

﻿

2

POUL KLAUSEN

JAVA 15: MORE
ABOUT JAVAFX
SOFTWARE DEVELOPMENT

3

Java 15: More about JavaFX: Software Development
1st edition
© 2018 Poul Klausen & bookboon.com
ISBN 978-87-403-2200-2
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Contents

44

CONTENTS

	 Foreword	 7

1	 Introduction	 9

2	 JavaFX properties	 10

2.1	 Binding properties	 20

	 Exercise 1	 26

2.2	 Observable collections	 28

2.3	 Binding observable collections	 35

	 Exercise 2	 41

2.4	 Binding persons	 43

2.5	 The screen	 47

2.6	 Decorations	 50

2.7	 Modality	 53

	 Problem 1	 56

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Contents

5

3	 Advanced controls	 59

3.1	 TableView	 59

	 Exercise 3	 71

3.2	 Edit cells in a TableView	 71

	 Problem 2	 83

3.3	 Filters	 85

	 Exercise 4	 87

3.4	 A TreeView control	 88

	 Exercise 5	 96

3.5	 A TreeView with Country objects	 98

3.6	 A TreeTableView	 103

3.7	 A TreeTableView, an extended example	 110

4	 Drag and drop	 114

4.1	 Simple press-drag-release gesture	 115

4.2	 Full press-drag-release gesture	 118

4.3	 Drag-and-drop gesture	 120

5	 MVC	 134

6	 User defined controls	 144

6.1	 A LabelField	 146

6.2	 A Canvas	 148

6.3	 A Spinner	 150

7	 JavaFX and concurrency	 153

7.1	 A Task	 156

7.2	 A Service	 162

8	 3D Shapes	 163

8.1	 Box, Sphere and Cylinder	 166

8.2	 Material	 169

8.3	 Draw mode	 171

8.4	 Cull face	 172

8.5	 Camera and Light	 175

	 Exercise 6	 181

	 Exercise 7	 182

8.6	 A last remark	 182

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Contents

6

9	 Charts	 183

10	 Final Example	 191

10.1	 Development	 192

10.2	 A simple prototype	 193

10.3	 Drawing the axes	 194

10.4	 Settings for the coordinate system	 196

10.5	 Drawing a function from a formal	 198

10.6	 The program architecture	 200

10.7	 Drawing a plot	 202

10.8	 Refactoring the expression dialog	 205

10.9	 Implementing the Functions menu	 207

10.10	 Implementing the Zoom menu	 212

10.11	 Implementing the Edit menu	 213

10.12	 Implementing the Calculations menu	 218

10.13	 Implementing the File menu	 218

10.14	 A final iteration	 224

10.15	 A last remark	 226

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Foreword

7

FOREWORD

This book is the fifteenth in a series of books on software development and the book is
a natural continuation of the previous book on programming of GUI applications with
JavaFX. The book focuses primarily on JavaFX properties and data bindings, but also treats
the basic architecture of a JavaFX application as Model-View-Presenter. Other important
topics are advanced controls like TableView and TreeView and also charts and 3D graphics
are mentioned. The book requires knowledge of JavaFX corresponding to what is dealt
with in the book Java 14. After reading this book and solving the corresponding exercises
and tasks, you should be able to write completed GUI applications using JavaFX and use
JavaFX as a alternative to Swing.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Foreword

8

The programming language is, as mentioned Java, and besides the books use the following
products:

1.	NetBeans as IDE for application development
2.	MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
3.	GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Introduction

9

1	 INTRODUCTION

This book is an immediate continuation of the previous book on JavaFX, which was not
included due to the number of pages, or topics that are more technical:

-- Properties and databinding
-- Advanced controls
-- Drag and drop
-- Architecture and MVC
-- User defined controls
-- JavaFX and concurrency
-- 3D Shapes
-- Charts
-- Final example

You can also say that the book completes what is needed to write Java desktop applications
with a graphical user interface.

As shown in the above list, this book includes many topics, but apart from the first about
properties and binding, the individual topics do not matter to each other and you can
read the topics in line with current needs. The book should therefore show how to solve
concrete problems as illustrated by examples, and compared to the previous book there will
be only a few exercises.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

10

2	 JAVAFX PROPERTIES

Properties and beans have been mentioned several times in the previous books, and all
classes in JavaFX defines properties that you can read or modify as a programmer. In a
typical bean, a property is nothing but get methods and possibly set methodd that represents
a property of the current class, and typically corresponds to a variable with associated get
and set methods. In addition, a Java Bean uses a particular name convention. In JavaFX,
however, a property is a bit more, as it is sometimes necessary to know. All properties in
JavaFX are observable, where an observer can receive notifications regarding invalidations and
changes. There is a strict distinction between read/write properties and read-only properties.
The value of a property can be either a single value or a collection.

Another important difference is that a property is always an object whose class is part of a
particular class hierarchy for properties. As examples can be mentioned

-- IntegerProperty
-- DoubleProperty

(and there are corresponding classes for the other simple data types). These classes are actually
abstract, and for each class there are two specific classes that for an IntegerProperty are

-- SimpleIntegerProperty
-- ReadOnlyIntegerWrapper

where the first represents a read/write property, while the other represents a read-only
property. A property class defines as usual get and set methods, but the class also defines
two methods called getValue() and setValue(). For primitive types, the get and set methods
works on primitive types (int, double and so on), while the other two works on objects
(such as Integer, Double, etc.). For reference types like

-- StringProperty
-- ObjectProperty<T>

all four methods works on objects, and because of autoboxing, there is no difference in
practice, for example on get and getValue(). As an example, below is shown a method that
creates a read/write IntegerProperty

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

11

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

11

private static void test01()
{
 IntegerProperty p = new SimpleIntegerProperty(100);
 System.out.println(p.get());
 p.set(200);
 System.out.println(p);
}

and the method (which is a metodin the project FXProperties) is performed you get the result:

100
IntegerProperty [value: 200]

Here you should note the last line that is the result of toString() in the class SimpleIntegerProperty,
while the first prints the value of an int.

Read-only properties are actually a bit more complex as they are a wrapper about two
properties that the system ensures is synchronized. Here, the one is a read-only property,
while the other is a read/write. The idea is that from the outside it is a read-only property,
but it can be changed internally from the class in which it is defined, and the application
is typical as a private instance variable.

As an example, below is shown a class with two JavaFX properties:

package fxproperties;

import javafx.beans.property.*;

public class Counter
{
 private IntegerProperty step = new SimpleIntegerProperty(1);
 private ReadOnlyIntegerWrapper value = new ReadOnlyIntegerWrapper(0);

	public	final	IntegerProperty	stepProperty()
 {
 return step;
 }

	public	final	int	getStep()
 {
 return step.get();
 }

and the method (which is a metodin the project FXProperties) is performed you get the result:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

11

private static void test01()
{
 IntegerProperty p = new SimpleIntegerProperty(100);
 System.out.println(p.get());
 p.set(200);
 System.out.println(p);
}

and the method (which is a metodin the project FXProperties) is performed you get the result:

100
IntegerProperty [value: 200]

Here you should note the last line that is the result of toString() in the class SimpleIntegerProperty,
while the first prints the value of an int.

Read-only properties are actually a bit more complex as they are a wrapper about two
properties that the system ensures is synchronized. Here, the one is a read-only property,
while the other is a read/write. The idea is that from the outside it is a read-only property,
but it can be changed internally from the class in which it is defined, and the application
is typical as a private instance variable.

As an example, below is shown a class with two JavaFX properties:

package fxproperties;

import javafx.beans.property.*;

public class Counter
{
 private IntegerProperty step = new SimpleIntegerProperty(1);
 private ReadOnlyIntegerWrapper value = new ReadOnlyIntegerWrapper(0);

	public	final	IntegerProperty	stepProperty()
 {
 return step;
 }

	public	final	int	getStep()
 {
 return step.get();
 }

Here you should note the last line that is the result of toString() in the class SimpleIntegerProperty,
while the first prints the value of an int.

Read-only properties are actually a bit more complex as they are a wrapper about two
properties that the system ensures is synchronized. Here, the one is a read-only property,
while the other is a read/write. The idea is that from the outside it is a read-only property,
but it can be changed internally from the class in which it is defined, and the application
is typical as a private instance variable.

As an example, below is shown a class with two JavaFX properties:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

11

private static void test01()
{
 IntegerProperty p = new SimpleIntegerProperty(100);
 System.out.println(p.get());
 p.set(200);
 System.out.println(p);
}

and the method (which is a metodin the project FXProperties) is performed you get the result:

100
IntegerProperty [value: 200]

Here you should note the last line that is the result of toString() in the class SimpleIntegerProperty,
while the first prints the value of an int.

Read-only properties are actually a bit more complex as they are a wrapper about two
properties that the system ensures is synchronized. Here, the one is a read-only property,
while the other is a read/write. The idea is that from the outside it is a read-only property,
but it can be changed internally from the class in which it is defined, and the application
is typical as a private instance variable.

As an example, below is shown a class with two JavaFX properties:

package fxproperties;

import javafx.beans.property.*;

public class Counter
{
 private IntegerProperty step = new SimpleIntegerProperty(1);
 private ReadOnlyIntegerWrapper value = new ReadOnlyIntegerWrapper(0);

	public	final	IntegerProperty	stepProperty()
 {
 return step;
 }

	public	final	int	getStep()
 {
 return step.get();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

1212

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

1212

	public	final	void	setStep(int	step)
 {
 this.step.set(step);
 }

	public	final	ReadOnlyIntegerProperty	valueProperty()	
 {
 return value.getReadOnlyProperty();
 }

	public	final	int	getValue()
 {
 return value.get();
 }

 public void increase()
 {
 value.set(value.get() + step.get());
 }

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

13

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

13

 public void decrease()
 {
 value.set(value.get() – step.get());
 }

 @Override
 public String toString()
 {
 return "" + value.get();
 }
}

This is an example of a JavaFX bean. The two properties are called step and value and are a
read/write property and a read-only property. For both properties is defined a method that
returns the value, for example:

public	final	IntegerProperty	stepProperty()
{
 return step;
}

Here you should note the name conventions, which is the name followed by the word
property, and furthermore that it is defined final. Finally, there are defined common get
and set methods (which are also defined final). In principle, they are not necessary, but it
is also part of the convention, to be in accordance with the usual Java beans convention.
You should note that the methods increase() and decrease() perform a set method on the
property value – even if it is readonly. That’s okay, because it takes place internally in the
class Counter. Below is a method that uses the class:

private static void test02()
{
 Counter counter = new Counter();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
 for (int i = 0; i < 10; ++i) counter.increase();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
 counter.setStep(10);
 for (int i = 0; i < 10; ++i) counter.increase();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
//	counter.valueProperty().setValue(10);
}

There is not much to note, but you must note the last statement, which is a comment,
and the statement can not actually be translated, since valueProperty() returns a read-only
property and therefore does not have a set() method.

This is an example of a JavaFX bean. The two properties are called step and value and are a
read/write property and a read-only property. For both properties is defined a method that
returns the value, for example:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

13

 public void decrease()
 {
 value.set(value.get() – step.get());
 }

 @Override
 public String toString()
 {
 return "" + value.get();
 }
}

This is an example of a JavaFX bean. The two properties are called step and value and are a
read/write property and a read-only property. For both properties is defined a method that
returns the value, for example:

public	final	IntegerProperty	stepProperty()
{
 return step;
}

Here you should note the name conventions, which is the name followed by the word
property, and furthermore that it is defined final. Finally, there are defined common get
and set methods (which are also defined final). In principle, they are not necessary, but it
is also part of the convention, to be in accordance with the usual Java beans convention.
You should note that the methods increase() and decrease() perform a set method on the
property value – even if it is readonly. That’s okay, because it takes place internally in the
class Counter. Below is a method that uses the class:

private static void test02()
{
 Counter counter = new Counter();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
 for (int i = 0; i < 10; ++i) counter.increase();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
 counter.setStep(10);
 for (int i = 0; i < 10; ++i) counter.increase();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
//	counter.valueProperty().setValue(10);
}

There is not much to note, but you must note the last statement, which is a comment,
and the statement can not actually be translated, since valueProperty() returns a read-only
property and therefore does not have a set() method.

Here you should note the name conventions, which is the name followed by the word
property, and furthermore that it is defined final. Finally, there are defined common get
and set methods (which are also defined final). In principle, they are not necessary, but it
is also part of the convention, to be in accordance with the usual Java beans convention.
You should note that the methods increase() and decrease() perform a set method on the
property value – even if it is readonly. That’s okay, because it takes place internally in the
class Counter. Below is a method that uses the class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

13

 public void decrease()
 {
 value.set(value.get() – step.get());
 }

 @Override
 public String toString()
 {
 return "" + value.get();
 }
}

This is an example of a JavaFX bean. The two properties are called step and value and are a
read/write property and a read-only property. For both properties is defined a method that
returns the value, for example:

public	final	IntegerProperty	stepProperty()
{
 return step;
}

Here you should note the name conventions, which is the name followed by the word
property, and furthermore that it is defined final. Finally, there are defined common get
and set methods (which are also defined final). In principle, they are not necessary, but it
is also part of the convention, to be in accordance with the usual Java beans convention.
You should note that the methods increase() and decrease() perform a set method on the
property value – even if it is readonly. That’s okay, because it takes place internally in the
class Counter. Below is a method that uses the class:

private static void test02()
{
 Counter counter = new Counter();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
 for (int i = 0; i < 10; ++i) counter.increase();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
 counter.setStep(10);
 for (int i = 0; i < 10; ++i) counter.increase();
	System.out.printf("%d	%s\n",	counter.getValue(),	counter);
//	counter.valueProperty().setValue(10);
}

There is not much to note, but you must note the last statement, which is a comment,
and the statement can not actually be translated, since valueProperty() returns a read-only
property and therefore does not have a set() method.

There is not much to note, but you must note the last statement, which is a comment,
and the statement can not actually be translated, since valueProperty() returns a read-only
property and therefore does not have a set() method.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

14

A property class encapsulates three values

1.	 a reference to the bean, that the property belongs to
2.	 a name, that is only a String
3.	 a value

and the class has constructors, so you can initialize these values as desired. For example,
for the class SimpleIntegerProperty:

-- SimpleIntegerProperty()
-- SimpleIntegerProperty(int value)
-- SimpleIntegerProperty(Object bean, String name)
-- SimpleIntegerProperty(Object bean, String name, int value)

and a property has a getBean() and a getName() method. To show another example of the
pattern that JavaFX uses regarding properties, below is shown a class, which is a normal bean:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

14

A property class encapsulates three values

1. a reference to the bean, that the property belongs to
2. a name, that is only a String
3. a value

and the class has constructors, so you can initialize these values as desired. For example,
for the class SimpleIntegerProperty:

 - SimpleIntegerProperty()
 - SimpleIntegerProperty(int value)
 - SimpleIntegerProperty(Object bean, String name)
 - SimpleIntegerProperty(Object bean, String name, int value)

and a property has a getBean() and a getName() method. To show another example of the
pattern that JavaFX uses regarding properties, below is shown a class, which is a normal bean:

package fxproperties;

import javafx.beans.property.*;

public class King
{
 private ReadOnlyStringWrapper name = new ReadOnlyStringWrapper(this, "name");
 private IntegerProperty from = new SimpleIntegerProperty(this, "from");
 private IntegerProperty to = new SimpleIntegerProperty(this, "to", 9999);

 public King()
 {
 }

 public King(String name, int from, int to)
 {
 this.name.set(name);
 this.from.set(from);
 this.to.set(to);
 }

	public	final	String	getName()	
 {
 return name.get();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

1515

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

1515

	public	final	ReadOnlyStringProperty	nameProperty()	
 {
 return name.getReadOnlyProperty();
 }

	public	final	int	getFrom()	
 {
 return from.get();
 }

	public	final	void	setFrom(int	from)	
 {
 this.from.set(from);
 }

	public	final	IntegerProperty	fromProperty()	
 {
 return from;
 }

	public	final	int	getTo()	
 {
 return to.get();
 }

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

16

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

16

	public	final	void	setTo(int	to)	
 {
 this.to.set(to);
 }

	public	final	IntegerProperty	toProperty()	
 {
 return to;
 }
}

The class has three properties, the first being a read-only property, while the others are read/
write properties. You should note that in JavaFX, properties are not created as primitive
types, but as Property objects. You define get and set methods in the usual way and with
the same names convention for what is standard for Java beans. You should note how these
methods refer to the individual properties, and that they are defined final. It is part of the
pattern that JavaFX uses. For each property, a method is also defined that returns the actual
property object, such as fromProperty(). It is also a part of the pattern. Finally, you should
note that name is a read-only property and therefore has no set method. Also note that the
method nameProperty() returns a ReadOnlyStringWrapper and not a StringProperty.

That properties as illustrated above are class types means that many objects must be instantiated.
The reason that a property is defined as an object type is a number of advanced features
that are associated with a property (as fire events and binding), but often they are not used,
and therefore JavaFX uses largely lazy updating, where an object is first instantiated when
needed. The principle can be illustrated with the class King as follows:

public class King
{
	private	static	final	String	DK	=	"DK";
 private StringProperty country;
 …

 public String getCountry()
 {
	 return	country	==	null	?	DK	:	country.get();
 }

 public void setCountry(String country)
 {
	 if	(country	!=	null	||	!DK.equals(country))	countryProperty().set(country);
 }

The class has three properties, the first being a read-only property, while the others are read/
write properties. You should note that in JavaFX, properties are not created as primitive
types, but as Property objects. You define get and set methods in the usual way and with
the same names convention for what is standard for Java beans. You should note how these
methods refer to the individual properties, and that they are defined final. It is part of the
pattern that JavaFX uses. For each property, a method is also defined that returns the actual
property object, such as fromProperty(). It is also a part of the pattern. Finally, you should
note that name is a read-only property and therefore has no set method. Also note that the
method nameProperty() returns a ReadOnlyStringWrapper and not a StringProperty.

That properties as illustrated above are class types means that many objects must be instantiated.
The reason that a property is defined as an object type is a number of advanced features
that are associated with a property (as fire events and binding), but often they are not used,
and therefore JavaFX uses largely lazy updating, where an object is first instantiated when
needed. The principle can be illustrated with the class King as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

16

	public	final	void	setTo(int	to)	
 {
 this.to.set(to);
 }

	public	final	IntegerProperty	toProperty()	
 {
 return to;
 }
}

The class has three properties, the first being a read-only property, while the others are read/
write properties. You should note that in JavaFX, properties are not created as primitive
types, but as Property objects. You define get and set methods in the usual way and with
the same names convention for what is standard for Java beans. You should note how these
methods refer to the individual properties, and that they are defined final. It is part of the
pattern that JavaFX uses. For each property, a method is also defined that returns the actual
property object, such as fromProperty(). It is also a part of the pattern. Finally, you should
note that name is a read-only property and therefore has no set method. Also note that the
method nameProperty() returns a ReadOnlyStringWrapper and not a StringProperty.

That properties as illustrated above are class types means that many objects must be instantiated.
The reason that a property is defined as an object type is a number of advanced features
that are associated with a property (as fire events and binding), but often they are not used,
and therefore JavaFX uses largely lazy updating, where an object is first instantiated when
needed. The principle can be illustrated with the class King as follows:

public class King
{
	private	static	final	String	DK	=	"DK";
 private StringProperty country;
 …

 public String getCountry()
 {
	 return	country	==	null	?	DK	:	country.get();
 }

 public void setCountry(String country)
 {
	 if	(country	!=	null	||	!DK.equals(country))	countryProperty().set(country);
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

17

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

17

 public StringProperty countryProperty()
 {
	 if	(country	==	null)	country	=	new	SimpleStringProperty(this,	"country",	DK);
 return country;
 }
}

where the class now has an additional property, representing the name of the country from
where the king is from. If the vast majority of kings come from Denmark, and when you
only need to read this value, it is not appropriate (for the sake of performance) to instantiate
a Property object for each King object. Therefore, the variable country from the start is null
and an object is first instantiated if you try to change the value to something else than DK
or if you refer to the property with countryProperty().

The above may seem overwhelming, but the reason is that properties in JavaFX are observable
and may be associated with an InvalidationListener and a ChangeListener <? super T>. The
first interface defines a method invalidated(), while the other defines a method changed().
When the value of a property changes from valid to invalid, an invalidation event is
generated. When it does not necessarily happens every time the value of a property changes
(or otherwise becomes invalid), it is to avoid generating a line of invalidation events. Change
events are, however, generated each time the value of a property is changed. The following
method will illustrate when these events occurs:

private static void test03()
{
 IntegerProperty p = new SimpleIntegerProperty(100);
	p.addListener(FXProperties::invalidated);
//	 p.addListener(FXProperties::changed);
 System.out.println("Set to 101");
 p.set(101);
 System.out.println("Changed to 101");
 System.out.println("Set to 102");
 p.set(102);
 System.out.println("Changed to 102");
 System.out.println("Set to 102");
 p.set(102);
 System.out.println("Changed to 103");
 System.out.println("Set to " + p.get());
 p.set(103);
 System.out.println("Changed to 103");
}

public static void invalidated(Observable p)
{
 System.out.println("Property is invalid");
}

where the class now has an additional property, representing the name of the country from
where the king is from. If the vast majority of kings come from Denmark, and when you
only need to read this value, it is not appropriate (for the sake of performance) to instantiate
a Property object for each King object. Therefore, the variable country from the start is null
and an object is first instantiated if you try to change the value to something else than DK
or if you refer to the property with countryProperty().

The above may seem overwhelming, but the reason is that properties in JavaFX are observable
and may be associated with an InvalidationListener and a ChangeListener <? super T>. The
first interface defines a method invalidated(), while the other defines a method changed().
When the value of a property changes from valid to invalid, an invalidation event is
generated. When it does not necessarily happens every time the value of a property changes
(or otherwise becomes invalid), it is to avoid generating a line of invalidation events. Change
events are, however, generated each time the value of a property is changed. The following
method will illustrate when these events occurs:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

17

 public StringProperty countryProperty()
 {
	 if	(country	==	null)	country	=	new	SimpleStringProperty(this,	"country",	DK);
 return country;
 }
}

where the class now has an additional property, representing the name of the country from
where the king is from. If the vast majority of kings come from Denmark, and when you
only need to read this value, it is not appropriate (for the sake of performance) to instantiate
a Property object for each King object. Therefore, the variable country from the start is null
and an object is first instantiated if you try to change the value to something else than DK
or if you refer to the property with countryProperty().

The above may seem overwhelming, but the reason is that properties in JavaFX are observable
and may be associated with an InvalidationListener and a ChangeListener <? super T>. The
first interface defines a method invalidated(), while the other defines a method changed().
When the value of a property changes from valid to invalid, an invalidation event is
generated. When it does not necessarily happens every time the value of a property changes
(or otherwise becomes invalid), it is to avoid generating a line of invalidation events. Change
events are, however, generated each time the value of a property is changed. The following
method will illustrate when these events occurs:

private static void test03()
{
 IntegerProperty p = new SimpleIntegerProperty(100);
	p.addListener(FXProperties::invalidated);
//	 p.addListener(FXProperties::changed);
 System.out.println("Set to 101");
 p.set(101);
 System.out.println("Changed to 101");
 System.out.println("Set to 102");
 p.set(102);
 System.out.println("Changed to 102");
 System.out.println("Set to 102");
 p.set(102);
 System.out.println("Changed to 103");
 System.out.println("Set to " + p.get());
 p.set(103);
 System.out.println("Changed to 103");
}

public static void invalidated(Observable p)
{
 System.out.println("Property is invalid");
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

1818

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

1818

public	static	void	changed(ObservableValue<?	extends	Number>	p,
	Number	oldValue,	Number	newValue)	
{
 System.out.println("Property is changed");
}

At the bottom, the event handlers are defined for an invalidation event and a change event,
respectively. You must note the parameters where the first has a reference to the property
that has fired the event in question. The other has a similar reference to the property, and
also the old value and the value after the change. Note that the type of the value is Number,
which is the base class for an Integer. If you performs the function (without removing the
comment) the result is:

Set to 101
Property is invalid
Changed to 101
Set to 102
Changed to 102
Set to 102
Changed to 102
Set to 103
Property is invalid
Changed to 103

At the bottom, the event handlers are defined for an invalidation event and a change event,
respectively. You must note the parameters where the first has a reference to the property
that has fired the event in question. The other has a similar reference to the property, and
also the old value and the value after the change. Note that the type of the value is Number,
which is the base class for an Integer. If you performs the function (without removing the
comment) the result is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

1818

public	static	void	changed(ObservableValue<?	extends	Number>	p,
	Number	oldValue,	Number	newValue)	
{
 System.out.println("Property is changed");
}

At the bottom, the event handlers are defined for an invalidation event and a change event,
respectively. You must note the parameters where the first has a reference to the property
that has fired the event in question. The other has a similar reference to the property, and
also the old value and the value after the change. Note that the type of the value is Number,
which is the base class for an Integer. If you performs the function (without removing the
comment) the result is:

Set to 101
Property is invalid
Changed to 101
Set to 102
Changed to 102
Set to 102
Changed to 102
Set to 103
Property is invalid
Changed to 103

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

19

and that is, the event handler invalidated() is performed twice. The function creates a
read/write IntegerProperty with the value 100, and is then valid. Then an event handler
for invalidate events is added. When the value of p changes to 101, the property becomes
invalid and an invalidate event is triggered. When the value changes to 102, an event is
not fired because it is already invalid. Then the method reads the property in question (in
System.out.println()), which, among other things, means that it becomes valid. When it is
subsequently set to 102, no invalidation event is fired, as the value is not changed. This
happens when the value changes to 103.

If you then remove the comment and set a comment in front of the first addListener(),
instead, a ChangeListener is added, and if you then performs the method you get the result:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

19

and that is, the event handler invalidated() is performed twice. The function creates a
read/write IntegerProperty with the value 100, and is then valid. Then an event handler
for invalidate events is added. When the value of p changes to 101, the property becomes
invalid and an invalidate event is triggered. When the value changes to 102, an event is
not fired because it is already invalid. Then the method reads the property in question (in
System.out.println()), which, among other things, means that it becomes valid. When it is
subsequently set to 102, no invalidation event is fired, as the value is not changed. This
happens when the value changes to 103.

If you then remove the comment and set a comment in front of the first addListener(),
instead, a ChangeListener is added, and if you then performs the method you get the result:

Set to 101
Property is changed
Changed to 101
Set to 102
Property is changed
Changed to 102
Set to 102
Changed to 102
Set to 103
Property is changed
Changed to 103

Note that a change event is performed each time the value changes, but not when the value
is set to 102 the second time as the value is not changed.

Another difference between invalidation events and change events is that JavaFX for
invalidation events uses lazy evaluation, while change events use eager evaluation as a value
must be transferred to the event handler.

To some extent, one can achieve the same with an invalidation event and a change event,
but an invalidation event is slightly more effective as it is not necessarily fired whenever the
value changes and as it does not necessarily update the value. If you want to choose which
event you should listen to, the main rule is that if you do not read the value in the event
handler, you should listen to invalidation events, but if you read the value, you should
instead listen to a change event as it automatically updates the value (and thus validates
the property). You can see the effect if you in the above program removes both comments:

Set to 101
Property is invalid
Property is changed
Changed to 101

Note that a change event is performed each time the value changes, but not when the value
is set to 102 the second time as the value is not changed.

Another difference between invalidation events and change events is that JavaFX for
invalidation events uses lazy evaluation, while change events use eager evaluation as a value
must be transferred to the event handler.

To some extent, one can achieve the same with an invalidation event and a change event,
but an invalidation event is slightly more effective as it is not necessarily fired whenever the
value changes and as it does not necessarily update the value. If you want to choose which
event you should listen to, the main rule is that if you do not read the value in the event
handler, you should listen to invalidation events, but if you read the value, you should
instead listen to a change event as it automatically updates the value (and thus validates
the property). You can see the effect if you in the above program removes both comments:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

19

and that is, the event handler invalidated() is performed twice. The function creates a
read/write IntegerProperty with the value 100, and is then valid. Then an event handler
for invalidate events is added. When the value of p changes to 101, the property becomes
invalid and an invalidate event is triggered. When the value changes to 102, an event is
not fired because it is already invalid. Then the method reads the property in question (in
System.out.println()), which, among other things, means that it becomes valid. When it is
subsequently set to 102, no invalidation event is fired, as the value is not changed. This
happens when the value changes to 103.

If you then remove the comment and set a comment in front of the first addListener(),
instead, a ChangeListener is added, and if you then performs the method you get the result:

Set to 101
Property is changed
Changed to 101
Set to 102
Property is changed
Changed to 102
Set to 102
Changed to 102
Set to 103
Property is changed
Changed to 103

Note that a change event is performed each time the value changes, but not when the value
is set to 102 the second time as the value is not changed.

Another difference between invalidation events and change events is that JavaFX for
invalidation events uses lazy evaluation, while change events use eager evaluation as a value
must be transferred to the event handler.

To some extent, one can achieve the same with an invalidation event and a change event,
but an invalidation event is slightly more effective as it is not necessarily fired whenever the
value changes and as it does not necessarily update the value. If you want to choose which
event you should listen to, the main rule is that if you do not read the value in the event
handler, you should listen to invalidation events, but if you read the value, you should
instead listen to a change event as it automatically updates the value (and thus validates
the property). You can see the effect if you in the above program removes both comments:

Set to 101
Property is invalid
Property is changed
Changed to 101

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

20

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

20

Set to 102
Property is invalid
Property is changed
Changed to 102
Set to 102
Changed to 102
Set to 103
Property is invalid
Property is changed
Changed to 103

The result is that an invalidation event is firing every time the value changes.

2.1 BINDING PROPERTIES

JavaFX supports binding of properties where a property of a component or node can bind
to a property on another object. In general, it is relatively simple to use, but in fact, many
details are assigned to the concept, however, the classes in JavaFX are hidden the most. In
the following, I will illustrate with some simple examples what binding is about. Consider
the following method:

private static void test04()
{
 IntegerProperty x = new SimpleIntegerProperty(3);
 IntegerProperty y = new SimpleIntegerProperty(5);
 IntegerProperty z = new SimpleIntegerProperty(7);
 z.bind(x.add(y));
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
 x.set(11);
 y.set(13);
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
 z.unbind();
 x.set(17);
 y.set(19);
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
}

The method defines three properties of the type IntegerProperty initialized with values 3, 5
and 7. An IntegerProperty has an add() method that performs an addition of values of two
properties and returns a binding of the sum of the two properties which is an expression
of the type NumberBinding, representing the sum of the values of the two properties. This
binding is then linked to the property z. The next statement will print

Bound = true, z = 8

The result is that an invalidation event is firing every time the value changes.

2.1	 BINDING PROPERTIES

JavaFX supports binding of properties where a property of a component or node can bind
to a property on another object. In general, it is relatively simple to use, but in fact, many
details are assigned to the concept, however, the classes in JavaFX are hidden the most. In
the following, I will illustrate with some simple examples what binding is about. Consider
the following method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

20

Set to 102
Property is invalid
Property is changed
Changed to 102
Set to 102
Changed to 102
Set to 103
Property is invalid
Property is changed
Changed to 103

The result is that an invalidation event is firing every time the value changes.

2.1 BINDING PROPERTIES

JavaFX supports binding of properties where a property of a component or node can bind
to a property on another object. In general, it is relatively simple to use, but in fact, many
details are assigned to the concept, however, the classes in JavaFX are hidden the most. In
the following, I will illustrate with some simple examples what binding is about. Consider
the following method:

private static void test04()
{
 IntegerProperty x = new SimpleIntegerProperty(3);
 IntegerProperty y = new SimpleIntegerProperty(5);
 IntegerProperty z = new SimpleIntegerProperty(7);
 z.bind(x.add(y));
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
 x.set(11);
 y.set(13);
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
 z.unbind();
 x.set(17);
 y.set(19);
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
}

The method defines three properties of the type IntegerProperty initialized with values 3, 5
and 7. An IntegerProperty has an add() method that performs an addition of values of two
properties and returns a binding of the sum of the two properties which is an expression
of the type NumberBinding, representing the sum of the values of the two properties. This
binding is then linked to the property z. The next statement will print

Bound = true, z = 8

The method defines three properties of the type IntegerProperty initialized with values 3, 5
and 7. An IntegerProperty has an add() method that performs an addition of values of two
properties and returns a binding of the sum of the two properties which is an expression
of the type NumberBinding, representing the sum of the values of the two properties. This
binding is then linked to the property z. The next statement will print

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

20

Set to 102
Property is invalid
Property is changed
Changed to 102
Set to 102
Changed to 102
Set to 103
Property is invalid
Property is changed
Changed to 103

The result is that an invalidation event is firing every time the value changes.

2.1 BINDING PROPERTIES

JavaFX supports binding of properties where a property of a component or node can bind
to a property on another object. In general, it is relatively simple to use, but in fact, many
details are assigned to the concept, however, the classes in JavaFX are hidden the most. In
the following, I will illustrate with some simple examples what binding is about. Consider
the following method:

private static void test04()
{
 IntegerProperty x = new SimpleIntegerProperty(3);
 IntegerProperty y = new SimpleIntegerProperty(5);
 IntegerProperty z = new SimpleIntegerProperty(7);
 z.bind(x.add(y));
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
 x.set(11);
 y.set(13);
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
 z.unbind();
 x.set(17);
 y.set(19);
 System.out.println("Bound = " + z.isBound() + ", z = " + z.get());
}

The method defines three properties of the type IntegerProperty initialized with values 3, 5
and 7. An IntegerProperty has an add() method that performs an addition of values of two
properties and returns a binding of the sum of the two properties which is an expression
of the type NumberBinding, representing the sum of the values of the two properties. This
binding is then linked to the property z. The next statement will print

Bound = true, z = 8

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

2121

which states that the variable z is bound, and that its value is 8 and hence the sum of x and
y. That is, the value of z has been changed. Next, the two properties x and y are changed,
and the next statement prints

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

2121

which states that the variable z is bound, and that its value is 8 and hence the sum of x and
y. That is, the value of z has been changed. Next, the two properties x and y are changed,
and the next statement prints

Bound = true, z = 24

That is, changes of the two properties x and y automatically update z, which exactly is what
binding is about. The next statement again removes the binding of z, after which x and y
are changed again. The last statement will then print

Bound = false, z = 24

which partly shows that z is no longer bound and its value has not changed since it is no
longer linked to the two properties x and y.

A binding is thus an expression that is evaluated to a value. The expression consists of one
or more observable values, known as dependencies. The binding observes changes of its
dependencies and its value is automatically updated when its dependencies change values.
All property classes in JavaFX have built-in support for binding. There are two forms
of binding: Unidirectional binding and bidirectional binding. The above is an example of

That is, changes of the two properties x and y automatically update z, which exactly is what
binding is about. The next statement again removes the binding of z, after which x and y
are changed again. The last statement will then print

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

2121

which states that the variable z is bound, and that its value is 8 and hence the sum of x and
y. That is, the value of z has been changed. Next, the two properties x and y are changed,
and the next statement prints

Bound = true, z = 24

That is, changes of the two properties x and y automatically update z, which exactly is what
binding is about. The next statement again removes the binding of z, after which x and y
are changed again. The last statement will then print

Bound = false, z = 24

which partly shows that z is no longer bound and its value has not changed since it is no
longer linked to the two properties x and y.

A binding is thus an expression that is evaluated to a value. The expression consists of one
or more observable values, known as dependencies. The binding observes changes of its
dependencies and its value is automatically updated when its dependencies change values.
All property classes in JavaFX have built-in support for binding. There are two forms
of binding: Unidirectional binding and bidirectional binding. The above is an example of

which partly shows that z is no longer bound and its value has not changed since it is no
longer linked to the two properties x and y.

A binding is thus an expression that is evaluated to a value. The expression consists of one
or more observable values, known as dependencies. The binding observes changes of its
dependencies and its value is automatically updated when its dependencies change values.
All property classes in JavaFX have built-in support for binding. There are two forms
of binding: Unidirectional binding and bidirectional binding. The above is an example of

http://s.bookboon.com/elearningforkids

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

22

unidirectional binding, which is defined by the method bind(). There are several limitations
to unidirectional bindings, and you can not, for example, directly change the value of the
property that is bound. You can not directly change the value of z above. In addition, a
property can only be bound to one expression with unidirectional bindings, and trying to
bind it again, overrides the first binding.

A binding can also be bidirectional, which means that you can also change the value of the
property that is bound. Obviously, a binding like the above can not be bidirectional, for
changing z, there is no way to automatically update the values of x and y. For a binding to
be bidirectional, it must be between properties of the same type, but in return, a property
may be bound to several other properties. The following method shows the principles of
bidirectional binding:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

22

unidirectional binding, which is defined by the method bind(). There are several limitations
to unidirectional bindings, and you can not, for example, directly change the value of the
property that is bound. You can not directly change the value of z above. In addition, a
property can only be bound to one expression with unidirectional bindings, and trying to
bind it again, overrides the first binding.

A binding can also be bidirectional, which means that you can also change the value of the
property that is bound. Obviously, a binding like the above can not be bidirectional, for
changing z, there is no way to automatically update the values of x and y. For a binding to
be bidirectional, it must be between properties of the same type, but in return, a property
may be bound to several other properties. The following method shows the principles of
bidirectional binding:

private static void test05()
{
 IntegerProperty x = new SimpleIntegerProperty(3);
 IntegerProperty y = new SimpleIntegerProperty(5);
 IntegerProperty z = new SimpleIntegerProperty(7);
 System.out.println("x = " + x.get() + ", y = " + y.get() + ", z = " + z.get());
 x.bindBidirectional(y);
 System.out.println("x = " + x.get() + ", y = " + y.get() + ", z = " + z.get());
 x.bindBidirectional(z);
 System.out.println("x = " + x.get() + ", y = " + y.get() + ", z = " + z.get());
 z.set(11);
 System.out.println("x = " + x.get() + ", y = " + y.get() + ", z = " + z.get());
 x.unbindBidirectional(y);
 x.unbindBidirectional(z);
 System.out.println("x = " + x.get() + ", y = " + y.get() + ", z = " + z.get());
 x.set(13);
 y.set(17);
 z.set(19);
 System.out.println("x = " + x.get() + ", y = " + y.get() + ", z = " + z.get());
}

Three properties are created again, and the first println() displays the values of these properties
before they are bound. Next, x is bound to y and the next println() statement shows that x
now has the same value as y. Then x is bound to z, which means that x has the same value
as z, and since x is bound to y and since the binding is bidirectional, the value of y also
becomes the value of x. The next println() statement shows that the three properties now
all have the same value. Now, the value of z changes to 11, and when the three properties
are printed again, they all have the value 11. Then the bindings are removed and the three
properties are printed again, and you can see that they still have the value 11. Finally, the
values of the three properties are changed, after which they are printed and the new values
are shown:

Three properties are created again, and the first println() displays the values of these properties
before they are bound. Next, x is bound to y and the next println() statement shows that x
now has the same value as y. Then x is bound to z, which means that x has the same value
as z, and since x is bound to y and since the binding is bidirectional, the value of y also
becomes the value of x. The next println() statement shows that the three properties now
all have the same value. Now, the value of z changes to 11, and when the three properties
are printed again, they all have the value 11. Then the bindings are removed and the three
properties are printed again, and you can see that they still have the value 11. Finally, the
values of the three properties are changed, after which they are printed and the new values
are shown:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

23

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

23

x = 3, y = 5, z = 7
x = 5, y = 5, z = 7
x = 7, y = 7, z = 7
x = 11, y = 11, z = 11
x = 11, y = 11, z = 11
x = 13, y = 17, z = 19

In JavaFX, all read/write properties support bidirectional binding, and as an example of
how it can be used, consider the following class:

package fxproperties;

import javafx.application.Application;
import javafx.scene.*;
import javafx.scene.paint.*;
import javafx.stage.Stage;
import javafx.scene.shape.*;
import javafx.beans.binding.*;

public	class	CircleView	extends	Application	
{
 @Override
 public void start(Stage primaryStage)
 {
 Circle c = new Circle();
	 c.setFill(Color.RED);
 Group root = new Group(c);
 Scene scene = new Scene(root, 200, 200);
	 c.centerXProperty().bind(scene.widthProperty().divide(2));
 c.centerYProperty().bind(scene.heightProperty().divide(2));
 c.radiusProperty().bind(Bindings.min(scene.widthProperty(),
 scene.heightProperty()).divide(2));
	 primaryStage.setTitle("Binding");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

Note that it is a JavaFX window (inherits the class Application) and there is only a start()
method. Here a red circle is inserted as a node in a scene graph. Next, three properties are
bound, that are the circle’s center and radius, to the width and height of the scene object
so that the circle’s center becomes the center of the window while the radius becomes the
largest possible so that the entire circle is displayed. The window will thus show a circle:

In JavaFX, all read/write properties support bidirectional binding, and as an example of
how it can be used, consider the following class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

23

x = 3, y = 5, z = 7
x = 5, y = 5, z = 7
x = 7, y = 7, z = 7
x = 11, y = 11, z = 11
x = 11, y = 11, z = 11
x = 13, y = 17, z = 19

In JavaFX, all read/write properties support bidirectional binding, and as an example of
how it can be used, consider the following class:

package fxproperties;

import javafx.application.Application;
import javafx.scene.*;
import javafx.scene.paint.*;
import javafx.stage.Stage;
import javafx.scene.shape.*;
import javafx.beans.binding.*;

public	class	CircleView	extends	Application	
{
 @Override
 public void start(Stage primaryStage)
 {
 Circle c = new Circle();
	 c.setFill(Color.RED);
 Group root = new Group(c);
 Scene scene = new Scene(root, 200, 200);
	 c.centerXProperty().bind(scene.widthProperty().divide(2));
 c.centerYProperty().bind(scene.heightProperty().divide(2));
 c.radiusProperty().bind(Bindings.min(scene.widthProperty(),
 scene.heightProperty()).divide(2));
	 primaryStage.setTitle("Binding");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

Note that it is a JavaFX window (inherits the class Application) and there is only a start()
method. Here a red circle is inserted as a node in a scene graph. Next, three properties are
bound, that are the circle’s center and radius, to the width and height of the scene object
so that the circle’s center becomes the center of the window while the radius becomes the
largest possible so that the entire circle is displayed. The window will thus show a circle:

Note that it is a JavaFX window (inherits the class Application) and there is only a start()
method. Here a red circle is inserted as a node in a scene graph. Next, three properties are
bound, that are the circle’s center and radius, to the width and height of the scene object
so that the circle’s center becomes the center of the window while the radius becomes the
largest possible so that the entire circle is displayed. The window will thus show a circle:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

2424

and change the size of the window, you will see that the circle follows the window as it always
sits in the middle of the window, and the radius changes depending on the window size.

