

2

POUL KLAUSEN

JAVA 14: DEVELOPMENT
OF APPLICATIONS
WITH JAVAFX
SOFTWARE DEVELOPMENT

3

Java 14: Development of applications with JavaFX: Software Development
1st edition
© 2018 Poul Klausen & bookboon.com
ISBN 978-87-403-2188-3
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT

44

CONTENTS

 Foreword 7

1 Introduction 9

1.1 HelloFX 9

1.2 HelloLines 16

2 Architecture of JavaFX 19

 Exersice 1 21

3 2D Shapes 23

 Exercise 2 24

 Exercise 3 24

 Exercise 4 25

 Exercise 5 26

 Exercise 6 26

 Exercise 7 27

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT

5

 Exercise 8 27

 Exercise 9 28

 Exercise 10 29

 Exercise 11 29

3.1 SVG 30

 Exercise 12 33

3.2 A Path 34

 Exercise 13 36

 Exercise 14 36

3.3 Shape properties 37

 Exercise 15 42

3.4 Shape operations 42

4 Text 44

5 Effects 48

 Problem 1 52

5.1 Colors 52

5.2 Images 56

5.3 Light 62

 Problem 2 66

6 Transformations 70

 Exercise 16 72

 Exercise 17 72

 Exercise 18 73

6.1 Animations 73

 Exercise 19 76

 Exercise 20 77

 Exercise 21 77

 Exercise 22 78

 Exercise 23 79

 Exercise 24 79

7 Components 80

7.1 Layout 80

7.2 Events 93

7.3 Components 106

 Exercise 25 108

 Exercise 26 108

 Exercise 27 109

 Exercise 28 110

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT

6

 Problem 3 111

 Exercise 29 112

 Exercise 30 112

 Exercise 31 113

 Exercise 33 114

 Exercise 34 115

 Problem 4 115

 Exercise 35 118

 Exercise 36 119

7.4 Dialogs 120

8 Styling 131

 Exercise 37 137

9 FXML 138

9.1 Create objects 144

9.2 DialogFXML 152

9.3 About FXML 160

10 A final example 162

10.1 Development 162

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT

7

FOREWORD

This book is the fourteenth in a series of books on software development and deals with
JavaFX. The book introduces JavaFX as an alternative to Swing and Java2D, thus treating
how to work with 2D graphics in JavaFX, as well as the main components and layout.
The goal is that you will quickly be able to write programs with a graphical user interface
using JavaFX. There are many topics, especially JavaFX properties, which the book does
not include, but these topics are dealt with in the following book. JavaFX is intended as
an alternative to Swing, and it is especially for better graphics and other media used in the
user interface. With JavaFX, it is easier to develop applications with a modern user interface
and with all the possibilities that users expect and get used to from web applications. The
book does not require the reader to know Swing and Java2D in detail, but assumes that the
reader has an introductory knowledge of developing programs with a graphical user interface.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent - if at all - and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT

8

technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

1. NetBeans as IDE for application development
2. MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
3. GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not "how to write" or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

9

1 INTRODUCTION

In the books Java 2, Java 9 and primarily Java 10, I have dealt with how to write a standalone
Java application with a graphical user interface. All of it has been based on Swing, which
is an API that makes the necessary available through a comprehensive class library. There is
nothing wrong with Swing, and it will be there many years to come, among other things
because there are a lot of programs based on Swing. However, there are alternatives and one
of them is called JavaFX, as the new API for developing Java applications with a graphical
user interface.

JavaFX is intended as an alternative to Swing, and it is especially for better graphics and
other media used in the user interface. With JavaFX, it is easier to develop applications
with a modern user interface and with all the possibilities that users expect and get used to
from web applications. However, it is important to emphasize that you can still use Swing
components, so that all known facilities from Swing are still available.

JavaFX is an alternative to Swing, but the idea actually originates from World Wide Web,
where you can build the user interfaces using markup, and to a large extent you can design
the applications user interface using styles. The goal of this book is to show how to use
JavaFX, and I will alone look at the development of standalone applications, but the goal
of JavaFX is also the development of the client side of web application, which means that
a JavaFX application can be opened as

4. a standalone desktop application
5. with the Java Web Start tecnology
6. as a part of a web page

For the time being, I will only look at the first option.

1.1 HELLOFX

As a start, I will show a very simple application that opens a window with a few buttons
and a little more, but a program that uses JavaFX instead of Swing. I start with a new
project in Netbeans, but it must be a JavaFX Application project. I have called the project
HelloFX, and after the project has been created, NetBeans has created a single class (where
I have removed all comments):

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

10

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

8

package hellofx;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class HelloFX extends Application
{
 @Override
 public void start(Stage primaryStage)
 {
 Button btn = new Button();
 btn.setText("Say 'Hello World'");
 btn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event)
 {
 System.out.println("Hello World!");
 }
 });
 StackPane root = new StackPane();
 root.getChildren().add(btn);
 Scene scene = new Scene(root, 300, 250);
 primaryStage.setTitle("Hello World!");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

In fact, it is a fully finished program, and starting the program opens the following window:In fact, it is a fully finished program, and starting the program opens the following window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

11

and clicking on the button it prints a message on the console. If you consider the code, first
notice that the class inherits Application, which means that it is a JavaFX application. The
class has a usual main() method as other Java applications, and it starts by calling a static
method launch() (in the class Application). It basically performs the following:

1. instantiates an object of the class (here the class HelloFX)
2. performs a method init(), which in Application is an empty method
3. performs a method start(), which in Application is an empty method
4. waiting until the program terminates, where method stop(), as in Application is an

empty method, is performed

If you want an application to open a window, it usually happens to override the method
start() from the class Application, as is the case in the above example.

A JavaFX program basically consists of a Stage object that contains a Scene object, which
again contains Node objects arranged in a tree. A Stage object represents a window and
the primary Stage object is created by the runtime system and is sent as a parameter to
the method start(), and in the above example it has the name primaryStage. A Scene object
contains all of the window’s objects organized into a tree called a scene graph. The tree’s
elements are Node objects, and a node can be an branch node (which has children) or a
leaf node (which no children have). A node is a component in the window and may, for
example, be a button or an entry field.

In the example above, the method start() begins by creating a button, which is a node. The
object is called btn, and besides attaching a text to the button, an action is also associated,
which is an object with a single method, which simply performs a System.out.println(). You
should note that it looks like a usual event handling as it is known from Swing, but it is
not the case, and other types are used, although they have the same names as some of the
known types from Swing.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

12

As a next step, a root object of the type StackPane is created, and it is the root of the scene
graph and the button is inserted as a child to root. This program thus has a very simple
scene graph consisting of a root and a single leaf node. The root object is then added to a
Sceen object, which represents the window’s content, while defining the window size. This
Scene object must be attached to the Stage object, which is also assigned a title, and finally,
the method show() is performed on the object primaryStage, which displays the window on
the screen.

It is thus easy to follow what happens in the above program, but it is more difficult to spot
the benefits. They come later, but I can immediately point out that one of the advantages
is that the technology used to draw the window with all its content is extremely effective.

Before I leave this example, I will change the code a bit (for now, the code appears as
NetBeans has created it). I have changed the code to the following:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

10

As a next step, a root object of the type StackPane is created, and it is the root of the scene
graph and the button is inserted as a child to root. This program thus has a very simple
scene graph consisting of a root and a single leaf node. The root object is then added to a
Sceen object, which represents the window’s content, while defining the window size. This
Scene object must be attached to the Stage object, which is also assigned a title, and finally,
the method show() is performed on the object primaryStage, which displays the window on
the screen.

It is thus easy to follow what happens in the above program, but it is more difficult to spot
the benefits. They come later, but I can immediately point out that one of the advantages
is that the technology used to draw the window with all its content is extremely effective.

Before I leave this example, I will change the code a bit (for now, the code appears as
NetBeans has created it). I have changed the code to the following:

package hellofx;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.application.Platform;

public class HelloFX extends Application
{
 @Override
 public void start(Stage stage)
 {
 System.out.println("Start " + Thread.currentThread().getId());
 TextField txtName = new TextField();
 Label lblText = new Label();
	 lblText.setStyle("-fx-text-fill:	blue;");
 Button cmdHello = new Button("Hello");
 cmdHello.setOnAction(new EventHandler<ActionEvent>()
 {
 @Override
 public void handle(ActionEvent e)
 {
 String name = txtName.getText();
	 lblText.setText(name.trim().length()	>	0	?	"Hello	"	+	name	:
 "Hello there");

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

13

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

11

 }
 });
 VBox root = new VBox();
 root.setSpacing(10);
	 root.getChildren().addAll(new	Label("Enter	your	name:"),	txtName,	lblText,
 cmdHello, createButton("Exit", e -> Platform.exit()));
 stage.setScene(new Scene(root, 300, 200));
 stage.setTitle("Hello FX");
 stage.show();
 }

 private Button createButton(String text, EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

 public static void main(String[] args)
 {
 launch(args);
 }

 public HelloFX()
 {
 System.out.println("Constructor " + Thread.currentThread().getId());
 }

 @Override
 public void init()
 {
 System.out.println("Init " + Thread.currentThread().getId());
 }

 @Override
 public void stop()
 {
 System.out.println("Stop " + Thread.currentThread().getId());
 }
}

If you run the program, it first writes the following lines on the console:

Constructor 12
Init 13
Start 12

If you run the program, it first writes the following lines on the console:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

11

 }
 });
 VBox root = new VBox();
 root.setSpacing(10);
	 root.getChildren().addAll(new	Label("Enter	your	name:"),	txtName,	lblText,
 cmdHello, createButton("Exit", e -> Platform.exit()));
 stage.setScene(new Scene(root, 300, 200));
 stage.setTitle("Hello FX");
 stage.show();
 }

 private Button createButton(String text, EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

 public static void main(String[] args)
 {
 launch(args);
 }

 public HelloFX()
 {
 System.out.println("Constructor " + Thread.currentThread().getId());
 }

 @Override
 public void init()
 {
 System.out.println("Init " + Thread.currentThread().getId());
 }

 @Override
 public void stop()
 {
 System.out.println("Stop " + Thread.currentThread().getId());
 }
}

If you run the program, it first writes the following lines on the console:

Constructor 12
Init 13
Start 12

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

1414

after which you get the following window

If you enter the text Frode Fredegod and click Hello, the window will be updated to:

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

15

and clicking Exit terminates the program after writing the following text on the console:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

13

and clicking Exit terminates the program after writing the following text on the console:

Stop 12

This time, the method start() creates a scene graph with a root that has 5 leaf nodes. Note
that the type of root is VBox. There is no particular justification in addition to showing that
there are more options, and the type is relevant to how the graph’s nodes are laid out in the
window. The 5 nodes have the types Label, TextField, Label, Button and Button, where the
first and the last are created when they are added to root (the last created of the method
createButton()), while the other three are created explicitly.

Note that the method start() starts by printing a text (on the console). I have also overwritten
the two methods init() and stop() so they both print a text and finally I have added a default
constructor. They show that the constructor is first executed, then init() and finally start().
Finally, they show that the method stop() is executed when the program terminates. Here
you should note that the constructor, start() and stop() are executed in the same thread
(called the JavaFX Application Thread), while init() is performed in its own thread (called
the JavaFX Launcher).

If you look at the directory dist, you can see that a jar file named HelloFX.jar has been
created in the usual way, and the program can therefore be executed from the command
line as (if current directory is the folder dist):

java -jar HelloFX.jar

The directory dist also contains other files:

These files I do not want to mention in this place, but they all have to do with the execution
of the program as a web application.

This time, the method start() creates a scene graph with a root that has 5 leaf nodes. Note
that the type of root is VBox. There is no particular justification in addition to showing that
there are more options, and the type is relevant to how the graph’s nodes are laid out in the
window. The 5 nodes have the types Label, TextField, Label, Button and Button, where the
first and the last are created when they are added to root (the last created of the method
createButton()), while the other three are created explicitly.

Note that the method start() starts by printing a text (on the console). I have also overwritten
the two methods init() and stop() so they both print a text and finally I have added a default
constructor. They show that the constructor is first executed, then init() and finally start().
Finally, they show that the method stop() is executed when the program terminates. Here
you should note that the constructor, start() and stop() are executed in the same thread
(called the JavaFX Application Thread), while init() is performed in its own thread (called
the JavaFX Launcher).

If you look at the directory dist, you can see that a jar file named HelloFX.jar has been
created in the usual way, and the program can therefore be executed from the command
line as (if current directory is the folder dist):

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

13

and clicking Exit terminates the program after writing the following text on the console:

Stop 12

This time, the method start() creates a scene graph with a root that has 5 leaf nodes. Note
that the type of root is VBox. There is no particular justification in addition to showing that
there are more options, and the type is relevant to how the graph’s nodes are laid out in the
window. The 5 nodes have the types Label, TextField, Label, Button and Button, where the
first and the last are created when they are added to root (the last created of the method
createButton()), while the other three are created explicitly.

Note that the method start() starts by printing a text (on the console). I have also overwritten
the two methods init() and stop() so they both print a text and finally I have added a default
constructor. They show that the constructor is first executed, then init() and finally start().
Finally, they show that the method stop() is executed when the program terminates. Here
you should note that the constructor, start() and stop() are executed in the same thread
(called the JavaFX Application Thread), while init() is performed in its own thread (called
the JavaFX Launcher).

If you look at the directory dist, you can see that a jar file named HelloFX.jar has been
created in the usual way, and the program can therefore be executed from the command
line as (if current directory is the folder dist):

java -jar HelloFX.jar

The directory dist also contains other files:

These files I do not want to mention in this place, but they all have to do with the execution
of the program as a web application.

The directory dist also contains other files:

These files I do not want to mention in this place, but they all have to do with the execution
of the program as a web application.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

16

1.2 HELLOLINES

As another example of a JavaFX program, I will show an example that opens the
following window:

The project is called HelloLines, and the window contains a scene graph, consisting of a root
with 4 child nodes: a Text object and three Line objects. The code is as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

14

1.2 HELLOLINES

As another example of a JavaFX program, I will show an example that opens the
following window:

The project is called HelloLines, and the window contains a scene graph, consisting of a root
with 4 child nodes: a Text object and three Line objects. The code is as follows:

package hellolines;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.stage.Stage;
import javafx.scene.shape.Line;
import javafx.scene.paint.Color;
import javafx.scene.text.Text;
import javafx.scene.text.Font;

public class HelloLines extends Application
{
 private Line[] lines;

 public HelloLines()
 {
 lines = new Line[] { createLine(20, 20, 320, 120, 3, Color.RED),
 createLine(320, 120, 120, 220, 5, Color.GREEN),
 createLine(120, 220, 20, 20, 1, Color.BLUE) };
 }

 private Line createLine(double x1, double y1, double x2, double y2,
 double width, Color color)
 {

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

1717

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

1515

 Line line = new Line(x1, y1, x2, y2);
 line.setStroke(color);
 line.setStrokeWidth(width);
 return line;
 }

 private Text createText()
 {
 Text text = new Text("Hello");
 text.setX(200);
 text.setY(50);
 text.setFont(new Font(36));
 return text;
 }

 @Override
 public void start(Stage stage)
 {
 Group root = new Group(lines);
 root.getChildren().add(createText());
 Scene scene = new Scene(root, 350, 250);

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT IntroductIon

18

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT INTRODuCTION

16

 stage.setTitle("Triangle");
 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

When you see the code, it is easy enough to understand and looks like the first example.
The class defines an array of Line elements (a Line object represents a straight line), and
the array is created in the constructor so that it contains three Line objects. A Line object
is created using the method createLine(), in which you should especially note how an object
is initialized and what types are used. There is also a method createText(), which creates and
returns a Text object. If you consider the types used to create Line and Text objects, it is not
the same types that you know from Java2D, but they have the same names and basically
have the same characteristics. The scene graph is created in the same way as in the previous
example in the method start(), but this time the type of the root element is Group, which
is the basic type for a branch node. You should especially note how with getChildren() to
get a list with all child nodes.

The example is simple, but you should note how geometric objects and text elements are
included in the scene graph as nodes in the same way as other nodes such like Button,
Label, and more.

When you see the code, it is easy enough to understand and looks like the first example.
The class defines an array of Line elements (a Line object represents a straight line), and
the array is created in the constructor so that it contains three Line objects. A Line object
is created using the method createLine(), in which you should especially note how an object
is initialized and what types are used. There is also a method createText(), which creates and
returns a Text object. If you consider the types used to create Line and Text objects, it is not
the same types that you know from Java2D, but they have the same names and basically
have the same characteristics. The scene graph is created in the same way as in the previous
example in the method start(), but this time the type of the root element is Group, which
is the basic type for a branch node. You should especially note how with getChildren() to
get a list with all child nodes.

The example is simple, but you should note how geometric objects and text elements are
included in the scene graph as nodes in the same way as other nodes such like Button,
Label, and more.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT ArchItecture of JAvAfX

19

2 ARCHITECTURE OF JAVAFX

JavaFX is a full API for creating GUI applications and consists of classes distributed on
the following packages:

1. javafx.animation
2. javafx.application
3. javafx.css
4. javafx.event
5. javafx.geometry
6. javafx.stage
7. javafx.scene

where the latter has more sub packages. A JavaFX program consists as mentioned of a scene
graph, which is a tree containing nodes that may be

 - geometrical objects, that can be 2D and 3D objects, as Circle’s, Sphere’s and so on
 - UI controls, such as Label, Button and so on
 - Containers, as StackPane, VBox, Group and more
 - Media elements, for images, audio and video

Each node in a scene graph has a unique parent, except the root, which has no parent,
and all nodes that do not have child nodes are called as mentioned for leaf nodes, while all
other nodes are called branch nodes. The same node can only occur in the tree once, and
each node may have defined effects, opacity, transforms, and event handlers.

To render the graphics JavaFX uses openGL (on Linux systems) and, as far as possible, use
the graphics card’s hardware accelerator with the result that JavaFX is highly effective in
rendering graphics.

As mentioned above, a JavaFX application is represented by a Stage object that contains all
of the application’s objects, and the Stage object is created by the actual platform. A Stage
object has a width and a height in addition to the content (the scene graph), and there are
decorations as a title line and a frame. There are the following kind of Stage objects:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT ArchItecture of JAvAfX

2020

 - Decorated
 - Undecorated
 - Transparent
 - Unified
 - Utility

and the individual objects are discussed continuously in connection with the examples.

The Stage object’s content is represented by a Scene object, which defines the width and
height as well as the scene graph. The individual nodes are discussed in connection with
the examples, and there are many with each there purpose. Among other things, there are
different branch nodes, where the simplest is a Group node, which is primarily a collection
of child nodes. Other examples are Pane nodes with several specific derivative classes, which
play the same role as layout managers in Swing. All the specific nodes are part of a hierarchy
of class’s and are derived from one of the following classes:

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT ArchItecture of JAvAfX

21

EXERSICE 1

You must write a JavaFX application that opens the following window, where there are two
entry fields at the top and at the bottom of a list box:

If you click the Add button, (and something has been entered in both fields), a line must
be inserted in the list box where the name and title are separated by comma. If you click
on the other button, the content of the list box must be deleted. It is a requirement that
the size of the two input fields as well as the size of the list box follows the size of the
window and that the buttons follow the edge of the window.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT ArchItecture of JAvAfX

2222

Below is the window after 6 people have entered. Note that it is a part of the task to find
out which controls are to be used and how to place them in the window:

http://s.bookboon.com/elearningforkids

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

23

3 2D SHAPES

In this chapter I will review how to draw geometric shapes in a window, and as may be
seen in the last example of chapter 1, it is almost the same as in Java2D, only other classes
are used. A geometric shape is an object of the type Shape2D, and thus an object that is a
node and can be included in a scene graph. Generally, there are the following predefined
shapes (nodes):

 - Line
 - Rectangle
 - Circle
 - Ellipse
 - Polygon
 - Polyline
 - CubicCurve
 - QuadCurve
 - Arc

In addition, you can define general curves as Path objects consisting of segments of the types:

 - Line
 - CubicCurve
 - QuadCurve
 - Arc

and finally you can define a shape like a SVG Path.

The aim of this chapter is to show how to create and apply the above geometric shapes,
but instead of reviewing the syntax (which is a lot about what you know from Java2D), I
will instead formulate a series of exercises where the challenge is primarily to find out of
what the types are called JavaFX.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

24

EXERCISE 2

Write a JavaFX application that opens the following window:

The blue line has the endpoints (20, 20) and (320, 20) and width 21, while the red line has
the endpoints (20, 40) and (320, 40) and width 1. Finally, the green line has the endpoints
(20, 60) and (320, 60) and width 21.

EXERCISE 3

Write a JavaFX program that opens the following window:

which shows three rectangles, each of which has a size of 300 × 50. The left upper corner
of the three rectangles are (20, 20), (20, 90) and (20, 160) respectively. The top has a blue
frame with a width of 21, but an empty inner. The middle has no frame, while the latter
has a black frame with the width 1.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

2525

EXERCISE 4

Write a program that shows a window with three rectangles with rounded corners:

Note that JavaFX does not have a type for rectangles with rounded corners, and the shapes
are of the type Rectangle.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

26

EXERCISE 5

Write a JavaFX program that opens the following window:

when the type of the shapes must be Circle.

EXERCISE 6

Write a program that opens the following window:

where the type of the three shapes are Ellipse.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

27

EXERCISE 7

A polygon is a closed shape bounded by straight lines, and you defines a polygon by
specifying the coordinates of the corners. Write a JavaFX program that opens the following
window, which shows three polygons:

EXERCISE 8

A polyline is defined as a polygon and consists of straight lines. The shape is defined
in the same way as a sequence of corners, but there is no need to be a coherent shape.
Generally, a polyline is not a filled shape, but if you define a fill color, the shape is filled
as a polygon. In this exercise, you must write a program that opens the following window
with 4 polyline shapes:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

2828

EXERCISE 9

You must write a program that shows two quad curves. If you do not remember the definition
of a quad curve, you might want to read about the curve in the book Java 10. The program
must open the following window:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

29

EXERCISE 10

You must write a program that shows two cubic curves. If you do not remember the definition
of a cubic curve, you might want to read about the curve in the book Java 10. The program
must open the following window:

EXERCISE 11

Write a program that opens the window below, showing 6 circle/ellipse slices. All slices start
at 0 and span over an angle of 60 degrees. The top three are circle sections from a circle
with radius 100, while the three bottom are slices of an ellipse with radiuses 200 and 100:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

30

3.1 SVG

SVG stands for Scalable Vector Graphics, and in relation to JavaFX, you define a shape in
the form of a path as a string containing commands. There are the following commands
where the cursor denotes the drawing tool:

1. M or m, which means move to. As a result, the cursor is moved to the following
coordinate. Is the command M, the coordinates designate an absolute position,
and is the command m, the coordinates denote a relative position. If you indicate
more coordinates, they are perceived as multiple subsequent move to operations.

2. Z or z, which means close and closes the path with a straight line from the current
position of the cursor to the start of the curve.

3. L or 1, which means line to. As a result, the cursor draws a straight line from the
current point to the subsequent coordinate. If the command is L, the coordinates
denote an absolute position and is the command l, the coordinates denote a relative
position. If you indicate more coordinates, they are perceived as several subsequent
line to operations.

4. H or h, which means horizontal to. As a result, the cursor draws a horizontal line
from the current point to the following x-coordinate. Is the command H, the
coordinates designate an absolute position and is the command h, the coordinates
denote a relative position. If you specify multiple x coordinates, they are perceived
as multiple subsequent horizontal to operations.

5. V or v, which means vertical to. As a result, the cursor draws a vertical line from the
current point to the following y coordinate. If the command is V, the coordinates
denote an absolute position and is the command v, the coordinate denotes a
relative position. If you specify more y coordinates, they are perceived as multiple
subsequent vertical to operations.

6. C or c, which means cubic to. As a result, the cursor draws a cubic curve from the
current point to the last of the following three coordinate pairs. The first two are
control points. Is the command C, the coordinates designate an absolute position,
and is command c, the coordinates denote a relative position. If you specify more
coordinate sets, they are perceived as several subsequent curve to operations.

7. Q or q, which means quad to. As a result, the cursor draws a quad curve from
the current point to the last of the following two coordinate pairs. The first is the
control point. Is the command Q, the coordinates designate an absolute position
and is the command q, the coordinates denote a relative position. If you specify
more coordinate sets, they are perceived as several subsequent quad to operations.

8. A or a, which means arc to. The result is that the cursor draws an arc starting in the
current point to (x, y). The parameters are (rx row rotation large sweep x y), where rx
and row are radii in an ellipse and rotation is the ellipse rotation about the x-axis.
The two parameters large and sweep indicate which of the two arcs to be selected,

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

3131

and the center of the ellipse is calculated automatically from the parameters. Is the
command A, the coordinates designate an absolute position and is the command
a, the coordinates denote a relative position. If you specify more parameter sets,
they are perceived as several subsequent arc to operations.

As an example, below is shown an application that opens the following window:

which shows two shapes, both of which have the type SVGPath. Both shapes are drawn
with two line to commands and an arc to command. The code is as follows:

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

32

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

30

package svgprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.stage.Stage;
import javafx.scene.shape.*;
import javafx.scene.paint.*;

public class SVGProgram extends Application
{
 @Override
 public void start(Stage primaryStage)
 {
 Group root = new Group();
 root.getChildren().add(path1());
 root.getChildren().add(path2());
 Scene scene = new Scene(root, 500, 150);
 primaryStage.setTitle("SVG");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private SVGPath path1()
 {
 SVGPath path = new SVGPath();
 path.setContent("M 20 120 L 70 20 120 120 A 100 100 0 0 0 20 120");
 path.setStroke(Color.BLUE);
 path.setStrokeWidth(3);
 path.setFill(null);
 return path;
 }

 private SVGPath path2()
 {
 SVGPath path = new SVGPath();
 path.setContent("M 220 120 L 270 20 320 120 A 100 100 0 0 1 220 120");
 path.setStroke(Color.BLUE);
 path.setStrokeWidth(3);
 path.setFill(Color.YELLOW);
 return path;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

33

Here is the interesting of course the two SVG commands. You must note the syntax and
how the commands are simply defined as a list separated by spaces. The only thing that is
not obvious is command A, which defines an arc. In this case, it is (in the first case) a curve
from (120, 120) to (20, 120) in a circle of radius 100 and it offers two options:

Which one chooses is determined by the two parameters large and sweep (whose values are
0 or 1).

EXERCISE 12

Write a program that opens the following window, which shows two SVGPath shapes where
the blue curve consists of a move to, two line to and an arc to operation, while the red
consists of one quad to, two line to, one cubic to and a close operation:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

3434

3.2 A PATH

Instead of drawing a path as shown above, where you defines the drawing operations as a
string, you can add drawing objects to a Path object that represents a collection of drawing
objects. The advantage is primarily that the compiler can check the syntax and that any
errors are thus detected before runtime. There are the following drawing objects:

 - MoveTo
 - LineTo
 - HLineTo
 - VLineTo
 - ArcTo
 - QuadCurveTo
 - CubicCurveTo

http://s.bookboon.com/EOT

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

35

For example, the following program draws the same window as shown in the previous
example:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

33

For example, the following program draws the same window as shown in the previous
example:

package pathprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.stage.Stage;
import javafx.scene.shape.*;
import javafx.scene.paint.*;

public class PathProgram extends Application
{
 @Override
 public void start(Stage primaryStage)
 {
 Group root = new Group();
 root.getChildren().add(path1());
 root.getChildren().add(path2());
 Scene scene = new Scene(root, 500, 150);
 primaryStage.setTitle("Paths");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private Path path1()
 {
 Path path = new Path();
 path.getElements().add(new MoveTo(20, 120));
 path.getElements().addAll(new LineTo(70, 20), new LineTo(120, 120));
 path.getElements().add(new ArcTo(100, 100, 0, 20, 120, false, false));
 path.setStroke(Color.BLUE);
 path.setStrokeWidth(3);
 path.setFill(null);
 return path;
 }

 private Path path2()
 {
 Path path = new Path();
 path.getElements().addAll(new MoveTo(220, 120), new LineTo(270, 20),
 new LineTo(320, 120), new ArcTo(100, 100, 0, 220, 120, false, true));
 path.setStroke(Color.BLUE);
 path.setStrokeWidth(3);
 path.setFill(Color.YELLOW);
 return path;
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

36

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

34

 public static void main(String[] args)
 {
 launch(args);
 }
}

In fact, there is not much to explain, but you should notice how to create a Path object
and how to add drawing objects. Also note how to create each drawing object, and that
the objects are used in the order as they are added to the Path object.

