selects the class name person). In addition, you
can see that an object’s context is session, and SessionScoped is again an interface. The two
interfaces Named and SessionScoped are thus information to the container, which tells how
the container should maintain objects of the class Person.

With the above named bean available you can write the following JSF page:

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h:form>
	 <h:panelGrid	columns="2">
	 <h:outputLabel	for="firstName"	value="First	Name"/>
	 <h:inputText	id="firstName"	value="#{person.firstName}"/>
	 <h:outputLabel	for="lastName"	value="Last	Name"/>
	 <h:inputText	id="lastName"	value="#{person.lastName}"/>
	 <h:commandButton	value="OK"	/>
	 <h:panelGroup/>
	 </h:panelGrid>
	 </h:form>
	</h:body>
</html>

That it’s a managed bean you can see from @Named, where you can see that NetBeans
has assigned the name for the class written with lower case. An annotation is generally
an interface, and in this case it is an interface with a single attribute value (whose default
value is blank, meaning that the container selects the class name person). In addition, you
can see that an object’s context is session, and SessionScoped is again an interface. The two
interfaces Named and SessionScoped are thus information to the container, which tells how
the container should maintain objects of the class Person.

With the above named bean available you can write the following JSF page:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

118

	public	void	setFirstName(String	firstName)	
 {
	 this.firstName	=	firstName;
 }

	public	String	getLastName()	
 {
 return lastName;
 }

	public	void	setLastName(String	lastName)	
 {
	 this.lastName	=	lastName;
 }
}

That it’s a managed bean you can see from @Named, where you can see that NetBeans
has assigned the name for the class written with lower case. An annotation is generally
an interface, and in this case it is an interface with a single attribute value (whose default
value is blank, meaning that the container selects the class name person). In addition, you
can see that an object’s context is session, and SessionScoped is again an interface. The two
interfaces Named and SessionScoped are thus information to the container, which tells how
the container should maintain objects of the class Person.

With the above named bean available you can write the following JSF page:

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h:form>
	 <h:panelGrid	columns="2">
	 <h:outputLabel	for="firstName"	value="First	Name"/>
	 <h:inputText	id="firstName"	value="#{person.firstName}"/>
	 <h:outputLabel	for="lastName"	value="Last	Name"/>
	 <h:inputText	id="lastName"	value="#{person.lastName}"/>
	 <h:commandButton	value="OK"	/>
	 <h:panelGroup/>
	 </h:panelGrid>
	 </h:form>
	</h:body>
</html>

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

119119

The interesting thing is to open the page, the Glassfish server will inject a Person object with
context session, without the programmer being – or can – doing something to create the object.

In the previous examples I have often had to use a named bean from another named bean,
which has been done by means of statements of the form

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

119119

The interesting thing is to open the page, the Glassfish server will inject a Person object with
context session, without the programmer being – or can – doing something to create the object.

In the previous examples I have often had to use a named bean from another named bean,
which has been done by means of statements of the form

ELContext	elc	=	FacesContext.getCurrentInstance().getELContext();
SomeBean	someBean	=	(SomeBean)FacesContext.
getCurrentInstance().getApplication().
	getELResolver().getValue(elc,	null,	"person");

There’s nothing wrong with it, but it’s hard to write and impossible to remember. One
can, however, facilitate the syntax by the use of CDI. Consider the following named bean,
which represents a student with a name and a subject :

package cdiprogram.beans;

import javax.inject.Named;
import	javax.inject.Inject;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

There’s nothing wrong with it, but it’s hard to write and impossible to remember. One
can, however, facilitate the syntax by the use of CDI. Consider the following named bean,
which represents a student with a name and a subject :

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

119119

The interesting thing is to open the page, the Glassfish server will inject a Person object with
context session, without the programmer being – or can – doing something to create the object.

In the previous examples I have often had to use a named bean from another named bean,
which has been done by means of statements of the form

ELContext	elc	=	FacesContext.getCurrentInstance().getELContext();
SomeBean	someBean	=	(SomeBean)FacesContext.
getCurrentInstance().getApplication().
	getELResolver().getValue(elc,	null,	"person");

There’s nothing wrong with it, but it’s hard to write and impossible to remember. One
can, however, facilitate the syntax by the use of CDI. Consider the following named bean,
which represents a student with a name and a subject :

package cdiprogram.beans;

import javax.inject.Named;
import	javax.inject.Inject;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

120

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

120

@Named(value	=	"student")
@SessionScoped
public class Student implements Serializable
{
	@Inject
	private	Person	person;
 private String subject;

	public	Student()	
 {
 }

	public	Person	getPerson()	
 {
 return person;
 }

	public	void	setPerson(Person	person)	
 {
	 this.	person	=	person;
 }

	public	String	getSubject()	
 {
 return subject;
 }

	public	void	setSubject(String	subject)	
 {
	 this.subject	=	subject;
 }
}

The name is represented by a person variable of the type Person. However, you must note
that there nowhere are created an object of the type Person (the property seams not to be
initialized), but instead, a person is decorated with @Inject. It stated that a Student, which is
a managed bean, is dependent on Person (another managed bean), and when the container
creates a Student object with the help of injection, it will also look for whether a Person
object has to be created and if so, do it. Below is shown how to write a JSF page that has
Student as a backing bean:

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>

The name is represented by a person variable of the type Person. However, you must note
that there nowhere are created an object of the type Person (the property seams not to be
initialized), but instead, a person is decorated with @Inject. It stated that a Student, which is
a managed bean, is dependent on Person (another managed bean), and when the container
creates a Student object with the help of injection, it will also look for whether a Person
object has to be created and if so, do it. Below is shown how to write a JSF page that has
Student as a backing bean:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

120

@Named(value	=	"student")
@SessionScoped
public class Student implements Serializable
{
	@Inject
	private	Person	person;
 private String subject;

	public	Student()	
 {
 }

	public	Person	getPerson()	
 {
 return person;
 }

	public	void	setPerson(Person	person)	
 {
	 this.	person	=	person;
 }

	public	String	getSubject()	
 {
 return subject;
 }

	public	void	setSubject(String	subject)	
 {
	 this.subject	=	subject;
 }
}

The name is represented by a person variable of the type Person. However, you must note
that there nowhere are created an object of the type Person (the property seams not to be
initialized), but instead, a person is decorated with @Inject. It stated that a Student, which is
a managed bean, is dependent on Person (another managed bean), and when the container
creates a Student object with the help of injection, it will also look for whether a Person
object has to be created and if so, do it. Below is shown how to write a JSF page that has
Student as a backing bean:

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

121

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

121

	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h:form>
	 <h:panelGrid	columns="2">
	 <h:outputLabel	for="firstName"	value="First	Name"/>
	 <h:inputText	id="firstName"	value="#{student.person.firstName}"/>
	 <h:outputLabel	for="lastName"	value="Last	Name"/>
	 <h:inputText	id="lastName"	value="#{student.person.lastName}"/>
	 <h:outputLabel	for="subject"	value="Subject"/>
	 <h:inputText	id="subject"	value="#{student.subject}"/>
	 <h:commandButton	value="OK"	/>
	 <h:panelGroup/>
	 </h:panelGrid>
	 </h:form>
	</h:body>
</html>

4.1 QUALIFIERS

If you consider the bean Student, it has a dependence to the bean Person. I will now define
a derivative class, which I have called Man, but first I will made the class Person abstract
and expanded with an abstract method that will return a person’s gender:

@Named(value	=	"person")
@SessionScoped
public abstract	class	Person	implements	Serializable	
{
 …

 public abstract String getGender();
}

I can then write the following bean:

package cdiprogram.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

@Named(value	=	"man")
@SessionScoped
@Male

4.1 QUALIFIERS

If you consider the bean Student, it has a dependence to the bean Person. I will now define
a derivative class, which I have called Man, but first I will made the class Person abstract
and expanded with an abstract method that will return a person’s gender:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

121

	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h:form>
	 <h:panelGrid	columns="2">
	 <h:outputLabel	for="firstName"	value="First	Name"/>
	 <h:inputText	id="firstName"	value="#{student.person.firstName}"/>
	 <h:outputLabel	for="lastName"	value="Last	Name"/>
	 <h:inputText	id="lastName"	value="#{student.person.lastName}"/>
	 <h:outputLabel	for="subject"	value="Subject"/>
	 <h:inputText	id="subject"	value="#{student.subject}"/>
	 <h:commandButton	value="OK"	/>
	 <h:panelGroup/>
	 </h:panelGrid>
	 </h:form>
	</h:body>
</html>

4.1 QUALIFIERS

If you consider the bean Student, it has a dependence to the bean Person. I will now define
a derivative class, which I have called Man, but first I will made the class Person abstract
and expanded with an abstract method that will return a person’s gender:

@Named(value	=	"person")
@SessionScoped
public abstract	class	Person	implements	Serializable	
{
 …

 public abstract String getGender();
}

I can then write the following bean:

package cdiprogram.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

@Named(value	=	"man")
@SessionScoped
@Male

I can then write the following bean:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

121

	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h:form>
	 <h:panelGrid	columns="2">
	 <h:outputLabel	for="firstName"	value="First	Name"/>
	 <h:inputText	id="firstName"	value="#{student.person.firstName}"/>
	 <h:outputLabel	for="lastName"	value="Last	Name"/>
	 <h:inputText	id="lastName"	value="#{student.person.lastName}"/>
	 <h:outputLabel	for="subject"	value="Subject"/>
	 <h:inputText	id="subject"	value="#{student.subject}"/>
	 <h:commandButton	value="OK"	/>
	 <h:panelGroup/>
	 </h:panelGrid>
	 </h:form>
	</h:body>
</html>

4.1 QUALIFIERS

If you consider the bean Student, it has a dependence to the bean Person. I will now define
a derivative class, which I have called Man, but first I will made the class Person abstract
and expanded with an abstract method that will return a person’s gender:

@Named(value	=	"person")
@SessionScoped
public abstract	class	Person	implements	Serializable	
{
 …

 public abstract String getGender();
}

I can then write the following bean:

package cdiprogram.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

@Named(value	=	"man")
@SessionScoped
@Male

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

122122

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

122122

public	class	Man	extends	Person	implements	Serializable	
{
	public	Man()	
 {
 }

	public	String	getGender()
 {
 return "A man";
 }
}

If you disregard the @Male annotation, there is nothing new in this class. It’s a managed
bean that inherits a managed bean, and a bean is just a class. If you see the Student class
from the container, it defines a variable person whose type is Person, and the container
must then create an actual object, such as a Man object. Since the class Person could have
more derived classes, one should be able to tell the container what it is for an object to be
instantiated and it happens with a qualifier. Male is a qualifier and is an interface that can
be defined as follows:

If you disregard the @Male annotation, there is nothing new in this class. It’s a managed
bean that inherits a managed bean, and a bean is just a class. If you see the Student class
from the container, it defines a variable person whose type is Person, and the container
must then create an actual object, such as a Man object. Since the class Person could have
more derived classes, one should be able to tell the container what it is for an object to be
instantiated and it happens with a qualifier. Male is a qualifier and is an interface that can
be defined as follows:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

123

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

123

package cdiprogram.beans;

import	static	java.lang.annotation.ElementType.TYPE;
import	static	java.lang.annotation.ElementType.FIELD;
import	static	java.lang.annotation.ElementType.PARAMETER;
import	static	java.lang.annotation.ElementType.METHOD;
import	static	java.lang.annotation.RetentionPolicy.RUNTIME;
import	java.lang.annotation.Retention;
import	java.lang.annotation.Target;
import	javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD,	FIELD,	PARAMETER,	TYPE})
public @interface Male
{
}

In the class Man, you tell with @Male that the class is identified with the qualifier Male. The
CDIProgram project also defines a derived class Woman, identified with a qualifier Female.
In principle, it’s simple to write a qualifier, but the syntax can be hard to remember, and
NetBeans therefore has a File Type for the purpose:

In the class Man, you tell with @Male that the class is identified with the qualifier Male. The
CDIProgram project also defines a derived class Woman, identified with a qualifier Female.
In principle, it’s simple to write a qualifier, but the syntax can be hard to remember, and
NetBeans therefore has a File Type for the purpose:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

124

If you then want the Student class to create a Woman object, the syntax is as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

124

If you then want the Student class to create a Woman object, the syntax is as follows:

public class Student implements Serializable
{
	@Inject
 @Female
	private	Person	person;

Looking at the above solution, it is simple enough to define the specific type the container
has to use in conjunction with injection, but if you think of a situation where the class
Person has many sub classes, many qualifications must be written. Instead, you can define
a parameter. Consider first the following enum:

package cdiprogram.beans;
public	enum	People	{	MALE,	FEMALE	}

With this type available, I can create another qualifier:

package cdiprogram.beans;

import	static	java.lang.annotation.ElementType.TYPE;
import	static	java.lang.annotation.ElementType.FIELD;
import	static	java.lang.annotation.ElementType.PARAMETER;
import	static	java.lang.annotation.ElementType.METHOD;
import	static	java.lang.annotation.RetentionPolicy.RUNTIME;
import	java.lang.annotation.Retention;
import	java.lang.annotation.Target;
import	javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD,	FIELD,	PARAMETER,	TYPE})
public @interface Gender
{
	public	People	value();
}

This qualifier now has an attribute called value. Note that a qualifier may well have more
attributes. You can then decorate the classes Man (and Woman) as follows:

@Named(value	=	"man")
@SessionScoped
@Gender(value = People.MALE)

public	class	Man	extends	Person	implements	Serializable	
{

Looking at the above solution, it is simple enough to define the specific type the container
has to use in conjunction with injection, but if you think of a situation where the class
Person has many sub classes, many qualifications must be written. Instead, you can define
a parameter. Consider first the following enum:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

124

If you then want the Student class to create a Woman object, the syntax is as follows:

public class Student implements Serializable
{
	@Inject
 @Female
	private	Person	person;

Looking at the above solution, it is simple enough to define the specific type the container
has to use in conjunction with injection, but if you think of a situation where the class
Person has many sub classes, many qualifications must be written. Instead, you can define
a parameter. Consider first the following enum:

package cdiprogram.beans;
public	enum	People	{	MALE,	FEMALE	}

With this type available, I can create another qualifier:

package cdiprogram.beans;

import	static	java.lang.annotation.ElementType.TYPE;
import	static	java.lang.annotation.ElementType.FIELD;
import	static	java.lang.annotation.ElementType.PARAMETER;
import	static	java.lang.annotation.ElementType.METHOD;
import	static	java.lang.annotation.RetentionPolicy.RUNTIME;
import	java.lang.annotation.Retention;
import	java.lang.annotation.Target;
import	javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD,	FIELD,	PARAMETER,	TYPE})
public @interface Gender
{
	public	People	value();
}

This qualifier now has an attribute called value. Note that a qualifier may well have more
attributes. You can then decorate the classes Man (and Woman) as follows:

@Named(value	=	"man")
@SessionScoped
@Gender(value = People.MALE)

public	class	Man	extends	Person	implements	Serializable	
{

With this type available, I can create another qualifier:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

124

If you then want the Student class to create a Woman object, the syntax is as follows:

public class Student implements Serializable
{
	@Inject
 @Female
	private	Person	person;

Looking at the above solution, it is simple enough to define the specific type the container
has to use in conjunction with injection, but if you think of a situation where the class
Person has many sub classes, many qualifications must be written. Instead, you can define
a parameter. Consider first the following enum:

package cdiprogram.beans;
public	enum	People	{	MALE,	FEMALE	}

With this type available, I can create another qualifier:

package cdiprogram.beans;

import	static	java.lang.annotation.ElementType.TYPE;
import	static	java.lang.annotation.ElementType.FIELD;
import	static	java.lang.annotation.ElementType.PARAMETER;
import	static	java.lang.annotation.ElementType.METHOD;
import	static	java.lang.annotation.RetentionPolicy.RUNTIME;
import	java.lang.annotation.Retention;
import	java.lang.annotation.Target;
import	javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD,	FIELD,	PARAMETER,	TYPE})
public @interface Gender
{
	public	People	value();
}

This qualifier now has an attribute called value. Note that a qualifier may well have more
attributes. You can then decorate the classes Man (and Woman) as follows:

@Named(value	=	"man")
@SessionScoped
@Gender(value = People.MALE)

public	class	Man	extends	Person	implements	Serializable	
{

This qualifier now has an attribute called value. Note that a qualifier may well have more
attributes. You can then decorate the classes Man (and Woman) as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

124

If you then want the Student class to create a Woman object, the syntax is as follows:

public class Student implements Serializable
{
	@Inject
 @Female
	private	Person	person;

Looking at the above solution, it is simple enough to define the specific type the container
has to use in conjunction with injection, but if you think of a situation where the class
Person has many sub classes, many qualifications must be written. Instead, you can define
a parameter. Consider first the following enum:

package cdiprogram.beans;
public	enum	People	{	MALE,	FEMALE	}

With this type available, I can create another qualifier:

package cdiprogram.beans;

import	static	java.lang.annotation.ElementType.TYPE;
import	static	java.lang.annotation.ElementType.FIELD;
import	static	java.lang.annotation.ElementType.PARAMETER;
import	static	java.lang.annotation.ElementType.METHOD;
import	static	java.lang.annotation.RetentionPolicy.RUNTIME;
import	java.lang.annotation.Retention;
import	java.lang.annotation.Target;
import	javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD,	FIELD,	PARAMETER,	TYPE})
public @interface Gender
{
	public	People	value();
}

This qualifier now has an attribute called value. Note that a qualifier may well have more
attributes. You can then decorate the classes Man (and Woman) as follows:

@Named(value	=	"man")
@SessionScoped
@Gender(value = People.MALE)

public	class	Man	extends	Person	implements	Serializable	
{

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

125125

and for injection you can write:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

125125

and for injection you can write:

@Named(value	=	"student")
@SessionScoped
public class Student implements Serializable
{
	@Inject
 @Gender(value = People.FEMALE)
	private	Person	person;
 private String subject;

4.2 CONTEXTS

When a managed bean is needed either by injection or because it is referenced from a JSF
page, CDI will try to find an instance in the scope of the particular bean. If successful,
this object is used, but otherwise an object belonging to the current scope will be created.
Often, one object (a managed bean) must “live” across multiple pages, and you can not use
RequestScoped as it relates only to the current page. The object is created each time a page
request is made. So far (both in this book and the two previous books) I have solved this

4.2 CONTEXTS

When a managed bean is needed either by injection or because it is referenced from a JSF
page, CDI will try to find an instance in the scope of the particular bean. If successful,
this object is used, but otherwise an object belonging to the current scope will be created.
Often, one object (a managed bean) must “live” across multiple pages, and you can not use
RequestScoped as it relates only to the current page. The object is created each time a page
request is made. So far (both in this book and the two previous books) I have solved this

http://s.bookboon.com/Subscrybe

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

126

problem by defining the beans as SessionScoped. It works, but is also the easy solution, and
there is also a disadvantage to SessionScoped beans. Firstly, these beans live throughout the
session and even for a period after the session is completed. This means that session objects
fill unnecessarily in the machine’s memory. An even bigger problem, however, is that since
SessionScoped beans (and, for that matter, all session objects) live longer than is needed for
them, there is a risk that they will be used after the logically no longer exist. The latter is
actually something that can make it very difficult to correct errors in a web application.

There is a context called conversation, and where a bean can live over several pages, but not
through an entire session, and which precisely aims to solve the challenges that the session
context poses. The price is that it is the programmer who has to tell the container when a
conversation starts and when it ends. I want to show how with the ChangeAddress example,
where the difference should be that the form for entering the address is divided into three
pages – without any reason, in addition to showing how ConversationScoped works. I start
with a project called ChangeAddress4 and which is a copy of ChangeAddress1. In addition
to list.xhtml (which is unchanged) there are three new JSF pages, and the entry of an an
address occurs as a wizard with these three JSF pages:

index.xhtml is now reduced to the following very simple page:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

126

problem by defining the beans as SessionScoped. It works, but is also the easy solution, and
there is also a disadvantage to SessionScoped beans. Firstly, these beans live throughout the
session and even for a period after the session is completed. This means that session objects
fill unnecessarily in the machine’s memory. An even bigger problem, however, is that since
SessionScoped beans (and, for that matter, all session objects) live longer than is needed for
them, there is a risk that they will be used after the logically no longer exist. The latter is
actually something that can make it very difficult to correct errors in a web application.