You should also note how to open the window from the main program:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

2424

and change the size of the window, you will see that the circle follows the window as it always
sits in the middle of the window, and the radius changes depending on the window size.

You should also note how to open the window from the main program:

private static void test06()
{
	Application.launch(CircleView.class);
}

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

25

As another example, the method test07() opens the following window:

which includes a Slider, a Label and three Button controls. Here, the Slider component is
bound to the property step in the class Counter with a bidirectional binding while the Label
component is bound to the property value in the class Counter with a unidirectional binding:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

25

As another example, the method test07() opens the following window:

which includes a Slider, a Label and three Button controls. Here, the Slider component is
bound to the property step in the class Counter with a bidirectional binding while the Label
component is bound to the property value in the class Counter with a unidirectional binding:

public	class	CounterView	extends	Application	
{
 private Counter counter = new Counter();

 @Override
 public void start(Stage primaryStage)
 {
 Slider slider = new Slider(1, 10, 1);
 Label label = new Label("");
	 label.setFont(Font.font("Arial",	FontWeight.BOLD,	FontPosture.REGULAR,	48));
 Button cmd1 = new Button("Reset");
	 cmd1.setOnAction(e	->	counter.setStep(1));
	 Button	cmd2	=	new	Button("Down");
	 cmd2.setOnAction(e	->	counter.decrease());
	 Button	cmd3	=	new	Button("Up");
	 cmd3.setOnAction(e	->	counter.increase());
 HBox commands = new HBox(10, cmd1, cmd2, cmd3);
	 commands.setAlignment(Pos.CENTER);
	 VBox	root	=	new	VBox(20,	slider,	label,	commands);
	 root.setAlignment(Pos.TOP_CENTER);
 root.setPadding(new Insets(30, 30, 30, 30));
 Scene scene = new Scene(root, 300, 200);
 label.textProperty().bind(counter.valueProperty().asString());
 slider.valueProperty().bindBidirectional(counter.stepProperty());
	 primaryStage.setTitle("Binding");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

26

A Label control has a StringProperty property textProperty, and a Counter has a property
valueProperty of the type ReadOnlyIntegerWrapper. Since the latter is read-only, you can not of
course create a bidirectional binding, but a ReadOnlyIntegerWrapper has an asString() method,
which returns a StringBinding object, and allows it to create a unidirectional binding. The
result is that if the property value in the Counter object changes (clicking the Down and
Up buttons), then the Label object will automatically be updated. A Slider control has a
valueProperty of the type IntegerProperty, and the same applies to the class Counter, which
has a stepProperty of the same type. You can therefore create a bidirectional binding between
these two properties. The result is that if you change the slider, the Counter object’s step
property is updated. If you click the Reset button, it sets the value of step to 1, and since
the slider binding is bidirectional, the slider component is automatically updated.

EXERCISE 1

You must write an application that opens the following window:

where you can maintain information about a person. The displayed name and job title are
default values. If you click on the last button, you must get an alert that shows the person’s
name and job title, and clicking on the first button, the values must be changed to default.

The program must use the following model class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

26

A Label control has a StringProperty property textProperty, and a Counter has a property
valueProperty of the type ReadOnlyIntegerWrapper. Since the latter is read-only, you can not of
course create a bidirectional binding, but a ReadOnlyIntegerWrapper has an asString() method,
which returns a StringBinding object, and allows it to create a unidirectional binding. The
result is that if the property value in the Counter object changes (clicking the Down and
Up buttons), then the Label object will automatically be updated. A Slider control has a
valueProperty of the type IntegerProperty, and the same applies to the class Counter, which
has a stepProperty of the same type. You can therefore create a bidirectional binding between
these two properties. The result is that if you change the slider, the Counter object’s step
property is updated. If you click the Reset button, it sets the value of step to 1, and since
the slider binding is bidirectional, the slider component is automatically updated.

EXERCISE 1

You must write an application that opens the following window:

where you can maintain information about a person. The displayed name and job title are
default values. If you click on the last button, you must get an alert that shows the person’s
name and job title, and clicking on the first button, the values must be changed to default.

The program must use the following model class:

package editperson;

import javafx.beans.property.*;

public class Person
{
 private StringProperty name = new SimpleStringProperty("Gorm den Gamle");
 private StringProperty job = new SimpleStringProperty("King");

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

2727

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

2727

	public	String	getName()
 {
 return name.get();
 }

	public	void	setName(String	name)
 {
 this.name.set(name);
 }

 public StringProperty nameProperty()
 {
 return name;
 }

 public String getJob()
 {
 return job.get();
 }

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

28

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

28

 public void setJob(String job)
 {
 this.job.set(job);
 }

 public StringProperty jobProperty()
 {
 return job;
 }
}

and the two input fields must be bound to the model with bidirectional bindings. When
you click the Default button, the default values must be set by directly updating the model,
thus performing the setName() and setJob() methods.

2.2 OBSERVABLE COLLECTIONS

JavaFX defines multiple collections, which are extensions of the classic collection classes.
There are three interfaces defined

 - ObervableList<T>
 - ObervableSet<T>
 - ObervableMap<K,V>

which inherits List<T>, Set<T> and Map<K, V> respectively, but also inherits the interface
Observable. JavaFX does not immediately have classes that implements those interfaces, but
instead, there is a class of FXCollections that has static methods that return objects that
implement these interfaces. Viewed from the programmer, an observable colletion is a list,
a set or a map that can be observed for invalidation and changes of the content.

Consider the following example:

private static void test08()
{
	ObservableList<String>	list	=	
	 FXCollections.observableArrayList("Gorm	den	Gamle",	"Harald	Blåtand");
	list.addListener(FXProperties::onChanged);
	list.addAll("Svend	Tveskæg",	"Harald	d.	2.");
 list.add("Knud d. Store");
 list.remove(3);
 show(list);
 java.util.Collections.sort(list);
 show(list);
}

and the two input fields must be bound to the model with bidirectional bindings. When
you click the Default button, the default values must be set by directly updating the model,
thus performing the setName() and setJob() methods.

2.2	 OBSERVABLE COLLECTIONS

JavaFX defines multiple collections, which are extensions of the classic collection classes.
There are three interfaces defined

-- ObervableList<T>
-- ObervableSet<T>
-- ObervableMap<K,V>

which inherits List<T>, Set<T> and Map<K, V> respectively, but also inherits the interface
Observable. JavaFX does not immediately have classes that implements those interfaces, but
instead, there is a class of FXCollections that has static methods that return objects that
implement these interfaces. Viewed from the programmer, an observable colletion is a list,
a set or a map that can be observed for invalidation and changes of the content.

Consider the following example:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

28

 public void setJob(String job)
 {
 this.job.set(job);
 }

 public StringProperty jobProperty()
 {
 return job;
 }
}

and the two input fields must be bound to the model with bidirectional bindings. When
you click the Default button, the default values must be set by directly updating the model,
thus performing the setName() and setJob() methods.

2.2 OBSERVABLE COLLECTIONS

JavaFX defines multiple collections, which are extensions of the classic collection classes.
There are three interfaces defined

 - ObervableList<T>
 - ObervableSet<T>
 - ObervableMap<K,V>

which inherits List<T>, Set<T> and Map<K, V> respectively, but also inherits the interface
Observable. JavaFX does not immediately have classes that implements those interfaces, but
instead, there is a class of FXCollections that has static methods that return objects that
implement these interfaces. Viewed from the programmer, an observable colletion is a list,
a set or a map that can be observed for invalidation and changes of the content.

Consider the following example:

private static void test08()
{
	ObservableList<String>	list	=	
	 FXCollections.observableArrayList("Gorm	den	Gamle",	"Harald	Blåtand");
	list.addListener(FXProperties::onChanged);
	list.addAll("Svend	Tveskæg",	"Harald	d.	2.");
 list.add("Knud d. Store");
 list.remove(3);
 show(list);
 java.util.Collections.sort(list);
 show(list);
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

29

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

29

private	static	void	show(java.util.List<String>	list)
{
 System.out.println();
 for (String name : list) System.out.println(name);
}

private static void onChanged(ListChangeListener.
	Change<?	extends	String>	change)	
{
 System.out.println("List has changed");
}

If the method is performed the result is:

List has changed
List has changed
List has changed

Gorm den Gamle
Harald	Blåtand
Svend	Tveskæg
Knud d. Store
List has changed

Gorm den Gamle
Harald	Blåtand
Knud d. Store
Svend	Tveskæg

The list is created with two elements, and then a ChangeListener is associated that do nothing
but prints a message on the console. The first event occurs after additional two items have
been added and the next after another element is added. Finally, the third occurs after an
item has been deleted. The method show() shows the content of the list on the console
and then reads the list. Note that the parameter is a List<String> which is ok, since an
ObservableList<String> is specially a List<String>. After the list is printed, it is sorted, and
as it means that the order of the list’s elements changes, another ChangeEvent occurs.

The class ListChangeListener.Change has a variety of different methods that tells you about
the reason for the event and you are encouraged to investigate which ones. The following
example should show a little bit about how these methods can be used. First, I’ve added a
simple model class with two properties that adhere to the JavaFX beans pattern:

package fxproperties;

If the method is performed the result is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

29

private	static	void	show(java.util.List<String>	list)
{
 System.out.println();
 for (String name : list) System.out.println(name);
}

private static void onChanged(ListChangeListener.
	Change<?	extends	String>	change)	
{
 System.out.println("List has changed");
}

If the method is performed the result is:

List has changed
List has changed
List has changed

Gorm den Gamle
Harald	Blåtand
Svend	Tveskæg
Knud d. Store
List has changed

Gorm den Gamle
Harald	Blåtand
Knud d. Store
Svend	Tveskæg

The list is created with two elements, and then a ChangeListener is associated that do nothing
but prints a message on the console. The first event occurs after additional two items have
been added and the next after another element is added. Finally, the third occurs after an
item has been deleted. The method show() shows the content of the list on the console
and then reads the list. Note that the parameter is a List<String> which is ok, since an
ObservableList<String> is specially a List<String>. After the list is printed, it is sorted, and
as it means that the order of the list’s elements changes, another ChangeEvent occurs.

The class ListChangeListener.Change has a variety of different methods that tells you about
the reason for the event and you are encouraged to investigate which ones. The following
example should show a little bit about how these methods can be used. First, I’ve added a
simple model class with two properties that adhere to the JavaFX beans pattern:

package fxproperties;

The list is created with two elements, and then a ChangeListener is associated that do nothing
but prints a message on the console. The first event occurs after additional two items have
been added and the next after another element is added. Finally, the third occurs after an
item has been deleted. The method show() shows the content of the list on the console
and then reads the list. Note that the parameter is a List<String> which is ok, since an
ObservableList<String> is specially a List<String>. After the list is printed, it is sorted, and
as it means that the order of the list’s elements changes, another ChangeEvent occurs.

The class ListChangeListener.Change has a variety of different methods that tells you about
the reason for the event and you are encouraged to investigate which ones. The following
example should show a little bit about how these methods can be used. First, I’ve added a
simple model class with two properties that adhere to the JavaFX beans pattern:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

29

private	static	void	show(java.util.List<String>	list)
{
 System.out.println();
 for (String name : list) System.out.println(name);
}

private static void onChanged(ListChangeListener.
	Change<?	extends	String>	change)	
{
 System.out.println("List has changed");
}

If the method is performed the result is:

List has changed
List has changed
List has changed

Gorm den Gamle
Harald	Blåtand
Svend	Tveskæg
Knud d. Store
List has changed

Gorm den Gamle
Harald	Blåtand
Knud d. Store
Svend	Tveskæg

The list is created with two elements, and then a ChangeListener is associated that do nothing
but prints a message on the console. The first event occurs after additional two items have
been added and the next after another element is added. Finally, the third occurs after an
item has been deleted. The method show() shows the content of the list on the console
and then reads the list. Note that the parameter is a List<String> which is ok, since an
ObservableList<String> is specially a List<String>. After the list is printed, it is sorted, and
as it means that the order of the list’s elements changes, another ChangeEvent occurs.

The class ListChangeListener.Change has a variety of different methods that tells you about
the reason for the event and you are encouraged to investigate which ones. The following
example should show a little bit about how these methods can be used. First, I’ve added a
simple model class with two properties that adhere to the JavaFX beans pattern:

package fxproperties;

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

3030

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

3030

import javafx.beans.property.*;

public	class	Person	implements	Comparable<Person>	
{
 private StringProperty name = new SimpleStringProperty();
 private StringProperty job = new SimpleStringProperty();

 public Person(String name, String job)
 {
	 setName(name);
 setJob(job);
 }

	public	final	String	getName()	
 {
 return name.get();
 }

	public	final	void	setName(String	name)	
 {
 this.name.set(name);
 }

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

31

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

31

 public StringProperty nameProperty()
 {
 return name;
 }

	public	final	String	getJob()	
 {
 return job.get();
 }

	public	final	void	setJob(String	job)	
 {
 this.job.set(job);
 }

 public StringProperty jobProperty()
 {
 return job;
 }

 @Override
	public	int	compareTo(Person	p)	
 {
	 int	val	=	getName().compareTo(p.getName());
	 if	(val	==	0)	val	=	this.getJob().compareTo(p.getJob());
 return val;
 }

 @Override
 public String toString()
 {
	 return	getName()	+	":	"	+	getJob();
 }
}

and in relation to what has been said before, there is nothing new. Note, however, that the
class’s objects are comparable and can thus be sorted. I have then defined a listener class
for change events for an ObservableList collection with Person objects:

package fxproperties;

import javafx.collections.ListChangeListener;

public	class	PersonChangeListener	implements	ListChangeListener<Person>	
{
 @Override
	public	void	onChanged(ListChangeListener.Change<?	extends	Person>	change)	
 {

and in relation to what has been said before, there is nothing new. Note, however, that the
class’s objects are comparable and can thus be sorted. I have then defined a listener class
for change events for an ObservableList collection with Person objects:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

31

 public StringProperty nameProperty()
 {
 return name;
 }

	public	final	String	getJob()	
 {
 return job.get();
 }

	public	final	void	setJob(String	job)	
 {
 this.job.set(job);
 }

 public StringProperty jobProperty()
 {
 return job;
 }

 @Override
	public	int	compareTo(Person	p)	
 {
	 int	val	=	getName().compareTo(p.getName());
	 if	(val	==	0)	val	=	this.getJob().compareTo(p.getJob());
 return val;
 }

 @Override
 public String toString()
 {
	 return	getName()	+	":	"	+	getJob();
 }
}

and in relation to what has been said before, there is nothing new. Note, however, that the
class’s objects are comparable and can thus be sorted. I have then defined a listener class
for change events for an ObservableList collection with Person objects:

package fxproperties;

import javafx.collections.ListChangeListener;

public	class	PersonChangeListener	implements	ListChangeListener<Person>	
{
 @Override
	public	void	onChanged(ListChangeListener.Change<?	extends	Person>	change)	
 {

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

32

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

32

 while (change.next())
 {
 if (change.wasPermutated()) permutated(change);
	 else	if	(change.wasUpdated())	updated(change);
 else if (change.wasReplaced()) replaced(change);
 else if (change.wasRemoved()) removed(change);
 else if (change.wasAdded()) added(change);
 }
 }

	private	void	permutated(ListChangeListener.Change<?	extends	Person>	change)	
 {
	 System.out.println("Sort:	"	+	change.getFrom()	+	"	–	"+	change.getTo());
 }

	private	void	updated(ListChangeListener.Change<?	extends	Person>	change)	
 {
	 System.out.println("Updated:	"	+	
	 change.getList().subList(change.getFrom(),	change.getTo()));
 }

	private	void	replaced(ListChangeListener.Change<?	extends	Person>	change)	
 {
 removed(change);
 added(change);
 }

	private	void	removed(ListChangeListener.Change<?	extends	Person>	change)	
 {
 System.out.println("Removed " + change.getRemovedSize() + " person(s): "
+
 change.getRemoved());
 }

	private	void	added(ListChangeListener.Change<?	extends	Person>	change)	
 {
 System.out.println("Added " + change.getAddedSize() + " person(s): " +
 change.getAddedSubList());
 }
}

A single event handler must be implemented with the name onChanged(), whose parameter
is a

ListChangeListener.Change<?	extends	Person>

A single event handler must be implemented with the name onChanged(), whose parameter
is a

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

32

 while (change.next())
 {
 if (change.wasPermutated()) permutated(change);
	 else	if	(change.wasUpdated())	updated(change);
 else if (change.wasReplaced()) replaced(change);
 else if (change.wasRemoved()) removed(change);
 else if (change.wasAdded()) added(change);
 }
 }

	private	void	permutated(ListChangeListener.Change<?	extends	Person>	change)	
 {
	 System.out.println("Sort:	"	+	change.getFrom()	+	"	–	"+	change.getTo());
 }

	private	void	updated(ListChangeListener.Change<?	extends	Person>	change)	
 {
	 System.out.println("Updated:	"	+	
	 change.getList().subList(change.getFrom(),	change.getTo()));
 }

	private	void	replaced(ListChangeListener.Change<?	extends	Person>	change)	
 {
 removed(change);
 added(change);
 }

	private	void	removed(ListChangeListener.Change<?	extends	Person>	change)	
 {
 System.out.println("Removed " + change.getRemovedSize() + " person(s): "
+
 change.getRemoved());
 }

	private	void	added(ListChangeListener.Change<?	extends	Person>	change)	
 {
 System.out.println("Added " + change.getAddedSize() + " person(s): " +
 change.getAddedSubList());
 }
}

A single event handler must be implemented with the name onChanged(), whose parameter
is a

ListChangeListener.Change<?	extends	Person>

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

3333

object named change. When an event occurs and the method is called, the event may be
triggered by one or more changes to the list, and therefore, the method starts with a loop
that iterates over these changes. As shown by the method, there may be 5 different types
of changes, and each iteration of the loop calls a method corresponding to the change in
question. In this case, the methods are all trivial and do nothing but print a text on the
screen, and the purpose is to show only when the event occurs.

With the above two classes available, you can perform the following method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

3333

object named change. When an event occurs and the method is called, the event may be
triggered by one or more changes to the list, and therefore, the method starts with a loop
that iterates over these changes. As shown by the method, there may be 5 different types
of changes, and each iteration of the loop calls a method corresponding to the change in
question. In this case, the methods are all trivial and do nothing but print a text on the
screen, and the purpose is to show only when the event occurs.

With the above two classes available, you can perform the following method:

private static void test09()
{
 Person p1 = new Person("Gudrun Jensen", "Heks");
 Person p2 = new Person("Carlo Andersen", "Skarpretter");
	Person	p3	=	new	Person("Valborg	Kristensen",	"Spåkone");
	Person	p4	=	new	Person("Egon	Knudsen",	"Kriger");
 Person p5 = new Person("Abelone Jensen", "Sin mands kone");
	Person	p6	=	new	Person("Viktor	Hansen",	"Høvding");
	Callback<Person,	Observable[]>	cb	=
	 (Person	p)	->	new	Observable[]	{	p.nameProperty(),	p.jobProperty()	};
	ObservableList<Person>	list	=	FXCollections.observableArrayList(cb);
 list.addListener(new PersonChangeListener());
 System.out.println(list);

http://s.bookboon.com/EOT

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

34

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

34

 list.add(p1);
 System.out.println(list);
 list.addAll(p2, p3);
 System.out.println(list);
	FXCollections.sort(list);
 System.out.println(list);
	p1.setName("Gunhild	Mikkelsen");
	p2.setJob("Natmand");
 list.set(0, new Person("Olga Hansen", "Sypige"));
 System.out.println(list);
 list.setAll(p4, p5, p6);
 System.out.println(list);
 list.removeAll(p4, p6);
 System.out.println(list);
}

Performing the method gives you the result:

[]
Added 1 person(s): [Gudrun Jensen: Heks]
[Gudrun Jensen: Heks]
Added	2	person(s):	[Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
[Gudrun	Jensen:	Heks,	Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
Sort: 0 – 3
[Carlo	Andersen:	Skarpretter,	Gudrun	Jensen:	Heks,	Valborg	Kristensen:	Spåkone]
Updated:	[Gunhild	Mikkelsen:	Heks]
Updated:	[Carlo	Andersen:	Natmand]
Removed	1	person(s):	[Carlo	Andersen:	Natmand]
Added 1 person(s): [Olga Hansen: Sypige]
[Olga	Hansen:	Sypige,	Gunhild	Mikkelsen:	Heks,	Valborg	Kristensen:	Spåkone]
Removed	3	person(s):	[Olga	Hansen:	Sypige,	Gunhild	Mikkelsen:	Heks,
	 Valborg	Kristensen:	Spåkone]
Added	3	person(s):	[Egon	Knudsen:	Kriger,	Abelone	Jensen:	Sin	mands	kone,
	 Viktor	Hansen:	Høvding]
[Egon	Knudsen:	Kriger,	Abelone	Jensen:	Sin	
	mands	kone,	Viktor	Hansen:	Høvding]
Removed	1	person(s):	[Egon	Knudsen:	Kriger]
Removed	1	person(s):	[Viktor	Hansen:	Høvding]
[Abelone Jensen: Sin mands kone]

The test method starts by creating 6 Person objects. Next, a Callback object is defined
which indicates which properties for a Person object to be observed regarding changes. As
the next step, the class FXCollections is used to create an ObservableList<Person> with the
above Callback object as parameter. Next, the list is printed on the screen, which is the
first line in the result, and it is just an empty list. The next statement adds p1 to the list,
after which the list is printed again. The result shows that the event handler has performed

Performing the method gives you the result:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

34

 list.add(p1);
 System.out.println(list);
 list.addAll(p2, p3);
 System.out.println(list);
	FXCollections.sort(list);
 System.out.println(list);
	p1.setName("Gunhild	Mikkelsen");
	p2.setJob("Natmand");
 list.set(0, new Person("Olga Hansen", "Sypige"));
 System.out.println(list);
 list.setAll(p4, p5, p6);
 System.out.println(list);
 list.removeAll(p4, p6);
 System.out.println(list);
}

Performing the method gives you the result:

[]
Added 1 person(s): [Gudrun Jensen: Heks]
[Gudrun Jensen: Heks]
Added	2	person(s):	[Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
[Gudrun	Jensen:	Heks,	Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
Sort: 0 – 3
[Carlo	Andersen:	Skarpretter,	Gudrun	Jensen:	Heks,	Valborg	Kristensen:	Spåkone]
Updated:	[Gunhild	Mikkelsen:	Heks]
Updated:	[Carlo	Andersen:	Natmand]
Removed	1	person(s):	[Carlo	Andersen:	Natmand]
Added 1 person(s): [Olga Hansen: Sypige]
[Olga	Hansen:	Sypige,	Gunhild	Mikkelsen:	Heks,	Valborg	Kristensen:	Spåkone]
Removed	3	person(s):	[Olga	Hansen:	Sypige,	Gunhild	Mikkelsen:	Heks,
	 Valborg	Kristensen:	Spåkone]
Added	3	person(s):	[Egon	Knudsen:	Kriger,	Abelone	Jensen:	Sin	mands	kone,
	 Viktor	Hansen:	Høvding]
[Egon	Knudsen:	Kriger,	Abelone	Jensen:	Sin	
	mands	kone,	Viktor	Hansen:	Høvding]
Removed	1	person(s):	[Egon	Knudsen:	Kriger]
Removed	1	person(s):	[Viktor	Hansen:	Høvding]
[Abelone Jensen: Sin mands kone]

The test method starts by creating 6 Person objects. Next, a Callback object is defined
which indicates which properties for a Person object to be observed regarding changes. As
the next step, the class FXCollections is used to create an ObservableList<Person> with the
above Callback object as parameter. Next, the list is printed on the screen, which is the
first line in the result, and it is just an empty list. The next statement adds p1 to the list,
after which the list is printed again. The result shows that the event handler has performed

The test method starts by creating 6 Person objects. Next, a Callback object is defined
which indicates which properties for a Person object to be observed regarding changes. As
the next step, the class FXCollections is used to create an ObservableList<Person> with the
above Callback object as parameter. Next, the list is printed on the screen, which is the
first line in the result, and it is just an empty list. The next statement adds p1 to the list,
after which the list is printed again. The result shows that the event handler has performed

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

35

the method added() and added an object list, and the list then contains one object. As the
next operation, p2 and p3 are added to the list and it is printed again. The result shows
that the event handler has performed the method added() again and added two objects, and
the list now contains 3 objects. Next, the list is sorted and it is printed again. As shown by
the result, the event handler has performed the method permuted() corresponding to two
or more of the list’s objects have been replaced. Next, the value of a property for p1 and
p2, respectively, is changed and here you should note that the event handler performs the
method updated() and note that it is not the list’s content that has been changed but the
objects that the list contains. The next statement again changes the actual contents of the list:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

35

the method added() and added an object list, and the list then contains one object. As the
next operation, p2 and p3 are added to the list and it is printed again. The result shows
that the event handler has performed the method added() again and added two objects, and
the list now contains 3 objects. Next, the list is sorted and it is printed again. As shown by
the result, the event handler has performed the method permuted() corresponding to two
or more of the list’s objects have been replaced. Next, the value of a property for p1 and
p2, respectively, is changed and here you should note that the event handler performs the
method updated() and note that it is not the list’s content that has been changed but the
objects that the list contains. The next statement again changes the actual contents of the list:

list.set(0, new Person("Olga Hansen", "Sypige"));

and you can see from the result that the event handler has performed the method replaced().
After the list is printed again, the method will performe the statement

list.setAll(p4, p5, p6);

which means that the list content are replaced with three new objects. From the result, you
can see that both the method removed() and added() are performed. Finally, two objects are
deleted, and then one is left.

Looking at the above example, which should illustrate how an ObservableList works, you
could write similar programs that can illustrate how an ObservableSet and an ObservableMap
works. I do not want to show examples here as there are no big differences compared to
the above example.

2.3 BINDING OBSERVABLE COLLECTIONS

There is a class ListProperty that represents a property for an ObservableList, and you can think
of the class as a wrapper for an ObervableList. It is a property type similar to other properties
presented in this chapter. You can associate three kinds of listeners with a ListProperty:

 - InvallidationListener
 - ChangeListener
 - ListChangeListener

and these listeners will receive notifications when the OberservableList is changed as the
ListProperty object in question wrapper. Consider the following method:

and you can see from the result that the event handler has performed the method replaced().
After the list is printed again, the method will performe the statement

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

35

the method added() and added an object list, and the list then contains one object. As the
next operation, p2 and p3 are added to the list and it is printed again. The result shows
that the event handler has performed the method added() again and added two objects, and
the list now contains 3 objects. Next, the list is sorted and it is printed again. As shown by
the result, the event handler has performed the method permuted() corresponding to two
or more of the list’s objects have been replaced. Next, the value of a property for p1 and
p2, respectively, is changed and here you should note that the event handler performs the
method updated() and note that it is not the list’s content that has been changed but the
objects that the list contains. The next statement again changes the actual contents of the list:

list.set(0, new Person("Olga Hansen", "Sypige"));

and you can see from the result that the event handler has performed the method replaced().
After the list is printed again, the method will performe the statement

list.setAll(p4, p5, p6);

which means that the list content are replaced with three new objects. From the result, you
can see that both the method removed() and added() are performed. Finally, two objects are
deleted, and then one is left.

Looking at the above example, which should illustrate how an ObservableList works, you
could write similar programs that can illustrate how an ObservableSet and an ObservableMap
works. I do not want to show examples here as there are no big differences compared to
the above example.

2.3 BINDING OBSERVABLE COLLECTIONS

There is a class ListProperty that represents a property for an ObservableList, and you can think
of the class as a wrapper for an ObervableList. It is a property type similar to other properties
presented in this chapter. You can associate three kinds of listeners with a ListProperty:

 - InvallidationListener
 - ChangeListener
 - ListChangeListener

and these listeners will receive notifications when the OberservableList is changed as the
ListProperty object in question wrapper. Consider the following method:

which means that the list content are replaced with three new objects. From the result, you
can see that both the method removed() and added() are performed. Finally, two objects are
deleted, and then one is left.

Looking at the above example, which should illustrate how an ObservableList works, you
could write similar programs that can illustrate how an ObservableSet and an ObservableMap
works. I do not want to show examples here as there are no big differences compared to
the above example.

2.3	 BINDING OBSERVABLE COLLECTIONS

There is a class ListProperty that represents a property for an ObservableList, and you can think
of the class as a wrapper for an ObervableList. It is a property type similar to other properties
presented in this chapter. You can associate three kinds of listeners with a ListProperty:

-- InvallidationListener
-- ChangeListener
-- ListChangeListener

and these listeners will receive notifications when the OberservableList is changed as the
ListProperty object in question wrapper. Consider the following method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

3636

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

3636

private static void test10()
{
	ListProperty<String>	property	=
	 new	SimpleListProperty(FXCollections.observableArrayList());
 IntegerProperty count = new SimpleIntegerProperty();
 count.bind(property.sizeProperty());
 System.out.println(count.get());
	property.addListener(FXProperties::propertyInvalidated);
	property.addListener(FXProperties::propertyChanged);
	property.addListener(FXProperties::propertyListChanged);
 property.add("Gorm");
 property.add("Harald");
 System.out.println(count.get());
	property.set(FXCollections.observableArrayList("Svend",	"Knud",	"Valdemar"));
 System.out.println(count.get());
 property.remove("Knud");
 System.out.println(count.get());
 System.out.println(property.get());
}

The method creates a ListProperty named property as a SimpleListProperty, which wrapper
an ObservableList. In addition, an integerProperty is defined with the name count, and it
is bounded to the list’s size. Here, you should note that a ListProperty implements the

The method creates a ListProperty named property as a SimpleListProperty, which wrapper
an ObservableList. In addition, an integerProperty is defined with the name count, and it
is bounded to the list’s size. Here, you should note that a ListProperty implements the

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

37

ObservableList interface and therefore has the same properties as an ObservableList. property
therefore has a sizeProperty which is an IntegerProperty and can therefore be bounded to
count. The next print statement will therefore print 0 on the screen as the list is currently
empty. As the next step, the listener methods are defined for the three events. The first one
is trivial and does nothing but prints a text:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

37

ObservableList interface and therefore has the same properties as an ObservableList. property
therefore has a sizeProperty which is an IntegerProperty and can therefore be bounded to
count. The next print statement will therefore print 0 on the screen as the list is currently
empty. As the next step, the listener methods are defined for the three events. The first one
is trivial and does nothing but prints a text:

private static void propertyInvalidated(Observable list)
{
 System.out.println("Property invalid…");
}

You must note the parameter and that it is an Observable. The next listener method is also
trivial and it prints the contents of the list before and after it has been changed:

private static void propertyChanged(
	ObservableValue<?	extends	ObservableList<String>>	observable,
	ObservableList<String>	oldList,	ObservableList<String>	newList)	
{
 System.out.println("Old: " + oldList);
	System.out.println("New:	"	+	newList);
}

You should primarily note the parameters that are a reference to the list (the object that
caused the event in question) and the list’s value before the change and its value after
the change. The last event handler does nothing but prints a text (possibly more), but
distinguishes the reason for the event:

private static void propertyListChanged(
	ListChangeListener.Change<?	extends	String>	change)	
{
 while (change.next())
 {
 if (change.wasPermutated()) System.out.println("Permutated");
	 else	if	(change.wasUpdated())	System.out.println("Updated");
 else if (change.wasReplaced()) System.out.println("Replaced");
 else if (change.wasRemoved()) System.out.println("Removed");
 else if (change.wasAdded()) System.out.println("Added");
 }
}

Below is shown the result of performing the test method:

0
Property invalid…
Old: [Gorm]
New:	[Gorm]

You must note the parameter and that it is an Observable. The next listener method is also
trivial and it prints the contents of the list before and after it has been changed:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

37

ObservableList interface and therefore has the same properties as an ObservableList. property
therefore has a sizeProperty which is an IntegerProperty and can therefore be bounded to
count. The next print statement will therefore print 0 on the screen as the list is currently
empty. As the next step, the listener methods are defined for the three events. The first one
is trivial and does nothing but prints a text:

private static void propertyInvalidated(Observable list)
{
 System.out.println("Property invalid…");
}

You must note the parameter and that it is an Observable. The next listener method is also
trivial and it prints the contents of the list before and after it has been changed:

private static void propertyChanged(
	ObservableValue<?	extends	ObservableList<String>>	observable,
	ObservableList<String>	oldList,	ObservableList<String>	newList)	
{
 System.out.println("Old: " + oldList);
	System.out.println("New:	"	+	newList);
}

You should primarily note the parameters that are a reference to the list (the object that
caused the event in question) and the list’s value before the change and its value after
the change. The last event handler does nothing but prints a text (possibly more), but
distinguishes the reason for the event:

private static void propertyListChanged(
	ListChangeListener.Change<?	extends	String>	change)	
{
 while (change.next())
 {
 if (change.wasPermutated()) System.out.println("Permutated");
	 else	if	(change.wasUpdated())	System.out.println("Updated");
 else if (change.wasReplaced()) System.out.println("Replaced");
 else if (change.wasRemoved()) System.out.println("Removed");
 else if (change.wasAdded()) System.out.println("Added");
 }
}

Below is shown the result of performing the test method:

0
Property invalid…
Old: [Gorm]
New:	[Gorm]

You should primarily note the parameters that are a reference to the list (the object that
caused the event in question) and the list’s value before the change and its value after
the change. The last event handler does nothing but prints a text (possibly more), but
distinguishes the reason for the event:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

37

ObservableList interface and therefore has the same properties as an ObservableList. property
therefore has a sizeProperty which is an IntegerProperty and can therefore be bounded to
count. The next print statement will therefore print 0 on the screen as the list is currently
empty. As the next step, the listener methods are defined for the three events. The first one
is trivial and does nothing but prints a text:

private static void propertyInvalidated(Observable list)
{
 System.out.println("Property invalid…");
}

You must note the parameter and that it is an Observable. The next listener method is also
trivial and it prints the contents of the list before and after it has been changed:

private static void propertyChanged(
	ObservableValue<?	extends	ObservableList<String>>	observable,
	ObservableList<String>	oldList,	ObservableList<String>	newList)	
{
 System.out.println("Old: " + oldList);
	System.out.println("New:	"	+	newList);
}

You should primarily note the parameters that are a reference to the list (the object that
caused the event in question) and the list’s value before the change and its value after
the change. The last event handler does nothing but prints a text (possibly more), but
distinguishes the reason for the event:

private static void propertyListChanged(
	ListChangeListener.Change<?	extends	String>	change)	
{
 while (change.next())
 {
 if (change.wasPermutated()) System.out.println("Permutated");
	 else	if	(change.wasUpdated())	System.out.println("Updated");
 else if (change.wasReplaced()) System.out.println("Replaced");
 else if (change.wasRemoved()) System.out.println("Removed");
 else if (change.wasAdded()) System.out.println("Added");
 }
}

Below is shown the result of performing the test method:

0
Property invalid…
Old: [Gorm]
New:	[Gorm]

Below is shown the result of performing the test method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

37

ObservableList interface and therefore has the same properties as an ObservableList. property
therefore has a sizeProperty which is an IntegerProperty and can therefore be bounded to
count. The next print statement will therefore print 0 on the screen as the list is currently
empty. As the next step, the listener methods are defined for the three events. The first one
is trivial and does nothing but prints a text:

private static void propertyInvalidated(Observable list)
{
 System.out.println("Property invalid…");
}

You must note the parameter and that it is an Observable. The next listener method is also
trivial and it prints the contents of the list before and after it has been changed:

private static void propertyChanged(
	ObservableValue<?	extends	ObservableList<String>>	observable,
	ObservableList<String>	oldList,	ObservableList<String>	newList)	
{
 System.out.println("Old: " + oldList);
	System.out.println("New:	"	+	newList);
}

You should primarily note the parameters that are a reference to the list (the object that
caused the event in question) and the list’s value before the change and its value after
the change. The last event handler does nothing but prints a text (possibly more), but
distinguishes the reason for the event:

private static void propertyListChanged(
	ListChangeListener.Change<?	extends	String>	change)	
{
 while (change.next())
 {
 if (change.wasPermutated()) System.out.println("Permutated");
	 else	if	(change.wasUpdated())	System.out.println("Updated");
 else if (change.wasReplaced()) System.out.println("Replaced");
 else if (change.wasRemoved()) System.out.println("Removed");
 else if (change.wasAdded()) System.out.println("Added");
 }
}

Below is shown the result of performing the test method:

0
Property invalid…
Old: [Gorm]
New:	[Gorm]

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

38

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

38

Added
Property invalid…
Old: [Gorm, Harald]
New:	[Gorm,	Harald]
Added
2
Property invalid…
Old: [Gorm, Harald]
New:	[Svend,	Knud,	Valdemar]
Replaced
3
Property invalid…
Old:	[Svend,	Valdemar]
New:	[Svend,	Valdemar]
Removed
2
[Svend,	Valdemar]

It is easy to follow the program code and compare with the results, and the important thing
is of course to observe when each event handler is performing.

You can also bind two ListProperty objects to each other, which means that the lists that
they wrapper are bound. Consider the following method:

private static void test11()
{
	ListProperty<String>	property1	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ListProperty<String>	property2	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
 property1.add("Kristian");
	property2.add("Frederik");
 System.out.println(property1.get());
 System.out.println(property2.get());
 property1.bind(property2);
	property1.addAll("Svend",	"Knud",	"Valdemar");
 System.out.println(property1.get());
 System.out.println(property2.get());
	property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));
 System.out.println(property1.get());
 System.out.println(property2.get());
//	 property1.set(FXCollections.observableArrayList("Harld",	"Oluf"));
 property1.unbind();
 property1.bindBidirectional(property2);
	property1.set(FXCollections.observableArrayList("Erik",	"Kristoffer"));
	property2.set(FXCollections.observableArrayList("Niels",	"Abel"));
 property1.add("Oluf");
 property2.add("Knud");

It is easy to follow the program code and compare with the results, and the important thing
is of course to observe when each event handler is performing.

You can also bind two ListProperty objects to each other, which means that the lists that
they wrapper are bound. Consider the following method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

38

Added
Property invalid…
Old: [Gorm, Harald]
New:	[Gorm,	Harald]
Added
2
Property invalid…
Old: [Gorm, Harald]
New:	[Svend,	Knud,	Valdemar]
Replaced
3
Property invalid…
Old:	[Svend,	Valdemar]
New:	[Svend,	Valdemar]
Removed
2
[Svend,	Valdemar]

It is easy to follow the program code and compare with the results, and the important thing
is of course to observe when each event handler is performing.