EXERCISE 13

You must write a program that opens the same window as in exercise 12, but this time the
type of the two shapes must be a Path.

EXERCISE 14

Write a program that opens the following window when the shape should be a Path object:

In fact, there is not much to explain, but you should notice how to create a Path object
and how to add drawing objects. Also note how to create each drawing object, and that
the objects are used in the order as they are added to the Path object.

EXERCISE 13

You must write a program that opens the same window as in exercise 12, but this time the
type of the two shapes must be a Path.

EXERCISE 14

Write a program that opens the following window when the shape should be a Path object:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

3737

3.3 SHAPE PROPERTIES

The above has primarily concerned the shape of figures like straight lines, rectangles, circles,
and more, but there are also some other properties attached to shapes, including how they
are filled and how the perimeter is drawn. This section will discuss the most important of
these features.

The perimeter – which is a line / curve – can be drawn in three ways:

1. StrokeType.CENTERED, which is default and means the perimeter is drawn so that
the edge of the shape is exactly the center of the perimeter line.

2. StrokeType.INSIDE, where the perimeter is drawn as it falls within the shape.
3. StrokeType.OUTSIDE, where the perimeter is drawn outside the shape.

The program StrokeProgram opens the following window, which illustrates the three ways
to draw the perimeter and where the first is the default:

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

38

The code is the following, where I have only shown the method start():

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

36

The code is the following, where I have only shown the method start():

public void start(Stage primaryStage)
{
 Group root = new Group();
 root.getChildren().add(circ1());
 root.getChildren().add(circ2());
 root.getChildren().add(circ3());
 Scene scene = new Scene(root, 500, 250);
 primaryStage.setTitle("Strokes");
 primaryStage.setScene(scene);
 primaryStage.show();
}

private Circle circ1()
{
 Circle circ = new Circle(80, 120, 50, Color.RED);
 circ.setStroke(Color.BLUE);
 circ.setStrokeWidth(21);
 circ.setStrokeType(StrokeType.CENTERED);
 return circ;
}

private Circle circ2()
{
 Circle circ = new Circle(220, 120, 50, Color.RED);
 circ.setStroke(Color.BLUE);
 circ.setStrokeWidth(21);
 circ.setStrokeType(StrokeType.INSIDE);
 return circ;
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

39

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

37

private Circle circ3()
{
 Circle circ = new Circle(360, 120, 50, Color.RED);
 circ.setStroke(Color.BLUE);
 circ.setStrokeWidth(21);
 circ.setStrokeType(StrokeType.OUTSIDE);
 return circ;
}

Another thing is the endpoints of the line and here especially for shapes composed of
straight lines, such as polygons. There are three options (as you also know from Java2D):

1. StrokeLineJoin.MITTER which is default
2. StrokeLineJoin.BEVEL
3. StrokeLineJoin.ROUND

You can find the exact explanation of how these endpoints are calculated in the book about
Java2D. The application JoinProgram opens the following window, which shows the effect
of each of the three options:

public void start(Stage primaryStage)
{
 Group root = new Group();
 root.getChildren().add(poly1());
 root.getChildren().add(poly2());
 root.getChildren().add(poly3());
 root.getChildren().add(poly4());
 root.getChildren().add(poly5());
 root.getChildren().add(poly6());
 Scene scene = new Scene(root, 550, 210);
 primaryStage.setTitle("Triangles");
 primaryStage.setScene(scene);
 primaryStage.show();
}

Another thing is the endpoints of the line and here especially for shapes composed of
straight lines, such as polygons. There are three options (as you also know from Java2D):

1. StrokeLineJoin.MITTER which is default
2. StrokeLineJoin.BEVEL
3. StrokeLineJoin.ROUND

You can find the exact explanation of how these endpoints are calculated in the book about
Java2D. The application JoinProgram opens the following window, which shows the effect
of each of the three options:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

37

private Circle circ3()
{
 Circle circ = new Circle(360, 120, 50, Color.RED);
 circ.setStroke(Color.BLUE);
 circ.setStrokeWidth(21);
 circ.setStrokeType(StrokeType.OUTSIDE);
 return circ;
}

Another thing is the endpoints of the line and here especially for shapes composed of
straight lines, such as polygons. There are three options (as you also know from Java2D):

1. StrokeLineJoin.MITTER which is default
2. StrokeLineJoin.BEVEL
3. StrokeLineJoin.ROUND

You can find the exact explanation of how these endpoints are calculated in the book about
Java2D. The application JoinProgram opens the following window, which shows the effect
of each of the three options:

public void start(Stage primaryStage)
{
 Group root = new Group();
 root.getChildren().add(poly1());
 root.getChildren().add(poly2());
 root.getChildren().add(poly3());
 root.getChildren().add(poly4());
 root.getChildren().add(poly5());
 root.getChildren().add(poly6());
 Scene scene = new Scene(root, 550, 210);
 primaryStage.setTitle("Triangles");
 primaryStage.setScene(scene);
 primaryStage.show();
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

4040

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

3838

private Polygon poly1()
{
 Polygon poly = new Polygon(30, 30, 150, 90, 30, 150);
 poly.setStroke(Color.BLUE);
 poly.setStrokeWidth(21);
 poly.setFill(null);
 poly.setStrokeLineJoin(StrokeLineJoin.MITER);
 return poly;
}

private Polygon poly2()
{
 Polygon poly = new Polygon(210, 30, 330, 90, 210, 150);
 poly.setStroke(Color.BLUE);
 poly.setStrokeWidth(21);
 poly.setFill(null);
 poly.setStrokeLineJoin(StrokeLineJoin.BEVEL);
 return poly;
}

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

41

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

39

private Polygon poly3()
{
 Polygon poly = new Polygon(390, 30, 510, 90, 390, 150);
 poly.setStroke(Color.BLUE);
 poly.setStrokeWidth(21);
 poly.setFill(null);
 poly.setStrokeLineJoin(StrokeLineJoin.ROUND);
 return poly;
}

private Polygon poly4()
{
 Polygon poly = new Polygon(30, 30, 150, 90, 30, 150);
 poly.setStroke(Color.BLACK);
 poly.setStrokeWidth(1);
 poly.setFill(null);
 return poly;
}

private Polygon poly5()
{
 Polygon poly = new Polygon(210, 30, 330, 90, 210, 150);
 poly.setStroke(Color.BLACK);
 poly.setStrokeWidth(1);
 poly.setFill(null);
 return poly;
}

private Polygon poly6()
{
 Polygon poly = new Polygon(390, 30, 510, 90, 390, 150);
 poly.setStroke(Color.BLACK);
 poly.setStrokeWidth(1);
 poly.setFill(null);
 return poly;
}

There are similar options for specifying endpoints of lines (please check the book Java 10
for an explanation):

1. StrokeLineCap.BUTT
2. StrokeLineCap.SQUARE
3. StrokeLineCap.ROUND

There are similar options for specifying endpoints of lines (please check the book Java 10
for an explanation):

1. StrokeLineCap.BUTT
2. StrokeLineCap.SQUARE
3. StrokeLineCap.ROUND

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

42

EXERCISE 15

Write a program that you can call LineCaps. The program must open the following window,
which shows 6 Line objects (each of which has a length of 200), and each endpoint (of the
blue lines) is BUTT, SQUARE and ROUND respectively:

3.4 SHAPE OPERATIONS

In general, if you add two Shape objects to a Group and the two shapes overlap, then the
shape added last will cover the part of the first shape that overlaps. The Shape class has
three static methods

 - union()
 - intersect()
 - subtract()

which all as parameters have two Shape objects and the methods combine these two objects
into a single Shape object. The OperationProgram shows how to apply this operation and
opens the following window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2d ShApeS

43

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT 2D SHAPES

41

public void start(Stage primaryStage)
{
 Group root = new Group();
 root.getChildren().add(shape1());
 root.getChildren().add(shape2());
 root.getChildren().add(shape3());
 Scene scene = new Scene(root, 400, 160);
 primaryStage.setTitle("Operations");
 primaryStage.setScene(scene);
 primaryStage.show();
}

private Shape shape1()
{
 Circle circ1 = new Circle(80, 70, 50);
 Circle circ2 = new Circle(130, 70, 50);
 Shape shape = Shape.union(circ1, circ2);
 shape.setFill(Color.RED);
 return shape;
}

private Shape shape2()
{
 Circle circ1 = new Circle(200, 70, 50);
 Circle circ2 = new Circle(250, 70, 50);
 Shape shape = Shape.intersect(circ1, circ2);
 shape.setFill(Color.GREEN);
 return shape;
}

private Shape shape3()
{
 Circle circ1 = new Circle(320, 70, 50);
 Circle circ2 = new Circle(370, 70, 50);
 Shape shape = Shape.subtract(circ1, circ2);
 shape.setFill(Color.BLUE);
 return shape;
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT teXt

4444

4 TEXT

Text can be represented by a Text object, and the important thing is that Text inherits Shape
and thus can be used as any other Shape object and enter the scene graph as a node. In reality,
there is not much to explain, but the application TextProgram opens the following window:

http://s.bookboon.com/GTca

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT teXt

45

It works almost the same way you know from Java2D, but other classes are used. The
completed code is as follows:
JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT TEXT

43

It works almost the same way you know from Java2D, but other classes are used. The
completed code is as follows:

package textprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.stage.Stage;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.scene.text.*;
import javafx.geometry.*;

public class TextProgram extends Application
{
 @Override
 public void start(Stage primaryStage)
 {
 Group root = new Group();
 Shape shape = text1();
 root.getChildren().add(shape);
 root.getChildren().add(line(shape));
 shape = text2();
 root.getChildren().add(shape);
 root.getChildren().add(rect(shape));
 Scene scene = new Scene(root, 530, 250);
 primaryStage.setTitle("Strokes");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private Text text1()
 {
 Text text = new Text(20, 50, "Hello JavaFX geometry");
 text.setFont(Font.font("Liberation Sherif", FontWeight.NORMAL,
 FontPosture.REGULAR, 24));
 return text;
 }

 private Line line(Shape shape)
 {
 Bounds bounds = shape.getBoundsInLocal();
 return new Line(20, 50, 20 + bounds.getWidth(), 50);
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT teXt

46

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT TEXT

44

 private Text text2()
 {
 Text text = new Text("Hello World");
 text.setX(20);
 text.setY(150);
 text.setFont(Font.font("Liberation Sherif", FontWeight.BOLD,
 FontPosture.ITALIC, 72));
 text.setFill(Color.RED);
 text.setStroke(Color.BLUE);
 text.setStrokeWidth(2);
 text.setStrokeType(StrokeType.OUTSIDE);
 text.setUnderline(true);
 return text;
 }

 private Rectangle rect(Shape shape)
 {
 Bounds bounds = shape.getBoundsInLocal();
 Rectangle rect = new Rectangle(bounds.getMinX(), bounds.getMinY(),
 bounds.getWidth(), bounds.getHeight());
 rect.setFill(null);
 rect.setStroke(Color.BLACK);
 rect.setStrokeWidth(1);
 rect.setStrokeType(StrokeType.OUTSIDE);
 return rect;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The top text is created by the method text1() as a Text object. Here you should note that the
constructor as parameters has the coordinates of the text and that the coordinates indicate
the left end of the baseline (the line on which the text is “on”). Otherwise, you should
especially note how to create a font. This happens with a static method font() in the class
Font as well as two enumerations FontWeight and FontPosture.

The method line() has a Shape object as parameter, and the method creates a Line object
that corresponds to the baseline of the text created in text1(). Here you should especially
note the method getBoundsInLocal(), which returns a Bounds object (defined in the package
javafx.geometry) that contains the Shape object width and height as well as its location, and
thus the circumscribing rectangle. Regarding the latter, it is not a (x, y) value, but instead
the smallest and largest x and y value that may occur, respectively.

The top text is created by the method text1() as a Text object. Here you should note that the
constructor as parameters has the coordinates of the text and that the coordinates indicate
the left end of the baseline (the line on which the text is “on”). Otherwise, you should
especially note how to create a font. This happens with a static method font() in the class
Font as well as two enumerations FontWeight and FontPosture.

The method line() has a Shape object as parameter, and the method creates a Line object
that corresponds to the baseline of the text created in text1(). Here you should especially
note the method getBoundsInLocal(), which returns a Bounds object (defined in the package
javafx.geometry) that contains the Shape object width and height as well as its location, and
thus the circumscribing rectangle. Regarding the latter, it is not a (x, y) value, but instead
the smallest and largest x and y value that may occur, respectively.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT teXt

4747

The method getBoundsInLocal() returns the circumscribing rectangle before any transformation.
There is also a method getBoundsInParent() that returns the circumscribing rectangle after
a transformation. In this case, Bounds uses alone the object to determine the length of the
line to be drawn.

The method text2() creates a Text object for the lower text. Since a Text object is also a Shape
object, you can indicate both fill and stroke just like other shape objects. In this case, the
location of the object is not defined by the constructor, but it is only to show that there
are other options. In particular, note how to indicate that the text needs to be underlined.

Finally, there is method rect() that returns the circumscribing rectangle for the last text, and
here you should primarily note how the rectangle is defined using a Bound object.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

48

5 EFFECTS

A JavaFX program, as mentioned, represents the content of the user interface as nodes in a
scene graph. It is possible to change how the individual nodes are displayed using so-called
effects, where an effect is an object that is used to modify how a node is to be drawn. It is
primarily interesting for nodes, which represent graphic objects like images and geometric
figures. This chapter is a brief introduction to these effects. Basically, the following effects
are represented as classes in the package javafx.scene.effect :

 - ColorAdjust, which can be used to modify the color of an image where you can
adjust the hue, saturation, brightness and contrast.

 - ColorInput, which corresponds to drawing a rectangle, filled with a color.
 - ImageInput used to fill a rectangular area with an image.
 - Blend, which is used to combine pixels from two inputs.
 - Bloom, which is used to provide a portion of a node more hue.
 - Glow, which is used to increase the hue of a node.
 - BoxBlur, used to perform a blur operation on a node with a box filter.
 - GausienBlur, also used to perform a blur of a node, but instead using a kernel.
 - MotionBlur, which is a gaussien blur, where there is also an angle.
 - Reflection that performs a reflection of a node.
 - SepiaTone, which tones a node with a brownish color.
 - Shadow, resulting in a shadow effect by a blur of edges.
 - DropShadow, where the shadow effect is created behind the node.
 - InnerShadow, where the shadow effect is created within the edge of the node.
 - Lighting, which is used to simulate a light effect, where you can indicate a light

source such as point, distance or sport.
 - Light.Distant, which is a variant of Lighting.
 - Light.Spot, which is a variation of Lighting.
 - Point.Spot, which is a variation of Lighting.

As an example I show a program that adjusts the colors of an image. The program is named
ColorAdjustProgram and opens the following window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

49

where the left image is the original, while the right is the adjusted image. The program
should show only the syntax for using a ColorAdjust, but in this case does not result in any
improvement of the image. The program also shows how to load a picture from the local
disk into a JavaFX program. The program code is as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

47

where the left image is the original, while the right is the adjusted image. The program
should show only the syntax for using a ColorAdjust, but in this case does not result in any
improvement of the image. The program also shows how to load a picture from the local
disk into a JavaFX program. The program code is as follows:

package coloradjustprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.stage.Stage;
import javafx.scene.effect.*;
import javafx.scene.image.*;

public class ColorAdjustProgram extends Application
{
 @Override
 public void start(Stage primaryStage)
 {
	 String	filename	=	
	 "file:"	+	System.getProperty("user.home")	+	"/data/dollar.jpg";
	 Image	image	=	new	Image(filename);
 Group root = new Group();
 root.getChildren().add(image1(image));
 root.getChildren().add(image2(image));
 Scene scene = new Scene(root, 460, 250);
 primaryStage.setTitle("ColorAdjust");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

5050

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

4848

 private ImageView image1(Image img)
 {
 ImageView view = new ImageView(img);
 view.setX(20);
 view.setY(20);
 view.setFitWidth(200);
 view.setPreserveRatio(true);
 return view;
 }

 private ImageView image2(Image img)
 {
 ImageView view = new ImageView(img);
 view.setX(240);
 view.setY(20);
 view.setFitWidth(200);
 view.setPreserveRatio(true);
 ColorAdjust colorAdjust = new ColorAdjust();
 colorAdjust.setContrast(0.5);
 colorAdjust.setHue(0.5);
 colorAdjust.setBrightness(-0.5);

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

51

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

49

 colorAdjust.setSaturation(0.5);
 view.setEffect(colorAdjust);
 return view;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The image is loaded in the method start() and is usually done by defining a path to the
image, which is a jpg image. In this case, the image is placed in a directory data under my
home directory, but the image is also part of the book’s zip file with examples. The only
difference with regard to the file name is that it starts with the name of the protocol as the
image is located in the local file system. In other cases, it would be the http protocol. The
image is loaded by creating an Image object.

An image is inserted into the program’s scene graph as an ImageView object, and the method
image1() creates an ImageView object for the original image and specifies the coordinates
of the image’s upper left corner. In addition, you specify the width of the image, and that
its propositions can not be changed.

The method image2() correspondingly creates another ImageView object for the same image,
but this time with other coordinates. In addition, a ColorAdjust object is created that has
methods for adjusting lightness, contrast, saturation and tint. The parameters have values
between -1 and 1, where a negative value means reducing the property while a positive
value means increasing the property.

The image is loaded in the method start() and is usually done by defining a path to the
image, which is a jpg image. In this case, the image is placed in a directory data under my
home directory, but the image is also part of the book’s zip file with examples. The only
difference with regard to the file name is that it starts with the name of the protocol as the
image is located in the local file system. In other cases, it would be the http protocol. The
image is loaded by creating an Image object.

An image is inserted into the program’s scene graph as an ImageView object, and the method
image1() creates an ImageView object for the original image and specifies the coordinates
of the image’s upper left corner. In addition, you specify the width of the image, and that
its propositions can not be changed.

The method image2() correspondingly creates another ImageView object for the same image,
but this time with other coordinates. In addition, a ColorAdjust object is created that has
methods for adjusting lightness, contrast, saturation and tint. The parameters have values
between -1 and 1, where a negative value means reducing the property while a positive
value means increasing the property.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

52

PROBLEM 1

Write a program that opens the window above. The goal is that you can experiment with
the four properties: Light, contrast, hue and saturation. The picture is called stone.jpg and
is contained in the book’s zip file. You must be able to adjust the four properties using the
Slider controls at the top of the window. This means that you should handle the event that
is firing when moving the slider. This happens with a ChangedListener, which is defined in
the javafx.beans.value package.

5.1 COLORS

In the above examples (and also the exercises from the previous chapters) I have used colors
and shown how to fill a shape with a color and draw the perimeter. Generally there are
four options:

1. a uniform color and then objects of the class Color
2. a linear gradiant paint and then objects of the class LinearGradian
3. a radial gradiant paint and then objects of the class RadialGradiant
4. an image and then objects of the class ImagePattern

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

53

The program ColorProgram opens the following window:

The program’s scene graph has 8 nodes, which are 4 Text nodes and 4 Circle nodes, respectively.
A text node is created using the following method:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

51

The program ColorProgram opens the following window:

The program’s scene graph has 8 nodes, which are 4 Text nodes and 4 Circle nodes, respectively.
A text node is created using the following method:

private	Text	text(String	txt,	double	x,	double	y,	Paint	fill,	Paint	stroke)
{
 Text text = new Text(txt);
 text.setFont(
 Font.font("Liberation Sherif", FontWeight.BOLD, FontPosture.REGULAR, 72));
	text.setFill(fill);
 text.setStroke(stroke);
 text.setStrokeWidth(1);
	text.setX(x	–	text.getBoundsInParent().getWidth()	/	2);
	text.setY(y	+	text.getBoundsInParent().getHeight()	/	2);
 return text;
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

5454

The parameters are the text, the coordinates of the shape’s position and the colors to fill
the figure and draw the perimeter respectively. You should note that a color may be one of
the above four options, each of which has the type Paint as the base type.

A circle is created using the following method:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

5252

The parameters are the text, the coordinates of the shape’s position and the colors to fill
the figure and draw the perimeter respectively. You should note that a color may be one of
the above four options, each of which has the type Paint as the base type.

A circle is created using the following method:

private	Circle	circle(double	x,	double	y,	Paint	fill,	Paint	stroke)
{
	Circle	circ	=	new	Circle(x,	y,	100,	fill);
 if (stroke != null)
 {
 circ.setStroke(stroke);
 circ.setStrokeWidth(1);
 }
 return circ;
}

Here the parameters means the same as for a text node.

The window shows four figures, each character consisting of a Text node and a Circle node.
The first is drawn using uniform colors, where there is nothing to say in relation to what

Here the parameters means the same as for a text node.

The window shows four figures, each character consisting of a Text node and a Circle node.
The first is drawn using uniform colors, where there is nothing to say in relation to what

http://s.bookboon.com/BI

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

55

has already been said about colors. The next figure uses a linear gradient paint, which is
defined as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

53

has already been said about colors. The next figure uses a linear gradient paint, which is
defined as follows:

private Paint createLinear()
{
 Stop[] stops = new Stop[] { new Stop(0, Color.BLUE), new Stop(1, Color.RED)};
 return new LinearGradient(0, 0, 1, 0, true, CycleMethod.NO_CYCLE, stops);
}

A linear gradient paint is defined by two or more colors, which are defined as objects of the
type Stop. Each stop indicates a color and a position that can either be relative or absolute.
The first color stop is in this case blue and the position is 0, which means that the color
is the start color. The other color is red and the position is 1, which means that the last
color value must be red. All colors between these two extremes are blends of blue and red.

The LinearGradient parameters are the starting position (here (0.0)) and the final position
(here (1.0)), and the next parameter indicates that the coordinates must be interpreted
relative (true) or absolute. In this case, the coordinates indicate that they must be mixed
along the x axis from the left edge of the shape to the right edge of the shape. The next
last parameter indicates whether the pattern should be repeated if the coordinates do not
define the entire shape, and finally the last parameter is the color stops.

A radial gradient paint is defined in almost the same way:

private Paint createRadial()
{
 Stop[] stops = new Stop[]
 { new Stop(0, Color.WHITE), new Stop(0.2, Color.
RED), new Stop(1, Color.BLUE) };
 return new RadialGradient(0, 0, 0.6, 0.5, 1, true, CycleMethod.NO_CYCLE, stops);
}

Again, two or more color stops must be defined, and in this case three are defined. They
say that starting with a white color, and after 20% the color should be red for the last to
be blue. Parameters for a RadialGradient begins by defining a starting point, which is the
focus point and is the first stop. The first parameter is the angle of this focus point, while
the next is the distance to the focus point. The next two parameters are the coordinates of
the focus point, while the next is the radius of a circle that defines the area that the Paint
object is about. The last three parameters means the same as for a LinearGradient.

A linear gradient paint is defined by two or more colors, which are defined as objects of the
type Stop. Each stop indicates a color and a position that can either be relative or absolute.
The first color stop is in this case blue and the position is 0, which means that the color
is the start color. The other color is red and the position is 1, which means that the last
color value must be red. All colors between these two extremes are blends of blue and red.

The LinearGradient parameters are the starting position (here (0.0)) and the final position
(here (1.0)), and the next parameter indicates that the coordinates must be interpreted
relative (true) or absolute. In this case, the coordinates indicate that they must be mixed
along the x axis from the left edge of the shape to the right edge of the shape. The next
last parameter indicates whether the pattern should be repeated if the coordinates do not
define the entire shape, and finally the last parameter is the color stops.

A radial gradient paint is defined in almost the same way:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

53

has already been said about colors. The next figure uses a linear gradient paint, which is
defined as follows:

private Paint createLinear()
{
 Stop[] stops = new Stop[] { new Stop(0, Color.BLUE), new Stop(1, Color.RED)};
 return new LinearGradient(0, 0, 1, 0, true, CycleMethod.NO_CYCLE, stops);
}

A linear gradient paint is defined by two or more colors, which are defined as objects of the
type Stop. Each stop indicates a color and a position that can either be relative or absolute.
The first color stop is in this case blue and the position is 0, which means that the color
is the start color. The other color is red and the position is 1, which means that the last
color value must be red. All colors between these two extremes are blends of blue and red.

The LinearGradient parameters are the starting position (here (0.0)) and the final position
(here (1.0)), and the next parameter indicates that the coordinates must be interpreted
relative (true) or absolute. In this case, the coordinates indicate that they must be mixed
along the x axis from the left edge of the shape to the right edge of the shape. The next
last parameter indicates whether the pattern should be repeated if the coordinates do not
define the entire shape, and finally the last parameter is the color stops.

A radial gradient paint is defined in almost the same way:

private Paint createRadial()
{
 Stop[] stops = new Stop[]
 { new Stop(0, Color.WHITE), new Stop(0.2, Color.
RED), new Stop(1, Color.BLUE) };
 return new RadialGradient(0, 0, 0.6, 0.5, 1, true, CycleMethod.NO_CYCLE, stops);
}

Again, two or more color stops must be defined, and in this case three are defined. They
say that starting with a white color, and after 20% the color should be red for the last to
be blue. Parameters for a RadialGradient begins by defining a starting point, which is the
focus point and is the first stop. The first parameter is the angle of this focus point, while
the next is the distance to the focus point. The next two parameters are the coordinates of
the focus point, while the next is the radius of a circle that defines the area that the Paint
object is about. The last three parameters means the same as for a LinearGradient.

Again, two or more color stops must be defined, and in this case three are defined. They
say that starting with a white color, and after 20% the color should be red for the last to
be blue. Parameters for a RadialGradient begins by defining a starting point, which is the
focus point and is the first stop. The first parameter is the angle of this focus point, while
the next is the distance to the focus point. The next two parameters are the coordinates of
the focus point, while the next is the radius of a circle that defines the area that the Paint
object is about. The last three parameters means the same as for a LinearGradient.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

5656

Finally, there is an ImagePattern, which is a Paint object that draws an image. In the program’s
start() method an image (Bean.png) is loaded as an Image object. This image can then be
used to create an ImagePattern object:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

5454

Finally, there is an ImagePattern, which is a Paint object that draws an image. In the program’s
start() method an image (Bean.png) is loaded as an Image object. This image can then be
used to create an ImagePattern object:

private Paint createImage()
{
 return new ImagePattern(image, 0, 0, 48, 48, false);
}

In addition to the image, the parameters are the starting coordinate of the figure (upper left
corner), the width and height of the figure (the figure is scaled to this size), and whether
the coordinates should be interpreted relative or absolute.

5.2 IMAGES

In the previous examples, I have already shown how to load an image and display it in
a window. Actually, pictures do not have much to do with effects, but some are pictures
used in the example above, and there are a few more remarks to add, so therefore a few
additional examples.

In addition to the image, the parameters are the starting coordinate of the figure (upper left
corner), the width and height of the figure (the figure is scaled to this size), and whether
the coordinates should be interpreted relative or absolute.