There is a context called conversation, and where a bean can live over several pages, but not
through an entire session, and which precisely aims to solve the challenges that the session
context poses. The price is that it is the programmer who has to tell the container when a
conversation starts and when it ends. I want to show how with the ChangeAddress example,
where the difference should be that the form for entering the address is divided into three
pages – without any reason, in addition to showing how ConversationScoped works. I start
with a project called ChangeAddress4 and which is a copy of ChangeAddress1. In addition
to list.xhtml (which is unchanged) there are three new JSF pages, and the entry of an an
address occurs as a wizard with these three JSF pages:

index.xhtml is now reduced to the following very simple page:

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html"
	 xmlns:f="http://xmlns.jcp.org/jsf/core">
	<h:head>
	 <meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8"/>
	 <title>Change	address</title>
	 <h:outputStylesheet	library="css"	name="styles.css"/>
	</h:head>
	<h:body>
	 <h1>Change	address</h1>
	 <h:form>
	 <p><h:commandLink	value="Create	new	address"
	 action="#{indexController.page1()}"	/></p>
	 <p><h:commandLink	value="Show	addresses"	action="list"	/></p>
	 </h:form>
	</h:body>
</html>

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

127

that opens the following window:

Clicking on the top link will give you a page for entering the name, and the form of the
ChangeAddress1 project is generally divided into three pages, as shown below. The three
pages are called

 - page1.xhtml
 - page2.xhtml
 - page3.xhtml

The entity class Address is unchanged from previously, but a simple wrapper class Person (a
managed bean) is defined and all you need to note is that it is a named bean defined as
ConversationScoped:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

128128

http://s.bookboon.com/volvo

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

129

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

129

package changeaddress.beans;

import javax.inject.Named;
import javax.enterprise.context.ConversationScoped;
import java.io.Serializable;

import changeaddress.models.Address;

@Named(value	=	"person")
@ConversationScoped
public	class	Person	implements	Serializable	
{
 private Address address;

	public	Person()	
 {
	 address	=	new	Address();
 }

	public	Address	getAddress()	
 {
 return address;
 }

	public	void	setAddress(Address	address)	
 {
	 this.address	=	address;
 }
}

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

130

The code for the three new JSF pages is simple and I do not want to show it here, but the
new is in IndexController, which has been changed. The code is as shown below, but I have
not shown get and set methods since they are as before:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

130

The code for the three new JSF pages is simple and I do not want to show it here, but the
new is in IndexController, which has been changed. The code is as shown below, but I have
not shown get and set methods since they are as before:

package changeaddress.beans;

import java.util.*;
import javax.inject.*;
import javax.enterprise.context.*;
import java.io.Serializable;
import javax.persistence.*;
import javax.transaction.*;
import javax.annotation.*;

import changeaddress.models.*;
import javax.persistence.criteria.CriteriaQuery;

@Named(value	=	"indexController")
@RequestScoped
public	class	IndexController	implements	Serializable	
{
	@Inject
 private Conversation conversation;
	@Inject
	private	Person	person;

	@PersistenceUnit
 EntityManagerFactory emf;
	@PersistenceContext
 EntityManager em;
	@Resource
	UserTransaction	utx;	

	private	List<Address>	persons	=	new	ArrayList();

	public	IndexController()
 {
 }

 …

	public	String	cancel()
 {
	 conversation.end();
 return "index";
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

131131

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

131131

	public	String	page1()
 {
	 conversation.begin();
	 return	"page1";
 }

	public	List<Address>	getPersons()
 {
 try
 {
	 CriteriaQuery	cq	=	em.getCriteriaBuilder().createQuery();
	 cq.select(cq.from(Address.class));
	 Query	q	=	em.createQuery(cq);
	 return	persons	=	q.getResultList();
 }
	 catch	(Exception	ex)
 {
 }
 return persons;
 }

	public	String	add()
 {

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CdI

132

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT CDI

132

 try
 {
	 utx.begin();
	 em.persist(person.getAddress());
	 utx.commit();
	 conversation.end();
 return "index";
 }
	 catch	(Exception	ex)	
 {
 try
 {
	 utx.rollback();
 }
	 catch	(Exception	e)	
 {
 }
 }
 return "";
 }
}

Here you should note that the context is now RequestScoped. In addition, note the two
methods page1() and cancel(). The first is called from index.xhtml, if you chooses to create
a new address. It calls the method conversation.begin(), which starts a new conversation. The
method cancel() is called from one of the three editing pages if you click Cancel, and it is
important that it performs the method conversation.end() that completes the conversation
that is in progress. This means that the container remove the bean. The method getPersons()
is unchanged from previously, while the method add() has changed a bit. Most importantly,
after an address is stored in the database, a conversation.end() is executed.

In order for it all to work, the class must instantiate a Conversation object, which occurs
when using injection at the start of the class. A Person object must also be created, which
also occurs by injection.

Also note how the class instantiate objects to JPA in the same way as in the previous example.
In fact, it also happens by injection, only other annotations are used.

Here you should note that the context is now RequestScoped. In addition, note the two
methods page1() and cancel(). The first is called from index.xhtml, if you chooses to create
a new address. It calls the method conversation.begin(), which starts a new conversation. The
method cancel() is called from one of the three editing pages if you click Cancel, and it is
important that it performs the method conversation.end() that completes the conversation
that is in progress. This means that the container remove the bean. The method getPersons()
is unchanged from previously, while the method add() has changed a bit. Most importantly,
after an address is stored in the database, a conversation.end() is executed.

In order for it all to work, the class must instantiate a Conversation object, which occurs
when using injection at the start of the class. A Person object must also be created, which
also occurs by injection.

Also note how the class instantiate objects to JPA in the same way as in the previous example.
In fact, it also happens by injection, only other annotations are used.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

133

5 WEB SERVICES

A web service is a component that can be hosted on a web server and provides services to
clients, and web services can to some extent be perceived as an alternative to enterprise java
beans. Web services are characterized by being easy to develop and are platform independent.
The latter means that communication between a web service and clients occurs as XML and
after a protocol called SOAP, and thus exclusively as text. Therefore, the use of web services
is perceived as a secure technology, and the price is that encoding of messages such as XML
may cost a little on performance. A web service and its services must be defined to clients
with regard to parameters and return values, and it is done using an XML document called
a Web Service Definition Language (WSDL) document. The biggest challenge in writing web
services is to write this document, which is quite complex (difficult and comprehensive
syntax), but here NetBeans helps as it generates it all, and you can actually write web
services without knowing anything about WSDL.

I want to start with a simple web service that has two services:

 - double celsiusToFahrenheit(double value) which converts from fahrenheit to celsius
 - double fahrenheitToCelsius(double value) which converts from celsius to fahrenheit

I start with a web application, which I have called ConversionService, and it just has to be
an empty web application. Then I add a Web Service

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

134134

and in the following window I have to enter a name (as here is ConversionService) and
choose a package:

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

135

When I click Next, NetBeans creates the following class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

135

When I click Next, NetBeans creates the following class:

package conversionservice.services;

import	javax.jws.WebService;
import	javax.jws.WebMethod;
import	javax.jws.WebParam;

@WebService(serviceName	=	"ConversionService")
public class ConversionService
{
	@WebMethod(operationName	=	"hello")
	public	String	hello(@WebParam(name	=	"name")	String	txt)	
 {
	 return	"Hello	"	+	txt	+	"	!";
 }
}

Note which annotations are used, and that NetBeans creates a single service – which you
should of course delete. This can be done directly, but clicking the Design button in the
toolbar will give you a wizard that can be used to generate the finally code:

package conversionservice.services;

import	javax.jws.WebService;
import	javax.jws.WebMethod;
import	javax.jws.WebParam;

@WebService(serviceName	=	"ConversionService")
public class ConversionService
{
	@WebMethod(operationName	=	"celsiusToFahrenheit")
	public	double	celsiusToFahrenheit(@WebParam(name	=	"value")	double	value)	
 {
	 return	1.8	*	value	+	32;
 }
	@WebMethod(operationName	=	"fahrenheitToCelsius")
	public	double	fahrenheitToCelsius(@WebParam(name	=	"value")	double	value)	
 {
	 return	(value	–	32)	/	1.8;
 }
}

The biggest and only advantage of using the wizard is that NetBeans inserts the correct
annotations.

Note which annotations are used, and that NetBeans creates a single service – which you
should of course delete. This can be done directly, but clicking the Design button in the
toolbar will give you a wizard that can be used to generate the finally code:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

135

When I click Next, NetBeans creates the following class:

package conversionservice.services;

import	javax.jws.WebService;
import	javax.jws.WebMethod;
import	javax.jws.WebParam;

@WebService(serviceName	=	"ConversionService")
public class ConversionService
{
	@WebMethod(operationName	=	"hello")
	public	String	hello(@WebParam(name	=	"name")	String	txt)	
 {
	 return	"Hello	"	+	txt	+	"	!";
 }
}

Note which annotations are used, and that NetBeans creates a single service – which you
should of course delete. This can be done directly, but clicking the Design button in the
toolbar will give you a wizard that can be used to generate the finally code:

package conversionservice.services;

import	javax.jws.WebService;
import	javax.jws.WebMethod;
import	javax.jws.WebParam;

@WebService(serviceName	=	"ConversionService")
public class ConversionService
{
	@WebMethod(operationName	=	"celsiusToFahrenheit")
	public	double	celsiusToFahrenheit(@WebParam(name	=	"value")	double	value)	
 {
	 return	1.8	*	value	+	32;
 }
	@WebMethod(operationName	=	"fahrenheitToCelsius")
	public	double	fahrenheitToCelsius(@WebParam(name	=	"value")	double	value)	
 {
	 return	(value	–	32)	/	1.8;
 }
}

The biggest and only advantage of using the wizard is that NetBeans inserts the correct
annotations.

The biggest and only advantage of using the wizard is that NetBeans inserts the correct
annotations.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

136

Then you can build the project and choose deploy. In the NetBeans project tab, a Web
Servers element is created:

If you right-click ConversationService and choose Test Web Service, the browser opens a
window to test the service:

Here you should especially note the link WSDL File. Clicking on it will display the WSDL
code that defines the service in question.

After the service is tested, a client must be written, and this time it should be a simple
console application called ConversionClient. After I’ve created the application, I’ve added a
Web Service Client :

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

137137

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

138

In the next screen, under Project, select the current web service, and NetBeans will simply
insert its URL. Finally, enter a package:

NetBeans now creates a reference to the web service and you can use the services it provides:

To use a service, you has write a complex statement, but you can simply drag a service
into the client’s code, and NetBeans creates the required one. Below is the completed code
for the client:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

139

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

139

package conversionclient;

public class ConversionClient
{
	public	static	void	main(String[]	args)	
 {
	 System.out.println("30	Celsius	=	"	+	celsiusToFahrenheit(30)	+	"	Fahrenheit");
	 System.out.println(
	 "100	Fahrenheit	=	"	+	fahrenheitToCelsius(100)	+	"	Celsius");
 }

	private	static	double	celsiusToFahrenheit(double	value)	
 {
	 conversionclient.ConversionService_Service	service	=
	 new	conversionclient.ConversionService_Service();
	 conversionclient.ConversionService	port	=	service.getConversionServicePort();
	 return	port.celsiusToFahrenheit(value);
 }

	private	static	double	fahrenheitToCelsius(double	value)	
 {
	 conversionclient.ConversionService_Service	service	=
	 new	conversionclient.ConversionService_Service();
	 conversionclient.ConversionService	port	=	service.getConversionServicePort();
	 return	port.fahrenheitToCelsius(value);
 }
}

You should especially note the two methods that NetBeans has created, but otherwise the
program is ready for use:

30	Celsius	=	86.0	Fahrenheit
100	Fahrenheit	=	37.77777777777778	Celsius

EXERCISE 4

Start by creating a copy of the ConversionService project. You must then expand the
corresponding web service with two new services:

 - double kilometerToMiles(double value)
 - double milesToKilometer(double value)

which converts kilometers to and from miles.

You should especially note the two methods that NetBeans has created, but otherwise the
program is ready for use:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

139

package conversionclient;

public class ConversionClient
{
	public	static	void	main(String[]	args)	
 {
	 System.out.println("30	Celsius	=	"	+	celsiusToFahrenheit(30)	+	"	Fahrenheit");
	 System.out.println(
	 "100	Fahrenheit	=	"	+	fahrenheitToCelsius(100)	+	"	Celsius");
 }

	private	static	double	celsiusToFahrenheit(double	value)	
 {
	 conversionclient.ConversionService_Service	service	=
	 new	conversionclient.ConversionService_Service();
	 conversionclient.ConversionService	port	=	service.getConversionServicePort();
	 return	port.celsiusToFahrenheit(value);
 }

	private	static	double	fahrenheitToCelsius(double	value)	
 {
	 conversionclient.ConversionService_Service	service	=
	 new	conversionclient.ConversionService_Service();
	 conversionclient.ConversionService	port	=	service.getConversionServicePort();
	 return	port.fahrenheitToCelsius(value);
 }
}

You should especially note the two methods that NetBeans has created, but otherwise the
program is ready for use:

30	Celsius	=	86.0	Fahrenheit
100	Fahrenheit	=	37.77777777777778	Celsius

EXERCISE 4

Start by creating a copy of the ConversionService project. You must then expand the
corresponding web service with two new services:

 - double kilometerToMiles(double value)
 - double milesToKilometer(double value)

which converts kilometers to and from miles.

EXERCISE 4

Start by creating a copy of the ConversionService project. You must then expand the
corresponding web service with two new services:

 - double kilometerToMiles(double value)
 - double milesToKilometer(double value)

which converts kilometers to and from miles.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

140140

When you have written the service and deployed it, write a client program that you can call
ConversionClient, but this time it should be a web application. If the application is opened
in the browser, it must open the following window:

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

141

The above form should have a backing bean that uses your web service. In principle, it
works exactly the same as in the introductory example, but with the difference that you
should copy the folder localhost_8080 to the wsdl folder under WEB-INF:

EXERCISE 5

In this exercise, you must write a web application where you can search for Danish kings:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

142

You can call the project DanishKings, and the difference compared to before should be that
the search this time should be done by a web service.

Start by creating a web application project that you can call KingsServices and add a web
service called KingService. Add a simple model class

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

142

You can call the project DanishKings, and the difference compared to before should be that
the search this time should be done by a web service.

Start by creating a web application project that you can call KingsServices and add a web
service called KingService. Add a simple model class

package kings.services;

public class King
{
 private String name;
 private int from;
 private int to;

The web service in question must have two services:

@WebMethod(operationName	=	"getKing")
public	List<King>	getKing(@WebParam(name	=	"year")	int	year)	
{
}

@WebMethod(operationName	=	"getKings")
public	List<King>	getKings(@WebParam(name	=	"year1")	int	year1,
	 	@WebParam(name	=	"year2")	int	year2)	
{
}

where the first will return the kings who ruled a certain year, while the other will return the
kings whose reign overlaps a certain interval. Names of the Danish kings and reigns can be
stored as constants in the program in the same way as in previous examples.

5.1 AN EJB AS A WEB SERVICE

As shown above, a web service is not much more than a usual Java class decorated with a few
annotations and it all wrapped up in a web application. It is also possible to use a stateless
session bean as a web service. It allows for using a stateless EJB from languages other than
Java, as well as using other properties of enterprise java beans such as transactions. In fact,
you can do it in two ways by either creating a web service in an EJB or by embedding an
EJB as a web service.

The web service in question must have two services:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

142

You can call the project DanishKings, and the difference compared to before should be that
the search this time should be done by a web service.

Start by creating a web application project that you can call KingsServices and add a web
service called KingService. Add a simple model class

package kings.services;

public class King
{
 private String name;
 private int from;
 private int to;

The web service in question must have two services:

@WebMethod(operationName	=	"getKing")
public	List<King>	getKing(@WebParam(name	=	"year")	int	year)	
{
}

@WebMethod(operationName	=	"getKings")
public	List<King>	getKings(@WebParam(name	=	"year1")	int	year1,
	 	@WebParam(name	=	"year2")	int	year2)	
{
}

where the first will return the kings who ruled a certain year, while the other will return the
kings whose reign overlaps a certain interval. Names of the Danish kings and reigns can be
stored as constants in the program in the same way as in previous examples.

5.1 AN EJB AS A WEB SERVICE

As shown above, a web service is not much more than a usual Java class decorated with a few
annotations and it all wrapped up in a web application. It is also possible to use a stateless
session bean as a web service. It allows for using a stateless EJB from languages other than
Java, as well as using other properties of enterprise java beans such as transactions. In fact,
you can do it in two ways by either creating a web service in an EJB or by embedding an
EJB as a web service.

where the first will return the kings who ruled a certain year, while the other will return the
kings whose reign overlaps a certain interval. Names of the Danish kings and reigns can be
stored as constants in the program in the same way as in previous examples.

5.1 AN EJB AS A WEB SERVICE

As shown above, a web service is not much more than a usual Java class decorated with a few
annotations and it all wrapped up in a web application. It is also possible to use a stateless
session bean as a web service. It allows for using a stateless EJB from languages other than
Java, as well as using other properties of enterprise java beans such as transactions. In fact,
you can do it in two ways by either creating a web service in an EJB or by embedding an
EJB as a web service.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

143143

As an example, I have set up an EJB Module project, which I have called EJBConversion.
For this project I have added a web service called Conversion:

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

144

Note that Create Web Service from Scratch has been selected, and the bottom check box has
been ticked. After clicking Finish, a web service has been created, where there is primarily one
difference, namely, that it is a stateless session bean. The completed service is shown below:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

144

Note that Create Web Service from Scratch has been selected, and the bottom check box has
been ticked. After clicking Finish, a web service has been created, where there is primarily one
difference, namely, that it is a stateless session bean. The completed service is shown below:

package ejbconversion.services;

import	javax.jws.WebService;
import	javax.jws.WebMethod;
import	javax.jws.WebParam;
import javax.ejb.Stateless;

@WebService(serviceName	=	"Conversions")
@Stateless()
public class Conversions
{
	@WebMethod(operationName	=	"celsiusToFahrenheit")
	public	double	celsiusToFahrenheit(@WebParam(name	=	"value")	double	value)	
 {
	 return	1.8	*	value	+	32;
 }

	@WebMethod(operationName	=	"fahrenheitToCelsius")
	public	double	fahrenheitToCelsius(@WebParam(name	=	"value")	double	value)	
 {
	 return	(value	–	32)	/	1.8;
 }
}

Then the project can be built and deployed in the usual way. The ConversionProgram project
is identical to ConversionClient, only with the difference that another web service is used,
as above, which is a web service hosted as an enterprise java bean.

As the last example, I will write a web service that uses an existing EJB, and I will use
ZipcodesEJB, which performs CRUD operations on the table zipcode in the database padata.
The EJB concerned offers 4 services, and the goal is to provide these services with a web
service.

The starting point is an empty web application called ZipcodesServices. As a first step, I have
put a reference to the jar file ZipcodesRemote, which is the remote interface for ZipcodesEJB.
Next, I have added a web service called ZipcodesWS to the project:

Then the project can be built and deployed in the usual way. The ConversionProgram project
is identical to ConversionClient, only with the difference that another web service is used,
as above, which is a web service hosted as an enterprise java bean.

As the last example, I will write a web service that uses an existing EJB, and I will use
ZipcodesEJB, which performs CRUD operations on the table zipcode in the database
padata. The EJB concerned offers 4 services, and the goal is to provide these services with
a web service.

The starting point is an empty web application called ZipcodesServices. As a first step, I have
put a reference to the jar file ZipcodesRemote, which is the remote interface for ZipcodesEJB.
Next, I have added a web service called ZipcodesWS to the project:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

145

Here you should especially note that Create Web Service from Existing Session Bean has
been selected, and I have then browsed me to that particular bean. When you click Finish,
NetBeans creates the following web service:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

145

Here you should especially note that Create Web Service from Existing Session Bean has
been selected, and I have then browsed me to that particular bean. When you click Finish,
NetBeans creates the following web service:

package zipcodesservices;

import	java.util.List;
import	javax.ejb.EJB;
import	javax.jws.WebMethod;
import	javax.jws.WebParam;
import	javax.jws.WebService;
import	zipcodes.beans.ZipcodeRemote;
import	zipcodes.beans.ZipcodesSessionRemote;

@WebService(serviceName	=	"ZipcodesWS")
public	class	ZipcodesWS	
{
	@EJB
	private	ZipcodesSessionRemote	ejbRef;

	@WebMethod(operationName	=	"create")
	public	boolean	create(@WebParam(name	=	"obj")	ZipcodeRemote	obj)	
 {
	 return	ejbRef.create(obj);
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

146146

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT WEB SERVICES

146146

	@WebMethod(operationName	=	"update")
	public	boolean	update(@WebParam(name	=	"obj")	ZipcodeRemote	obj)	
 {
	 return	ejbRef.update(obj);
 }

	@WebMethod(operationName	=	"remove")
	public	boolean	remove(@WebParam(name	=	"code")	String	code)	
 {
	 return	ejbRef.remove(code);
 }

	@WebMethod(operationName	=	"search")
	public	List<ZipcodeRemote>	search(@WebParam(name	=	"code")	String	code,
	 @WebParam(name	=	"City")	String	City)	
 {
	 return	ejbRef.search(code,	City);
 }
}

and as you can see, it’s not much more than a wrapper for ZipcodesEJB. The service is then
completed, can be translated and hosted on the server.

and as you can see, it’s not much more than a wrapper for ZipcodesEJB. The service is then
completed, can be translated and hosted on the server.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT weB servICes

147

I have then written a client, which is a web application called ZipcodesProgram. It is basically
the same as ZipcodesClient, and the difference is that a Web Service Client has been added
and the program’s named bean is changed a bit. I do not want to show the code here.