You can also bind two ListProperty objects to each other, which means that the lists that
they wrapper are bound. Consider the following method:

private static void test11()
{
	ListProperty<String>	property1	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ListProperty<String>	property2	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
 property1.add("Kristian");
	property2.add("Frederik");
 System.out.println(property1.get());
 System.out.println(property2.get());
 property1.bind(property2);
	property1.addAll("Svend",	"Knud",	"Valdemar");
 System.out.println(property1.get());
 System.out.println(property2.get());
	property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));
 System.out.println(property1.get());
 System.out.println(property2.get());
//	 property1.set(FXCollections.observableArrayList("Harld",	"Oluf"));
 property1.unbind();
 property1.bindBidirectional(property2);
	property1.set(FXCollections.observableArrayList("Erik",	"Kristoffer"));
	property2.set(FXCollections.observableArrayList("Niels",	"Abel"));
 property1.add("Oluf");
 property2.add("Knud");

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

3939

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

3939

 System.out.println(property1.get());
 System.out.println(property2.get());
}

Above this is defined two ListProperty objects that wrapper each their ObservableList, and
the first two print statements will therefore print:

[Kristian]
[Frederik]

what there is no strange in. Because of the JavaFX properties, they can of course be bound:

property1.bind(property2);

which binds property1 to property2 with a unidirectional binding. Quite exactly, it means
that the list for which property1 is wrapper for is the same list that property2 is wrapper for.
The next statement adds three names to property1, and the next statement again a name to
property2. The next two print statments results in

[Frederik,	Svend,	Knud,	Valdemar,	Hans]
[Frederik,	Svend,	Knud,	Valdemar,	Hans]

Above this is defined two ListProperty objects that wrapper each their ObservableList, and
the first two print statements will therefore print:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

3939

 System.out.println(property1.get());
 System.out.println(property2.get());
}

Above this is defined two ListProperty objects that wrapper each their ObservableList, and
the first two print statements will therefore print:

[Kristian]
[Frederik]

what there is no strange in. Because of the JavaFX properties, they can of course be bound:

property1.bind(property2);

which binds property1 to property2 with a unidirectional binding. Quite exactly, it means
that the list for which property1 is wrapper for is the same list that property2 is wrapper for.
The next statement adds three names to property1, and the next statement again a name to
property2. The next two print statments results in

[Frederik,	Svend,	Knud,	Valdemar,	Hans]
[Frederik,	Svend,	Knud,	Valdemar,	Hans]

what there is no strange in. Because of the JavaFX properties, they can of course be bound:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

3939

 System.out.println(property1.get());
 System.out.println(property2.get());
}

Above this is defined two ListProperty objects that wrapper each their ObservableList, and
the first two print statements will therefore print:

[Kristian]
[Frederik]

what there is no strange in. Because of the JavaFX properties, they can of course be bound:

property1.bind(property2);

which binds property1 to property2 with a unidirectional binding. Quite exactly, it means
that the list for which property1 is wrapper for is the same list that property2 is wrapper for.
The next statement adds three names to property1, and the next statement again a name to
property2. The next two print statments results in

[Frederik,	Svend,	Knud,	Valdemar,	Hans]
[Frederik,	Svend,	Knud,	Valdemar,	Hans]

which binds property1 to property2 with a unidirectional binding. Quite exactly, it means
that the list for which property1 is wrapper for is the same list that property2 is wrapper for.
The next statement adds three names to property1, and the next statement again a name to
property2. The next two print statments results in

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

3939

 System.out.println(property1.get());
 System.out.println(property2.get());
}

Above this is defined two ListProperty objects that wrapper each their ObservableList, and
the first two print statements will therefore print:

[Kristian]
[Frederik]

what there is no strange in. Because of the JavaFX properties, they can of course be bound:

property1.bind(property2);

which binds property1 to property2 with a unidirectional binding. Quite exactly, it means
that the list for which property1 is wrapper for is the same list that property2 is wrapper for.
The next statement adds three names to property1, and the next statement again a name to
property2. The next two print statments results in

[Frederik,	Svend,	Knud,	Valdemar,	Hans]
[Frederik,	Svend,	Knud,	Valdemar,	Hans]

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX properties

40

and perhaps it was not what one would expect as it is a unidirectional binding, but since the
two property objects wrapper the same list (and the one that property2 was originally wrapper
for), it is in both cases that list that is being updated. If you then perform the statement

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

40

and perhaps it was not what one would expect as it is a unidirectional binding, but since the
two property objects wrapper the same list (and the one that property2 was originally wrapper
for), it is in both cases that list that is being updated. If you then perform the statement

property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));

property2 is now wrapper for a list with two names, and because of the binding, both properties
will refer to this list. If you try instead to execute the statement, which is comment out, you
get an exception due to the fact that propert1 is bound to property2 with a unidirectional
binding. Therefore, do not change the object as property1 is wrapper for. Next, the binding
is removed and a bidirectional binding is instead created. Now you can change the list for
both properties, since the binding now is bidirectional, and it is the last value that applies.
The last print statements therefore results in:

[Niels,	Abel,	Oluf,	Knud]
[Niels,	Abel,	Oluf,	Knud]

The above bindings bind the lists that the properties are wrappers for, but you can instead
bind their contents as you do with the methods bindContent() and bindContentBidirectional():

private static void test12()
{
	ListProperty<String>	property1	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ListProperty<String>	property2	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
 property1.bindContent(property2);
	property1.addAll("Svend",	"Knud",	"Valdemar");
 System.out.println(property1.get());
 System.out.println(property2.get());
	property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));
 System.out.println(property1.get());
 System.out.println(property2.get());
 property1.unbindContent(property2);
 property1.bindContentBidirectional(property2);
 property1.add("Oluf");
 property2.add("Knud");
 System.out.println(property1.get());
 System.out.println(property2.get());
}

Above this defines a binding of the two lists’ content, but this means that the two lists’
content by the unidirectional binding is not synchronized:

property2 is now wrapper for a list with two names, and because of the binding, both properties
will refer to this list. If you try instead to execute the statement, which is comment out, you
get an exception due to the fact that propert1 is bound to property2 with a unidirectional
binding. Therefore, do not change the object as property1 is wrapper for. Next, the binding
is removed and a bidirectional binding is instead created. Now you can change the list for
both properties, since the binding now is bidirectional, and it is the last value that applies.
The last print statements therefore results in:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

40

and perhaps it was not what one would expect as it is a unidirectional binding, but since the
two property objects wrapper the same list (and the one that property2 was originally wrapper
for), it is in both cases that list that is being updated. If you then perform the statement

property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));

property2 is now wrapper for a list with two names, and because of the binding, both properties
will refer to this list. If you try instead to execute the statement, which is comment out, you
get an exception due to the fact that propert1 is bound to property2 with a unidirectional
binding. Therefore, do not change the object as property1 is wrapper for. Next, the binding
is removed and a bidirectional binding is instead created. Now you can change the list for
both properties, since the binding now is bidirectional, and it is the last value that applies.
The last print statements therefore results in:

[Niels,	Abel,	Oluf,	Knud]
[Niels,	Abel,	Oluf,	Knud]

The above bindings bind the lists that the properties are wrappers for, but you can instead
bind their contents as you do with the methods bindContent() and bindContentBidirectional():

private static void test12()
{
	ListProperty<String>	property1	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ListProperty<String>	property2	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
 property1.bindContent(property2);
	property1.addAll("Svend",	"Knud",	"Valdemar");
 System.out.println(property1.get());
 System.out.println(property2.get());
	property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));
 System.out.println(property1.get());
 System.out.println(property2.get());
 property1.unbindContent(property2);
 property1.bindContentBidirectional(property2);
 property1.add("Oluf");
 property2.add("Knud");
 System.out.println(property1.get());
 System.out.println(property2.get());
}

Above this defines a binding of the two lists’ content, but this means that the two lists’
content by the unidirectional binding is not synchronized:

The above bindings bind the lists that the properties are wrappers for, but you can instead
bind their contents as you do with the methods bindContent() and bindContentBidirectional():

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX propertIes

40

and perhaps it was not what one would expect as it is a unidirectional binding, but since the
two property objects wrapper the same list (and the one that property2 was originally wrapper
for), it is in both cases that list that is being updated. If you then perform the statement

property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));

property2 is now wrapper for a list with two names, and because of the binding, both properties
will refer to this list. If you try instead to execute the statement, which is comment out, you
get an exception due to the fact that propert1 is bound to property2 with a unidirectional
binding. Therefore, do not change the object as property1 is wrapper for. Next, the binding
is removed and a bidirectional binding is instead created. Now you can change the list for
both properties, since the binding now is bidirectional, and it is the last value that applies.
The last print statements therefore results in:

[Niels,	Abel,	Oluf,	Knud]
[Niels,	Abel,	Oluf,	Knud]

The above bindings bind the lists that the properties are wrappers for, but you can instead
bind their contents as you do with the methods bindContent() and bindContentBidirectional():

private static void test12()
{
	ListProperty<String>	property1	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ListProperty<String>	property2	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
 property1.bindContent(property2);
	property1.addAll("Svend",	"Knud",	"Valdemar");
 System.out.println(property1.get());
 System.out.println(property2.get());
	property2.set(FXCollections.observableArrayList("Gorm",	"Harald"));
 System.out.println(property1.get());
 System.out.println(property2.get());
 property1.unbindContent(property2);
 property1.bindContentBidirectional(property2);
 property1.add("Oluf");
 property2.add("Knud");
 System.out.println(property1.get());
 System.out.println(property2.get());
}

Above this defines a binding of the two lists’ content, but this means that the two lists’
content by the unidirectional binding is not synchronized:
Above this defines a binding of the two lists’ content, but this means that the two lists’
content by the unidirectional binding is not synchronized:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

41

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

41

[Svend,	Knud,	Valdemar]
[]
[Gorm,	Harald,	Svend,	Knud,	Valdemar]
[Gorm, Harald]
[Gorm, Harald, Oluf, Knud]
[Gorm, Harald, Oluf, Knud]

As the last example, I will show how to bind to a single element in an ObservableList:

private static void test13()
{
	ListProperty<Person>	property	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ObjectBinding<Person>	last	=
 property.valueAt(property.sizeProperty().subtract(1));
 property.add(new Person("Gudrun Jensen", "Heks"));
 property.add(new Person("Carlo Andersen", "Skarpretter"));
	property.add(new	Person("Valborg	Kristensen",	"Spåkone"));
 System.out.println(property.get());
 System.out.println(last.get());
}

property is a ListProperty, which wrapper an ObservableList with Person objects. last is an
ObjectBinding object for a Person object that is bounded to the last item in the list that
property is wrapper for. Note the syntax. The method valueAt() has as parameter an index
and returns an ObjectBinding to the object in the list to which the index refers. After adding
three objects to the list, the print statements shows:

[Gudrun	Jensen:	Heks,	Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
Valborg	Kristensen:	Spåkone

In the same way as shown in this section, there are also wrapper properties called SetProperty
and MapProperty for an ObeservableSet and an ObservableMap respectively.

EXERCISE 2

Create a simple console application, which you can call BindingElements. The project
FXProperties has a class Person. Copy this class to the new project and add the following
simple method to the class BindingElements:

private	static	void	print(List<Person>	list)
{
 for (Person p : list) System.out.println(p);
 System.out.println();
}

As the last example, I will show how to bind to a single element in an ObservableList:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

41

[Svend,	Knud,	Valdemar]
[]
[Gorm,	Harald,	Svend,	Knud,	Valdemar]
[Gorm, Harald]
[Gorm, Harald, Oluf, Knud]
[Gorm, Harald, Oluf, Knud]

As the last example, I will show how to bind to a single element in an ObservableList:

private static void test13()
{
	ListProperty<Person>	property	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ObjectBinding<Person>	last	=
 property.valueAt(property.sizeProperty().subtract(1));
 property.add(new Person("Gudrun Jensen", "Heks"));
 property.add(new Person("Carlo Andersen", "Skarpretter"));
	property.add(new	Person("Valborg	Kristensen",	"Spåkone"));
 System.out.println(property.get());
 System.out.println(last.get());
}

property is a ListProperty, which wrapper an ObservableList with Person objects. last is an
ObjectBinding object for a Person object that is bounded to the last item in the list that
property is wrapper for. Note the syntax. The method valueAt() has as parameter an index
and returns an ObjectBinding to the object in the list to which the index refers. After adding
three objects to the list, the print statements shows:

[Gudrun	Jensen:	Heks,	Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
Valborg	Kristensen:	Spåkone

In the same way as shown in this section, there are also wrapper properties called SetProperty
and MapProperty for an ObeservableSet and an ObservableMap respectively.

EXERCISE 2

Create a simple console application, which you can call BindingElements. The project
FXProperties has a class Person. Copy this class to the new project and add the following
simple method to the class BindingElements:

private	static	void	print(List<Person>	list)
{
 for (Person p : list) System.out.println(p);
 System.out.println();
}

property is a ListProperty, which wrapper an ObservableList with Person objects. last is an
ObjectBinding object for a Person object that is bounded to the last item in the list that
property is wrapper for. Note the syntax. The method valueAt() has as parameter an index
and returns an ObjectBinding to the object in the list to which the index refers. After adding
three objects to the list, the print statements shows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

41

[Svend,	Knud,	Valdemar]
[]
[Gorm,	Harald,	Svend,	Knud,	Valdemar]
[Gorm, Harald]
[Gorm, Harald, Oluf, Knud]
[Gorm, Harald, Oluf, Knud]

As the last example, I will show how to bind to a single element in an ObservableList:

private static void test13()
{
	ListProperty<Person>	property	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ObjectBinding<Person>	last	=
 property.valueAt(property.sizeProperty().subtract(1));
 property.add(new Person("Gudrun Jensen", "Heks"));
 property.add(new Person("Carlo Andersen", "Skarpretter"));
	property.add(new	Person("Valborg	Kristensen",	"Spåkone"));
 System.out.println(property.get());
 System.out.println(last.get());
}

property is a ListProperty, which wrapper an ObservableList with Person objects. last is an
ObjectBinding object for a Person object that is bounded to the last item in the list that
property is wrapper for. Note the syntax. The method valueAt() has as parameter an index
and returns an ObjectBinding to the object in the list to which the index refers. After adding
three objects to the list, the print statements shows:

[Gudrun	Jensen:	Heks,	Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
Valborg	Kristensen:	Spåkone

In the same way as shown in this section, there are also wrapper properties called SetProperty
and MapProperty for an ObeservableSet and an ObservableMap respectively.

EXERCISE 2

Create a simple console application, which you can call BindingElements. The project
FXProperties has a class Person. Copy this class to the new project and add the following
simple method to the class BindingElements:

private	static	void	print(List<Person>	list)
{
 for (Person p : list) System.out.println(p);
 System.out.println();
}

In the same way as shown in this section, there are also wrapper properties called SetProperty
and MapProperty for an ObeservableSet and an ObservableMap respectively.

EXERCISE 2

Create a simple console application, which you can call BindingElements. The project
FXProperties has a class Person. Copy this class to the new project and add the following
simple method to the class BindingElements:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

41

[Svend,	Knud,	Valdemar]
[]
[Gorm,	Harald,	Svend,	Knud,	Valdemar]
[Gorm, Harald]
[Gorm, Harald, Oluf, Knud]
[Gorm, Harald, Oluf, Knud]

As the last example, I will show how to bind to a single element in an ObservableList:

private static void test13()
{
	ListProperty<Person>	property	=
	 new	SimpleListProperty<>(FXCollections.observableArrayList());
	ObjectBinding<Person>	last	=
 property.valueAt(property.sizeProperty().subtract(1));
 property.add(new Person("Gudrun Jensen", "Heks"));
 property.add(new Person("Carlo Andersen", "Skarpretter"));
	property.add(new	Person("Valborg	Kristensen",	"Spåkone"));
 System.out.println(property.get());
 System.out.println(last.get());
}

property is a ListProperty, which wrapper an ObservableList with Person objects. last is an
ObjectBinding object for a Person object that is bounded to the last item in the list that
property is wrapper for. Note the syntax. The method valueAt() has as parameter an index
and returns an ObjectBinding to the object in the list to which the index refers. After adding
three objects to the list, the print statements shows:

[Gudrun	Jensen:	Heks,	Carlo	Andersen:	Skarpretter,	Valborg	Kristensen:	Spåkone]
Valborg	Kristensen:	Spåkone

In the same way as shown in this section, there are also wrapper properties called SetProperty
and MapProperty for an ObeservableSet and an ObservableMap respectively.

EXERCISE 2

Create a simple console application, which you can call BindingElements. The project
FXProperties has a class Person. Copy this class to the new project and add the following
simple method to the class BindingElements:

private	static	void	print(List<Person>	list)
{
 for (Person p : list) System.out.println(p);
 System.out.println();
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

4242

Then write the following main() method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

4242

Then write the following main() method:

public static void main(String[] args)
{
	//	Create	an	ObservableList<Person>	to	Person	objects
 // Add 5 Person objects to list, what names and job titles do not matter
 // Create a ListProperty for the above list
	//	Define	a	binding	for	the	element	with	index	1
	//	Define	a	binding	for	the	element	with	index	3
 // Print the list on the screen
 // Insert a new Person in list at position 1
 // Insert a new Person in list at position 3
	//	Modify	the	name	of	the	Person	that	is	bound	with	p1
	//	Modify	the	job	title	of	the	Person	that	is	bound	with	p3
 // Print the list on the screen
}

Test the program. Do you get the expected result? Are there the expected objects that have
been changed?
Test the program. Do you get the expected result? Are there the expected objects that have
been changed?

http://s.bookboon.com/GTca

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

43

2.4	 BINDING PERSONS

As a final example of properties, the application PersonProgram opens the following window:

where you in the two top entry fields, can enter the name and job title of a person. If you
click OK, a person will be added to a ListView. In the window above 6 persons have been
created / entered. If you double-click on a person in the ListView control, the person’s
data is inserted into the input fields, and they can then be edited. If you double click on
a person, this can be deleted by clicking the Remove button. Finally, the Clear button is
used to delete the entry fields and remove a selction in the ListView control. The bottom
button is used to delete the content of the list.

The program uses the class Person from the project FXProperties – expanded by two trivial
methods. The code for the PersonProgram’s window is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

43

2.4 BINDING PERSONS

As a final example of properties, the application PersonProgram opens the following window:

where you in the two top entry fields, can enter the name and job title of a person. If you
click OK, a person will be added to a ListView. In the window above 6 persons have been
created / entered. If you double-click on a person in the ListView control, the person’s
data is inserted into the input fields, and they can then be edited. If you double click on
a person, this can be deleted by clicking the Remove button. Finally, the Clear button is
used to delete the entry fields and remove a selction in the ListView control. The bottom
button is used to delete the content of the list.

The program uses the class Person from the project FXProperties – expanded by two trivial
methods. The code for the PersonProgram’s window is as follows:

package personprogram;

import javafx.application.Application;
import javafx.event.*;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.stage.Stage;
import javafx.geometry.*;
import javafx.scene.input.*;
import javafx.collections.*;
import javafx.beans.property.*;

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

44

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

44

public class PersonProgram extends Application
{
	private	TextField	txtName	=	new	TextField();
	private	TextField	txtJob	=	new	TextField();
	private	ListView	lstView	=	null;
 private Person person = new Person("", "");
	private	ObservableList<Person>	persons	=	
	 FXCollections.observableArrayList();	
 private IntegerProperty selected = new SimpleIntegerProperty(-1);

 @Override
 public void start(Stage primaryStage)
 {
	 lstView	=	new	ListView(persons);
	 lstView.setPrefHeight(300);
	 lstView.setOnMouseClicked(this::clickHandler);
	 selected.bind(lstView.getSelectionModel().selectedIndexProperty());
 BorderPane root =
	 new	BorderPane(lstView,	createTop(),	null,	createBottom(),	null);
 root.setPadding(new Insets(20, 20, 20, 20));
	 BorderPane.setMargin(lstView,	new	Insets(20,	0,	20,	0));
 Scene scene = new Scene(root);
	 primaryStage.setTitle("Persons");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private Pane createBottom()
 {
	 HBox	pane	=	new	HBox(createButton("Delete",	this::deleteHandler));
	 pane.setAlignment(Pos.CENTER_RIGHT);
 return new BorderPane(null, null, pane, null, null);
 }

	private	Pane	createTop()
 {
	 txtName.textProperty().bindBidirectional(person.nameProperty());
 txtJob.textProperty().bindBidirectional(person.jobProperty());
	 txtName.setPrefWidth(300);
 HBox commands = new HBox(10, createButton("Remove", this::removeHandler),
 createButton("Clear", this::clearHandler),
 createButton("OK", this::okHandler));
	 commands.setAlignment(Pos.CENTER_RIGHT);
 GridPane pane = new GridPane();
	 pane.setVgap(10);
 pane.setHgap(20);
	 pane.addRow(0,	new	Label("Name"),	txtName);
 pane.addRow(1, new Label("Job"), txtJob);

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

4545

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

4545

 pane.add(commands, 1, 2);
 return pane;
 }

	private	Button	createButton(String	text,	EventHandler<ActionEvent>	handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

	private	void	okHandler(ActionEvent	e)
 {
	 if	(person.getName().trim().length()	>	0	&&
	 person.getJob().trim().length()	>	0)
 {
 if (selected.get() < 0)
	 persons.add(new	Person(person.getName(),	person.getJob()));
 else persons.set(selected.get(),
	 new	Person(person.getName(),	person.getJob()));
 clearHandler(e);
 }
 }

 .

http://s.bookboon.com/AlcatelLucent

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

46

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

46

	private	void	clearHandler(ActionEvent	e)
 {
 person.clear();
	 lstView.getSelectionModel().clearSelection();
	 txtName.requestFocus();
 }

	private	void	removeHandler(ActionEvent	e)
 {
	 if	(selected.get()	>=	0)	persons.remove(selected.get());
 clearHandler(e);
 }

	private	void	deleteHandler(ActionEvent	e)
 {
 persons.clear();
 clearHandler(e);
 }

	private	void	clickHandler(MouseEvent	e)	
 {
	 if	(e.getButton()	==	MouseButton.PRIMARY	&&	e.getClickCount()	==	2)
 {
	 if	(selected.get()	>=	0)	person.update(persons.get(selected.get()));
 }
	 else	lstView.getSelectionModel().clearSelection();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The class has 6 instance variables, where the first three are for controls. The next has the type
Person and represents the object on which you work, and thus the object whose properties
appear in the two entry fields. The next again is an ObservableList and represents the content
of the ListView control. Finally, the last one is a property that must represent the index of
the Person object in the list that is selected.

Examining the method start() is the first thing that happens that the lstView object is created
with persons as a parameter for the constructor. This means that a bidirectional binding
is created between the ListView component and the list persons. An event handler is also
associated with the ListView component for mouse events. Finally, the property selected is
bound to the selected index in the ListView component. The rest of the method start()

The class has 6 instance variables, where the first three are for controls. The next has the type
Person and represents the object on which you work, and thus the object whose properties
appear in the two entry fields. The next again is an ObservableList and represents the content
of the ListView control. Finally, the last one is a property that must represent the index of
the Person object in the list that is selected.

Examining the method start() is the first thing that happens that the lstView object is created
with persons as a parameter for the constructor. This means that a bidirectional binding
is created between the ListView component and the list persons. An event handler is also
associated with the ListView component for mouse events. Finally, the property selected is
bound to the selected index in the ListView component. The rest of the method start()

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

47

does not contain anything new and is only intended to create the window’s scene graph.
However, you must note the method createTop() that creates a GridPane for entering a
person. Here you should especially note how the two TextField controls bind to properties
of the Person object.

Then there are the event handlers where there are 5, but they are generally simple. The first
concerns the OK button and starts by testing whether something has been entered for both
name and job title. If this is the case, the property selected is used to determine whether to
add a new object or whether an existing object is to be modified. You should note that in
either case, a new Person object is instantiated. It is necessary because the variable person
can not be set to refer to another object as it is bound to the input fields. Whether you add
an object or modify an object, the event handler for the Clear button is called that clears
the fields in the person object and removes any selection in the ListView component. The
event handlers for the Remove and Delete buttons are both trivial and the event handler for
clicks with the mouse in the ListView component is also simple, and you should especially
note how to test for double-click.

When you test the program, note how the user interface is automatically updated for reasons
of the bindings.

2.5	 THE SCREEN

In these and the following two sections I briefly will mention how to refer to the screen
and a little more remarks about the program’s Stage object – although it does not have
much to do with properties, but the examples are part of the project FXProperties. The
following class opens a window that prints informations on the console about the screen
and components size:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

47

does not contain anything new and is only intended to create the window’s scene graph.
However, you must note the method createTop() that creates a GridPane for entering a
person. Here you should especially note how the two TextField controls bind to properties
of the Person object.

Then there are the event handlers where there are 5, but they are generally simple. The first
concerns the OK button and starts by testing whether something has been entered for both
name and job title. If this is the case, the property selected is used to determine whether to
add a new object or whether an existing object is to be modified. You should note that in
either case, a new Person object is instantiated. It is necessary because the variable person
can not be set to refer to another object as it is bound to the input fields. Whether you add
an object or modify an object, the event handler for the Clear button is called that clears
the fields in the person object and removes any selection in the ListView component. The
event handlers for the Remove and Delete buttons are both trivial and the event handler for
clicks with the mouse in the ListView component is also simple, and you should especially
note how to test for double-click.

When you test the program, note how the user interface is automatically updated for reasons
of the bindings.

2.5 THE SCREEN

In these and the following two sections I briefly will mention how to refer to the screen
and a little more remarks about the program’s Stage object – although it does not have
much to do with properties, but the examples are part of the project FXProperties. The
following class opens a window that prints informations on the console about the screen
and components size:

public	class	ScreenView	extends	Application	
{
 @Override
 public void start(Stage stage)
 {
	 BorderPane	root	=	new	BorderPane(new	Label("Tekst"));
 root.setPadding(new Insets(30, 30, 30, 30));
 Scene scene = new Scene(root, 300, 200);
 stage.setScene(scene);
	 stage.setTitle("Screen");
 stage.setWidth(500);
 stage.setHeight(400);
 stage.show();

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

4848

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

4848

 showSize();
 showSize(stage);
 showSize(root);
 }

 private void showSize()
 {
 Screen screen = Screen.getPrimary();
	 Rectangle2D	r1	=	screen.getBounds();
	 Rectangle2D	r2	=	screen.getVisualBounds();
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n",	r1.getMinX(),
	 r1.getMinY(),	r1.getWidth(),	r1.getHeight());
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n\n",	r2.getMinX(),
	 r2.getMinY(),	r2.getWidth(),	r2.getHeight());
 }

 private void showSize(Stage s)
 {
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n\n",	s.getX(),	s.getY(),
 s.getWidth(), s.getHeight());
 }

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

49

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

49

 private void showSize(Pane p)
 {
 Bounds b1 = p.getBoundsInLocal();
 Bounds b2 = p.getBoundsInParent();
 Bounds b3 = p.getLayoutBounds();
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n",	b1.getMinX(),
	 b1.getMinY(),	b1.getWidth(),	b1.getHeight());
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n",	b2.getMinX(),
	 b2.getMinY(),	b2.getWidth(),	b2.getHeight());
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n\n",	b3.getMinX(),
	 b3.getMinY(),	b3.getWidth(),	b3.getHeight());
 }
}

The program is simple and does nothing but create a window with a button. You should
note that when the root object is added to the scene object, the window size is defined,
and thus becoming the Stage object’s size, but also the size of the root object, that is a
BorderPane. This size is changed later in the method start(), partly to show that it is possible,
and partly to show that it does not change the size of the root object. After the window is
displayed on screen, three methods are called, which prints text on the console. You should
note that these methods must be called after the Stage object is displayed and the scene
graph’s components are rendered.

The first method uses a class Screen that has static methods that return a Screen object that
represents the screen and which is used to determine properties of the screen. In this case,
two methods are used which return a Rectangle2D object with information about the screen
size (measured in pixels and thus the resolution of the screen). The first returns the physical
size of the screen while the other returns the size available for the program. The difference
depends on the current platform, but the result could be as follows:

(0, 0) 1920 x 1080
(0, 27) 1920 x 1020

The difference is because my screen at the top has the Activity line (Fedora) and below
a taskbar.

The next method prints the Stage object’s size and position on the screen of its upper left
corner. Here you should note which properties the class Stage has regarding position and
size, and that the size is determined by the values I have assigned in the start() method:

(710, 234) 500 x 400

The program is simple and does nothing but create a window with a button. You should
note that when the root object is added to the scene object, the window size is defined,
and thus becoming the Stage object’s size, but also the size of the root object, that is a
BorderPane. This size is changed later in the method start(), partly to show that it is possible,
and partly to show that it does not change the size of the root object. After the window is
displayed on screen, three methods are called, which prints text on the console. You should
note that these methods must be called after the Stage object is displayed and the scene
graph’s components are rendered.

The first method uses a class Screen that has static methods that return a Screen object that
represents the screen and which is used to determine properties of the screen. In this case,
two methods are used which return a Rectangle2D object with information about the screen
size (measured in pixels and thus the resolution of the screen). The first returns the physical
size of the screen while the other returns the size available for the program. The difference
depends on the current platform, but the result could be as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

49

 private void showSize(Pane p)
 {
 Bounds b1 = p.getBoundsInLocal();
 Bounds b2 = p.getBoundsInParent();
 Bounds b3 = p.getLayoutBounds();
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n",	b1.getMinX(),
	 b1.getMinY(),	b1.getWidth(),	b1.getHeight());
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n",	b2.getMinX(),
	 b2.getMinY(),	b2.getWidth(),	b2.getHeight());
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n\n",	b3.getMinX(),
	 b3.getMinY(),	b3.getWidth(),	b3.getHeight());
 }
}

The program is simple and does nothing but create a window with a button. You should
note that when the root object is added to the scene object, the window size is defined,
and thus becoming the Stage object’s size, but also the size of the root object, that is a
BorderPane. This size is changed later in the method start(), partly to show that it is possible,
and partly to show that it does not change the size of the root object. After the window is
displayed on screen, three methods are called, which prints text on the console. You should
note that these methods must be called after the Stage object is displayed and the scene
graph’s components are rendered.

The first method uses a class Screen that has static methods that return a Screen object that
represents the screen and which is used to determine properties of the screen. In this case,
two methods are used which return a Rectangle2D object with information about the screen
size (measured in pixels and thus the resolution of the screen). The first returns the physical
size of the screen while the other returns the size available for the program. The difference
depends on the current platform, but the result could be as follows:

(0, 0) 1920 x 1080
(0, 27) 1920 x 1020

The difference is because my screen at the top has the Activity line (Fedora) and below
a taskbar.

The next method prints the Stage object’s size and position on the screen of its upper left
corner. Here you should note which properties the class Stage has regarding position and
size, and that the size is determined by the values I have assigned in the start() method:

(710, 234) 500 x 400

The difference is because my screen at the top has the Activity line (Fedora) and below
a taskbar.

The next method prints the Stage object’s size and position on the screen of its upper left
corner. Here you should note which properties the class Stage has regarding position and
size, and that the size is determined by the values I have assigned in the start() method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

49

 private void showSize(Pane p)
 {
 Bounds b1 = p.getBoundsInLocal();
 Bounds b2 = p.getBoundsInParent();
 Bounds b3 = p.getLayoutBounds();
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n",	b1.getMinX(),
	 b1.getMinY(),	b1.getWidth(),	b1.getHeight());
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n",	b2.getMinX(),
	 b2.getMinY(),	b2.getWidth(),	b2.getHeight());
	 System.out.printf("(%1.0f,	%1.0f)	%1.0f	x	%1.0f\n\n",	b3.getMinX(),
	 b3.getMinY(),	b3.getWidth(),	b3.getHeight());
 }
}

The program is simple and does nothing but create a window with a button. You should
note that when the root object is added to the scene object, the window size is defined,
and thus becoming the Stage object’s size, but also the size of the root object, that is a
BorderPane. This size is changed later in the method start(), partly to show that it is possible,
and partly to show that it does not change the size of the root object. After the window is
displayed on screen, three methods are called, which prints text on the console. You should
note that these methods must be called after the Stage object is displayed and the scene
graph’s components are rendered.

The first method uses a class Screen that has static methods that return a Screen object that
represents the screen and which is used to determine properties of the screen. In this case,
two methods are used which return a Rectangle2D object with information about the screen
size (measured in pixels and thus the resolution of the screen). The first returns the physical
size of the screen while the other returns the size available for the program. The difference
depends on the current platform, but the result could be as follows:

(0, 0) 1920 x 1080
(0, 27) 1920 x 1020

The difference is because my screen at the top has the Activity line (Fedora) and below
a taskbar.

The next method prints the Stage object’s size and position on the screen of its upper left
corner. Here you should note which properties the class Stage has regarding position and
size, and that the size is determined by the values I have assigned in the start() method:

(710, 234) 500 x 400

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

50

The last method prints information about the size of a node, as here is root and thus a
BorderPane. The size is determined using three methods, all of which return a Bound object:

1.	 getBoundsInLocal(), as the position and size before any possible transformation
2.	 getBoundsInParent(), which is the position and size after a possible transformation
3.	 getLayoutBounds(), which is the position and size as a layout pane uses for calculations

and may be different from the other sizes and is used if you write custom controls

In this case they are all alike.

2.6	 DECORATIONS

A typical window looks something like the following:

where there is a title bar and a border so you can change the window size. In addition,
there is the window content, like here a scene graph with a label and a button. How the
title bar and border are displayed depends on the current platform, and for the title bar,
the platform determines which buttons are available. The window’s title bar is also used to
move the window on the screen by dragging it with the mouse and for example maximizing
it by double-clicking the title bar.

Title bar and border are referred to as the window’s decorations or styles, and here are actually
more options, which are defined as properties of the Stage object. I want to mention three:

1.	StageStyle.DECORATED, which is the default where the window has a title bar
and a border

2.	StageStyle.UNDECORATED, where the window is not decorated and therefore does
not have a title bar or border

3.	StageStyle.TRANSPARENT, where the window is not decorated and also has a
transparent background

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

5151

For example, if you defines the above window as UNDECORATED, the result is:

and if you defines the window as TRANSPARENT is the result:

The above can be illustrated by the following class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

5151

For example, if you defines the above window as UNDECORATED, the result is:

and if you defines the window as TRANSPARENT is the result:

The above can be illustrated by the following class:

public	class	StyleView	extends	Application	
{
 private Stage stage;
 private double xpos;
 private double ypos;

http://s.bookboon.com/BI

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

52

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

52

 public void start(Stage stage)
 {
 this.stage = stage;
 Label lbl = new Label();
 Button cmd = new Button("Close");
	 cmd.setOnAction(e	->	stage.close());
	 VBox	root	=	new	VBox(10,	lbl,	cmd);
	 root.setAlignment(Pos.CENTER);
 Scene scene = new Scene(root, 200, 100);
 stage.setScene(scene);
	 stage.setTitle("StyleView");
	 this.show(scene,	lbl,	StageStyle.DECORATED);
//	 this.show(scene,	lbl,	StageStyle.UNDECORATED);
//	 this.show(scene,	lbl,	StageStyle.TRANSPARENT);
 }

 private void show(Scene scene, Label lbl, StageStyle style)
 {
	 lbl.setText(style.toString());
 stage.initStyle(style);
	 if	(style	==	StageStyle.UNDECORATED	||	style	==	StageStyle.TRANSPARENT)
 {
	 scene.setOnMousePressed(e	->	handleMousePressed(e));
	 scene.setOnMouseDragged(e	->	handleMouseDragged(e));
 }
	 if	(style	==	StageStyle.TRANSPARENT)	
 {
	 stage.getScene().setFill(null);
 stage.getScene().getRoot().setStyle("-fx-background-color: transparent");
 }
 stage.show();
 }

	private	void	handleMousePressed(MouseEvent	e)	
 {
	 xpos	=	e.getScreenX()	–	stage.getX();
 ypos = e.getScreenY() – stage.getY();
 }

	private	void	handleMouseDragged(MouseEvent	e)	
 {
	 stage.setX(e.getScreenX()	–	xpos);
 stage.setY(e.getScreenY() – ypos);
 }
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

53

where the comments in the method start() indicate how the window should be decorated.
There is not much going on in the start() method in addition to creating the scene graph
and initializing the Stage object. Note that the class this time has an instance variable that
refers to the Stage object so that it can be referenced from other class methods. Also note
the event handler to the Close button, which closes the window, thus terminating the
program. It works in this case, but not necessarily in other programs. If you perform a
close() on a Stage object, it will hide the window (perform the hide() method in the base
class to Stage that is named Window) and are there no other windows, the program will
terminate. If you want to terminate the program as soon as a button is clicked, you should
instead execute Platform.exit().

The window opens in the method show(), which has three parameters, which are the scene
graph, its Label control and the style of the window and hence how it should be decorated.
The method starts by setting the text for the window’s Label control and then how the
Stage object has to be decorated. Here you must note the syntax and that it must be done
before the Stage object appears on the screen. If the style is TRANSPARENT, it indicates
that there is no background. If the window is UNDECORATED, there is a problem, as you
can not move it with the mouse. If you wish, you can, as shown above, associate an event
handler for the mouse to the Scene object and then control that the window can be moved.

2.7	 MODALITY

As you know it from Swing, a dialog box can be modeless or modal, and of course it also
applies in JavaFX, where it is a property of the Stage object. There are three options:

1.	Modality.NONE, where the result is a modeless window, which is the default for
a Stage

2.	Modality.WINDOW_MODAL, which is modal and blocks all windows that directly
or indirectly own this window

3.	Modality.APPLICATION_MODEL, which is modal and blocks all of the application’s
other windows

The following example shows the syntax, but also shows that an application may well have
multiple Stage objects and thus windows (or dialogs) that explicitly create a Stage object.
The StageView class opens the following window:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

5454

where each of the four top buttons opens a dialog box by instantiating a new Stage object,
and the difference is partly modality and partly if the dialog has an owner. For example,
the first is modeless and without an owner. This means clicking on the top button, the
program will open a dialog box and then click at the cross in the main window’s title bar
(and you can because the dialog is modeless) closes the main window but not the dialog
and the program does not terminate, before closing the other window.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

55

The last button is included to show that a Stage object also has a method, so you can say
that the window should be displayed full screen. Note that displaying a full screen window
you returns to normal viewing by pressing ESC – or clicking the Full screen button again.

The code is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

55

The last button is included to show that a Stage object also has a method, so you can say
that the window should be displayed full screen. Note that displaying a full screen window
you returns to normal viewing by pressing ESC – or clicking the Full screen button again.

The code is as follows:

public	class	StagesView	extends	Application	
{
 @Override
 public void start(Stage stage)
 {
	 VBox	root	=	new	VBox(20,	
	 createButton("No	owner,	NONE",	e	->	showDialog(null,	null)),	
	 createButton("Owner,	NONE",	e	->	showDialog(stage,	Modality.NONE)),	
	 createButton("Owner,	WINDOW_MODAL",
	 e	->	showDialog(stage,	Modality.WINDOW_MODAL)),	
	 createButton("Owner,	APPLICATION_MODAL",
	 e	->	showDialog(stage,	Modality.APPLICATION_MODAL)),	
	 createButton("Full	screen",
	 e	->	stage.setFullScreen(!stage.isFullScreen())));
	 root.setAlignment(Pos.CENTER);
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root);
 stage.setScene(scene);
	 stage.setTitle("Primary	Stage");
 stage.show();
 }

	private	Button	createButton(String	text,	EventHandler<ActionEvent>	handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

	private	void	showDialog(Window	owner,	Modality	modality)	
 {
 Stage stage = new Stage();
 stage.initOwner(owner);
	 if	(modality	!=	null)	stage.initModality(modality);
	 VBox	root	=	new	VBox(20,	new	Label(owner	==	null	?	"Default"	:
	 "Parent	Window"),	new	Label(modality	==	null	?	"Default"	:
	 modality.toString()),	createButton("Close",	e	->	stage.close()));
	 root.setAlignment(Pos.CENTER);
 root.setPadding(new Insets(20, 20, 20, 20));

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

56

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

56

 Scene scene = new Scene(root);
 stage.setScene(scene);
	 stage.setTitle("Stage");
 stage.show();
 }
}

There is not much to explain, but you should note the method showDialog(), which creates
a dialog box by instantiating a new Stage object.

PROBLEM 1

In this task you must write a program that works in the same way as the program from
section 2.4. The database padata has a table with the name history which contains information
about historical persons (see, if applicable, the book Java 6). The table is created with the
following script:

use padata;
drop table if exists history;
create table history
(
	id	int	not	null	auto_increment	primary	key,	#	autogenerated	surrogat	key
	name	varchar(50)	not	null,	 #	the	person's	name
	title	varchar(30),	 	 #	the	person's	job	title
	birth	int,		 	 	 #	birth,	start	of	reign,	or	equivalent
	death	int,		 	 	 #	the	year	of	death,	end	of	reign,	or	equivalent
	country	char(2),		 	 #	the	country	the	person	comes	from
	description	text		 	 #	a	description
);

You must write a program that can maintain this database table. For example, you can call
the project for History.