5.2 IMAGES

In the previous examples, I have already shown how to load an image and display it in
a window. Actually, pictures do not have much to do with effects, but some are pictures
used in the example above, and there are a few more remarks to add, so therefore a few
additional examples.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

57

An image is displayed in a scene graph as an ImageView node, and the image itself is
represented in the program as an Image object and can be loaded from the machine’s hard
disk by specifying the path of the image as a parameter to the constructor. The following
program is called ImageViewProgram and it opens the following window:

It is the same image shown three times, and the example should primarily show how to
scale an image. The first image (the big one) is unscaled while the two others are scaled.
The code is as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

55

An image is displayed in a scene graph as an ImageView node, and the image itself is
represented in the program as an Image object and can be loaded from the machine’s hard
disk by specifying the path of the image as a parameter to the constructor. The following
program is called ImageViewProgram and it opens the following window:

It is the same image shown three times, and the example should primarily show how to
scale an image. The first image (the big one) is unscaled while the two others are scaled.
The code is as follows:

package imageviewerprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.scene.effect.*;
import javafx.stage.Stage;
import javafx.scene.paint.*;
import javafx.scene.image.*;

public class ImageViewerProgram extends Application
{
 private Image image;

 public ImageViewerProgram()
 {

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

58

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

56

	 String	filename	=	
	 "file:"	+	System.getProperty("user.home")	+	"/data/dollar.jpg";
	 image	=	new	Image(filename);
 }

 @Override
 public void start(Stage primaryStage)
 {
 Group root = new Group();
 root.getChildren().add(createView(20, 20, 0, 0, true));
 root.getChildren().add(createView(440, 20, 100, 200, true));
 root.getChildren().add(createView(440, 200, 100, 200, false));
 Scene scene = new Scene(root, 560, 440);
 primaryStage.setTitle("Colors");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private ImageView createView(double x, double y, double width, double height,
 boolean preserve)
 {
 ImageView view = new ImageView(image);
 view.setX(x);
 view.setY(y);
 if (width > 0 && height > 0)
 {
 view.setFitHeight(height);
 view.setFitWidth(width);
 }
 view.setEffect(new DropShadow(5, Color.BLACK));
 view.setPreserveRatio(preserve);
 return view;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The image is loaded in the class’ constructor and can then be referred to with the instance
variable image. The method createView() creates an ImageView for the image, and it has five
parameters, the first two being the coordinates of the ImageView object’s upper left corner,
while the two next indicate the width and height. The last indicates whether the image’s
propositions are to be retained. The statements of the method are easy to interpret, perhaps
apart from the meaning of setEffect(), but the result is that a frame is drawn outside the

The image is loaded in the class’ constructor and can then be referred to with the instance
variable image. The method createView() creates an ImageView for the image, and it has five
parameters, the first two being the coordinates of the ImageView object’s upper left corner,
while the two next indicate the width and height. The last indicates whether the image’s
propositions are to be retained. The statements of the method are easy to interpret, perhaps
apart from the meaning of setEffect(), but the result is that a frame is drawn outside the

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

5959

image. If no width or height is specified, these attributes are not set, and the result is that
the physical dimensions of the image are applied.

Examining the method start() shows that there is no size for the first image. The image
size therefore becomes the physical size, which is 400 × 400. For the next image, the
size is set to 100 × 200, and it will be scaled within this frame, but as it is said that the
propositions are to be saved, the result is an image that is scaled to 1/4 in both directions
and you gets a picture that is 100 × 100. For the last image, the same size is specified, but
the propositions are not preserved, and the image is therefore scaled in both directions, so
it will fill 100 × 200.

As the last example concerning images, I will show a program called PixelProgram. The
program should show how to manipulate the individual pixels in an image. The starting
point is the same picture as shown above. Here is a portion of the image’s pixels white (the
background), and the program should change the background to black. That is, all white
pixels must be changed to black. In general, it is simple, but as it is a jpg image, pixels
close to the figure will not be completely white, and it is therefore necessary to allow an
uncertainty as to when a pixel is white. Performing the program gives you the result:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

60

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

58

package pixelsprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.scene.effect.*;
import javafx.stage.Stage;
import javafx.scene.paint.*;
import javafx.scene.image.*;

public class PixelsProgram extends Application
{
 private Image image;

 public PixelsProgram()
 {
	 String	filename	=
	 "file:"	+	System.getProperty("user.home")	+	"/data/dollar.jpg";
	 image	=	new	Image(filename);
 }

 @Override
 public void start(Stage primaryStage)
 {
 Group root = new Group();
 root.getChildren().add(createImage());
 Scene scene = new Scene(root, 440, 440);
 primaryStage.setTitle("Pixels");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

61

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

59

 private ImageView createImage()
 {
 int width = (int)image.getWidth();
 int height = (int)image.getHeight();
 WritableImage buffer = new WritableImage(width, height);
 PixelReader reader = image.getPixelReader();
 PixelWriter writer = buffer.getPixelWriter();
 for (int y = 0; y < height; ++y)
 for (int x = 0; x < width; ++x)
 {
 Color color = reader.getColor(x, y);
 if (isWhite(color)) color = Color.BLACK;
 writer.setColor(x, y, color);
 }
 ImageView view = new ImageView(buffer);
 view.setX(20);
 view.setY(20);
 return view;
 }

 private boolean isWhite(Color color)
 {
 double epsilon = 0.1;
 return 1 – color.getRed() < epsilon && 1 – color.getGreen() < epsilon &&
 1 – color.getBlue() < epsilon;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

Most importantly, of course, is the method createImage(), which returns an ImageView
with the modified image. First, the width and height of the image are determined, and a
memory representation of a picture of the same size is created. The type is WritableImage
and I have called it buffer. Next, a PixelReader is defined for the original image, which
means that you can refer to the individual pixels in the image. In addition, a PixelWriter is
created for buffer that allows you to modify the buffer’s pixels. Next, the program iterates
using the reader over the pixels of the original image (line by line), and for each pixel, the
corresponding pixel is updated in buffer – either modified or unchanged. Here you should
note the method isWhite() which tests whether a pixel can be considered white.

Most importantly, of course, is the method createImage(), which returns an ImageView
with the modified image. First, the width and height of the image are determined, and a
memory representation of a picture of the same size is created. The type is WritableImage
and I have called it buffer. Next, a PixelReader is defined for the original image, which
means that you can refer to the individual pixels in the image. In addition, a PixelWriter is
created for buffer that allows you to modify the buffer’s pixels. Next, the program iterates
using the reader over the pixels of the original image (line by line), and for each pixel, the
corresponding pixel is updated in buffer – either modified or unchanged. Here you should
note the method isWhite() which tests whether a pixel can be considered white.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

6262

5.3 LIGHT

In the introduction to this chapter on effects, I have listed the different effects that you can
apply, and I have far from illustrating them all (and will not), but I want to conclude this
chapter with a little about the effect light. The principle is that a light source shines on a
figure, and the color of the figure is determined by the nature of the light source and its
position in relation to the figure.

Generally, you can associate a lighting effect to a figure with a Lighting object, and if you
do not indicate a light source, a default light source is used, which corresponds to the light
falling directly into the figure, resulting in a weak 3D effect towards the edge. You can also
explicitly indicate a light source, where there are three options:

1. Light.Distant
2. Light.Point
3. Ligth.Spot

http://s.bookboon.com/Subscrybe

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

63

The first corresponds to the light source located at a distance, thus sending light that extends
in one direction from a remote light source:

You can set as a parameter two values (both of the type double):

1. azimuth, which indicates the angle of the light source’s rotation about the z axis
2. elevation, which indicates the angle of the light source’s rotation about the x axis

In addition, you can indicate the color of the light source.

The second option is a light source where the light is sent from a certain point, as indicated
by 3 coordinates. The light spreads in all directions, and in the same way as a Distant light
source, you can indicate the color of the light source.

The light intensity depends on the distance of the source to the figure. Finally, there is the
third option that is similar to the above, but with the difference that you can specify a
specular that controls the focus of the light source.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

64

If you run the application LightingProgram, it opens the following window:

The example looks like ColorProgram, but instead of illustrating the effect of colors, the
program shows the effect of light. The figures in the top row show the effect of a standard
and a distant light source, respectively, while the two figures in the bottom row show the
effect of a spot and a point light source, respectively. The code of the program is:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

62

If you run the application LightingProgram, it opens the following window:

The example looks like ColorProgram, but instead of illustrating the effect of colors, the
program shows the effect of light. The figures in the top row show the effect of a standard
and a distant light source, respectively, while the two figures in the bottom row show the
effect of a spot and a point light source, respectively. The code of the program is:

package lightingprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.stage.Stage;
import javafx.scene.effect.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.scene.text.*;

public class LightingProgram extends Application
{
 @Override

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

6565

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

6363

 public void start(Stage primaryStage)
 {
 Group root = new Group();
 root.getChildren().add(text(140, 50, Color.rgb(232, 232, 232),
 new Lighting()));
 root.getChildren().add(circle(140, 220, Color.DARKRED, new Lighting()));
 root.getChildren().add(text(400, 50, Color.GREEN,
 new Lighting(new Light.Distant(45, 60, Color.WHITE))));
 root.getChildren().add(circle(400, 220, Color.GREEN,
 new Lighting(new Light.Distant(45, 60, Color.WHITE))));
 root.getChildren().add(text(140, 370, Color.BLUE,
 new Lighting(new Light.Spot(120, 120, 50, 2, Color.WHITE))));
 root.getChildren().add(circle(140, 540, Color.BLUE,
 new Lighting(new Light.Spot(120, 120, 50, 2, Color.WHITE))));
 root.getChildren().add(text(400, 370, Color.RED,
 new Lighting(new Light.Point(120, 120, 50, Color.WHITE))));
 root.getChildren().add(circle(400, 540, Color.RED,
 new Lighting(new Light.Point(120, 120, 50, Color.WHITE))));
 Scene scene = new Scene(root, 550, 670);
 primaryStage.setTitle("Lighting");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

http://s.bookboon.com/volvo

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

66

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

64

	private	Text	text(double	x,	double	y,	Paint	fill,	Lighting	light)
 {
 Text text = new Text("Light");
 text.setFont(Font.font("Liberation Sherif", FontWeight.BOLD,
 FontPosture.REGULAR, 72));
	 text.setFill(fill);
 text.setStroke(Color.BLACK);
 text.setStrokeWidth(1);
	 text.setX(x	–	text.getBoundsInParent().getWidth()	/	2);
	 text.setY(y	+	text.getBoundsInParent().getHeight()	/	2);
 text.setEffect(light);
 return text;
 }

	private	Circle	circle(double	x,	double	y,	Paint	fill,	Lighting	light)
 {
	 Circle	circ	=	new	Circle(x,	y,	100,	fill);
 circ.setEffect(light);
 return circ;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The two methods text() and circle() are similar to the corresponding methods from earlier.
You should primarily consider the method start() and here how to create light sources as
Light objects used as parameters for a Lighting object that is an effect. Note that the specific
Light classes are defined as inner classes in the class Light.

PROBLEM 2

To experiment a little with light sources, write an application that opens the following
window:

The two methods text() and circle() are similar to the corresponding methods from earlier.
You should primarily consider the method start() and here how to create light sources as
Light objects used as parameters for a Lighting object that is an effect. Note that the specific
Light classes are defined as inner classes in the class Light.

PROBLEM 2

To experiment a little with light sources, write an application that opens the following
window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

67

The four circles mentioned from the left are using the light sources:

1. default
2. distant
3. spot
4. point

The setting options are made with Slider controls and ComboBox controls, and the names
should explain the meaning. A setting option does not necessarily have effect for all light
sources, but changes a setting, the change must be reflected in the relevant shapes. As for
ComboBox controls, they must be initialized with colors and I have enclosed a color in the
following wrapper class:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

65

The four circles mentioned from the left are using the light sources:

1. default
2. distant
3. spot
4. point

The setting options are made with Slider controls and ComboBox controls, and the names
should explain the meaning. A setting option does not necessarily have effect for all light
sources, but changes a setting, the change must be reflected in the relevant shapes. As for
ComboBox controls, they must be initialized with colors and I have enclosed a color in the
following wrapper class:

class ColorWrapper
{
 private Color color;
 private String name;

 public ColorWrapper(Color color, String name)
 {
 this.color = color;
 this.name = name;
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

6868

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

6666

 public Color getColor()
 {
 return color;
 }

 public String getName()
 {
 return name;
 }

 @Override
 public String toString()
 {
 return String.format("%s [%s]", name, color.toString());
 }
}

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT effectS

69

You can initialize the two ComboBox controls with an appropriate number of standard
colors (static objects in the class Color), but you can actually decide all of them using the
following method:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT EFFECTS

67

You can initialize the two ComboBox controls with an appropriate number of standard
colors (static objects in the class Color), but you can actually decide all of them using the
following method:

private java.util.List<ColorWrapper> getColors()
{
 java.util.List<ColorWrapper> list = new java.util.ArrayList();
 try
 {
	 java.lang.reflect.Field[]	fields	=	Color.class.getDeclaredFields();
	 for	(java.lang.reflect.Field	field	:	fields)	
 {
	 if	(java.lang.reflect.Modifier.isStatic(field.getModifiers())	&&
	 field.getType().equals(Color.class))	
 {
 Object obj = new Object();
	 obj	=	field.get(obj);
	 list.add(new	ColorWrapper((Color)obj,	field.getName()));
 }
 }
 }
 catch (Exception ex)
 {
 list.clear();
 }
 return list;
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

70

6 TRANSFORMATIONS

JavaFX also supports transformations of nodes in the scene graph, and it happens largely
in the same way that you know it from Java2D. Generally, there are 4 transfomations

1. Translater
2. Scaling
3. Rotation
4. Shearing

and the meaning is the same as in Java2D. As a simple example, the following program
performs a translation of a rectangle:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT TRANSFORMATIONS

68

6 TRANSFORMATIONS

JavaFX also supports transformations of nodes in the scene graph, and it happens largely
in the same way that you know it from Java2D. Generally, there are 4 transfomations

1. Translater
2. Scaling
3. Rotation
4. Shearing

and the meaning is the same as in Java2D. As a simple example, the following program
performs a translation of a rectangle:

package translateprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.stage.Stage;
import javafx.scene.shape.*;
import javafx.scene.paint.Color;
import javafx.scene.transform.*;

public class TranslateProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
 Group root = new Group();
 root.getChildren().add(createRect(Color.BLUE, null));
 root.getChildren().add(createRect(Color.RED, new Translate(50, 50)));
 Scene scene = new Scene(root, 350, 200);
 stage.setTitle("Rectangles");
 stage.setScene(scene);
 stage.show();
 }

 private Rectangle createRect(Color color, Translate trans)
 {
 Rectangle rect = new Rectangle(20, 20, 200, 100);
 rect.setFill(color);
 if (trans != null) rect.getTransforms().add(trans);
 return rect;
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

7171

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT TRANSFORMATIONS

6969

 public static void main(String[] args)
 {
 launch(args);
 }
}

The method createRect() creates a Rectangle with a fixed position and size, as well as a parameter
that is the color. Finally, there is a parameter that can indicate a transformation and thus
a shift of the rectangle to another position. That is, the program creates two rectangles of
the same size and position, but one (the red) translated 50 pxels in both directions:

The method createRect() creates a Rectangle with a fixed position and size, as well as a parameter
that is the color. Finally, there is a parameter that can indicate a transformation and thus
a shift of the rectangle to another position. That is, the program creates two rectangles of
the same size and position, but one (the red) translated 50 pxels in both directions:

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

72

EXERCISE 16

Write a program that opens the following window:

The blue rectangle has the top corner in (20, 20) while the size is 200 × 100. The red
rectangle is a scaling of the blue where it is scaled to 50% in both directions and from the
point (20, 20). The green rectangle is a corresponding scale, but followed by a translation.
Note that in the case of compound transformations, the order means something.

EXERCISE 17

Write an application that opens the window below. Here the blue rectangle has the upper
left corner in (180, 180) while the size is 200 × 100. The red rectangle is a rotation of 45
degrees of the blue rectangle about the point (180, 180). The green rectangle is a rotation
about the same point, but with the angle -45 degrees, and the rotation is followed by
a translation.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

73

EXERCISE 18

Write a program that opens a window similar to the following when the red rectangle is to
be a shearing of the blue rectangle:

6.1 ANIMATIONS

In this section I introduce animations, which you also can perceive as a form of transformations
of a node. An animation basically means changing one or the properties of a node, and if
you do it many times and do it at short intervals, it will seem to the user as if something
is “alive” with that node. As described in Java 10, a node needs to be redrawn at short
intervals, and such that the value of an option has been changed for each redraw. In JavaFX,
this logic is encapsulated in a number of classes, where each class defines an animation
for a particular value or property. The base class is called a Transition, but there are the
following specific transitions:

 - FadeTransition
 - FillTransition
 - RotateTransition
 - ScaleTransition
 - StrokeTransition
 - TranslateTransition
 - PathTransition
 - SequentialTransition
 - PauseTransition
 - ParallelTransition

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

7474

and the names tells a little about what it is for properties that the class in question is an
animation for. As an example, I will show you how to use a FadeTransition. A visual node
has an opacity property that indicates the extent to which that node should be displayed
transparent. If you perform an animation of this property, you can see that the figure appears
fully drawn, after which it appears more transparent until it completely disappears. It is
the task of a FadeTransition. If you run the program FadeAnimation, the following window
shows a red circle:

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

75

The circle becomes weaker and weaker and finally disappears completely. Then it grows again
until it is shown as it original was. This cycle is repeated 5 times. The code is as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT TRANSFORMATIONS

73

The circle becomes weaker and weaker and finally disappears completely. Then it grows again
until it is shown as it original was. This cycle is repeated 5 times. The code is as follows:

package fadeanimation;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.shape.*;
import javafx.scene.paint.Color;
import javafx.animation.*;
import javafx.util.*;

public class FadeAnimation extends Application
{
 @Override
 public void start(Stage stage)
 {
 Group root = new Group();
 Circle circ = createCircle();
 root.getChildren().add(circ);
 Transition trans = createTransition(circ);
 Scene scene = new Scene(root, 250, 250);
 stage.setTitle("Fade");
 stage.setScene(scene);
 stage.show();
 trans.play();
 }

 private Circle createCircle()
 {
 return new Circle(120, 120, 100, Color.RED);
 }

 private FadeTransition createTransition(Node node)
 {
 FadeTransition trans = new FadeTransition(Duration.millis(2000), node);
 trans.setFromValue(1);
 trans.setToValue(0);
 trans.setCycleCount(10);
 trans.setAutoReverse(true);
 return trans;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

76

The method createCircle() is trivial, while it is the method createTransition() that creates the
transition. In this case, it is a FadeTransition, and the constructor tells that the animation
should take 2 seconds, and what it is for a node that the animation should work on.
Otherwise, the animation must change the value from from 1 (not transparent) to 0 (total
transparent). The next statement tells the animation to be repeated 10 times and finally,
after the animation is complete, the next one must go backwards. In start(), a Transition
object is created and the statement

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT TRANSFORMATIONS

74

The method createCircle() is trivial, while it is the method createTransition() that creates the
transition. In this case, it is a FadeTransition, and the constructor tells that the animation
should take 2 seconds, and what it is for a node that the animation should work on.
Otherwise, the animation must change the value from from 1 (not transparent) to 0 (total
transparent). The next statement tells the animation to be repeated 10 times and finally,
after the animation is complete, the next one must go backwards. In start(), a Transition
object is created and the statement

trans.play();

starts the animation.

The other animation classes are used in the same way, but instead of showing examples, I
have formulated a series of exercises that will illustrate applications of the most important
classes. You can immediately start from the above program, but for some of the exercises
it is necessary to read the documentation to find out what to write – which values should
be initialized.

EXERCISE 19

Write an application that opens a window with a blue circle:

Then the program should with a FillTransition change color to red. The animation must take
5 seconds and then start again with a blue circle. The animation must be repeated 50 times.
Note that a FillTransition can not be applied to a general node, but it must be a Shape.

starts the animation.

The other animation classes are used in the same way, but instead of showing examples, I
have formulated a series of exercises that will illustrate applications of the most important
classes. You can immediately start from the above program, but for some of the exercises
it is necessary to read the documentation to find out what to write – which values should
be initialized.

EXERCISE 19

Write an application that opens a window with a blue circle:

Then the program should with a FillTransition change color to red. The animation must take
5 seconds and then start again with a blue circle. The animation must be repeated 50 times.
Note that a FillTransition can not be applied to a general node, but it must be a Shape.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

7777

EXERCISE 20

Write a program that you can call ScaleAnimation, which opens a window with a red circle:

The program must, with an animation, change the size of the circle, so it will shrink and grow.

EXERCISE 21

Write a program that you can call TranslateAnimation. The program must open a window,
as shown below, where a red circle with an animation is moved from the upper left corner
to the bottom right corner. You can use a TranslateTransition. The animation period must

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

78

be 2 seconds and the animation must be repeated 50 times. You must also set AutoReverse
to true.

EXERCISE 22

You must write a program called RotateAnimation, which shows a rectangle. The rectangle
should rotate from 0 to 360 degrees, and simultaneously the color must change from red
to blue – and back again in the next rotation:

Note that this time you will need to use two transitions.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT trAnSformAtIonS

79

EXERCISE 23

Write a program PathAnimation, where a red circle moves along a CubicCurve (see below).
The curve must be defined as a Path object, and as a transition object you can use a
PathTransition. An animation of the circle must run for two seconds, and you must set
AutoReverse to true.

EXERCISE 24

As the last example of an animation, write a program SequentialAnimation similar to the
above, where a red circle moves along a CubicCurve, but the animation is only repeated
once. When the circle reaches the end of the curve (the animation stops), the circle should
with an animation change color to blue and back to red again. The program must therefore
use two animations that are performed sequentially.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

8080

7 COMPONENTS

Looking at the foregoing, I have primarily focused on how you in JavaFX works with
geometric objects, but I have only overall mentioned components that the user can interact
with. Viewed from practical programs it is of course the most interesting and is the subject
of this and the following chapters. It is about which components are available and how
they are laid out in a window. In addition, there is event management.

7.1 LAYOUT

The program’s scene graph consists of components, and these components can be placed
absolutely as I have used in conjunction with geometric objects, but typically, nodes are
placed in the scene graph using layout panes where a layout pane is an branch node. Viewed
from the programmer, a layout pane has the same characteristics (and purposes) as a layout
manager in Swing, and the theory resembles what you know from Swing. All layout panes
have a common basic class Pane, and there are the following specific panes:

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

81

 - HBox
 - VBox
 - BorderPane
 - StackPane
 - Flow Pane
 - TextFlow
 - AnchorPane
 - TitlePane
 - Grid Pane

In this section I show how the layout panes are used to layout components, and of course
they can be nested in the same way you know it from Swing. The following examples are
similar to each other and briefly show the application of the different panes, but you should
examine the online documentation and what properties are available.

I want to start with a HBox (the HBoxProgram application) which places components
horizontally in a window, and here with three buttons:

As you can see, the size of the buttons (width) changes according to the available space,
and below I have shown the same window after the size has changed:

As you can see, the components are as default left-aligned, but it can be changed with a
property. The code is as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

82

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

80

package hboxprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.stage.*;

public class HBoxProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
 HBox root = new HBox();
 root.setSpacing(10);
 root.getChildren().add(createButton("A button"));
 root.getChildren().add(createButton("Another button"));
 root.getChildren().add(createButton("A big button", 200, 50));
 Scene scene = new Scene(root, 300, 100);
 stage.setTitle("HBox");
 stage.setScene(scene);
 stage.show();
 }

 private Button createButton(String text)
 {
 return new Button(text);
 }

 private Button createButton(String text, int width, int height)
 {
 Button cmd = new Button(text);
 cmd.setPrefSize(width, height);
 return cmd;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

You may notice that the last method createButton() assigns the button a preferred size, and
in JavaFX, basically, the same applies to a component’s size, as you know from Swing. As
for the method start(), there is not much to explain, but you should note how to define a
gap between the components. A HBox is a very simple layout pane and can only be used
to arrange components on a line relative to their preferred size.

You may notice that the last method createButton() assigns the button a preferred size, and
in JavaFX, basically, the same applies to a component’s size, as you know from Swing. As
for the method start(), there is not much to explain, but you should note how to define a
gap between the components. A HBox is a very simple layout pane and can only be used
to arrange components on a line relative to their preferred size.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

8383

There is a layout pane, called VBox, which is parallel to HBox, the difference being that it
places the components on a vertical line. The VBoxProgram program shows the application
of this layout pane:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

8181

There is a layout pane, called VBox, which is parallel to HBox, the difference being that it
places the components on a vertical line. The VBoxProgram program shows the application
of this layout pane:

public void start(Stage stage)
{
 VBox root = new VBox();
 root.setSpacing(10);
 root.setAlignment(Pos.CENTER);
 root.getChildren().add(createButton("A button"));
 root.getChildren().add(createButton("Another button"));
 root.getChildren().add(createButton("A big button", 200, 50));

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

84

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

82

 Scene scene = new Scene(root, 300, 200);
 stage.setTitle("VBox");
 stage.setScene(scene);
 stage.show();
}

There is not much new to explain, but you should note how to indicate that the components
should be displayed centered in the window. You are encouraged to investigate what options
the type of Pos otherwise defines.

A BorderPane looks like a BorderLayout and divides the window into 5 areas, called center,
top, right, bottom and left and usually referenced in this order. As with a BorderLayout, the
center will fill what has not been used by the other areas. The program BorderProgram opens
the window shown below. In addition to show a BorderPane, the program should also show
the use of nested panes. The window has 9 components:

1. center : a TextArea
2. top: a BorderPane with a TextField and a Button
3. right: a BorderPane with a Button and a TextArea
4. bottom: a BorderPane with a TextField and a Button
5. left : a BorderPane with a Button and a TextArea

You should notice the spacing between the components and how they are defined in the code.

public class BorderProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
 BorderPane root =

There is not much new to explain, but you should note how to indicate that the components
should be displayed centered in the window. You are encouraged to investigate what options
the type of Pos otherwise defines.

A BorderPane looks like a BorderLayout and divides the window into 5 areas, called center,
top, right, bottom and left and usually referenced in this order. As with a BorderLayout, the
center will fill what has not been used by the other areas. The program BorderProgram opens
the window shown below. In addition to show a BorderPane, the program should also show
the use of nested panes. The window has 9 components:

1. center : a TextArea
2. top: a BorderPane with a TextField and a Button
3. right: a BorderPane with a Button and a TextArea
4. bottom: a BorderPane with a TextField and a Button
5. left : a BorderPane with a Button and a TextArea

You should notice the spacing between the components and how they are defined in the code.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

82

 Scene scene = new Scene(root, 300, 200);
 stage.setTitle("VBox");
 stage.setScene(scene);
 stage.show();
}

There is not much new to explain, but you should note how to indicate that the components
should be displayed centered in the window. You are encouraged to investigate what options
the type of Pos otherwise defines.

A BorderPane looks like a BorderLayout and divides the window into 5 areas, called center,
top, right, bottom and left and usually referenced in this order. As with a BorderLayout, the
center will fill what has not been used by the other areas. The program BorderProgram opens
the window shown below. In addition to show a BorderPane, the program should also show
the use of nested panes. The window has 9 components:

1. center : a TextArea
2. top: a BorderPane with a TextField and a Button
3. right: a BorderPane with a Button and a TextArea
4. bottom: a BorderPane with a TextField and a Button
5. left : a BorderPane with a Button and a TextArea

You should notice the spacing between the components and how they are defined in the code.

public class BorderProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
 BorderPane root =

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

85

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

83

 new BorderPane(createField(), createField("Top"), createField("Right", 100),
 createField("Buttom"), createField("Left", 100));
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root, 500, 300);
 stage.setTitle("Border");
 stage.setScene(scene);
 stage.show();
 }

 private Pane createField()
 {
 BorderPane pane = new BorderPane(new TextArea());
 pane.setPadding(new Insets(10, 10, 10, 10));
 return pane;
 }

 private Pane createField(String text)
 {
 Button cmd = new Button(text);
 cmd.setPrefWidth(80);
 BorderPane pane = new BorderPane(new TextField(), null, cmd, null, null);
 BorderPane.setMargin(cmd, new Insets(0, 0, 0, 10));
 return pane;
 }

 private Pane createField(String text, int width)
 {
 Button cmd = new Button(text);
 cmd.setPrefWidth(width);
	 TextArea	field	=	new	TextArea();
	 field.setPrefWidth(width);
	 BorderPane	pane	=	new	BorderPane(field,	cmd,	null,	null,	null);
 BorderPane.setMargin(cmd, new Insets(10, 0, 10, 0));
	 BorderPane.setMargin(field,	new	Insets(0,	0,	10,	0));
 return pane;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The individual 5 areas are created with three helper methods named createField(). The first is
used for the center and creates a BorderPane with a TextArea component. You should notice
how to set a spacing of 10 to the remaining 4 areas with setPadding(). Also note that the
BorderPane constructor specifies a single parameter, which is the component to be shown

The individual 5 areas are created with three helper methods named createField(). The first is
used for the center and creates a BorderPane with a TextArea component. You should notice
how to set a spacing of 10 to the remaining 4 areas with setPadding(). Also note that the
BorderPane constructor specifies a single parameter, which is the component to be shown

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

8686

at the center. The second createField() is used to create a BorderPane to be placed at top
and bottom respectively. Here you specify 5 parameters for the constructor in BorderPane,
which is interpreted as center, top, right, bottom and left. In particular, note how to define
that the button should have a left margin in the container:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

8484

at the center. The second createField() is used to create a BorderPane to be placed at top
and bottom respectively. Here you specify 5 parameters for the constructor in BorderPane,
which is interpreted as center, top, right, bottom and left. In particular, note how to define
that the button should have a left margin in the container:

BorderPane.setMargin(cmd, new Insets(0, 0, 0, 10));

Here, setMargin() is a static method in the BorderPane class, which defines the margin of
the first parameter in the current layout pane. The last createField() method is used to create
a BorderPane for the contents of the right and left area and, in principle, it works as the
previous method. You should note that a bottom margin is defined for both components.