EXERCISE 6

You must write a program that corresponds to the above ZipcodesProgram which uses the
web service ZipcodesWS to perform CRUD operations on the table zipcode, but instead of
a web application, it must be a GUI application, which you can call Zipcodes. The user
interface should be as shown below:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

148

6 REST WEB SERVICES

REST stands for Representational State Transfer and is also called for a RESTful web services.
Like other web services, they can be perceived as resources made available and identified by
an URI, and they are characterized by being easy to develop and are specifically intended
as a frontend for a database table. RESTful web services are generally very flexible, and
the communication between client and service can be done in several ways, but generally,
data is sent either as XML or JSON. A web service must support at least one of four
HTTP methods:

1. GET, which is used to retrieve an existing resource
2. POST, which is used to update an existing resource
3. PUT, which is used to create a new resource
4. DELETE, which is used to delete an existing resource

I want to start with a simple “hello” service and I have set up a usual (blank) web application
project, which I have called HelloApp. After I’ve created the project, I’ve added a RESTful
Web Services from Patterns:

and after I click Next twice, I come to the following window:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

149149

where I have entered Resource Package, Path and Class Name. You should note that the
MIME type is XML. When I then click Finsh, NetBeans creates two files:

http://s.bookboon.com/elearningforkids

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

150

Here’s the last one is my RESTful web service. The code is the following where I deleted
comments, as well as entered code in the method getXml():

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

150

Here’s the last one is my RESTful web service. The code is the following where I deleted
comments, as well as entered code in the method getXml():

package helloapp.services;

import	javax.ws.rs.core.Context;
import	javax.ws.rs.core.UriInfo;
import	javax.ws.rs.Produces;
import	javax.ws.rs.Consumes;
import	javax.ws.rs.GET;
import	javax.ws.rs.Path;
import	javax.ws.rs.PUT;
import	javax.ws.rs.core.MediaType;

@Path("hello")
public	class	HelloResource	
{
 @Context
	private	UriInfo	context;

	public	HelloResource()	
 {
 }

	@GET
	@Produces(MediaType.APPLICATION_XML)
	public	String	getXml()	
 {
 return
	 "<message>\n"
	 +	"<hello>Hello	from</hello>\n"
	 +	"<firstName>Ragnar</firstName>\n"
	 +	"<lastName>Lodbrog</lastName>\n"
	 +	"<job>Viking</job>\n"
	 +	"</message>\n";
 }

	@PUT
	@Consumes(MediaType.APPLICATION_XML)
	public	void	putXml(String	content)	
 {
 }
}

You must note the different annotations. Here, @Path specifies the name for which the
current service (resource) will be known. @GET defines a method that is performed if an
HTTP GET occurs from a browser, and similarly, @PUT defines a method for an HTTP

You must note the different annotations. Here, @Path specifies the name for which the
current service (resource) will be known. @GET defines a method that is performed if an
HTTP GET occurs from a browser, and similarly, @PUT defines a method for an HTTP

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

151

PUT. Note that the first method is decorated with @Produces, which indicates that the
method returns XML while the other is decorated with @Consumes, which indicates that
the method interprets the content of the parameter as XML. In this case, the last method
is empty, while the first returns some XML.

The container must know what the resource is called and that is the purpose of the second class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

151

PUT. Note that the first method is decorated with @Produces, which indicates that the
method returns XML while the other is decorated with @Consumes, which indicates that
the method interprets the content of the parameter as XML. In this case, the last method
is empty, while the first returns some XML.

The container must know what the resource is called and that is the purpose of the second class:

package helloapp.services;

import java.util.Set;
import	javax.ws.rs.core.Application;

@javax.ws.rs.ApplicationPath("webresources")
public	class	ApplicationConfig	extends	Application	
{
	@Override
	public	Set<Class<?>>	getClasses()	{
	 Set<Class<?>>	resources	=	new	java.util.HashSet<>();
	 addRestResourceClasses(resources);
 return resources;
 }

	private	void	addRestResourceClasses(Set<Class<?>>	resources)	
 {
	 resources.add(helloapp.services.HelloResource.class);
 }
}

It is a class inheriting Application, and the class is decorated with @ApplicationPath, which
specifies a name (here it is webresources) that is included in the resource’s URI. The last
method adds the actual resource object to a collection (here it is a HashSet). The result of
all that is, the resource’s URI is

http://localhost:8080/helloapp/webresources/hello

If you translate the project and perform a deploy, the resource is ready for use. An RESTful
Web Services item is created and if you right click on HelloResource [hello]:

It is a class inheriting Application, and the class is decorated with @ApplicationPath, which
specifies a name (here it is webresources) that is included in the resource’s URI. The last
method adds the actual resource object to a collection (here it is a HashSet). The result of
all that is, the resource’s URI is

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

151

PUT. Note that the first method is decorated with @Produces, which indicates that the
method returns XML while the other is decorated with @Consumes, which indicates that
the method interprets the content of the parameter as XML. In this case, the last method
is empty, while the first returns some XML.

The container must know what the resource is called and that is the purpose of the second class:

package helloapp.services;

import java.util.Set;
import	javax.ws.rs.core.Application;

@javax.ws.rs.ApplicationPath("webresources")
public	class	ApplicationConfig	extends	Application	
{
	@Override
	public	Set<Class<?>>	getClasses()	{
	 Set<Class<?>>	resources	=	new	java.util.HashSet<>();
	 addRestResourceClasses(resources);
 return resources;
 }

	private	void	addRestResourceClasses(Set<Class<?>>	resources)	
 {
	 resources.add(helloapp.services.HelloResource.class);
 }
}

It is a class inheriting Application, and the class is decorated with @ApplicationPath, which
specifies a name (here it is webresources) that is included in the resource’s URI. The last
method adds the actual resource object to a collection (here it is a HashSet). The result of
all that is, the resource’s URI is

http://localhost:8080/helloapp/webresources/hello

If you translate the project and perform a deploy, the resource is ready for use. An RESTful
Web Services item is created and if you right click on HelloResource [hello]:
If you translate the project and perform a deploy, the resource is ready for use. An RESTful
Web Services item is created and if you right click on HelloResource [hello]:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

152152

you can you choose Test Resource URI, after which the browser opens the following window:

The result is that the method getXml() is performed and the method has sent a response
to the browser. As a next step, I will write a client that uses the resource and it should
be a simple console application. I have therefore created a Java Application project called
HelloREST. For this project I have added a RESTful Java Client:

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

153

When you click Next, you get the following window:

Here I have entered Class Name, selected a package, and used the Browse button set a reference
to the resource. Note that Authentication is NONE (which is default). After clicking Finish,
NetBeans creates the following class that represents the service to the client:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

154

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

154

package hellorest;

import	javax.ws.rs.ClientErrorException;
import	javax.ws.rs.client.Client;
import	javax.ws.rs.client.WebTarget;

public class HelloClient
{
	private	WebTarget	webTarget;
 private Client client;
	private	static	final	String	BASE_URI	=
	 "http://localhost:8080/HelloApp/webresources";

	public	HelloClient()	
 {
	 client	=	javax.ws.rs.client.ClientBuilder.newClient();
	 webTarget	=	client.target(BASE_URI).path("hello");
 }

	public	String	getXml()	throws	ClientErrorException	
 {
	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(String.class);
 }

	public	void	putXml(Object	requestEntity)	throws	ClientErrorException	
 {
	 webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 put(javax.ws.rs.client.Entity.entity(requestEntity,
	 javax.ws.rs.core.MediaType.APPLICATION_XML));
 }

	public	void	close()	
 {
	 client.close();
 }
}

I have then written the following main() method:

package hellorest;

public	class	HelloREST	
{
	public	static	void	main(String[]	args)	
 {

I have then written the following main() metho

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

154

package hellorest;

import	javax.ws.rs.ClientErrorException;
import	javax.ws.rs.client.Client;
import	javax.ws.rs.client.WebTarget;

public class HelloClient
{
	private	WebTarget	webTarget;
 private Client client;
	private	static	final	String	BASE_URI	=
	 "http://localhost:8080/HelloApp/webresources";

	public	HelloClient()	
 {
	 client	=	javax.ws.rs.client.ClientBuilder.newClient();
	 webTarget	=	client.target(BASE_URI).path("hello");
 }

	public	String	getXml()	throws	ClientErrorException	
 {
	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(String.class);
 }

	public	void	putXml(Object	requestEntity)	throws	ClientErrorException	
 {
	 webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 put(javax.ws.rs.client.Entity.entity(requestEntity,
	 javax.ws.rs.core.MediaType.APPLICATION_XML));
 }

	public	void	close()	
 {
	 client.close();
 }
}

I have then written the following main() method:

package hellorest;

public	class	HelloREST	
{
	public	static	void	main(String[]	args)	
 {

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

155155

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

155155

	 HelloClient	client	=	new	HelloClient();
	 System.out.println(client.getXml());
	 client.close();
 }
}

og kører man programmet, er resultatet:

<message>
<hello>Hello	from</hello>
<firstName>Ragnar</firstName>
<lastName>Lodbrog</lastName>
<job>Viking</job>
</message>

It may not be a lot, but you can see that the service in question is performed.

Looking at the above, it is quite simple to create and use a RESTful web service and write
a client, but of course it is the problem that the result you receive is XML, and if you send
something to the service, it should also be XML. However, converting XML to and from a
custom type is easy, and it requires an annotation of the type, and that the type is a place

and running the program is the result:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

155155

	 HelloClient	client	=	new	HelloClient();
	 System.out.println(client.getXml());
	 client.close();
 }
}

og kører man programmet, er resultatet:

<message>
<hello>Hello	from</hello>
<firstName>Ragnar</firstName>
<lastName>Lodbrog</lastName>
<job>Viking</job>
</message>

It may not be a lot, but you can see that the service in question is performed.

Looking at the above, it is quite simple to create and use a RESTful web service and write
a client, but of course it is the problem that the result you receive is XML, and if you send
something to the service, it should also be XML. However, converting XML to and from a
custom type is easy, and it requires an annotation of the type, and that the type is a place

It may not be a lot, but you can see that the service in question is performed.

Looking at the above, it is quite simple to create and use a RESTful web service and write
a client, but of course it is the problem that the result you receive is XML, and if you send
something to the service, it should also be XML. However, converting XML to and from a
custom type is easy, and it requires an annotation of the type, and that the type is a place

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

156

where it is known by both the service and the client program. A very simple solution to
this problem is to define a class library containing the custom type, and in this case I have
created a class library called HelloRemote, which contains a single class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

156

where it is known by both the service and the client program. A very simple solution to
this problem is to define a class library containing the custom type, and in this case I have
created a class library called HelloRemote, which contains a single class:

package helloremote.entities;

@javax.xml.bind.annotation.XmlRootElement
public class Message implements java.io.Serializable
{
	private	String	firstname;
 private String lastname;
 private String job;
 private String text;

	public	Message()	
 {
 }

	public	Message(String	firstname,	String	lastname,	String	job,	String	text)	
 {
	 this.firstname	=	firstname;
	 this.lastname	=	lastname;
	 this.job	=	job;
	 this.text	=	text;
 }

	public	String	getFirstname()	
 {
	 return	firstname;
 }

	public	void	setFirstname(String	firstname)	
 {
	 this.firstname	=	firstname;
 }

	public	String	getLastname()	
 {
 return lastname;
 }

	public	void	setLastname(String	lastname)	
 {
	 this.lastname	=	lastname;
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

157

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

157

	public	String	getJob()	
 {
 return job;
 }

	public	void	setJob(String	job)	
 {
	 this.job	=	job;
 }

	public	String	getText()	
 {
 return text;
 }

	public	void	setText(String	text)	
 {
	 this.text	=	text;
 }

	@Override
	public	String	toString()	
 {
	 return	"firstname	=\t"	+	firstname	+	"\nlastname	=\t"	+	lastname	+
	 "\njob	=\t\t"	+	job	+	"\ntext	=\t\t"	+	text;
 }
}

It is nothing but a common bean and the only interesting thing is that the class is decorated
with an annotation:

@javax.xml.bind.annotation.XmlRootElement

which ensures that an object can be automatically converted to and from XML. To use the
type, the service needs to be changed:

package helloapp.services;

import	javax.ws.rs.core.Context;
import	javax.ws.rs.core.UriInfo;
import	javax.ws.rs.Produces;
import	javax.ws.rs.Consumes;
import	javax.ws.rs.GET;
import	javax.ws.rs.Path;
import	javax.ws.rs.PUT;
import	javax.ws.rs.core.MediaType;

import helloremote.entities.*;

It is nothing but a common bean and the only interesting thing is that the class is decorated
with an annotation:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

157

	public	String	getJob()	
 {
 return job;
 }

	public	void	setJob(String	job)	
 {
	 this.job	=	job;
 }

	public	String	getText()	
 {
 return text;
 }

	public	void	setText(String	text)	
 {
	 this.text	=	text;
 }

	@Override
	public	String	toString()	
 {
	 return	"firstname	=\t"	+	firstname	+	"\nlastname	=\t"	+	lastname	+
	 "\njob	=\t\t"	+	job	+	"\ntext	=\t\t"	+	text;
 }
}

It is nothing but a common bean and the only interesting thing is that the class is decorated
with an annotation:

@javax.xml.bind.annotation.XmlRootElement

which ensures that an object can be automatically converted to and from XML. To use the
type, the service needs to be changed:

package helloapp.services;

import	javax.ws.rs.core.Context;
import	javax.ws.rs.core.UriInfo;
import	javax.ws.rs.Produces;
import	javax.ws.rs.Consumes;
import	javax.ws.rs.GET;
import	javax.ws.rs.Path;
import	javax.ws.rs.PUT;
import	javax.ws.rs.core.MediaType;

import helloremote.entities.*;

which ensures that an object can be automatically converted to and from XML. To use the
type, the service needs to be changed:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

157

	public	String	getJob()	
 {
 return job;
 }

	public	void	setJob(String	job)	
 {
	 this.job	=	job;
 }

	public	String	getText()	
 {
 return text;
 }

	public	void	setText(String	text)	
 {
	 this.text	=	text;
 }

	@Override
	public	String	toString()	
 {
	 return	"firstname	=\t"	+	firstname	+	"\nlastname	=\t"	+	lastname	+
	 "\njob	=\t\t"	+	job	+	"\ntext	=\t\t"	+	text;
 }
}

It is nothing but a common bean and the only interesting thing is that the class is decorated
with an annotation:

@javax.xml.bind.annotation.XmlRootElement

which ensures that an object can be automatically converted to and from XML. To use the
type, the service needs to be changed:

package helloapp.services;

import	javax.ws.rs.core.Context;
import	javax.ws.rs.core.UriInfo;
import	javax.ws.rs.Produces;
import	javax.ws.rs.Consumes;
import	javax.ws.rs.GET;
import	javax.ws.rs.Path;
import	javax.ws.rs.PUT;
import	javax.ws.rs.core.MediaType;

import helloremote.entities.*;

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

158158

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

158158

@Path("hello")
public	class	HelloResource	
{
 @Context
	private	UriInfo	context;

	private	Message	msg	=	new	Message("Ragnar",	"Lodbrog",	"Viking",	"Hello	from");

	public	HelloResource()	
 {
 }

	@GET
	@Produces(MediaType.APPLICATION_XML)
	public	Message	getXml()	
 {
 return msg;
 }

	@PUT
	@Consumes(MediaType.APPLICATION_XML)
	public	void	putXml(Message	msg)	
 {

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

159

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

159

	 this.msg.setFirstname(msg.getFirstname());
	 this.msg.setLastname(msg.getLastname());
	 this.msg.setJob(msg.getJob());
	 this.msg.setText(msg.getText());
 }
}

First, there should be a reference to the class library HelloRemote. Then an object of the
type Message is created, and the return type for getXml() has been changed to Message. The
method’s MediaType is still XML. As a result, the object msg is encoded as XML before it
is sent to a client. Similarly, putXml() is changed, so it has a Message object as parameter,
and the method updates the msg object. This is of course pseudo, since the changes are
not used for something – the message msg does not exist between two calls of the service.

After the service has been changed and after a deploy, the client program must also be
updated. First, the class HelloService should be changed slightly. The resource is represented
by an object of the type WebTarget, and if you on this object performs the method request()
it calls the service’s get method (here it is getXml() that is decorated with @GET). It tells
to encode data as XML. Finally, with the get() method, you specify how the result should
be converted and before it was to a String. It’s changed to the type Message, and that’s all
that’s necessary to change in the HelloClient class:

public	String	getXml()	throws	ClientErrorException	
{
	WebTarget	resource	=	webTarget;
	return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(Message.class);
}

Finally, the main() method in HelloREST must be changed:

package hellorest;

import helloremote.entities.Message;

public	class	HelloREST	
{
	public	static	void	main(String[]	args)	
 {
 Message msg;
	 HelloClient	client	=	new	HelloClient();
	 System.out.println(msg	=	client.getXml());
	 msg.setJob("Danish	Viking");
	 client.putXml(msg);

First, there should be a reference to the class library HelloRemote. Then an object of the
type Message is created, and the return type for getXml() has been changed to Message. The
method’s MediaType is still XML. As a result, the object msg is encoded as XML before it
is sent to a client. Similarly, putXml() is changed, so it has a Message object as parameter,
and the method updates the msg object. This is of course pseudo, since the changes are
not used for something – the message msg does not exist between two calls of the service.

After the service has been changed and after a deploy, the client program must also be
updated. First, the class HelloService should be changed slightly. The resource is represented
by an object of the type WebTarget, and if you on this object performs the method request()
it calls the service’s get method (here it is getXml() that is decorated with @GET). It tells
to encode data as XML. Finally, with the get() method, you specify how the result should
be converted and before it was to a String. It’s changed to the type Message, and that’s all
that’s necessary to change in the HelloClient class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

159

	 this.msg.setFirstname(msg.getFirstname());
	 this.msg.setLastname(msg.getLastname());
	 this.msg.setJob(msg.getJob());
	 this.msg.setText(msg.getText());
 }
}

First, there should be a reference to the class library HelloRemote. Then an object of the
type Message is created, and the return type for getXml() has been changed to Message. The
method’s MediaType is still XML. As a result, the object msg is encoded as XML before it
is sent to a client. Similarly, putXml() is changed, so it has a Message object as parameter,
and the method updates the msg object. This is of course pseudo, since the changes are
not used for something – the message msg does not exist between two calls of the service.

After the service has been changed and after a deploy, the client program must also be
updated. First, the class HelloService should be changed slightly. The resource is represented
by an object of the type WebTarget, and if you on this object performs the method request()
it calls the service’s get method (here it is getXml() that is decorated with @GET). It tells
to encode data as XML. Finally, with the get() method, you specify how the result should
be converted and before it was to a String. It’s changed to the type Message, and that’s all
that’s necessary to change in the HelloClient class:

public	String	getXml()	throws	ClientErrorException	
{
	WebTarget	resource	=	webTarget;
	return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(Message.class);
}

Finally, the main() method in HelloREST must be changed:

package hellorest;

import helloremote.entities.Message;

public	class	HelloREST	
{
	public	static	void	main(String[]	args)	
 {
 Message msg;
	 HelloClient	client	=	new	HelloClient();
	 System.out.println(msg	=	client.getXml());
	 msg.setJob("Danish	Viking");
	 client.putXml(msg);

Finally, the main() method in HelloREST must be changed:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

159

	 this.msg.setFirstname(msg.getFirstname());
	 this.msg.setLastname(msg.getLastname());
	 this.msg.setJob(msg.getJob());
	 this.msg.setText(msg.getText());
 }
}

First, there should be a reference to the class library HelloRemote. Then an object of the
type Message is created, and the return type for getXml() has been changed to Message. The
method’s MediaType is still XML. As a result, the object msg is encoded as XML before it
is sent to a client. Similarly, putXml() is changed, so it has a Message object as parameter,
and the method updates the msg object. This is of course pseudo, since the changes are
not used for something – the message msg does not exist between two calls of the service.

After the service has been changed and after a deploy, the client program must also be
updated. First, the class HelloService should be changed slightly. The resource is represented
by an object of the type WebTarget, and if you on this object performs the method request()
it calls the service’s get method (here it is getXml() that is decorated with @GET). It tells
to encode data as XML. Finally, with the get() method, you specify how the result should
be converted and before it was to a String. It’s changed to the type Message, and that’s all
that’s necessary to change in the HelloClient class:

public	String	getXml()	throws	ClientErrorException	
{
	WebTarget	resource	=	webTarget;
	return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(Message.class);
}

Finally, the main() method in HelloREST must be changed:

package hellorest;

import helloremote.entities.Message;

public	class	HelloREST	
{
	public	static	void	main(String[]	args)	
 {
 Message msg;
	 HelloClient	client	=	new	HelloClient();
	 System.out.println(msg	=	client.getXml());
	 msg.setJob("Danish	Viking");
	 client.putXml(msg);

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

160

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

160

	 client.close();
	 System.out.println();
	 System.out.println(msg);
 }
}

If the program should work as before, it’s actually not necessary to change anything, and the
changes concern only that I want to show how to use putXml() and that a Message object
is automatically encoded as XML.

6.1 CHANGEADDRESS AGAIN

The above is a very simple RESTful web service and not a typical example. In this example,
I want to show another version of the program ChangeAddress, where the difference should
be that the program this time uses a RESTful web service to maintain the database.

I start by creating a Class Library project named AddressesRemote, and for this project I
have added an Entity Classes from Database, which is an entity class for the table address
in my MySQL database addresses. My library should not contain anything else and should
be translated, so I it is ready for use. Then I created a new Web Application project named
AddressesREST, and for this project I have added a web service as a RESTful Web Service
from Entity Classes:

If the program should work as before, it’s actually not necessary to change anything, and the
changes concern only that I want to show how to use putXml() and that a Message object
is automatically encoded as XML.

6.1 CHANGEADDRESS AGAIN

The above is a very simple RESTful web service and not a typical example. In this example,
I want to show another version of the program ChangeAddress, where the difference should
be that the program this time uses a RESTful web service to maintain the database.