The task can be solved in several ways, but the idea is to use data binding, partly when
data is displayed, and partly when editing information about a single person.

There is not much to explain, but you should note the method showDialog(), which creates
a dialog box by instantiating a new Stage object.

PROBLEM 1

In this task you must write a program that works in the same way as the program from
section 2.4. The database padata has a table with the name history which contains information
about historical persons (see, if applicable, the book Java 6). The table is created with the
following script:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 2

56

 Scene scene = new Scene(root);
 stage.setScene(scene);
	 stage.setTitle("Stage");
 stage.show();
 }
}

There is not much to explain, but you should note the method showDialog(), which creates
a dialog box by instantiating a new Stage object.

PROBLEM 1

In this task you must write a program that works in the same way as the program from
section 2.4. The database padata has a table with the name history which contains information
about historical persons (see, if applicable, the book Java 6). The table is created with the
following script:

use padata;
drop table if exists history;
create table history
(
	id	int	not	null	auto_increment	primary	key,	#	autogenerated	surrogat	key
	name	varchar(50)	not	null,	 #	the	person's	name
	title	varchar(30),	 	 #	the	person's	job	title
	birth	int,		 	 	 #	birth,	start	of	reign,	or	equivalent
	death	int,		 	 	 #	the	year	of	death,	end	of	reign,	or	equivalent
	country	char(2),		 	 #	the	country	the	person	comes	from
	description	text		 	 #	a	description
);

You must write a program that can maintain this database table. For example, you can call
the project for History.

The task can be solved in several ways, but the idea is to use data binding, partly when
data is displayed, and partly when editing information about a single person.

You must write a program that can maintain this database table. For example, you can call
the project for History.

The task can be solved in several ways, but the idea is to use data binding, partly when
data is displayed, and partly when editing information about a single person.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

5757

When the program starts, it must display a list of all persons in the database, and it could
be a window as shown below, with a ListView showing the names of all persons:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 2

58

The button should be used to create a new person and if you double-click a name in the
list, the program must show all information about a person and it must be possible to edit
the information. In both cases, you should use the same dialog box that could be:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

59

3	 ADVANCED CONTROLS

In this chapter I will illustrate the use of three controls that did not fit in the previous book:

1.	TableView
2.	TreeView
3.	TreeTableView

where the first corresponds to the component JTable, the second to the component JTree,
while the latter is best characterized as a combination. When the three components were not
included in the previous book, it is partly because they are complex with many possibilities,
and partly that their way of working can best be described after the mentions in the previous
chapter of properties and binding.

3.1	 TABLEVIEW

I want to start with the TableView component, that like JTable, is an extremely complex
control that arranges data in rows and columns, and it is also the most useful of the three
controls. The component’s class is called TableView, but together with the component are
several helper classes:

-- TableColumn
-- TableRow
-- TableCell
-- TablePosition
-- TableView.TableViewFocusModel
-- TableView.TableViewSelectionModel

and the names should tell a little about the purpose of the individual classes. The class
TableView is used a bit like a JTable, where you must define a data model, which is the data
that the component should display, and which columns there should be. I will start with
an example, which I have called ShowKingsProgram, which shows an overview of Danish
kings represented as objects of the type King (the class from the previous chapter):

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

59

3 ADVANCED CONTROLS

In this chapter I will illustrate the use of three controls that did not fit in the previous book:

1. TableView
2. TreeView
3. TreeTableView

where the first corresponds to the component JTable, the second to the component JTree,
while the latter is best characterized as a combination. When the three components were not
included in the previous book, it is partly because they are complex with many possibilities,
and partly that their way of working can best be described after the mentions in the previous
chapter of properties and binding.

3.1 TABLEVIEW

I want to start with the TableView component, that like JTable, is an extremely complex
control that arranges data in rows and columns, and it is also the most useful of the three
controls. The component’s class is called TableView, but together with the component are
several helper classes:

 - TableColumn
 - TableRow
 - TableCell
 - TablePosition
 - TableView.TableViewFocusModel
 - TableView.TableViewSelectionModel

and the names should tell a little about the purpose of the individual classes. The class
TableView is used a bit like a JTable, where you must define a data model, which is the data
that the component should display, and which columns there should be. I will start with
an example, which I have called ShowKingsProgram, which shows an overview of Danish
kings represented as objects of the type King (the class from the previous chapter):

public class King
{
	private	static	final	String	DK	=	"DK";
 private ReadOnlyStringWrapper name = new ReadOnlyStringWrapper(this, "name");
 private IntegerProperty from = new SimpleIntegerProperty(this, "from", 0);

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

6060

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

6060

 private IntegerProperty to = new SimpleIntegerProperty(this, "to", 9999);
 private StringProperty country;

If you run the program, it opens the window below which shows a table with 5 columns
and thus one column more than the type of King has properties for:

If you run the program, it opens the window below which shows a table with 5 columns
and thus one column more than the type of King has properties for:

http://s.bookboon.com/Subscrybe

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

61

If you study the program code (the main program) it is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

61

If you study the program code (the main program) it is:

public class ShowKingsProgram extends Application
{
	private	KingTableModel	model	=	new	KingTableModel();

 @Override
 public void start(Stage stage)
 {
	 TableView<King>	table	=	new	TableView(model.getKings());
	 table.getColumns().addAll(model.getNameCol(),	model.getPeriodCol(),
 model.getCountryCol(), model.getYearsCol());
 BorderPane root = new BorderPane(table);
 root.setPadding(new Insets(10, 10, 10, 10));
 Scene scene = new Scene(root, 500, 400);
 stage.setScene(scene);
	 stage.setTitle("Show	kings");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

which is very simple. Initially, a model is defined (explained below). Otherwise, nothing
happens except the method start(), where a TableView is created for King objects and
initialized with the data model, and finally, four columns are added using methods in the
data model. The respective TableView is inserted into the program’s scene graph encapsulated
in a BorderPane. It is the model class KingTableModel that contains the most:

public	class	KingTableModel
{
	private	final	ObservableList<King>	kings	=	FXCollections.observableArrayList();

	public	KingTableModel()
 {
 for (String[] arr : data) kings.add(new King(arr[0], Integer.parseInt(arr[1]),
 Integer.parseInt(arr[2])));
 }

	public	ObservableList<King>	getKings()	
 {
 return kings;
 }

which is very simple. Initially, a model is defined (explained below). Otherwise, nothing
happens except the method start(), where a TableView is created for King objects and
initialized with the data model, and finally, four columns are added using methods in the
data model. The respective TableView is inserted into the program’s scene graph encapsulated
in a BorderPane. It is the model class KingTableModel that contains the most:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

61

If you study the program code (the main program) it is:

public class ShowKingsProgram extends Application
{
	private	KingTableModel	model	=	new	KingTableModel();

 @Override
 public void start(Stage stage)
 {
	 TableView<King>	table	=	new	TableView(model.getKings());
	 table.getColumns().addAll(model.getNameCol(),	model.getPeriodCol(),
 model.getCountryCol(), model.getYearsCol());
 BorderPane root = new BorderPane(table);
 root.setPadding(new Insets(10, 10, 10, 10));
 Scene scene = new Scene(root, 500, 400);
 stage.setScene(scene);
	 stage.setTitle("Show	kings");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

which is very simple. Initially, a model is defined (explained below). Otherwise, nothing
happens except the method start(), where a TableView is created for King objects and
initialized with the data model, and finally, four columns are added using methods in the
data model. The respective TableView is inserted into the program’s scene graph encapsulated
in a BorderPane. It is the model class KingTableModel that contains the most:

public	class	KingTableModel
{
	private	final	ObservableList<King>	kings	=	FXCollections.observableArrayList();

	public	KingTableModel()
 {
 for (String[] arr : data) kings.add(new King(arr[0], Integer.parseInt(arr[1]),
 Integer.parseInt(arr[2])));
 }

	public	ObservableList<King>	getKings()	
 {
 return kings;
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

62

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

62

	public	TableColumn<King,	String>	getNameCol()	
 {
	 TableColumn<King,	String>	col	=	new	TableColumn("Name");
	 col.setCellValueFactory(new	PropertyValueFactory("name"));
 return col;
 }

	public	TableColumn<King,	Integer>	getFromCol()	
 {
	 TableColumn<King,	Integer>	col	=	new	TableColumn("From");
	 col.setCellValueFactory(new	PropertyValueFactory("from"));
 return col;
 }

	public	TableColumn<King,	Integer>	getToCol()	
 {
	 TableColumn<King,	Integer>	col	=	new	TableColumn("To");
	 col.setCellValueFactory(new	PropertyValueFactory("to"));
 return col;
 }

	public	TableColumn<King,	String>	getCountryCol()	
 {
	 TableColumn<King,	String>	col	=	new	TableColumn("Country");
	 col.setCellValueFactory(new	PropertyValueFactory("country"));
 return col;
 }

	public	TableColumn<King,	String>	getPeriodCol()	
 {
	 TableColumn<King,	String>	col	=	new	TableColumn<>("Period");
	 col.getColumns().addAll(getFromCol(),	getToCol());
 return col;
 }

	public	TableColumn<King,	String>	getYearsCol()	
 {
	 TableColumn<King,	String>	col	=	new	TableColumn<>("Years");
	 col.setCellValueFactory(c	->	{
	 King	king	=	c.getValue();
	 int	a	=	king.getFrom();
	 int	b	=	king.getTo();
	 if	(a	==	0	||	b	==	9999)	return	new	ReadOnlyStringWrapper("Unknown");
 return new ReadOnlyStringWrapper("" + (b – a));
 });
 return col;
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

6363

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

6363

	private	static	final	String[][]	data	=	{
 { "Gorm den Gamle", "0", "958" },
	 {	"Harald	Blåtand",	"958",	"987"	},
 …
 };
}

The class starts by creating an ObservableList for King objects, and the list is initialized in
the constructor using data defined in an array at the end of the class. Note that the list
as an alternative could be initialized by reading a database table. The class has a method
that can return the list, which was used in the method start() in the constructor for the
TableView component. The rest of the class consists of methods that creates the individual
columns. The first is for the name property, and the type of a column is TableColumn, with
parameters indicating which the objects are (here King) and the type of the property in
question (here String). The parameter of the constructor in TableColumn is the text shown
in the header of the columns. Next, you must specify which values each cell should contain,
and it happens with a PropertyValueFactory, where the parameter of the constructor is the
name of the property in the class King that the cell must contain, and here it is name.

The class starts by creating an ObservableList for King objects, and the list is initialized in
the constructor using data defined in an array at the end of the class. Note that the list
as an alternative could be initialized by reading a database table. The class has a method
that can return the list, which was used in the method start() in the constructor for the
TableView component. The rest of the class consists of methods that creates the individual
columns. The first is for the name property, and the type of a column is TableColumn, with
parameters indicating which the objects are (here King) and the type of the property in
question (here String). The parameter of the constructor in TableColumn is the text shown
in the header of the columns. Next, you must specify which values each cell should contain,
and it happens with a PropertyValueFactory, where the parameter of the constructor is the
name of the property in the class King that the cell must contain, and here it is name.

http://s.bookboon.com/volvo

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

64

The two next columns are basically defined in the same way, just the type is this time Integer.
However, these columns are not inserted directly in the table, but via another column
created by the method getPeriodCol(). Columns can be nested and the column created
by getPeriodCol() is a column consisting of two other columns. At the user interface, it
corresponds to that the column with the header Period having two subcolumns, respectively
from year and to year. In this case, there is no particular reason for it in addition to showing
that it is possible and what the syntax is.

The class also creates a column for the property country, and here is nothing new, and
actually the method getCountryCol() is not used. The goal is to show that you do not have
to display all columns in the user interface.

Finally, there is the method getYearCol(), which shows how many years that king has ruled,
or the text Unknown if you do not know the government period. This column is different,
as there is no corresponding property in the King class, and the values to be displayed in the
cells must therefore be calculated. This happens again using the method setCellValueFactory().
It has the following prototype:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

64

The two next columns are basically defined in the same way, just the type is this time Integer.
However, these columns are not inserted directly in the table, but via another column
created by the method getPeriodCol(). Columns can be nested and the column created
by getPeriodCol() is a column consisting of two other columns. At the user interface, it
corresponds to that the column with the header Period having two subcolumns, respectively
from year and to year. In this case, there is no particular reason for it in addition to showing
that it is possible and what the syntax is.

The class also creates a column for the property country, and here is nothing new, and
actually the method getCountryCol() is not used. The goal is to show that you do not have
to display all columns in the user interface.

Finally, there is the method getYearCol(), which shows how many years that king has ruled,
or the text Unknown if you do not know the government period. This column is different,
as there is no corresponding property in the King class, and the values to be displayed in the
cells must therefore be calculated. This happens again using the method setCellValueFactory().
It has the following prototype:

setCellValueFactory(Callback<TableColumn.CellDataFeatures<S,T>,
	ObservableValue<T>	value)

Callback<P, R> is an interface parameterized with two types, and the interface defines a
single method

R call(P param)

In this case for the column Year, it means that the cells of the column are initialized by a
method of the form

ObservableValue<String>	call(TableColumn.CellDataFeatures<King,	String>	value)

which is used to calculate the years in which the king has ruled. You can thus add your
own custom-defined columns. You should note that the value is returned as a read-only
property, as you can not edit such a value in the user interface.

If you run the program, note that by default you can change the columns width using the
mouse, change the order of columns, and sort them by clicking the header.

The next example is called MapKingProgram and is essentially the same program and opens
the following window:

Callback<P, R> is an interface parameterized with two types, and the interface defines a
single method

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

64

The two next columns are basically defined in the same way, just the type is this time Integer.
However, these columns are not inserted directly in the table, but via another column
created by the method getPeriodCol(). Columns can be nested and the column created
by getPeriodCol() is a column consisting of two other columns. At the user interface, it
corresponds to that the column with the header Period having two subcolumns, respectively
from year and to year. In this case, there is no particular reason for it in addition to showing
that it is possible and what the syntax is.

The class also creates a column for the property country, and here is nothing new, and
actually the method getCountryCol() is not used. The goal is to show that you do not have
to display all columns in the user interface.

Finally, there is the method getYearCol(), which shows how many years that king has ruled,
or the text Unknown if you do not know the government period. This column is different,
as there is no corresponding property in the King class, and the values to be displayed in the
cells must therefore be calculated. This happens again using the method setCellValueFactory().
It has the following prototype:

setCellValueFactory(Callback<TableColumn.CellDataFeatures<S,T>,
	ObservableValue<T>	value)

Callback<P, R> is an interface parameterized with two types, and the interface defines a
single method

R call(P param)

In this case for the column Year, it means that the cells of the column are initialized by a
method of the form

ObservableValue<String>	call(TableColumn.CellDataFeatures<King,	String>	value)

which is used to calculate the years in which the king has ruled. You can thus add your
own custom-defined columns. You should note that the value is returned as a read-only
property, as you can not edit such a value in the user interface.

If you run the program, note that by default you can change the columns width using the
mouse, change the order of columns, and sort them by clicking the header.

The next example is called MapKingProgram and is essentially the same program and opens
the following window:

In this case for the column Year, it means that the cells of the column are initialized by a
method of the form

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

64

The two next columns are basically defined in the same way, just the type is this time Integer.
However, these columns are not inserted directly in the table, but via another column
created by the method getPeriodCol(). Columns can be nested and the column created
by getPeriodCol() is a column consisting of two other columns. At the user interface, it
corresponds to that the column with the header Period having two subcolumns, respectively
from year and to year. In this case, there is no particular reason for it in addition to showing
that it is possible and what the syntax is.

The class also creates a column for the property country, and here is nothing new, and
actually the method getCountryCol() is not used. The goal is to show that you do not have
to display all columns in the user interface.

Finally, there is the method getYearCol(), which shows how many years that king has ruled,
or the text Unknown if you do not know the government period. This column is different,
as there is no corresponding property in the King class, and the values to be displayed in the
cells must therefore be calculated. This happens again using the method setCellValueFactory().
It has the following prototype:

setCellValueFactory(Callback<TableColumn.CellDataFeatures<S,T>,
	ObservableValue<T>	value)

Callback<P, R> is an interface parameterized with two types, and the interface defines a
single method

R call(P param)

In this case for the column Year, it means that the cells of the column are initialized by a
method of the form

ObservableValue<String>	call(TableColumn.CellDataFeatures<King,	String>	value)

which is used to calculate the years in which the king has ruled. You can thus add your
own custom-defined columns. You should note that the value is returned as a read-only
property, as you can not edit such a value in the user interface.

If you run the program, note that by default you can change the columns width using the
mouse, change the order of columns, and sort them by clicking the header.

The next example is called MapKingProgram and is essentially the same program and opens
the following window:

which is used to calculate the years in which the king has ruled. You can thus add your
own custom-defined columns. You should note that the value is returned as a read-only
property, as you can not edit such a value in the user interface.

If you run the program, note that by default you can change the columns width using the
mouse, change the order of columns, and sort them by clicking the header.

The next example is called MapKingProgram and is essentially the same program and opens
the following window:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

65

and that is, the program shows a TableView with 3 columns corresponding to three properties
in the class King. However, the difference is that the objects (rows) that the component
shows are not King objects, but instead, Map<String, Object> objects. There is no particular
reason for that in this example besides showing the syntax, but in situations where the rows
in the table do not match a domain object, the option can be used.

The class King is the same as in the previous example, but the class KingTableModel has
been changed:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

65

and that is, the program shows a TableView with 3 columns corresponding to three properties
in the class King. However, the difference is that the objects (rows) that the component
shows are not King objects, but instead, Map<String, Object> objects. There is no particular
reason for that in this example besides showing the syntax, but in situations where the rows
in the table do not match a domain object, the option can be used.

The class King is the same as in the previous example, but the class KingTableModel has
been changed:

public	class	KingTableModel	
{
	private	final	ObservableList<Map<String,	Object>>	kings	=
	 FXCollections.observableArrayList();

	public	KingTableModel()
 {
 int id = 0;
 for (String[] arr : data)
 {
 King king =
 new King(arr[0], Integer.parseInt(arr[1]), Integer.parseInt(arr[2]));
	 Map	map	=	new	HashMap<String,	Object>();
 map.put("id", String.format("%s%02d", king.getCountry(), ++id));
	 map.put("name",	king.getName());
	 map.put("from",	king.getFrom());
	 map.put("to",	king.getTo());
 kings.add(map);
 }
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

6666

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

6666

	public	ObservableList<Map<String,	Object>>	getKings()	
 {
 return kings;
 }

	public	TableColumn<Map,	String>	getIdCol()	
 {
	 TableColumn<Map,	String>	col	=	new	TableColumn("Id");
	 col.setCellValueFactory(new	MapValueFactory("id"));
 return col;
 }

	public	TableColumn<Map,	String>	getNameCol()	
 {
	 TableColumn<Map,	String>	col	=	new	TableColumn("Name");
	 col.setCellValueFactory(new	MapValueFactory("name"));
 return col;
 }

	public	TableColumn<Map,	Integer>	getFromCol()	
 {
	 TableColumn<Map,	Integer>	col	=	new	TableColumn("From");

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

67

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

67

	 col.setCellValueFactory(new	MapValueFactory("from"));
 return col;
 }

	public	TableColumn<Map,	Integer>	getToCol()	
 {
	 TableColumn<Map,	Integer>	col	=	new	TableColumn("To");
	 col.setCellValueFactory(new	MapValueFactory("to"));
 return col;
 }

	private	static	final	String[][]	data	=	{
 { "Gorm den Gamle", "0", "958" },
	 {	"Harald	Blåtand",	"958",	"987"	},
 …
 };
}

First, the collection persons is this time an ObservableList with objects, which are Map<String,
Object>. The list is created in the constructor, and the difference is that this time, the Map
objects must be instantiated where the key is a String while the value is an object (a String
or an Integer). Note the keys that are created with a continuous number, but preceded the
country code.

Then there are the methods that creates the columns. Column objects are created as in the
first example, but the parameter to setCellValueFactory() is a MapValueFactory object, where
the parameter of the constructor is the key. The result is that the columns are initialized
with the values in the Map object that the key refers to.

In the method start() (the class MapKingsProgram), there are no major changes, and I do
not want to show the code here, but after the table has been created and initialized with
columns, two statements have been added:

table.setTableMenuButtonVisible(true);
idCol.setVisible(false);

where idCol is the name of the first column with the rows id (and thus the key). The first
statement indicates that it should be possible to hide columns, while the second statement
indicates that idCol should be hidden from startup. If you run the program, you can notice
that in the header line above the scroll bar there is a small plus. If you click on it, you’ll get
a little popup where you can click from or to if the individual columns should be hidden.

First, the collection persons is this time an ObservableList with objects, which are Map<String,
Object>. The list is created in the constructor, and the difference is that this time, the Map
objects must be instantiated where the key is a String while the value is an object (a String
or an Integer). Note the keys that are created with a continuous number, but preceded the
country code.

Then there are the methods that creates the columns. Column objects are created as in the
first example, but the parameter to setCellValueFactory() is a MapValueFactory object, where
the parameter of the constructor is the key. The result is that the columns are initialized
with the values in the Map object that the key refers to.

In the method start() (the class MapKingsProgram), there are no major changes, and I do
not want to show the code here, but after the table has been created and initialized with
columns, two statements have been added:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

67

	 col.setCellValueFactory(new	MapValueFactory("from"));
 return col;
 }

	public	TableColumn<Map,	Integer>	getToCol()	
 {
	 TableColumn<Map,	Integer>	col	=	new	TableColumn("To");
	 col.setCellValueFactory(new	MapValueFactory("to"));
 return col;
 }

	private	static	final	String[][]	data	=	{
 { "Gorm den Gamle", "0", "958" },
	 {	"Harald	Blåtand",	"958",	"987"	},
 …
 };
}

First, the collection persons is this time an ObservableList with objects, which are Map<String,
Object>. The list is created in the constructor, and the difference is that this time, the Map
objects must be instantiated where the key is a String while the value is an object (a String
or an Integer). Note the keys that are created with a continuous number, but preceded the
country code.

Then there are the methods that creates the columns. Column objects are created as in the
first example, but the parameter to setCellValueFactory() is a MapValueFactory object, where
the parameter of the constructor is the key. The result is that the columns are initialized
with the values in the Map object that the key refers to.

In the method start() (the class MapKingsProgram), there are no major changes, and I do
not want to show the code here, but after the table has been created and initialized with
columns, two statements have been added:

table.setTableMenuButtonVisible(true);
idCol.setVisible(false);

where idCol is the name of the first column with the rows id (and thus the key). The first
statement indicates that it should be possible to hide columns, while the second statement
indicates that idCol should be hidden from startup. If you run the program, you can notice
that in the header line above the scroll bar there is a small plus. If you click on it, you’ll get
a little popup where you can click from or to if the individual columns should be hidden.

where idCol is the name of the first column with the rows id (and thus the key). The first
statement indicates that it should be possible to hide columns, while the second statement
indicates that idCol should be hidden from startup. If you run the program, you can notice
that in the header line above the scroll bar there is a small plus. If you click on it, you’ll get
a little popup where you can click from or to if the individual columns should be hidden.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

68

The next example is called RenderKingsProgram and opens the following window:

and will show you how to define how the content of the individual cells should be displayed.
In this case, the content of the From column appear as blank if the value is 0 corresponding
to the meaning that you do not know the start of the king’s government period. The same
applies to the To column if the value is 9999. In addition, the two columns are right-
aligned. Finally, the last column shows the value of the property country as a checkbox that
is checked if the value is DK.

The objects that are displayed again have the type King, and the most important changes
are again in the class KingTableModel:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

68

The next example is called RenderKingsProgram and opens the following window:

and will show you how to define how the content of the individual cells should be displayed.
In this case, the content of the From column appear as blank if the value is 0 corresponding
to the meaning that you do not know the start of the king’s government period. The same
applies to the To column if the value is 9999. In addition, the two columns are right-
aligned. Finally, the last column shows the value of the property country as a checkbox that
is checked if the value is DK.

The objects that are displayed again have the type King, and the most important changes
are again in the class KingTableModel:

public	class	KingTableModel	
{
	private	final	ObservableList<King>	kings	=	FXCollections.observableArrayList();

 …

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

6969

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

6969

	public	TableColumn<King,	Integer>	getFromCol()	
 {
	 TableColumn<King,	Integer>	col	=	new	TableColumn("From");
	 col.setCellValueFactory(new	PropertyValueFactory("from"));
	 col.setCellFactory(c	->	{
	 TableCell<King,	Integer>	cell	=	new	TableCell<King,	Integer>()	
 {
 @Override
 public void updateItem(Integer item, boolean empty)
 {
 super.updateItem(item, empty);
	 this.setText(null);
 this.setGraphic(null);
	 if	(!empty	&&	item	!=	0)	this.setText(""	+	item);
 }
 };
 return cell;
 });
 col.setPrefWidth(60);
	 col.setStyle("-fx-alignment:	CENTER_RIGHT;");
 col.getStyleClass().add("salary-header");
 return col;
 }

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

70

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

70

	public	TableColumn<King,	Boolean>	getCountryCol()	
 {
	 TableColumn<King,	Boolean>	col	=	new	TableColumn<>("Danish");
	 col.setCellValueFactory(cell	->	{
	 King	king	=	cell.getValue();
	 return	new	ReadOnlyBooleanWrapper(king.getCountry().equals("DK"));
 });
	 col.setCellFactory(CheckBoxTableCell.<King>forTableColumn(col));
 return col;
 }

	private	static	final	String[][]	data	=	{
 { "Gorm den Gamle", "0", "958" },
 …
 };
}

The start of the class is essentially the same as in the first example. That is, the construter, the
method getKing() and the method getNamCol() are unchanged and are therefore not shown
above. However, the method getFromCol() is different. It still has to return a TableColumn
for the property from, and this column object is created as before, but then the method
setCellFactory() is used to tell how the value should be displayed. This happens with a
TableCell object, which is an interface that defines a method update(). The method has as
parameter, the object to be rendered, and a boolean that tells if the cell is empty. If there
is a non-zero content, it is used to update the cell. After being associated with a TableCell,
a column is assigned a preferred width and a style is attached to the column and to its
header, where the last is defined in a style sheet. The method getToCol() is written in the
same way and does not appear here.

Then there is method getCountryCol(), which creates a TableColumn for Boolean objects. A
CellValueFactory is assigned to specify which value a King object should result in, depending
on the value of the country property. Is it DK, the value must be true and otherwise false.
You should note that the value wrappers in a read-only property, and the reason is that the
TableView component should be able to bind to the value. Finally, a CellFactory is associated
with the column telling how the value should be displayed and that it should be like a
CheckBoxTableCell, which is a wrapper for a checkbox. Note that you also indicate that the
checkbox must be initialized with the value in the current column.

Then there is the main program with the method start():

public void start(Stage stage)
{
	TableView<King>	table	=	new	TableView(model.getKings());

The start of the class is essentially the same as in the first example. That is, the construter, the
method getKing() and the method getNamCol() are unchanged and are therefore not shown
above. However, the method getFromCol() is different. It still has to return a TableColumn
for the property from, and this column object is created as before, but then the method
setCellFactory() is used to tell how the value should be displayed. This happens with a
TableCell object, which is an interface that defines a method update(). The method has as
parameter, the object to be rendered, and a boolean that tells if the cell is empty. If there
is a non-zero content, it is used to update the cell. After being associated with a TableCell,
a column is assigned a preferred width and a style is attached to the column and to its
header, where the last is defined in a style sheet. The method getToCol() is written in the
same way and does not appear here.

Then there is method getCountryCol(), which creates a TableColumn for Boolean objects. A
CellValueFactory is assigned to specify which value a King object should result in, depending
on the value of the country property. Is it DK, the value must be true and otherwise false.
You should note that the value wrappers in a read-only property, and the reason is that the
TableView component should be able to bind to the value. Finally, a CellFactory is associated
with the column telling how the value should be displayed and that it should be like a
CheckBoxTableCell, which is a wrapper for a checkbox. Note that you also indicate that the
checkbox must be initialized with the value in the current column.

Then there is the main program with the method start():

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

70

	public	TableColumn<King,	Boolean>	getCountryCol()	
 {
	 TableColumn<King,	Boolean>	col	=	new	TableColumn<>("Danish");
	 col.setCellValueFactory(cell	->	{
	 King	king	=	cell.getValue();
	 return	new	ReadOnlyBooleanWrapper(king.getCountry().equals("DK"));
 });
	 col.setCellFactory(CheckBoxTableCell.<King>forTableColumn(col));
 return col;
 }

	private	static	final	String[][]	data	=	{
 { "Gorm den Gamle", "0", "958" },
 …
 };
}

The start of the class is essentially the same as in the first example. That is, the construter, the
method getKing() and the method getNamCol() are unchanged and are therefore not shown
above. However, the method getFromCol() is different. It still has to return a TableColumn
for the property from, and this column object is created as before, but then the method
setCellFactory() is used to tell how the value should be displayed. This happens with a
TableCell object, which is an interface that defines a method update(). The method has as
parameter, the object to be rendered, and a boolean that tells if the cell is empty. If there
is a non-zero content, it is used to update the cell. After being associated with a TableCell,
a column is assigned a preferred width and a style is attached to the column and to its
header, where the last is defined in a style sheet. The method getToCol() is written in the
same way and does not appear here.

Then there is method getCountryCol(), which creates a TableColumn for Boolean objects. A
CellValueFactory is assigned to specify which value a King object should result in, depending
on the value of the country property. Is it DK, the value must be true and otherwise false.
You should note that the value wrappers in a read-only property, and the reason is that the
TableView component should be able to bind to the value. Finally, a CellFactory is associated
with the column telling how the value should be displayed and that it should be like a
CheckBoxTableCell, which is a wrapper for a checkbox. Note that you also indicate that the
checkbox must be initialized with the value in the current column.

Then there is the main program with the method start():

public void start(Stage stage)
{
	TableView<King>	table	=	new	TableView(model.getKings());

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

71

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

71

	table.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
	table.getSelectionModel().setCellSelectionEnabled(false);
	table.getSelectionModel().getSelectedIndices().addListener(
	 (ListChangeListener.Change<?	extends	Integer>	change)	->	{
 String text = "";
	 List<Integer>	list	=	table.getSelectionModel().getSelectedIndices();
 for (Integer n : list) text += n + " ";
 System.out.println(text);
 });
	table.getColumns().addAll(model.getNameCol(),	model.getFromCol(),
	 model.getToCol(),	model.getCountryCol());
 BorderPane root = new BorderPane(table);
 root.setPadding(new Insets(10, 10, 10, 10));
 Scene scene = new Scene(root, 450, 300);
 scene.getStylesheets().add("resources/css/styles.css");
 stage.setScene(scene);
	stage.setTitle("Show	kings");
 stage.show();
}

It looks like the above examples, but should show a little about how to select rows. First,
you should be able to select MULTIPLE, and you should not be able to select single cells.
Next, an event handler that fires every time you change selection. The handler is trivial
and does nothing but write a text on the console, a text that shows the indexes of the rows
that are selected.

EXERCISE 3

The database padata contains a table zipcode with Danish zip codes. You must write a program
that you can call PostProgram. The program should only show the content of the database
table in a TableView, and you should not do anything specifically about the formatting of
the individual columns (there are only two).

3.2 EDIT CELLS IN A TABLEVIEW

I will now show an example that, in principle, looks like the above examples, but where
you can edit the content of the individual cells. Although it may not be surprisingly new,
it is still relatively simple. In general, it works that way that you double-click on the cell
you want to edit, after which the cell opens with the option of changing the value. When
the cell is opened, it happens by the cell shows another control that basically can be

It looks like the above examples, but should show a little about how to select rows. First,
you should be able to select MULTIPLE, and you should not be able to select single cells.
Next, an event handler that fires every time you change selection. The handler is trivial
and does nothing but write a text on the console, a text that shows the indexes of the rows
that are selected.

EXERCISE 3

The database padata contains a table zipcode with Danish zip codes. You must write a program
that you can call PostProgram. The program should only show the content of the database
table in a TableView, and you should not do anything specifically about the formatting of
the individual columns (there are only two).

3.2	 EDIT CELLS IN A TABLEVIEW

I will now show an example that, in principle, looks like the above examples, but where
you can edit the content of the individual cells. Although it may not be surprisingly new,
it is still relatively simple. In general, it works that way that you double-click on the cell
you want to edit, after which the cell opens with the option of changing the value. When
the cell is opened, it happens by the cell shows another control that basically can be

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

7272

1.	CheckBoxTableCell (see the previous example)
2.	ChoiceBoxTableCell
3.	ComboBoxTableCell
4.	TextFieldTableCell

and you can also define your own controls. To show how it works, I will use another object
type this time, which is a class that represents a Person:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

7272

1. CheckBoxTableCell (see the previous example)
2. ChoiceBoxTableCell
3. ComboBoxTableCell
4. TextFieldTableCell

and you can also define your own controls. To show how it works, I will use another object
type this time, which is a class that represents a Person:

public	class	Person	implements	Comparable<Person>	
{
	private	static	int	ID	=	0;
	private	final	ReadOnlyIntegerWrapper	id	=	new	ReadOnlyIntegerWrapper();
	private	final	StringProperty	name	=	new	SimpleStringProperty();
	private	final	StringProperty	job	=	new	SimpleStringProperty();
	private	final	StringProperty	gender	=	new	SimpleStringProperty();
	private	final	IntegerProperty	year	=	new	SimpleIntegerProperty();
	private	final	DoubleProperty	salary	=	new	SimpleDoubleProperty();
	private	final	BooleanProperty	weekly	=	new	SimpleBooleanProperty();
	private	final	ObjectProperty<LocalDate>	date	=	new	SimpleObjectProperty();

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

73

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

73

 public Person(String name, String job, String gender, Integer year,
	 Double	salary,	Boolean	weekly,	LocalDate	date)	
 {
	 id.set(++ID);
	 setName(name);
 …
 }

It’s a standard JavaFX model class, so I do not show the details here. The class is an
extension of the class Person that I have used in the previous chapter, but this time, objects
are assigned a current ID represented as a readonly property. In fact, the interpretation of
the last four properties, it is not important, but it could be birth year (for year), salary (for
salary) and whether the salary is weekly or monthly (for weekly). Finally, the last property
could be interpreted as the date of employment. The important is not the interpretation,
but that the parameters have different types. If you run the program, the result could be as
shown below, where all values except the Id column can be edited. The Add button is used
to add a new row to the table, thus creating a Person, while the Remove button is used to
delete the row that is selected.

In addition to the class Person, the project has a class called PersonModel:

package editpersonsprogram;
import	java.time.LocalDate;
import	javafx.collections.FXCollections;
import javafx.collections.ObservableList;

public	class	PersonsModel	
{
	private	final	ObservableList<Person>	persons	=
	 FXCollections.observableArrayList();

It’s a standard JavaFX model class, so I do not show the details here. The class is an extension
of the class Person that I have used in the previous chapter, but this time, objects are assigned
a current ID represented as a readonly property. In fact, the interpretation of the last four
properties, it is not important, but it could be birth year (for year), salary (for salary) and
whether the salary is weekly or monthly (for weekly). Finally, the last property could be
interpreted as the date of employment. The important is not the interpretation, but that
the parameters have different types. If you run the program, the result could be as shown
below, where all values except the Id column can be edited. The Add button is used to add
a new row to the table, thus creating a Person, while the Remove button is used to delete
the row that is selected.

In addition to the class Person, the project has a class called PersonModel:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

73

 public Person(String name, String job, String gender, Integer year,
	 Double	salary,	Boolean	weekly,	LocalDate	date)	
 {
	 id.set(++ID);
	 setName(name);
 …
 }

It’s a standard JavaFX model class, so I do not show the details here. The class is an
extension of the class Person that I have used in the previous chapter, but this time, objects
are assigned a current ID represented as a readonly property. In fact, the interpretation of
the last four properties, it is not important, but it could be birth year (for year), salary (for
salary) and whether the salary is weekly or monthly (for weekly). Finally, the last property
could be interpreted as the date of employment. The important is not the interpretation,
but that the parameters have different types. If you run the program, the result could be as
shown below, where all values except the Id column can be edited. The Add button is used
to add a new row to the table, thus creating a Person, while the Remove button is used to
delete the row that is selected.

In addition to the class Person, the project has a class called PersonModel:

package editpersonsprogram;
import	java.time.LocalDate;
import	javafx.collections.FXCollections;
import javafx.collections.ObservableList;

public	class	PersonsModel	
{
	private	final	ObservableList<Person>	persons	=
	 FXCollections.observableArrayList();

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

74

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

74

	public	PersonsModel()
 {
 initialize();
 }

	public	ObservableList<Person>	getPersons()	
 {
 return persons;
 }

 public void add()
 {
 persons.add(new Person("", "", "", null, null, true, null));
 }

 public void remove(int n)
 {
 persons.remove(n);
 }

 private void initialize()
 {
 …
 }
}

which represents the persons on whom the program is working. The method initialize()
creates 6 persons, so the table is not empty when the program starts. Note that the objects
are stored in an ObservableList to Person objects and note how the methods add() and
remove() maintains this list.

Otherwise I want to start with the class EditPersonsProgram:

public	class	EditPersonsProgram	extends	Application	
{
	private	PersonsModel	model	=	new	PersonsModel();
	private	TableView<Person>	table	=	null;

 @Override
 public void start(Stage stage)
 {
	 table	=	new	TableView(model.getPersons());
	 PersonTableModel	cols	=	new	PersonTableModel();
	 table.getColumns().addAll(cols.getIdCol(),	cols.getNameCol(),
 cols.getJobCol(), cols.getGenderCol(), cols.getYearCol(),
	 cols.getSalaryCol(),	cols.getWeeklyCol(),	cols.getDateCol());
	 table.setEditable(true);

which represents the persons on whom the program is working. The method initialize()
creates 6 persons, so the table is not empty when the program starts. Note that the objects
are stored in an ObservableList to Person objects and note how the methods add() and
remove() maintains this list.

Otherwise I want to start with the class EditPersonsProgram:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

74

	public	PersonsModel()
 {
 initialize();
 }

	public	ObservableList<Person>	getPersons()	
 {
 return persons;
 }

 public void add()
 {
 persons.add(new Person("", "", "", null, null, true, null));
 }

 public void remove(int n)
 {
 persons.remove(n);
 }

 private void initialize()
 {
 …
 }
}

which represents the persons on whom the program is working. The method initialize()
creates 6 persons, so the table is not empty when the program starts. Note that the objects
are stored in an ObservableList to Person objects and note how the methods add() and
remove() maintains this list.

Otherwise I want to start with the class EditPersonsProgram:

public	class	EditPersonsProgram	extends	Application	
{
	private	PersonsModel	model	=	new	PersonsModel();
	private	TableView<Person>	table	=	null;

 @Override
 public void start(Stage stage)
 {
	 table	=	new	TableView(model.getPersons());
	 PersonTableModel	cols	=	new	PersonTableModel();
	 table.getColumns().addAll(cols.getIdCol(),	cols.getNameCol(),
 cols.getJobCol(), cols.getGenderCol(), cols.getYearCol(),
	 cols.getSalaryCol(),	cols.getWeeklyCol(),	cols.getDateCol());
	 table.setEditable(true);

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

7575

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

7575

 BorderPane root = new BorderPane(table, null, null, createBottom(), null);
 root.setPadding(new Insets(10, 10, 10, 10));
 Scene scene = new Scene(root);
 scene.getStylesheets().add("resources/css/styles.css");
 stage.setScene(scene);
	 stage.setTitle("Show	kings");
 stage.show();
 }

 private Pane createBottom()
 {
	 HBox	pane	=	new	HBox(20,	createButton("Test",	this::test),
	 createButton("Remove",	this::remove),	createButton("Add",	e	->	model.add()));
	 pane.setAlignment(Pos.CENTER_RIGHT);
 pane.setPadding(new Insets(10, 0, 0, 0));
 return pane;
 }

	private	Button	createButton(String	text,	EventHandler<ActionEvent>	handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

76

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

76

	private	void	remove(ActionEvent	e)
 {
	 int	row	=	table.getSelectionModel().getSelectedIndex();
	 if	(row	>=	0)
 {
 model.remove(row);
	 table.getSelectionModel().clearSelection();
 }
 }

	private	void	test(ActionEvent	e)
 {
 for (Person p : model.getPersons()) System.out.println(p);
 System.out.println();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The class starts by defining a model object – not for the TableView component, but for
the data that the program needs to maintain. In addition, a TableView for Person objects
are defined. In the method start() where the table is created, there is not much new to
explain, but you should note that the table columns are created by methods in a class
PersonTableModel this time. Finally, note that the table is defined as editable:

table.setEditable(true);

and that’s all you need to edit the cells if a column relates to read/write property and if the
column has a CellFactory that is a TableCell control. You should also note the event handlers
where the Add button handler is trivial, while the handler for the Remove button requires
you to determine the index for the row that is selected. Finally, there is the handler for the
Test button, which on the console prints the objects in the list. The goal of this handler is
to test whether there is consistency with what the TableView control shows and what the
model contains. It is to show that changes in the TableView control automatically updates
the model.