Finally, there is the start() method, where the root element this time is a BorderPane (which
is a branch node). Here you should note how to create root, and to set a margin of 20.

A StackPane is a layout pane that arranges the components on top of each other in the order
they are added. The program StackProgram shows three buttons placed on top of each other:

Here, setMargin() is a static method in the BorderPane class, which defines the margin of
the first parameter in the current layout pane. The last createField() method is used to create
a BorderPane for the contents of the right and left area and, in principle, it works as the
previous method. You should note that a bottom margin is defined for both components.

Finally, there is the start() method, where the root element this time is a BorderPane (which
is a branch node). Here you should note how to create root, and to set a margin of 20.

A StackPane is a layout pane that arranges the components on top of each other in the order
they are added. The program StackProgram shows three buttons placed on top of each other:

http://s.bookboon.com/elearningforkids

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

87

The application is probably limited, but primarily for Shape objects, the possibility can be
useful. It’s quite simple to use a StackPane:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

85

The application is probably limited, but primarily for Shape objects, the possibility can be
useful. It’s quite simple to use a StackPane:

public void start(Stage stage)
{
 StackPane root = new StackPane();
 root.getChildren().add(createButton("A very big button with a big font",
 500, 100, 24));
 root.getChildren().add(createButton("A big button in the middle", 250, 50, 16));
 root.getChildren().add(createButton("A small button", 150, 25, 12));
 Scene scene = new Scene(root, 600, 200);
 stage.setTitle("Stack");
 stage.setScene(scene);
 stage.show();
}

private Button createButton(String text, int width, int height, int size)
{
 Button cmd = new Button(text);
 cmd.setFont(Font.font(size));
 cmd.setPrefSize(width, height);
 return cmd;
}

A FlowPane is a layout pane that essentially behaves like a FlowLayout in Swing:
A FlowPane is a layout pane that essentially behaves like a FlowLayout in Swing:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

88

If you increase the width of the window, all components will appear on the same line.
Regarding the code, you should first notice how to define the gap between the components:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

86

If you increase the width of the window, all components will appear on the same line.
Regarding the code, you should first notice how to define the gap between the components:

public void start(Stage stage)
{
 FlowPane root = new FlowPane();
 root.setAlignment(Pos.TOP_LEFT);
 root.setHgap(5);
 root.setVgap(10);
 root.getChildren().add(createButton("Button A"));
 root.getChildren().add(createButton("Button B"));
 root.getChildren().add(createButton("Button C"));
 root.getChildren().add(createButton("Button D"));
 Scene scene = new Scene(root, 300, 150);
 stage.setTitle("Flow");
 stage.setScene(scene);
 stage.show();
}

There is also a layout pane, which is called TextFlow, and behaving in the same way as a
FlowPane, but only for Text nodes. The program TextflowProgram shows how to use this
pane. It’s probably not the most commonly used layout pane, but it may be useful if you
need to write a custom component that supports text wrapping – something that is actually
relatively complicated in Swing.

public void start(Stage stage)
{
 TextFlow root = new TextFlow();
 root.setLineSpacing(10);
 root.getChildren().add(createText("Gorm den Gamle, ", Color.BLUE));
 root.getChildren().add(createText("Harald Blåtand, ", Color.GREEN));
 root.getChildren().add(createText("Svend Tveskæg", Color.RED));
 Scene scene = new Scene(root, 300, 100);
 stage.setTitle("TextFlow");
 stage.setScene(scene);
 stage.show();
}

There is also a layout pane, which is called TextFlow, and behaving in the same way as a
FlowPane, but only for Text nodes. The program TextflowProgram shows how to use this
pane. It’s probably not the most commonly used layout pane, but it may be useful if you
need to write a custom component that supports text wrapping – something that is actually
relatively complicated in Swing.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

86

If you increase the width of the window, all components will appear on the same line.
Regarding the code, you should first notice how to define the gap between the components:

public void start(Stage stage)
{
 FlowPane root = new FlowPane();
 root.setAlignment(Pos.TOP_LEFT);
 root.setHgap(5);
 root.setVgap(10);
 root.getChildren().add(createButton("Button A"));
 root.getChildren().add(createButton("Button B"));
 root.getChildren().add(createButton("Button C"));
 root.getChildren().add(createButton("Button D"));
 Scene scene = new Scene(root, 300, 150);
 stage.setTitle("Flow");
 stage.setScene(scene);
 stage.show();
}

There is also a layout pane, which is called TextFlow, and behaving in the same way as a
FlowPane, but only for Text nodes. The program TextflowProgram shows how to use this
pane. It’s probably not the most commonly used layout pane, but it may be useful if you
need to write a custom component that supports text wrapping – something that is actually
relatively complicated in Swing.

public void start(Stage stage)
{
 TextFlow root = new TextFlow();
 root.setLineSpacing(10);
 root.getChildren().add(createText("Gorm den Gamle, ", Color.BLUE));
 root.getChildren().add(createText("Harald Blåtand, ", Color.GREEN));
 root.getChildren().add(createText("Svend Tveskæg", Color.RED));
 Scene scene = new Scene(root, 300, 100);
 stage.setTitle("TextFlow");
 stage.setScene(scene);
 stage.show();
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

8989

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

8787

private Text createText(String text, Color color)
{
 Text node = new Text(text);
 node.setStroke(color);
 return node;
}

An AnchorPane places a component relative to the container’s edge:

public void start(Stage stage)
{
 AnchorPane root = new AnchorPane();
 root.setPadding(new Insets(30, 30, 30, 30));
 Button cmd = createButton("A button");
 root.getChildren().add(cmd);
 AnchorPane.setRightAnchor(cmd, 30.0);
 AnchorPane.setBottomAnchor(cmd, 50.0);
 Scene scene = new Scene(root, 300, 200);
 stage.setTitle("Anchor");
 stage.setScene(scene);
 stage.show();
}

An AnchorPane places a component relative to the container’s edge:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

8787

private Text createText(String text, Color color)
{
 Text node = new Text(text);
 node.setStroke(color);
 return node;
}

An AnchorPane places a component relative to the container’s edge:

public void start(Stage stage)
{
 AnchorPane root = new AnchorPane();
 root.setPadding(new Insets(30, 30, 30, 30));
 Button cmd = createButton("A button");
 root.getChildren().add(cmd);
 AnchorPane.setRightAnchor(cmd, 30.0);
 AnchorPane.setBottomAnchor(cmd, 50.0);
 Scene scene = new Scene(root, 300, 200);
 stage.setTitle("Anchor");
 stage.setScene(scene);
 stage.show();
}

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

90

In this case, root has a margin of 30, and the component is positioned so that it sits 30 from
the right edge (relative to the margin) and 50 above the bottom (relative to the margin). If
the window’s size changes, the component will follow the bottom and right edges.

Then there is a TilePane, which places components into cells of the same size. The size of
the cells is determined by the largest preferred size (in this case the last button). Is there
no room for all components on the line, the line wraps, so the last component appears on
the next line.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

88

In this case, root has a margin of 30, and the component is positioned so that it sits 30 from
the right edge (relative to the margin) and 50 above the bottom (relative to the margin). If
the window’s size changes, the component will follow the bottom and right edges.

Then there is a TilePane, which places components into cells of the same size. The size of
the cells is determined by the largest preferred size (in this case the last button). Is there
no room for all components on the line, the line wraps, so the last component appears on
the next line.

public void start(Stage stage)
{
 TilePane root = new TilePane();
 root.getChildren().add(createButton("A button"));
 root.getChildren().add(createButton("Another button"));
 root.getChildren().add(createButton("A big button", 200, 50));
 Scene scene = new Scene(root, 650, 100);
 stage.setTitle("Tile");
 stage.setScene(scene);
 stage.show();
}

In this case, the components are set horizontally, which is default, but with a property, it
is possible to specify that the components should be laid out vertically.

Finally, there is a GridPane, which is a very useful layout pane. Compared with Swing, you
can achieve a bit of the same as with a GridBagLayout, but it is far easier to use. Basically,

In this case, the components are set horizontally, which is default, but with a property, it
is possible to specify that the components should be laid out vertically.

Finally, there is a GridPane, which is a very useful layout pane. Compared with Swing, you
can achieve a bit of the same as with a GridBagLayout, but it is far easier to use. Basically,

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

91

it’s a grid. but the cells do not necessarily have the same size. The program GridProgram
opens the following window:

that has 5 components:

 - 2 Label components
 - 2 TextField components
 - 1 Button component

If you change the window size, the components will stay at their positions and with the
same size – at least as long as the window is large enough. It is therefore a typical dialog
box. The code is quite simple:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

89

it’s a grid. but the cells do not necessarily have the same size. The program GridProgram
opens the following window:

that has 5 components:

 - 2 Label components
 - 2 TextField components
 - 1 Button component

If you change the window size, the components will stay at their positions and with the
same size – at least as long as the window is large enough. It is therefore a typical dialog
box. The code is quite simple:

package gridprogram;

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.stage.*;
import javafx.geometry.*;

public class GridProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
 GridPane root = new GridPane();
 root.setPadding(new Insets(20, 20, 20, 20));
 root.setVgap(20);
 root.add(createLabel("First name", 80), 0, 0);
 root.add(createField(300), 1, 0);
 root.add(createLabel("Last name", 80), 0, 1);
 root.add(createField(300), 1, 1);

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

9292

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

9090

 Button cmd = createButton("OK");
 root.add(cmd, 1, 2);
 GridPane.setHalignment(cmd, HPos.RIGHT);
 Scene scene = new Scene(root, 500, 200);
 stage.setTitle("Grid");
 stage.setScene(scene);
 stage.show();
 }

 private Label createLabel(String text, int width)
 {
 Label label = new Label(text);
 label.setPrefWidth(width);
 return label;
 }

 private TextField createField(int width)
 {
	 TextField	field	=	new	TextField();
	 field.setPrefWidth(width);
	 return	field;
 }

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

93

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

91

 private Button createButton(String text)
 {
 return new Button(text);
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

In the method start(), a GridPane is created as root. Note that you do not say anything
about the number of rows and columns. There is a margin of 20, and there must be a gap
of 20 between the individual rows. Then I add a Label with the width 80, and I define that
it should be in cell (0, 0), which is the cell in the upper left corner. The next component
is a TextField with the width 300, which should be in cell (1, 0), which can be translated
into column 1 and row 0. Similarly, the two next components are placed solely with the
difference that they should be placed in row 1. Finally, place the button in cell (1, 2) and
thus column 1 row 2. Note that nothing is placed in cell (0, 2). It is not necessary – a cell
may be empty. In particular, you should note that a GridPane has a static method that you
can use to specify aligment for a component within the component’s cell:

GridPane.setHalignment(cmd, HPos.RIGHT);

7.2 EVENTS

JavaFX has its own event types, and the base type is called Event. Examples of specific event
types include:

 - MouseEvent
 - KeyEvent
 - DragEvent
 - WindowEvent
 - ActionEvent

An event is characterized by

1. a target, which is the node where an event occurs and may for example be a
window, a scene or a node

2. a source, which is the one that has generated an event and can, for example, be
the mouse

3. an event type, such as mouse pressed, mouse released and so on

In the method start(), a GridPane is created as root. Note that you do not say anything
about the number of rows and columns. There is a margin of 20, and there must be a gap
of 20 between the individual rows. Then I add a Label with the width 80, and I define that
it should be in cell (0, 0), which is the cell in the upper left corner. The next component
is a TextField with the width 300, which should be in cell (1, 0), which can be translated
into column 1 and row 0. Similarly, the two next components are placed solely with the
difference that they should be placed in row 1. Finally, place the button in cell (1, 2) and
thus column 1 row 2. Note that nothing is placed in cell (0, 2). It is not necessary – a cell
may be empty. In particular, you should note that a GridPane has a static method that you
can use to specify aligment for a component within the component’s cell:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

91

 private Button createButton(String text)
 {
 return new Button(text);
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

In the method start(), a GridPane is created as root. Note that you do not say anything
about the number of rows and columns. There is a margin of 20, and there must be a gap
of 20 between the individual rows. Then I add a Label with the width 80, and I define that
it should be in cell (0, 0), which is the cell in the upper left corner. The next component
is a TextField with the width 300, which should be in cell (1, 0), which can be translated
into column 1 and row 0. Similarly, the two next components are placed solely with the
difference that they should be placed in row 1. Finally, place the button in cell (1, 2) and
thus column 1 row 2. Note that nothing is placed in cell (0, 2). It is not necessary – a cell
may be empty. In particular, you should note that a GridPane has a static method that you
can use to specify aligment for a component within the component’s cell:

GridPane.setHalignment(cmd, HPos.RIGHT);

7.2 EVENTS

JavaFX has its own event types, and the base type is called Event. Examples of specific event
types include:

 - MouseEvent
 - KeyEvent
 - DragEvent
 - WindowEvent
 - ActionEvent

An event is characterized by

1. a target, which is the node where an event occurs and may for example be a
window, a scene or a node

2. a source, which is the one that has generated an event and can, for example, be
the mouse

3. an event type, such as mouse pressed, mouse released and so on

7.2 EVENTS

JavaFX has its own event types, and the base type is called Event. Examples of specific event
types include:

 - MouseEvent
 - KeyEvent
 - DragEvent
 - WindowEvent
 - ActionEvent

An event is characterized by

1. a target, which is the node where an event occurs and may for example be a
window, a scene or a node

2. a source, which is the one that has generated an event and can, for example, be
the mouse

3. an event type, such as mouse pressed, mouse released and so on

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

94

When an event occurs, one talks about an event dispatch chain, which is the route from the
stage to that node. Is it a Circle node, for example, it could be

Stage – Scene – Group – Circle

When an event occurs, it is sent to all nodes in its dispatch chain from top to bottom. If
there is a node that has registered a filter for that event, this will be done, after which the
event will be sent to its target node where it will be processed if there is an event handler.
This phase is called the Event Capturing Phase. After that, the event will follow the way
back, and for each node it will be processed if there is a handler assigned. This phase is
called the Event Bubbling Phase. An event can thus result in that multiple event handlers
are performed and event handlers during the capturing phase are called filters while event
handlers during the bubbling phase are called handlers.

When an event follows the dispatch chain, it can at any time be stopped by the method
consume(), which means that the event will not be forwarded in the chain. As an example,
I will show a program EventPhaseProgram that creates the following scene graph:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

9595

where under VBox there are 14 nodes. If you opens the program you get the window:

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

96

For example, if you click a location in the green area, the following is written on standard
output:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

94

For example, if you click a location in the green area, the following is written on standard
output:

Stage – capturing
Sceen – capturing
BorderPane – capture
StackPane – capture
Rectangle – capture
Rectangle – bubbling
StackPane – bubbling
BorderPane – bubbling
Sceen – bubbling
Stage – bubbling

Here you can see how the event of mouse clicks has been processed all the way through
the dispatch chain and back again. The meaning with the checkboxes of the window is that
you check where the processing of an event should be interrupted. For example, checking
Filter Scene and clicking the green rectangle again gives you the result:

Stage – capturing
Sceen – capturing

You are encouraged to test the program and what happens when you click the mouse on
the different nodes depending on which checkboxes are selected.

Then there is the code:

public class EventPhaseProgram extends Application
{
	private	CheckBox	filterStage	=	new	CheckBox("Stage");
	private	CheckBox	filterScene	=	new	CheckBox("Scene");
	private	CheckBox	filterBorder	=	new	CheckBox("BorderPane");
	private	CheckBox	filterPane	=	new	CheckBox("StackPane");
	private	CheckBox	filterRect	=	new	CheckBox("Rectangle");
	private	CheckBox	filterCirc	=	new	CheckBox("Circle");
 private CheckBox handleStage = new CheckBox("Stage");
 private CheckBox handleScene = new CheckBox("Scene");
 private CheckBox handleBorder = new CheckBox("BorderPane");
 private CheckBox handlePane = new CheckBox("StackPane");
 private CheckBox handleRect = new CheckBox("Rectangle");
 private CheckBox handleCirc = new CheckBox("Circle");

 @Override
 public void start(Stage stage)
 {

Here you can see how the event of mouse clicks has been processed all the way through
the dispatch chain and back again. The meaning with the checkboxes of the window is that
you check where the processing of an event should be interrupted. For example, checking
Filter Scene and clicking the green rectangle again gives you the result:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

94

For example, if you click a location in the green area, the following is written on standard
output:

Stage – capturing
Sceen – capturing
BorderPane – capture
StackPane – capture
Rectangle – capture
Rectangle – bubbling
StackPane – bubbling
BorderPane – bubbling
Sceen – bubbling
Stage – bubbling

Here you can see how the event of mouse clicks has been processed all the way through
the dispatch chain and back again. The meaning with the checkboxes of the window is that
you check where the processing of an event should be interrupted. For example, checking
Filter Scene and clicking the green rectangle again gives you the result:

Stage – capturing
Sceen – capturing

You are encouraged to test the program and what happens when you click the mouse on
the different nodes depending on which checkboxes are selected.

Then there is the code:

public class EventPhaseProgram extends Application
{
	private	CheckBox	filterStage	=	new	CheckBox("Stage");
	private	CheckBox	filterScene	=	new	CheckBox("Scene");
	private	CheckBox	filterBorder	=	new	CheckBox("BorderPane");
	private	CheckBox	filterPane	=	new	CheckBox("StackPane");
	private	CheckBox	filterRect	=	new	CheckBox("Rectangle");
	private	CheckBox	filterCirc	=	new	CheckBox("Circle");
 private CheckBox handleStage = new CheckBox("Stage");
 private CheckBox handleScene = new CheckBox("Scene");
 private CheckBox handleBorder = new CheckBox("BorderPane");
 private CheckBox handlePane = new CheckBox("StackPane");
 private CheckBox handleRect = new CheckBox("Rectangle");
 private CheckBox handleCirc = new CheckBox("Circle");

 @Override
 public void start(Stage stage)
 {

You are encouraged to test the program and what happens when you click the mouse on
the different nodes depending on which checkboxes are selected.

Then there is the code:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

94

For example, if you click a location in the green area, the following is written on standard
output:

Stage – capturing
Sceen – capturing
BorderPane – capture
StackPane – capture
Rectangle – capture
Rectangle – bubbling
StackPane – bubbling
BorderPane – bubbling
Sceen – bubbling
Stage – bubbling

Here you can see how the event of mouse clicks has been processed all the way through
the dispatch chain and back again. The meaning with the checkboxes of the window is that
you check where the processing of an event should be interrupted. For example, checking
Filter Scene and clicking the green rectangle again gives you the result:

Stage – capturing
Sceen – capturing

You are encouraged to test the program and what happens when you click the mouse on
the different nodes depending on which checkboxes are selected.

Then there is the code:

public class EventPhaseProgram extends Application
{
	private	CheckBox	filterStage	=	new	CheckBox("Stage");
	private	CheckBox	filterScene	=	new	CheckBox("Scene");
	private	CheckBox	filterBorder	=	new	CheckBox("BorderPane");
	private	CheckBox	filterPane	=	new	CheckBox("StackPane");
	private	CheckBox	filterRect	=	new	CheckBox("Rectangle");
	private	CheckBox	filterCirc	=	new	CheckBox("Circle");
 private CheckBox handleStage = new CheckBox("Stage");
 private CheckBox handleScene = new CheckBox("Scene");
 private CheckBox handleBorder = new CheckBox("BorderPane");
 private CheckBox handlePane = new CheckBox("StackPane");
 private CheckBox handleRect = new CheckBox("Rectangle");
 private CheckBox handleCirc = new CheckBox("Circle");

 @Override
 public void start(Stage stage)
 {

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

97

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

95

 stage.setTitle("Event phase");
 stage.addEventFilter(MouseEvent.MOUSE_CLICKED,
	 new	Handler("\nStage	–	capturing",	filterStage));
 stage.addEventHandler(MouseEvent.MOUSE_CLICKED,
 new Handler("Stage – bubbling", handleStage));
 stage.setScene(createScene(createBorder(createPane(createRect(),
 createCircle(), createButton()), createPanel())));
 stage.show();
 }

 private Scene createScene(Pane root)
 {
 Scene scene = new Scene(root, 400, 360);
 scene.addEventFilter(MouseEvent.MOUSE_CLICKED,
	 new	Handler("Sceen	–	capturing",	filterScene));
 scene.addEventHandler(MouseEvent.MOUSE_CLICKED,
 new Handler("Sceen – bubbling", handleScene));
 return scene;
 }

 private Pane createBorder(Pane pane1, Pane pane2)
 {
 BorderPane pane = new BorderPane(null, null, pane2, null, pane1);
 pane.setPadding(new Insets(20, 20, 20, 20));
 pane.addEventFilter(MouseEvent.MOUSE_CLICKED,
	 new	Handler("BorderPane	–	capture",	filterBorder));
 pane.addEventHandler(MouseEvent.MOUSE_CLICKED,
 new Handler("BorderPane – bubbling", handleBorder));
 return pane;
 }

 private VBox createPanel()
 {
 VBox pane = new VBox();
 pane.setSpacing(5);
 pane.getChildren().add(new Label("Filter"));
	 pane.getChildren().addAll(filterStage,	filterScene,	filterBorder,	filterPane,
	 filterRect,	filterCirc);
 pane.getChildren().add(new Label("Handler"));
 pane.getChildren().addAll(handleStage, handleScene, handleBorder, handlePane,
 handleRect, handleCirc);
 return pane;
 }

 private Pane createPane(Rectangle rect, Circle circle, Button cmd)
 {
 StackPane pane = new StackPane(rect, circle, cmd);
 pane.addEventFilter(MouseEvent.MOUSE_CLICKED,
	 new	Handler("StackPane	–	capture",	filterPane));

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

9898

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

9696

 pane.addEventHandler(MouseEvent.MOUSE_CLICKED,
 new Handler("StackPane – bubbling", handlePane));
 return pane;
 }

 private Button createButton()
 {
 Button cmd = new Button("Click");
 cmd.setOnAction(new EventHandler<ActionEvent>()
 {
 @Override
 public void handle(ActionEvent e)
 {
 new Alert(Alert.AlertType.INFORMATION,
 "You have clicked the button!").showAndWait();
 }
 });
 return cmd;
 }

 private Circle createCircle()
 {
 Circle circle = new Circle(20, 20, 100, Color.RED);

http://s.bookboon.com/EOT

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

99

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

97

 circle.addEventFilter(MouseEvent.MOUSE_CLICKED,
	 new	Handler("Circle	–	capture",	filterCirc));
 circle.addEventHandler(MouseEvent.MOUSE_CLICKED,
 new Handler("Circle – bubbling", handleCirc));
 return circle;
 }

 private Rectangle createRect()
 {
 Rectangle rect = new Rectangle(0, 0, 220, 220);
 rect.setFill(Color.GREEN);
 rect.addEventFilter(MouseEvent.MOUSE_CLICKED,
	 new	Handler("Rectangle	–	capture",	filterRect));
 rect.addEventHandler(MouseEvent.MOUSE_CLICKED,
 new Handler("Rectangle – bubbling", handleRect));
 return rect;
 }

 public static void main(String[] args)
 {
 launch(args);
 }

 class Handler implements EventHandler<MouseEvent>
 {
 private String text;
 private CheckBox chkBox;

 public Handler(String text, CheckBox chkBox)
 {
 this.text = text;
 this.chkBox = chkBox;
 }

 @Override
 public void handle(MouseEvent e)
 {
 System.out.println(text);
 if (chkBox.isSelected()) e.consume();
 }
 }
}

First, 12 CheckBox components are created, where the 6 first are to be used for the filters
(capturing phase), while the 6 next are to be used for the handlers (bubbling phase). If
you consider the method start(), this time, both a filter and a handler are assigned to the
Stage node – the node is the top of the scene graph. A filter associated with the method

First, 12 CheckBox components are created, where the 6 first are to be used for the filters
(capturing phase), while the 6 next are to be used for the handlers (bubbling phase). If
you consider the method start(), this time, both a filter and a handler are assigned to the
Stage node – the node is the top of the scene graph. A filter associated with the method

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

100

addEventFilter(), while a handler is associated with the method addEventHandler(). In either
case, an event handler is associated for mouse clicked, such as:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

98

addEventFilter(), while a handler is associated with the method addEventHandler(). In either
case, an event handler is associated for mouse clicked, such as:

stage.addEventFilter(MouseEvent.MOUSE_CLICKED,	new	Handler("…",	filterStage));

where the first parameter indicates which event to be listened to while the other is the event
handler, there is an object that (in this case) implements the interface EventHandler<MouseEvent>.
Such an object is defined by the class Handler, which is an inner class where the constructor
has the text to be printed on the screen as a parameter, and a reference to the CheckBox to
be tested. The class should implement the method:

public void handle(MouseEvent e)
{
}

In this case, the method performs a System.out.println(), and then tests whether the appropriate
CheckBox is selected and, if necessary, sets the event as consumed, which means that it will
not be forwarded in the dispatch chain. You should note how the scene graph is built by
calling the methods that create the individual nodes.

These methods are all simple and all built in the same way, and you should primarily notice
how to assign filters and handlers to the individual nodes in the same way as described
above. You should note createButton(), where no filter or handler is attached. If you run the
program and click on the button, you will find that no event handlers are performed in the
dispatch chain, and the reason is that the button instead with setOnAction() is associated with
an event handler of the type EventHandler<ActionEvent>. This means that with the mouse
click, the button will take care of the event action and not fire a regular mouse event, but
instead an ActionEvent. Also note that the event handler of the button’s ActionEvent opens
a simple message box, including the syntax for how to do it in JavaFX.

The next example is called KeyEventProgram and opens the following window:

where the first parameter indicates which event to be listened to while the other is the event
handler, there is an object that (in this case) implements the interface EventHandler<MouseEvent>.
Such an object is defined by the class Handler, which is an inner class where the constructor
has the text to be printed on the screen as a parameter, and a reference to the CheckBox to
be tested. The class should implement the method:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

98

addEventFilter(), while a handler is associated with the method addEventHandler(). In either
case, an event handler is associated for mouse clicked, such as:

stage.addEventFilter(MouseEvent.MOUSE_CLICKED,	new	Handler("…",	filterStage));

where the first parameter indicates which event to be listened to while the other is the event
handler, there is an object that (in this case) implements the interface EventHandler<MouseEvent>.
Such an object is defined by the class Handler, which is an inner class where the constructor
has the text to be printed on the screen as a parameter, and a reference to the CheckBox to
be tested. The class should implement the method:

public void handle(MouseEvent e)
{
}

In this case, the method performs a System.out.println(), and then tests whether the appropriate
CheckBox is selected and, if necessary, sets the event as consumed, which means that it will
not be forwarded in the dispatch chain. You should note how the scene graph is built by
calling the methods that create the individual nodes.

These methods are all simple and all built in the same way, and you should primarily notice
how to assign filters and handlers to the individual nodes in the same way as described
above. You should note createButton(), where no filter or handler is attached. If you run the
program and click on the button, you will find that no event handlers are performed in the
dispatch chain, and the reason is that the button instead with setOnAction() is associated with
an event handler of the type EventHandler<ActionEvent>. This means that with the mouse
click, the button will take care of the event action and not fire a regular mouse event, but
instead an ActionEvent. Also note that the event handler of the button’s ActionEvent opens
a simple message box, including the syntax for how to do it in JavaFX.