I start by creating a Class Library project named AddressesRemote, and for this project I
have added an Entity Classes from Database, which is an entity class for the table address
in my MySQL database addresses. My library should not contain anything else and should
be translated, so I it is ready for use. Then I created a new Web Application project named
AddressesREST, and for this project I have added a web service as a RESTful Web Service
from Entity Classes:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

161161

Then I have to choose an entity class (there is only one):

http://s.bookboon.com/EOT

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

162

and in the following window I must select/enter a package where I have entered addressrest.
service. The result is that NetBeans creates three files:

 - AbstractFacade.java
 - AddressFacadeREST.java
 - ApplicationConfig.java

Here is the last identical to the config class from the first example, while the others define
methods for maintaining the database using JPA. AbstractFacade is the base class for
AddressFacadeREST, and I do not want to show the class here, but the code to the other
is as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

162

and in the following window I must select/enter a package where I have entered addressrest.
service. The result is that NetBeans creates three files:

 - AbstractFacade.java
 - AddressFacadeREST.java
 - ApplicationConfig.java

Here is the last identical to the config class from the first example, while the others define
methods for maintaining the database using JPA. AbstractFacade is the base class for
AddressFacadeREST, and I do not want to show the class here, but the code to the other
is as follows:

@Stateless
@Path("addressesremote.address")
public	class	AddressFacadeREST	extends	AbstractFacade<Address>	{
	@PersistenceContext(unitName	=	"AddressesRESTPU")
 private EntityManager em;

	public	AddressFacadeREST()	{
	 super(Address.class);
 }

	@POST
	@Override
	@Consumes({MediaType.APPLICATION_XML,	MediaType.APPLICATION_JSON})
	public	void	create(Address	entity)	{
	 super.create(entity);
 }

	@PUT
	@Path("{id}")
	@Consumes({MediaType.APPLICATION_XML,	MediaType.APPLICATION_JSON})
	public	void	edit(@PathParam("id")	Integer	id,	Address	entity)	{
	 super.edit(entity);
 }

	@DELETE
	@Path("{id}")
	public	void	remove(@PathParam("id")	Integer	id)	{
	 super.remove(super.find(id));
 }

	@GET
	@Path("{id}")
	@Produces({MediaType.APPLICATION_XML,	MediaType.APPLICATION_JSON})

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

163

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

163

	public	Address	find(@PathParam("id")	Integer	id)	{
	 return	super.find(id);
 }

	@GET
	@Override
	@Produces({MediaType.APPLICATION_XML,	MediaType.APPLICATION_JSON})
	public	List<Address>	findAll()	{
	 return	super.findAll();
 }

	@GET
	@Path("{from}/{to}")
	@Produces({MediaType.APPLICATION_XML,	MediaType.APPLICATION_JSON})
	public	List<Address>	findRange(
	 @PathParam("from")	Integer	from,	@PathParam("to")	Integer	to)	
 {
	 return	super.findRange(new	int[]{from,	to});
 }

	@GET
	@Path("count")
	@Produces(MediaType.TEXT_PLAIN)
	public	String	countREST()	{
	 return	String.valueOf(super.count());
 }

	@Override
	protected	EntityManager	getEntityManager()	{
 return em;
 }
}

It is a RESTful web service and you can see that it is also a stateless session bean. The class
creates an EntityManager using CDI, but the rest are methods that can be used by a client.
You should note that there are methods decorated as:

 - @POST to create an address
 - @PUT to update an address
 - @DELETE to delete an address

and that there are four methods decorated with @GET, which are used to request the
database. The service is complete and can perform CRUD operations on the database. It
does not look much, but the reason is that JPA takes care of everything (and of course
because there is only one table). Note: If you have trouble deploying the service, check the
configuration file:

It is a RESTful web service and you can see that it is also a stateless session bean. The class
creates an EntityManager using CDI, but the rest are methods that can be used by a client.
You should note that there are methods decorated as:

 - @POST to create an address
 - @PUT to update an address
 - @DELETE to delete an address

and that there are four methods decorated with @GET, which are used to request the
database. The service is complete and can perform CRUD operations on the database. It
does not look much, but the reason is that JPA takes care of everything (and of course
because there is only one table). Note: If you have trouble deploying the service, check the
configuration file:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

164164

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

165

Here, you may need to add the entity class below Include Entity Classes. After that you
should be able to deploy the project.

Next, a client must be written and I have started with a copy of the project ChangeAddress1,
which I have called ChangeAddress5. Here I have deleted the model class Address and added
a reference to the class library AddressesRemote. As the next step, I have added a RESTful
Java Client named AddressesClient. It is similar to the corresponding class from the previous
example, but you should note that methods have been created for both XML and JSON.
Below I have shown some of the class, but only the methods my program needs:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

165

Here, you may need to add the entity class below Include Entity Classes. After that you
should be able to deploy the project.

Next, a client must be written and I have started with a copy of the project ChangeAddress1,
which I have called ChangeAddress5. Here I have deleted the model class Address and added
a reference to the class library AddressesRemote. As the next step, I have added a RESTful
Java Client named AddressesClient. It is similar to the corresponding class from the previous
example, but you should note that methods have been created for both XML and JSON.
Below I have shown some of the class, but only the methods my program needs:

package changeaddress.beans;

import	javax.ws.rs.ClientErrorException;
import	javax.ws.rs.client.Client;
import	javax.ws.rs.client.WebTarget;

public class AddressesClient
{
	private	WebTarget	webTarget;
 private Client client;
	private	static	final	String	BASE_URI	=
	 "http://localhost:8080/AddressesREST/webresources";

	public	AddressesClient()	
 {
	 client	=	javax.ws.rs.client.ClientBuilder.newClient();
	 webTarget	=	client.target(BASE_URI).path("addressesremote.address");
 }

	public	void	create_XML(Object	requestEntity)	throws	ClientErrorException	
 {
	 webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 post(javax.ws.rs.client.Entity.entity(requestEntity,
	 javax.ws.rs.core.MediaType.APPLICATION_XML));
 }

	public	void	create_JSON(Object	requestEntity)	throws	ClientErrorException	
 {
	 webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_JSON).
	 post(javax.ws.rs.client.Entity.entity(requestEntity,
	 javax.ws.rs.core.MediaType.APPLICATION_JSON));
 }

	public	<T>	T	findAll_XML(Class<T>	responseType)	throws	ClientErrorException	
 {

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

166

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

166

	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(responseType);
 }

	public	<T>	T	findAll_JSON(Class<T>	responseType)	
throws	ClientErrorException	
 {
	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_JSON).
	 get(responseType);
 }

	public	void	close()	{
	 client.close();
 }
}

The class is similar to the corresponding method from the previous example. The constructor
creates a reference to the resource that is represented by an object of the type WebTarget.
This object can perform a request for the resource with one of the four HTTP methods.
In the current example, it is GET to perform a request (return all addresses) and POST
to create a new address.

Note the method findAll_XML(), which is generic. Here you must specify the type of the
object that the method should return, and it is List<Address>. Since the result is XML, it
must be parsed as a List<Address> object that occurs automatically, as shown in the previous
example. However, it causes a problem as the List<Address> type is not decorated as

@XmlRootElement

It is therefore necessary to embed a List<Address> in a wrapper class:

package changeaddress.beans;

import	java.util.List;
import javax.xml.bind.annotation.*;
import addressesremote.*;

@XmlRootElement(name="addresses")
@XmlAccessorType	(XmlAccessType.FIELD)
public class Addresses
{
	@XmlElement(name	=	"address")
	private	List<Address>	addresses	=	null;

The class is similar to the corresponding method from the previous example. The constructor
creates a reference to the resource that is represented by an object of the type WebTarget.
This object can perform a request for the resource with one of the four HTTP methods.
In the current example, it is GET to perform a request (return all addresses) and POST
to create a new address.

Note the method findAll_XML(), which is generic. Here you must specify the type of the
object that the method should return, and it is List<Address>. Since the result is XML, it
must be parsed as a List<Address> object that occurs automatically, as shown in the previous
example. However, it causes a problem as the List<Address> type is not decorated as

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

166

	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(responseType);
 }

	public	<T>	T	findAll_JSON(Class<T>	responseType)	
throws	ClientErrorException	
 {
	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_JSON).
	 get(responseType);
 }

	public	void	close()	{
	 client.close();
 }
}

The class is similar to the corresponding method from the previous example. The constructor
creates a reference to the resource that is represented by an object of the type WebTarget.
This object can perform a request for the resource with one of the four HTTP methods.
In the current example, it is GET to perform a request (return all addresses) and POST
to create a new address.

Note the method findAll_XML(), which is generic. Here you must specify the type of the
object that the method should return, and it is List<Address>. Since the result is XML, it
must be parsed as a List<Address> object that occurs automatically, as shown in the previous
example. However, it causes a problem as the List<Address> type is not decorated as

@XmlRootElement

It is therefore necessary to embed a List<Address> in a wrapper class:

package changeaddress.beans;

import	java.util.List;
import javax.xml.bind.annotation.*;
import addressesremote.*;

@XmlRootElement(name="addresses")
@XmlAccessorType	(XmlAccessType.FIELD)
public class Addresses
{
	@XmlElement(name	=	"address")
	private	List<Address>	addresses	=	null;

It is therefore necessary to embed a List<Address> in a wrapper class:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

166

	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
	 get(responseType);
 }

	public	<T>	T	findAll_JSON(Class<T>	responseType)	
throws	ClientErrorException	
 {
	 WebTarget	resource	=	webTarget;
	 return	resource.request(javax.ws.rs.core.MediaType.APPLICATION_JSON).
	 get(responseType);
 }

	public	void	close()	{
	 client.close();
 }
}

The class is similar to the corresponding method from the previous example. The constructor
creates a reference to the resource that is represented by an object of the type WebTarget.
This object can perform a request for the resource with one of the four HTTP methods.
In the current example, it is GET to perform a request (return all addresses) and POST
to create a new address.

Note the method findAll_XML(), which is generic. Here you must specify the type of the
object that the method should return, and it is List<Address>. Since the result is XML, it
must be parsed as a List<Address> object that occurs automatically, as shown in the previous
example. However, it causes a problem as the List<Address> type is not decorated as

@XmlRootElement

It is therefore necessary to embed a List<Address> in a wrapper class:

package changeaddress.beans;

import	java.util.List;
import javax.xml.bind.annotation.*;
import addressesremote.*;

@XmlRootElement(name="addresses")
@XmlAccessorType	(XmlAccessType.FIELD)
public class Addresses
{
	@XmlElement(name	=	"address")
	private	List<Address>	addresses	=	null;

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

167167

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

167167

	public	Addresses()	
 {
 }

	public	List<Address>	getAddresses()	
 {
 return addresses;
 }

	public	void	setAddresses(List<Address>	addresses)	
 {
	 this.addresses	=	addresses;
 }
}

With this class in place, you can write the finished named bean, which is just a simple
update of the existing class (I have not shown get and set methods):

package changeaddress.beans;

import addressesremote.Address;
import java.util.*;

With this class in place, you can write the finished named bean, which is just a simple
update of the existing class (I have not shown get and set methods):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

167167

	public	Addresses()	
 {
 }

	public	List<Address>	getAddresses()	
 {
 return addresses;
 }

	public	void	setAddresses(List<Address>	addresses)	
 {
	 this.addresses	=	addresses;
 }
}

With this class in place, you can write the finished named bean, which is just a simple
update of the existing class (I have not shown get and set methods):

package changeaddress.beans;

import addressesremote.Address;
import java.util.*;

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

168

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT REST WEB SERVICES

168

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

@Named(value	=	"indexController")
@SessionScoped
public	class	IndexController	implements	Serializable	
{
	private	Address	person	=	new	Address();
	private	List<Address>	persons	=	new	ArrayList();

	public	IndexController()
 {
 }

	public	List	getPersons()
 {
 try
 {
	 AddressesClient	client	=	new	AddressesClient();
	 Addresses	wrapper	=	client.findAll_XML(Addresses.class);
	 persons	=	wrapper.getAddresses();
	 client.close();
 }
	 catch	(Exception	ex)
 {
	 persons	=	new	ArrayList();
 }
 return persons;
 }

	public	void	add()
 {
 try
 {
	 AddressesClient	client	=	new	AddressesClient();
	 client.create_XML(person);
	 client.close();
	 person	=	new	Address();
 }
	 catch	(Exception	ex)	
 {
 }
 }
}

The two interesting methods are getPersons() and add() as the methods that uses the resource.The two interesting methods are getPersons() and add() as the methods that uses the resource.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT rest weB servICes

169

EXERCISE 7

You need to expand the above example so that you can also change and delete existing
addresses, but so that you use the same web service as in the previous example. You can
proceed as follows:

Start with a copy of the project ChangeAddress5, which you can call ChangeAddress6. It may
require that you change the reference to AddressesRemote. After you have created the copy,
you should test if the program still works properly.

1. Next, create a new page edit.xhtml, which is essentially the same as index.xhtml
(see below).

2. You must modify page list.xhtml, so the name becomes a link that refers to the
new page. When this page is opened, the form must be filled in with data for the
current address.

3. You need to expand the controller IndexController so it has methods to click on a
link in list.xhtml as well as to the three buttons in the new form.

Then everything should work.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

170170

7 SECURITY

When developing applications that are used over a network (web applications, enterprice
applications, etc.), at the same time – or very often – there is a security issue that needs to
be solved. It is a problem that I have overlooked in both this book and the two previous
books. Basically it is about

1. that only allowed users may use a program or parts of an application and that all
users should not have the same rights

2. that unauthorized users may not necessarily access the data sent over a network
between users and servers

The first issue is solved by using user identification and passwords, while the other issue is
solved by using encryption so nobody can read the data sent over the network. In principle,
it sounds simple, but it’s no matter what the many cyber attacks, as one hears in the press,
also testifies. Perhaps it’s actually impossible to completely secure an enterprise application,
but you can do a lot, and more than often it is not done.

http://s.bookboon.com/GTca

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

171

Many of the challenges associated with security are not so much because we do not know
how, but more that they make everyday work difficult, and for that reason, many may be
tempted to relax security policies. Studies actually shows that most security issues are due
to how the programs are used, more than how the programs are made. In this chapter I
will give an introduction to what safety matters there are as part of the development work,
and mention that it does not help much unless users of IT solutions also take the security
issue seriously.

In turn, the challenges of encryption are the easiest to solve, as it is primarily a question
of using a secure transmission line where data is sent encrypted, and the problem is solved
by properly configuring the program. However, the authentication and user authorization
issues can be solved by two sites, namely by the container (the application server), which
is a configuration task, and by program itself, where it is the programmer who will solve
the task.

7.1 THE DEMO APPLICATION

I use a simple web application called SecurityApp1. The application consists of only three
simple HTML pages, where the index.html is the start page and opens the following window:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

172

If you click on the top link, you get a window for entering a name (which is not saved):

If you go back to the start page and click the Administration link, you will get the following
page where you can edit a time (which will not be saved):

The code is trivial and will not be shown here. Below are the project files, and here you
should note that the page start.html is located in a folder admin, and that in WEB-INF is
added a configuration file glassfish-web.xml (a Glassfish Descriptor file):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

173173

 .

http://s.bookboon.com/AlcatelLucent

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

174

7.2 CONTAINER MANAGED AUTHENTICATION
AND AUTHORIZATION

I will start by showing how to let the container (the Glassfish server) control users’ access to
the individual pages. This is done solely with the configuration files, and without changing
the application’s code, as well as by creating Glassfish users.

Glassfish manages user and user rights using so-called security realms, which basically is a
collection of users with associated security groups. A user can be linked to one or more
groups, and these groups defines what actions the container will allow the user to perform.
For example, an application may have regular users who can only perform specific tasks
and administrators who can perform all tasks.

Glassfish has three realms from the start, but you can create your own. The three predefined
realms are:

1. admin-realm, used solely for the maintenance of users for the Glassfish administration
web application and should not be used for users of other applications

2. certificate, used for client-side certificate for authentication of users
3. file, that stores general user information

Clicking on file realm you will get the properties of this realm and clicking the Manage
Users button will give you an overview of the users. I have created three that I will apply
in the following:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

175

I will now use these users for autentication of pages to the above application when

1. users belonging to the student group alone must have access to index.html
2. users belonging to the group staf must have access to index.xhtml and enter.html
3. users belonging to the admin group must have access to all three pages

I have added the following web.xml:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

175

I will now use these users for autentication of pages to the above application when

1. users belonging to the student group alone must have access to index.html
2. users belonging to the group staf must have access to index.xhtml and enter.html
3. users belonging to the admin group must have access to all three pages

I have added the following web.xml:

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/
	 javaee	http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
	 version="3.1">
	 <session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	 </session-config>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admin Pages</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

 </security-constraint>

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

176176

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

176176

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>AllPages</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>staf</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Start Page</web-resource-name>

 <url-pattern>/index.html</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>student</role-name>

 </auth-constraint>

 </security-constraint>

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

177

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

177

	 <login-config>

 <auth-method>BASIC</auth-method>

	 <realm-name>file</realm-name>

	 </login-config>

</web-app>

User rights are defined as security-constraint elements, and in this case there are three. A
security-constraint element defines which pages it concerns and what role the user should
have. The first happens with an url-pattern element, while the other happens with a role-
name element. Looking at the first security-constraint it applies to all pages where the name
starts with admin, and thus all pages in the admin folder. Only users whose role is admin
can access these pages. The next security-constraint element applies to all pages, but here it
is a requirement that the user should have the role staf. Finally, there is the last security-
constraint that applies to a concrete page (start page) and for users whose role is student.

The last element is called login-config and is used to define how authentication should take
place. There are basically three options

1. BASIC, where it is left to the browser to make authentication
2. FORM where it is left for the program to perform authentication
3. CLIENT-CERT, which requires a certificate

Looking at the above role names, they refer only to the current application, but not to the
specific user groups. There must therefore be a mapping of these names, which takes place
in glassfish web.xml:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	glassfish-web-app	PUBLIC	"	…	">
<glassfish-web-app	error-url="">
 <security-role-mapping>

 <role-name>admin</role-name>

 <group-name>admin</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>staf</role-name>

 <group-name>staf</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>student</role-name>

 <group-name>student</group-name>

 </security-role-mapping>

	<class-loader	delegate="true"/>
	<jsp-config>

User rights are defined as security-constraint elements, and in this case there are three. A
security-constraint element defines which pages it concerns and what role the user should
have. The first happens with an url-pattern element, while the other happens with a role-
name element. Looking at the first security-constraint it applies to all pages where the name
starts with admin, and thus all pages in the admin folder. Only users whose role is admin
can access these pages. The next security-constraint element applies to all pages, but here it
is a requirement that the user should have the role staf. Finally, there is the last security-
constraint that applies to a concrete page (start page) and for users whose role is student.

The last element is called login-config and is used to define how authentication should take
place. There are basically three options

1. BASIC, where it is left to the browser to make authentication
2. FORM where it is left for the program to perform authentication
3. CLIENT-CERT, which requires a certificate

Looking at the above role names, they refer only to the current application, but not to the
specific user groups. There must therefore be a mapping of these names, which takes place
in glassfish web.xml:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

177

	 <login-config>

 <auth-method>BASIC</auth-method>

	 <realm-name>file</realm-name>

	 </login-config>

</web-app>

User rights are defined as security-constraint elements, and in this case there are three. A
security-constraint element defines which pages it concerns and what role the user should
have. The first happens with an url-pattern element, while the other happens with a role-
name element. Looking at the first security-constraint it applies to all pages where the name
starts with admin, and thus all pages in the admin folder. Only users whose role is admin
can access these pages. The next security-constraint element applies to all pages, but here it
is a requirement that the user should have the role staf. Finally, there is the last security-
constraint that applies to a concrete page (start page) and for users whose role is student.

The last element is called login-config and is used to define how authentication should take
place. There are basically three options

1. BASIC, where it is left to the browser to make authentication
2. FORM where it is left for the program to perform authentication
3. CLIENT-CERT, which requires a certificate

Looking at the above role names, they refer only to the current application, but not to the
specific user groups. There must therefore be a mapping of these names, which takes place
in glassfish web.xml:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	glassfish-web-app	PUBLIC	"	…	">
<glassfish-web-app	error-url="">
 <security-role-mapping>

 <role-name>admin</role-name>

 <group-name>admin</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>staf</role-name>

 <group-name>staf</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>student</role-name>

 <group-name>student</group-name>

 </security-role-mapping>

	<class-loader	delegate="true"/>
	<jsp-config>

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

178

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

178

	 <property	name="keepgenerated"	value="true">
	 <description>Keep	a	copy	…	</description>
	 </property>
	</jsp-config>
</glassfish-web-app>

In this case, the names are the same, but the meaning is of course that they do not have to
be. The server will typically have relatively few groups, while the applications define roles
independently of which user groups the server has defined.

If you open the above in Firefox, it will display the following window:

and what you can do with the program depends on which user you log in with.

In this example, BASIC authentication is used, which means that the username and password
are sent Base64 encoded to the server. It does not provide password protection. The same
goes for FORM authentication, where the username and password are sent in clear text.
Should you solve this problem and you should ensure that all data is sent encrypted between
the client and server, then the solution is to use the HTTPS for secure internet protocol,
and simply expand web.xml:

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	 xsi:schemaLocation="http://	…	">
	 <session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	 </session-config>
	 <security-constraint>
	 <web-resource-collection>
	 <web-resource-name>Admin	Pages</web-resource-name>

In this case, the names are the same, but the meaning is of course that they do not have to
be. The server will typically have relatively few groups, while the applications define roles
independently of which user groups the server has defined.

If you open the above in Firefox, it will display the following window:

and what you can do with the program depends on which user you log in with.

In this example, BASIC authentication is used, which means that the username and password
are sent Base64 encoded to the server. It does not provide password protection. The same
goes for FORM authentication, where the username and password are sent in clear text.
Should you solve this problem and you should ensure that all data is sent encrypted between
the client and server, then the solution is to use the HTTPS for secure internet protocol,
and simply expand web.xml:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

178

	 <property	name="keepgenerated"	value="true">
	 <description>Keep	a	copy	…	</description>
	 </property>
	</jsp-config>
</glassfish-web-app>

In this case, the names are the same, but the meaning is of course that they do not have to
be. The server will typically have relatively few groups, while the applications define roles
independently of which user groups the server has defined.

If you open the above in Firefox, it will display the following window:

and what you can do with the program depends on which user you log in with.