Then there is the class PersonTableModel that has methods that create the table columns.
On the other hand, it is also the most complex of the program’s classes.

The class starts by defining a model object – not for the TableView component, but for
the data that the program needs to maintain. In addition, a TableView for Person objects
are defined. In the method start() where the table is created, there is not much new to
explain, but you should note that the table columns are created by methods in a class
PersonTableModel this time. Finally, note that the table is defined as editable:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

76

	private	void	remove(ActionEvent	e)
 {
	 int	row	=	table.getSelectionModel().getSelectedIndex();
	 if	(row	>=	0)
 {
 model.remove(row);
	 table.getSelectionModel().clearSelection();
 }
 }

	private	void	test(ActionEvent	e)
 {
 for (Person p : model.getPersons()) System.out.println(p);
 System.out.println();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The class starts by defining a model object – not for the TableView component, but for
the data that the program needs to maintain. In addition, a TableView for Person objects
are defined. In the method start() where the table is created, there is not much new to
explain, but you should note that the table columns are created by methods in a class
PersonTableModel this time. Finally, note that the table is defined as editable:

table.setEditable(true);

and that’s all you need to edit the cells if a column relates to read/write property and if the
column has a CellFactory that is a TableCell control. You should also note the event handlers
where the Add button handler is trivial, while the handler for the Remove button requires
you to determine the index for the row that is selected. Finally, there is the handler for the
Test button, which on the console prints the objects in the list. The goal of this handler is
to test whether there is consistency with what the TableView control shows and what the
model contains. It is to show that changes in the TableView control automatically updates
the model.

Then there is the class PersonTableModel that has methods that create the table columns.
On the other hand, it is also the most complex of the program’s classes.

and that’s all you need to edit the cells if a column relates to read/write property and if the
column has a CellFactory that is a TableCell control. You should also note the event handlers
where the Add button handler is trivial, while the handler for the Remove button requires
you to determine the index for the row that is selected. Finally, there is the handler for the
Test button, which on the console prints the objects in the list. The goal of this handler is
to test whether there is consistency with what the TableView control shows and what the
model contains. It is to show that changes in the TableView control automatically updates
the model.

Then there is the class PersonTableModel that has methods that create the table columns.
On the other hand, it is also the most complex of the program’s classes.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

77

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

77

public	class	PersonTableModel	
{
	public	TableColumn<Person,	Integer>	getIdCol()	
 {
	 TableColumn<Person,	Integer>	idCol	=	new	TableColumn("Id");
	 idCol.setCellValueFactory(new	PropertyValueFactory("id"));
 return idCol;
 }

	public	TableColumn<Person,	String>	getNameCol()	
 {
	 TableColumn<Person,	String>	col	=	new	TableColumn("Name");
	 col.setCellValueFactory(new	PropertyValueFactory("name"));
	 col.setCellFactory(TextFieldTableCell.<Person>forTableColumn());
 return col;
 }

	public	TableColumn<Person,	String>	getJobCol()	
 {
 …
 }

	public	TableColumn<Person,	String>	getGenderCol()	
 {
	 TableColumn<Person,	String>	col	=	new	TableColumn("Gender");
	 col.setCellValueFactory(new	PropertyValueFactory("gender"));
	 col.setCellFactory(ChoiceBoxTableCell.<Person,	String>forTableColumn(
	 "Male",	"Female"));
 return col;
 }

	public	TableColumn<Person,	Integer>	getYearCol()	
 {
	 TableColumn<Person,	Integer>	col	=	new	TableColumn("Year");
	 col.setCellValueFactory(new	PropertyValueFactory("year"));
	 col.setCellFactory(ComboBoxTableCell.<Person,	
	 Integer>forTableColumn(new	YearConverter(),	getYears()));
 return col;
 }

	public	TableColumn<Person,	Double>	getSalaryCol()	
 {
	 TableColumn<Person,	Double>	col	=	new	TableColumn("Salary");
	 col.setCellValueFactory(new	PropertyValueFactory("salary"));
	 col.setCellFactory(TextFieldTableCell.<Person,
	 Double>forTableColumn(new	SalaryConverter()));
	 col.setOnEditCommit((TableColumn.CellEditEvent<Person,	Double>	e)	->	{
	 int	row	=	e.getTablePosition().getRow();

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

7878

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

7878

	 Person	person	=	e.getTableView().getItems().get(row);
	 if	(Math.abs(e.getNewValue())	<	0.1)
 {
	 e.getTableView().getItems().set(row,	person);
 }
	 else	person.setSalary(e.getNewValue());
 });
 col.setPrefWidth(100);
	 col.setStyle("-fx-alignment:	CENTER_RIGHT;");
 col.getStyleClass().add("salary-header");
 return col;
 }

	public	TableColumn<Person,	Boolean>	getWeeklyCol()	
 {
	 TableColumn<Person,	Boolean>	col	=	new	TableColumn("Weekly");
	 col.setCellValueFactory(new	PropertyValueFactory("weekly"));
	 col.setCellFactory(CheckBoxTableCell.<Person>forTableColumn(col));
 return col;
 }

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

79

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

79

	public	TableColumn<Person,	LocalDate>	getDateCol()	
 {
	 TableColumn<Person,	LocalDate>	col	=	new	TableColumn("Date");
	 col.setCellValueFactory(new	PropertyValueFactory("date"));
	 col.setCellFactory(DatePickerTableCell.<Person>forTableColumn());
 return col;
 }

	private	ObservableList<Integer>	getYears()
 {
	 int	year	=	LocalDate.now().getYear()	–	10;
	 ObservableList<Integer>	list	=	FXCollections.observableArrayList();
 for (int y = year – 90; y < year; ++y) list.add(y);
 return list;
 }
}

class	YearConverter	extends	StringConverter<Integer>
{
 @Override
 public Integer fromString(String string)
 {
 try
 {
 return Integer.parseInt(string);
 }
	 catch	(Exception	ex)
 {
 return 0;
 }
 }

 @Override
 public String toString(Integer value)
 {
 return value == 0 ? "" : "" + value;
 }
}

class	SalaryConverter	extends	StringConverter<Double>
{
 @Override
	public	Double	fromString(String	string)
 {
 try
 {
	 return	Double.parseDouble(string);
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

80

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

80

	 catch	(Exception	ex)
 {
 return 0.0;
 }
 }

 @Override
	public	String	toString(Double	value)
 {
	 return	Math.abs(value)	<	0.1	?	""	:
	 String.format("%1.2f",	value.doubleValue());
 }
}

The first method returns a TableColumn for the column id and is the simplest, and all you
need to note is that it does not have a CellFactory as the column is not editable.

The two next methods are in principle identical, as in both cases it is a column whose
values are text. Therefore, they have a CellFactory which is a TextFieldTableCell, and the
result is if you double-click in a cell in these columns, a TextField control opens where the
content can be edited. You should note that it is the method forTableColumn() that opens
the entry field.

Then there is the method getGenderCol() that returns a TableColumn for the Gender column.
It has a CellFactory of the type ChoiceBoxTableCell, and the result is, if you double-click
in a cell, a ChoiseBox with two values: Male and Female, where the user can select a value.
Here you must note the method forTableColumn(), which as parameters has the values for
which the ChoiceBox control should be initialized.

The next method is for the year column, and it uses a ComboBoxTableCell with the result
that the cell opens a ComboBox. The class has a private method that creates an ObservableList
with the years to be selected. It is used as a parameter for forTableColumn(), but there is also
a YearConverter parameter (as defined at the end of the file). There is generally an override
of forTableColumn(), where you can specify a converter as parameter, and in this case it is
only to ensure that a missing year is not displayed as 0.

Then there is the method getSalaryCol(), which returns a TableColumn for a Double, and
where it should be possible to edit a Double. Here are several things to notice. First, as
CellFactory, a TextFieldTableCell is used to enter a random decimal number. In order for
the result to look nice, a converter of the type SalaryConveter, which shows a Double with
two decimal, is attached – but only if the number is not 0. If that happens, the result will
appear as blank. When the user enters a number, they can of course enter something illegal,
and if that is the case (the entered can not be converted to a number), an exception appears

The first method returns a TableColumn for the column id and is the simplest, and all you
need to note is that it does not have a CellFactory as the column is not editable.

The two next methods are in principle identical, as in both cases it is a column whose
values are text. Therefore, they have a CellFactory which is a TextFieldTableCell, and the
result is if you double-click in a cell in these columns, a TextField control opens where the
content can be edited. You should note that it is the method forTableColumn() that opens
the entry field.

Then there is the method getGenderCol() that returns a TableColumn for the Gender column.
It has a CellFactory of the type ChoiceBoxTableCell, and the result is, if you double-click
in a cell, a ChoiseBox with two values: Male and Female, where the user can select a value.
Here you must note the method forTableColumn(), which as parameters has the values for
which the ChoiceBox control should be initialized.

The next method is for the year column, and it uses a ComboBoxTableCell with the result
that the cell opens a ComboBox. The class has a private method that creates an ObservableList
with the years to be selected. It is used as a parameter for forTableColumn(), but there is also
a YearConverter parameter (as defined at the end of the file). There is generally an override
of forTableColumn(), where you can specify a converter as parameter, and in this case it is
only to ensure that a missing year is not displayed as 0.

Then there is the method getSalaryCol(), which returns a TableColumn for a Double, and
where it should be possible to edit a Double. Here are several things to notice. First, as
CellFactory, a TextFieldTableCell is used to enter a random decimal number. In order for
the result to look nice, a converter of the type SalaryConveter, which shows a Double with
two decimal, is attached – but only if the number is not 0. If that happens, the result will
appear as blank. When the user enters a number, they can of course enter something illegal,
and if that is the case (the entered can not be converted to a number), an exception appears

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

8181

with the result that the value is set to 0. However, the problem is that the model is then
updated with the value 0, which is not really the thought, but the model should retains
the old value. The problem is solved by adding an event handler that is executed when the
entry is completed (and the TextField component closes). If the value is 0, the old value
is set, and otherwise the new value. Reintroducing the old value looks a bit weird and in
fact the model still has the old value, but the user interface is not updated. The problem
is solved by assigning the Person object to itself, which means that the model fires an event
that updates the user interface. As the last, the column content is right aligned, but it is
the same as in the previous example.

Then there is the method getWeeklyCol() that uses a CheckBoxTableCell. Here is not much
new, but note the parameter for forTableColumn(), which is the column to be edited.

Finally, there is getDateCol(), and the goal of this method is to show a column that uses a
custom CellFactory. It is a DatePickerTableCell since it is desired that the user should get a
DatePicker by double-clicking the cell. A custom CellFactory is a class that implements the
interface TableCell and otherwise has a control of the desired kind (in this case a DatePicker).
The class must be able to override the following methods

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

82

-- startEdit()
-- commitEdit()
-- cancelEdit()
-- updateItem()

but otherwise the class consists of constructors and static forTableColumn() methods. Below,
only the overriding methods of the class are shown:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

82

 - startEdit()
 - commitEdit()
 - cancelEdit()
 - updateItem()

but otherwise the class consists of constructors and static forTableColumn() methods. Below,
only the overriding methods of the class are shown:

public	class	DatePickerTableCell<S,	T>	extends	TableCell<S,	LocalDate>	
{
	private	DatePicker	datePicker;
 private StringConverter converter = null;
 private boolean editable = true;

 …

 @Override
	public	void	startEdit()	
 {
	 if	(!isEditable()	||	!getTableView().isEditable()	||
	 !getTableColumn().isEditable())	return;
	 super.startEdit();
	 if	(datePicker	==	null)	this.createDatePicker();
 setGraphic(datePicker);
 }

 @Override
	public	void	cancelEdit()	
 {
	 super.cancelEdit();
	 setText(converter.toString(getItem()));
 setGraphic(null);
 }

 @Override
	public	void	updateItem(LocalDate	item,	boolean	empty)	
 {
 super.updateItem(item, empty);
 if (empty)
 {
	 setText(null);
 setGraphic(null);
 }
 else
 {

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

83

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

83

	 if	(this.isEditing())	
 {
	 if	(datePicker	!=	null)	datePicker.setValue((LocalDate)item);
	 setText(null);
 setGraphic(datePicker);
 }
 else
 {
	 setText(converter.toString(item));
 setGraphic(null);
 }
 }
 }

 …

}

When you run the program, including editing persons as well as creating new ones and
deleting existing ones, please note that the model is automatically updated and the window
is automatically updated (Add and Remove buttons). All this happens because of bidirectional
bindings. To test that the window has the Test button.

PROBLEM 2

You must solve the same task as in problem 1, but the user interface should be as shown in
the window below, where the individual persons appear as a row in a TableView. Clicking
the Add button will add a new person (where all fields are blank) to the list and if you
click the Remove button, the person selected must be deleted. All cells must be editable and
for the Name, Title, Birth, and Death columns, a TextFieldTableCell should be used, while
for the Country column a ComboBoxTableCell should be used. The database has a table
country, and the combobox must be initialized with all the country codes from this table.
Back there is column Text, where the cells must be edited with a TextArea control and thus
a custom TableCell. Note that it may mean that you need to add one way or another to
finish entering text, for example, by typing F12.

A particular problem is when physically writing to the database. You can of course write
each time you create a person and delete a person, but writing each time you edit a cell may
not be appropriate. You can therefore choose a different strategy, where you write back all
changes when you click on a button. That’s the purpose of the Save button. In my solution,
I simply update all rows (with a batch update) when clicking on the Save button. That’s

When you run the program, including editing persons as well as creating new ones and
deleting existing ones, please note that the model is automatically updated and the window
is automatically updated (Add and Remove buttons). All this happens because of bidirectional
bindings. To test that the window has the Test button.

PROBLEM 2

You must solve the same task as in problem 1, but the user interface should be as shown in
the window below, where the individual persons appear as a row in a TableView. Clicking
the Add button will add a new person (where all fields are blank) to the list and if you
click the Remove button, the person selected must be deleted. All cells must be editable and
for the Name, Title, Birth, and Death columns, a TextFieldTableCell should be used, while
for the Country column a ComboBoxTableCell should be used. The database has a table
country, and the combobox must be initialized with all the country codes from this table.
Back there is column Text, where the cells must be edited with a TextArea control and thus
a custom TableCell. Note that it may mean that you need to add one way or another to
finish entering text, for example, by typing F12.

A particular problem is when physically writing to the database. You can of course write
each time you create a person and delete a person, but writing each time you edit a cell may
not be appropriate. You can therefore choose a different strategy, where you write back all
changes when you click on a button. That’s the purpose of the Save button. In my solution,
I simply update all rows (with a batch update) when clicking on the Save button. That’s

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

8484

probably the easy solution, as it means I’ll update all rows, regardless of whether they are
changed. Perhaps you can find a better solution?

http://s.bookboon.com/elearningforkids

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

85

3.3	 FILTERS

One of the important features of a JTable is the use of filters, and with a TableView, it’s
all a bit easier. A TableView shows the content of an ObersvableList and you can set a filter
with a filter wrapper to the list and encapsulated in a sort wrapper. To conclude this review
of the TableView component, I will show an example that sets a filter.

The example is called FilterKingsProgram and I want to reuse objects of the type King, and
the data model for the TableView component is essentially unchanged from previously and
will not be shown here.

The window’s code is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

85

3.3 FILTERS

One of the important features of a JTable is the use of filters, and with a TableView, it’s
all a bit easier. A TableView shows the content of an ObersvableList and you can set a filter
with a filter wrapper to the list and encapsulated in a sort wrapper. To conclude this review
of the TableView component, I will show an example that sets a filter.

The example is called FilterKingsProgram and I want to reuse objects of the type King, and
the data model for the TableView component is essentially unchanged from previously and
will not be shown here.

The window’s code is:

public	class	FilterKingsProgram	extends	Application	
{
	private	TextField	txtName	=	new	TextField();

 @Override
 public void start(Stage stage)
 {
	 TableView<King>	table	=	new	TableView();
	 table.getColumns().addAll(KingTableModel.getNameCol(),
	 KingTableModel.getFromCol(),	KingTableModel.getToCol());
 initialize(table);
 BorderPane root = new BorderPane(table, null, null, createBottom(), null);
 root.setPadding(new Insets(10, 10, 10, 10));
 Scene scene = new Scene(root, 500, 400);
 stage.setScene(scene);
	 stage.setTitle("Show	kings");
 stage.show();
 }

	private	void	initialize(TableView	table)	
 {
	 FilteredList<King>	filter	=
	 new	FilteredList<>(KingTableModel.getKings(),	king	->	true);
	 txtName.textProperty().addListener((observable,	oldValue,	newValue)	->	
 {
	 filter.setPredicate(king	->	
 {
	 if	(newValue	==	null	||	newValue.isEmpty())	return	true;
	 String	lowerCaseFilter	=	newValue.toLowerCase();
	 if	(king.getName().toLowerCase().contains(lowerCaseFilter))	return	true;
 return false;
 });
 });

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

86

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

86

	 SortedList<King>	sorter	=	new	SortedList<>(filter);
 sorter.comparatorProperty().bind(table.comparatorProperty());
 table.setItems(sorter);
 }

 private Pane createBottom()
 {
	 HBox	pane	=	new	HBox(10,	new	Label("Filter	for	name"),	txtName);
 pane.setPadding(new Insets(10, 0, 0, 0));
 return pane;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

There is nothing new in the start() method, and the new is done in the method initialize(),
which initializes the table control. Note first that a filter is created for the data to be shown
in the table, and the type for a filter is FilteredList. Next, a listener must be associated with
the input field, which is defined as a predicat for the filter, and as in this case returns true if
a King object’s name property contains the value of the input field – without distinguishing
between upper and lowercase letters. Finally the filter is inserted in a wrapper as a SortedList,
which has a comparator that binds to the table’s comparator. Finally, a sorter object is used
as the data model for the table.

If you run the program, you get the following window, where at the bottom there is a entry
field used to enter a filter for the Name column:

There is nothing new in the start() method, and the new is done in the method initialize(),
which initializes the table control. Note first that a filter is created for the data to be shown
in the table, and the type for a filter is FilteredList. Next, a listener must be associated with
the input field, which is defined as a predicat for the filter, and as in this case returns true if
a King object’s name property contains the value of the input field – without distinguishing
between upper and lowercase letters. Finally the filter is inserted in a wrapper as a SortedList,
which has a comparator that binds to the table’s comparator. Finally, a sorter object is used
as the data model for the table.

If you run the program, you get the following window, where at the bottom there is a entry
field used to enter a filter for the Name column:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

8787

EXERCISE 4

Create a copy of the project PostProgram from exercise 3. You need to expand the program
so it has a filter for both zip code and city name:

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

88

3.4	 A TREEVIEW CONTROL

JavaFX also has an TreeView control, which corresponds to a JTree from Swing and is a
control that visualizes hierarchical data. Basically, there are two classes TreeItem and TreeView,
the first representing an element in the tree, while the latter is the actual component. A
TreeItem is either a composite or a leaf and it is determined by whether it has child elements.

The program ShowWorldProgram shows some of the world’s countries organized in a hierarchy:

Above, all continents in these world, which all of the Antarctica are composite nodes, as
are shown with the arrow, showing that it is a node with child nodes and that it can be
expanded by clicking the arrow with the mouse. Below is the same window where Asia and
North America are expanded (you should note that the component automatically displays
a scrollbar when necessary):

A TreeView shows data defined in a model, which is a hierarchy of TreeItem elements, and
in this case, the model is defined in the method build():

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

89

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

89

package showworldprogram;

import javafx.scene.control.*;

public	class	TreeWorldModel	
{
	private	TreeItem<String>	root	=	new	TreeItem("This	World");

	public	TreeWorldModel()
 {
 build();
 }

	public	TreeItem<String>	getData()
 {
 return root;
 }

 private void build()
 {
	 TreeItem<String>	af	=	new	TreeItem("Africa");
	 af.getChildren().addAll(new	TreeItem("South	Africa"),	new	TreeItem("Namibia"),
	 new	TreeItem("Botswana"),	new	TreeItem("Zimbabwe"));
	 TreeItem<String>	an	=	new	TreeItem("Antarctica");
	 TreeItem<String>	as	=	new	TreeItem("Asia");
	 as.getChildren().addAll(new	TreeItem("China"),	new	TreeItem("India"),
	 new	TreeItem("Japan"));
	 TreeItem<String>	eu	=	new	TreeItem("Europe");
	 eu.getChildren().addAll(new	TreeItem("Denmark"),	new	TreeItem("Norway"),
	 new	TreeItem("Sweden"));
	 TreeItem<String>	na	=	new	TreeItem("North	America");
	 na.getChildren().addAll(new	TreeItem("Canada"),	new	TreeItem("Mecico"),
	 new	TreeItem("United	States"));
	 TreeItem<String>	oc	=	new	TreeItem("Oceania");
	 oc.getChildren().addAll(new	TreeItem("Australia"),
	 new	TreeItem("New	Zealand"));
	 TreeItem<String>	sa	=	new	TreeItem("South	Amaerica");
	 sa.getChildren().addAll(new	TreeItem("Argentina"),	new	TreeItem("Brazil"),
	 new	TreeItem("Chile"),	new	TreeItem("Bolivia"),	new	TreeItem("Peru"));
 root.getChildren().addAll(af, an, as, eu, na, oc, sa);
 }

}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

9090

The code for the program is quite simple:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

9090

The code for the program is quite simple:

package showworldprogram;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.stage.Stage;
import javafx.geometry.*;

public class ShowWorldProgram extends Application
{
 @Override
 public void start(Stage primaryStage)
 {
	 TreeView	view	=	new	TreeView((new	TreeWorldModel()).getData());
 view.setShowRoot(false);
 BorderPane root = new BorderPane(view);
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root, 300, 300);
	 primaryStage.setTitle("The	World!");
 primaryStage.setScene(scene);

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

91

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

91

 primaryStage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

and there is nothing to explain. However, you must note that with setShowRoot() I defined
that the root of the tree should not be displayed. You can try to set a comment in front
of the line and see what happens.

The next example is called MaintainWorldProgram and is a variation of the above program
and opens the following window:

As shown by the buttons, one of the differences is that you should also be able to edit the
content of the tree:

1. Clicking the Add button adds a node to the item that has been selected – if it is
not a leaf node

2. Clicking on the Delete button deletes the node that is selected, but only if it is a
leaf node

3. Double-clicking a leaf node will allow you to change the name

and there is nothing to explain. However, you must note that with setShowRoot() I defined
that the root of the tree should not be displayed. You can try to set a comment in front
of the line and see what happens.

The next example is called MaintainWorldProgram and is a variation of the above program
and opens the following window:

As shown by the buttons, one of the differences is that you should also be able to edit the
content of the tree:

1.	Clicking the Add button adds a node to the item that has been selected – if it is
not a leaf node

2.	Clicking on the Delete button deletes the node that is selected, but only if it is a
leaf node

3.	Double-clicking a leaf node will allow you to change the name

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

92

Finally, there is a button Test that only makes it possible to print the number of leaf nodes
in the tree, and you should note that it is number of leaf nodes in the TreeView component’s
model, and the button is used to test that the above operations not only update the TreeView
controller but also the model.

The program should also show something about what events occurs when you use a TreeView.

The model for the TreeView component is the same as in the previous example and is not
shown here. The class MaintainWorldProgram, on the other hand, fills a part, so I will just
show the code for the most important methods.

The method start() is essentially unchanged, but there are now instance variables for both
the TreeView control and the model:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

92

Finally, there is a button Test that only makes it possible to print the number of leaf nodes
in the tree, and you should note that it is number of leaf nodes in the TreeView component’s
model, and the button is used to test that the above operations not only update the TreeView
controller but also the model.

The program should also show something about what events occurs when you use a TreeView.

The model for the TreeView component is the same as in the previous example and is not
shown here. The class MaintainWorldProgram, on the other hand, fills a part, so I will just
show the code for the most important methods.

The method start() is essentially unchanged, but there are now instance variables for both
the TreeView control and the model:

public	class	MaintainWorldProgram	extends	Application	
{
	private	TreeWorldModel	model	=	new	TreeWorldModel();
	private	TreeView<String>	view;

Otherwise, most important in the method start() are that it calls a method addHandlers(),
which adds event handlers to the TreeView component:

private void addHandlers()
{
		model.getData().addEventHandler(TreeItem.<Str
ing>branchExpandedEvent(),	e	->);
		model.getData().addEventHandler(TreeItem.<Stri
ng>branchCollapsedEvent(),	e	->);
		model.getData().addEventHandler(TreeItem.<Str
ing>childrenModificationEvent(),);
		model.getData().addEventHandler(TreeItem.<St
ring>valueChangedEvent(),	e	->);
	view.setOnMouseClicked(new	EventHandler<MouseEvent>()
 {
 @Override
	 public	void	handle(MouseEvent	mouseEvent)
 {
	 if(mouseEvent.getClickCount()	==	2)
 {
	 TreeItem<String>	item	=	view.getSelectionModel().getSelectedItem();
 if (item != null) modify(item);
 }
 }
 });
}

Otherwise, most important in the method start() are that it calls a method addHandlers(),
which adds event handlers to the TreeView component:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

92

Finally, there is a button Test that only makes it possible to print the number of leaf nodes
in the tree, and you should note that it is number of leaf nodes in the TreeView component’s
model, and the button is used to test that the above operations not only update the TreeView
controller but also the model.

The program should also show something about what events occurs when you use a TreeView.

The model for the TreeView component is the same as in the previous example and is not
shown here. The class MaintainWorldProgram, on the other hand, fills a part, so I will just
show the code for the most important methods.

The method start() is essentially unchanged, but there are now instance variables for both
the TreeView control and the model:

public	class	MaintainWorldProgram	extends	Application	
{
	private	TreeWorldModel	model	=	new	TreeWorldModel();
	private	TreeView<String>	view;

Otherwise, most important in the method start() are that it calls a method addHandlers(),
which adds event handlers to the TreeView component:

private void addHandlers()
{
		model.getData().addEventHandler(TreeItem.<Str
ing>branchExpandedEvent(),	e	->);
		model.getData().addEventHandler(TreeItem.<Stri
ng>branchCollapsedEvent(),	e	->);
		model.getData().addEventHandler(TreeItem.<Str
ing>childrenModificationEvent(),);
		model.getData().addEventHandler(TreeItem.<St
ring>valueChangedEvent(),	e	->);
	view.setOnMouseClicked(new	EventHandler<MouseEvent>()
 {
 @Override
	 public	void	handle(MouseEvent	mouseEvent)
 {
	 if(mouseEvent.getClickCount()	==	2)
 {
	 TreeItem<String>	item	=	view.getSelectionModel().getSelectedItem();
 if (item != null) modify(item);
 }
 }
 });
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

9393

There are a total of 5 event handlers. The names tell you when the event handlers are
performed. The first three (where only the code for first is shown) does nothing but print
a text on the console. The fourth uses a method printModel() that prints the contents of a
subtree on the console and actually prints the entire tree. Its purpose is to show that the model
is updated and you are encouraged to examine the code. The last event handler concerns
the mouse and tests for double click with the mouse. If so, is executed the method modify():

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

9393

There are a total of 5 event handlers. The names tell you when the event handlers are
performed. The first three (where only the code for first is shown) does nothing but print
a text on the console. The fourth uses a method printModel() that prints the contents of a
subtree on the console and actually prints the entire tree. Its purpose is to show that the model
is updated and you are encouraged to examine the code. The last event handler concerns
the mouse and tests for double click with the mouse. If so, is executed the method modify():

private	void	modify(TreeItem<String>	item)
{
 if (item.isLeaf())
 {
	 TextInputDialog	dialog	=	new	TextInputDialog(item.getValue());
	 dialog.setTitle("Modify	country");
	 dialog.setHeaderText("Change	the	country's	name");
	 Optional<String>	result	=	dialog.showAndWait();
 if (result.isPresent())
 {
 String name = result.get().trim();
	 if	(name.length()	>	0)	item.setValue(name);
 }
	 view.getSelectionModel().clearSelection();
 }
}

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

94

In the case of a leaf node, a simple TextInputDialog opens where you can change the value.
Doing so, updates the current TreeItem, and you should note that it also updates the
user interface.

The event handler for the Add button is in principle identical, while the event handler for
the Remove button is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

94

In the case of a leaf node, a simple TextInputDialog opens where you can change the value.
Doing so, updates the current TreeItem, and you should note that it also updates the
user interface.

The event handler for the Add button is in principle identical, while the event handler for
the Remove button is:

private	void	remove(ActionEvent	e)
{
	TreeItem<String>	item	=	view.getSelectionModel().getSelectedItem();
	if	(item	!=	null	&&	item.isLeaf()	&&	item.getParent()	!=	null)
 {
	 TreeItem<String>	parent	=	item.getParent();
 parent.getChildren().remove(item);
	 view.getSelectionModel().clearSelection();
 }
}

Here you should note how to refer to the item that is selected and again that the user
interface is automatically updated. The last event handler is about the Test button counting
the number of leaf nodes and then opening an Alert with the result.

In the above example, the content of a TreeItem are edited by opening a simple TextInputDialog,
but you can also edit the content inline like a TableView. It is used in the example
EditWorldProgram. The user interface is the same as above, but there is a minor change to
the model:

public	class	TreeWorldModel	
{
	private	TreeItem<String>	root	=	new	TreeItem("This	World");

	public	TreeWorldModel()
 {
 build();
 }

	public	TreeItem<String>	getData()
 {
 return root;
 }

 public void add(TreeItem<String> parent)
 {
 parent.getChildren().add(new TreeItem(""));
 }

Here you should note how to refer to the item that is selected and again that the user
interface is automatically updated. The last event handler is about the Test button counting
the number of leaf nodes and then opening an Alert with the result.

In the above example, the content of a TreeItem are edited by opening a simple TextInputDialog,
but you can also edit the content inline like a TableView. It is used in the example
EditWorldProgram. The user interface is the same as above, but there is a minor change to
the model:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

94

In the case of a leaf node, a simple TextInputDialog opens where you can change the value.
Doing so, updates the current TreeItem, and you should note that it also updates the
user interface.

The event handler for the Add button is in principle identical, while the event handler for
the Remove button is:

private	void	remove(ActionEvent	e)
{
	TreeItem<String>	item	=	view.getSelectionModel().getSelectedItem();
	if	(item	!=	null	&&	item.isLeaf()	&&	item.getParent()	!=	null)
 {
	 TreeItem<String>	parent	=	item.getParent();
 parent.getChildren().remove(item);
	 view.getSelectionModel().clearSelection();
 }
}

Here you should note how to refer to the item that is selected and again that the user
interface is automatically updated. The last event handler is about the Test button counting
the number of leaf nodes and then opening an Alert with the result.

In the above example, the content of a TreeItem are edited by opening a simple TextInputDialog,
but you can also edit the content inline like a TableView. It is used in the example
EditWorldProgram. The user interface is the same as above, but there is a minor change to
the model:

public	class	TreeWorldModel	
{
	private	TreeItem<String>	root	=	new	TreeItem("This	World");

	public	TreeWorldModel()
 {
 build();
 }

	public	TreeItem<String>	getData()
 {
 return root;
 }

 public void add(TreeItem<String> parent)
 {
 parent.getChildren().add(new TreeItem(""));
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Advanced controls

95

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

95

 public void remove(TreeItem item)
 {
 item.getParent().getChildren().remove(item);
 }
 …
}

The method start() is:

public void start(Stage primaryStage)
{
	view	=	new	TreeView(model.getData());
 view.setShowRoot(false);
	view.getSelectionModel().setSelectionMode(SelectionMode.SINGLE);
	view.setEditable(true);
	view.setCellFactory(TextFieldTreeCell.forTreeView());
	view.setOnEditStart(this::start);
	view.setOnEditCommit(this::commit);
	view.setOnEditCancel(this::cancel);
 BorderPane root = new BorderPane(view, null, null, createCommands(), null);
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root, 350, 400);
	primaryStage.setTitle("This	World");
 primaryStage.setScene(scene);
 primaryStage.show();
}

Here you should note that the TreeView component must be defined as editable, and in
addition, a CellFactory must be attached, as here is a TextFieldTreeCell. This means that if
you double-click on a TreeItem, a TextField opens, allowing you to edit the content. Just as
you’ve seen it for a TableView, there are also other CellFactory types that can be used for
other data types. There are also associated three event handlers that do nothing but print
a text on the console and in the example they are used to show that the first is executed
when the entry field opens while the other two are executed depending on whether you
quit with Enter or ESC.

The method createCommands() creates a Pane with the three buttons, and the associated
event handlers are all simple and use the two new methods in the model.

The method start() is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT advanCed Controls

95

 public void remove(TreeItem item)
 {
 item.getParent().getChildren().remove(item);
 }
 …
}

The method start() is:

public void start(Stage primaryStage)
{
	view	=	new	TreeView(model.getData());
 view.setShowRoot(false);
	view.getSelectionModel().setSelectionMode(SelectionMode.SINGLE);
	view.setEditable(true);
	view.setCellFactory(TextFieldTreeCell.forTreeView());
	view.setOnEditStart(this::start);
	view.setOnEditCommit(this::commit);
	view.setOnEditCancel(this::cancel);
 BorderPane root = new BorderPane(view, null, null, createCommands(), null);
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root, 350, 400);
	primaryStage.setTitle("This	World");
 primaryStage.setScene(scene);
 primaryStage.show();
}

Here you should note that the TreeView component must be defined as editable, and in
addition, a CellFactory must be attached, as here is a TextFieldTreeCell. This means that if
you double-click on a TreeItem, a TextField opens, allowing you to edit the content. Just as
you’ve seen it for a TableView, there are also other CellFactory types that can be used for
other data types. There are also associated three event handlers that do nothing but print
a text on the console and in the example they are used to show that the first is executed
when the entry field opens while the other two are executed depending on whether you
quit with Enter or ESC.

The method createCommands() creates a Pane with the three buttons, and the associated
event handlers are all simple and use the two new methods in the model.

Here you should note that the TreeView component must be defined as editable, and in
addition, a CellFactory must be attached, as here is a TextFieldTreeCell. This means that if
you double-click on a TreeItem, a TextField opens, allowing you to edit the content. Just as
you’ve seen it for a TableView, there are also other CellFactory types that can be used for
other data types. There are also associated three event handlers that do nothing but print
a text on the console and in the example they are used to show that the first is executed
when the entry field opens while the other two are executed depending on whether you
quit with Enter or ESC.

The method createCommands() creates a Pane with the three buttons, and the associated
event handlers are all simple and use the two new methods in the model.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

9696

EXERCISE 5

The database padata has four tables that contain information about Danish regions, Danish
municipalities and Danish zip codes, while the fourth table represents a many-many relationship
between municipality and zipcode. The four tables were created with the following script:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

9696

EXERCISE 5

The database padata has four tables that contain information about Danish regions, Danish
municipalities and Danish zip codes, while the fourth table represents a many-many relationship
between municipality and zipcode. The four tables were created with the following script:

create table region
(
 regnr int not null primary key,
 name varchar(30) not null
);

create table municipality
(
 munnr int not null primary key,
 name varchar(30) not null,
 regnr int not null,
 area decimal(10, 2),
 number int,
 year int,
 foreign key (regnr) references region(regnr)
);

http://s.bookboon.com/EOT

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

97

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

97

create table zipcode
(
 code char(4) not null primary key,
 city varchar(30) not null
);

create table post
(
 code char(4) not null,
 munnr int not null,
 primary key (code, munnr),
 foreign key (code) references zipcode(code),
 foreign key (munnr) references municipality(munnr)
);

You must write a program that you can call Denmark, which displays this data in an TreeView.
Note that the program only should display names, but you should not be able to edit the
content. When the program starts, you should see the following window:

and below the same window after the root, Region Midtjylland and the municipality Holstebro
are expanded:

You must write a program that you can call Denmark, which displays this data in an TreeView.
Note that the program only should display names, but you should not be able to edit the
content. When the program starts, you should see the following window:

and below the same window after the root, Region Midtjylland and the municipality Holstebro
are expanded:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

98

3.5	 A TREEVIEW WITH COUNTRY OBJECTS

As a final example of using a TreeView, I will show a program called UpdateWorldProgram.
The program is similar to the previous one, but partly the individual objects are of a
custom type and not just strings, and partly there are more data. The database padata (see,
if applicable, the book Java 6) contains three tables that contain data about currencies,
continents and countries:

where the last two columns in the country table are foreign keys. The program will show
an overview of all countries, but organized in an TreeView, and where it should be possible
to edit the information about a country. If you open the program, you get the following
window where North America is expanded:

For example, if you double-click on the United States, you will see the following window
where you can edit data about the United States:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

9999

The two comboboxes contains all continents and all currencies, respectively, and are used to
change a country’s currency or continent. Note that the above window with the TreeView
component does not show all the world’s countries as only the countries in the database
where a foreign key to the table world is included. You should also note that the program
does not provide opportunities to create new countries or delete existing countries, but of
course it would be easy to expand the program with these features.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

100

As a first step, model classes must be written to the three database tables. For currency, it
is the following class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

100

As a first step, model classes must be written to the three database tables. For currency, it
is the following class:

public class Currency
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private ReadOnlyStringWrapper name = new ReadOnlyStringWrapper(this, "name");

where I have not included the column for exchange rates. Since the information can not be
changed, both properties are defined readonly. The table world uses the following model class:

public class World
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private StringProperty name = new SimpleStringProperty();

In the program, it should not be possible to change the name of a continent, but when
the property name is defined read/write, it is because the class Country is defined as a
derivative class:

public class Country extends World
{
 private IntegerProperty area = new SimpleIntegerProperty();
 private IntegerProperty inhabitants = new SimpleIntegerProperty();
 private StringProperty world = new SimpleStringProperty();
 private StringProperty currency = new SimpleStringProperty();

The reason is primarily that a TreeView basically contains elements of the same type, as
in this case is World, and the tree can therefore also immediately contain Country objects.

With these model classes in place, I have the following data model:

public	class	Model	
{
		private	ObservableList<World>	worlds	=	
FXCollections.observableArrayList();
		private	ObservableList<Currency>	currencies	=	
FXCollections.observableArrayList();
		private	ObservableList<Country>	countries	=	
FXCollections.observableArrayList();

	public	Model()
 {
 load();
 }

where I have not included the column for exchange rates. Since the information can not be
changed, both properties are defined readonly. The table world uses the following model class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

100

As a first step, model classes must be written to the three database tables. For currency, it
is the following class:

public class Currency
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private ReadOnlyStringWrapper name = new ReadOnlyStringWrapper(this, "name");

where I have not included the column for exchange rates. Since the information can not be
changed, both properties are defined readonly. The table world uses the following model class:

public class World
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private StringProperty name = new SimpleStringProperty();

In the program, it should not be possible to change the name of a continent, but when
the property name is defined read/write, it is because the class Country is defined as a
derivative class:

public class Country extends World
{
 private IntegerProperty area = new SimpleIntegerProperty();
 private IntegerProperty inhabitants = new SimpleIntegerProperty();
 private StringProperty world = new SimpleStringProperty();
 private StringProperty currency = new SimpleStringProperty();

The reason is primarily that a TreeView basically contains elements of the same type, as
in this case is World, and the tree can therefore also immediately contain Country objects.

With these model classes in place, I have the following data model:

public	class	Model	
{
		private	ObservableList<World>	worlds	=	
FXCollections.observableArrayList();
		private	ObservableList<Currency>	currencies	=	
FXCollections.observableArrayList();
		private	ObservableList<Country>	countries	=	
FXCollections.observableArrayList();

	public	Model()
 {
 load();
 }

In the program, it should not be possible to change the name of a continent, but when
the property name is defined read/write, it is because the class Country is defined as a
derivative class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

100

As a first step, model classes must be written to the three database tables. For currency, it
is the following class:

public class Currency
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private ReadOnlyStringWrapper name = new ReadOnlyStringWrapper(this, "name");

where I have not included the column for exchange rates. Since the information can not be
changed, both properties are defined readonly. The table world uses the following model class:

public class World
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private StringProperty name = new SimpleStringProperty();

In the program, it should not be possible to change the name of a continent, but when
the property name is defined read/write, it is because the class Country is defined as a
derivative class:

public class Country extends World
{
 private IntegerProperty area = new SimpleIntegerProperty();
 private IntegerProperty inhabitants = new SimpleIntegerProperty();
 private StringProperty world = new SimpleStringProperty();
 private StringProperty currency = new SimpleStringProperty();

The reason is primarily that a TreeView basically contains elements of the same type, as
in this case is World, and the tree can therefore also immediately contain Country objects.