The next example is called KeyEventProgram and opens the following window:

In this case, the method performs a System.out.println(), and then tests whether the appropriate
CheckBox is selected and, if necessary, sets the event as consumed, which means that it will
not be forwarded in the dispatch chain. You should note how the scene graph is built by
calling the methods that create the individual nodes.

These methods are all simple and all built in the same way, and you should primarily notice
how to assign filters and handlers to the individual nodes in the same way as described
above. You should note createButton(), where no filter or handler is attached. If you run the
program and click on the button, you will find that no event handlers are performed in the
dispatch chain, and the reason is that the button instead with setOnAction() is associated with
an event handler of the type EventHandler<ActionEvent>. This means that with the mouse
click, the button will take care of the event action and not fire a regular mouse event, but
instead an ActionEvent. Also note that the event handler of the button’s ActionEvent opens
a simple message box, including the syntax for how to do it in JavaFX.

The next example is called KeyEventProgram and opens the following window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

101101

If you are in the entry field and enter the key Enter, the green square will rotate and clicking
on the square it will stop the rotation. The code is as follows:

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

102

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

100

public class KeyEventProgram extends Application
{
 private Transition trans;

 @Override
 public void start(Stage stage)
 {
 Rectangle rect = createRect();
 trans = createRotate(rect);
 Group root = new Group(createLabel(), createField(), rect);
 Scene scene = new Scene(root, 500, 400);
 scene.setFill(Color.BEIGE);
 stage.setTitle("Click rectangle to stop");
 stage.setScene(scene);
 stage.show();
 }

 private Rectangle createRect()
 {
 Rectangle rect = new Rectangle(200, 100, 200, 200);
 rect.setFill(Color.DARKGREEN);
 rect.setOnMouseClicked(e -> trans.stop());
 return rect;
 }

 private Transition createRotate(Shape shape)
 {
 RotateTransition trans = new RotateTransition(Duration.millis(1000), shape);
 trans.setByAngle(360);
 trans.setCycleCount(50);
 trans.setAutoReverse(true);
 return trans;
 }

 private TextField createField()
 {
	 TextField	field	=	new	TextField();
	 field.setLayoutX(20);
	 field.setLayoutY(40);
	 field.setPrefWidth(50);
	 field.addEventFilter(KeyEvent.KEY_TYPED,	new	EventHandler<KeyEvent>()
 {
 public void handle(KeyEvent e)
 {
 if (e.getCharacter().charAt(0) == '\r’) trans.play();
 e.consume();
 }
 });
	 return	field;
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

103

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

101

 private Label createLabel()
 {
 Label label = new Label("Enter to start");
 label.setLayoutX(20);
 label.setLayoutY(20);
 return label;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The class defines a variable for a transition, which is the animation that rotates the square.
It is created by the method createRotate(), which does not contain anything new in terms of
animations. The actual Transition object is created in the method start(). Here you should
also notice how to set the background color for the window. The square is created in the
method createRect(). Here, the method setOnMouseClicked() is used to attach an event handler
for mouse clicks to the square, and you should note how the event handler is defined using
a lambda expression.

Then there is the method createField() that creates the entry field. It is a TextField, and
the most important is the association of the event handler. It is a filter and the handler is
associated for a KeyEvent of the type KEY_TYPED. The handler uses the method getCharacter()
to test what has been entered and has the first character the code 13, it is the Enter key
that is pressed, and if so, the animation will start. For any event, the event is marked as
cosumed so that it is not passed on in the chain, and the effect is that the character for
the key pressed is never displayed in the input field.

The example thus shows how to catch events for mouse and keyboard. In the example,
it happens in two different ways, where in createField() it takes place at low level with
addEventFilter() while in createRect() it occurs using a convenience method. Many of the
JavaFX classes defines event handlers as properties, and you can then register an event handler
using a set method for that convenience method. The goal is to make it easier to associate
event handlers what the following program HandlerProgram should illustrate:

The class defines a variable for a transition, which is the animation that rotates the square.
It is created by the method createRotate(), which does not contain anything new in terms of
animations. The actual Transition object is created in the method start(). Here you should
also notice how to set the background color for the window. The square is created in the
method createRect(). Here, the method setOnMouseClicked() is used to attach an event handler
for mouse clicks to the square, and you should note how the event handler is defined using
a lambda expression.

Then there is the method createField() that creates the entry field. It is a TextField, and
the most important is the association of the event handler. It is a filter and the handler is
associated for a KeyEvent of the type KEY_TYPED. The handler uses the method getCharacter()
to test what has been entered and has the first character the code 13, it is the Enter key
that is pressed, and if so, the animation will start. For any event, the event is marked as
cosumed so that it is not passed on in the chain, and the effect is that the character for
the key pressed is never displayed in the input field.

The example thus shows how to catch events for mouse and keyboard. In the example,
it happens in two different ways, where in createField() it takes place at low level with
addEventFilter() while in createRect() it occurs using a convenience method. Many of the
JavaFX classes defines event handlers as properties, and you can then register an event handler
using a set method for that convenience method. The goal is to make it easier to associate
event handlers what the following program HandlerProgram should illustrate:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

104104

Clicking the Start button starts an animation where the circle moves along the curve and the
animation runs until you click the stop button. If you click on the circle, it changes color.

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

105

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

103

public class HandlerProgram extends Application
{
 private boolean blue = true;
 private Transition trans;

 @Override
 public void start(Stage stage)
 {
 Circle circle = createCircle();
 Path path = createPath();
 trans = createTrans(circle, path);
 Group root = new Group(createButton("Start", 20, e -> trans.play()),
 createButton("Stop", 120, e -> trans.stop()), path, circle);
 Scene scene = new Scene(root, 560, 400);
 scene.setFill(Color.BEIGE);
 stage.setTitle("Move");
 stage.setScene(scene);
 stage.show();
 }

 private Button createButton(String text, int pos,
 EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setLayoutX(pos);
 cmd.setLayoutY(20);
 cmd.setPrefSize(80, 25);
 cmd.setOnAction(handler);
 return cmd;
 }

 private Transition createTrans(Shape shape, Path path)
 {
 PathTransition trans = new PathTransition();
 trans.setDuration(Duration.millis(3000));
 trans.setNode(shape);
 trans.setPath(path);
 trans.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
 trans.setCycleCount(50);
 trans.setAutoReverse(true);
 return trans;
 }

 private Circle createCircle()
 {
 Circle circle = new Circle(40, 80, 25, Color.BLUE);
 circle.setStrokeWidth(20);
 circle.setOnMouseClicked(

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

106

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

104

	 e	->	{	blue	=	!blue;	circle.setFill(blue	?	Color.BLUE	:	Color.RED);	});	
 return circle;
 }

 private Path createPath()
 {
 Path path = new Path(new MoveTo(40, 80),
 new CubicCurveTo(140, 440, 400, 0, 500, 340));
 path.setStroke(Color.DARKGREEN);
 path.setStrokeWidth(3);
 return path;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

As how to create the animation and the curve there is nothing new and happens in the
two methods createTrans() and createRect(). If you consider the method createCircle() that
creates the circle, it associates an event handler for mouse clicks using a convenience method
called setOnMouseClicked(). You should note that the event handler is the parameter and
is a lambda expression.

The method createButton() is used to create a button. It has three parameters, which is the
text of the button, the x-coordinate of the location in the window and the button’s event
handler. The latter has the type EventHandler<ActionEvent> and is associated with the
method setOnActionEvent().

7.3 COMPONENTS

Then there are the components (or controls) where JavaFX has many, but the most important
are the following:

Label MenuButton Slider ColorPicker

Button MenuItem ScrollPane DatePicker

TextField Menu ScrollBar ProgressIndicator

PassWordField ContextMenu TabPane ProgressBar

TextArea Separator SplitPane FileChooser

As how to create the animation and the curve there is nothing new and happens in the
two methods createTrans() and createRect(). If you consider the method createCircle() that
creates the circle, it associates an event handler for mouse clicks using a convenience method
called setOnMouseClicked(). You should note that the event handler is the parameter and
is a lambda expression.

The method createButton() is used to create a button. It has three parameters, which is the
text of the button, the x-coordinate of the location in the window and the button’s event
handler. The latter has the type EventHandler<ActionEvent> and is associated with the
method setOnActionEvent().

7.3 COMPONENTS

Then there are the components (or controls) where JavaFX has many, but the most important
are the following:

Label MenuButton Slider ColorPicker

Button MenuItem ScrollPane DatePicker

TextField Menu ScrollBar ProgressIndicator

PassWordField ContextMenu TabPane ProgressBar

TextArea Separator SplitPane FileChooser

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

107107

RadioButton ChoieBox TitlePane HTMLEditor

Hyperlink ComboBox Accordion TableView

CheckBox ListView Pagination TreeView

ToggleButton WebView Tooltip TreeTableView

Some of these components have already been used in the previous examples and the rest
of this section consists of exercises and problems where you should try using the above
components (but not the last three in the last column postponed to the next book). Most
of the components are easy to use and take a good part of the way, as you know it from
Swing. Others are more complex, and on the whole, the following exercises require that
you use the documentation and, if necessary, also find examples and help on the Internet.

http://s.bookboon.com/GTca

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

108

EXERCISE 25

You must write a program that opens the following window:

where there are 4 controls: 1 Label and 3 Button controls. If you click New, the text must
be changed to

Creatring a new document…

and clicking Save should change the text to

Saving…

If you click the Cancel button, the text must be changed to the original text. It is required
that the window must not be resizable, and that there must be shortcuts for all three buttons.

With regard to the green frame, it can be defined with a style. This is the subject of the
next chapter, but you can try and see how far you can come.

EXERCISE 26

You must write an application that opens the following window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

109

In the top line there are three Hyperlink controls on the left. A Hyperlink is the same as
a Button, but it is drawn in another way. In this case, the three links must refer to a web
page (you decide which ones). On the right side there is a MenuButton, which is a button
with a dropdown, where you can click on a MenuItem control. In this case, there must be
three items, each of which refers to a web page (which you decide).

Center, there must be a WebView control, which is a control that can open and display a
web page.

At the bottom there are three ToggleButton controls in a group and a Label. When you
click a button, the Label control must be updated with the button’s text, if it is clicked
and otherwise the text None.

Note that the commands at the top and the commands at the bottom have nothing to do
with each other, and the goal is only to illustrate typical controls.

EXERCISE 27

Write a program that uses a ChoiceBox control:

You must be able to select a person from the dropdown list when a person is represented by
an object of the type Person. It must be a simple model class that represents a person by a
name and a job title. It is a requirement that the Person class must not have any toString()
method, and instead, a converter must be associated with the ChoiceBox control. After
selecting a person, the name and the job title must be displayed with a Label:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

110110

When you click the Clear button, this label must be blanked and no person in the ChoiceBox
control must be selected.

EXERCISE 28

You must write the same program as in the previous exercise, but with one difference:
Instead of using a ChoiceBox, you use a ComboBox.

Once you have written the program, try to investigate what the difference is between a
ChoiceBox and a ComboBox.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

111

PROBLEM 3

From Swing you know the component JList, which is a list box and is one of the widely
used components. In JavaFX, it is replaced by a ListView, which is a much more advanced
component with many new options, which uses multiple help classes. You must write
an application that opens the following window, where the window shows four ListView
controls (actually 5), each ListView showing 10 Person objects where Person is the class from
exercise 27.

1. The ListView control in the upper left corner should show how to select items. You
can select an item with the mouse and select an item using the top 5 buttons. Each
time you select an item, the blank ListView must show which items are selected.

2. The ListView control in the upper right corner should show how to edit a Person
object. If you double-click on a person, the list box must open a field so you can
edit the content (it is built into the component). Under the control there is a
TextField that will be used to add a new Person object to the list.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

112

3. The ListView control at the bottom left should show items where each element is a
ChoiceBox, from which you can update the item by selecting another Person object
(it is also built into the component).

4. Finally, the last ListView shows the items as CheckBox controls (it is also incorporated
into the ListView component). If you click on the button, the program must open
a message box that displays the objects that are selected (by the checkboxes).

The task requires you to examine the documentation to find out what to write, and maybe
you can also can find help online.

EXERCISE 29

JavaFX has a component called ColorPicker, which is a relatively complicated component
for selecting a color. On the other hand, the component is both flexible and easy to use.
You must write a program that opens a window where you can choose a color used to
color a rectangle:

EXERCISE 30

JavaFX has a good DatePicker control that can be used to select a date. You must write a
program that opens the following window, where November 15, 2017 was selected:

After the date is selected, the bottom Label must be uploaded.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

113113

EXERCISE 31

JavaFX has a progress bar like Swing, but there is also a ProgressIndicator, and the difference
is how the two components are drawn. The ProgressIndicator control is bass class for
ProgressBar. A progress component is updated in the same way as in Swing using a thread
represented by a Task object contained in the javafx.concurrent package. You must write a
program that shows a ProgressIndicator and a ProgressBar, both of which can be started (and
stopped) by clicking a button:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

114

and below is the window after clicking on both buttons:

and below the window after the two progress components are completed:

EXERCISE 33

You must write a program that opens the following window, that has a Label, a TextField
and two Button controls:

The buttons do not need an action, but the input field and the buttons must have a Tooltip.
Here it is interesting that you can attach a style to a tooltip, where styles is the subject of
the next chapter.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

115

EXERCISE 34

Write a program that has a window with two TextArea controls located in a SplitPane:

PROBLEM 4

In this task you should work with menus in JavaFX. You must write an application that
opens the following window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

116116

The window has a menubar with two menus, and the window itself (center) has a Canvas
object. The first menu must have the following functions:

http://s.bookboon.com/BI

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

117

If you click on one of the three top menu items, a dark green shape with a black border
in the window should appear, for example:

The fourth menu item must clear the window, while the last one should close the program.
The Options menu has a menu item as well as a Slider :

The first menu item must indicate if the circumference of the shape is to be drawn while
the slider indicates the size of the perimeter. If you move the slider, the perimeter of any
shape should be updated.

If you right click on the canvas object you should get a context menu:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

118

and clicking on one of the two menu items, a ColorPicker object should appear at the
bottom of the window, so you can choose one of the two colors:

As a last requirement, shortcut keys must be available for all menu items, and accelerator
keys must be defined for the three shapes.

EXERCISE 35

You must write an application that opens the following window:

and thus a program that uses tabs (two tabs). On the first one, you must enter a name and
a registration date, while on the other you can enter the address and an email address. If
you click on the button, you must get a message box that shows the data entered:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

119119

EXERCISE 36

JavaFX has a control called HTMLEditor, which is a complete HTML editor. You must write
an application that opens the following window where you can edit a HTML document:

The program must have buttons so you can load and save an HTML document in a local file.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

120

7.4 DIALOGS

You can also use dialog boxes, and there are dialogs as in Swing there are ready to use
classes that can be used immediately and, and on the other hand, there are dialog boxes
that are custom. The simplest is an Alert that corresponds to a MessageDialog in Swing. The
AlertProgram application opens the following window:

If you click on the Info button, you get the message box below that shows a simple message
and clicking on the Save button, you may receive a corresponding message box (but with
an error message) and finally the last button will result in a message box with a warning,
where you will be asked if you want to delete the entry field:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

118

7.4 DIALOGS

You can also use dialog boxes, and there are dialogs as in Swing there are ready to use
classes that can be used immediately and, and on the other hand, there are dialog boxes
that are custom. The simplest is an Alert that corresponds to a MessageDialog in Swing. The
AlertProgram application opens the following window:

If you click on the Info button, you get the message box below that shows a simple message
and clicking on the Save button, you may receive a corresponding message box (but with
an error message) and finally the last button will result in a message box with a warning,
where you will be asked if you want to delete the entry field:

package alertprogram;

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.layout.*;
import javafx.scene.text.*;
import javafx.scene.text.Text;
import javafx.scene.paint.Color;
import javafx.scene.control.*;
import javafx.geometry.*;
import javafx.event.*;
import javafx.scene.control.Alert;
import javafx.scene.control.Alert.AlertType;
import java.util.Optional;

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

121

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

119

public class AlertProgram extends Application
{
 private TextField txtField = new TextField();
 private Button cmdInfo;
 private Text status = new Text();

 @Override
 public void start(Stage stage)
 {
 txtField.setPromptText("Enter some text and save.");
 status.setFont(Font.font("Arial", FontWeight.NORMAL, 20));
 VBox vbox = new VBox(20, txtField, createCommands(), status);
 vbox.setPadding(new Insets(20, 20, 20, 20));;
 Scene scene = new Scene(vbox, 400, 180);
 stage.setTitle("AlertProgram");
 stage.setScene(scene);
 stage.show();
	 cmdInfo.requestFocus();
 }

 private Pane createCommands()
 {
 HBox pane = new HBox(10, cmdInfo = createButton("Info", new InfoListener()),
 createButton("Save", new SaveListener()), createButton("Clear",
 new ClearListener()));
 pane.setAlignment(Pos.CENTER_RIGHT);
 return pane;
 }

 private Button createButton(String text, EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

 private class InfoListener implements EventHandler<ActionEvent>
 {
 @Override
 public void handle(ActionEvent e)
 {
 Alert alert = new Alert(AlertType.INFORMATION);
 alert.setTitle("About this program");
 alert.setHeaderText("How to use this program");
 alert.setContentText(
 "Enter a text at least 5 characters\nand then click Save.");
 alert.show();
 }
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

122122

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

120120

 private class SaveListener implements EventHandler<ActionEvent>
 {
 @Override
 public void handle(ActionEvent e)
 {
 String txt = txtField.getText().trim();
 String msg = "Text is saved";
 boolean valid = true;
 if ((txt.isEmpty()) || (txt.length() < 5))
 {
 valid = false;
 Alert alert = new Alert(AlertType.ERROR);
 alert.setTitle("Error message");
 alert.setContentText(
"Text should be at least 5 characters long.\nEnter a valid text and save. ");
 alert.showAndWait();
 msg = "Invalid text entered";
 }
 status.setText(msg);
	 status.setFill(valid	?	Color.DARKGREEN	:	Color.DARKRED);
	 if	(!valid)	txtField.requestFocus();
 }
 }

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

123

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

121

 private class ClearListener implements EventHandler<ActionEvent>
 {
 @Override
 public void handle(ActionEvent e)
 {
 Alert alert = new Alert(AlertType.CONFIRMATION);
 alert.setTitle("Warning message");
	 alert.setContentText("Are	you	sure	you	want	to	delete	the	text	field");
 Optional<ButtonType> result = alert.showAndWait();
 if ((result.isPresent()) && (result.get() == ButtonType.OK))
 {
 txtField.clear();
 status.setText("");
	 cmdInfo.requestFocus();
 }
 }
 }

 public static void main(String [] args)
 {
 launch(args);
 }
}

The buttons are created in the method createCommands(), and here are the interesting the
ActionEvent listeners, which are defined as classes at the end of the program. The InfoListener
class creates an event object for the Info button, and in the handler is created an Alert object
of the type AlertType.INFORMATION and the result is the dialog box shown above. You
must note how the dialog box is otherwise initialized and how the individual messages
appear in the message box. The dialog opens with the method show(). The method is not
blocking and the program is not waiting for a return value.

The SaveListener class defines a listener to the Save button and simulates that the entered
text is saved. It tests the text length and is the length less than 5, an alert similar to the
above opens. The difference is the type as here is AlertType.ERROR corresponding to an
error message, and then the dialog opens but instead with the method showAndWait(). This
means that the message box is blocking and the following statement

msg = "Invalid text entered";

will only be executed after the dialog box is closed.

The last listener class is similar to the others, but this time is the type AlertType.CONFIRMATION
that opens a dialog box with two buttons, where the user must select YES or NO. It also

The buttons are created in the method createCommands(), and here are the interesting the
ActionEvent listeners, which are defined as classes at the end of the program. The InfoListener
class creates an event object for the Info button, and in the handler is created an Alert object
of the type AlertType.INFORMATION and the result is the dialog box shown above. You
must note how the dialog box is otherwise initialized and how the individual messages
appear in the message box. The dialog opens with the method show(). The method is not
blocking and the program is not waiting for a return value.

The SaveListener class defines a listener to the Save button and simulates that the entered
text is saved. It tests the text length and is the length less than 5, an alert similar to the
above opens. The difference is the type as here is AlertType.ERROR corresponding to an
error message, and then the dialog opens but instead with the method showAndWait(). This
means that the message box is blocking and the following statement

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

121

 private class ClearListener implements EventHandler<ActionEvent>
 {
 @Override
 public void handle(ActionEvent e)
 {
 Alert alert = new Alert(AlertType.CONFIRMATION);
 alert.setTitle("Warning message");
	 alert.setContentText("Are	you	sure	you	want	to	delete	the	text	field");
 Optional<ButtonType> result = alert.showAndWait();
 if ((result.isPresent()) && (result.get() == ButtonType.OK))
 {
 txtField.clear();
 status.setText("");
	 cmdInfo.requestFocus();
 }
 }
 }

 public static void main(String [] args)
 {
 launch(args);
 }
}

The buttons are created in the method createCommands(), and here are the interesting the
ActionEvent listeners, which are defined as classes at the end of the program. The InfoListener
class creates an event object for the Info button, and in the handler is created an Alert object
of the type AlertType.INFORMATION and the result is the dialog box shown above. You
must note how the dialog box is otherwise initialized and how the individual messages
appear in the message box. The dialog opens with the method show(). The method is not
blocking and the program is not waiting for a return value.

The SaveListener class defines a listener to the Save button and simulates that the entered
text is saved. It tests the text length and is the length less than 5, an alert similar to the
above opens. The difference is the type as here is AlertType.ERROR corresponding to an
error message, and then the dialog opens but instead with the method showAndWait(). This
means that the message box is blocking and the following statement

msg = "Invalid text entered";

will only be executed after the dialog box is closed.

The last listener class is similar to the others, but this time is the type AlertType.CONFIRMATION
that opens a dialog box with two buttons, where the user must select YES or NO. It also

will only be executed after the dialog box is closed.

The last listener class is similar to the others, but this time is the type AlertType.CONFIRMATION
that opens a dialog box with two buttons, where the user must select YES or NO. It also

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

124

opens with showAndWait() and you should note that this time there is a return value and
how this value is tested.

There also is a ChoiceDialog, where the user can choose a value between several options.
The program ChoiceProgram opens a window with a button and clicking on the button
gives you the following dialog box:

where in a dropdown you can choose a text (in this case the name of a Danish king). If
you click OK, the selected name will be returned to the application where it appears in the
window. The code is as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

122

opens with showAndWait() and you should note that this time there is a return value and
how this value is tested.

There also is a ChoiceDialog, where the user can choose a value between several options.
The program ChoiceProgram opens a window with a button and clicking on the button
gives you the following dialog box:

where in a dropdown you can choose a text (in this case the name of a Danish king). If
you click OK, the selected name will be returned to the application where it appears in the
window. The code is as follows:

public class ChoiceProgram extends Application
{
 private List<String> dialogData = Arrays.asList("Gorm den Gamle",
 "Harald Blåtand", "Svend Tveskæg", "Harald d. 2.", "Knud den Store");
 private Text status = new Text();

 @Override
 public void start(Stage stage)
 {
 Button cmd = new Button("Get a King");
 cmd.setOnAction(e -> showDialog());
 HBox command = new HBox(cmd);
 command.setAlignment(Pos.CENTER);
 status.setFont(Font.font("Arial", FontWeight.NORMAL, 20));
 status.setFill(Color.DARKGREEN);
 HBox message = new HBox(status);
 message.setAlignment(Pos.CENTER);
 VBox root = new VBox(30, command, message);
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root, 400, 150);
 stage.setTitle("ChoiceProgram");
 stage.setScene(scene);
 stage.show();
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

125125

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

123123

 private void showDialog()
 {
 ChoiceDialog<String> dialog =
 new ChoiceDialog<String>(dialogData.get(0), dialogData);
 dialog.setTitle("Danish Kings");
 dialog.setHeaderText("Choice a king");
 Optional<String> result = dialog.showAndWait();
 String selected = "cancelled…";
 if (result.isPresent()) selected = result.get();
 status.setText(selected);
 }

 public static void main(String [] args)
 {
 launch(args);
 }
}

Initially, a list named dialogData, which contains the names of 5 Danish kings, is defined.
The method start() is simply and build a scene graph containing a button and a Text control.
The button’s event handler calls the method showDialog(), which creates a dialog of the
type ChoiceDialog. The parameters of the constructor are the data to be displayed in the

Initially, a list named dialogData, which contains the names of 5 Danish kings, is defined.
The method start() is simply and build a scene graph containing a button and a Text control.
The button’s event handler calls the method showDialog(), which creates a dialog of the
type ChoiceDialog. The parameters of the constructor are the data to be displayed in the

http://s.bookboon.com/Subscrybe

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

126

dropdown field and which one should be selected by default. Otherwise, you should notice
how to get the return value and test it.

As the last of the standard dialog boxes, you have a TextInputDialog that is used to enter
a text. The program InputProgram opens just like the previous program a window with a
button and clicking on the button gives you a dialog box where you can enter a text:

The program is basically identical to the previous one, so I would like only to show the
method called from the event handler for the button, and compared to the previous example,
there is not much to explain, the fact that the type of the dialog box is now TextInputDialog:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

124

dropdown field and which one should be selected by default. Otherwise, you should notice
how to get the return value and test it.

As the last of the standard dialog boxes, you have a TextInputDialog that is used to enter
a text. The program InputProgram opens just like the previous program a window with a
button and clicking on the button gives you a dialog box where you can enter a text:

The program is basically identical to the previous one, so I would like only to show the
method called from the event handler for the button, and compared to the previous example,
there is not much to explain, the fact that the type of the dialog box is now TextInputDialog:

private void showDialog()
{
 TextInputDialog dialog = new TextInputDialog("A name?");
 dialog.setTitle("Enter text");
 dialog.setHeaderText("Enter some text.");
 Optional<String> result = dialog.showAndWait();
	status.setText(result.isPresent()	?	result.get()	:	"");
}

As the last example in this section, the following application opens two custom dialogs. The
program is called DialogProgram, and if you run the program, you get the following window:

If you click on the button at the top, you will get a dialog box where you should enter the
name and job title of a person and choose a date (which can be interpreted as birthday,
appointment date or something else):

As the last example in this section, the following application opens two custom dialogs. The
program is called DialogProgram, and if you run the program, you get the following window:

If you click on the button at the top, you will get a dialog box where you should enter the
name and job title of a person and choose a date (which can be interpreted as birthday,
appointment date or something else):

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

127

If you click the bottom button, the program opens another dialog box that shows the
persons entered in the first dialog box (here it is after two persons are entered):

The program looks like a program that I’ve seen before in connection with Swing (the book
Java 2). A person is defined by a simple model class:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

125

If you click the bottom button, the program opens another dialog box that shows the
persons entered in the first dialog box (here it is after two persons are entered):

The program looks like a program that I’ve seen before in connection with Swing (the book
Java 2). A person is defined by a simple model class:

package dialogprogram;

import java.time.*;

public class Person
{
 private String name;
 private String job;
 private LocalDate date;

 …

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

128128

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

126126

 @Override
 public String toString()
 {
 return String.format("%s, %s [%s]", name, job, date.toString());
 }
}

Then there is the code of the program:

public class DialogProgram extends Application
{
 private List<Person> persons = new ArrayList();

 @Override
 public void start(Stage stage)
 {
 VBox root = new VBox(20, createButton("Enter person", 150, e -> enterDialog()),
 createButton("Show persons", 150, e -> showDialog()));
 root.setAlignment(Pos.TOP_CENTER);
 root.setPadding(new Insets(20, 20, 20, 20));;
 Scene scene = new Scene(root, 300, 150);
 stage.setTitle("DialogProgram");

http://s.bookboon.com/volvo

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

129

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

127

 stage.setScene(scene);
 stage.show();
 }

 private Button createButton(String text, double width,
 EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setPrefSize(width, 25);
 cmd.setOnAction(handler);
 return cmd;
 }

 private void enterDialog()
 {
 Dialog<Person> dialog = new Dialog();
 dialog.setTitle("Enter person");
 dialog.setResizable(false);
 TextField name = new TextField();
 TextField job = new TextField();
 DatePicker date = new DatePicker();
 name.setPrefWidth(300);
 job.setPrefWidth(300);
 date.setPrefWidth(150);
 GridPane grid = new GridPane();
 grid.setHgap(10);
 grid.setVgap(20);
 grid.setPadding(new Insets(10, 10, 10, 10));
 grid.add(new Label("Name"), 0, 0);
 grid.add(name, 1, 0);
 grid.add(new Label("Job"), 0, 1);
 grid.add(job, 1, 1);
 grid.add(new Label("Date"), 0, 2);
 grid.add(date, 1, 2);
 dialog.getDialogPane().setContent(grid);
 dialog.getDialogPane().getButtonTypes().add(
 new ButtonType("OK", ButtonData.OK_DONE));
 dialog.getDialogPane().getButtonTypes().add(
 new ButtonType("Cancel", ButtonData.CANCEL_CLOSE));
 dialog.setResultConverter(new Callback<ButtonType, Person>()
 {
 @Override
 public Person call(ButtonType b)
 {
 return b.getButtonData() == ButtonData.OK_DONE ?
	 new	Person(name.getText(),	job.getText(),	date.getValue())	:	null;
 }
 });

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT componentS

130

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

128

 Optional<Person> result = dialog.showAndWait();
 if (result.isPresent()) persons.add(result.get());
 }

 private void showDialog()
 {
 ListView<Person> view = new ListView();
 view.setPrefSize(400, 300);
 view.getItems().addAll(persons);
 BorderPane pane = new BorderPane(view);
 Dialog<List<Person>> dialog = new Dialog();
 dialog.setTitle("Persons");
	 dialog.setHeaderText("You	have	entered	the	following	persons:");
 dialog.setResizable(true);
 dialog.getDialogPane().setContent(pane);
 dialog.getDialogPane().getButtonTypes().add(
 new ButtonType("Close", ButtonData.CANCEL_CLOSE));
 dialog.show();
 }

 public static void main(String [] args)
 {
 launch(args);
 }
}

At the start of the program, a list is defined for Person objects, which are the persons created
in the input dialog. The method start() is trivial and the only thing to note is which event
handlers are associated with the two buttons. The first calls the method enterDialog(), which
creates an object of the type Dialog to Person objects. The parameter type Person specifies
which object is returned if the dialog box ends by clicking OK. Next, the contents of the
dialog box must be defined, and that happens by a GridPane, which laid out the dialog
box components, and this Pane is assigned the dialog box as follows:

dialog.getDialogPane().setContent(grid);

The next step defines which buttons the dialog should have, and then is defined how to
click on OK to create a Person object, which must be the return value of the dialog box.