In this example, BASIC authentication is used, which means that the username and password
are sent Base64 encoded to the server. It does not provide password protection. The same
goes for FORM authentication, where the username and password are sent in clear text.
Should you solve this problem and you should ensure that all data is sent encrypted between
the client and server, then the solution is to use the HTTPS for secure internet protocol,
and simply expand web.xml:

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	 xsi:schemaLocation="http://	…	">
	 <session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	 </session-config>
	 <security-constraint>
	 <web-resource-collection>
	 <web-resource-name>Admin	Pages</web-resource-name>

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

179179

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

179179

	 <url-pattern>/admin/*</url-pattern>
	 </web-resource-collection>
	 <auth-constraint>
	 <role-name>admin</role-name>
	 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

	 </security-constraint>
	 <security-constraint>
	 <web-resource-collection>
	 <web-resource-name>AllPages</web-resource-name>
	 <url-pattern>/*</url-pattern>
	 </web-resource-collection>
	 <auth-constraint>
	 <role-name>staf</role-name>
	 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

	 </security-constraint>
	 <security-constraint>
	 <web-resource-collection>
	 <web-resource-name>Start	Page</web-resource-name>

http://s.bookboon.com/BI

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

180

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

180

	 <url-pattern>/index.html</url-pattern>
	 </web-resource-collection>
	 <auth-constraint>
	 <role-name>student</role-name>
	 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

	 </security-constraint>
	 <login-config>
	 <auth-method>BASIC</auth-method>
	 <realm-name>file</realm-name>
	 </login-config>
</web-app>

Generally, a secure Internet connection requires a certificate that you purchase from a
Certificate Authority (CA) such as Verisign or Thawte. Such a certificate costs something
(about $500) and needs a renewal every year. It may be a bit unfortunate for development
purposes and therefore Glassfish comes with a self-certificate and is pre-configured to support
HTTPS at port 8181. Such a self-certificate can be made by everyone and is therefore not
sure. If, after the above change of web.xml, you open the application, you get the following
window (Firefox):

If you click Advanced, you get the following option (which is a warning):

Generally, a secure Internet connection requires a certificate that you purchase from a
Certificate Authority (CA) such as Verisign or Thawte. Such a certificate costs something
(about $500) and needs a renewal every year. It may be a bit unfortunate for development
purposes and therefore Glassfish comes with a self-certificate and is pre-configured to support
HTTPS at port 8181. Such a self-certificate can be made by everyone and is therefore not
sure. If, after the above change of web.xml, you open the application, you get the following
window (Firefox):

If you click Advanced, you get the following option (which is a warning):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

181

If you click on the button, you’ll get another warning:

and clicking on the last button means that you have accepted the unsecured certificate and
the usual login window appears. If you close the browser and reopen the program, you will
not get the above warnings, and the login window will open immediately.

You should note that if you opens the program in the usual way by entering the address

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

181

If you click on the button, you’ll get another warning:

and clicking on the last button means that you have accepted the unsecured certificate and
the usual login window appears. If you close the browser and reopen the program, you will
not get the above warnings, and the login window will open immediately.

You should note that if you opens the program in the usual way by entering the address

http://localhost:8080/SecurityApp1/

it is the login window as shown below. That is, the address is automatically redirected to
the HTTPS protocol and port 8181:

Side 179:

is the login window as shown below. That is, the address is automatically redirected to the HTTPS

protocol and port 8181:

it is the login window as shown below. That is, the address is automatically redirected to
the HTTPS protocol and port 8181:

Side 179:

is the login window as shown below. That is, the address is automatically redirected to the HTTPS

protocol and port 8181:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

182182

7.3 FORM AUTHENTICATION

In the example above, it is the browser that has shown the login window and it is, in
principle, excellent, but you can also write your own login form. There may be at least two
reasons for it, including that you decide how the form should look, but it also allows you
to implement a logout function. In the following example I will show how to do, but first
I will change the program itself.

In the introductory example, the project consists of three HTML pages, but in practice it will
typically be JSF pages with backing beans, which requires a few changes. The SecurityApp2
project is expanded with two new JSF pages compared to the previous project, and in
addition, the three original pages have been changed to JSF pages:

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

183

The three original pages index.xhtml, enter.xhtml and start.xhtml now have a backing bean.
A managed bean with the name LogoutBean.java has also been added. The design of the
first three pages has changed a bit, but in principle it works in the same way. The error.
xhtml page is trivial and consists solely of a text and a link to login.xhtml, and the page
is used if you enter a user that is not found or you have entered an illegal password. The
most important thing about the example is the page login.xhtm:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

183

The three original pages index.xhtml, enter.xhtml and start.xhtml now have a backing bean.
A managed bean with the name LogoutBean.java has also been added. The design of the
first three pages has changed a bit, but in principle it works in the same way. The error.
xhtml page is trivial and consists solely of a text and a link to login.xhtml, and the page
is used if you enter a user that is not found or you have entered an illegal password. The
most important thing about the example is the page login.xhtm:

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"	…	">
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h2>Enter	username	and	password</h2>
	 <form	method="POST"	action="j_security_check">
	 <table	cellpadding="0"	cellspacing="0"	border="0">
	 <tr>
	 <td	align="right">Username: </td>
	 <td><input	type="text"	name="j_username"/></td>
	 </tr>
	 <tr><td	colspan="2"	style="height:10px"></td></tr>
	 <tr>
	 <td	align="right">Password: </td>
	 <td><input	type="password"	name="j_password"/></td>
	 </tr>
	 <tr><td	colspan="2"	style="height:20px"></td></tr>

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

184

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

184

	 <tr>
	 <td></td>
	 <td><input	type="submit"	value="Login"/></td>
	 </tr>
	 </table>
	 </form>
	</h:body>
</html>

It is a JSF page, but no JSF elements are used, and in particular it is important that the
form element is not a h:form element. Here you should note the action attribute, which
refers to j_security_check, which specifies the code that the application server performs. For
the same reasons, the two input fields must be named j_username and j_password.

The last thing that must happen to use form authentication is the change of web.xml, where
the login-config element is changed to the following:

<login-config>

	<auth-method>FORM</auth-method>
	<realm-name>file</realm-name>
	<form-login-config>
	 <form-login-page>/faces/login.xhtml</form-login-page>
	 <form-error-page>/faces/error.xhtml</form-error-page>
	</form-login-config>
</login-config>

When you opens the application, you will see the window below, where you will enter the
username and password. In this case, it is a very simple form, but you can of course modify
login.xhtml, so you get a nicer design that fits the current application. Note that the address
bar shows that a secure internet connection is being used.

It is a JSF page, but no JSF elements are used, and in particular it is important that the
form element is not a h:form element. Here you should note the action attribute, which
refers to j_security_check, which specifies the code that the application server performs. For
the same reasons, the two input fields must be named j_username and j_password.

The last thing that must happen to use form authentication is the change of web.xml, where
the login-config element is changed to the following:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

184

	 <tr>
	 <td></td>
	 <td><input	type="submit"	value="Login"/></td>
	 </tr>
	 </table>
	 </form>
	</h:body>
</html>

It is a JSF page, but no JSF elements are used, and in particular it is important that the
form element is not a h:form element. Here you should note the action attribute, which
refers to j_security_check, which specifies the code that the application server performs. For
the same reasons, the two input fields must be named j_username and j_password.

The last thing that must happen to use form authentication is the change of web.xml, where
the login-config element is changed to the following:

<login-config>

	<auth-method>FORM</auth-method>
	<realm-name>file</realm-name>
	<form-login-config>
	 <form-login-page>/faces/login.xhtml</form-login-page>
	 <form-error-page>/faces/error.xhtml</form-error-page>
	</form-login-config>
</login-config>

When you opens the application, you will see the window below, where you will enter the
username and password. In this case, it is a very simple form, but you can of course modify
login.xhtml, so you get a nicer design that fits the current application. Note that the address
bar shows that a secure internet connection is being used.

When you opens the application, you will see the window below, where you will enter the
username and password. In this case, it is a very simple form, but you can of course modify
login.xhtml, so you get a nicer design that fits the current application. Note that the address
bar shows that a secure internet connection is being used.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

185185

After entering your username and password, you will get to index.xhtml:

The window looks a bit different, but it is important that there is a link to logout. As
mentioned above, the page has a managed bean:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

185185

After entering your username and password, you will get to index.xhtml:

The window looks a bit different, but it is important that there is a link to logout. As
mentioned above, the page has a managed bean:

package securityapp.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

186

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

186

@Named(value	=	"indexBean")
@SessionScoped
public	class	IndexBean	implements	Serializable
{
	public	String	admin()
 {
	 return	"admin/start?faces-redirect=true";
 }

	public	String	enter()
 {
	 return	"enter?faces-redirect=true";
 }
}

The two action methods should do nothing but redirect to the two pages start.xhtml and enter.
xhtml that happens when you click on one of the two buttons. When a JSF page performs
an action, it happens with the POST method, and instead of performing a redirection, a
forward is performed. Therefore, the user role is not validated (or it only happens when
you leave a page again). To solve the problem (so the application works like the previous
application), as described above, you must force a redirection.

Clicking on the Logout link, is called a method logout() in a manged bean LogoutBean.java:

package securityapp.beans;

import javax.inject.Named;
import	javax.enterprise.context.RequestScoped;
import javax.faces.context.*;
import javax.servlet.http.*;

@Named(value	=	"logoutBean")
@RequestScoped
public	class	LogoutBean	
{
	public	LogoutBean()	
 {
 }

	public	String	logout()	
 {
	 ExternalContext	externalContext	=
	 FacesContext.getCurrentInstance().getExternalContext();
	 HttpSession	session	=	(HttpSession)	externalContext.getSession(true);
	 session.invalidate();
	 return	"login?faces-redirect=true";
 }
}

The two action methods should do nothing but redirect to the two pages start.xhtml and enter.
xhtml that happens when you click on one of the two buttons. When a JSF page performs
an action, it happens with the POST method, and instead of performing a redirection, a
forward is performed. Therefore, the user role is not validated (or it only happens when
you leave a page again). To solve the problem (so the application works like the previous
application), as described above, you must force a redirection.

Clicking on the Logout link, is called a method logout() in a manged bean LogoutBean.java:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

186

@Named(value	=	"indexBean")
@SessionScoped
public	class	IndexBean	implements	Serializable
{
	public	String	admin()
 {
	 return	"admin/start?faces-redirect=true";
 }

	public	String	enter()
 {
	 return	"enter?faces-redirect=true";
 }
}

The two action methods should do nothing but redirect to the two pages start.xhtml and enter.
xhtml that happens when you click on one of the two buttons. When a JSF page performs
an action, it happens with the POST method, and instead of performing a redirection, a
forward is performed. Therefore, the user role is not validated (or it only happens when
you leave a page again). To solve the problem (so the application works like the previous
application), as described above, you must force a redirection.

Clicking on the Logout link, is called a method logout() in a manged bean LogoutBean.java:

package securityapp.beans;

import javax.inject.Named;
import	javax.enterprise.context.RequestScoped;
import javax.faces.context.*;
import javax.servlet.http.*;

@Named(value	=	"logoutBean")
@RequestScoped
public	class	LogoutBean	
{
	public	LogoutBean()	
 {
 }

	public	String	logout()	
 {
	 ExternalContext	externalContext	=
	 FacesContext.getCurrentInstance().getExternalContext();
	 HttpSession	session	=	(HttpSession)	externalContext.getSession(true);
	 session.invalidate();
	 return	"login?faces-redirect=true";
 }
}

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

187

The method determines a reference to the current session and invalidates it (all session
objects are removed). Then the user is redirected to the login window.

7.4 CLIENT CERTIFICATE

Instead of making authentication using a username and password, you can use a certificate
that you can purchase from a Certificate Authority (Verisign or Thawte) as mentioned
above. This certificate must be installed by both Glassfish and the browser. For testing and
development purposes, it is possible to create a self-signed certificate. This is done with a
tool called keytoll, which comes with jdk. On my machine, the keytoll is placed in

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

187

The method determines a reference to the current session and invalidates it (all session
objects are removed). Then the user is redirected to the login window.

7.4 CLIENT CERTIFICATE

Instead of making authentication using a username and password, you can use a certificate
that you can purchase from a Certificate Authority (Verisign or Thawte) as mentioned
above. This certificate must be installed by both Glassfish and the browser. For testing and
development purposes, it is possible to create a self-signed certificate. This is done with a
tool called keytoll, which comes with jdk. On my machine, the keytoll is placed in

/usr/java/jdk1.8.0_131/bin

but it depends, of course, on where Java is installed and what version. First, I’ll create a
keystore with a key pair, which can be done with the following command, where the user
through a simple dialog must enter values that can identify the user and his company (these
are, among other things, those values that a Certificate Authority verifies):

./keytool	-genkey	-v	-alias	pakey	-keyalg	RSA	-storetype	PKCS12	-keystore	
client_keystore.p12	-storepass	Volmer1234	-keypass	Volmer1234
What	is	your	first	and	last	name?
	[Unknown]:	Poul	Klausen
What	is	the	name	of	your	organizational	unit?
	[Unknown]:	Development
What	is	the	name	of	your	organization?
	[Unknown]:	Torus	Data
What	is	the	name	of	your	City	or	Locality?
	[Unknown]:	Skive
What	is	the	name	of	your	State	or	Province?
	[Unknown]:	Jylland
What	is	the	two-letter	country	code	for	this	unit?
	[Unknown]:	dk
Is	CN=Poul	Klausen,	OU=Development,	O=Torus	Data,	L=Skive,	ST=Jylland,	C=dk	
correct?
	[no]:	yes
Generating	2.048	bit	RSA	key	pair	and	self-signed	certificate	(SHA256withRSA)	
with	a	validity	of	90	days
	 for:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
[Storing	client_keystore.p12]

For most information, it is not important (for a self-signed certificate) what you write, but
for the arguments of the command, the name of your keystore must end with .p12 and
the storepass and the keypass should be the same. After the command has been completed,
a keystore named client_keystore.p12 has been created under your current directory. Your

but it depends, of course, on where Java is installed and what version. First, I’ll create a
keystore with a key pair, which can be done with the following command, where the user
through a simple dialog must enter values that can identify the user and his company (these
are, among other things, those values that a Certificate Authority verifies):

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

187

The method determines a reference to the current session and invalidates it (all session
objects are removed). Then the user is redirected to the login window.

7.4 CLIENT CERTIFICATE

Instead of making authentication using a username and password, you can use a certificate
that you can purchase from a Certificate Authority (Verisign or Thawte) as mentioned
above. This certificate must be installed by both Glassfish and the browser. For testing and
development purposes, it is possible to create a self-signed certificate. This is done with a
tool called keytoll, which comes with jdk. On my machine, the keytoll is placed in

/usr/java/jdk1.8.0_131/bin

but it depends, of course, on where Java is installed and what version. First, I’ll create a
keystore with a key pair, which can be done with the following command, where the user
through a simple dialog must enter values that can identify the user and his company (these
are, among other things, those values that a Certificate Authority verifies):

./keytool	-genkey	-v	-alias	pakey	-keyalg	RSA	-storetype	PKCS12	-keystore	
client_keystore.p12	-storepass	Volmer1234	-keypass	Volmer1234
What	is	your	first	and	last	name?
	[Unknown]:	Poul	Klausen
What	is	the	name	of	your	organizational	unit?
	[Unknown]:	Development
What	is	the	name	of	your	organization?
	[Unknown]:	Torus	Data
What	is	the	name	of	your	City	or	Locality?
	[Unknown]:	Skive
What	is	the	name	of	your	State	or	Province?
	[Unknown]:	Jylland
What	is	the	two-letter	country	code	for	this	unit?
	[Unknown]:	dk
Is	CN=Poul	Klausen,	OU=Development,	O=Torus	Data,	L=Skive,	ST=Jylland,	C=dk	
correct?
	[no]:	yes
Generating	2.048	bit	RSA	key	pair	and	self-signed	certificate	(SHA256withRSA)	
with	a	validity	of	90	days
	 for:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
[Storing	client_keystore.p12]

For most information, it is not important (for a self-signed certificate) what you write, but
for the arguments of the command, the name of your keystore must end with .p12 and
the storepass and the keypass should be the same. After the command has been completed,
a keystore named client_keystore.p12 has been created under your current directory. Your

For most information, it is not important (for a self-signed certificate) what you write, but
for the arguments of the command, the name of your keystore must end with .p12 and
the storepass and the keypass should be the same. After the command has been completed,
a keystore named client_keystore.p12 has been created under your current directory. Your

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

188188

keystore must be imported into the browser, what you do (in Firefox), by choose Settings
and Advanced, and here you must choose Certificates and again Show Certificates:

In the following window you will get a list of the certificates that are installed in your
browser and clicking on the Import button, you can browse to your keystore (the file
client_keystore.p12) and install it.

http://s.bookboon.com/Subscrybe

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

189

The certificate must be exported to Glassfish, and first it must be converted to a format
that Glassfish can use. This can again be done with keytool:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

189

The certificate must be exported to Glassfish, and first it must be converted to a format
that Glassfish can use. This can again be done with keytool:

./keytool	-export	-alias	pakey	-keystore	client_keystore.p12	
-storetype	PKCS12	-storepass	Volmer1234	-rfc	-file	pasigned.cer
Certificate	stored	in	file	<pasigned.cer>

The result is a file named pasigned.cer. The name is not important, but it is recommended
that the name end with .cer. Glassfish has a file with the names of the Certification Authorities
that it trusts (it already knows Verisign and Thaute), and these names are found in the file

glassfish/domains/domain1/config/cacerts.jks

In order for Glassfish to use my self-signed certificate, it must know me – and believe me
as a Certificate Authority – and I can export the file pasigned.cer to Glassfish with keytool:

./keytool	-import	-file	pasigned.cer	-keystore	/usr/
local/glassfish-4.1.1/glassfish/domains/domain1/config/
cacerts.jks	-keypass	changeit	-storepass	changeit
Owner:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
Issuer:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
Serial	number:	17f52e72
Valid	from:	Fri	Nov	03	14:32:02	CET	2017	
until:	Thu	Feb	01	14:32:02	CET	2018
Certificate	fingerprints:
	 MD5:	7C:FD:D5:54:A3:77:91:FE:37:1B:C9:87:0E:7C:31:32
	 SHA1:	CA:04:02:46:99:B8:3A:0C:E5:04:FA:7D:97:42:39:60:51:27:01:66
	 SHA256:	85:F4:6B:07:1E:B5:B1:F9:BE:45:D3:64:9D:43:E4:
83:23:FE:7B:CD:22:C3:5E:42:E9:80:72:61:43:4D:F1:1B
	 Signature	algorithm	name:	SHA256withRSA
	 Version:	3

Extensions:	

#1:	ObjectId:	2.5.29.14	Criticality=false
SubjectKeyIdentifier	[
KeyIdentifier	[
0000:	A6	FC	A4	3C	B7	FA	9E	17	25	BD	FE	FE	48	9B	7E	D2	…<….%…H…
0010:	0F	D2	04	97	….
]
]
Trust	this	certificate?	[no]:	yes
Certificate	was	added	to	keystore

The result is a file named pasigned.cer. The name is not important, but it is recommended
that the name end with .cer. Glassfish has a file with the names of the Certification Authorities
that it trusts (it already knows Verisign and Thaute), and these names are found in the file

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

189

The certificate must be exported to Glassfish, and first it must be converted to a format
that Glassfish can use. This can again be done with keytool:

./keytool	-export	-alias	pakey	-keystore	client_keystore.p12	
-storetype	PKCS12	-storepass	Volmer1234	-rfc	-file	pasigned.cer
Certificate	stored	in	file	<pasigned.cer>

The result is a file named pasigned.cer. The name is not important, but it is recommended
that the name end with .cer. Glassfish has a file with the names of the Certification Authorities
that it trusts (it already knows Verisign and Thaute), and these names are found in the file

glassfish/domains/domain1/config/cacerts.jks

In order for Glassfish to use my self-signed certificate, it must know me – and believe me
as a Certificate Authority – and I can export the file pasigned.cer to Glassfish with keytool:

./keytool	-import	-file	pasigned.cer	-keystore	/usr/
local/glassfish-4.1.1/glassfish/domains/domain1/config/
cacerts.jks	-keypass	changeit	-storepass	changeit
Owner:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
Issuer:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
Serial	number:	17f52e72
Valid	from:	Fri	Nov	03	14:32:02	CET	2017	
until:	Thu	Feb	01	14:32:02	CET	2018
Certificate	fingerprints:
	 MD5:	7C:FD:D5:54:A3:77:91:FE:37:1B:C9:87:0E:7C:31:32
	 SHA1:	CA:04:02:46:99:B8:3A:0C:E5:04:FA:7D:97:42:39:60:51:27:01:66
	 SHA256:	85:F4:6B:07:1E:B5:B1:F9:BE:45:D3:64:9D:43:E4:
83:23:FE:7B:CD:22:C3:5E:42:E9:80:72:61:43:4D:F1:1B
	 Signature	algorithm	name:	SHA256withRSA
	 Version:	3

Extensions:	

#1:	ObjectId:	2.5.29.14	Criticality=false
SubjectKeyIdentifier	[
KeyIdentifier	[
0000:	A6	FC	A4	3C	B7	FA	9E	17	25	BD	FE	FE	48	9B	7E	D2	…<….%…H…
0010:	0F	D2	04	97	….
]
]
Trust	this	certificate?	[no]:	yes
Certificate	was	added	to	keystore

In order for Glassfish to use my self-signed certificate, it must know me – and believe me
as a Certificate Authority – and I can export the file pasigned.cer to Glassfish with keytool:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

189

The certificate must be exported to Glassfish, and first it must be converted to a format
that Glassfish can use. This can again be done with keytool:

./keytool	-export	-alias	pakey	-keystore	client_keystore.p12	
-storetype	PKCS12	-storepass	Volmer1234	-rfc	-file	pasigned.cer
Certificate	stored	in	file	<pasigned.cer>

The result is a file named pasigned.cer. The name is not important, but it is recommended
that the name end with .cer. Glassfish has a file with the names of the Certification Authorities
that it trusts (it already knows Verisign and Thaute), and these names are found in the file

glassfish/domains/domain1/config/cacerts.jks

In order for Glassfish to use my self-signed certificate, it must know me – and believe me
as a Certificate Authority – and I can export the file pasigned.cer to Glassfish with keytool:

./keytool	-import	-file	pasigned.cer	-keystore	/usr/
local/glassfish-4.1.1/glassfish/domains/domain1/config/
cacerts.jks	-keypass	changeit	-storepass	changeit
Owner:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
Issuer:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
Serial	number:	17f52e72
Valid	from:	Fri	Nov	03	14:32:02	CET	2017	
until:	Thu	Feb	01	14:32:02	CET	2018
Certificate	fingerprints:
	 MD5:	7C:FD:D5:54:A3:77:91:FE:37:1B:C9:87:0E:7C:31:32
	 SHA1:	CA:04:02:46:99:B8:3A:0C:E5:04:FA:7D:97:42:39:60:51:27:01:66
	 SHA256:	85:F4:6B:07:1E:B5:B1:F9:BE:45:D3:64:9D:43:E4:
83:23:FE:7B:CD:22:C3:5E:42:E9:80:72:61:43:4D:F1:1B
	 Signature	algorithm	name:	SHA256withRSA
	 Version:	3

Extensions:	

#1:	ObjectId:	2.5.29.14	Criticality=false
SubjectKeyIdentifier	[
KeyIdentifier	[
0000:	A6	FC	A4	3C	B7	FA	9E	17	25	BD	FE	FE	48	9B	7E	D2	…<….%…H…
0010:	0F	D2	04	97	….
]
]
Trust	this	certificate?	[no]:	yes
Certificate	was	added	to	keystore

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

190

Then I can use the certificate for authentication. I want to use a copy of the SecurityApp1
project, which I have called SecurityApp3. The code should not be changed, but the web.
xml and glassfish-web.xml configuration files should. Below is web.xml shown:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

190

Then I can use the certificate for authentication. I want to use a copy of the SecurityApp1
project, which I have called SecurityApp3. The code should not be changed, but the web.
xml and glassfish-web.xml configuration files should. Below is web.xml shown:

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	 xsi:schemaLocation="	…	>
	<session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	</session-config>

	<security-constraint>
	 <web-resource-collection>
	 <web-resource-name>AllPages</web-resource-name>
	 <url-pattern>/*</url-pattern>
	 </web-resource-collection>
	 <auth-constraint>
	 <role-name>student</role-name>
	 </auth-constraint>
	 <user-data-constraint>
	 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
	 </user-data-constraint>
	</security-constraint>

	<login-config>
	 <auth-method>CLIENT-CERT</auth-method>
	 <realm-name>certificate</realm-name>
	</login-config>

</web-app>

This time, there is only one single security-constrant element, since all users with the role
student must have access to the entire application and also defines that a secure Internet
connection should be used. Additionally, you can not use authentication with a certificate
without an SSL connection. Then there is the login-config element, which defines the use
of a certificate this time.