With these model classes in place, I have the following data model:

public	class	Model	
{
		private	ObservableList<World>	worlds	=	
FXCollections.observableArrayList();
		private	ObservableList<Currency>	currencies	=	
FXCollections.observableArrayList();
		private	ObservableList<Country>	countries	=	
FXCollections.observableArrayList();

	public	Model()
 {
 load();
 }

The reason is primarily that a TreeView basically contains elements of the same type, as
in this case is World, and the tree can therefore also immediately contain Country objects.

With these model classes in place, I have the following data model:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

100

As a first step, model classes must be written to the three database tables. For currency, it
is the following class:

public class Currency
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private ReadOnlyStringWrapper name = new ReadOnlyStringWrapper(this, "name");

where I have not included the column for exchange rates. Since the information can not be
changed, both properties are defined readonly. The table world uses the following model class:

public class World
{
 private ReadOnlyStringWrapper code = new ReadOnlyStringWrapper(this, "code");
 private StringProperty name = new SimpleStringProperty();

In the program, it should not be possible to change the name of a continent, but when
the property name is defined read/write, it is because the class Country is defined as a
derivative class:

public class Country extends World
{
 private IntegerProperty area = new SimpleIntegerProperty();
 private IntegerProperty inhabitants = new SimpleIntegerProperty();
 private StringProperty world = new SimpleStringProperty();
 private StringProperty currency = new SimpleStringProperty();

The reason is primarily that a TreeView basically contains elements of the same type, as
in this case is World, and the tree can therefore also immediately contain Country objects.

With these model classes in place, I have the following data model:

public	class	Model	
{
		private	ObservableList<World>	worlds	=	
FXCollections.observableArrayList();
		private	ObservableList<Currency>	currencies	=	
FXCollections.observableArrayList();
		private	ObservableList<Country>	countries	=	
FXCollections.observableArrayList();

	public	Model()
 {
 load();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

101

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

101

	public	ObservableList<World>	getWorlds()
 {
 return worlds;
 }

	public	ObservableList<Currency>	getCurrencies()
 {
 return currencies;
 }

	public	ObservableList<Country>	getCountries()
 {
 return countries;
 }

 public World getWorld(String code)
 {
	 for	(World	world	:	worlds)	if	(world.getCode().equals(code))	return	world;
 return null;
 }

 public Currency getCurrency(String code)
 {
	 for	(Currency	currency	:	currencies)	if	(currency.getCode().equals(code))
 return currency;
 return null;
 }

 private void load()
 {
 …
 }

 public void save()
 {
 …
}

The constructor calls the method load(), which initializes the three lists by reading the content
of the database. I have not displayed the code for load(), but it only contains simple database
operations. It should also be possible to write the changes that the program returns to the
database, and therefore the method save(). When examining the code, note that it writes
all countries back with a batch update. It might be a little exaggerated, and it could easily
be solved by expanding the class Country with an additional Boolean property that could
be set to true when a value was changed. For the class Model, you should also note the

The constructor calls the method load(), which initializes the three lists by reading the content
of the database. I have not displayed the code for load(), but it only contains simple database
operations. It should also be possible to write the changes that the program returns to the
database, and therefore the method save(). When examining the code, note that it writes
all countries back with a batch update. It might be a little exaggerated, and it could easily
be solved by expanding the class Country with an additional Boolean property that could
be set to true when a value was changed. For the class Model, you should also note the

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

102102

methods getWorld() and getCurrency() that from the continent’s code and the currency code,
respectively, returns the corresponding object. It is used when editing data for a country.

The class TreeModel is data model for the TreeView component and is not much more than
a thin layer between the Model class and the user interface, but its task is to arrange the
data from the model layer in a hierarchy of TreeItem objects:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

102102

methods getWorld() and getCurrency() that from the continent’s code and the currency code,
respectively, returns the corresponding object. It is used when editing data for a country.

The class TreeModel is data model for the TreeView component and is not much more than
a thin layer between the Model class and the user interface, but its task is to arrange the
data from the model layer in a hierarchy of TreeItem objects:

public	class	TreeModel	
{
	private	Model	model	=	new	Model();
	private	TreeItem<World>	root	=	new	TreeItem(new	World("",	"This	world"));

	public	TreeModel()
 {
 build();
 }

	public	Model	getModel()
 {
 return model;
 }

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

103

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

103

	public	TreeItem	getData()
 {
 return root;
 }

 public void save()
 {
 model.save();
 }

 private void build()
 {
	 List<TreeItem<World>>	worlds	=	new	ArrayList();
	 for	(World	world	:	model.getWorlds())	worlds.add(new	TreeItem(world));
 for (Country country : model.getCountries())
 {
	 for	(TreeItem<World>	item	:	worlds)	
	 if	(item.getValue().getCode().equals(country.getWorld()))
 {
	 item.getChildren().add(new	TreeItem(country));
 break;
 }
 }
 root.getChildren().addAll(worlds);
 }
}

With these 5 classes in place, the program’s classes can be written for the main window
and the dialog box. Since none of these classes in principle contains something new, I do
not want to show the code here, but you are encouraged to study the code, and the dialog
is not quite simple and, among other, it complicates the task changing the continent for a
country, as it means that the country has to be moved in the tree. To resolve this, delete
the old node and create a new one somewhere else, and note that the visual representation
of the tree is automatically updated.

3.6 A TREETABLEVIEW

JavaFX also has a TreeTableView control, which can be characterized as a combination of
a TableView and TreeView. This corresponds to that the component as a TreeView shows a
hierarchy of objects, but where each object appears as a row of multiple values and thus
more columns. It sounds complicated and is it, too, but the component works in principle
like the previous ones, though there are more sophistry for the programming. I will start
with a simple example that will show the basic syntax and I will again use data about

With these 5 classes in place, the program’s classes can be written for the main window
and the dialog box. Since none of these classes in principle contains something new, I do
not want to show the code here, but you are encouraged to study the code, and the dialog
is not quite simple and, among other, it complicates the task changing the continent for a
country, as it means that the country has to be moved in the tree. To resolve this, delete
the old node and create a new one somewhere else, and note that the visual representation
of the tree is automatically updated.

3.6	 A TREETABLEVIEW

JavaFX also has a TreeTableView control, which can be characterized as a combination of
a TableView and TreeView. This corresponds to that the component as a TreeView shows a
hierarchy of objects, but where each object appears as a row of multiple values and thus
more columns. It sounds complicated and is it, too, but the component works in principle
like the previous ones, though there are more sophistry for the programming. I will start
with a simple example that will show the basic syntax and I will again use data about

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

104

countries organized in a hierarchy where a country’s parent is the continent to which the
country belongs (and it is assumed – not entirely correct – that countries belong to one
particular continent). If you run the program, you will see the window below, where This
World and Asia are expanded.

That is, for each country, name, area and number of inhabitants are displayed. Here you
should note that a number for area and inhabitants is shown, if the row is a continent,
which is the sum of the corresponding numbers for child nodes.

The program is called ShowCountriesProgram and uses two model classes called World
and Country. These classes are identical to the corresponding classes in the program
UpdateWorldProgram and should not be mentioned further. The class CountriesModel defines
a model for the TreeTableView component:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

104

countries organized in a hierarchy where a country’s parent is the continent to which the
country belongs (and it is assumed – not entirely correct – that countries belong to one
particular continent). If you run the program, you will see the window below, where This
World and Asia are expanded.

That is, for each country, name, area and number of inhabitants are displayed. Here you
should note that a number for area and inhabitants is shown, if the row is a continent,
which is the sum of the corresponding numbers for child nodes.

The program is called ShowCountriesProgram and uses two model classes called World
and Country. These classes are identical to the corresponding classes in the program
UpdateWorldProgram and should not be mentioned further. The class CountriesModel defines
a model for the TreeTableView component:

public	class	CountriesModel	
{
	private	TreeItem<Country>	root	=	
	 new	TreeItem(new	Country("",	"This	World",	null,	null,	null,	null));

	public	CountriesModel()
 {
 build();
 }

	public	TreeItem<Country>	getData()
 {
 return root;
 }

	public	TreeTableColumn<Country,	String>	getNameCol()	
 {

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

105105

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

105105

	 TreeTableColumn<Country,	String>	col	=	new	TreeTableColumn<>("Name");
	 col.setCellValueFactory(new	TreeItemPropertyValueFactory("name"));
 col.setPrefWidth(200);
 return col;
 }

	public	TreeTableColumn<Country,	Long>	getAreaCol()	
 {
	 TreeTableColumn<Country,	Long>	col	=	new	TreeTableColumn<>("Area");
	 col.setCellValueFactory(new	SumValueFactory("area"));
	 col.setCellFactory(new	LongFactory());
	 col.setStyle("-fx-alignment:	CENTER_RIGHT;");
 col.getStyleClass().add("salary-header");
 col.setPrefWidth(100);
 return col;
 }

	public	TreeTableColumn<Country,	Long>	getInhabitantsCol()	
 {
	 TreeTableColumn<Country,	Long>	col	=	new	TreeTableColumn<>("Inhabitants");
	 col.setCellValueFactory(new	SumValueFactory("inhabitants"));
	 col.setCellFactory(new	LongFactory());
	 col.setStyle("-fx-alignment:	CENTER_RIGHT;");

http://s.bookboon.com/GTca

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

106

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

106

 col.getStyleClass().add("salary-header");
 col.setPrefWidth(100);
 return col;
 }

 private void build()
 {
	 TreeItem<Country>	af	=	
	 new	TreeItem(new	Country("AF",	"Africa",	null,	null,	null,	null));
	 	af.getChildren().add(new	TreeItem(new	
Country("ZAF",	"South	Africa",	1221037L,

	 54956900L,	"AF",	"ZAR")));
 …
 root.getChildren().addAll(af, an, as, eu, na, oc, sa);
 }

	class	LongFactory	implements
	 Callback<TreeTableColumn<Country,	Long>,	TreeTableCell<Country,	Long>>
 {
 @Override
	 public	TreeTableCell<Country,	Long>	call(TreeTableColumn<Country,	Long>	col)
 {
	 return	new	TreeTableCell<Country,	Long>()	
 {
 @Override
 public void updateItem(Long item, boolean empty)
 {
 super.updateItem(item, empty);
	 this.setText(null);
 this.setGraphic(null);
	 if	(!empty	&&	item	!=	0)	this.setText(""	+	item);
 }
 };
 }
 }

	class	SumValueFactory	implements	
	 	Callback<TreeTableColumn.CellDataFeatures<Country,	
Long>,	ObservableValue<Long>>

 {
	 private	String	field;
 private long sum = 0;

	 public	SumValueFactory(String	field)
 {
	 this.field	=	field;
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

107

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

107

 @Override
	 public	ObservableValue<Long>	
	 call(TreeTableColumn.CellDataFeatures<Country,	Long>	cellData)
 {
	 TreeItem<Country>	item	=	cellData.getValue();
	 if	(item.getValue().getWorld()	==	null	||	
	 item.getValue().getWorld().length()	==	0)
 {
 sum = 0;
 calculate(item);
 return new SimpleLongProperty(sum).asObject();
 }
	 	return	new	TreeItemPropertyValueFactory<Cou

ntry,	Long>(field).call(cellData);
 }

	 private	void	calculate(TreeItem<Country>	item)
 {
	 sum	+=	getValue(item.getValue());
	 for	(TreeItem<Country>	child	:	item.getChildren())
	 if	(child.getValue().getCode().length()	==	3)
	 sum	+=	getValue(child.getValue());
 else calculate(child);
 }

	 private	long	getValue(Country	country)
 {
	 if	(field.equals("area"))	
 return country.getArea() == null ? 0 : country.getArea();
 return country.getInhabitants() == null ? 0 : country.getInhabitants();
 }
 }
}

The class immediately looks like model classes for the other components (TableView and
TreeView) and consists primarily of methods that return column objects. The constructor
calls a method load(), where I have only shown few statements, but the method organizes
data for 20 countries in a hierarchy under continents. Aside from the fact that the code fills
a part, there is nothing mysterious in the code. You should note that a country consists of
more data than the program shows, and the class CountryModel actually has a column method
for each data column. Above, I have only included the methods for the three columns used
by the program. There is no particular reason not to show all columns besides pointing out
that of course it is not necessary.

The class immediately looks like model classes for the other components (TableView and
TreeView) and consists primarily of methods that return column objects. The constructor
calls a method load(), where I have only shown few statements, but the method organizes
data for 20 countries in a hierarchy under continents. Aside from the fact that the code fills
a part, there is nothing mysterious in the code. You should note that a country consists of
more data than the program shows, and the class CountryModel actually has a column method
for each data column. Above, I have only included the methods for the three columns used
by the program. There is no particular reason not to show all columns besides pointing out
that of course it is not necessary.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

108108

Similar to the columns for the two previous controls, a CellValueFactory object is associated
with which a parameter specifies where to retrieve the individual values. The name of the
property is specified by the specific objects to be displayed, and here it are Country objects.
A CellValueFactory thus indicates which values should be displayed in the columns cells.
For the name column, a TreeItemPropertyValueFactory uses the content of the individual
cells as a Label containing the value. The type TreeItemPropertyValueFactory implements a
Callback interface, and you can therefore type your own CellValueFactory as a class that
implements this interface if you want to determine the value of the columns cells. I have
done that for the next two columns in the form of the class SumValueFactory. The class
has a parameter field, which is the name of the property in the class Country to which the
column relates. The goal is that the same class should apply for both columns Area and
Inhabitants. Otherwise, the class consists primarily of overriding the method call(), which is
defined by the interrface Callback. The method has parameters that represent the current cell
in the model, and tests whether the cell contains a Country that does not have a reference
to a continent. If that is the case, the object itself represents a continent and the method
calls the method calculate() which determines the sum of all child object values for the
current property. You should note that the method calculate() is recursive, and that is why
the root of the tree shows the sum of all the world’s countries. If the current cell is not for
a continent, the value is determined by a default TreeItemPropertyValueFactory.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

109

A column may also be associated with a CellFactory, and while a CellValueFactory determines
the value, a CellFactory determines which object will display the value. The meaning of a
CellFactory is to associate an object that is used to edit the content of the cell (something
to be treated in the next example), but in this case, a CellFactory is used simply to display
0 values as blank (what could also be achieved with a converter). The content of a cell is
a TreeTableCell object, and the class LongFactory is a CellFactory (implementing a Callback
interface) that implements the method call(), so it returns a TreeTableCell where the method
updateItem() is overridden.

The above code can be difficult to understand, but if you think on, that a TreeTableView,
like a TableView and an TreeView, is based on a data model and where the model (for
a TreeTableView) should organize data in a hierarchy and define the individual columns
then it’s not that bad again and happily happening the same way every time. Have you
first written the model, then the rest goes by itself, and for this example is the code of the
method start():

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

109

A column may also be associated with a CellFactory, and while a CellValueFactory determines
the value, a CellFactory determines which object will display the value. The meaning of a
CellFactory is to associate an object that is used to edit the content of the cell (something
to be treated in the next example), but in this case, a CellFactory is used simply to display
0 values as blank (what could also be achieved with a converter). The content of a cell is
a TreeTableCell object, and the class LongFactory is a CellFactory (implementing a Callback
interface) that implements the method call(), so it returns a TreeTableCell where the method
updateItem() is overridden.

The above code can be difficult to understand, but if you think on, that a TreeTableView,
like a TableView and an TreeView, is based on a data model and where the model (for
a TreeTableView) should organize data in a hierarchy and define the individual columns
then it’s not that bad again and happily happening the same way every time. Have you
first written the model, then the rest goes by itself, and for this example is the code of the
method start():

public void start(Stage primaryStage)
{
	TreeTableView<Country>	view	=	new	TreeTableView<>(model.getData());
	view.getColumns().addAll(model.getNameCol(),	model.getAreaCol(),
 model.getInhabitantsCol());
 BorderPane root = new BorderPane(view);
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root, 500, 300);
 scene.getStylesheets().add("resources/css/styles.css");
	primaryStage.setTitle("This	World");
 primaryStage.setScene(scene);
 primaryStage.show();

}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

110

3.7	 A TREETABLEVIEW, AN EXTENDED EXAMPLE

To conclude this chapter, I will show an example similar to the above, but showing countries
created in the database padata, where you can also edit the countries, create new and delete
a country, but such that a country is edited inline, as shown for a TableView in the example
EditPersonProgram. The current example is called UpdateCountriesProgram and opens the
above window, where the row with the name Other countries contains the countries from
the database that are not located under a continent and where the column Code displays
the country code with three characters. In fact, the model actually has two more columns,
showing the country code as two characters, and partly showing the currency code. In order
to simplify the program a bit, I have not loaded the table of currencies from the database
and the program therefore does not validate the codes that are entered. If you enter an
none existing currency code, that country can not be updated due to the foreign key in
the database. Therefore, the column is hidden by default.

In fact, it’s not easy to edit the content of the individual cells in a TreeTableView, and the
result easily leads to many lines of code, as is the case in the current example – and it does
not even work anywhere. I do not want to show the code here, but just highlight the key
things that you should be aware of when studying the code.

The class World is unchanged compared to the previous examples. The class Country, on
the other hand, has changed a bit, consisting of adding a property code3 to the country
code of three characters, and then the type for the two properties area and inhabitants are
changed to Long. The reason is that the world’s population is so large that it can not be
represented by an int.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

111111

The class Model is similar to the corresponding class in the program UpdateWorldProgram, but
with the difference that, as mentioned, that this time it did not include the database table
currency. The class has as previously a method load(), which loads the two tables world and
country and creates two ObservableList objects for these data. This time, a ListChangeListener
has been added to the list of countries that observe events regarding changes to list contents:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

111111

The class Model is similar to the corresponding class in the program UpdateWorldProgram, but
with the difference that, as mentioned, that this time it did not include the database table
currency. The class has as previously a method load(), which loads the two tables world and
country and creates two ObservableList objects for these data. This time, a ListChangeListener
has been added to the list of countries that observe events regarding changes to list contents:

public	class	Model	
{
	private	Callback<Country,	Observable[]>	cb	=	(Country	c)	->	
 new Observable[] { c.nameProperty(),
 c.areaProperty(), c.inhabitantsProperty(),c.
worldProperty(), c.currencyProperty() };

	private	ObservableList<World>	worlds	=	FXCollections.observableArrayList();
	private	ObservableList<Country>	countries	=
	 FXCollections.observableArrayList(cb);

	public	Model()
 {
 load();
 countries.addListener(new CountryChangeListener());
 }

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

112

This event handler is used to update the database, and thus, as in the program UpdateWorldProgram,
a batch update is not used, which uncritically writes all countries back to the database. In
the current application, physical data is written to the database each time a new country
is added, each time a country is deleted and each time a cell is changed. If there are many
changes, it is not necessarily a good solution as it can lead to many write-ups to the database.

Then there is the class CountriesModel, which is the most complex and then also the
largest of the program’s classes. Basically, the class looks like the corresponding class in
ShowCountriesProgram and creates the data model for the TreeTableView component and
hence methods that creates the individual columns. The first two do not add anything new,
but the method getNameCol() has this time a CellFactory, as you can edit the contents of a
cell. It is basically a TextFieldTreeTableCell, and the effect is to open a TextField when you
double-click the cell. In this case, however, there is an additional challenge as not all names
are editable and therefore I have defined my own CellFactory:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT eXerCIse 5

112

This event handler is used to update the database, and thus, as in the program UpdateWorldProgram,
a batch update is not used, which uncritically writes all countries back to the database. In
the current application, physical data is written to the database each time a new country
is added, each time a country is deleted and each time a cell is changed. If there are many
changes, it is not necessarily a good solution as it can lead to many write-ups to the database.

Then there is the class CountriesModel, which is the most complex and then also the
largest of the program’s classes. Basically, the class looks like the corresponding class in
ShowCountriesProgram and creates the data model for the TreeTableView component and
hence methods that creates the individual columns. The first two do not add anything new,
but the method getNameCol() has this time a CellFactory, as you can edit the contents of a
cell. It is basically a TextFieldTreeTableCell, and the effect is to open a TextField when you
double-click the cell. In this case, however, there is an additional challenge as not all names
are editable and therefore I have defined my own CellFactory:

class	StringFactory	implements	Callback<TreeTableColumn<Country,	String>,
	TreeTableCell<Country,	String>>
{
	private	Callback<TreeTableColumn<Country,	String>,	
	 TreeTableCell<Country,	String>>	cellFactory	=
	 TextFieldTreeTableCell.<Country>forTreeTableColumn();

		public	TreeTableCell<Country,	String>	
call(TreeTableColumn<Country,	String>	col)
 {
	 TreeTableCell<Country,	String>	cell	=	cellFactory.call(col);
	 cell.itemProperty().addListener((obs,	oldValue,	newValue)	->	
 {
	 TreeTableRow<Country>	row	=	cell.getTreeTableRow();
	 if	(row	==	null)	cell.setEditable(false);
 else
 {
	 Country	item	=	cell.getTreeTableRow().getItem();
 if (item != null)
 {
 if (item.getCode3() == null || item.getCode3().length() < 3)
	 cell.setEditable(false);
	 else	cell.setEditable(true);
 }
 }
 });
 return cell ;
 }
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Exercise 5

113

The syntax does not look nice, but here you have to remember that a CellFactory is just a
class that implements a Callback interface and hence the method call(). The class creates a
TextFieldTreeTableCell used to edit the content. The method call() is performed every time
a cell becomes visual and it has a handler that primarily checks whether the cell represents
an object for a country and not a continent and sets the cell’s editable property accordingly.

The next method getAreaCol() works almost the same as getNameCol(), but another
TextFieldTreeTableCell is used, as this time you have to edit a Long. The type is LongFactory
and is in principle identical to StringFactory. Finally, the method also uses a CellValueFactory
(because of the sum of all child nodes areas), but it is the same class as in the previous
program. The getInhabitantsCol() method is in principle identical.

The method getCurrencyCol() works in the same way as getNameCol(), but the method
getWorldCol() is a bit different. When you click on a cell, you must have a combobox so
you can choose a continent. It has the type ComboBoxTreeTableCell and must as parameter
have the items to display. The object CellFactory now has the type WorldFactory, and except
that a ComboBoxTreeTableCell is used instead of a TextFieldTreeTableCell, the class is basically
identical to the other two CellFactory classes. However, the getWorldCol() method requires
extra action, as a change in a country’s continent means that the corresponding node must
be moved in the tree (see, if applicable, the program UpdateWorldProgram). This is solved
by associating an event handler for editSubmit, which takes care of what is needed.

Back there are two classes, though both are relatively simple and at least do not add anything
new. The class CountryDialog is a dialog box and is used when creating a new country.
The reason is that a country with a name and legal country codes must be created. Back
is the main program, which does not contain anything new, but you should note that in
order to create a country (and thus click on the Add button), the continent for which the
country is to be created must be selected. Similarly, to delete a country you must select
the country you want to delete. Note that you do not get any warning about what should
be used in practice.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

114114

4	 DRAG AND DROP

JavaFX supports direct drag and drop, such the functionality is built into both a Scene
and a Node object. You are talking about the operation as a press-drag-release gesture, which
means that the user holds one of the mouse’s buttons down, drags the mouse and releases
the mouse again to complete the operation. A gesture can be started of the Scene object
or on any Node object, called the source object, and a gesture can include several objects
(Nodes). During the operation, several events are firing and the use of these events depends
on the purpose of the current gesture, which may be:

1.	That you want to change a node’s shape by dragging its perimeter or by dragging
it to another location. In this gesture, only the node that initiates the operation
is involved.

2.	That you want to draw a source and drop it to another node (target) and in one
way or another combine the two nodes. When the source node is dropped on the
target node, some action is performed.

3.	To drag a node and drop it over another node to transfer data from the source
node to the target node, and the actual data transfer occurs when the source node
is dropped.

http://s.bookboon.com/BI

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

115

To describe these gestures, the documentation divides them into three types:

1.	 simple press-drag-release gesture
2.	 full press-drag-release gesture
3.	drag-and-drop gesture

and here is the last one of the most interesting (which is most to be aware of), and I will
divide the chapter into sections corresponding to this division.

4.1	 SIMPLE PRESS-DRAG-RELEASE GESTURE

As the name says, it is the simplest form for drag-and-drop and is used where the operation
relates only to a single node and which is the node that starts the gesture. During the
operation, all MouseDragEvent types are fired:

-- MouseDragEntered
-- MouseDragOver
-- MouseDragExited
-- MouseDragReleased

but they are only sent to the source node. As an example, below is shown an application
that opens a window with two Label controls. By pointing at the top and holding down
the mouse, the background of the window changes to light green, and moves the mouse,
the text changes the color to yellow and the background turns light blue. If you pull the
mouse around in the window, nothing happens – even if you drag the mouse over the
bottom Label. However, if you release the mouse, the background color and the text color
of the top Label are returned to white and black respectively. The example should show
what happens if you start a drag gesture for a Label (and thus any other node) and drag
the mouse around in the window.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

116

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

116

package simplednd;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.stage.Stage;
import javafx.geometry.*;
import	javafx.scene.text.Font;
import javafx.scene.paint.*;
import javafx.beans.property.*;

public	class	SimpleDnD	extends	Application	
{
 private Label lbl1 = new Label("Source");
	private	Label	lbl2	=	new	Label("Target");
	private	final	ObjectProperty<Color>	fg	=
	 new	SimpleObjectProperty<Color>(Color.BLACK);
	private	final	ObjectProperty<Background>	bg	=
	 new	SimpleObjectProperty<Background>(background(Color.WHITE));

 @Override
 public void start(Stage stage)
 {
 Scene scene = new Scene(getRoot());
	 lbl1.setOnMousePressed(e	->	bg.set(background(Color.LIGHTGREEN)));
	 lbl1.setOnMouseDragged(e	->	bg.set(background(Color.LIGHTBLUE)));
	 lbl1.setOnDragDetected(e	->	fg.set(Color.YELLOW));
	 lbl1.setOnMouseReleased(
	 e	->	{	bg.set(background(Color.WHITE));	fg.set(Color.BLACK);	});
	 lbl2.setOnMouseDragEntered(e	->	bg.set(background(Color.DARKGREEN)));
	 lbl2.setOnMouseDragOver(e	->	bg.set(background(Color.DARKBLUE)));
	 lbl2.setOnMouseDragReleased(e	->	fg.set(Color.RED));
	 lbl2.setOnMouseDragExited(e	->	bg.set(background(Color.MAGENTA)));
 stage.setScene(scene);
	 stage.setTitle("Simple	DnD");
 stage.show();
 }

 private Pane getRoot()
 {
	 lbl1.setFont(Font.font(24));
	 lbl2.setFont(Font.font(24));
	 lbl1.textFillProperty().bind(fg);
	 VBox	pane	=	new	VBox(50,	lbl1,	lbl2);
 pane.setPadding(new Insets(50, 50, 50, 50));
 pane.backgroundProperty().bind(bg);
 return pane;
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

117117

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

117117

 private static Background background(Color color)
 {
 return new
	 Background(new	BackgroundFill(color,	CornerRadii.EMPTY,	Insets.EMPTY));
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The program has two Label controls defined as instance variables, as well as two properties
for a Color and a Background respectively. Here you should especially note that a Background
object is created for a specific color of the static method background(). The method getRoot()
intializes the components and creates the program’s view. Here you should note that root
is a VBox, and that the method binds its background to the property bg, and similarly, the
text color of the top Label binds to the property fg. Finally, the method start(), and here
is the most important thing that 4 event handlers are associated with each of the Label
controls. To the top, two drag event handlers are assigned, while all 4 drag event handlers
are assigned to the bottom. The meaning is that you must observe that these event handlers

The program has two Label controls defined as instance variables, as well as two properties
for a Color and a Background respectively. Here you should especially note that a Background
object is created for a specific color of the static method background(). The method getRoot()
intializes the components and creates the program’s view. Here you should note that root
is a VBox, and that the method binds its background to the property bg, and similarly, the
text color of the top Label binds to the property fg. Finally, the method start(), and here
is the most important thing that 4 event handlers are associated with each of the Label
controls. To the top, two drag event handlers are assigned, while all 4 drag event handlers

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

118

are assigned to the bottom. The meaning is that you must observe that these event handlers
are never performed. A simple press-drag-release gesture relates only to the node – and sends
only notifications regarding drag to that Node – that initiates the operation, which is the
Node the mouse points when the button is pressed. The operation ends when the mouse
is released and wherever where the mouse points.

4.2	 FULL PRESS-DRAG-RELEASE GESTURE

When the source node receives a notification for a MouseDragDetected event, it can launch
a full press-drag-release gesture by calling the method startFullDrag(). In addition, the
property mouseTransparent must be set to false for the source node so this node does not
receive all drag notifications. The example FullpressDnD is almost identical to the above
program and opens the same window. Clicking on the top Label starts a drag operation,
which immediately results in the same as above, but when the mouse is draged over the
bottom Label, the background of the window changes to dark blue while the text in the
bottom label becomes white. If the mouse again is draged out from the bottom label, the
text color in the top label changes to violet. When the mouse is released, it returns to
default. The code is this time the following:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

118

are never performed. A simple press-drag-release gesture relates only to the node – and sends
only notifications regarding drag to that Node – that initiates the operation, which is the
Node the mouse points when the button is pressed. The operation ends when the mouse
is released and wherever where the mouse points.

4.2 FULL PRESS-DRAG-RELEASE GESTURE

When the source node receives a notification for a MouseDragDetected event, it can launch
a full press-drag-release gesture by calling the method startFullDrag(). In addition, the
property mouseTransparent must be set to false for the source node so this node does not
receive all drag notifications. The example FullpressDnD is almost identical to the above
program and opens the same window. Clicking on the top Label starts a drag operation,
which immediately results in the same as above, but when the mouse is draged over the
bottom Label, the background of the window changes to dark blue while the text in the
bottom label becomes white. If the mouse again is draged out from the bottom label, the
text color in the top label changes to violet. When the mouse is released, it returns to
default. The code is this time the following:

public	class	FullpressDnD	extends	Application	
{
 private Label lbl1 = new Label("Source");
	private	Label	lbl2	=	new	Label("Target");
	private	final	ObjectProperty<Color>	fg1	=
	 new	SimpleObjectProperty<Color>(Color.BLACK);
	private	final	ObjectProperty<Color>	fg2	=
	 new	SimpleObjectProperty<Color>(Color.BLACK);
	private	final	ObjectProperty<Background>	bg	=
	 new	SimpleObjectProperty<Background>(background(Color.WHITE));

 @Override
 public void start(Stage stage)
 {
 Scene scene = new Scene(getRoot());
	 lbl1.setOnMousePressed(e	->	startDrag());
	 lbl1.setOnMouseDragged(e	->	bg.set(background(Color.LIGHTBLUE)));
	 	lbl1.setOnDragDetected(e	->	{	lbl1.startFullDrag();	
fg1.set(Color.YELLOW);	});

	 lbl1.setOnMouseReleased(e	->	endDrag());
	 lbl2.setOnMouseDragEntered(e	->	fg2.set(Color.WHITE));
	 lbl2.setOnMouseDragOver(e	->	bg.set(background(Color.DARKBLUE)));
	 lbl2.setOnMouseDragReleased(e	->	lbl1.setText("End"));
	 lbl2.setOnMouseDragExited(
	 e	->	{	if	(lbl1.isMouseTransparent())	fg1.set(Color.MAGENTA);	});

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

119

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

119

 stage.setScene(scene);
	 stage.setTitle("Full	Press	DnD");
 stage.show();
 }

	private	void	startDrag()
 {
	 lbl1.setText("Source");
	 lbl1.setMouseTransparent(true);	
	 bg.set(background(Color.LIGHTGREEN));
 }

	private	void	endDrag()
 {
	 lbl1.setMouseTransparent(false);	
	 bg.set(background(Color.WHITE));	
 fg1.set(Color.BLACK);
 fg2.set(Color.BLACK);
 }

 private Pane getRoot()
 {
	 lbl1.setFont(Font.font(24));
	 lbl2.setFont(Font.font(24));
	 lbl1.textFillProperty().bind(fg1);
	 lbl2.textFillProperty().bind(fg2);
	 VBox	pane	=	new	VBox(50,	lbl1,	lbl2);
 pane.setPadding(new Insets(50, 50, 50, 50));
 pane.backgroundProperty().bind(bg);
 return pane;
 }

 private static Background background(Color color)
 {
 return new
	 Background(new	BackgroundFill(color,	CornerRadii.EMPTY,	Insets.EMPTY));
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

This time, two properties for Color objects are defined so that the text color for both Label
controls is bound to a property (the method getRoot()). Otherwise, you should first notice
which events handlers are associated with the two labels. When the mouse points to the

This time, two properties for Color objects are defined so that the text color for both Label
controls is bound to a property (the method getRoot()). Otherwise, you should first notice
which events handlers are associated with the two labels. When the mouse points to the

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

120120

top label and the mouse is pressed, mouseTransparent is set to true (the method startDrag())
and it is put back to false when the mouse is released (the method endDrag()). Finally, note
that lbl1 at dragDetected executes startFullDrag(), and the result is that the component lbl2
this time receives drag notifications. You are encouraged to experiment with the program
and observe when each event occurs. Here you should especially note dragReleased for the
lower label, which changes the text in the top label. It is executed if you release the mouse
while it points to the bottom label.

4.3	 DRAG-AND-DROP GESTURE

The last form of drag and drop gesture is mostly the general and probably also the most
used and used to extract data from the source node and drop them on a target node. The
gesture in question may concern nodes within the same application, but it may also concern
nodes in two different Java applications. In fact, both applications does not necessarily have
to be a Java application.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

121

In general, a drag-and-drop operation includes the following actions:

-- Point to a node and hold down one of the mouse’s buttons
-- Drag the mouse while the button is held down and the node gets a DragDetected

event and must perform a startDragAndDrop(), after which the node is a gesture
source node and the current data is placed on the clipboard

-- After starting a drag-and-drop gesture, the system no longer sends MouseEvents,
but instead DragEvents

-- If a gesture source is dragged over a gesture target, it will check if it will accept data
on the clipboard and do it, it will with a DragEvent indicate that data is accepted.

-- If the user drops the mouse while pointing to a gesture target, it will apply the
current data and send a DragDropped event

-- When the source gesture node receives a DragDone event, it tells that the operation
has been completed

In this section I will illustrate drag-and-drop with three examples, and the first one is called
TextDnd and opens the following window:

It is basically the same window as in the two previous examples, except that there is a
frame outside of the two Label controls, and a button has been added. In this example,
drag and drop gestures drag the text from the top label and drop it on the bottom label.
A drag-and-drop gesture can be performed in two ways (actually three and you can read
about drag-and-drop in the book Java 10), where one drops a copy of the data element
(here the text in the top label) while the another one moves it. Here the text Copy in the
button means that it is a copy gesture that is being executed. Clicking the button changes
the text and it is a move gesture, while resetting the window. The code is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

122

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

122

public	class	TextDnD	extends	Application
{
 private Button cmd = new Button("Copy");
 private Label lbl1 = new Label("Source");
	private	Label	lbl2	=	new	Label("Target");
	private	TransferMode	mode	=	TransferMode.COPY;

 @Override
 public void start(Stage stage)
 {
 Scene scene = new Scene(getRoot());
	 lbl1.setOnDragDetected(this::dragDetected);
	 lbl2.setOnDragOver(this::dragOver);
	 lbl2.setOnDragDropped(this::dragDropped);
	 lbl1.setOnDragDone(this::dragDone);
 stage.setScene(scene);
	 stage.setTitle("Text	DnD");
 stage.show();
 }

 private Pane getRoot()
 {
	 lbl1.setFont(Font.font(24));
	 lbl2.setFont(Font.font(24));
 lbl1.setPadding(new Insets(5, 10, 5, 10));
 lbl2.setPadding(new Insets(5, 10, 5, 10));
 lbl1.setStyle("-fx-border-color: black;");
 lbl2.setStyle("-fx-border-color: black;");
	 cmd.setOnAction(e	->	reset());
	 VBox	pane	=	new	VBox(50,	lbl1,	lbl2,	cmd);
 pane.setPadding(new Insets(50, 50, 50, 50));
	 pane.setAlignment(Pos.CENTER);
 return pane;
 }

	private	void	dragDetected(MouseEvent	e)	
 {
	 String	text	=	lbl1.getText();
 if (text == null)
 {
 e.consume();
 return;
 }
	 Dragboard	dragboard	=	lbl1.startDragAndDrop(mode);
 ClipboardContent content = new ClipboardContent();
 content.putString(text);
 dragboard.setContent(content);
 e.consume();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

123123

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

123123

	private	void	dragOver(DragEvent	e)	
 {
	 Dragboard	dragboard	=	e.getDragboard();
	 if	(dragboard.hasString())	e.acceptTransferModes(mode);
 e.consume();
 }

	private	void	dragDropped(DragEvent	e)	
 {
	 Dragboard	dragboard	=	e.getDragboard();
 if (dragboard.hasString())
 {
 String text = dragboard.getString();
	 lbl2.setText(text);
	 e.setDropCompleted(true);
 }
	 else	e.setDropCompleted(false);
 e.consume();
 }

	private	void	dragDone(DragEvent	e)	
 {
	 TransferMode	mode	=	e.getTransferMode();

http://s.bookboon.com/Subscrybe

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

124

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

124

	 if	(mode	==	TransferMode.MOVE)	lbl1.setText("");
 e.consume();
 }

 private void reset()
 {
	 lbl1.setText("Source");
	 lbl2.setText("Target");
	 if	(mode	==	TransferMode.COPY)
 {
	 cmd.setText("Move");
	 mode	=	TransferMode.MOVE;
 }
 else
 {
	 cmd.setText("Copy");
	 mode	=	TransferMode.COPY;
 }
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

With regard to instance variables, they are self explanatory, but note the last one used
to indicate whether a gesture should be Copy or Move. The type is an enumeration. The
method getRoot() that creates the program’s view does not contain anything new, but in
the method start() you should note which events handlers are being associated. Generally, a
source node must have associated two event handlers: DragDetected and DragDone. A target
node must correspondingly have associated two event handlers: DragOver and DragDropped.
Corresponding to this is the most important in the example these 4 event traders.

The method dragDetected() starts by testing whether there is actually a data element and here
if the top label shows a text. If so, startDragAndDrop() is performed on the source node,
and the parameter is which operation to be performed. The method returns a DragBoard
object, and is an object that represents the clipboard. In fact, DragBoard is a subclass of
the class Clipboard. The method dragDetected() also has a reference to the clipboard and it
saves the text on the clipboard and finally updates the DragBoard object with the current
content on the clipboard.

The method dragDone() is not always necessary, but in this case it tests whether it is a Move
operation, and if so, the method is responsible for deleting the text in the Label component –

With regard to instance variables, they are self explanatory, but note the last one used
to indicate whether a gesture should be Copy or Move. The type is an enumeration. The
method getRoot() that creates the program’s view does not contain anything new, but in
the method start() you should note which events handlers are being associated. Generally, a
source node must have associated two event handlers: DragDetected and DragDone. A target
node must correspondingly have associated two event handlers: DragOver and DragDropped.
Corresponding to this is the most important in the example these 4 event traders.

The method dragDetected() starts by testing whether there is actually a data element and here
if the top label shows a text. If so, startDragAndDrop() is performed on the source node,
and the parameter is which operation to be performed. The method returns a DragBoard
object, and is an object that represents the clipboard. In fact, DragBoard is a subclass of
the class Clipboard. The method dragDetected() also has a reference to the clipboard and it
saves the text on the clipboard and finally updates the DragBoard object with the current
content on the clipboard.

The method dragDone() is not always necessary, but in this case it tests whether it is a Move
operation, and if so, the method is responsible for deleting the text in the Label component –

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

125

that is, in source node. The method dragOver() is performed when the user passes the mouse
over a target node. The method tests whether something is on the clipboard, and if that is
the case, acceptTransferModes() is performed, which means that the cursor changes, so you
can visually see that you are over a node where you can drop.

Finally, there is the method dragDropped(). In this case, it starts testing whether there is
a string on the clipboard, and if so, the text is retrieved and the label component’s text
is updated. Then the method dropCompleted() is performed, which sends a notification to
the source node that the operation has been completed. Before leaving the program, you
should also note the method reset() used as event handler for the button and among other
switches mode, so the next drag-and-drop operation may be a Move gesture.

As the next example, I’ll show you how to drag an image into an application where it can
be either an image or a file that contains an image. That is, you can drag a data element
that represents an image from another program (such as the Files program) to the current
application. The example is called ImageDnD and opens the following window, which
contains a button and an ImageView control:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

125

that is, in source node. The method dragOver() is performed when the user passes the mouse
over a target node. The method tests whether something is on the clipboard, and if that is
the case, acceptTransferModes() is performed, which means that the cursor changes, so you
can visually see that you are over a node where you can drop.