The other dialog box is basically built in exactly the same way, but this time with a
BorderPane. The main difference is that there is no return value this time. You should note
that this dialog box has a header text, while the first one did not, and what a header text
means for the result.

At the start of the program, a list is defined for Person objects, which are the persons created
in the input dialog. The method start() is trivial and the only thing to note is which event
handlers are associated with the two buttons. The first calls the method enterDialog(), which
creates an object of the type Dialog to Person objects. The parameter type Person specifies
which object is returned if the dialog box ends by clicking OK. Next, the contents of the
dialog box must be defined, and that happens by a GridPane, which laid out the dialog
box components, and this Pane is assigned the dialog box as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT COMPONENTS

128

 Optional<Person> result = dialog.showAndWait();
 if (result.isPresent()) persons.add(result.get());
 }

 private void showDialog()
 {
 ListView<Person> view = new ListView();
 view.setPrefSize(400, 300);
 view.getItems().addAll(persons);
 BorderPane pane = new BorderPane(view);
 Dialog<List<Person>> dialog = new Dialog();
 dialog.setTitle("Persons");
	 dialog.setHeaderText("You	have	entered	the	following	persons:");
 dialog.setResizable(true);
 dialog.getDialogPane().setContent(pane);
 dialog.getDialogPane().getButtonTypes().add(
 new ButtonType("Close", ButtonData.CANCEL_CLOSE));
 dialog.show();
 }

 public static void main(String [] args)
 {
 launch(args);
 }
}

At the start of the program, a list is defined for Person objects, which are the persons created
in the input dialog. The method start() is trivial and the only thing to note is which event
handlers are associated with the two buttons. The first calls the method enterDialog(), which
creates an object of the type Dialog to Person objects. The parameter type Person specifies
which object is returned if the dialog box ends by clicking OK. Next, the contents of the
dialog box must be defined, and that happens by a GridPane, which laid out the dialog
box components, and this Pane is assigned the dialog box as follows:

dialog.getDialogPane().setContent(grid);

The next step defines which buttons the dialog should have, and then is defined how to
click on OK to create a Person object, which must be the return value of the dialog box.

The other dialog box is basically built in exactly the same way, but this time with a
BorderPane. The main difference is that there is no return value this time. You should note
that this dialog box has a header text, while the first one did not, and what a header text
means for the result.

The next step defines which buttons the dialog should have, and then is defined how to
click on OK to create a Person object, which must be the return value of the dialog box.

The other dialog box is basically built in exactly the same way, but this time with a
BorderPane. The main difference is that there is no return value this time. You should note
that this dialog box has a header text, while the first one did not, and what a header text
means for the result.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT StylIng

131131

8 STYLING

From web applications you know cascading style sheets, and you can also use it in JavaFX.
The idea is the same as for web application, namely to separate the definition of windows
and their content from the presentation so that you can change the look and feel of a
program without changing the code. On the other hand, the syntax is a little different, and
as for web applications, the biggest challenge is to learn how styles can be written and what
they are called. The subject appears best with an example, and the program StyleProgram
opens the following window:

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT StylIng

132

where the window contains two Label controls, two TextField controls and two Button
controls. For all 6 components there is a style attached. For the TextField and Button controls,
it happens in a style sheet, which is a file named styles.css:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

130

where the window contains two Label controls, two TextField controls and two Button
controls. For all 6 components there is a style attached. For the TextField and Button controls,
it happens in a style sheet, which is a file named styles.css:

.button {
	-fx-background-color:	red;
	-fx-text-fill:	white;
}
.text-field	{
	-fx-border-width:	3;
	-fx-border-color:	blue;
}
.border {
	-fx-padding:	20;	
	-fx-border-style:	solid	inside;	
	-fx-border-width:	5;	
	-fx-border-insets:	25;	
	-fx-border-radius:	5;	
	-fx-border-color:	gray;
}

Here are three styles defined. In the same way as for web pages, a style is defined with a
selector that starts with a point followed by the type on the node in the scene graph, which
should have that style – but with the class name written in lowercase. The first, therefore,
defines a style for Button nodes. Here, two style attributes are defined, and the difficulty is
of course to know which attributes can be specified, but in general, you can associate a style
value with any of the class’s properties. Here is the syntax that if there is a property called
backgroundColor, the style attribute is named -fx-background-color. That is, if the name of
an attribute consists of two words, the last one starting with a capital letter, it is all written
in lowercase letters and with a hyphen is inserted between the words. The same syntax is
used for a selector, and a selector for the class TextField is written as:

.text-field

You can also have a custom selector, what the last style is an example of. It defines a style
for the gray frame in the window, and when you see the individual attributes, it is easy
enough to understand the meaning. In practice, of course, it is more difficult to find out
what to write, and it is important to note that NetBeans knows JavaFX style sheets and
which attributes are available.

With respect to the syntax, the following applies to values of the individual attributes:

Here are three styles defined. In the same way as for web pages, a style is defined with a
selector that starts with a point followed by the type on the node in the scene graph, which
should have that style – but with the class name written in lowercase. The first, therefore,
defines a style for Button nodes. Here, two style attributes are defined, and the difficulty is
of course to know which attributes can be specified, but in general, you can associate a style
value with any of the class’s properties. Here is the syntax that if there is a property called
backgroundColor, the style attribute is named -fx-background-color. That is, if the name of
an attribute consists of two words, the last one starting with a capital letter, it is all written
in lowercase letters and with a hyphen is inserted between the words. The same syntax is
used for a selector, and a selector for the class TextField is written as:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

130

where the window contains two Label controls, two TextField controls and two Button
controls. For all 6 components there is a style attached. For the TextField and Button controls,
it happens in a style sheet, which is a file named styles.css:

.button {
	-fx-background-color:	red;
	-fx-text-fill:	white;
}
.text-field	{
	-fx-border-width:	3;
	-fx-border-color:	blue;
}
.border {
	-fx-padding:	20;	
	-fx-border-style:	solid	inside;	
	-fx-border-width:	5;	
	-fx-border-insets:	25;	
	-fx-border-radius:	5;	
	-fx-border-color:	gray;
}

Here are three styles defined. In the same way as for web pages, a style is defined with a
selector that starts with a point followed by the type on the node in the scene graph, which
should have that style – but with the class name written in lowercase. The first, therefore,
defines a style for Button nodes. Here, two style attributes are defined, and the difficulty is
of course to know which attributes can be specified, but in general, you can associate a style
value with any of the class’s properties. Here is the syntax that if there is a property called
backgroundColor, the style attribute is named -fx-background-color. That is, if the name of
an attribute consists of two words, the last one starting with a capital letter, it is all written
in lowercase letters and with a hyphen is inserted between the words. The same syntax is
used for a selector, and a selector for the class TextField is written as:

.text-field

You can also have a custom selector, what the last style is an example of. It defines a style
for the gray frame in the window, and when you see the individual attributes, it is easy
enough to understand the meaning. In practice, of course, it is more difficult to find out
what to write, and it is important to note that NetBeans knows JavaFX style sheets and
which attributes are available.

With respect to the syntax, the following applies to values of the individual attributes:

You can also have a custom selector, what the last style is an example of. It defines a style
for the gray frame in the window, and when you see the individual attributes, it is easy
enough to understand the meaning. In practice, of course, it is more difficult to find out
what to write, and it is important to note that NetBeans knows JavaFX style sheets and
which attributes are available.

With respect to the syntax, the following applies to values of the individual attributes:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT StylIng

133

inherit, where the value is inherited from the parent’s node, for example

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

boolean, where the value can be true or false, for example

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

string, where you enter the value in quotation marks, for example

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

number, where you enter the value as a decimal number, for example

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

131

inherit, where the value is inherited from the parent’s node, for example

-fx-border-color:	inherit;

boolean, where the value can be true or false, for example

-fx-display-caret:	true;

string, where you enter the value in quotation marks, for example

-fx-font:	normal	bold	24px	'areal';

number, where you enter the value as a decimal number, for example

-fx-border-width:	3.5;

You can also specify a unit such as px (pixels), mm (millimeters), cm (centimeters), in (inches),
pt (points), pc (picas) or em. You can also specify a percent value. Examples could be:

-fx-font-size:	18px;
-fx-font-size:	24pt;
-fx-border-width:	10%;

angle, which is specified by a number and a unit that must be deg (degrees) or rad (radians)
for example

-fx-rotate:	45deg;

point, which is specified using x and y coordinates as two numbers separated by whitespaces,
for example

-fx-background-color:	linear-gradient(from	0	0	to	100	0,	repeat,	red,	blue);

There are several other values that you can specify for properties, and you should examine
the documentation for a complete overview, for example

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:
Above is shown a style sheet with three styles and it must be somewhere. The project
StyleProgram consists of the following files:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT StylIng

134134

and the style sheet in question is thus located in the folder css under resources (that again
is located under the src directory). It is not a requirement, but can be recommended as
the file becomes part of the project’s jar file. Then there is the code for the above program:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

132132

and the style sheet in question is thus located in the folder css under resources (that again
is located under the src directory). It is not a requirement, but can be recommended as
the file becomes part of the project’s jar file. Then there is the code for the above program:

package styleprogram;

import javafx.application.Application;
import javafx.event.*;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.stage.Stage;
import javafx.geometry.*;

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT StylIng

135

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

133

public class StyleProgram extends Application
{
 private TextField txtName;
 private TextField txtJob;

 @Override
 public void start(Stage stage)
 {
 HBox commands = new HBox(10,
 createButton("Save", e -> { (new Alert(Alert.AlertType.INFORMATION,
 "Object saved…", ButtonType.CLOSE)).show(); }),
 createButton("Clear", e -> { txtName.clear(); txtJob.clear(); }));
 commands.setAlignment(Pos.CENTER_RIGHT);
 GridPane root = new GridPane();
 root.addRow(0, createLabel(
	 "Name",	"-fx-font-size:	18;	-fx-text-fill:	darkred"),
 txtName = createField(300));
 root.addRow(1, createLabel(
	 "Job",	"-fx-font-size:	18;	-fx-text-fill:	darkgreen"),
 txtJob = createField(300));
 root.add(commands, 1, 2);
 root.setHgap(10);
 root.setVgap(20);
 root.setPadding(new Insets(20, 20, 20, 20));
 root.getStyleClass().add("border");
 Scene scene = new Scene(root);
	 scene.getStylesheets().add("resources/css/styles.css");
 stage.setTitle("StyleProgram");
 stage.setScene(scene);
 stage.show();
 }

 private Label createLabel(String text, String style)
 {
 Label label = new Label(text);
 label.setStyle(style);
 return label;
 }

 private TextField createField(double width)
 {
	 TextField	field	=	new	TextField();
	 field.setPrefWidth(width);
	 return	field;
 }

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT StylIng

136

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

134

 private Button createButton(String text, EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

It’s a simple program where the components are laid out using a GridPane. A style sheet can
be assigned to a scene graph or a branch node. In this case, it is assigned to the scene graph:

scene.getStylesheets().add("resources/css/styles.css");

Here is used a relative path to the style sheet, but you can of course also specify an absolute
path. As a result, all of the program’s TextField and Button nodes (unless stated otherwise)
will apply the styles defined in the style sheet. The statement

root.getStyleClass().add("border");

says that the GridPane node should apply a style with the selector border, and the result is
that the gray frame appears.

Styles can also be defined inline, as is the case with the two Label controls. It certainly has
its uses, but it is generally advisable to define styles in a style sheet, as inline styles can
only be changed in the code.

If you in an application considers an attribute, its value can be determined in several places,
and the following list indicates which value has the highest priority:

1. inline (the highest priority)
2. parent node
3. scene graph
4. values assigned in the code (Java properties)
5. default style sheet

It’s a simple program where the components are laid out using a GridPane. A style sheet can
be assigned to a scene graph or a branch node. In this case, it is assigned to the scene graph:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

134

 private Button createButton(String text, EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

It’s a simple program where the components are laid out using a GridPane. A style sheet can
be assigned to a scene graph or a branch node. In this case, it is assigned to the scene graph:

scene.getStylesheets().add("resources/css/styles.css");

Here is used a relative path to the style sheet, but you can of course also specify an absolute
path. As a result, all of the program’s TextField and Button nodes (unless stated otherwise)
will apply the styles defined in the style sheet. The statement

root.getStyleClass().add("border");

says that the GridPane node should apply a style with the selector border, and the result is
that the gray frame appears.

Styles can also be defined inline, as is the case with the two Label controls. It certainly has
its uses, but it is generally advisable to define styles in a style sheet, as inline styles can
only be changed in the code.

If you in an application considers an attribute, its value can be determined in several places,
and the following list indicates which value has the highest priority:

1. inline (the highest priority)
2. parent node
3. scene graph
4. values assigned in the code (Java properties)
5. default style sheet

Here is used a relative path to the style sheet, but you can of course also specify an absolute
path. As a result, all of the program’s TextField and Button nodes (unless stated otherwise)
will apply the styles defined in the style sheet. The statement

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT STyLINg

134

 private Button createButton(String text, EventHandler<ActionEvent> handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

It’s a simple program where the components are laid out using a GridPane. A style sheet can
be assigned to a scene graph or a branch node. In this case, it is assigned to the scene graph:

scene.getStylesheets().add("resources/css/styles.css");

Here is used a relative path to the style sheet, but you can of course also specify an absolute
path. As a result, all of the program’s TextField and Button nodes (unless stated otherwise)
will apply the styles defined in the style sheet. The statement

root.getStyleClass().add("border");

says that the GridPane node should apply a style with the selector border, and the result is
that the gray frame appears.

Styles can also be defined inline, as is the case with the two Label controls. It certainly has
its uses, but it is generally advisable to define styles in a style sheet, as inline styles can
only be changed in the code.

If you in an application considers an attribute, its value can be determined in several places,
and the following list indicates which value has the highest priority:

1. inline (the highest priority)
2. parent node
3. scene graph
4. values assigned in the code (Java properties)
5. default style sheet

says that the GridPane node should apply a style with the selector border, and the result is
that the gray frame appears.

Styles can also be defined inline, as is the case with the two Label controls. It certainly has
its uses, but it is generally advisable to define styles in a style sheet, as inline styles can
only be changed in the code.

If you in an application considers an attribute, its value can be determined in several places,
and the following list indicates which value has the highest priority:

1. inline (the highest priority)
2. parent node
3. scene graph
4. values assigned in the code (Java properties)
5. default style sheet

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT StylIng

137

Here you should especially note that styles have higher priority than values assigned in the
usual way in the Java code. Also note the last option with the lowest priority. If you do not
specify something, the value of a property is determined by a default style sheet.

EXERCISE 37

You must write an application that opens the following login window:

where there are 2 Label controls, 1 TextField control, 1 PasswordField control and 2 Button
controls. For these controls, the following properties must be set:

1. Label: Must have a bold Arial font on 18 points
2. TextField: Must have a bold Arial font on 14 points and the text should be dark blue
3. PasswordField: Must have a gray background and a blue frame
4. Button: Must have a blue background and a white text with a bold Arial font on

14 points

These values must all be assigned using styles defined in a style sheet.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

138138

9 FXML

FXML is an XML language that can be used to define the user interface in a JavaFX program
and thus it is an alternative to writing the code in Java. With FXML you can define the
entire scene graph or just a part of it. If in NetBeans you select JavaFX and JavaFX FXML
Application for New Project

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

139

and when you click Next, you must enter a project name where I have typed HelloFXML,
and when you click Finish, NetBeans creates a project with three files:

and again it is a fully finished program that can be translated and executed:

If you click on the button, you get a window where a label is updated:

Then there is the code and I want to start with HelloFXML.java:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

137

and when you click Next, you must enter a project name where I have typed HelloFXML,
and when you click Finish, NetBeans creates a project with three files:

and again it is a fully finished program that can be translated and executed:

If you click on the button, you get a window where a label is updated:

Then there is the code and I want to start with HelloFXML.java:

package hellofxml;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

140

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

138

public class HelloFXML extends Application
{
 @Override
 public void start(Stage stage) throws Exception
 {
 Parent root = FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

Immediately, it is a usual JavaFX application with a method start(), and there is only one
difference, which is the statement

Parent root = FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));

which loads the file FXMLDocument.fxml. It is the XML document that defines the user
interface and hence the program’s sceen graph. When you see the content, it’s almost a
common XML document:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="320"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="hellofxml.FXMLDocumentController">
 <children>
 <Button layoutX="126" layoutY="90" text="Click Me!"
	 onAction="#handleButtonAction"	fx:id="button"	/>
 <Label layoutX="126" layoutY="120" minHeight="16" minWidth="69"
	 fx:id="label"	/>
	</children>
</AnchorPane>

Immediately, it is a usual JavaFX application with a method start(), and there is only one
difference, which is the statement

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

138

public class HelloFXML extends Application
{
 @Override
 public void start(Stage stage) throws Exception
 {
 Parent root = FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

Immediately, it is a usual JavaFX application with a method start(), and there is only one
difference, which is the statement

Parent root = FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));

which loads the file FXMLDocument.fxml. It is the XML document that defines the user
interface and hence the program’s sceen graph. When you see the content, it’s almost a
common XML document:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="320"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="hellofxml.FXMLDocumentController">
 <children>
 <Button layoutX="126" layoutY="90" text="Click Me!"
	 onAction="#handleButtonAction"	fx:id="button"	/>
 <Label layoutX="126" layoutY="120" minHeight="16" minWidth="69"
	 fx:id="label"	/>
	</children>
</AnchorPane>

which loads the file FXMLDocument.fxml. It is the XML document that defines the user
interface and hence the program’s sceen graph. When you see the content, it’s almost a
common XML document:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

138

public class HelloFXML extends Application
{
 @Override
 public void start(Stage stage) throws Exception
 {
 Parent root = FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

Immediately, it is a usual JavaFX application with a method start(), and there is only one
difference, which is the statement

Parent root = FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));

which loads the file FXMLDocument.fxml. It is the XML document that defines the user
interface and hence the program’s sceen graph. When you see the content, it’s almost a
common XML document:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="320"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="hellofxml.FXMLDocumentController">
 <children>
 <Button layoutX="126" layoutY="90" text="Click Me!"
	 onAction="#handleButtonAction"	fx:id="button"	/>
 <Label layoutX="126" layoutY="120" minHeight="16" minWidth="69"
	 fx:id="label"	/>
	</children>
</AnchorPane>

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

141141

The document starts with some import directives, which you can easily interpret. Otherwise,
the document consists of elements that corresponds to classes for nodes in the scene graph,
and even the same names apply. For the individual elements, you can define attributes that
match the properties of the corresponding node classes, and here the same names apply.
The only exception is the attribute fx:id, which refers to a variable defined in the controller
class. In addition, note the value of the attribute onAction for the Button item, which refers
to a method (an event handler) in the controller class. The class is as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

139139

The document starts with some import directives, which you can easily interpret. Otherwise,
the document consists of elements that corresponds to classes for nodes in the scene graph,
and even the same names apply. For the individual elements, you can define attributes that
match the properties of the corresponding node classes, and here the same names apply.
The only exception is the attribute fx:id, which refers to a variable defined in the controller
class. In addition, note the value of the attribute onAction for the Button item, which refers
to a method (an event handler) in the controller class. The class is as follows:

package hellofxml;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Label;

public class FXMLDocumentController implements Initializable
{
 @FXML
 private Label label;

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

142

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

140

 @FXML
 private void handleButtonAction(ActionEvent event)
 {
 System.out.println("You clicked me!");
 label.setText("Hello World!");
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 }
}

The class defines a variable and two methods. The first is a reference to the control defined
in the XML section, and here you should note the annotation @FXML. It means that an
FXMLLoader can create an object defined in FXML by injection. The same notation is used
for the event handler for the button, which means it can be referenced from the FXML
section. You should note that the class implements the interface Initializable, which defines
a single method that can be used to initialize the controller.

The above is what NetBeans has automatically created, and I will now have to make changes
to FXMLDocument.fxml and FXMLDocumentController.java. The class HelloFXML.java will
be unchanged. FXMLDocument.fxml has been changed to:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.text.*?>

<VBox alignment="CENTER" spacing="20" prefWidth="400"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="hellofxml.FXMLDocumentController">
 <style>
	-fx-padding:	20;
	-fx-border-style:	solid;
	-fx-border-width:	2;
	-fx-border-insets:	25;
	-fx-border-radius:	10;
	-fx-border-color:	darkred;
	</style>
 <children>
	 <TextField	fx:id="name"	prefWidth="300"	maxWidth="300"	/>

The class defines a variable and two methods. The first is a reference to the control defined
in the XML section, and here you should note the annotation @FXML. It means that an
FXMLLoader can create an object defined in FXML by injection. The same notation is used
for the event handler for the button, which means it can be referenced from the FXML
section. You should note that the class implements the interface Initializable, which defines
a single method that can be used to initialize the controller.

The above is what NetBeans has automatically created, and I will now have to make changes
to FXMLDocument.fxml and FXMLDocumentController.java. The class HelloFXML.java will
be unchanged. FXMLDocument.fxml has been changed to:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

140

 @FXML
 private void handleButtonAction(ActionEvent event)
 {
 System.out.println("You clicked me!");
 label.setText("Hello World!");
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 }
}

The class defines a variable and two methods. The first is a reference to the control defined
in the XML section, and here you should note the annotation @FXML. It means that an
FXMLLoader can create an object defined in FXML by injection. The same notation is used
for the event handler for the button, which means it can be referenced from the FXML
section. You should note that the class implements the interface Initializable, which defines
a single method that can be used to initialize the controller.

The above is what NetBeans has automatically created, and I will now have to make changes
to FXMLDocument.fxml and FXMLDocumentController.java. The class HelloFXML.java will
be unchanged. FXMLDocument.fxml has been changed to:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.text.*?>

<VBox alignment="CENTER" spacing="20" prefWidth="400"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="hellofxml.FXMLDocumentController">
 <style>
	-fx-padding:	20;
	-fx-border-style:	solid;
	-fx-border-width:	2;
	-fx-border-insets:	25;
	-fx-border-radius:	10;
	-fx-border-color:	darkred;
	</style>
 <children>
	 <TextField	fx:id="name"	prefWidth="300"	maxWidth="300"	/>

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

143

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

141

 <Button text="Click Me!" prefWidth="100" onAction="#handleButtonAction"
	 fx:id="button"	/>
	 <Label	minHeight="20"	fx:id="label"	textFill="red"	>

	 	
	
	 </Label>
	</children>
</VBox>

Two new import directives have been added, and the AnchorPane element has been replaced
by a VBox element. Then a style element and a TextField element are added, and many
attributes are also changed. When you see the code, it is easy enough to understand – at
least if you know JavaFX. As a result, the window changes to the following:

where the text Carlo is entered in the entry field and then clicked on the button. In the
controller, nothing else has been added than an additional variable has been added and the
event handler has been changed:

package hellofxml;
import java.net.URL;
import java.util.ResourceBundle;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;

public class FXMLDocumentController implements Initializable
{
 @FXML
 private Label label;
 @FXML
 private TextField name;

 @FXML
 private void handleButtonAction(ActionEvent event)

Two new import directives have been added, and the AnchorPane element has been replaced
by a VBox element. Then a style element and a TextField element are added, and many
attributes are also changed. When you see the code, it is easy enough to understand – at
least if you know JavaFX. As a result, the window changes to the following:

where the text Carlo is entered in the entry field and then clicked on the button. In the
controller, nothing else has been added than an additional variable has been added and the
event handler has been changed:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

141

 <Button text="Click Me!" prefWidth="100" onAction="#handleButtonAction"
	 fx:id="button"	/>
	 <Label	minHeight="20"	fx:id="label"	textFill="red"	>

	 	
	
	 </Label>
	</children>
</VBox>

Two new import directives have been added, and the AnchorPane element has been replaced
by a VBox element. Then a style element and a TextField element are added, and many
attributes are also changed. When you see the code, it is easy enough to understand – at
least if you know JavaFX. As a result, the window changes to the following:

where the text Carlo is entered in the entry field and then clicked on the button. In the
controller, nothing else has been added than an additional variable has been added and the
event handler has been changed:

package hellofxml;
import java.net.URL;
import java.util.ResourceBundle;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;

public class FXMLDocumentController implements Initializable
{
 @FXML
 private Label label;
 @FXML
 private TextField name;

 @FXML
 private void handleButtonAction(ActionEvent event)

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

144144

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

142142

 {
	 label.setText("Hello:	"	+	name.getText());
 name.setText("");
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 }
}

9.1 CREATE OBJECTS

As illustrated in the previous example, FXML is used to define a program’s scene graph or
part of the graph, but FXML may more generally be used to define an object graph. In
this section, I will show a program called ObjectsFXML, which will show you how to create
objects using FXML. The ObjectsFXML.java program class does not contain anything new
and will not be shown here. The file FXMLDocument.fxml has the following content:

<?xml version="1.0" encoding="UTF-8"?>

9.1 CREATE OBJECTS

As illustrated in the previous example, FXML is used to define a program’s scene graph or
part of the graph, but FXML may more generally be used to define an object graph. In
this section, I will show a program called ObjectsFXML, which will show you how to create
objects using FXML. The ObjectsFXML.java program class does not contain anything new
and will not be shown here. The file FXMLDocument.fxml has the following content:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

142142

 {
	 label.setText("Hello:	"	+	name.getText());
 name.setText("");
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 }
}

9.1 CREATE OBJECTS

As illustrated in the previous example, FXML is used to define a program’s scene graph or
part of the graph, but FXML may more generally be used to define an object graph. In
this section, I will show a program called ObjectsFXML, which will show you how to create
objects using FXML. The ObjectsFXML.java program class does not contain anything new
and will not be shown here. The file FXMLDocument.fxml has the following content:

<?xml version="1.0" encoding="UTF-8"?>

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

145

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

143

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>
<?import javafx.geometry.*?>
<?import java.lang.*?>
<?import javafx.collections.*?>
<?import objectsfxml.*?>