Which certificate to use is defined in glassfish-web.xml:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	glassfish-web-app	PUBLIC	"-//GlassFish.org//DTD	

This time, there is only one single security-constrant element, since all users with the role
student must have access to the entire application and also defines that a secure Internet
connection should be used. Additionally, you can not use authentication with a certificate
without an SSL connection. Then there is the login-config element, which defines the use
of a certificate this time.

Which certificate to use is defined in glassfish-web.xml:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

190

Then I can use the certificate for authentication. I want to use a copy of the SecurityApp1
project, which I have called SecurityApp3. The code should not be changed, but the web.
xml and glassfish-web.xml configuration files should. Below is web.xml shown:

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	 xsi:schemaLocation="	…	>
	<session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	</session-config>

	<security-constraint>
	 <web-resource-collection>
	 <web-resource-name>AllPages</web-resource-name>
	 <url-pattern>/*</url-pattern>
	 </web-resource-collection>
	 <auth-constraint>
	 <role-name>student</role-name>
	 </auth-constraint>
	 <user-data-constraint>
	 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
	 </user-data-constraint>
	</security-constraint>

	<login-config>
	 <auth-method>CLIENT-CERT</auth-method>
	 <realm-name>certificate</realm-name>
	</login-config>

</web-app>

This time, there is only one single security-constrant element, since all users with the role
student must have access to the entire application and also defines that a secure Internet
connection should be used. Additionally, you can not use authentication with a certificate
without an SSL connection. Then there is the login-config element, which defines the use
of a certificate this time.

Which certificate to use is defined in glassfish-web.xml:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	glassfish-web-app	PUBLIC	"-//GlassFish.org//DTD	

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

191191

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

191191

GlassFish	Application	Server	3.1	Servlet	3.0//EN"	"http://
glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">
<glassfish-web-app	error-url="">

<context-root>/certificaterealm</context-root>
	<security-role-mapping>
	 <role-name>student</role-name>
	 <principal-name>
	 CN=Poul	Klausen,	OU=Development,	O=Torus	Data,	L=Skive,	ST=Jylland,	C=dk
	 </principal-name>
	</security-role-mapping>
	<class-loader	delegate="true"/>
	<jsp-config>
	 <property	name="keepgenerated"	value="true">
	 <description>Keep	a	copy	of	the	generated	…	</description>
	 </property>
	</jsp-config>
</glassfish-web-app>

Here the user role student must be mapped to the certificate. Here it is important that the
principal-name element is written correctly. It is recommended to use keytool:

Here the user role student must be mapped to the certificate. Here it is important that the
principal-name element is written correctly. It is recommended to use keytool:

http://s.bookboon.com/volvo

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

192

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

192

	./keytool	-printcert	-file	pasigned.cer
Owner:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
Issuer:	CN=Poul	Klausen,	OU=Development,	O=Torus	
Data,	L=Skive,	ST=Jylland,	C=dk
…

and then copy from the Issuer line.

After you have translated and deployed the application and opens it in the browser, you
get the following window:

and clicking OK will open the application as before, except that all pages are now accessible.

7.5 PROGRAMMER DEFINED AUTHENTICATION

In the above examples, it is the application server that has handled authentication, and in
many cases it is also the way to do it, but the method is best to control the application’s
authentication and thus whether a user has access to a particular application. On the other
hand, if you want to ensure that all users do not have access to the same features (pages) in
a web application, you need a bit more, and you can use a database that contains roles for
the individual users and then in the application test which roles are available. In this section
I will illustrate it with a copy of the example SecurityApp2, which I have called SecurityApp4.

and then copy from the Issuer line.

After you have translated and deployed the application and opens it in the browser, you
get the following window:

and clicking OK will open the application as before, except that all pages are now accessible.

7.5 PROGRAMMER DEFINED AUTHENTICATION

In the above examples, it is the application server that has handled authentication, and in
many cases it is also the way to do it, but the method is best to control the application’s
authentication and thus whether a user has access to a particular application. On the other
hand, if you want to ensure that all users do not have access to the same features (pages) in
a web application, you need a bit more, and you can use a database that contains roles for
the individual users and then in the application test which roles are available. In this section
I will illustrate it with a copy of the example SecurityApp2, which I have called SecurityApp4.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

193

Basically, it is the same application with the same pages index.xhtml, enter.xhtml and start.
xhtml (the last in the folder admin) and they have the same backing beans. However, another
trivial page has been added named list.xhtml and its associated backing bean, to which there
is a link from index.xhtml. The whole application is thus trivial so far, and the sole purpose
is to show how to implement authentication, and in addition to how to make access to
each page depending on what it is for a user that is logged in.

Initially, I have created a database called authentication and with a single table user:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

193

Basically, it is the same application with the same pages index.xhtml, enter.xhtml and start.
xhtml (the last in the folder admin) and they have the same backing beans. However, another
trivial page has been added named list.xhtml and its associated backing bean, to which there
is a link from index.xhtml. The whole application is thus trivial so far, and the sole purpose
is to show how to implement authentication, and in addition to how to make access to
each page depending on what it is for a user that is logged in.

Initially, I have created a database called authentication and with a single table user:

use sys;

drop database if exists authentication;
create database authentication;

use authentication;

create	table	user	(
	name	varchar(256)	not	null,
	role	varchar(2048),
	primary	key	(name)
);

insert	into	user	(name,	role)	values	('poul',	'student:root');
insert	into	user	(name,	role)	values	('knud',	'admin:staf:student');
insert	into	user	(name,	role)	values	('svend',	'staf:student');
insert	into	user	(name,	role)	values	('valdemar',	'student');

The table has only two columns, where the first represents the name of a user and is the
primary key, while the second column indicates user roles according to the same syntax as
in Glassfish. As examples, 4 users are added to the table.

In the project, I have deleted LogoutBean and instead added another named bean with
the name AuthenticationCtrl, but before I look at it, I will show an EJB that contains the
most important to login. It is still the application server that needs to authenticate and
thus check the user’s username and password. Note that the above database table does not
contain the user’s password, and it is thus the server who is responsible for storing the
password encrypted.

To write the EJB I have created an EJB Module project named AuthenticationEJB. Then here
I created a class library project named AuthenticationRemote and added an entity class for the
above table. This class has not been changed in relation to what NetBeans has generated and
the content is not new and will not appear here. For AuthenticationEJB, I’ve added a reference

The table has only two columns, where the first represents the name of a user and is the
primary key, while the second column indicates user roles according to the same syntax as
in Glassfish. As examples, 4 users are added to the table.

In the project, I have deleted LogoutBean and instead added another named bean with
the name AuthenticationCtrl, but before I look at it, I will show an EJB that contains the
most important to login. It is still the application server that needs to authenticate and
thus check the user’s username and password. Note that the above database table does not
contain the user’s password, and it is thus the server who is responsible for storing the
password encrypted.

To write the EJB I have created an EJB Module project named AuthenticationEJB. Then here
I created a class library project named AuthenticationRemote and added an entity class for the
above table. This class has not been changed in relation to what NetBeans has generated and
the content is not new and will not appear here. For AuthenticationEJB, I’ve added a reference

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

194194

to the above class library and added a stateless session bean named AuthenticationBean with
a remote interface located in the class library. The interface is as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

194194

to the above class library and added a stateless session bean named AuthenticationBean with
a remote interface located in the class library. The interface is as follows:

package authenticationejb.beans;

import	javax.ejb.Remote;
import	authenticationremote.entities.User;

@Remote
public	interface	AuthenticationBeanRemote	
{
	public	String	getPassword();
	public	void	setPassword(String	password);
	public	User	getUser();
	public	void	setUser(User	user);
	public	boolean	login();
}

which defines two properties, one being the user’s password (AuthenticationBean must use
it to perform authentication using Glassfish), and an object of the type User, which is the
entity type from the class library. Finally, there is the method login(), which is the method
of authentication. Below is the class AuthenticationBean:

which defines two properties, one being the user’s password (AuthenticationBean must use
it to perform authentication using Glassfish), and an object of the type User, which is the
entity type from the class library. Finally, there is the method login(), which is the method
of authentication. Below is the class AuthenticationBean:

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

195

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

195

@Stateless
public	class	AuthenticationBean	implements	AuthenticationBeanRemote	
{
	@PersistenceContext(unitName	=	"AuthenticationEJBPU")
 private EntityManager em;
	private	String	password	=	null;
	private	User	user;

	public	AuthenticationBean()	
 {
 }

	@Override
	public	boolean	login()	
 {
	 HttpSession	session	=	getSession();
	 HttpServletRequest	request	=	null;
 try
 {
	 request	=	(HttpServletRequest)
	 FacesContext.getCurrentInstance().getExternalContext().getRequest();
	 request.login(getUser().getName(),	this.password);
	 session.setMaxInactiveInterval(600);
	 session.setAttribute("authenticated",	new	Boolean(true));
	 em.flush();
	 Query	query	=	
	 em.createQuery("select	count(u)	from	User	u	where	u.name	=	:name").
	 setParameter("name",	getUser().getName());
	 Long	count	=	(Long)query.getSingleResult();
	 if	(count	>	0)
 {
	 query	=	
	 em.createQuery("select	object(u)	from	User	u	where	u.name	=	:name").
	 setParameter("name",	getUser().getName());
	 setUser((User)	query.getSingleResult());
 }
 return true;
 }
	 catch	(Exception	ex)	
 {
	 setUser(null);
	 session	=	getSession();
	 session.setAttribute("authenticated",	new	Boolean(false));
	 if(request	!=	null)
 {
 try
 {
	 request.logout();

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

196

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

196

 }
	 catch	(Exception	e)	
 {
 }
 }
 return false;
 }
	 finally	
 {
	 setPassword(null);
 }
 }

	public	HttpSession	getSession()	
 {
	 HttpServletRequest	request	=	(HttpServletRequest)
	 FacesContext.getCurrentInstance().getExternalContext().getRequest();
	 return	request.getSession(false);
 }

	@Override
	public	String	getPassword()	
 {
	 return	this.password;
 }

	@Override
	public	void	setPassword(String	password)	
 {
	 this.password	=	password;
 }

	@Override
	public	User	getUser()
 {
	 if	(this.user	==	null)	user	=	new	User();
 return user;
 }

	@Override
	public	void	setUser(User	user)	
 {
	 this.user	=	user;
 }
}

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

197197

The class implements the two properties, which do not require any particular explanation,
and the important thing is naturally the method login(). The first thing that happens is that
the method initializes the variable request, which represents the current user request. For this
request, the method login() is called with the user’s username and password as parameters
(provided they have a value at that time) and that means authentication using the server.
If the server can not autheticate the user you get an exception, but otherwise the timeout
period for the current session is set to 10 minutes, and a session object is defined with the
value true, which indicates that login has been made. Next, it is checked whether the user
is in the database, and if that is the case, the propertien user is initialized. If the server can
not perform authentication, a logout() method will be performed on request, which means
that you will be returned to the login page.

Then there is AuthenticationCtrl, which is a manged bean. It uses AuthenticationBean and
generally represents two properties username and password for a login form. In addition,
there is a property authenticated that indicates whether a user is logged in.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

197197

The class implements the two properties, which do not require any particular explanation,
and the important thing is naturally the method login(). The first thing that happens is that
the method initializes the variable request, which represents the current user request. For this
request, the method login() is called with the user’s username and password as parameters
(provided they have a value at that time) and that means authentication using the server.
If the server can not autheticate the user you get an exception, but otherwise the timeout
period for the current session is set to 10 minutes, and a session object is defined with the
value true, which indicates that login has been made. Next, it is checked whether the user
is in the database, and if that is the case, the propertien user is initialized. If the server can
not perform authentication, a logout() method will be performed on request, which means
that you will be returned to the login page.

Then there is AuthenticationCtrl, which is a manged bean. It uses AuthenticationBean and
generally represents two properties username and password for a login form. In addition,
there is a property authenticated that indicates whether a user is logged in.

@Named(value	=	"authenticationCtrl")
@SessionScoped
public class AuthenticationCtrl implements Serializable
{

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

198

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

198

	@EJB
	private	AuthenticationBeanRemote	authenticationBean;
	private	User	user;
	private	boolean	authenticated	=	false;

	public	AuthenticationCtrl()	
 {
 }

	public	String	getUsername()	
 {
	 return	getUser().getName();
 }

	public	void	setUsername(String	username)	
 {
	 getUser().setName(username);
 }

	public	String	getPassword()	
 {
	 return	authenticationBean.getPassword();
 }

	public	void	setPassword(String	password)	
 {
	 authenticationBean.setPassword(password);
 }

	public	User	getUser()	
 {
	 if	(this.user	==	null)	
 {
	 user	=	new	User();
	 setUser(authenticationBean.getUser());
 }
 return user;
 }

	public	void	setUser(User	user)	
 {
	 this.user	=	user;
 }

	public	boolean	isAuthenticated()	
 {
 try
 {

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

199

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

199

	 authenticated	=	(Boolean)	getSession().getAttribute("authenticated");
 }
	 catch	(Exception	ex)	
 {
	 authenticated	=	false;
 }
 return authenticated;
 }

	public	void	setAuthenticated(boolean	authenticated)	
 {
	 this.authenticated	=	authenticated;
 }

	public	boolean	isStaff()
 {
	 return	user	!=	null	&&	hasRole(user.getRole(),	"staf");
 }

	public	boolean	isAdmin()
 {
	 return	user	!=	null	&&	hasRole(user.getRole(),	"admin");
 }

	public	String	login()	
 {
	 authenticationBean.setUser(getUser());
	 boolean	authResult	=	authenticationBean.login();
	 if	(authResult)	
 {
	 authenticated	=	true;
	 setUser(authenticationBean.getUser());
 return "index";
 }
 else
 {
	 authenticated	=	false;
	 setUser(null);
 return "";
 }
 }

	public	String	logout()	
 {
	 user	=	null;
	 this.authenticated	=	false;
	 authenticationBean.setUser(null);
	 ExternalContext	externalContext	=
	 FacesContext.getCurrentInstance().getExternalContext();

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

200200

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

200200

	 externalContext.invalidateSession();
	 return	"login?faces-redirect=true";
 }

	public	HttpSession	getSession()	
 {
	 HttpServletRequest	request	=	(HttpServletRequest)
	 FacesContext.getCurrentInstance().getExternalContext().getRequest();
	 return	request.getSession();
 }

	private	boolean	hasRole(String	roles,	String	role)
 {
	 String[]	elems	=	roles.split(":");
	 for	(String	elem	:	elems)	if	(elem.equals(role))	return	true;
 return false;
 }
}

There are also two properties isAdmin() and isStaff() that are used to test the roles of those
users. They are used by index.xhtml to make the content (if the buttons are displayed)
depending on the current user’s roles:

There are also two properties isAdmin() and isStaff() that are used to test the roles of those
users. They are used by index.xhtml to make the content (if the buttons are displayed)
depending on the current user’s roles:

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT seCurIty

201

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

201

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h1>Security</h1>
	 <h:form>
	 <h:commandLink	value="Your	names"	action="#{indexBean.show()}"	/>

	 <h:commandButton	rendered="#{authenticationCtrl.staff}"	value="Enter	data"
	 action="#{indexBean.enter()}"	/>
	 <h:commandButton	rendered="#{authenticationCtrl.admin}"
	 value="Administration"	action="#{indexBean.admin()}"	/>

	 <h:commandLink	value="Logout"	action="#{authenticationCtrl.logout()}"	/>
	 </h:form>
	</h:body>
</html>

Finally, the page login.xhtml has been changed to a regular JSF page:

<h:body>
	<h2>Enter	username	and	password</h2>
	<h:form	id="login">
	 <h:panelGroup	rendered="#{authenticationCtrl.authenticated}">
	 Authenticated	successfully…go	to	Application
	 </h:panelGroup>
	 <h:panelGrid	columns="2"	rendered="#{!authenticationCtrl.authenticated}"	>
	 <h:outputText	value="Username:"	/>
	 <h:inputText	id="j_username"	value="#{authenticationCtrl.username}"/>
	 <h:outputText	value="Password:"	/>
	 <h:inputText	id="j_password"	value="#{authenticationCtrl.password}"/>
	 <h:panelGroup/>
	 <h:commandButton	id="login"	action="#{authenticationCtrl.login}"
	 value="Login"/>
	 </h:panelGrid>
	</h:form>
</h:body>

With the above solution, the application server is responsible for authentication and
encryption of the users passwords while it is the program and thus the programmer that is
responsible for which pages each users can access. Of course it is also possible to take care
of everything and let it be up to the program to handle everything about users. Here you
should be aware that the users passwords are stored encrypted in the database.

Finally, the page login.xhtml has been changed to a regular JSF page:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT SECURITy

201

<?xml	version='1.0'	encoding='UTF-8'	?>
<!DOCTYPE	html	PUBLIC	"	…	>
<html	xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet	Title</title>
	</h:head>
	<h:body>
	 <h1>Security</h1>
	 <h:form>
	 <h:commandLink	value="Your	names"	action="#{indexBean.show()}"	/>

	 <h:commandButton	rendered="#{authenticationCtrl.staff}"	value="Enter	data"
	 action="#{indexBean.enter()}"	/>
	 <h:commandButton	rendered="#{authenticationCtrl.admin}"
	 value="Administration"	action="#{indexBean.admin()}"	/>

	 <h:commandLink	value="Logout"	action="#{authenticationCtrl.logout()}"	/>
	 </h:form>
	</h:body>
</html>

Finally, the page login.xhtml has been changed to a regular JSF page:

<h:body>
	<h2>Enter	username	and	password</h2>
	<h:form	id="login">
	 <h:panelGroup	rendered="#{authenticationCtrl.authenticated}">
	 Authenticated	successfully…go	to	Application
	 </h:panelGroup>
	 <h:panelGrid	columns="2"	rendered="#{!authenticationCtrl.authenticated}"	>
	 <h:outputText	value="Username:"	/>
	 <h:inputText	id="j_username"	value="#{authenticationCtrl.username}"/>
	 <h:outputText	value="Password:"	/>
	 <h:inputText	id="j_password"	value="#{authenticationCtrl.password}"/>
	 <h:panelGroup/>
	 <h:commandButton	id="login"	action="#{authenticationCtrl.login}"
	 value="Login"/>
	 </h:panelGrid>
	</h:form>
</h:body>

With the above solution, the application server is responsible for authentication and
encryption of the users passwords while it is the program and thus the programmer that is
responsible for which pages each users can access. Of course it is also possible to take care
of everything and let it be up to the program to handle everything about users. Here you
should be aware that the users passwords are stored encrypted in the database.