Finally, there is the method dragDropped(). In this case, it starts testing whether there is
a string on the clipboard, and if so, the text is retrieved and the label component’s text
is updated. Then the method dropCompleted() is performed, which sends a notification to
the source node that the operation has been completed. Before leaving the program, you
should also note the method reset() used as event handler for the button and among other
switches mode, so the next drag-and-drop operation may be a Move gesture.

As the next example, I’ll show you how to drag an image into an application where it can
be either an image or a file that contains an image. That is, you can drag a data element
that represents an image from another program (such as the Files program) to the current
application. The example is called ImageDnD and opens the following window, which
contains a button and an ImageView control:

public	class	ImageDnD	extends	Application	
{
	private	ImageView	view	=	new	ImageView();

 @Override
 public void start(Stage stage)
 {
 Scene scene = new Scene(createRoot());
	 scene.setOnDragOver(this::dragOver);
	 scene.setOnDragDropped(this::dragDropped);
 stage.setScene(scene);
	 stage.setTitle("Image	DnD");
 stage.show();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

126126

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

126126

 private Pane createRoot()
 {
	 view.setFitWidth(300);
	 view.setFitHeight(200);
 view.setSmooth(true);
 view.setPreserveRatio(true);
	 HBox	pane	=	new	HBox(10,	createButton("Clear",	e	->	view.setImage(null)));
	 pane.setAlignment(Pos.CENTER_RIGHT);
	 VBox	root	=	new	VBox(20,	view,	pane);
 root.setPadding(new Insets(20, 20, 20, 20));
 return root;
 }

	private	Button	createButton(String	text,	EventHandler<ActionEvent>	handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

	private	void	dragOver(DragEvent	e)	
 {
	 Dragboard	dragboard	=	e.getDragboard();

http://s.bookboon.com/volvo

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

127

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

127

	 if	(dragboard.hasImage()	||	dragboard.hasFiles())
	 e.acceptTransferModes(TransferMode.ANY);
 e.consume();
 }

	private	void	dragDropped(DragEvent	e)	
 {
 boolean completed = false;
	 Dragboard	dragboard	=	e.getDragboard();
 if (dragboard.hasImage()) completed = transferImage(dragboard.getImage());
	 else	if	(dragboard.hasFiles())	completed	=
	 transferImageFile(dragboard.getFiles());
	 else	System.out.println("Error	–	Illegal	format:	Image,	File,	URL");
	 e.setDropCompleted(completed);
 e.consume();
 }

 private boolean transferImage(Image image)
 {
 view.setImage(image);
 return true;
 }

	private	boolean	transferImageFile(List<File>	files)	
 {
	 for(File	file	:	files)	
 {
 try
 {
	 String	mimeType	=	Files.probeContentType(file.toPath());
	 if	(mimeType	!=	null	&&	mimeType.startsWith("image/"))	
 {
	 view.setImage(new	Image(file.toURI().toURL().toExternalForm()));
 return true;
 }
 }
	 catch	(IOException	ex)	
 {
	 System.out.println(ex.getMessage());
 }
 }
 return false;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

128

The method createRoot() that creates the program’s view does not contain anything new,
and the task is to initialize the ImageView controller. Note, however, that the button is
assigned an event handler which deletes the content of the ImageView component. The
method start() assigns two event handlers to the Scene object, which means that you can
drop an object in the application’s window. There are only two handlers since the program
this time does not have a source gesture node – a drag-and-drop operation is initiated in
another application. dragOver() has the same function as in the previous example, and you
should note how to test if the clipboard has a data element that the program can accept.
It is likewise tested in the dragDropped() method and depending on what data item is
(an image or a file), a method is called that performs the data transfer. Here you should
especially note the method transferImageFile() and the syntax used. This means that the file
name must be used to load that image from a file.

As the last example of drag-and-drop, I will show a program where you can drag an object
of a custom type. The example is called PersonDnD and opens the following window:

The window contains two ListView controls. Each line in the left ListView represents a Person
object, and these objects can be draged to the right by a drag-and-drop gesture. Similarly,
you can drag objects from right to left. A Person object is a very common model class that
represents a person with two characteristics:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

128

The method createRoot() that creates the program’s view does not contain anything new,
and the task is to initialize the ImageView controller. Note, however, that the button is
assigned an event handler which deletes the content of the ImageView component. The
method start() assigns two event handlers to the Scene object, which means that you can
drop an object in the application’s window. There are only two handlers since the program
this time does not have a source gesture node – a drag-and-drop operation is initiated in
another application. dragOver() has the same function as in the previous example, and you
should note how to test if the clipboard has a data element that the program can accept.
It is likewise tested in the dragDropped() method and depending on what data item is
(an image or a file), a method is called that performs the data transfer. Here you should
especially note the method transferImageFile() and the syntax used. This means that the file
name must be used to load that image from a file.

As the last example of drag-and-drop, I will show a program where you can drag an object
of a custom type. The example is called PersonDnD and opens the following window:

The window contains two ListView controls. Each line in the left ListView represents a Person
object, and these objects can be draged to the right by a drag-and-drop gesture. Similarly,
you can drag objects from right to left. A Person object is a very common model class that
represents a person with two characteristics:

public class Person implements Serializable
{
 private String name = "";
 private String job = "";

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

129129

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

129129

 public Person(String name, String job)
 {
 this.name = name;
 this.job = job;
 }

	public	String	getName()	
 {
 return name;
 }

	public	void	setName(String	name)	
 {
 this.name = name;
 }

 public String getJob()
 {
 return job;
 }

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

130

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

130

 public void setJob(String job)
 {
 this.job = job;
 }

 @Override
 public String toString()
 {
	 return	getName()	+	":	"	+	getJob();
 }
}

There is only one thing to observe, namely that the class is serializable. It is a prerequisite
for objects to be used in a drag-and-drop gesture. Also note that this means that the types
of the class’s instance variables must be serializable. The class PersonDnD is:

public	class	PersonDnD	extends	Application
{
	private	static	final	DataFormat	PERSON_LIST	=
	 new	DataFormat("persons/personlist");
	ListView<Person>	view1	=	new	ListView();
	ListView<Person>	view2	=	new	ListView();

 @Override
 public void start(Stage stage)
 {
 Scene scene = new Scene(getRoot());
 stage.setScene(scene);
	 stage.setTitle("Person	DnD");
 stage.show();
 }

 private Pane getRoot()
 {
 view1.setPrefSize(300, 300);
 view2.setPrefSize(300, 300);
 view1.getItems().addAll(getPersons());
	 view1.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
	 view2.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
	 view1.setOnDragDetected(e	->	dragDetected(e,	view1));
	 view2.setOnDragDetected(e	->	dragDetected(e,	view2));
	 view1.setOnDragOver(e	->	dragOver(e,	view1));
	 view2.setOnDragOver(e	->	dragOver(e,	view2));
	 view1.setOnDragDropped(e	->	dragDropped(e,	view1));
	 view2.setOnDragDropped(e	->	dragDropped(e,	view2));
	 view1.setOnDragDone(e	->	dragDone(e,	view1));
	 view2.setOnDragDone(e	->	dragDone(e,	view2));

There is only one thing to observe, namely that the class is serializable. It is a prerequisite
for objects to be used in a drag-and-drop gesture. Also note that this means that the types
of the class’s instance variables must be serializable. The class PersonDnD is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

130

 public void setJob(String job)
 {
 this.job = job;
 }

 @Override
 public String toString()
 {
	 return	getName()	+	":	"	+	getJob();
 }
}

There is only one thing to observe, namely that the class is serializable. It is a prerequisite
for objects to be used in a drag-and-drop gesture. Also note that this means that the types
of the class’s instance variables must be serializable. The class PersonDnD is:

public	class	PersonDnD	extends	Application
{
	private	static	final	DataFormat	PERSON_LIST	=
	 new	DataFormat("persons/personlist");
	ListView<Person>	view1	=	new	ListView();
	ListView<Person>	view2	=	new	ListView();

 @Override
 public void start(Stage stage)
 {
 Scene scene = new Scene(getRoot());
 stage.setScene(scene);
	 stage.setTitle("Person	DnD");
 stage.show();
 }

 private Pane getRoot()
 {
 view1.setPrefSize(300, 300);
 view2.setPrefSize(300, 300);
 view1.getItems().addAll(getPersons());
	 view1.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
	 view2.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
	 view1.setOnDragDetected(e	->	dragDetected(e,	view1));
	 view2.setOnDragDetected(e	->	dragDetected(e,	view2));
	 view1.setOnDragOver(e	->	dragOver(e,	view1));
	 view2.setOnDragOver(e	->	dragOver(e,	view2));
	 view1.setOnDragDropped(e	->	dragDropped(e,	view1));
	 view2.setOnDragDropped(e	->	dragDropped(e,	view2));
	 view1.setOnDragDone(e	->	dragDone(e,	view1));
	 view2.setOnDragDone(e	->	dragDone(e,	view2));

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

131

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

131

 GridPane pane = new GridPane();
 pane.setPadding(new Insets(20, 20, 20, 20));
 pane.setHgap(20);
 pane.addRow(0, view1, view2);
 return pane;
 }

	private	ObservableList<Person>	getPersons()	{	…	}

	private	void	dragDetected(MouseEvent	e,	ListView<Person>	view)	
 {
	 int	selectedCount	=	view.getSelectionModel().getSelectedIndices().size();
 if (selectedCount == 0)
 {
 e.consume();
 return;
 }
	 Dragboard	dragboard	=	view.startDragAndDrop(TransferMode.COPY_OR_MOVE);
	 List<Person>	items	=	getSelectedItems(view);
 ClipboardContent content = new ClipboardContent();
	 content.put(PERSON_LIST,	items);
 dragboard.setContent(content);
 e.consume();
 }

	private	void	dragOver(DragEvent	e,	ListView<Person>	view)	
 {
	 Dragboard	dragboard	=	e.getDragboard();
	 if	(e.getGestureSource()	!=	view	&&	dragboard.hasContent(PERSON_LIST))
	 e.acceptTransferModes(TransferMode.COPY_OR_MOVE);
 e.consume();
 }

	private	void	dragDropped(DragEvent	e,	ListView<Person>	view)	
 {
 boolean completed = false;
	 Dragboard	dragboard	=	e.getDragboard();
	 if(dragboard.hasContent(PERSON_LIST))	
 {
	 	view.getItems().addAll((ArrayList<Person>)

dragboard.getContent(PERSON_LIST));
 completed = true;
 }
	 e.setDropCompleted(completed);
 e.consume();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

132132

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

132132

	private	void	dragDone(DragEvent	e,	ListView<Person>	view)	
 {
	 TransferMode	mode	=	e.getTransferMode();
	 if	(mode	==	TransferMode.MOVE)	removeSelectedItems(view);
 e.consume();
 }

	private	List<Person>	getSelectedItems(ListView<Person>	listView)	
 {
	 return	new	ArrayList(listView.getSelectionModel().getSelectedItems());
 }

	private	void	removeSelectedItems(ListView<Person>	view)	
 {
	 List<Person>	list	=	new	ArrayList();
	 for(Person	pers	:	view.getSelectionModel().getSelectedItems())	list.add(pers);
	 view.getSelectionModel().clearSelection();
 view.getItems().removeAll(list);
 }

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Drag and drop

133

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT drag and drop

133

 public static void main(String[] args)
 {
 launch(args);
 }
}

Custom types can not be immediately transferred via the clipboard as they do not have a
known mime type. This means that a target node can not test what is on the clipboard.
Therefore, the program starts by creating a static object of the type DataFormat named
PERSON_LIST. The value is not important. It just has to be a name that is unique (for
the program). The method getRoot() fills a part, and it must, among other things, initialize
the left ListView with 6 Person objects. These objects are created in the method getPersons(),
but I have not shown the code. Note that for both ListView controls, are select MULTIPLE,
so the user can select more Person objects. However, the most important thing is that 4
event handlers are assigned to each control, since both controls can be both source and
target gesture nodes.

The methods (there are 4) that the event handlers call has a parameter that tells what it is
for a ListView that the event concerns. dragDetected() initiates a drag operation, and you
must note that its mode is COPY_OR_MOVE so that it can be used in either case. You
start a COPY operation by pressing the mouse button, if you also holding down the SHIFT
key, it is a MOVE operation. dragDetected() uses the method getSelectedItems() to return the
Person objects that are selected, and it is this list of objects that is placed on the clipboard.
dragOver() and dragDropped() appear as shown in the two previous examples but note how
dragDropped() using the PERSON_LIST object tests whether it is data of the correct kind
that ara located on the clipboard before the list is copied to the target ListView component.
Finally, there is the method dragDone() that tests whether it is a MOVE operation, and if
necessary, the objects that are moved will be deleted from the source node.

Custom types can not be immediately transferred via the clipboard as they do not have a
known mime type. This means that a target node can not test what is on the clipboard.
Therefore, the program starts by creating a static object of the type DataFormat named
PERSON_LIST. The value is not important. It just has to be a name that is unique (for
the program). The method getRoot() fills a part, and it must, among other things, initialize
the left ListView with 6 Person objects. These objects are created in the method getPersons(),
but I have not shown the code. Note that for both ListView controls, are select MULTIPLE,
so the user can select more Person objects. However, the most important thing is that 4
event handlers are assigned to each control, since both controls can be both source and
target gesture nodes.

The methods (there are 4) that the event handlers call has a parameter that tells what it is
for a ListView that the event concerns. dragDetected() initiates a drag operation, and you
must note that its mode is COPY_OR_MOVE so that it can be used in either case. You
start a COPY operation by pressing the mouse button, if you also holding down the SHIFT
key, it is a MOVE operation. dragDetected() uses the method getSelectedItems() to return the
Person objects that are selected, and it is this list of objects that is placed on the clipboard.
dragOver() and dragDropped() appear as shown in the two previous examples but note how
dragDropped() using the PERSON_LIST object tests whether it is data of the correct kind
that ara located on the clipboard before the list is copied to the target ListView component.
Finally, there is the method dragDone() that tests whether it is a MOVE operation, and if
necessary, the objects that are moved will be deleted from the source node.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

134

5	 MVC

I have treated the Module-View-Controller pattern earlier, which is the design pattern of a
GUI program, and in this context, I also mentioned that there are several versions of the
pattern, partly because of the development tools used, but also on due to the API used.
Should you use JavaFX fully, you should use the Module-View-Presenter pattern, which you
sometimes see shortened as MVP. The pattern can be sketched as follows:

The principle is that the program’s view takes care of everything regarding the visual, but
can turn to the model to get the data to be displayed. The user interaction takes place in
the view layer, but when there is a user interaction, it is sent to the presenter module, which
takes care of it. That is, a window’s event handlers are placed a presenter class that as a result
can update the view component and execute commands on the model. When the model
is updated as a result of commands from the present, it can send notifications, which the
view component can listen to and possibly read the model to ensure the synchronization
between model and view.

It’s the principle, and in fact, is not very different than I’ve previously mentioned about
MVC, just the pattern is drawn in a way that directly supports JavaFX. Another thing,
however, is what it means in the code, and especially who is responsible for creating the
individual objects, and it is best illustrated with an example.

Looking at the previous examples in this book, they basically had a 2 layer architecture
consisting of a view layer and a model layer. The most important thing in the above
pattern is actually a more accurate breakdown of the view layer in a view component and
a presenter component. The goal of all is to make the code as simple and manageable as
possible, and even as the most important thing to ensure that GUI programs are written
in a standardized manner, and one of the patterns that JavaFX recommends is a systematic
use of data binding. In previous books, I have used a database addresses that only have a
single table:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

135135

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

135135

use	mysql;

create database addresses;

use addresses;

create table address (
	id	int	not	null	auto_increment,
	firstname	varchar(50),
 lastname varchar(30),
 address varchar(50),
 code varchar(4),
 city varchar(30),
 mail varchar(50),
 date varchar(10),
 title varchar(50),
 primary key (id)
);

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

136

As example, I will look at a program that can maintain this database, and when the program
starts, it must open the following window:

as in a TableView shows an overview of the database’s addresses. If you click on the button,
you will see the window below where you can create a new address and you get the same
window (but initialized with data) if you double-click on an address in the table:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

137

The program consists of 9 classes:

and in the following I will mention the most important of these classes and the choices
made. If you start with the model layer, it has two classes, and one of the purposes is that
the model via data binding should send notifications to the user interface, but also the
view component classes should automatically update the model. For example, the class
Address must have JavaFX properties corresponding to all columns in the database table,
and since the classs Addresses should represent the table in the above window, it must have
an ObservableList<Address> and have methods that can return the columns to the TableView
component. The model classes Address and Addresses must thus be written according to a
precise pattern that supports JavaFX. In one way or another, it does not fit with that you
want to separate the model and its classes from the rest of the code so that they can be
written independently of how the model has to be used. Therefore, a DAL layer is defined
under the model layer, which consists of two classes Person and Persons, the first being a usual
model class, representing an entity in the database, and containing no other than instance
variables using conventional get and set methods. The class Persons consists primarily of 4
methods, one of which returns a List<Person> with the content of the database, where the
other three are for SQL INSERT, UPDATE and DELETE operations. With this DAL layer
available, the class Address is no more than a thin wrapper of the class Person, where each
property is encapsulated in a JavaFX property. However, the class has a method invalidate(),
as in relation to the current task, can validate if an Address object is legal.

The class Addresses has an instance of the class Persons, starting with reading data in the
database, to create an ObservableList<Address>. In the same way as shown in the examples,
the class defines methods for individual columns so that they can bind to the TableView. In
addition to this, the class has methods save() and remove() used to save and delete data. In

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

138138

principle, these methods are trivial and do not so much other than calling the corresponding
methods in the class Persons, but at the same time they must ensure the class’s ObservableList
is synchronized with the database.

Back there are the presentations and view components. The class AddressesView must define
the main window:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

138138

principle, these methods are trivial and do not so much other than calling the corresponding
methods in the class Persons, but at the same time they must ensure the class’s ObservableList
is synchronized with the database.

Back there are the presentations and view components. The class AddressesView must define
the main window:

import addressesprogram.models.*;

public	class	AddressesView	extends	BorderPane
{
 Button cmdAdd = new Button("Create address");
	TableView<Address>	tableView;

	public	AddressesView(Addresses	model)	
 {
	 tableView	=	new	TableView(model.getAddresses());
	 createForm(model);
 }

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

139

and in addition to the above, there is only createForm(), which initializes a BorderPane
with a TableView and a Button. There is therefore no logic including event handlers in this
class. You should note that the class inherits BorderPane. Also note the parameter of the
constructor, which is the model and thus an object of the type Addresses. Finally, note the
two instance variables, which are references to the window’s controls. These variables have
no visibility, and thus they have the package visibility so that they can be used from the
presenter class, which has the task of creating the event handlers. It is therefore necessary
that the view and presenter are in the same package. The presenter class is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

139

and in addition to the above, there is only createForm(), which initializes a BorderPane
with a TableView and a Button. There is therefore no logic including event handlers in this
class. You should note that the class inherits BorderPane. Also note the parameter of the
constructor, which is the model and thus an object of the type Addresses. Finally, note the
two instance variables, which are references to the window’s controls. These variables have
no visibility, and thus they have the package visibility so that they can be used from the
presenter class, which has the task of creating the event handlers. It is therefore necessary
that the view and presenter are in the same package. The presenter class is as follows:

public class AddressesPresenter
{
	private	final	Addresses	model;
	private	final	AddressesView	view;
	private	final	Stage	owner;

 public AddressesPresenter(Stage owner, Addresses model)
 {
 this.owner = owner;
 this.model = model;
	 view	=	new	AddressesView(model);
 addHandlers();
 }

	public	Pane	getView()
 {
 return view;
 }

 private void addHandlers()
 {
	 view.cmdAdd.setOnAction(e	->	add(new	Address()));
	 view.tableView.setOnMousePressed(new	EventHandler<MouseEvent>()	{
 @Override
	 public	void	handle(MouseEvent	event)	
 {
	 if	(event.isPrimaryButtonDown()	&&	event.getClickCount()	==	2)
	 add(view.tableView.getSelectionModel().getSelectedItem());
 }
 });
 }

 private void add(Address address)
 {
 AddressPresenter presenter = new AddressPresenter(model, address);
	 Scene	scene	=	new	Scene(presenter.getView());
 Stage stage = new Stage();

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

140

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

140

 stage.initOwner(owner);
	 stage.initModality(Modality.APPLICATION_MODAL);
 stage.setResizable(false);
	 stage.setTitle("Address");
 stage.setScene(scene);
 stage.show();
 }
}

It is thus the presenter class that creates the view class. It is not actually completely consistent
with the pattern as most people choose to create view objects outside the class and then
transfer it as a parameter to the constructor. Since I have not done it, it is necessary to add
a method getView() such that you can refer to the view object in the main class. The class’s
constructor has as parameters the model and a reference to the primary Stage object. It is
used as the owner of the dialog window to edit an address. You should note the method
addHandlers() as the method that associates event handlers to nodes defined in the view
component. In this case, an event handler must be attached to double-click a row in the
TableView component as well as an event handler for the button. In either case, the method
add(), which opens the dialog to either create a new address (where the current parameter
is a new Address object) or to edit an existing address (where the address is the object of
the line that is double-clicked).

The dialog box is defined as the following class, which is a GridPane:

public	class	AddressView	extends	GridPane	
{
	private	final	Address	model;
	TextField	txtFirstname	=	new	TextField();
	TextField	txtLastname	=	new	TextField();
	TextField	txtAddress	=	new	TextField();
	TextField	txtCode	=	new	TextField();
	TextField	txtCity	=	new	TextField();
	TextField	txtMail	=	new	TextField();
	TextField	txtTitle	=	new	TextField();
	DatePicker	datePicker	=	new	DatePicker();
	Button	cmdDel	=	new	Button("Remove");
 Button cmdOk = new Button("OK");
 Button cmdCancel = new Button("Cancel");

	public	AddressView(Address	model)	
 {
 this.model = model;
	 createForm();
	 bindFields();
 }

It is thus the presenter class that creates the view class. It is not actually completely consistent
with the pattern as most people choose to create view objects outside the class and then
transfer it as a parameter to the constructor. Since I have not done it, it is necessary to add
a method getView() such that you can refer to the view object in the main class. The class’s
constructor has as parameters the model and a reference to the primary Stage object. It is
used as the owner of the dialog window to edit an address. You should note the method
addHandlers() as the method that associates event handlers to nodes defined in the view
component. In this case, an event handler must be attached to double-click a row in the
TableView component as well as an event handler for the button. In either case, the method
add(), which opens the dialog to either create a new address (where the current parameter
is a new Address object) or to edit an existing address (where the address is the object of
the line that is double-clicked).

The dialog box is defined as the following class, which is a GridPane:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

140

 stage.initOwner(owner);
	 stage.initModality(Modality.APPLICATION_MODAL);
 stage.setResizable(false);
	 stage.setTitle("Address");
 stage.setScene(scene);
 stage.show();
 }
}

It is thus the presenter class that creates the view class. It is not actually completely consistent
with the pattern as most people choose to create view objects outside the class and then
transfer it as a parameter to the constructor. Since I have not done it, it is necessary to add
a method getView() such that you can refer to the view object in the main class. The class’s
constructor has as parameters the model and a reference to the primary Stage object. It is
used as the owner of the dialog window to edit an address. You should note the method
addHandlers() as the method that associates event handlers to nodes defined in the view
component. In this case, an event handler must be attached to double-click a row in the
TableView component as well as an event handler for the button. In either case, the method
add(), which opens the dialog to either create a new address (where the current parameter
is a new Address object) or to edit an existing address (where the address is the object of
the line that is double-clicked).

The dialog box is defined as the following class, which is a GridPane:

public	class	AddressView	extends	GridPane	
{
	private	final	Address	model;
	TextField	txtFirstname	=	new	TextField();
	TextField	txtLastname	=	new	TextField();
	TextField	txtAddress	=	new	TextField();
	TextField	txtCode	=	new	TextField();
	TextField	txtCity	=	new	TextField();
	TextField	txtMail	=	new	TextField();
	TextField	txtTitle	=	new	TextField();
	DatePicker	datePicker	=	new	DatePicker();
	Button	cmdDel	=	new	Button("Remove");
 Button cmdOk = new Button("OK");
 Button cmdCancel = new Button("Cancel");

	public	AddressView(Address	model)	
 {
 this.model = model;
	 createForm();
	 bindFields();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

141141

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

141141

	public	Address	getModel()
 {
 return model;
 }

	private	void	createForm()	
 {
 …
 }

	public	void	bindFields()	
 {
	 txtFirstname.textProperty().bindBidirectional(model.firstnameProperty());
 txtLastname.textProperty().bindBidirectional(model.lastnameProperty());
 txtAddress.textProperty().bindBidirectional(model.addressProperty());
 txtCode.textProperty().bindBidirectional(model.codeProperty());
 txtCity.textProperty().bindBidirectional(model.cityProperty());
	 txtMail.textProperty().bindBidirectional(model.mailProperty());
	 txtTitle.textProperty().bindBidirectional(model.titleProperty());
 datePicker.valueProperty().bindBidirectional(model.dateProperty());
 }
}

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

142

Here you should note that all nodes that can be referred by the event handlers are defined with
package visibility so that they can be referenced in the presenter class. In some way, it violates
object-oriented principles where variables must be private, but if one wishes to comply with
these principles, it is necessary to write get methods for all instance variables. Therefore, you
typically implement the MVP pattern as above and require that the view and presenter are in
the same package. You should note the method bindFields() that creates bidirectional bindings
for all fields, and it is here that it is necessary that the model class Address has JavaFX properties
that you can bind to. This means that the values entered automatically update the model class,
and vice versa that modifications of the model automatically update the user interface.

The corresponding presenter class is basically simple and resembles the previous presenter
class, and among other things it is this class that creates the view component. However,
there is a problem to be solved. If you edit an address, the model is automatically updated
because of the bindings, which is incorrect if you close the dialog with cancel. In this case,
the entries that have been made must be canceled. Therefore, the dialog must work on a
copy, so only in case of clicking OK, updates the original Address object.

Then there is finally the main program, which starts it all:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

142

Here you should note that all nodes that can be referred by the event handlers are defined with
package visibility so that they can be referenced in the presenter class. In some way, it violates
object-oriented principles where variables must be private, but if one wishes to comply with
these principles, it is necessary to write get methods for all instance variables. Therefore, you
typically implement the MVP pattern as above and require that the view and presenter are in
the same package. You should note the method bindFields() that creates bidirectional bindings
for all fields, and it is here that it is necessary that the model class Address has JavaFX properties
that you can bind to. This means that the values entered automatically update the model class,
and vice versa that modifications of the model automatically update the user interface.

The corresponding presenter class is basically simple and resembles the previous presenter
class, and among other things it is this class that creates the view component. However,
there is a problem to be solved. If you edit an address, the model is automatically updated
because of the bindings, which is incorrect if you close the dialog with cancel. In this case,
the entries that have been made must be canceled. Therefore, the dialog must work on a
copy, so only in case of clicking OK, updates the original Address object.

Then there is finally the main program, which starts it all:

public class AddressesProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
	 AddressesPresenter	presenter	=	new	AddressesPresenter(stage,	createModel());
	 Scene	scene	=	new	Scene(presenter.getView());
 scene.getStylesheets().add("resources/css/styles.css");
	 stage.setTitle("Addresses");
 stage.setScene(scene);
 stage.show();
 }

	private	Addresses	createModel()
 {
 try
 {
 return new Addresses();
 }
	 catch	(Exception	ex)
 {
 System.out.println(ex);
 Platform.exit();
 return null;
 }
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MVC

143

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT MvC

143

 public static void main(String[] args)
 {
 launch(args);
 }
}

There is not much to explain, but you should note how the method start() creates a presenter
and a model that is sent as a parameter for the presenter class’s constructor. The architecture
of the completed program can be illustrated as follows:

There is not much to explain, but you should note how the method start() creates a presenter
and a model that is sent as a parameter for the presenter class’s constructor. The architecture
of the completed program can be illustrated as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

144144

6	 USER DEFINED CONTROLS

It is rarely necessary to write your own controls, but the possibility exists, and it could
even be the task to developing your own user defined controls. A control must be derived
directly or indirectly from the class Node so that it can be part of a scene graph in the
same way as all other controls, but in most cases, one will write a user defined control as
a class inheriting an existing control, as it is made for the most important functionality. If
you open the program UserControlProgram, you get the following window:

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

145

which contains 7 custom controls. The top three have the type LabelField, consisting of a
Label and a TextField, while the 4 lower ones have the type Spinner. It’s a kind of button and
clicking on the circle it will rotate the line (default 2 seconds), after which the component
will trigger an ActionEvent. The program’s start() method is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

145

which contains 7 custom controls. The top three have the type LabelField, consisting of a
Label and a TextField, while the 4 lower ones have the type Spinner. It’s a kind of button and
clicking on the circle it will rotate the line (default 2 seconds), after which the component
will trigger an ActionEvent. The program’s start() method is as follows:

public void start(Stage primaryStage)
{
	Spinner	spin1	=	new	Spinner(50,	Color.RED,	Color.WHITE);
	spin1.setOnAction(e	->	System.out.println("ok	1"));
 Spinner spin2 = new Spinner(70);
	spin2.setOnAction(e	->	System.out.println("ok	2"));
	Spinner	spin3	=	new	Spinner(50,	Color.RED,	Color.WHITE,	1000);
	spin3.setOnAction(e	->	System.out.println("ok	3"));
	spin3.setBackground(Color.DARKGREEN);
	spin3.setForeground(Color.LIGHTGREEN);
	Spinner	spin4	=	new	Spinner(50,	Color.DARKBLUE,	Color.LIGHTBLUE);
	spin4.setOnAction(e	->	System.out.println("ok	4"));
	spin4.setTime(5000);
 HBox pane = new HBox(20, spin1, spin2, spin3, spin4);
	LabelField	field	=	null;
	VBox	root	=	new	VBox(20,	field	=	new	LabelField("Svend",	"",	100),
	 	new	LabelField("Knud",	"",	100,	300),	new	
LabelField("Valdemar",	"",	100,	400),	pane);

	field.textProperty().addListener((ob,	ov,	nv)	->	System.out.println(nv));
	field.setFont(Font.font("Arial",	18));
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root);
	primaryStage.setTitle("Hello	controls");
 primaryStage.setScene(scene);
 primaryStage.show();
}

Initially, 4 Spinner controls are created, and the goal is to show how to create a Spinner (which
parameters can be specified by the constructor) and which properties can be subsequently
set. Here you should especially note how to associate an event handler. They are all trivial
and the goal is to see (with a text on the console) when the events in question occurs. The
4 Spinner controls are placed in a HBox that can be added to the root of the window. When
root is created (as a VBox), first 3 LabelField controls are added, where you will primarily
observe the parameters of the constructor. For the first control is associated with an event
handler – which is trivial and where the goal is to show that you can associate an event
handlers to the entry field.

Both user controls are simple and hardly have not the great pratical interest, but they show
something about how to create a user control. In the rest of this chapter I will describe
how the two controls are written.

Initially, 4 Spinner controls are created, and the goal is to show how to create a Spinner (which
parameters can be specified by the constructor) and which properties can be subsequently
set. Here you should especially note how to associate an event handler. They are all trivial
and the goal is to see (with a text on the console) when the events in question occurs. The
4 Spinner controls are placed in a HBox that can be added to the root of the window. When
root is created (as a VBox), first 3 LabelField controls are added, where you will primarily
observe the parameters of the constructor. For the first control is associated with an event
handler – which is trivial and where the goal is to show that you can associate an event
handlers to the entry field.

Both user controls are simple and hardly have not the great pratical interest, but they show
something about how to create a user control. In the rest of this chapter I will describe
how the two controls are written.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

146

6.1	 A LABELFIELD

When writing a custom control, the two main decisions are what properties should be
and what events the control is going to fire. The actual control is, in fact, not much more
than a HBox with a Label and a TextField, and in addition to the properties of a HBox,
you should be able to set the width of the Label and the TextField, respectively, and set the
text for both components. Finally, there must be a property for the font that should apply
to both the Label and the TextField, so that both components always uses the same font.
When you enter text or otherwise change the text for the TextField component, it should
send ChangeEvents, and in order for these events to be captured from an application, the
component returns the TextField component’s textProperty. The component can then be
written where I have only included one of 5 constructors and two properties:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

146

6.1 A LABELFIELD

When writing a custom control, the two main decisions are what properties should be
and what events the control is going to fire. The actual control is, in fact, not much more
than a HBox with a Label and a TextField, and in addition to the properties of a HBox,
you should be able to set the width of the Label and the TextField, respectively, and set the
text for both components. Finally, there must be a property for the font that should apply
to both the Label and the TextField, so that both components always uses the same font.
When you enter text or otherwise change the text for the TextField component, it should
send ChangeEvents, and in order for these events to be captured from an application, the
component returns the TextField component’s textProperty. The component can then be
written where I have only included one of 5 constructors and two properties:

public	class	LabelField	extends	HBox
{
 private Label label;
	private	TextField	field	=	new	TextField();

	public	LabelField(String	caption,	String	text,	double	captionWidth,
	 double	fieldWidth)	
 {
	 setAlignment(Pos.BASELINE_LEFT);
 label = caption == null ? new Label() : new Label(caption);
	 if	(text	!=	null)	field.setText(text);
	 if	(captionWidth	>	0)	label.setPrefWidth(captionWidth);
	 if	(fieldWidth	>	0)	field.setPrefWidth(fieldWidth);
	 label.setAlignment(Pos.CENTER_RIGHT);
 this.setSpacing(10);
	 getChildren().addAll(label,	field);
 }

 public double getCaptionWidth()
 {
 return captionWidthProperty().get();
 }

 public void setCaptionWidth(double captionWidth)
 {
 captionWidthProperty().set(captionWidth);
 }

	public	DoubleProperty	captionWidthProperty()
 {
 return label.prefWidthProperty();
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

147147

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

147147

	public	String	getText()	
 {
 return textProperty().get();
 }

	public	void	setText(String	text)	
 {
 textProperty().set(text);
 }

 public StringProperty textProperty()
 {
	 return	field.textProperty();	
 }
}

In fact, there is not much to notice, and the most important code is found in the constructor,
where the two components should be placed “nicely” in the container. Note that the class
inherits HBox and therefore is a component that can be inserted into a scene graph like
all other controls.

In fact, there is not much to notice, and the most important code is found in the constructor,
where the two components should be placed “nicely” in the container. Note that the class
inherits HBox and therefore is a component that can be inserted into a scene graph like
all other controls.

http://s.bookboon.com/elearningforkids

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

148

6.2	 A CANVAS

Before I look at the last control, I will mention a Canvas, which is a control I have not
previously mentioned. A Canvas is a control consisting of a drawing surface where you can
draw geometric figures and text and insert images using drawing features. You can also
manipulate the individual pixels using a PixelWriter.

A Canvas has attached a GraphicsContext class that represents the graphic content and
provides drawing functions available. You are encouraged to investigate which methods
GraphicsContext makes available.

For example, the program CanvasProgram opens the following window:

where a square, a circle, a text and a curve (a parable) are drawn and a picture is added.
The new is that it has been done using a Canvas:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

148

6.2 A CANVAS

Before I look at the last control, I will mention a Canvas, which is a control I have not
previously mentioned. A Canvas is a control consisting of a drawing surface where you can
draw geometric figures and text and insert images using drawing features. You can also
manipulate the individual pixels using a PixelWriter.

A Canvas has attached a GraphicsContext class that represents the graphic content and
provides drawing functions available. You are encouraged to investigate which methods
GraphicsContext makes available.

For example, the program CanvasProgram opens the following window:

where a square, a circle, a text and a curve (a parable) are drawn and a picture is added.
The new is that it has been done using a Canvas:

package canvasprogram;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.canvas.*;
import javafx.scene.image.*;
import javafx.scene.layout.*;
import javafx.scene.paint.*;
import javafx.scene.text.*;
import javafx.stage.Stage;

public class CanvasProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
 Canvas canvas = new Canvas(520, 160);
	 GraphicsContext	gc	=	canvas.getGraphicsContext2D();
 gc.setLineWidth(2.0);
 gc.strokeRect(20, 20, 120, 120);

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

149

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

149

	 gc.setFill(Color.RED);
	 gc.fillOval(40,	40,	80,	80);
	 gc.setFont(Font.font(24));
	 gc.strokeText("Hello",	50,	90);
 Image image = new Image("resources/images/stone.jpg");
 gc.drawImage(image, 160, 20, 120, 120);
 writeGraph(gc);
 Pane root = new Pane();
 root.getChildren().add(canvas);
 Scene scene = new Scene(root);
 stage.setScene(scene);
	 stage.setTitle("Drawing	on	a	Canvas");
 stage.show();
 }

 private void writeGraph(GraphicsContext gc)
 {
 PixelWriter writer = gc.getPixelWriter();
 for (double x = 300; x < 500; x += 0.25)
	 writer.setColor((int)x,	(int)y(x),	Color.BLUE);
 }

 private double y(double x)
 {
 return x * x / 100 – 8 * x + 1620;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The code is easy enough to figure out. In the method start(), a Canvas object is created of a
certain size, and a reference is created to the Canvas object’s GraphicsContext. For this object,
the width of the pen to be drawn with is defined, then a drawing tool is used to draw a
rectangle. Since nothing is said about the color, it is drawn with a black pen. Next, a red
fill color is added and a filled circle is drawn. Note specially what the drawing function is
called. As a next step, a font is defined and a text is drawn. Finally, an image is inserted
and finally the method writeGraph() is called, which draws the curve. The curve is not too
“nice” – is some pixelated – and there are other and better ways to draw such a graph, but
the example should show how to manipulate the individual pixels in a Canvas. Finally, note
that a Canvas is a node, and therefore can be added to a scene graph.

The code is easy enough to figure out. In the method start(), a Canvas object is created of a
certain size, and a reference is created to the Canvas object’s GraphicsContext. For this object,
the width of the pen to be drawn with is defined, then a drawing tool is used to draw a
rectangle. Since nothing is said about the color, it is drawn with a black pen. Next, a red
fill color is added and a filled circle is drawn. Note specially what the drawing function is
called. As a next step, a font is defined and a text is drawn. Finally, an image is inserted
and finally the method writeGraph() is called, which draws the curve. The curve is not too
“nice” – is some pixelated – and there are other and better ways to draw such a graph, but
the example should show how to manipulate the individual pixels in a Canvas. Finally, note
that a Canvas is a node, and therefore can be added to a scene graph.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

150150

6.3	 A SPINNER

The custom control can be written as follows, where I have not shown the code for the
three properties for setting the rotation speed and color and only one constructor:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

150150

6.3 A SPINNER

The custom control can be written as follows, where I have not shown the code for the
three properties for setting the rotation speed and color and only one constructor:

public class Spinner extends Canvas
{
	private	ObjectProperty<EventHandler<ActionEvent>>	onActionProperty	=
	 new	SimpleObjectProperty<EventHandler<ActionEvent>>();
 private IntegerProperty time = new SimpleIntegerProperty();
	private	ObjectProperty<Color>	background	=	new	SimpleObjectProperty();
	private	ObjectProperty<Color>	foreground	=	new	SimpleObjectProperty();
 private double size;
 private Circle circle;
	private	Transition	transition;

 …

 public Spinner(double size, Color background, Color foreground, int time)
 {
 super(size, size);
 this.size = size;
 setBackground(background);

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

151

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

151

	 setForeground(foreground);
	 setTime(time);
 circle = new Circle(size / 2, size / 2, size / 2);
	 transition	=	createTransition();
	 transition.setOnFinished(this::clicked);
 draw();
	 this.addEventHandler(MouseEvent.MOUSE_CLICKED,	new	ClickHandler());
	 this.setEffect(new	Lighting());
 }

 private void draw()
 {
	 GraphicsContext	gc	=	getGraphicsContext2D();
	 gc.setFill(getBackground());
	 gc.fillOval(0,	0,	size,	size);
	 gc.setFill(getForeground());
 double s = size / 2;
	 gc.fillRect(s,	s	–	1,	s,	3);
	 gc.fillRect(s	–	2,	s	–	2,	5,	5);
 }

 …

	public	EventHandler<ActionEvent>	getOnAction()
 {
 return onActionProperty.get();
 }

	public	void	setOnAction(EventHandler<ActionEvent>	handler)
 {
 onActionProperty.set(handler);
 }

	public	ObjectProperty<EventHandler<ActionEvent>>	onActionProperty()
 {
 return onActionProperty;
 }

	private	void	clicked(ActionEvent	e)
 {
	 if	(getOnAction()	!=	null)	getOnAction().handle(new	ActionEvent());
 }

	private	RotateTransition	createTransition()
 {
	 RotateTransition	trans	=
	 new	RotateTransition(Duration.millis(getTime()),	this);

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT User defined controls

152152

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT user deFIned Controls

152152

 trans.setByAngle(360);
 trans.setCycleCount(1);
 return trans;
 }

	class	ClickHandler	implements	EventHandler<MouseEvent>
 {
	 public	void	handle(MouseEvent	e)
 {
	 if	(circle.contains(e.getX(),	e.getY()))	transition.play();
 }
 }
}

Mostly happens in the constructor that initially initiates properties and creates a Transition
for a rotation. You should note that an event handler is associated with an event that occurs
when the rotation ends and that it fires an ActionEvent if there is a listener. The constructor
also calls the method draw(), which draws the component on a Canvas. Note that there is
no particular reason for using a Canvas (in addition to showing how), as you could achieve
the same with existing Node classes. The class also has a Circle object that is used to make
it easy to test in the event handler for click with the mouse and if the circle is clicked.