<VBox prefHeight="200" prefWidth="320" spacing="20" alignment="CENTER"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="objectsfxml.FXMLDocumentController">
	<padding><Insets	top="20"	right="20"	bottom="20"	left="20"/></padding>
 <children>
	 <Text	fx:id="header"	/>
	 <ComboBox	fx:id="lstKings"	>
 <items>
	 <FXCollections	fx:factory="observableArrayList">
	 <String	fx:value="Gorm	den	Gamle"/>
	 <String	fx:value="Harald	Blåtand"/>
	 <String	fx:value="Svend	Tveskæg"/>
	 <String	fx:value="Harald	den	2."/>
	 <String	fx:value="Knud	den	Store"/>
	 </FXCollections>
	 </items>
	 </ComboBox>
	 <Button	text="Select	a	king"	onAction="#handleKings"	fx:id="button"	/>
	 <ComboBox	fx:id="lstPersons"	/>
	 <Button	text="Select	a	king"	onAction="#handlePersons"	/>
	 <Label	fx:id="label"	>
	 <String	fx:value="A	unknown	Person"	/>
	 </Label>
	</children>
</VBox>

For example, if you look at the item

<VBox prefHeight="200" …

this means that an object of the type VBox is being instantiated. First of all, it requires an
import directive for the package containing the class VBox, and that the class has a default
constructor, as the syntax does not contain any immediate way to transfer values to the
constructor. Similarly, the element

<Text	fx:id="header"	/>

For example, if you look at the item

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

143

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>
<?import javafx.geometry.*?>
<?import java.lang.*?>
<?import javafx.collections.*?>
<?import objectsfxml.*?>

<VBox prefHeight="200" prefWidth="320" spacing="20" alignment="CENTER"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="objectsfxml.FXMLDocumentController">
	<padding><Insets	top="20"	right="20"	bottom="20"	left="20"/></padding>
 <children>
	 <Text	fx:id="header"	/>
	 <ComboBox	fx:id="lstKings"	>
 <items>
	 <FXCollections	fx:factory="observableArrayList">
	 <String	fx:value="Gorm	den	Gamle"/>
	 <String	fx:value="Harald	Blåtand"/>
	 <String	fx:value="Svend	Tveskæg"/>
	 <String	fx:value="Harald	den	2."/>
	 <String	fx:value="Knud	den	Store"/>
	 </FXCollections>
	 </items>
	 </ComboBox>
	 <Button	text="Select	a	king"	onAction="#handleKings"	fx:id="button"	/>
	 <ComboBox	fx:id="lstPersons"	/>
	 <Button	text="Select	a	king"	onAction="#handlePersons"	/>
	 <Label	fx:id="label"	>
	 <String	fx:value="A	unknown	Person"	/>
	 </Label>
	</children>
</VBox>

For example, if you look at the item

<VBox prefHeight="200" …

this means that an object of the type VBox is being instantiated. First of all, it requires an
import directive for the package containing the class VBox, and that the class has a default
constructor, as the syntax does not contain any immediate way to transfer values to the
constructor. Similarly, the element

<Text	fx:id="header"	/>

this means that an object of the type VBox is being instantiated. First of all, it requires an
import directive for the package containing the class VBox, and that the class has a default
constructor, as the syntax does not contain any immediate way to transfer values to the
constructor. Similarly, the element

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

143

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>
<?import javafx.geometry.*?>
<?import java.lang.*?>
<?import javafx.collections.*?>
<?import objectsfxml.*?>

<VBox prefHeight="200" prefWidth="320" spacing="20" alignment="CENTER"
	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="objectsfxml.FXMLDocumentController">
	<padding><Insets	top="20"	right="20"	bottom="20"	left="20"/></padding>
 <children>
	 <Text	fx:id="header"	/>
	 <ComboBox	fx:id="lstKings"	>
 <items>
	 <FXCollections	fx:factory="observableArrayList">
	 <String	fx:value="Gorm	den	Gamle"/>
	 <String	fx:value="Harald	Blåtand"/>
	 <String	fx:value="Svend	Tveskæg"/>
	 <String	fx:value="Harald	den	2."/>
	 <String	fx:value="Knud	den	Store"/>
	 </FXCollections>
	 </items>
	 </ComboBox>
	 <Button	text="Select	a	king"	onAction="#handleKings"	fx:id="button"	/>
	 <ComboBox	fx:id="lstPersons"	/>
	 <Button	text="Select	a	king"	onAction="#handlePersons"	/>
	 <Label	fx:id="label"	>
	 <String	fx:value="A	unknown	Person"	/>
	 </Label>
	</children>
</VBox>

For example, if you look at the item

<VBox prefHeight="200" …

this means that an object of the type VBox is being instantiated. First of all, it requires an
import directive for the package containing the class VBox, and that the class has a default
constructor, as the syntax does not contain any immediate way to transfer values to the
constructor. Similarly, the element

<Text	fx:id="header"	/>

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

146

means that a Text object is created and that it is referred to in the controller of the variable
header. Here, the object is also assigned a value that I return to below. The next thing that
happens is to create a ComboBox called lstKings (the name that the corresponding object is
called in the controller). In particular, note how the ComboBox is initialized. This happens
with an ObservableList, and here the syntax means that the list is created using a factory
method, explained below. The individual items in the list are of the type String and the item

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

144

means that a Text object is created and that it is referred to in the controller of the variable
header. Here, the object is also assigned a value that I return to below. The next thing that
happens is to create a ComboBox called lstKings (the name that the corresponding object is
called in the controller). In particular, note how the ComboBox is initialized. This happens
with an ObservableList, and here the syntax means that the list is created using a factory
method, explained below. The individual items in the list are of the type String and the item

<String	fx:value="Gorm	den	Gamle"/>

creates a String object by performing a static method valueOf() initialized with the current
value. It requires that the class of which to instantiate an object has such a method and it
has the class String. The result of all is that a ComboBox is created with 5 String objects.

As a next step, a button is created where there is nothing new to explain, and then an empty
ComboBox called lstPersons and finally another button. Finally, a Label is created, and here
you will notice how this Label is initialized with a String object. If you run the program,
you get the following window:

where a name is selected in the top combobox and then clicked on the top button. The
other ComboBox is also initialized, and it is done using a factory, as shown below. The
ComboBox is initialized with Objects of the type:

package objectsfxml;

public class Person
{
 private String name;
 private String job;

creates a String object by performing a static method valueOf() initialized with the current
value. It requires that the class of which to instantiate an object has such a method and it
has the class String. The result of all is that a ComboBox is created with 5 String objects.

As a next step, a button is created where there is nothing new to explain, and then an empty
ComboBox called lstPersons and finally another button. Finally, a Label is created, and here
you will notice how this Label is initialized with a String object. If you run the program,
you get the following window:

where a name is selected in the top combobox and then clicked on the top button. The
other ComboBox is also initialized, and it is done using a factory, as shown below. The
ComboBox is initialized with Objects of the type:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

144

means that a Text object is created and that it is referred to in the controller of the variable
header. Here, the object is also assigned a value that I return to below. The next thing that
happens is to create a ComboBox called lstKings (the name that the corresponding object is
called in the controller). In particular, note how the ComboBox is initialized. This happens
with an ObservableList, and here the syntax means that the list is created using a factory
method, explained below. The individual items in the list are of the type String and the item

<String	fx:value="Gorm	den	Gamle"/>

creates a String object by performing a static method valueOf() initialized with the current
value. It requires that the class of which to instantiate an object has such a method and it
has the class String. The result of all is that a ComboBox is created with 5 String objects.

As a next step, a button is created where there is nothing new to explain, and then an empty
ComboBox called lstPersons and finally another button. Finally, a Label is created, and here
you will notice how this Label is initialized with a String object. If you run the program,
you get the following window:

where a name is selected in the top combobox and then clicked on the top button. The
other ComboBox is also initialized, and it is done using a factory, as shown below. The
ComboBox is initialized with Objects of the type:

package objectsfxml;

public class Person
{
 private String name;
 private String job;

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

147147

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

145145

 public Person(String name, String job)
 {
 this.name = name;
 this.job = job;
 }

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 public String getJob()
 {
 return job;
 }

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

148

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

146

 public void setJob(String job)
 {
 this.job = job;
 }

 @Override
 public String toString()
 {
 return String.format("%s, %s", name, job);
 }
}

which is a simple model class that I have previously shown. Note that the class has no default
constructor, and if you want to instantiate an object, it is necessary to transfer parameters
to the constructor. Because you not can do that in FXML, a builder class is used, that is
a class that implements an interface:

public interface Builder<T>
{
 public T build();
}

and a class that implements this interface how to instantiate objects of the type T. The class
is used by a factory class that implements another interface:

public interface BuilderFactory
{
 public Builder<?> getBuilder(Class<?> type);
}

The FXMLLoader class uses a BuilderFactory if it can not create an object otherwise, and
it happens bt calling the method getBuilder() with the type as argument. If this method
returns a Builder object, a FXMLLoader uses this object to initialize the required properties
of the object to be instantiated and eventually called the method build() that returns the
object. The builder class must have get and set methods for all the constructor’s parameters.
In this case, you must define a Builder for the class Person as follows:

package objectsfxml;

import javafx.util.*;

public class PersonBuilder implements Builder<Person>
{
 private String name;
 private String job;

which is a simple model class that I have previously shown. Note that the class has no default
constructor, and if you want to instantiate an object, it is necessary to transfer parameters
to the constructor. Because you not can do that in FXML, a builder class is used, that is
a class that implements an interface:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

146

 public void setJob(String job)
 {
 this.job = job;
 }

 @Override
 public String toString()
 {
 return String.format("%s, %s", name, job);
 }
}

which is a simple model class that I have previously shown. Note that the class has no default
constructor, and if you want to instantiate an object, it is necessary to transfer parameters
to the constructor. Because you not can do that in FXML, a builder class is used, that is
a class that implements an interface:

public interface Builder<T>
{
 public T build();
}

and a class that implements this interface how to instantiate objects of the type T. The class
is used by a factory class that implements another interface:

public interface BuilderFactory
{
 public Builder<?> getBuilder(Class<?> type);
}

The FXMLLoader class uses a BuilderFactory if it can not create an object otherwise, and
it happens bt calling the method getBuilder() with the type as argument. If this method
returns a Builder object, a FXMLLoader uses this object to initialize the required properties
of the object to be instantiated and eventually called the method build() that returns the
object. The builder class must have get and set methods for all the constructor’s parameters.
In this case, you must define a Builder for the class Person as follows:

package objectsfxml;

import javafx.util.*;

public class PersonBuilder implements Builder<Person>
{
 private String name;
 private String job;

and a class that implements this interface how to instantiate objects of the type T. The class
is used by a factory class that implements another interface:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

146

 public void setJob(String job)
 {
 this.job = job;
 }

 @Override
 public String toString()
 {
 return String.format("%s, %s", name, job);
 }
}

which is a simple model class that I have previously shown. Note that the class has no default
constructor, and if you want to instantiate an object, it is necessary to transfer parameters
to the constructor. Because you not can do that in FXML, a builder class is used, that is
a class that implements an interface:

public interface Builder<T>
{
 public T build();
}

and a class that implements this interface how to instantiate objects of the type T. The class
is used by a factory class that implements another interface:

public interface BuilderFactory
{
 public Builder<?> getBuilder(Class<?> type);
}

The FXMLLoader class uses a BuilderFactory if it can not create an object otherwise, and
it happens bt calling the method getBuilder() with the type as argument. If this method
returns a Builder object, a FXMLLoader uses this object to initialize the required properties
of the object to be instantiated and eventually called the method build() that returns the
object. The builder class must have get and set methods for all the constructor’s parameters.
In this case, you must define a Builder for the class Person as follows:

package objectsfxml;

import javafx.util.*;

public class PersonBuilder implements Builder<Person>
{
 private String name;
 private String job;

The FXMLLoader class uses a BuilderFactory if it can not create an object otherwise, and
it happens bt calling the method getBuilder() with the type as argument. If this method
returns a Builder object, a FXMLLoader uses this object to initialize the required properties
of the object to be instantiated and eventually called the method build() that returns the
object. The builder class must have get and set methods for all the constructor’s parameters.
In this case, you must define a Builder for the class Person as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

146

 public void setJob(String job)
 {
 this.job = job;
 }

 @Override
 public String toString()
 {
 return String.format("%s, %s", name, job);
 }
}

which is a simple model class that I have previously shown. Note that the class has no default
constructor, and if you want to instantiate an object, it is necessary to transfer parameters
to the constructor. Because you not can do that in FXML, a builder class is used, that is
a class that implements an interface:

public interface Builder<T>
{
 public T build();
}

and a class that implements this interface how to instantiate objects of the type T. The class
is used by a factory class that implements another interface:

public interface BuilderFactory
{
 public Builder<?> getBuilder(Class<?> type);
}

The FXMLLoader class uses a BuilderFactory if it can not create an object otherwise, and
it happens bt calling the method getBuilder() with the type as argument. If this method
returns a Builder object, a FXMLLoader uses this object to initialize the required properties
of the object to be instantiated and eventually called the method build() that returns the
object. The builder class must have get and set methods for all the constructor’s parameters.
In this case, you must define a Builder for the class Person as follows:

package objectsfxml;

import javafx.util.*;

public class PersonBuilder implements Builder<Person>
{
 private String name;
 private String job;

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

149

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

147

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getJob() {
 return job;
 }

 public void setJob(String job) {
 this.job = job;
 }

 @Override
 public Person build()
 {
 return new Person(name, job);
 }
}

A Builder is thus a class that solve the problem that you can not construct an object of a
class (here Person) without transferring parameters to the constructor.

In addition to a Builder, you must have a BuilderFactory, and in this case it can be written
as follows:

package objectsfxml;

import javafx.util.*;
import javafx.fxml.*;

public class PersonFactory implements BuilderFactory
{
	private	final	JavaFXBuilderFactory	fxFactory	=	new	JavaFXBuilderFactory();

 @Override
 public Builder<?> getBuilder(Class<?> type)
 {
 if (type == Person.class) return new PersonBuilder();
 return fxFactory.getBuilder(type);
 }
}

A Builder is thus a class that solve the problem that you can not construct an object of a
class (here Person) without transferring parameters to the constructor.

In addition to a Builder, you must have a BuilderFactory, and in this case it can be written
as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

147

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getJob() {
 return job;
 }

 public void setJob(String job) {
 this.job = job;
 }

 @Override
 public Person build()
 {
 return new Person(name, job);
 }
}

A Builder is thus a class that solve the problem that you can not construct an object of a
class (here Person) without transferring parameters to the constructor.

In addition to a Builder, you must have a BuilderFactory, and in this case it can be written
as follows:

package objectsfxml;

import javafx.util.*;
import javafx.fxml.*;

public class PersonFactory implements BuilderFactory
{
	private	final	JavaFXBuilderFactory	fxFactory	=	new	JavaFXBuilderFactory();

 @Override
 public Builder<?> getBuilder(Class<?> type)
 {
 if (type == Person.class) return new PersonBuilder();
 return fxFactory.getBuilder(type);
 }
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

150150

The method getBuilder() has a type as parameter, and if this type is Person, a PersonBuilder
is returned. Otherwise, a default builder will be returned for that type.

For the project ObjectsFXML, I have created a directory resources / fxml, and I have added
a file named Persons.fxml whose content are:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

148148

The method getBuilder() has a type as parameter, and if this type is Person, a PersonBuilder
is returned. Otherwise, a default builder will be returned for that type.

For the project ObjectsFXML, I have created a directory resources / fxml, and I have added
a file named Persons.fxml whose content are:

<?xml version="1.0" encoding="UTF-8"?>

<?import objectsfxml.*?>
<?import java.util.ArrayList?>

<ArrayList>
	<Person	name="Hardeknud"	job="Konge"/>
	<Person	name="Magnus	den	Gode"	job="Konge"/>
	<Person	name="Svend	Estridsen"	job="Konge"/>
	<Person	name="Harald	Hen"	job="Konge"/>
	<Person	name="Knud	den	Hellige"	job="Konge"/>
</ArrayList>

That is, a XML document that defines 5 Person objects, but in order to instantiate these
objects, a Builder is required. It happens in the controller:
That is, a XML document that defines 5 Person objects, but in order to instantiate these
objects, a Builder is required. It happens in the controller:

http://s.bookboon.com/elearningforkids

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

151

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

149

public class FXMLDocumentController implements Initializable
{
 @FXML
 private Text header;
 @FXML
 private Label label;
 @FXML
 private ComboBox lstKings;
 @FXML
 private ComboBox lstPersons;

 @FXML
 private void handleKings(ActionEvent event)
 {
 label.setText("" + lstKings.getSelectionModel().getSelectedItem());
 lstKings.getSelectionModel().clearSelection();
 }

 @FXML
 private void handlePersons(ActionEvent event)
 {
 label.setText("" + lstPersons.getSelectionModel().getSelectedItem());
 lstPersons.getSelectionModel().clearSelection();
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 header.setText("Objects");
 header.setFont(Font.font("Arial", FontWeight.BOLD, FontPosture.REGULAR, 24));
 try
 {
 lstPersons.getPersons().addAll(
 FXCollections.observableArrayList(loadItems(new PersonFactory())));
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }

 public ArrayList loadPersons(BuilderFactory builderFactory) throws Exception
 {
 URL url = FXMLDocumentController.class.getClassLoader().getResource(
	 "resources/fxml/Persons.fxml");
 FXMLLoader loader = new FXMLLoader();
 loader.setLocation(url);

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

152

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

150

 loader.setBuilderFactory(builderFactory);
 return loader.<ArrayList>load();
 }
}

Note that at the start of the controller, variables are defined corresponding to elements
defined in the FXML document. Next, there are the events of the two buttons that do not
require any particular explanation. In the method initialize(), the object header is initialized
by the loader, and the same applies to lstPersons, which is the bottom ComboBox. This is
done by calling the method loadPersons(), as with a FXMLLoader loads the XML document
with the definitions of Person objects, using a BuilderFactory, that here is a PersonFactory.

9.2 DIALOGFXML

I will write a program similar to the program DialogProgram from chapter 7, when the
difference is that the user interface is written in FXML. I start with a JavaFX FXML
Application project, which I have called DialogFXML. The main program is unchanged, but
FXMLDocument is changed to the following:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<VBox	prefHeight="200"	prefWidth="320"	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="dialogfxml.FXMLDocumentController"
 spacing="20" alignment="CENTER" >
 <children>
	 <Button	prefWidth="150"	text="Enter	person"	onAction="#handleEnterAction"	/>
	 <Button	prefWidth="150"	text="Show	persons"	onAction="#handleShowAction"	/>
	</children>
</VBox>

Note that at the start of the controller, variables are defined corresponding to elements
defined in the FXML document. Next, there are the events of the two buttons that do not
require any particular explanation. In the method initialize(), the object header is initialized
by the loader, and the same applies to lstPersons, which is the bottom ComboBox. This is
done by calling the method loadPersons(), as with a FXMLLoader loads the XML document
with the definitions of Person objects, using a BuilderFactory, that here is a PersonFactory.

9.2 DIALOGFXML

I will write a program similar to the program DialogProgram from chapter 7, when the
difference is that the user interface is written in FXML. I start with a JavaFX FXML
Application project, which I have called DialogFXML. The main program is unchanged, but
FXMLDocument is changed to the following:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

150

 loader.setBuilderFactory(builderFactory);
 return loader.<ArrayList>load();
 }
}

Note that at the start of the controller, variables are defined corresponding to elements
defined in the FXML document. Next, there are the events of the two buttons that do not
require any particular explanation. In the method initialize(), the object header is initialized
by the loader, and the same applies to lstPersons, which is the bottom ComboBox. This is
done by calling the method loadPersons(), as with a FXMLLoader loads the XML document
with the definitions of Person objects, using a BuilderFactory, that here is a PersonFactory.

9.2 DIALOGFXML

I will write a program similar to the program DialogProgram from chapter 7, when the
difference is that the user interface is written in FXML. I start with a JavaFX FXML
Application project, which I have called DialogFXML. The main program is unchanged, but
FXMLDocument is changed to the following:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<VBox	prefHeight="200"	prefWidth="320"	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="dialogfxml.FXMLDocumentController"
 spacing="20" alignment="CENTER" >
 <children>
	 <Button	prefWidth="150"	text="Enter	person"	onAction="#handleEnterAction"	/>
	 <Button	prefWidth="150"	text="Show	persons"	onAction="#handleShowAction"	/>
	</children>
</VBox>

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

153153

which defines a window with two buttons:

I have then added the class Person from the project DialogProgram. The window’s controller
can then be written as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

151151

which defines a window with two buttons:

I have then added the class Person from the project DialogProgram. The window’s controller
can then be written as follows:

public class FXMLDocumentController implements Initializable
{
 private List<Person> list = new ArrayList();

 @FXML
 private void handleEnterAction(ActionEvent event)
 {

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

154

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

152

 try
 {
 FXMLLoader loader =
 new FXMLLoader(getClass().getResource("EnterDocument.fxml"));
 Parent root = loader.load();
 ((EnterDocumentController)loader.getController()).setList(list);
 Dialog<Person> dlg = new Dialog();
 dlg.getDialogPane().setContent(root);
 dlg.setTitle("Enter person");
 dlg.showAndWait();
 }
 catch (Exception ex)
 {
 }
 }

 @FXML
 private void handleShowAction(ActionEvent e)
 {
 try
 {
 FXMLLoader loader =
 new FXMLLoader(getClass().getResource("ShowDocument.fxml"));
 Parent root = loader.load();
 ((ShowDocumentController)loader.getController()).setList(list);
 Dialog<Person> dlg = new Dialog();
 dlg.setTitle("Persons");
	 dlg.setHeaderText("You	have	entered	the	following	persons:");
 dlg.getDialogPane().setContent(root);
 dlg.showAndWait();
 }
 catch (Exception ex)
 {
 }
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 }
}

First, note that a list has been defined for Person objects, but otherwise the class consists
primarily of the event handlers for the two buttons. In principle, the two methods work
in the same way as they starts to load the XML that defines the user interface, and then
the list of Person objects must be transferred to the controller for the dialog box. Here
you should especially note how to refer to the controller. To create a dialog box, I add an
Empty FMXL:

First, note that a list has been defined for Person objects, but otherwise the class consists
primarily of the event handlers for the two buttons. In principle, the two methods work
in the same way as they starts to load the XML that defines the user interface, and then
the list of Person objects must be transferred to the controller for the dialog box. Here
you should especially note how to refer to the controller. To create a dialog box, I add an
Empty FMXL:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

155

After clicking Next, I have to enter the name (for example, ShowDocument), and in the next
window you can choose whether to create a controller:

Finally, there is a window where you can specify whether there should be a stylesheet, and
then NetBeans has added two new files. If it is the dialog box for entering a person, they
are called EnterDocument.fxml and EnterDocumentController.java. Below is the FXML code
that defines a GridPane :

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

153

After clicking Next, I have to enter the name (for example, ShowDocument), and in the next
window you can choose whether to create a controller:

Finally, there is a window where you can specify whether there should be a stylesheet, and
then NetBeans has added two new files. If it is the dialog box for entering a person, they
are called EnterDocument.fxml and EnterDocumentController.java. Below is the FXML code
that defines a GridPane :

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.geometry.*?>

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

156156

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

154154

<GridPane	id="GridPane"	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="dialogfxml.EnterDocumentController"	hgap="10"	vgap="20"	>
	<padding><Insets	top="10"	right="10"	bottom="10"	left="10"/></padding>
	<Label	GridPane.rowIndex="0"	GridPane.columnIndex="0"	>Name</Label>
	<TextField	fx:id="txtName"	GridPane.rowIndex="0"	GridPane.columnIndex="1"
	 prefWidth="300"	></TextField>
	<Label	GridPane.rowIndex="1"	GridPane.columnIndex="0"	>Job</Label>
	<TextField	fx:id="txtJob"	GridPane.rowIndex="1"	GridPane.columnIndex="1"
	 prefWidth="300"	></TextField>
	<Label	GridPane.rowIndex="2"	GridPane.columnIndex="0"	>Date</Label>
	<DatePicker	fx:id="ctlDate"	GridPane.rowIndex="2"	GridPane.columnIndex="1"
	 prefWidth="150"	></DatePicker>
 <HBox GridPane.rowIndex="3" GridPane.columnIndex="1" alignment="CENTER_RIGHT"
 spacing="10" >
	 <Button	text="OK"	onAction="#handleOkAction"	/>
	 <Button	text="Cancel"	onAction="#handleCancelAction"	/>
	</HBox>	
</GridPane>

Here is not much new compared to what has previously been shown, but you should note
that a DataPicker has been added, which is a node in the same way as other nodes. The
controller is as follows:

Here is not much new compared to what has previously been shown, but you should note
that a DataPicker has been added, which is a node in the same way as other nodes. The
controller is as follows:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

157

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

155

public class EnterDocumentController implements Initializable
{
 private List<Person> list;

 @FXML
 private TextField txtName;
 @FXML
 private TextField txtJob;
 @FXML
 private DatePicker ctlDate;

 public void setList(List<Person> list)
 {
 this.list = list;
 }

 @FXML
 private void handleOkAction(ActionEvent e)
 {
 list.add(new Person(txtName.getText(), txtJob.
getText(), ctlDate.getValue()));

 ((Stage)((Node) e.getSource()).getScene().getWindow()).close();
 }

 @FXML
 private void handleCancelAction(ActionEvent e)
 {
 ((Stage)((Node) e.getSource()).getScene().getWindow()).close();
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 }
}

Also, here is not much new, but you should note that a method has been added as setList(),
so there is access to the list of Person objects in the event handler for the OK button. You
should also note how to close the window by obtaining a reference to the Stage object that
represents the window. If you run the program and click on the top button, you get the
following window:

Also, here is not much new, but you should note that a method has been added as setList(),
so there is access to the list of Person objects in the event handler for the OK button. You
should also note how to close the window by obtaining a reference to the Stage object that
represents the window. If you run the program and click on the top button, you get the
following window:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

158

The XML code of the other dialog box is:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

156

The XML code of the other dialog box is:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.geometry.*?>

<BorderPane	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="dialogfxml.ShowDocumentController">
	<padding><Insets	top="20"	right="20"	bottom="0"	left="20"/></padding>
 <center>
	 <ListView	prefWidth="400"	prefHeight="300"	fx:id="lstPersons"	/>
	</center>
 <bottom>
 <HBox alignment="CENTER_RIGHT" >
	 <padding><Insets	top="20"	right="0"	bottom="0"	left="0"/></padding>
	 <Button	text="Close"	onAction="#handleCloseAction"	/>
	 </HBox>
	</bottom>
</BorderPane>

and is basically a BorderPane. Note that the center is a ListView, which is not initialized
here, but is instead done it in the controller, which is trivial:

public class ShowDocumentController implements Initializable
{
 @FXML
 private ListView lstPersons;

and is basically a BorderPane. Note that the center is a ListView, which is not initialized
here, but is instead done it in the controller, which is trivial:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

156

The XML code of the other dialog box is:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.geometry.*?>

<BorderPane	xmlns:fx="http://javafx.com/fxml/1"
	fx:controller="dialogfxml.ShowDocumentController">
	<padding><Insets	top="20"	right="20"	bottom="0"	left="20"/></padding>
 <center>
	 <ListView	prefWidth="400"	prefHeight="300"	fx:id="lstPersons"	/>
	</center>
 <bottom>
 <HBox alignment="CENTER_RIGHT" >
	 <padding><Insets	top="20"	right="0"	bottom="0"	left="0"/></padding>
	 <Button	text="Close"	onAction="#handleCloseAction"	/>
	 </HBox>
	</bottom>
</BorderPane>

and is basically a BorderPane. Note that the center is a ListView, which is not initialized
here, but is instead done it in the controller, which is trivial:

public class ShowDocumentController implements Initializable
{
 @FXML
 private ListView lstPersons;

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

159159

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

157157

 public void setList(List<Person> list)
 {
 lstPersons.getItems().addAll(list);
 }

 @FXML
 private void handleCloseAction(ActionEvent e)
 {
 ((Stage)((Node) e.getSource()).getScene().getWindow()).close();
 }

 @Override
 public void initialize(URL url, ResourceBundle rb)
 {
 }
}

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

160

Opening the dialog the result is (where two persons are entered):

9.3 ABOUT FXML

This chapter has provided a brief introduction to FXML, and although there is more to
explain, the above should be sufficient to use FXML in practice. The question is then what
is gained from using FXML and there are two purposes:

1. to separate the design/definition of the user interface from the Java code
2. to make it easier to develop complex user interfaces

The first follows immediately from the separation of the code for a window in an XML
part and a controller with the Java code. In principle, it is good, but it requires learning
FXML, and although NetBeans provides good support, there is still a lot to learn, and in my
opinion, it’s at least as easy to write the user interface in Java as in FXML. The separation
of the code can easily be achieved by moving the code to event handlers in their own classes
in a controller layer. The conclusion is that I do not find the big gains in using FXML,
and in fact, I feel that the forces are better used by learning JavaFX in detail than using the
power to get good at FXML. It’s my opinion and it’s not necessarily true and I know that
others look different. Therefore, there is only to say, to try and gain your own experiences.