With the above solution, the application server is responsible for authentication and
encryption of the users passwords while it is the program and thus the programmer that is
responsible for which pages each users can access. Of course it is also possible to take care
of everything and let it be up to the program to handle everything about users. Here you
should be aware that the users passwords are stored encrypted in the database.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

202

8 A FINAL EXAMPLE

As the final example, I will write a program that is a typical calculator, and thus a program
that can simulate a mathematical calculator. Compared to previous examples (the book
Java 3), there must be two important differences:

1. The program must now be a web application.
2. The machine (the calculator) must now support calculations with a random number

of decimal places.

Apart from that, the program should basically have the same functions as a typical (and
relatively simple) mathematical calculator, where it is important that the program should
support very large numbers.

The aim of the program is to use some of the topics that have been addressed in this book,
and especially Enterprise Java Beans. In addition, it is an example where there is focus
on algorithms.

8.1 ANALYSIS

Regarding the last of the two requirements, it means that the program must work on data
of the type BigDecimal.

The program must support the following mathematical functions:

1. sqr(x) which calculates the square of x, it is
2. sqrt(x) which calculates the square root x, it is
3. pow(x,y) which calculates
4. root(x, y) which calculates the y’th root of x, it is
5. log10(x) which calculates the 10th logarithm of x
6. antilog(x) which calculates the anti logarithm of x and then
7. log(x) which calculates the natural logarithm to x
8. exp(x) which is the eksponential function and then calculates
9. sin(x) which calculates sinus to x
10. asin(x) which is the reverse function for sinus
11. cos(x) which calculates cosines to x
12. acos(x) which is the reverse function for cos
13. tan(x) which calculates tanges to x

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

203203

14. atan(x) which is the reverse function for tan
15. cot(x) which calculates cotangens to x
16. acot(x) which is the reverse function for cotangens
17. abs(x) which calculates the absolut value of x
18. floor(x) which calculates the integer value of x
19. frac(x) which calculates the fraction of x
20. recp(x) which calculates the reciproc value of x
21. fact(x) which calculates the factorial of x
22. deg(x) which calculates the value of x in radians to degrees
23. rad(x) which calculates the value of x in degrees to radians
24. E which is the constant e
25. PI which is the constant

The program should have a user interface similar to the following:

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

204

At the top there is a display for results. The next field is an entry field for a mathematical
expression. The last line of commands indicates how many lines should be in the display,
which precision should be used to calculate expressions, commands to save and retrieve
values from a registry where you enter the name, two buttons to clear the above fields and
finally a button to perform a calculation.

The program is thus, in principle, a rather simple program and the biggest challenge is
to implement the mathematical algorithms. It can be a problem to implement them with
sufficient efficiency.

8.2 DESIGN

During the design I will look at the design of the algorithms for the mathematical functions
as well as the overall program architecture.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

205

Design of algorithms

I want to start with the algorithms that can be used to implement the mathematical functions.
Most are simple, others are standard, while for others you can find good solutions on the
Internet. The arithmetic itself is implemented using the class java.math.BigDecimal. It is not
difficult to find algorithms for the functions mentioned in the analysis, but the problem is
to produce effective algorithms, as many of the following formulas become ineffective along
the asymptotes. It may therefore be necessary to implement special solutions for values that
are asymptotic.

public BigDecimal sqr(BigDecimal x)

The function is defined on the entire real axis and is bijective on the non-negative half line.
The algorithm is trivial, as it is simply a simple multiplication.

public BigDecimal sqrt(BigDecimal x) throws BigException

The function is bijective, and the reverse is the restriction of sqr. Often, the function is
implemented using the so-called Babylonian method (but there are other options) based on
the following sequence:

The algorithm is characterized by that it fast convergence, but it depends on how “lucky” one is
with the first estimate (), but even if you choose the method is nevertheless effective.

The method raises an exception if the argument is negative.

public BigDecimal pow(BigDecimal x, BigDecimal y) throws Exception

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

206206

and applies to any y different from 0. Is y = 0, it is the constant function with the value
1. The algorithm is simple and the value can be determined as . If x is not
positive, an exception is raised.

public BigDecimal root(BigDecimal x, BigDecimal y) throws Exception

Is generally the same algorithm as above, and the value can be determined as .
It is required that y is not 0. Otherwise an exception is raised.

public BigDecimal log10(BigDecimal x) throws BigException

is bijective and the reverse is antilog. There are several excellent algorithms based on the
Taylor series, which can be used to determine the logarithm of a number, but they all have
in common that they become ineffective when x approaches the asymptotes. When the
argument is represented as a BigDecimal, and as it is the logarithm with base number 10,
the algorithm can proceed as follows:

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

207

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

207

d	=	the	number	of	digets	in	front	of	the	decimal	point	in	x-1
add d to the result
add	'.'	to	the	result
loop over the desired number of decimals
{
 move the decimal point in x d places to the left
	raise	x	in	the	power	og	10
	d	=	the	number	of	digets	in	front	of	the	decimal	point	in	x-1
 add d to the result
}

The algorithm only applies to x if it is greater than or equal to 1. Is x less than 1, you can
use the same algorithm, but on and use that .

The method raises an exception if x is negative or 0.

public BigDecimal antilog(BigDecimal x) throws BigException

The function can be implemented using exp and log: exp(x log(10))

public BigDecimal log(BigDecimal x) throws BigException

With log10 available, the method is trivial as it is just log10 multiplied by a constant:

where e is Euler’s constant.

public BigDecimal exp(BigDecimal x) throws BigException

The method can be implemented relatively efficiently using the Taylor series:

public BigDecimal sin(BigDecimal x)

The algorithm only applies to x if it is greater than or equal to 1. Is x less than 1, you can
use the same algorithm, but on and use that .

The method raises an exception if x is negative or 0.

public BigDecimal antilog(BigDecimal x) throws BigException

The function can be implemented using exp and log: exp(x log(10))

public BigDecimal log(BigDecimal x) throws BigException

With log10 available, the method is trivial as it is just log10 multiplied by a constant:

where e is Euler’s constant.

public BigDecimal exp(BigDecimal x) throws BigException

The method can be implemented relatively efficiently using the Taylor series:

public BigDecimal sin(BigDecimal x)

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

208

The function is periodic with the period . The function can be implemented using the
Taylor series:

public BigDecimal asin(BigDecimal x) throws BigException

The restriction of sinus:

is a bijection and the reverse function is

and can be defined using atan:

public BigDecimal cos(BigDecimal x)

The function is periodic with the period . The function can be implemented using the
Taylor series:

public BigDecimal acos(BigDecimal x) throws BigException

The restriction of cosinus:

is a bijection and the reverse function is

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

209209

and can be defined using atan:

However, the formula applies only to .

public BigDecimal tan(BigDecimal x) throws BigException

tan is defined for all real numbers x, where cos(x) is not 0, that is, all numbers that are not
of the form . The implementation is trivial:

Side 207:

public BigDecimal tan(BigDecimal x) throws BigException

tan is defined for all real numbers x, where cos (x) is not 0, that is, all numbers that are not of the form

3 p π
2 . The implementation is trivial:

tan (x)=
sin (x)

cos (x)

den nederste formel mangler

public BigDecimal atan(BigDecimal x) throws BigException

If you consider the restriction of tan:

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

210

is it a bijection and thus has a revere

The function has a Taylor series, but it is not very effective. There are several alternatives,
and one example is:

This algorithm is relatively effective as long as x is not much larger than 1. If so, one can apply

This implementation of atan is reasonable – but important, since other functions depend
on it.

public BigDecimal cot(BigDecimal x) throws BigException

cot is defined for all real numbers x, where sin(x) is not 0, that is, all numbers that are not
og the form . The implementation is er trivial:

public BigDecimal acot(BigDecimal x) throws BigException

Considering the restriction of cot:

is it a bijection and thus has a reverse

The function can be defined as

public BigDecimal abs(BigDecimal x)

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

211

This feature is trivial as it is directly supported by the class BigDecimal.

public BigDecimal floor(BigDecimal x)

Also a simple method as it can be implemented using the method round() of BigDecimal.

public BigDecimal frac(BigDecimal x)

Can be implemented using the method floor() and subtraction.

public BigDecimal recp(BigDecimal x) throws BigException

The method is nothing but a division, but can raise an exeption by division with 0.

public BigDecimal fact(BigDecimal x) throws BigException

It is one of the complex methods that are not actually implemented optimally. The argument
is a real number and the faculty of a real number is set to 1 if the argument x is less than
or equal to 0. Is the argument positive the factorial is defined as

where is the gamma function. The problem is that it is difficult to implement the gamma
function with satisfactory efficiency. Typically, one use

Because it is relatively simple to implement effectively, the problem is reduced
to implement . It is also not simple, but there are several formulas that are an
approximation, and one of them is:

See for example:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

211

This feature is trivial as it is directly supported by the class BigDecimal.

public BigDecimal floor(BigDecimal x)

Also a simple method as it can be implemented using the method round() of BigDecimal.

public BigDecimal frac(BigDecimal x)

Can be implemented using the method floor() and subtraction.

public BigDecimal recp(BigDecimal x) throws BigException

The method is nothing but a division, but can raise an exeption by division with 0.

public BigDecimal fact(BigDecimal x) throws BigException

It is one of the complex methods that are not actually implemented optimally. The argument
is a real number and the faculty of a real number is set to 1 if the argument x is less than
or equal to 0. Is the argument positive the factorial is defined as

where is the gamma function. The problem is that it is difficult to implement the gamma
function with satisfactory efficiency. Typically, one use

Because it is relatively simple to implement effectively, the problem is reduced
to implement . It is also not simple, but there are several formulas that are an
approximation, and one of them is:

See for example:

https://math.stackexchange.com/questions/19236/
algorithm-to-compute-gamma-function)	

This function is, in principle, simple to implement, but requires that you also implement
sinh (see below).

This function is, in principle, simple to implement, but requires that you also implement
sinh (see below).

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

212212

The above formula determines an approximated value, which is not good if the argument
is an integer. Therefore, the method fact() must handle the special case where the argument
can be perceived as an integer, so that the faculty is only determined by multiplication.

public BigDecimal deg(BigDecimal x)

This function is also simple as the conversion from radians to degrees can be done with
the expression

.

public BigDecimal rad(BigDecimal x)

This function is similar to where .

PI og E

Finally, there are the two constant functions PI and E. These functions are hardcoded from
files containing the two constants with 1000000 significant digits.

http://s.bookboon.com/elearningforkids

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

213

For the sake of implementing the function log(gamma(x)), there is also a need to implement
sinh, and for completeness, I will implement all four hyperbolic functions as well as their
reverses.

public BigDecimal sinh(BigDecimal x) throws BigException

is a bijection. There is a formula expressed by the exponential function:

public BigDecimal asinh(BigDecimal x) throws BigException

The inverse of sinh can be determined by the following formula:

public BigDecimal cosh(BigDecimal x) throws BigException

There is a formula expressed by the exponential function:

public BigDecimal acosh(BigDecimal x) throws BigException

The restriction of cosh to is a bijection and the reverse to cosh can be calculated
from the formula:

public BigDecimal tanh(BigDecimal x) throws BigException

The function is bijective and is defined as:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

214

public BigDecimal atanh(BigDecimal x) throws BigException

public BigDecimal coth(BigDecimal x) throws BigException

The function is defined as:

public BigDecimal acoth(BigDecimal x) throws BigException

The restriction of coth defines a bijection

that can be calculated from the formula:

Program design

The program should be a simple web application with a single page. Since the above
functions may be used by other programs, it has been decided to implement a class library
that contains the functions. The web application should use a stateless session bean that
uses the class library and this EJB must provide two services:

BigDecimal evaluate(String expression)

which will evaluate the value of a math expression and return the result as a BigDecimal.
In addition, there must be a service

List<String> reserved()

which returns all the function names (reserved words) that the EJB supports.

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

215215

The method of evaluate() is an extremely complex method, since the argument is a
mathematical expression entered as a string, and therefore the method must both scan,
parse and evaluate the expression. However it is the same task that I have previously looked
at in the final example of the book Java 3. The same algorithm/solution can therefore be
used because the difference is primarily that the data type in Java 3 was double while in
this example it is BigDecimal.

Then the solution of the task will include the following NetBean projects:

1. FunctionsLib, which is a Class Library project that implements the mathematical
functions.

2. FunctionsRemote, which is a Class Library project that is a remote interface for
the EJB.

3. FunctionsEJB, which is an EJB module with a single stateless session bean.
4. BigCalc, which is the web application.

In addition, there will be a usual Java Application project BigFunctionsTest, which is used
to test FunctionsLib.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

216

8.3 PROGRAMMING

The following is a description of how the programming has been done, what important
decisions have taken and the changes in relation to the above.

A real number is represented as a BigDecimal, which offers the basic arithmetic, and when
the machine is used, it must be set to work with a certain number of significant digits.
The task formulation states that the machine should be able to work with any number
of significant digits, but in the current implementation it is limited to 1000000, but in
practice it far exceeds what can be used for something, primarily due to performance, but
also because it is difficult to present such large numbers in the user interface.

FunctionsLib

I want to start with the FunctionsLib class library, which contains 6 classes:

The first BigException is trivial and defines an exception type. The class Functions is the class
with the algorithms, where the other four define mathematical constants:

1. E represents the constant with up to 1000000 decimals
2. PI represents the constant with up to 1000000 decimals
3. Log10 represents the natural logaritm of 10 with up to 1000000 decimals
4. Log10E represents the 10-number logaritm of with up to 1000000 decimals

These constants should be taken from somewhere, and they can be downloaded from,
for example

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

216

8.3 PROGRAMMING

The following is a description of how the programming has been done, what important
decisions have taken and the changes in relation to the above.

A real number is represented as a BigDecimal, which offers the basic arithmetic, and when
the machine is used, it must be set to work with a certain number of significant digits.
The task formulation states that the machine should be able to work with any number
of significant digits, but in the current implementation it is limited to 1000000, but in
practice it far exceeds what can be used for something, primarily due to performance, but
also because it is difficult to present such large numbers in the user interface.

FunctionsLib

I want to start with the FunctionsLib class library, which contains 6 classes:

The first BigException is trivial and defines an exception type. The class Functions is the class
with the algorithms, where the other four define mathematical constants:

1. E represents the constant with up to 1000000 decimals
2. PI represents the constant with up to 1000000 decimals
3. Log10 represents the natural logaritm of 10 with up to 1000000 decimals
4. Log10E represents the 10-number logaritm of with up to 1000000 decimals

These constants should be taken from somewhere, and they can be downloaded from,
for example

http://www.numberworld.org/constants.html

Here you can not find the last one, but , where is the natural logarithm.

That is why and can therefore be determined by the third of the above
Here you can not find the last one, but , where is the natural logarithm.

That is why and can therefore be determined by the third of the above

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

217

constants. Below I have shown a method that I used to create strings for the first three

constants based on the data I downloaded:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

217

constants. Below I have shown a method that I used to create strings for the first three

constants based on the data I downloaded:

private	static	void	createConst(String	input,	String	output)
{
 try
 {
	 BufferedReader	reader	=	new	BufferedReader(new	FileReader(input));
	 BufferedWriter	writer	=	new	BufferedWriter(new	FileWriter(output));
	 char[]	buff	=	new	char[1000];
	 int	n	=	0;
	 StringBuilder	builder	=	new	StringBuilder();
	 while	(builder.length()	<	1000000)
 {
	 n	=	reader.read(buff);
	 for	(int	i	=	0;	i	<	n;	++i)
	 if	(buff[i]	>=	'0'	&&	buff[i]	<=	'9')	builder.append(buff[i]);
 }
	 builder.deleteCharAt(0);
	 n	=	0;
	 for	(int	i	=	0;	i	<	builder.length();	i	+=	1000)
 {
	 String	line	=	builder.substring(i,	Math.min(i	+	1000,	builder.length()));
	 if	(line.length()	==	1000)
 {
	 writer.write("\""	+	line	+	"\",\n");
	 n	+=	line.length();
 }
 }
	 writer.close();
 }
	catch	(Exception	ex)
 {
	 System.out.println(ex);
 }
}

The method is simple and its parameters indicate the name of the file containing the data
(the file downloaded), while the other contains the result, there are 1000 Java strings as
lines of 1000 digits. The following method creates the digets for the number :

private	static	void	createLog10E(String	output)
{
 try
 {
	 BigDecimal	x	=	Log10.value(1000000);
	 BigDecimal	y	=	

The method is simple and its parameters indicate the name of the file containing the data
(the file downloaded), while the other contains the result, there are 1000 Java strings as
lines of 1000 digits. The following method creates the digets for the number :

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

217

constants. Below I have shown a method that I used to create strings for the first three

constants based on the data I downloaded:

private	static	void	createConst(String	input,	String	output)
{
 try
 {
	 BufferedReader	reader	=	new	BufferedReader(new	FileReader(input));
	 BufferedWriter	writer	=	new	BufferedWriter(new	FileWriter(output));
	 char[]	buff	=	new	char[1000];
	 int	n	=	0;
	 StringBuilder	builder	=	new	StringBuilder();
	 while	(builder.length()	<	1000000)
 {
	 n	=	reader.read(buff);
	 for	(int	i	=	0;	i	<	n;	++i)
	 if	(buff[i]	>=	'0'	&&	buff[i]	<=	'9')	builder.append(buff[i]);
 }
	 builder.deleteCharAt(0);
	 n	=	0;
	 for	(int	i	=	0;	i	<	builder.length();	i	+=	1000)
 {
	 String	line	=	builder.substring(i,	Math.min(i	+	1000,	builder.length()));
	 if	(line.length()	==	1000)
 {
	 writer.write("\""	+	line	+	"\",\n");
	 n	+=	line.length();
 }
 }
	 writer.close();
 }
	catch	(Exception	ex)
 {
	 System.out.println(ex);
 }
}

The method is simple and its parameters indicate the name of the file containing the data
(the file downloaded), while the other contains the result, there are 1000 Java strings as
lines of 1000 digits. The following method creates the digets for the number :

private	static	void	createLog10E(String	output)
{
 try
 {
	 BigDecimal	x	=	Log10.value(1000000);
	 BigDecimal	y	=	

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

218218

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

218218

	 BigDecimal.ONE.divide(x,	new	MathContext(1000000,	RoundingMode.HALF_EVEN));
	 BufferedWriter	writer	=	new	BufferedWriter(new	FileWriter(output));
	 writer.write(y.toString());
	 writer.close();
 }
	catch	(Exception	ex)
 {
	 System.out.println(ex.getMessage());
 }
}

You should note that this method can not be performed before the class Log10 is implemented.
The parameter is the name of the file with the result, and with this file available, you can
create the text lines to the last constant using the method createConst().

As an example, below is shown some of the code for the class PI:

You should note that this method can not be performed before the class Log10 is implemented.
The parameter is the name of the file with the result, and with this file available, you can
create the text lines to the last constant using the method createConst().

As an example, below is shown some of the code for the class PI:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

219

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

219

package functionslib;

import java.math.*;

public	class	PI	
{
	public	static	BigDecimal	value(int	n)	throws	BigException
 {
	 if	(n	<	1	||	n	>	1000000)	throw	new	BigException("Can	not	create	PI");
	 StringBuilder	builder	=	new	StringBuilder("3.");
 ++n;
	 for	(int	i	=	0;	builder.length()	<=	n	&&	i	<	digets.length;	++i)
	 builder.append(digets[i]);
	 return	new	BigDecimal(builder.substring(0,	n));
 }

	private	static	final	String[]	digets	=	{
	 "141592653589793238462643383279502884197	….	",
 …
 };
}

The class has only one method that returns PI as a BigDecimal with a certain number of
decimal places. The three other classes to constants are in principle identical.

Then there is the class Functions, where the code fills a lot and I do not want to display the
code here. In principle, it is just about implementing the formulas from the design, but as
mentioned, some of the formulas result in a poor performance when the argument is given
asymptotic values. In order to achieve a reasonable result, it may therefore be necessary to
treat special cases for certain values of x. Finally, most of the methods can raise an exception.

The class has a method for each function, and as an example, I will show the code for
the function exp(). According to the design, the value of the exponential function in an
argument x can be determined from the formula:

The formula is generally effective, as the factorial grows much faster than x elevated in a
power. At least as long x is not too big (or goes against minus infinity). If that is the case,

 will at a time be greater than , but it may take a long time, and therefore the fraction
only converts slowly to 0. To solve this problem, you can for large values of x use that

The class has only one method that returns PI as a BigDecimal with a certain number of
decimal places. The three other classes to constants are in principle identical.

Then there is the class Functions, where the code fills a lot and I do not want to display the
code here. In principle, it is just about implementing the formulas from the design, but as
mentioned, some of the formulas result in a poor performance when the argument is given
asymptotic values. In order to achieve a reasonable result, it may therefore be necessary to
treat special cases for certain values of x. Finally, most of the methods can raise an exception.

The class has a method for each function, and as an example, I will show the code for
the function exp(). According to the design, the value of the exponential function in an
argument x can be determined from the formula:

The formula is generally effective, as the factorial grows much faster than x elevated in a
power. At least as long x is not too big (or goes against minus infinity). If that is the case,

 will at a time be greater than , but it may take a long time, and therefore the fraction
only converts slowly to 0. To solve this problem, you can for large values of x use that

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

220

where is the integer part of x, and . Then is .
One can then take advantage of the above series of reasonably fast converging if and
in the case where can be converted to an int, the class BigDecimal has a method that can
calculate . It probably limits the possibilities for the size of x, but if x has a size where
n can not be represented by an int, the calculations actually do not give the meaning as
it will result in an overflow (exponential function grows very fast). Similar considerations
and rewrites can be made in the case where the argument is negative, and corresponding
to these remarks, the function exp() can be implemented as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

220

where is the integer part of x, and . Then is .
One can then take advantage of the above series of reasonably fast converging if and
in the case where can be converted to an int, the class BigDecimal has a method that can
calculate . It probably limits the possibilities for the size of x, but if x has a size where
n can not be represented by an int, the calculations actually do not give the meaning as
it will result in an overflow (exponential function grows very fast). Similar considerations
and rewrites can be made in the case where the argument is negative, and corresponding
to these remarks, the function exp() can be implemented as follows:

public	BigDecimal	exp(BigDecimal	x)	throws	BigException
{
	if	(x.abs().compareTo(MAX)	>=	0)
	 throw	new	BigException("Illegal	argument	to	exp");
	BigDecimal	p	=	floor(x.abs());
	int	m	=	(x.signum()	<	0	?	p.negate()	:	p).intValue();
	if	(m	!=	0)
 {
	 if	(x.signum()	<	0)	x	=	x.add(p,	mc);	else	x	=	x.subtract(p,	mc);
 }
	BigDecimal	y	=	x.add(BigDecimal.ONE);
	BigDecimal	n	=	BigDecimal.ONE;
	BigDecimal	f	=	BigDecimal.ONE;
	BigDecimal	z	=	x;
	while	(true)
 {
	 z	=	z.multiply(x,	mc);
	 n	=	n.add(BigDecimal.ONE);
	 f	=	f.multiply(n,	mc);
	 BigDecimal	e	=	z.divide(f,	mc);
	 if	(e.abs().compareTo(epsilon)	<=	0)	break;
	 y	=	y.add(e,	mc);
 }
	if	(m	>	0)	y	=	y.multiply(E.value(precision).pow(m,	mc),	mc);
	else	if	(m	<	0)	y	=	y.divide(E.value(precision).pow(Math.abs(m),	mc),	mc);
	return	scale(y);
}

In short, the following happens. First, the value of x is tested. If the numerical is too large,
an exception is raised because the calculation does not make sense. The following lines
should take into account the above transformations of x in the case where the numerical
value is greater than 1:

BigDecimal	p	=	floor(x.abs());
int	m	=	(x.signum()	<	0	?	p.negate()	:	p).intValue();
if	(m	!=	0)
{

In short, the following happens. First, the value of x is tested. If the numerical is too large,
an exception is raised because the calculation does not make sense. The following lines
should take into account the above transformations of x in the case where the numerical
value is greater than 1:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

220

where is the integer part of x, and . Then is .
One can then take advantage of the above series of reasonably fast converging if and
in the case where can be converted to an int, the class BigDecimal has a method that can
calculate . It probably limits the possibilities for the size of x, but if x has a size where
n can not be represented by an int, the calculations actually do not give the meaning as
it will result in an overflow (exponential function grows very fast). Similar considerations
and rewrites can be made in the case where the argument is negative, and corresponding
to these remarks, the function exp() can be implemented as follows:

public	BigDecimal	exp(BigDecimal	x)	throws	BigException
{
	if	(x.abs().compareTo(MAX)	>=	0)
	 throw	new	BigException("Illegal	argument	to	exp");
	BigDecimal	p	=	floor(x.abs());
	int	m	=	(x.signum()	<	0	?	p.negate()	:	p).intValue();
	if	(m	!=	0)
 {
	 if	(x.signum()	<	0)	x	=	x.add(p,	mc);	else	x	=	x.subtract(p,	mc);
 }
	BigDecimal	y	=	x.add(BigDecimal.ONE);
	BigDecimal	n	=	BigDecimal.ONE;
	BigDecimal	f	=	BigDecimal.ONE;
	BigDecimal	z	=	x;
	while	(true)
 {
	 z	=	z.multiply(x,	mc);
	 n	=	n.add(BigDecimal.ONE);
	 f	=	f.multiply(n,	mc);
	 BigDecimal	e	=	z.divide(f,	mc);
	 if	(e.abs().compareTo(epsilon)	<=	0)	break;
	 y	=	y.add(e,	mc);
 }
	if	(m	>	0)	y	=	y.multiply(E.value(precision).pow(m,	mc),	mc);
	else	if	(m	<	0)	y	=	y.divide(E.value(precision).pow(Math.abs(m),	mc),	mc);
	return	scale(y);
}

In short, the following happens. First, the value of x is tested. If the numerical is too large,
an exception is raised because the calculation does not make sense. The following lines
should take into account the above transformations of x in the case where the numerical
value is greater than 1:

BigDecimal	p	=	floor(x.abs());
int	m	=	(x.signum()	<	0	?	p.negate()	:	p).intValue();
if	(m	!=	0)
{

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

221221

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

221221

	if	(x.signum()	<	0)	x	=	x.add(p,	mc);	else	x	=	x.subtract(p,	mc);
}

Here you should note the function floor(), which is another function in the class Functions.
The next 13 lines implement the row development of exp(x), which continues until one
element in the row becomes negligible. The two next lines again must multiply the result
with while the last statement rounds to the desired number of decimal places.

I do not want to show the code for the other methods, but the class is defined as follows:

public class Functions
{
	private	static	final	java.util.Random	rand	=	new	java.util.Random();
	private	static	final	BigDecimal	TWO	=	new	BigDecimal("2");
	private	static	final	BigDecimal	HALF	=	new	BigDecimal("0.5");
	private	static	final	BigDecimal	MAX	=	new	BigDecimal("999999999");
 private int precision;
 private MathContext mc;
	private	final	BigDecimal	epsilon;

Here you should note the function floor(), which is another function in the class Functions.
The next 13 lines implement the row development of exp(x), which continues until one
element in the row becomes negligible. The two next lines again must multiply the result
with while the last statement rounds to the desired number of decimal places.

I do not want to show the code for the other methods, but the class is defined as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

221221

	if	(x.signum()	<	0)	x	=	x.add(p,	mc);	else	x	=	x.subtract(p,	mc);
}

Here you should note the function floor(), which is another function in the class Functions.
The next 13 lines implement the row development of exp(x), which continues until one
element in the row becomes negligible. The two next lines again must multiply the result
with while the last statement rounds to the desired number of decimal places.

I do not want to show the code for the other methods, but the class is defined as follows:

public class Functions
{
	private	static	final	java.util.Random	rand	=	new	java.util.Random();
	private	static	final	BigDecimal	TWO	=	new	BigDecimal("2");
	private	static	final	BigDecimal	HALF	=	new	BigDecimal("0.5");
	private	static	final	BigDecimal	MAX	=	new	BigDecimal("999999999");
 private int precision;
 private MathContext mc;
	private	final	BigDecimal	epsilon;

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

222

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

222

	public	Functions(int	n)	throws	BigException
 {
	 precision	=	n;
	 mc	=	new	MathContext(n	+	2);
	 epsilon	=	new	BigDecimal(BigInteger.ONE,	n);
 }

Initially, some constants are defined, which are often used in the implementation of the
algorithms, while the variable precision indicates the number of significant digits. mc is an
object of the type MathContext, which is used by the individual calculations to specify the
precision and rounding method, and finally indicates epsilon an approximated value of 0.
You are encouraged to study the implementation of the other methods. Most are trivial
(see the design) as they use already implemented functions or simply simple calculations,
while others in principle look similar to the above.

The project BigFunctionsTest

This project creates a console application and is used to test the above library. There are two
things to be tested, namely, if the functions returns the correct values, and the performance.
To this end, the project has a number of test classes, and as an example, I will show the
class LogTest, which tests the functions log() and exp() – where I have only shown parts of
the code:

package bigfunctionstest;

import java.math.*;
import functionslib.*;

public	class	LogTest	extends	Test
{
	public	LogTest()
 {
	 super(1000);
	 test1();
	 test2(F().random(100),	100);
	 test3(F().random(4),	100);
 }

	private	void	test1()
 {
 try
 {
	 System.out.println(F().exp(new	BigDecimal("0")).toPlainString());

Initially, some constants are defined, which are often used in the implementation of the
algorithms, while the variable precision indicates the number of significant digits. mc is an
object of the type MathContext, which is used by the individual calculations to specify the
precision and rounding method, and finally indicates epsilon an approximated value of 0.
You are encouraged to study the implementation of the other methods. Most are trivial
(see the design) as they use already implemented functions or simply simple calculations,
while others in principle look similar to the above.

The project BigFunctionsTest

This project creates a console application and is used to test the above library. There are two
things to be tested, namely, if the functions returns the correct values, and the performance.
To this end, the project has a number of test classes, and as an example, I will show the
class LogTest, which tests the functions log() and exp() – where I have only shown parts of
the code:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

222

	public	Functions(int	n)	throws	BigException
 {
	 precision	=	n;
	 mc	=	new	MathContext(n	+	2);
	 epsilon	=	new	BigDecimal(BigInteger.ONE,	n);
 }

Initially, some constants are defined, which are often used in the implementation of the
algorithms, while the variable precision indicates the number of significant digits. mc is an
object of the type MathContext, which is used by the individual calculations to specify the
precision and rounding method, and finally indicates epsilon an approximated value of 0.
You are encouraged to study the implementation of the other methods. Most are trivial
(see the design) as they use already implemented functions or simply simple calculations,
while others in principle look similar to the above.

The project BigFunctionsTest

This project creates a console application and is used to test the above library. There are two
things to be tested, namely, if the functions returns the correct values, and the performance.
To this end, the project has a number of test classes, and as an example, I will show the
class LogTest, which tests the functions log() and exp() – where I have only shown parts of
the code:

package bigfunctionstest;

import java.math.*;
import functionslib.*;

public	class	LogTest	extends	Test
{
	public	LogTest()
 {
	 super(1000);
	 test1();
	 test2(F().random(100),	100);
	 test3(F().random(4),	100);
 }

	private	void	test1()
 {
 try
 {
	 System.out.println(F().exp(new	BigDecimal("0")).toPlainString());

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

223

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

223

	 System.out.println(F().exp(new	BigDecimal("1")).toPlainString());
	 System.out.println(F().exp(new	BigDecimal("0.25")));
	 System.out.println(F().exp(new	BigDecimal("1.5")));
 …
	 System.out.println(F().exp(new	BigDecimal("-12345.6789")));
	 System.out.println("---");
	 System.out.println(F().log(E.value(10000)));
	 System.out.println(F().log(new	BigDecimal("1")));
	 System.out.println(F().log(new	BigDecimal("1000000000000000000")));
	 System.out.println(F().log(new	BigDecimal(
	 "12345678901234567890123456789012345678.901
23456789012345678901234567890")));
 …
	 System.out.println("---");
	 System.out.println(E.value(10000)	+	":");
	 System.out.println(F().exp(F().log(E.value(10000))));
	 System.out.println(new	BigDecimal("1")	+	":");
	 System.out.println(F().exp(F().log(new	BigDecimal("1"))));
	 System.out.println(new	BigDecimal("1000000000000000000")	+	":");
	 System.out.println(F().exp(F().log(new	BigDecimal("1000000000000000000"))));
 …
	 System.out.println("---");
	 System.out.println(F().log10(new	BigDecimal("0")));
 }
	 catch	(Exception	ex)
 {
	 System.out.println(ex);
	 System.out.println("---");
 }
 }

	private	void	test2(BigDecimal	value,	int	n)
 {
 try
 {
	 long	t1	=	getTime();
	 for	(int	i	=	0;	i	<	n;	++i)	F().log(value);
	 long	t2	=	getTime();
	 System.out.println(String.format(
	 "Performance:	%d	iteratations,	%d	milliseconds",	n,	t2	–	t1));
	 System.out.println(value);
 }
	 catch	(Exception	ex)
 {
	 System.out.println(ex.getMessage());
 }
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

224224

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

224224

	private	void	test3(BigDecimal	value,	int	n)
 {
 try
 {
	 long	t1	=	getTime();
	 for	(int	i	=	0;	i	<	n;	++i)	F().exp(value);
	 long	t2	=	getTime();
	 System.out.println(String.format(
	 "Performance:	%d	iteratations,	%d	milliseconds",	n,	t2	–	t1));
	 System.out.println(value);
 }
	 catch	(Exception	ex)
 {
	 System.out.println(ex.getMessage());
 }
 }
}

First, note that the class inherits a class Test. It’s a simple class that does nothing but create
a Functions object and defines a method that can read the machine clock. The class LogTest
has three test methods, all of which are called from the constructor. The first method tests
whether the functions log() and exp() returns the correct value, and finally the composition

First, note that the class inherits a class Test. It’s a simple class that does nothing but create
a Functions object and defines a method that can read the machine clock. The class LogTest
has three test methods, all of which are called from the constructor. The first method tests
whether the functions log() and exp() returns the correct value, and finally the composition

http://s.bookboon.com/EOT

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

225

of the two functions is tested, where the result should be the same value as the functions
are applied to. The other two test methods are used to test the performance of the logarithm
function and exponential function, respectively. In this case, numbers with 1000 digits
are created and the function test2() determines the logarithm of a random number with
100 digits in front of the decimal point. This operation is performed 100 times. Similarly,
test3() performs the exponential function on a random number with 3 digits in front of the
decimal point, and this operation is also performed 100 times. Done on my machine, the
first test has taken approximate 13 seconds while the second test has taken just 2 seconds.
The result for the exponential function is fine, but the implementation of the logarithm is
the weak link, and it may be a proper task to seek a better implementation of this function.
The same goes for atan(), where you can also try to find a better algorithm.

The program has other test classes for testing the other functions, and the classes work in
principle in the same way as LogTest.

The project FunctionsRemote

This project is again a class library that defines a remote interface for the EJB to write. The
library has only a single interface, which defines two methods:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

225

of the two functions is tested, where the result should be the same value as the functions
are applied to. The other two test methods are used to test the performance of the logarithm
function and exponential function, respectively. In this case, numbers with 1000 digits
are created and the function test2() determines the logarithm of a random number with
100 digits in front of the decimal point. This operation is performed 100 times. Similarly,
test3() performs the exponential function on a random number with 3 digits in front of the
decimal point, and this operation is also performed 100 times. Done on my machine, the
first test has taken approximate 13 seconds while the second test has taken just 2 seconds.
The result for the exponential function is fine, but the implementation of the logarithm is
the weak link, and it may be a proper task to seek a better implementation of this function.
The same goes for atan(), where you can also try to find a better algorithm.

The program has other test classes for testing the other functions, and the classes work in
principle in the same way as LogTest.

The project FunctionsRemote

This project is again a class library that defines a remote interface for the EJB to write. The
library has only a single interface, which defines two methods:

package functionsejb;

import	java.util.List;
import	java.math.BigDecimal;
import	javax.ejb.Remote;

@Remote
public	interface	FunctionsSessionRemote	
{
	BigDecimal	evaluate(String	text,	int	precision)	throws	Exception;
	List<String>	reserved();
}

The project FunctionsEJB

This project is an EJB module project and has a single EJB, which is a stateless session
bean. The project consists of three files, with the middle being the bean class, while the
other two are the classes for the treatment of an expression:

The project FunctionsEJB

This project is an EJB module project and has a single EJB, which is a stateless session
bean. The project consists of three files, with the middle being the bean class, while the
other two are the classes for the treatment of an expression:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

226

You should note that the project should have a reference to the jar file from the FunctionsLib
project.

In relation to the analysis and the design, the project has been expanded to support an
additional 9 functions:

 - random(), which is a random generator that returns a random number between 0
and 1. The method is overwritten with a parameter, that is the number of digits
in front of the decimal point.

 - sinh(), asinh(), cosh(), acosh(), tanh(), atanh(), coth() and acoth(), which are the 8
hyperbolic functons.

The classes Tokens (which is a file with many classes) and Expression can be copied from
the Calc project in the book Java 3. They need to be changed a bit, and, for example, all
variables, parameters and return values of the type double must be changed to BigDecimal.
In addition, new token classes must be defined for the new functions, and the VarToken
class should be deleted. In the Expression class, there are only modest changes, and you are
encouraged to investigate what has been changed.

Then there is the FunctionSession class that implements the above remote interface:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

226

You should note that the project should have a reference to the jar file from the FunctionsLib
project.

In relation to the analysis and the design, the project has been expanded to support an
additional 9 functions:

 - random(), which is a random generator that returns a random number between 0
and 1. The method is overwritten with a parameter, that is the number of digits
in front of the decimal point.

 - sinh(), asinh(), cosh(), acosh(), tanh(), atanh(), coth() and acoth(), which are the 8
hyperbolic functons.

The classes Tokens (which is a file with many classes) and Expression can be copied from
the Calc project in the book Java 3. They need to be changed a bit, and, for example, all
variables, parameters and return values of the type double must be changed to BigDecimal.
In addition, new token classes must be defined for the new functions, and the VarToken
class should be deleted. In the Expression class, there are only modest changes, and you are
encouraged to investigate what has been changed.

Then there is the FunctionSession class that implements the above remote interface:

package functionsejb;

import	java.util.List;
import	java.math.BigDecimal;
import javax.ejb.Stateless;

@Stateless
public	class	FunctionsSession	implements	FunctionsSessionRemote	
{
	public	BigDecimal	evaluate(String	text,	int	precision)	throws	Exception
 {
	 Expression	expression	=	new	Expression(text,	precision);
	 return	expression.getValue();
 }

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

227227

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

227227

	public	List<String>	reserved()
 {
	 return	Tokens.getNames();
 }
}

The class is trivial as all the work is in the above two classes – and of course, the class
Functions in the FunctionsLib library.

Then the EJB module is ready and can be deployed to the Glassfish server.

BigCalc

Finally, there is the web application. The user interface is essentially the same as shown during
the analysis, and there is only one extension, since the values stored with the STO button
appear in a table below the page’s buttons. The expression that the program has to calculate
is entered in the lower entry field, while the top shows the result of the calculation. To save
values in variables (STO), you must enter a name in the field after STO. The name must
start with a letter, followed by up to 4 characters, which are letters and numbers. There is

The class is trivial as all the work is in the above two classes – and of course, the class
Functions in the FunctionsLib library.

Then the EJB module is ready and can be deployed to the Glassfish server.

BigCalc

Finally, there is the web application. The user interface is essentially the same as shown during
the analysis, and there is only one extension, since the values stored with the STO button
appear in a table below the page’s buttons. The expression that the program has to calculate
is entered in the lower entry field, while the top shows the result of the calculation. To save
values in variables (STO), you must enter a name in the field after STO. The name must
start with a letter, followed by up to 4 characters, which are letters and numbers. There is

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT a FInal example

228

no separation between upper and lowercase letters and the name must not be a reserved
word (name of a function). The value stored is the value of the result field. If you enter
the name of an existing variable and click RCL, the value appears in the result field. For
example, if I want to save the square root of 2 in a variable X2, I have to enter the formula

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

228

no separation between upper and lowercase letters and the name must not be a reserved
word (name of a function). The value stored is the value of the result field. If you enter
the name of an existing variable and click RCL, the value appears in the result field. For
example, if I want to save the square root of 2 in a variable X2, I have to enter the formula

sqrt(2)

and click Calculate, after which the value is added to the result field. To save the value, you
must enter the name X2 after STO and click STO. If you now want to apply the variable
in a formula, enter the variable as follows:

sqr(@x2)	+	3

When I have chosen this syntax, due to the fact that values of variables can be very long,
and inserted directly into a formula, it can easily lead to an expression that is impossible
to read.

The application has only one page, which is quite simple, but it has a backing bean that
uses my session bean. There is not much new, and I do not want to show the code here,
but when you study the code, note that it is this bean that substitutes the value of variables
before the expression is sent to my session bean.

and click Calculate, after which the value is added to the result field. To save the value, you
must enter the name X2 after STO and click STO. If you now want to apply the variable
in a formula, enter the variable as follows:

JAVA 13: DISTRIBUTED PROGRAMMING AND
JAVA EE: SOFTWARE DEVELOPMENT A FINAL ExAMPLE

228

no separation between upper and lowercase letters and the name must not be a reserved
word (name of a function). The value stored is the value of the result field. If you enter
the name of an existing variable and click RCL, the value appears in the result field. For
example, if I want to save the square root of 2 in a variable X2, I have to enter the formula

sqrt(2)

and click Calculate, after which the value is added to the result field. To save the value, you
must enter the name X2 after STO and click STO. If you now want to apply the variable
in a formula, enter the variable as follows:

sqr(@x2)	+	3

When I have chosen this syntax, due to the fact that values of variables can be very long,
and inserted directly into a formula, it can easily lead to an expression that is impossible
to read.

The application has only one page, which is quite simple, but it has a backing bean that
uses my session bean. There is not much new, and I do not want to show the code here,
but when you study the code, note that it is this bean that substitutes the value of variables
before the expression is sent to my session bean.

When I have chosen this syntax, due to the fact that values of variables can be very long,
and inserted directly into a formula, it can easily lead to an expression that is impossible
to read.

The application has only one page, which is quite simple, but it has a backing bean that
uses my session bean. There is not much new, and I do not want to show the code here,
but when you study the code, note that it is this bean that substitutes the value of variables
before the expression is sent to my session bean.

	Foreword
	1	Introduction
	2	Java persistence API
	2.1	An improved address program
	Exercise 1
	2.2	Related tables
	Problem 1

	3	Enterprise Java Beans
	3.1	A stateful session bean
	3.2	A remote Singleton session bean
	Exercise 2
	3.3	EJB and JPA
	Exercise 3
	3.4	Transactions
	3.5	Interception
	3.6	A timer service
	3.7	CRUD with one table
	3.8	CRUD with more tables
	Problem 2

	4	CDI
	4.1	Qualifiers
	4.2	Contexts

	5	Web services
	Exercise 4
	Exercise 5
	5.1	An EJB as a web service
	Exercise 6

	6	REST Web services
	6.1	ChangeAddress again
	Exercise 7

	7	Security
	7.1	The demo application
	7.2	�Container managed authentication and authorization
	7.3	Form authentication
	7.4	Client certificate
	7.5	Programmer defined authentication

	8	A final example
	8.1	Analysis
	8.2	Design
	8.3	Programming