According to what I’ve mentioned above, FXML does not make it easier to write user
interfaces, but it is when using a tool. There is a program called Scene Builder that you can
use to design the user interface. Instead of writing the code itself, you pull components

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT fXml

161161

from a toolbox and place them in the window where you think they should be. The tool
will then form the FXML code for the user interface, and it is in this context that FXML
comes into its own. The product Scene Builder can be downloaded from

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT FXML

159159

from a toolbox and place them in the window where you think they should be. The tool
will then form the FXML code for the user interface, and it is in this context that FXML
comes into its own. The product Scene Builder can be downloaded from

http://gluonhq.com/products/scene-builder/

and it is quite simple to install. Of course, you should learn to use the product, but also it
is relatively easy, and if you often need to write complex user interfaces, it is worth knowing
the product as it can generate significant progress in development projects.

and it is quite simple to install. Of course, you should learn to use the product, but also it
is relatively easy, and if you often need to write complex user interfaces, it is worth knowing
the product as it can generate significant progress in development projects.

http://s.bookboon.com/EOT

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

162

10 A FINAL EXAMPLE

As the final example, I will use the same program as in the previous book, but with the
difference that the program this time should be a desktop application. This means that I
can reuse the class library FunctionsLib, which implements the mathematical functions, as
well as the classes for parsing and evaluating an expression can also be reused. Therefore, I
only have to implement the user interface. The aim of the program is, of course, to show an
example of a JavaFX program, which is slightly larger than the examples that are otherwise
shown in this book.

The program must have the same features as in the previous book and should be basically
used in the same way where the user enters a mathematical expression that the program
can then evaluates. Unlike the previous program, the program should have buttons for the
mathematical functions where a button should do nothing but insert the function name in
the input field of the expression. In the previous program you can save a value in a variable
and the value can be inserted later in an expression. In the new version of the program you
must be able to save an arbitrary expression so that you can insert an expression into an
expression, and it should also be possible to save the program’s variables in a file.

10.1 DEVELOPMENT

The development of the program has been implemented as a form of prototyping, and in
the following I will briefly describe how the development has been completed. From the
start, I have planned the following iterations:

1. First prototype
2. Enhanced prototype
3. Implements the square root and square function
4. Implements Store and Recall
5. Implements the other functions
6. Implements Set Precision
7. Implements the menu item Expressions
8. Implements the File menu
9. Implements missing features
10. Styling the program
11. Refactoring

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

163

and the goal is that after completing the last iteration, you will have a finished program.
The iterations are small, but after each iteration you have a version of the program that can
be tested and used with the functions that have been implemented.

First prototype

The goal is to write an early version of the program, which should alone be a sketch of the
user interface. The program must therefore not have calculating functions.

Apart from the buttons, the program looks like the application from the previous book.
The window must be resizable, and the two text fields must follow the size of the window,
but the bottom must have a fixed height. The buttons should follow the right edge and
bottom of the window. The File menu must have functions for saving and loading the
variables, while the Functions menu must have a function to change the precision as well
as a function that shows an overview and the variables that have been created.

Enhanced prototype

The result of the next iteration is still a prototype for the user interface, but with some
changes with regard to buttons and with appropriate spacing and padding of the components.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

164164

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

165

To the right of the buttons is a list box that displays the program’s variables and the size
must be that part of the window that is not used for buttons. Additionally, a progress bar
has been added because some the calculations may take a long time.

Implements the square root and square function

I have added a reference to the jar file FunctionsLib.jar from the final project in the previous
book. Then I have created a package bigcalc.models and copied the files Tokens.java and
Expression.java from the project FunctionsEJB to this package. After that, the entire math
should be in place and the required calculation functions should be available.

I have then created a package bigcalc.ctrls and here a class MainController:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

163

To the right of the buttons is a list box that displays the program’s variables and the size
must be that part of the window that is not used for buttons. Additionally, a progress bar
has been added because some the calculations may take a long time.

Implements the square root and square function

I have added a reference to the jar file FunctionsLib.jar from the final project in the previous
book. Then I have created a package bigcalc.models and copied the files Tokens.java and
Expression.java from the project FunctionsEJB to this package. After that, the entire math
should be in place and the required calculation functions should be available.

I have then created a package bigcalc.ctrls and here a class MainController:

package bigcalc.ctrls;

import bigcalc.models.*;

public class MainController
{
 private int precision = 200;

 public String calculate(String text)
 {
 try
 {
 return (new Expression(text, precision)).getValue().toString();
 }
 catch (Exception ex)
 {
	 return	"Error:	"	+	ex.getMessage();
 }
 }

 public int getPrecision()
 {
 return precision;
 }

 public void setPrecision(int precision)
 {
 this.precision = precision;
 }
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

166

In the class BigCalc, event handlers are assigned to the following buttons:

 - Sqr
 - Sqrt
 - Clear Result, which deletes the content of the upper field for the result
 - Clear Editor, which deletes the content og the enter field
 - Enter

It is all simple event handlers. Then you can perform arithmetic and evaluate expressions,
and the calculator is in principle complete. In particular, you can paste text into the editor
by clicking the buttons Sqr and Sqrt.

Implements Store and Recall

If you click the STO button, you should get the following dialog box:

where to enter the name of the variable. If you click OK, the last result that is calculated
is saved. If, on the other hand, you have checked the Store Expression check box, it is the
expression that is entered in the editor field that is saved. After clicking OK and the desired
value is assigned to the variable, the list box is updated (the list box to the left of the buttons).

In order to keep track of the variables, the following model class has been added:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

164

In the class BigCalc, event handlers are assigned to the following buttons:

 - Sqr
 - Sqrt
 - Clear Result, which deletes the content of the upper field for the result
 - Clear Editor, which deletes the content og the enter field
 - Enter

It is all simple event handlers. Then you can perform arithmetic and evaluate expressions,
and the calculator is in principle complete. In particular, you can paste text into the editor
by clicking the buttons Sqr and Sqrt.

Implements Store and Recall

If you click the STO button, you should get the following dialog box:

where to enter the name of the variable. If you click OK, the last result that is calculated
is saved. If, on the other hand, you have checked the Store Expression check box, it is the
expression that is entered in the editor field that is saved. After clicking OK and the desired
value is assigned to the variable, the list box is updated (the list box to the left of the buttons).

In order to keep track of the variables, the following model class has been added:

package bigcalc.models;

import java.util.*;

public class Memory implements Iterable<String>
{
 private Map<String, String> variables = new TreeMap();

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

167167

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

165165

 public void store(String key, String value)
 {
 variables.put(key, value);
 }

 public String getValue(String key)
 {
 return variables.get(key);
 }

 public boolean remove(String key)
 {
 return variables.remove(key) != null;
 }

 public Iterator<String> iterator()
 {
 return variables.keySet().iterator();
 }
}

If you click on a variable in the list box, the corresponding value is inserted in the editor
field (at the cursor’s position). The same syntax is used as in the previous program, that

If you click on a variable in the list box, the corresponding value is inserted in the editor
field (at the cursor’s position). The same syntax is used as in the previous program, that

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

168

is @A1, and the difference is that the value can be a value or an expression. This means
that the controller must be updated so that values for variables are substituted before the
expression is sent to the parser.

If you click the RCL button, you get the following window where two variables were created:

If you click on the name of a variable, the window closes and the value of the variable is
inserted in the editor field at the cursor’s position. If you check one or more checkboxes
and click the button Remove, these variables will be deleted.

Center in the window is a ListView that is created as follows:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

166

is @A1, and the difference is that the value can be a value or an expression. This means
that the controller must be updated so that values for variables are substituted before the
expression is sent to the parser.

If you click the RCL button, you get the following window where two variables were created:

If you click on the name of a variable, the window closes and the value of the variable is
inserted in the editor field at the cursor’s position. If you check one or more checkboxes
and click the button Remove, these variables will be deleted.

Center in the window is a ListView that is created as follows:

ListView view = new ListView();
for	(String	key	:	memory)
{
 CheckBox check = new CheckBox("");
 check.setPrefWidth(20);
 HBox pane = new HBox(10, check);
 pane.setAlignment(Pos.CENTER_LEFT);
 Label name = new Label(key);
 name.setOnMouseClicked(ev -> selectVariable(key));
 name.setPrefWidth(60);
 Label value = new Label(memory.getValue(key));
 pane.getChildren().add(name);
 pane.getChildren().add(value);
 view.getItems().add(pane);
}

Here you should note that a ListView can contain anything, and especially a layout pane
with components. It is thus an extremely flexible component, and the list box on the main
window is initially initialized in the same way.

Here you should note that a ListView can contain anything, and especially a layout pane
with components. It is thus an extremely flexible component, and the list box on the main
window is initially initialized in the same way.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

169

In principle, this dialog box contains the same information as the list box to the left
of the buttons, but the dialog is included partly to delete variables and partly to give a
better overview.

Implements the other functions

This iteration is simple as the remaining buttons must do the same as for Sqr and Sqrt,
where only a text must be inserted into the editor field at the cursor’s position. The only
challenge is that it is the right text.

However, the impact of the progress bar must be implemented. I have changed the component
to a ProgressIndicator, which is constantly running, but from the start is invisible. When a
calculation is started (clicked Enter), the component is made visible and it becomes invisible
again when the calculation is completed and the user interface is updated. The only challenge
is get the the user interface (the ProgressIndicator) updated, and the calculation must be
performed in its own thread:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

167

In principle, this dialog box contains the same information as the list box to the left
of the buttons, but the dialog is included partly to delete variables and partly to give a
better overview.

Implements the other functions

This iteration is simple as the remaining buttons must do the same as for Sqr and Sqrt,
where only a text must be inserted into the editor field at the cursor’s position. The only
challenge is that it is the right text.

However, the impact of the progress bar must be implemented. I have changed the component
to a ProgressIndicator, which is constantly running, but from the start is invisible. When a
calculation is started (clicked Enter), the component is made visible and it becomes invisible
again when the calculation is completed and the user interface is updated. The only challenge
is get the the user interface (the ProgressIndicator) updated, and the calculation must be
performed in its own thread:

private void calculate(ActionEvent e)
{
 String expression = txtEditor.getText().trim();
 calculator = new Thread()
 {
 public void run()
 {
 lastValue = ctrl.calculate(expression, memory);
 updateResult();
 }
 };
 progress.setVisible(true);
 calculator.start();
}

private void updateResult()
{
 String text = txtDisplay.getText();
 if (text.length() > 0) text += "\n";
 txtDisplay.setText(text + lastValue);
 calculator = null;
 progress.setVisible(false);
}

After this iteration, the machine is in principle completed, but with a fixed precision of 200.
After this iteration, the machine is in principle completed, but with a fixed precision of 200.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

170170

Implements Set Precision

This function opens a simple dialog box where you can enter the desired precision:

If you click OK, both the controller and the status bar in the main window must be updated.
The function has been moved from the menu to a button above the Enter key. The menu
has been changed so that under Functions there is a menu item for each of the program’s
buttons. The reason is partly to have a better description of the individual functions and
to define key combinations for all functions and commands.

http://s.bookboon.com/GTca

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

171

Implements the menu item Expressions

This iteration is empty, as the function corresponds to a click on RCL, and the function is
already implemented. Since RCL also has a menu item, the function already exists in the menu.

Implements the File menu

Five functions must be implemented, all located under the File menu:

1. Save, which saves all variables in an existing file
2. Save as, which saves all variables in a new file
3. Open, which opens a file with variables, that ealier are saved
4. New, which deletes all existing variables
5. Exit, which terminates the program

Variables must be saved with simple object serialization. Therefore, the class Memory is partly
defined Serializable, and in addition, there are added two static methods:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

169

Implements the menu item Expressions

This iteration is empty, as the function corresponds to a click on RCL, and the function is
already implemented. Since RCL also has a menu item, the function already exists in the menu.

Implements the File menu

Five functions must be implemented, all located under the File menu:

1. Save, which saves all variables in an existing file
2. Save as, which saves all variables in a new file
3. Open, which opens a file with variables, that ealier are saved
4. New, which deletes all existing variables
5. Exit, which terminates the program

Variables must be saved with simple object serialization. Therefore, the class Memory is partly
defined Serializable, and in addition, there are added two static methods:

public	static	boolean	store(Memory	memory,	String	filename)
{
 try (ObjectOutputStream stream =
	 new	ObjectOutputStream(new	FileOutputStream(filename)))
 {
 stream.writeObject(memory);
 return true;
 }
 catch (Exception ex)
 {
 return false;
 }
}

public	static	Memory	load(String	filename)
{
 try (ObjectInputStream stream =
	 new	ObjectInputStream(new	FileInputStream(filename)))
 {
 return (Memory)stream.readObject();
 }
 catch (Exception ex)
 {
 return null;
 }
}

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

172

Then it’s simple to implement the 5 event handlers using a FileChooser component.

Implements missing features

There is not much that are missing, but the following should be added:

1. There should be warnings if you try to overwrite existing variables by loading
variables from a file or closing the program and the variables are not been saved.

2. Similarly, there should be a warning if you delete the content of the result field,
and accordingly if you delete variables in the dialog that shows the list of variables
(the command RCL). The same applies to the dialog boxes for entering the name
of a variable and the dialog for change the precision if you enter an illegal value.

3. If you use many significant digits (heigh precision), a calculation can take a long
time and therefore a timeout should be defined so that the program giving up
after the timeout.

The first point is simple to solve and is primarily about include a boolean variable that keeps
track of changes in the program’s variables. The problem is thus limited to ensuring that
this variable is set at the correct places and then test the variable in the event handlers for
the File menu. Additionally, you can override the stop() method and test the variable there
so that you do not close the program without a warning if there are non-saved variables.

The second point is similarly simple and refers to displaying a confirmation box in the event
handler that deletes the content of the result field, as well as a test in the three dialog boxes.

The last problem, on the other hand, is not quite simple to solve. First I have in the
controller class (MainController) included a property timeout, which indicates the number
of seconds for the timeout value. It is as default 15. Next, I have expanded the program
with the following dialog box:

where you can enter the timeout value. There is no button for the dialog, but it is opened
from the menu or with a shortcut key.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

173173

When you click the Enter button in the main window, the following events are performed:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

171171

When you click the Enter button in the main window, the following events are performed:

private void calculate(ActionEvent e)
{
 String expression = txtEditor.getText().trim();
 Thread calculator = new Thread()
 {
 public void run()
 {
 cmdCalc.setDisable(true);
 ExecutorService executor = Executors.newFixedThreadPool(1);
 Future<Void> task = executor.submit(new Calculator());
 try
 {
 task.get(ctrl.getTimeout(), TimeUnit.SECONDS);
 }
 catch (Exception ex)
 {
 lastValue = "Timeout";
 }
 executor.shutdownNow();
 Platform.runLater(new Runnable()
 {

 .

http://s.bookboon.com/AlcatelLucent

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

174

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

172

 @Override
 public void run()
 {
 updateResult();
 cmdCalc.setDisable(false);
 }
 });
 }
 };
 progress.setVisible(true);
 calculator.start();
}

It looks a bit complex. The calculation is performed by a method in an Expression object in
the controller and is the method that takes time, and if executed directly, it will block the
main window, which will mean that the progress indicator does not run. The calculation
must therefore be performed in its own thread, which is the thread calculator. In Java, you
can not directly interrupt a running thread, which must happen in the case of a timeout.
The problem can be solved with an Executor and a Future object (possibly see Java 8). The
thread calculator therefore starts with disabling the button Enter, and then an Executor object
is created that is used to start a task of the type Calculator:

class Calculator implements Callable<Void>
{
 public Void call()
 {
 try
 {
 lastValue = ctrl.calculate(txtEditor.getText().trim(), memory);
 }
 catch (Exception ex)
 {
 lastValue = "Error";
 }
 return null;
 }
}

It is then its call() method that performs the calculation. After this task has been created (in
the thread calculator) the thread is set to wait for the task to be performed or a timeout occurs.
In the case of the last the result is defined as the text Timeout, after which is executed an

executor.shutdownNow();

It looks a bit complex. The calculation is performed by a method in an Expression object in
the controller and is the method that takes time, and if executed directly, it will block the
main window, which will mean that the progress indicator does not run. The calculation
must therefore be performed in its own thread, which is the thread calculator. In Java, you
can not directly interrupt a running thread, which must happen in the case of a timeout.
The problem can be solved with an Executor and a Future object (possibly see Java 8). The
thread calculator therefore starts with disabling the button Enter, and then an Executor object
is created that is used to start a task of the type Calculator:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

172

 @Override
 public void run()
 {
 updateResult();
 cmdCalc.setDisable(false);
 }
 });
 }
 };
 progress.setVisible(true);
 calculator.start();
}

It looks a bit complex. The calculation is performed by a method in an Expression object in
the controller and is the method that takes time, and if executed directly, it will block the
main window, which will mean that the progress indicator does not run. The calculation
must therefore be performed in its own thread, which is the thread calculator. In Java, you
can not directly interrupt a running thread, which must happen in the case of a timeout.
The problem can be solved with an Executor and a Future object (possibly see Java 8). The
thread calculator therefore starts with disabling the button Enter, and then an Executor object
is created that is used to start a task of the type Calculator:

class Calculator implements Callable<Void>
{
 public Void call()
 {
 try
 {
 lastValue = ctrl.calculate(txtEditor.getText().trim(), memory);
 }
 catch (Exception ex)
 {
 lastValue = "Error";
 }
 return null;
 }
}

It is then its call() method that performs the calculation. After this task has been created (in
the thread calculator) the thread is set to wait for the task to be performed or a timeout occurs.
In the case of the last the result is defined as the text Timeout, after which is executed an

executor.shutdownNow();

It is then its call() method that performs the calculation. After this task has been created (in
the thread calculator) the thread is set to wait for the task to be performed or a timeout occurs.
In the case of the last the result is defined as the text Timeout, after which is executed an

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

172

 @Override
 public void run()
 {
 updateResult();
 cmdCalc.setDisable(false);
 }
 });
 }
 };
 progress.setVisible(true);
 calculator.start();
}

It looks a bit complex. The calculation is performed by a method in an Expression object in
the controller and is the method that takes time, and if executed directly, it will block the
main window, which will mean that the progress indicator does not run. The calculation
must therefore be performed in its own thread, which is the thread calculator. In Java, you
can not directly interrupt a running thread, which must happen in the case of a timeout.
The problem can be solved with an Executor and a Future object (possibly see Java 8). The
thread calculator therefore starts with disabling the button Enter, and then an Executor object
is created that is used to start a task of the type Calculator:

class Calculator implements Callable<Void>
{
 public Void call()
 {
 try
 {
 lastValue = ctrl.calculate(txtEditor.getText().trim(), memory);
 }
 catch (Exception ex)
 {
 lastValue = "Error";
 }
 return null;
 }
}

It is then its call() method that performs the calculation. After this task has been created (in
the thread calculator) the thread is set to wait for the task to be performed or a timeout occurs.
In the case of the last the result is defined as the text Timeout, after which is executed an

executor.shutdownNow();

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

175

This causes that threats performed by the task to terminate, and even if it is still running
due to a timeout. Hereafter the following method is called which updates the result:

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A FINAL EXAMPLE

173

This causes that threats performed by the task to terminate, and even if it is still running
due to a timeout. Hereafter the following method is called which updates the result:

private void updateResult()
{
 String text = txtDisplay.getText();
 if (text.length() > 0) text += "\n";
 txtDisplay.setText(text + lastValue);
 progress.setVisible(false);
	txtEditor.requestFocus();
 position = txtEditor.getText().trim().length();
 txtEditor.selectRange(position, position);
}

and the button will be enabled agian. After the thread calculator is defined, it is started and
the result is that the calculation is performed in a thread (of a task object) that is started
by the thread calculator that starts when clicking the Enter button.

Styling the program

After the above iterations, all windows and nodes are shown on basis of the default styles
in JavaFX, and often, by a program of the current kind, it will be quite good, but if you
want to put your own touch on how the components appear or for some reason want to
change the specific components look and feel, you can add a style sheet. It is preferable
not to directly assign values to properties in the code, as a style sheet makes it much easier
to maintain the code.

There are several strategies, but you can proceed as follows. The program (the main window)
has the following groups of components:

 - 1 TextArea for the display (the result)
 - 1 TextField to the editor field
 - 1 ListView to variables
 - 1 Button to the Enter button
 - 5 Button controls to commands (Clr Result, Clr Editor, Precision, RCL, STO)
 - 2 Button controls to consts (Pi, e)
 - 36 Button controls to functions
 - 7 Menu controls
 - 41 MenuItem controls
 - 1 ProgressIndicator

and the button will be enabled agian. After the thread calculator is defined, it is started and
the result is that the calculation is performed in a thread (of a task object) that is started
by the thread calculator that starts when clicking the Enter button.

Styling the program

After the above iterations, all windows and nodes are shown on basis of the default styles
in JavaFX, and often, by a program of the current kind, it will be quite good, but if you
want to put your own touch on how the components appear or for some reason want to
change the specific components look and feel, you can add a style sheet. It is preferable
not to directly assign values to properties in the code, as a style sheet makes it much easier
to maintain the code.

There are several strategies, but you can proceed as follows. The program (the main window)
has the following groups of components:

 - 1 TextArea for the display (the result)
 - 1 TextField to the editor field
 - 1 ListView to variables
 - 1 Button to the Enter button
 - 5 Button controls to commands (Clr Result, Clr Editor, Precision, RCL, STO)
 - 2 Button controls to consts (Pi, e)
 - 36 Button controls to functions
 - 7 Menu controls
 - 41 MenuItem controls
 - 1 ProgressIndicator

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

176176

 - 1 Label to the text in the status line
 - 1 Label to precision
 - 1 Label to the filename
 - 1 Label to the variable name in the list box
 - 1 Label to the variable valie in the list box

You can then in a style sheet define a class (an empty class) for each of these groups (15
classes in total) and then associate these classes with the individual components. You can then
write the styles you want to use and the advantage is that you can change the presentation
of controls without changing the Java code, and as the most important thing, you can
delegate the work to developers with special skills in styling.

In this case, I have added a style sheet named mainstyles.css and written a few styles – and
maybe even most for the example’s sake.

You can then repeat it for all the application’s windows and dialogs, and maybe use the
same style sheet for all or most dialogs. That way, you only have to write styles somewhere,
and all of the application’s dialog boxes have the same look and feel. In this case, I have
added a style sheet named dlgstyles.css, which is used by all dialogs. In many examples, you

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

177

may want to use a single style sheet, which is used by all windows, and of course (at least
for small programs) it may be appropriate.

Refactoring

Now the program is in principle complete and consists of the following files:

I have previously argued that in this place you should conduct a code review, inspecting the
code, adding comments, removing disabilities, and more. This code review often has character
of a refactoring, which may result in code being moved to new classes or reorganizing the
code in another way. Especially if the program is developed through many small iterations
with the character of prototyping as in this case, there is a great risk that it may go beyond
the architecture, and in particular there is a risk that the class of the main window swells
up and becomes inappropriately design. For the sake of future maintenance, therefore,
refactoring is important, and you should focus on the following:

 - If there are import statements that are no longer necessary (NetBeans shows which
ones), they should be removed.

 - If there are variables that are no longer used, they should also be deleted.
 - If there is code (such as methods) that are not used, it should be removed.
 - Has instance variables and methods appropriate names. If not, consider changing

the names so that they better reflect the use.
 - Consider visibility, so only what it’s going to be public is public while the rest is

private and possibly protected.

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

178

 - Are variables and properties located in the right place (in the right classes) and here
you must have the MVC pattern in mind. Often the user interface will contain
variables that should be moved to the controller or model.

 - Pay special attention to code repetition where the same code is written in several
places. Such a code should typically be moved to its own method, and the code
repetitions can then be replaced by the call of this method.

 - Pay attention to the size of classes. If classes are very large, such as many hundred
of lines or more, you might want to consider splitting up the class into several
classes. Not that you must necessarily, but a class on a thousand lines or more is
hard to overlook.

 - Be aware of event handlers, as they tend to contain code related to business logic,
and if necessary, this code should be moved to controller classes (possibly to the
model). In general, event handlers should be as simple as possible and contain only
code that directly concerns the user interface. It’s a tough balance, since delegation
of the code to the controller and model layers can also lead to code that is difficult
to read and that the user interface needs to be observer for the controller and model.
However, it should be noted that the user interface should contain only what is
necessary to update the components.

And so: Refactoring is an important activity for future maintenance, but make sure that the
process does not introduce new errors in the program. The program must then be tested
again after the activity is completed.

And then there are the comments, which are also part of the refactoring process or rather
the maintenance of the comments. I have previously argued the importance of comments
and especially the process of writing the comments. These views are still valid, but if you
see my program examples (what the readers hopefully do), I have to admit that there is a
long line between the comments. Should the truth come true, I must also admit that I am
a bit ambivalent with regard to comments: I know it’s right to comment on the code, but
I do not do that often, so some remarks about this problem.

It’s a big job to write comments – at least if you have to make it complete, and then the
comments also has to tell you something. You must therefore necessarily refer to whether
it is worth the work. Comments documents the code and it is certainly important, but
I find that good program architecture and good names for variables and methods are far
more important – it is also a form of comments. The goal of all is to make the code easier
to read and understand, and here I find that the things I have mentioned above regarding
refactoring, exceeds the value of comments. Comments have definitely their applications, but
with good names and a good architecture, there is a tendency for comments to commenting

JAVA 14: DEVELOPMENT OF APPLICATIONS
WITH JAVAFX: SOFTWARE DEVELOPMENT A fInAl eXAmple

179179

on self-esteem and comments make comments for their own sake, and if so, it’s not worth
the effort – then there is hardly anyone who will pay for the assignment.

Now it’s probably not either, but to explain a little about my wings, I will mention that
when I have to read and understand foreign code, one of the first things I do is to delete
all comments. They simply seem disturbing to me – at least if it’s a nice code. Is that the
way it matters, of course, it does not make much sense of writing comments. Of course, it
also has something to do with which code it is, where comments of the code in the user
interface are rarely valuable, where comments of complex algorithms in control and model
days may be required.

I know that not everyone will agree with these views, but at least they explain why my code
often lacks comments, which also reflects that much of what I should write as comments
is a part of the text in the books.

http://s.bookboon.com/BI

	Foreword
	1	Introduction
	1.1	HelloFX
	1.2	HelloLines

	2	Architecture of JavaFX
	Exersice 1

	3	2D Shapes
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 11
	3.1	SVG
	Exercise 12
	3.2	A Path
	Exercise 13
	Exercise 14
	3.3	Shape properties
	Exercise 15
	3.4	Shape operations

	4	Text
	5	Effects
	Problem 1
	5.1	Colors
	5.2	Images
	5.3	Light
	Problem 2

	6	Transformations
	Exercise 16
	Exercise 17
	Exercise 18
	6.1	Animations
	Exercise 19
	Exercise 20
	Exercise 21
	Exercise 22
	Exercise 23
	Exercise 24

	7	Components
	7.1	Layout
	7.2	Events
	7.3	Components
	Exercise 25
	Exercise 26
	Exercise 27
	Exercise 28
	Problem 3
	Exercise 29
	Exercise 30
	Exercise 31
	Exercise 33
	Exercise 34
	Problem 4
	Exercise 35
	Exercise 36
	7.4	Dialogs

	8	Styling
	Exercise 37

	9	FXML
	9.1	Create objects
	9.2	DialogFXML
	9.3	About FXML

	10	A final example
	10.1	Development