Mostly happens in the constructor that initially initiates properties and creates a Transition
for a rotation. You should note that an event handler is associated with an event that occurs
when the rotation ends and that it fires an ActionEvent if there is a listener. The constructor
also calls the method draw(), which draws the component on a Canvas. Note that there is
no particular reason for using a Canvas (in addition to showing how), as you could achieve
the same with existing Node classes. The class also has a Circle object that is used to make
it easy to test in the event handler for click with the mouse and if the circle is clicked.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

153

7	 JAVAFX AND CONCURRENCY

Java GUI applications are generally multi-threaded, and similar to Swing JavaFX uses a special
thread to update the user interface. This thread is called JavaFX Application Thread. Since all
nodes in a the program’s scene graph are not thread-safe (for the reasons of performence),
there are the same challenges that you know from Swing that you can not directly update
them from another thread, but it should be done by calling a method performed in the
JavaFX Application Thread. In this chapter I want to show what JavaFX makes available to
make it simple. The program UpdateGUI opens the following window:

If you click the Start button, the program starts a method that takes a long time and after
the method is completed, the top label is updated. Clicking the Clear button deletes the
content of the top label. If you try the program while the top radio button is pressed, you
will find that nothing happens when you click the Clear button – at least not before the
method started of the Start button is completed. The user experiences that the program
“hangs”. Solutions are, of course, to execute the method that takes time, in its own
thread. Pressing the middle radio button and clicking Start again executes the method in
a background thread, but now you get an exception. The reason is that the background
thread tries to update the JavaFX Application Thread, which raises an exception. On the
other hand, press the bottom radio button and click Start again, so it runs as it should,
where the top label is updated on a regular basis, and you can delete that label at any time
by clicking the Clear button.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

153

7 JAVAFX AND CONCURRENCY

Java GUI applications are generally multi-threaded, and similar to Swing JavaFX uses a special
thread to update the user interface. This thread is called JavaFX Application Thread. Since all
nodes in a the program’s scene graph are not thread-safe (for the reasons of performence),
there are the same challenges that you know from Swing that you can not directly update
them from another thread, but it should be done by calling a method performed in the
JavaFX Application Thread. In this chapter I want to show what JavaFX makes available to
make it simple. The program UpdateGUI opens the following window:

If you click the Start button, the program starts a method that takes a long time and after
the method is completed, the top label is updated. Clicking the Clear button deletes the
content of the top label. If you try the program while the top radio button is pressed, you
will find that nothing happens when you click the Clear button – at least not before the
method started of the Start button is completed. The user experiences that the program
“hangs”. Solutions are, of course, to execute the method that takes time, in its own
thread. Pressing the middle radio button and clicking Start again executes the method in
a background thread, but now you get an exception. The reason is that the background
thread tries to update the JavaFX Application Thread, which raises an exception. On the
other hand, press the bottom radio button and click Start again, so it runs as it should,
where the top label is updated on a regular basis, and you can delete that label at any time
by clicking the Clear button.

public	class	UpdateGUI	extends	Application	
{
	private	Label	label	=	new	Label("Not	running…");
 private RadioButton cmd1 = new RadioButton("Application thread");
 private RadioButton cmd2 = new RadioButton("Background thread");
 private RadioButton cmd3 = new RadioButton("Platform.runLater()");
 private Button cmdOk;

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

154

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

154

 @Override
 public void start(Stage stage)
 {
	 ToggleGroup	group	=	new	ToggleGroup();
	 cmd1.setToggleGroup(group);
	 cmd2.setToggleGroup(group);
	 cmd3.setToggleGroup(group);
 cmd1.setSelected(true);
	 HBox	commands	=	new	HBox(10,	createButton("Clear",	e	->	label.setText("")),
 cmdOk = createButton("Start", this::work));
	 commands.setAlignment(Pos.CENTER);
	 VBox	root	=	new	VBox(20,	label,	cmd1,	cmd2,	cmd3,	commands);
 root.setPadding(new Insets(20, 20, 20, 20));
	 root.setAlignment(Pos.CENTER);
 Scene scene = new Scene(root, 300, 250);
 stage.setScene(scene);
	 stage.setTitle("Update	GUI");
 stage.show();
 }

	private	void	work(ActionEvent	e)
 {
	 cmdOk.setDisable(true);
 if (cmd1.isSelected()) work1();
 else
 {
	 Thread	th	=	cmd2.isSelected()	?	new	Thread(()	->	work1())	:
	 new	Thread(()	->	work2());
	 th.setDaemon(true);
 th.start();
 }
 }

 private void work1()
 {
 for(int i = 1; i <= 10; i++)
 {
	 label.setText("Start	calulation	"	+	i);
 calculate();
 }
	 label.setText("All	calulations	terminated");
	 cmdOk.setDisable(false);
 }

 private void work2()
 {
 for(int i = 1; i <= 10; i++)
 {

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

155155

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

155155

 String text = "Start calulation " + i;
	 Platform.runLater(()	->	label.setText(text));
 calculate();
 }
 String text = "All calulations terminated";
	 Platform.runLater(()	->	label.setText(text));
	 Platform.runLater(()	->	cmdOk.setDisable(false));
 }

 private Button createButton(String text,
	 EventHandler<ActionEvent>	handler)
 {
 Button cmd = new Button(text);
 cmd.setOnAction(handler);
 return cmd;
 }

 private void calculate()
 {
 double y = 0;
 for (int i = 0; i < 10; ++i) for (int j = 0; j < 10000000; ++j)
	 y	=	Math.sin(Math.sqrt(2));
 }

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

156

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

156

 public static void main(String[] args)
 {
 launch(args);
 }
}

The method to be performed is performed in work1() and work2(), which both performs
the method calculate() 10 times, respectively. Before each execution of the method, the
program’s label is updated. calculate() performs nothing interesting, but it does many
calculations that take a long time and the goal is that it is a method that constantly uses
the machine’s processor.

With regard to the user interface, there is not much to explain, and you should primarily
note the method work(), which is the event handler for the Start button. The method tests
which radio button is clicked in and if it is the top nothing else happens than the method
work1() is called. That is, it is executed in the JavaFX Application Thread with the result
that the program “hangs” until work1() is completed. For example, you will not see that the
Start button is being disabled. Is it the middle radio button that is pushed in, the method
work1() is performed again, but this time in its own thread. The result is an exception
when the method tries to update the Label component. On the other hand, if the bottom
radio button is pressed, the method work2() is performed, which is in principle is identical
to work1(), but when the user interface is to be updated, it happens with the statement:

Platform.runLater(()	->	label.setText(text));

which simply means that the component label is updated in the JavaFX Application Thread.
The class Platform has two static methods that relates to the JavaFX Application Thread:

 - public static boolean isFxApplicationThread()
 - public static void runLater(Runnable runnable)

where the first returns true if the calling thread are the JavaFX Application Thread, while
the other creates a Runnable object to be executed by the JavaFX Application Thread at
some point when the thread is running.

7.1 A TASK

To support threads in GUI programming, JavaFX offers a very simple concurrency framework
based on the existing Java framework for concurrency. The framework consists of a single
enumeration, called State, that defines the states that a thread may be in, as well as a single

The method to be performed is performed in work1() and work2(), which both performs
the method calculate() 10 times, respectively. Before each execution of the method, the
program’s label is updated. calculate() performs nothing interesting, but it does many
calculations that take a long time and the goal is that it is a method that constantly uses
the machine’s processor.

With regard to the user interface, there is not much to explain, and you should primarily
note the method work(), which is the event handler for the Start button. The method tests
which radio button is clicked in and if it is the top nothing else happens than the method
work1() is called. That is, it is executed in the JavaFX Application Thread with the result
that the program “hangs” until work1() is completed. For example, you will not see that the
Start button is being disabled. Is it the middle radio button that is pushed in, the method
work1() is performed again, but this time in its own thread. The result is an exception
when the method tries to update the Label component. On the other hand, if the bottom
radio button is pressed, the method work2() is performed, which is in principle is identical
to work1(), but when the user interface is to be updated, it happens with the statement:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

156

 public static void main(String[] args)
 {
 launch(args);
 }
}

The method to be performed is performed in work1() and work2(), which both performs
the method calculate() 10 times, respectively. Before each execution of the method, the
program’s label is updated. calculate() performs nothing interesting, but it does many
calculations that take a long time and the goal is that it is a method that constantly uses
the machine’s processor.

With regard to the user interface, there is not much to explain, and you should primarily
note the method work(), which is the event handler for the Start button. The method tests
which radio button is clicked in and if it is the top nothing else happens than the method
work1() is called. That is, it is executed in the JavaFX Application Thread with the result
that the program “hangs” until work1() is completed. For example, you will not see that the
Start button is being disabled. Is it the middle radio button that is pushed in, the method
work1() is performed again, but this time in its own thread. The result is an exception
when the method tries to update the Label component. On the other hand, if the bottom
radio button is pressed, the method work2() is performed, which is in principle is identical
to work1(), but when the user interface is to be updated, it happens with the statement:

Platform.runLater(()	->	label.setText(text));

which simply means that the component label is updated in the JavaFX Application Thread.
The class Platform has two static methods that relates to the JavaFX Application Thread:

 - public static boolean isFxApplicationThread()
 - public static void runLater(Runnable runnable)

where the first returns true if the calling thread are the JavaFX Application Thread, while
the other creates a Runnable object to be executed by the JavaFX Application Thread at
some point when the thread is running.

7.1 A TASK

To support threads in GUI programming, JavaFX offers a very simple concurrency framework
based on the existing Java framework for concurrency. The framework consists of a single
enumeration, called State, that defines the states that a thread may be in, as well as a single

which simply means that the component label is updated in the JavaFX Application Thread.
The class Platform has two static methods that relates to the JavaFX Application Thread:

-- public static boolean isFxApplicationThread()
-- public static void runLater(Runnable runnable)

where the first returns true if the calling thread are the JavaFX Application Thread, while
the other creates a Runnable object to be executed by the JavaFX Application Thread at
some point when the thread is running.

7.1	 A TASK

To support threads in GUI programming, JavaFX offers a very simple concurrency framework
based on the existing Java framework for concurrency. The framework consists of a single
enumeration, called State, that defines the states that a thread may be in, as well as a single

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

157

event type called WorkerStateEvent, and a thread fires such an event when it switches state.
Else there are only four types of threads that constitute a simple hierarchy, the top one
being an interface, while the other three are specific types:

Precisely, an instance of the Worker interface is a task to be performed by one or more
background threads. The task’s state is observable from the JavaFX Application Thread. The
Task, Service, and ScheduledService classes are abstract classes that implement the Worker
interface and represent different kinds of tasks. The Task class represents a task that can
be performed once and a Task object can not be reused. The Service class represents a Task
that can be repeated, and finally, the ScheduledService class represents a Service that can be
performed at certain times. In the following I will show an example of a Task and a Service.

The task must be to determine prime numbers – a task you have seen many times in
previous books. The goal is to have a task that for big numbers take a long time. Running
the program PrimesProgram1 opens the following window:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

158158

If you click on the Start button, the program determines all the primes within the entered
interval and inserts them continuously in the list box. This happens, of course, in a secondary
thread, and while the thread is running, the Clear button can delete the content of the list
box, and with the Cancel button, you can stop the thread, and finally with the Exit button
you can terminate the program.

To performe the task I will define a Task object. You should examine the documentation
for both Worker<V> and Task<V>, but in the present case I have defined the following
Task where I have not shown the code regarding the class’s properties:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

158158

If you click on the Start button, the program determines all the primes within the entered
interval and inserts them continuously in the list box. This happens, of course, in a secondary
thread, and while the thread is running, the Clear button can delete the content of the list
box, and with the Cancel button, you can stop the thread, and finally with the Exit button
you can terminate the program.

To performe the task I will define a Task object. You should examine the documentation
for both Worker<V> and Task<V>, but in the present case I have defined the following
Task where I have not shown the code regarding the class’s properties:

public	class	PrimesTask	extends	Task<ObservableList<Long>>	
{
	private	final	ObservableList<Long>	list	=
	 FXCollections.<Long>observableArrayList();
	private	final	LongProperty	from	=	new	SimpleLongProperty();
	private	final	LongProperty	to	=	new	SimpleLongProperty();

 …

 public void clear()
 {

http://s.bookboon.com/EOT

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

159

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

159

 list.clear();
 }

 @Override
	protected	ObservableList<Long>	call()	
 {
 list.clear();
	 long	count	=	getTo()	–	getFrom()	+	1;
 long counter = 1;
	 for	(long	i	=	getFrom();	i	<=	getTo();	++i,	++counter)	
 {
 if (this.isCancelled()) break;
	 updateMessage("Check	"	+	i	+	"	as	a	prime	number");
 if (isPrime(i))
 {
 long n = i;
	 Platform.runLater(()	->	list.add(n));
	 updateValue(FXCollections.<Long>unmodifiableObservableList(list));
 }
 updateProgress(counter, count);
 }
 return list;
 }

 @Override
 protected void cancelled()
 {
 super.cancelled();
	 updateMessage("The	task	was	cancelled");
 }

 @Override
 protected void failed()
 {
 super.failed();
	 updateMessage("The	task	failed");
 }

 @Override
 public void succeeded()
 {
 super.succeeded();
	 updateMessage("The	task	finished	successfully");
 }

 private boolean isPrime(long number)
 {
 if (number == 2 || number == 3 || number == 5 || number == 7) return true;

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

160

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

160

 if (number < 11 || number % 2 == 0) return false;
	 for	(int	t	=	3,	m	=	(int)Math.sqrt(number)	+	1;	t	<=	m;	t	+=	2)
 if (number % t == 0) return false;
 return true;
 }
}

Note first that the class inherits Task<ObservableList<Long >>. Here the parameter type
specifies the type that the abstract method call() returns. The two properties from and to
defines the range within which the prime numbers are to be determined. They are defined
as JavaFX properties as they must be able to be bound to the user interface. Then there
is the method call(), which is the method that is performed in its own thread. It starts
with a deletion of the list’s content (what is not necessary in this example) and then a
loop is executed that is iterating over the current range. For each iteration, the methods
updateMessage(), updateValue() (only if a prime is found) and updateProgress() are called.
These are the methods defined in the class Task, representing observable properties that the
user interface can bind to.

Lastly, three methods are overriden, which are executed according to the state change, and
the only thing that happens are that a property is updated on the Task object.

Then there is the class PrimesProgram1:

public class PrimesProgram1 extends Application
{
	private	PrimesTask	task	=	new	PrimesTask();
	private	LabelField	txtFrom	=	new	LabelField("From");
	private	LabelField	txtTo	=	new	LabelField("To");
	private	ListView<Long>	lstPrimes	=	new	ListView();
	private	TextField	txtMessages	=	new	TextField();
 private ProgressBar progressBar = new ProgressBar(0);

The class has an instance of PrimesTask that represents the task to be performed. Note that
the class uses the custom control from the previous chapter. I do not want to display the
full code here, but the following method is called from start():

public	void	bind(Worker<ObservableList<Long>>	worker)	
{
	txtFrom.textProperty().bindBidirectional(task.fromProperty(),
	 new	NumberStringConverter());
	txtTo.textProperty().bindBidirectional(task.toProperty(),
	 new	NumberStringConverter());
 progressBar.progressProperty().bind(worker.progressProperty());
	progressBar.visibleProperty().bind(worker.progressProperty().isNotEqualTo(
	 new	SimpleDoubleProperty(ProgressBar.INDETERMINATE_PROGRESS)));

Note first that the class inherits Task<ObservableList<Long >>. Here the parameter type
specifies the type that the abstract method call() returns. The two properties from and to
defines the range within which the prime numbers are to be determined. They are defined
as JavaFX properties as they must be able to be bound to the user interface. Then there
is the method call(), which is the method that is performed in its own thread. It starts
with a deletion of the list’s content (what is not necessary in this example) and then a
loop is executed that is iterating over the current range. For each iteration, the methods
updateMessage(), updateValue() (only if a prime is found) and updateProgress() are called.
These are the methods defined in the class Task, representing observable properties that the
user interface can bind to.

Lastly, three methods are overriden, which are executed according to the state change, and
the only thing that happens are that a property is updated on the Task object.

Then there is the class PrimesProgram1:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

160

 if (number < 11 || number % 2 == 0) return false;
	 for	(int	t	=	3,	m	=	(int)Math.sqrt(number)	+	1;	t	<=	m;	t	+=	2)
 if (number % t == 0) return false;
 return true;
 }
}

Note first that the class inherits Task<ObservableList<Long >>. Here the parameter type
specifies the type that the abstract method call() returns. The two properties from and to
defines the range within which the prime numbers are to be determined. They are defined
as JavaFX properties as they must be able to be bound to the user interface. Then there
is the method call(), which is the method that is performed in its own thread. It starts
with a deletion of the list’s content (what is not necessary in this example) and then a
loop is executed that is iterating over the current range. For each iteration, the methods
updateMessage(), updateValue() (only if a prime is found) and updateProgress() are called.
These are the methods defined in the class Task, representing observable properties that the
user interface can bind to.

Lastly, three methods are overriden, which are executed according to the state change, and
the only thing that happens are that a property is updated on the Task object.

Then there is the class PrimesProgram1:

public class PrimesProgram1 extends Application
{
	private	PrimesTask	task	=	new	PrimesTask();
	private	LabelField	txtFrom	=	new	LabelField("From");
	private	LabelField	txtTo	=	new	LabelField("To");
	private	ListView<Long>	lstPrimes	=	new	ListView();
	private	TextField	txtMessages	=	new	TextField();
 private ProgressBar progressBar = new ProgressBar(0);

The class has an instance of PrimesTask that represents the task to be performed. Note that
the class uses the custom control from the previous chapter. I do not want to display the
full code here, but the following method is called from start():

public	void	bind(Worker<ObservableList<Long>>	worker)	
{
	txtFrom.textProperty().bindBidirectional(task.fromProperty(),
	 new	NumberStringConverter());
	txtTo.textProperty().bindBidirectional(task.toProperty(),
	 new	NumberStringConverter());
 progressBar.progressProperty().bind(worker.progressProperty());
	progressBar.visibleProperty().bind(worker.progressProperty().isNotEqualTo(
	 new	SimpleDoubleProperty(ProgressBar.INDETERMINATE_PROGRESS)));

The class has an instance of PrimesTask that represents the task to be performed. Note that
the class uses the custom control from the previous chapter. I do not want to display the
full code here, but the following method is called from start():

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

160

 if (number < 11 || number % 2 == 0) return false;
	 for	(int	t	=	3,	m	=	(int)Math.sqrt(number)	+	1;	t	<=	m;	t	+=	2)
 if (number % t == 0) return false;
 return true;
 }
}

Note first that the class inherits Task<ObservableList<Long >>. Here the parameter type
specifies the type that the abstract method call() returns. The two properties from and to
defines the range within which the prime numbers are to be determined. They are defined
as JavaFX properties as they must be able to be bound to the user interface. Then there
is the method call(), which is the method that is performed in its own thread. It starts
with a deletion of the list’s content (what is not necessary in this example) and then a
loop is executed that is iterating over the current range. For each iteration, the methods
updateMessage(), updateValue() (only if a prime is found) and updateProgress() are called.
These are the methods defined in the class Task, representing observable properties that the
user interface can bind to.

Lastly, three methods are overriden, which are executed according to the state change, and
the only thing that happens are that a property is updated on the Task object.

Then there is the class PrimesProgram1:

public class PrimesProgram1 extends Application
{
	private	PrimesTask	task	=	new	PrimesTask();
	private	LabelField	txtFrom	=	new	LabelField("From");
	private	LabelField	txtTo	=	new	LabelField("To");
	private	ListView<Long>	lstPrimes	=	new	ListView();
	private	TextField	txtMessages	=	new	TextField();
 private ProgressBar progressBar = new ProgressBar(0);

The class has an instance of PrimesTask that represents the task to be performed. Note that
the class uses the custom control from the previous chapter. I do not want to display the
full code here, but the following method is called from start():

public	void	bind(Worker<ObservableList<Long>>	worker)	
{
	txtFrom.textProperty().bindBidirectional(task.fromProperty(),
	 new	NumberStringConverter());
	txtTo.textProperty().bindBidirectional(task.toProperty(),
	 new	NumberStringConverter());
 progressBar.progressProperty().bind(worker.progressProperty());
	progressBar.visibleProperty().bind(worker.progressProperty().isNotEqualTo(
	 new	SimpleDoubleProperty(ProgressBar.INDETERMINATE_PROGRESS)));

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

161161

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

161161

 lstPrimes.itemsProperty().bind(worker.valueProperty());
	txtMessages.textProperty().bind(worker.messageProperty());
}

which binds the components in the user interface to properties in the Task object. Finally,
there is the event handler for the Start button, which creates a background thread to execute
the Task object:

private	void	start(ActionEvent	e)
{
	Thread	th	=	new	Thread(task);
	th.setDaemon(true);
 th.start();
}

When the thread performs the method start(), it is the method call() in the class PrimesTask
that is performed.

When you try out the program, it should all work as described, but click on the Start
button again, you will find that nothing happens. As mentioned above, a Task object can
only be executed once and this is where a Service object is an option.

which binds the components in the user interface to properties in the Task object. Finally,
there is the event handler for the Start button, which creates a background thread to execute
the Task object:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

161161

 lstPrimes.itemsProperty().bind(worker.valueProperty());
	txtMessages.textProperty().bind(worker.messageProperty());
}

which binds the components in the user interface to properties in the Task object. Finally,
there is the event handler for the Start button, which creates a background thread to execute
the Task object:

private	void	start(ActionEvent	e)
{
	Thread	th	=	new	Thread(task);
	th.setDaemon(true);
 th.start();
}

When the thread performs the method start(), it is the method call() in the class PrimesTask
that is performed.

When you try out the program, it should all work as described, but click on the Start
button again, you will find that nothing happens. As mentioned above, a Task object can
only be executed once and this is where a Service object is an option.

When the thread performs the method start(), it is the method call() in the class PrimesTask
that is performed.

When you try out the program, it should all work as described, but click on the Start
button again, you will find that nothing happens. As mentioned above, a Task object can
only be executed once and this is where a Service object is an option.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and concurrency

162

7.2	 A SERVICE

The program PrimesProgram2 opens the same window as shown in the previous example, and
the class PrimesTask is unchanged. On the other hand, the following class has been added
which represents a Service, and again I have not shown the code for the two properties:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT JavaFX and ConCurrenCy

162

7.2 A SERVICE

The program PrimesProgram2 opens the same window as shown in the previous example, and
the class PrimesTask is unchanged. On the other hand, the following class has been added
which represents a Service, and again I have not shown the code for the two properties:

public	class	PrimesService	extends	Service<ObservableList<Long>>
{
	private	PrimesTask	task;
	private	final	LongProperty	from	=	new	SimpleLongProperty();
	private	final	LongProperty	to	=	new	SimpleLongProperty();

 …

 public void clear()
 {
 if (task != null) task.clear();
 }

 @Override
	protected	Task<ObservableList<Long>>	createTask()	
 {
	 task	=	new	PrimesTask();
	 task.setFrom(from.get());
	 task.setTo(to.get());
 return task;
 }
}

A Service is not much more than a wrapper for a Task, and then you must override the
method createTask() that is performed every time the service is performed. It creates the
task to be executed and in this case initialized with the current values.

The class PrimesProgram2 is also almost identical to PrimesProgram1, and the main difference
is that the Task object has been replaced by a Service object and that the event handler for
the Start button has been changed.

A Service is not much more than a wrapper for a Task, and then you must override the
method createTask() that is performed every time the service is performed. It creates the
task to be executed and in this case initialized with the current values.

The class PrimesProgram2 is also almost identical to PrimesProgram1, and the main difference
is that the Task object has been replaced by a Service object and that the event handler for
the Start button has been changed.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

163

8	 3D SHAPES

JavaFX also supports 3D graphics in some degree, although the possibilities are a bit limited,
but future versions of the language will undoubtedly offer more. The following is a brief
introduction to what it’s all about, more than examples of practical applications.

There are only a few classes, all derived from Shape3D, and in fact, there are only four
examples of specific shapes: Box, Sphere, Cylinder and MeshView, where the latter represents
a customized shape. You can achieve 3D visualization using light and cameras that are also
nodes and can be included in the scene graph and how a shape is displayed is determined
by the position of the light sources and cameras in the scene graph.

However, Java3D is not necessarily supported, but it will be on most modern machines.
You can test where it is the case with the following program (or equivalent statements):

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

163

8 3D SHAPES

JavaFX also supports 3D graphics in some degree, although the possibilities are a bit limited,
but future versions of the language will undoubtedly offer more. The following is a brief
introduction to what it’s all about, more than examples of practical applications.

There are only a few classes, all derived from Shape3D, and in fact, there are only four
examples of specific shapes: Box, Sphere, Cylinder and MeshView, where the latter represents
a customized shape. You can achieve 3D visualization using light and cameras that are also
nodes and can be included in the scene graph and how a shape is displayed is determined
by the position of the light sources and cameras in the scene graph.

However, Java3D is not necessarily supported, but it will be on most modern machines.
You can test where it is the case with the following program (or equivalent statements):

package check3d;

import javafx.application.*;

public	class	Check3D	
{
 public static void main(String[] args)
 {
	 if	(Platform.isSupported(ConditionalFeature.SCENE3D))
	 System.out.println("3D	is	supported");
	 else	System.out.println("No	3D	support");
 }
}

The starting point for 3D graphics is a 3D coordinate system with the origin in the upper
left corner of the screen and a z axis that points into the screen while the x-axis and the
y-axis are oriented in the same way as in 2D graphics. If in 2D you add two shapes to
the scene graph that overlap, it is the figure added last that overlaps the first, but this is
not necessarily in 3D, as the depth also plays a role. It can be illustrated with the program
Rectangles3D that opens the following window:

The starting point for 3D graphics is a 3D coordinate system with the origin in the upper
left corner of the screen and a z axis that points into the screen while the x-axis and the
y-axis are oriented in the same way as in 2D graphics. If in 2D you add two shapes to
the scene graph that overlap, it is the figure added last that overlaps the first, but this is
not necessarily in 3D, as the depth also plays a role. It can be illustrated with the program
Rectangles3D that opens the following window:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

164164

where you should note that the green rectangle is drawn in front of the red. The program’s
code is:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

164164

where you should note that the green rectangle is drawn in front of the red. The program’s
code is:

public	class	Rectangles3D	extends	Application	
{
 @Override
 public void start(Stage stage)
 {
 Rectangle red = new Rectangle(100, 100);
	 red.setFill(Color.RED);
	 red.setTranslateX(100);
	 red.setTranslateY(100);
	 red.setTranslateZ(400);
 Rectangle green = new Rectangle(100, 100);
	 green.setFill(Color.GREEN);
	 green.setTranslateX(150);
	 green.setTranslateY(150);
	 green.setTranslateZ(300);
 Group center = new Group(green, red);
	 CheckBox	check	=	new	CheckBox("DepthTest	for	Rectangles");
 check.setSelected(true);
	 check.selectedProperty().addListener((prop,	oldValue,	newValue)	->	{

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

165

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

165

	 if	(newValue)	
 {
	 red.setDepthTest(DepthTest.ENABLE);
	 green.setDepthTest(DepthTest.ENABLE);
 }
 else
 {
	 red.setDepthTest(DepthTest.DISABLE);
	 green.setDepthTest(DepthTest.DISABLE);
 }
 });
 BorderPane root = new BorderPane(center, check, null, null, null);
 root.setStyle("-fx-background-color: transparent;");
 root.setPadding(new Insets(20, 20, 20, 20));
 Scene scene = new Scene(root, 300, 200, true);
 scene.setCamera(new PerspectiveCamera());
 stage.setScene(scene);
	 stage.setTitle("Depth	Test");
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

In the method start(), two rectangles, a red and a green are defined, and the new is that this
time, there is also defined a value for the z axis, that respectively is 400 and 300. That is, the
red rectangle lies farther away than the green one. The two rectangles are added to a Group
node, but so that the red is added last, and it should therefore overlap the green, but that
is the opposite that happens as the red is farther away. To make it happen, two more things
have to be done. When you create the Scene object, you must specify another parameter
that tells to use 3D graphics, and you should also attach a camera to the scene graph.

The window also has a checkbox and the meaning is that you can turn the 3D effect on or
off and unchecking the box displays the graphics as the usual 2D graphics, where the red
rectangle will overlap the green.

In the method start(), two rectangles, a red and a green are defined, and the new is that this
time, there is also defined a value for the z axis, that respectively is 400 and 300. That is, the
red rectangle lies farther away than the green one. The two rectangles are added to a Group
node, but so that the red is added last, and it should therefore overlap the green, but that
is the opposite that happens as the red is farther away. To make it happen, two more things
have to be done. When you create the Scene object, you must specify another parameter
that tells to use 3D graphics, and you should also attach a camera to the scene graph.

The window also has a checkbox and the meaning is that you can turn the 3D effect on or
off and unchecking the box displays the graphics as the usual 2D graphics, where the red
rectangle will overlap the green.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

166

8.1	 BOX, SPHERE AND CYLINDER

As mentioned, JavaFX is born with three shape classes, representing respectively a box, a sphere
and a cylinder. All classes inherit from Shape3D and inherit here three crucial properties:

1.	material
2.	drawing mode
3.	 cull face

as all are explained later, but the first is used in the following example, and as the name
says, it tells how the surface should be drawn. When you create a Shape3D, it has its center
in the starting point of the coordinate system, but as it is a node, it can be moved using a
transformation. Finally, its position and size are determined by the camera used to display
the figure, and where the camera is located in the coordinate system. The current location
of the camera can make it difficult to predict the actual location of a figure. The application
ShapesProgram opens the following window and shows examples of the three shapes:

The box object has been moved with a translation but is also rotated. The others are moved
with a translation, but when the cylinder is slightly deformed, it is because the camera is
located at the left. You should also note that the color is determined by the location of the
light. The code is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

166

8.1 BOX, SPHERE AND CYLINDER

As mentioned, JavaFX is born with three shape classes, representing respectively a box, a sphere
and a cylinder. All classes inherit from Shape3D and inherit here three crucial properties:

1. material
2. drawing mode
3. cull face

as all are explained later, but the first is used in the following example, and as the name
says, it tells how the surface should be drawn. When you create a Shape3D, it has its center
in the starting point of the coordinate system, but as it is a node, it can be moved using a
transformation. Finally, its position and size are determined by the camera used to display
the figure, and where the camera is located in the coordinate system. The current location
of the camera can make it difficult to predict the actual location of a figure. The application
ShapesProgram opens the following window and shows examples of the three shapes:

The box object has been moved with a translation but is also rotated. The others are moved
with a translation, but when the cylinder is slightly deformed, it is because the camera is
located at the left. You should also note that the color is determined by the location of the
light. The code is as follows:

package shapesprogram;

import javafx.application.Application;
import javafx.scene.*;
import javafx.scene.shape.*;
import javafx.stage.Stage;
import javafx.scene.paint.*;

public class ShapesProgram extends Application
{
 @Override
 public void start(Stage stage)
 {

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

167167

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

167167

 Scene scene = new Scene(new Group(createBox(), createSphere(),
 createCylinder(), createLight()), 500, 200, true);
 scene.setCamera(createCamera());
 stage.setScene(scene);
	 stage.setTitle("3D	Shapes");
 stage.show();
 }

 private Box createBox()
 {
 Box b = new Box(100, 150, 300);
	 b.setTranslateX(150);
	 b.setTranslateY(200);
	 b.setTranslateZ(200);
 b.setRotate(20);
	 b.setMaterial(new	PhongMaterial(Color.GREEN));
 return b;
 }

 private Sphere createSphere()
 {
 Sphere s = new Sphere(100);
	 s.setTranslateX(400);
	 s.setTranslateY(150);

http://s.bookboon.com/GTca

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

168

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

168

	 s.setTranslateZ(300);
	 s.setMaterial(new	PhongMaterial(Color.RED));
 return s;
 }

 private Cylinder createCylinder()
 {
 Cylinder c = new Cylinder(100, 300);
	 c.setTranslateX(650);
	 c.setTranslateY(200);
	 c.setTranslateZ(400);
	 c.setMaterial(new	PhongMaterial(Color.BLUE));
 return c;
 }

 private PointLight createLight()
 {
 PointLight p = new PointLight();
	 p.setTranslateX(100);
	 p.setTranslateY(100);
	 p.setTranslateZ(-100);
 return p;
 }

 private PerspectiveCamera createCamera()
 {
 PerspectiveCamera c = new PerspectiveCamera(false);
	 c.setTranslateX(100);
	 c.setTranslateY(100);	
	 c.setTranslateZ(-100);
 return c;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The code is actually quite simple and easy enough to figure out, but on the other hand, the
effect is more difficult to figure out. All of this happens in the last 5 methods that create a
Box object, a Sphere object, a Cylinder object, a PointLight object and a PerspectiveCamera
object, respectively. With respect to the Box object, it is a box of 100 × 150 × 300 which
is displaced at the point (150, 200, 200) and thus at a point that is 200 behind the screen.
Afterwards the box is rotated 20 degrees. In particular, you should note how to assign a
color to a surface with a Material object. A Sphere and a Cylinder are, in principle, created

The code is actually quite simple and easy enough to figure out, but on the other hand,
the effect is more difficult to figure out. All of this happens in the last 5 methods that create
a Box object, a Sphere object, a Cylinder object, a PointLight object and a PerspectiveCamera
object, respectively. With respect to the Box object, it is a box of 100 × 150 × 300 which
is displaced at the point (150, 200, 200) and thus at a point that is 200 behind the screen.
Afterwards the box is rotated 20 degrees. In particular, you should note how to assign a
color to a surface with a Material object. A Sphere and a Cylinder are, in principle, created

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

169

in the same way, such that for a Sphere object, a radius must be defined while for a cylinder
it is necessary to indicate both the radius and the height. The camera is located at the point
(100, 100, -100) and thus on the left and slightly in front of the screen. Note that the
light source is located in the same place, which obviously does not have to be the case.

In the method start(), the light source is attached to the scene graph in exactly the same
way as any other node while the camera is directly attached to the Stage object.

You are encouraged to experiment with the program and note what happens if you change
the values in the 5 methods. In particular, try changing the size of the window. Then the
shapes are changed as well.

8.2	 MATERIAL

A Shape3D object has a property of the type Material that determines how the surface
appears, and it can be a color, but can also be a picture. The program BoxProgram opens a
window with two Box objects:

where one has a color (Color.BEIGE), while the surface of the other is a picture.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

169

in the same way, such that for a Sphere object, a radius must be defined while for a cylinder
it is necessary to indicate both the radius and the height. The camera is located at the point
(100, 100, -100) and thus on the left and slightly in front of the screen. Note that the light
source is located in the same place, which obviously does not have to be the case.

In the method start(), the light source is attached to the scene graph in exactly the same
way as any other node while the camera is directly attached to the Stage object.

You are encouraged to experiment with the program and note what happens if you change
the values in the 5 methods. In particular, try changing the size of the window. Then the
shapes are changed as well.

8.2 MATERIAL

A Shape3D object has a property of the type Material that determines how the surface
appears, and it can be a color, but can also be a picture. The program BoxProgram opens a
window with two Box objects:

where one has a color (Color.BEIGE), while the surface of the other is a picture.

public class BoxProgram extends Application
{
 @Override
 public void start(Stage stage)
 {
	 PhongMaterial	m1	=	new	PhongMaterial();
	 m1.setDiffuseColor(Color.TAN);
	 PhongMaterial	m2	=	new	PhongMaterial();

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

170170

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

170170

	 m2.setDiffuseMap(new	Image("resources/images/stone.jpg"));
 Scene scene = new Scene(new Group(createBox(500, 310, 500, m1), createBox(800,
 310, 500, m2), createLight()), 600, 300, true);
 scene.setCamera(createCamera());
 stage.setScene(scene);
	 stage.setTitle("Material");
 stage.show();
 }

	private	Box	createBox(double	x,	double	y,	double	z,	Material	m)
 {
 Box box = new Box(200, 200, 200);
	 box.setMaterial(m);
	 box.setTranslateX(x);
	 box.setTranslateY(y);
	 box.setTranslateZ(z);
 return box;
 }

 private PointLight createLight()
 {
 PointLight p = new PointLight();
	 p.setTranslateX(200);

 .

http://s.bookboon.com/AlcatelLucent

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

171

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

171

	 p.setTranslateY(200);
	 p.setTranslateZ(-600);
 return p;
 }

 private PerspectiveCamera createCamera()
 {
 PerspectiveCamera c = new PerspectiveCamera(false);
	 c.setTranslateX(600);
	 c.setTranslateY(300);	
	 c.setTranslateZ(-50);
 return c;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

The two Box objects are created by the method createBox(), where the parameters are the
coordinates of a translation as well as a Material. It is an abstract class, and there is only
one specific class called PhongMaterial. It has a number of methods (such as setDiffuseColor()
and setDiffuseMap()) used to specify how the surface should be and you are encouraged
to examine the documentation. In this case, two PhongMaterial objects are created in the
start() method, where the last refers to an image.

8.3 DRAW MODE

The surface of Shape3D objects is actually drawn as a number of triangles, and you can,
with a parameter, indicate to the constructor how many there are to be. By default, these
triangles are drawn as filled, but you can also indicate that you just have to draw the
perimeter. There are thus two draw modes:

1. DrawMode.FILL (default)
2. DrawMode.LINE

The program SphereProgram opens the following window, which shows three Sphere objects,
and the last one is drawn with DrawMode.LINE:

The two Box objects are created by the method createBox(), where the parameters are the
coordinates of a translation as well as a Material. It is an abstract class, and there is only
one specific class called PhongMaterial. It has a number of methods (such as setDiffuseColor()
and setDiffuseMap()) used to specify how the surface should be and you are encouraged
to examine the documentation. In this case, two PhongMaterial objects are created in the
start() method, where the last refers to an image.

8.3	 DRAW MODE

The surface of Shape3D objects is actually drawn as a number of triangles, and you can,
with a parameter, indicate to the constructor how many there are to be. By default, these
triangles are drawn as filled, but you can also indicate that you just have to draw the
perimeter. There are thus two draw modes:

1.	DrawMode.FILL (default)
2.	DrawMode.LINE

The program SphereProgram opens the following window, which shows three Sphere objects,
and the last one is drawn with DrawMode.LINE:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

172

The code is basically the same as in the previous program, and there is only one significant
change in which the method createBox() is replaced by the following method;

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

172

The code is basically the same as in the previous program, and there is only one significant
change in which the method createBox() is replaced by the following method;

private	Sphere	createSphere(double	x,	double	y,	double	z,	Material	m,
	DrawMode	mode)
{
 Sphere sphere = new Sphere(150);
	sphere.setMaterial(m);
	sphere.setDrawMode(mode);
	sphere.setTranslateX(x);
	sphere.setTranslateY(y);
	sphere.setTranslateZ(z);
 return sphere;
}

8.4 CULL FACE

When a 3D figure appears on the screen, for natural reasons, you can not see the whole
figure – you can not see what lies behind it. What you can see depends on where the camera
is located. As mentioned in the previous section, a 3D shape is drawn as a number of
triangles. A triangle has two sides in the form of the outside and the inside, and as a default
one can see the outside. In general are dawn only the treangles, which are visible while the
others are sorted out. There is a property called CullFace, which can assume three values:

1. CullFace.BACK
2. CullFace.FRONT
3. CullFace.NONE

8.4	 CULL FACE

When a 3D figure appears on the screen, for natural reasons, you can not see the whole
figure – you can not see what lies behind it. What you can see depends on where the camera
is located. As mentioned in the previous section, a 3D shape is drawn as a number of
triangles. A triangle has two sides in the form of the outside and the inside, and as a default
one can see the outside. In general are dawn only the treangles, which are visible while the
others are sorted out. There is a property called CullFace, which can assume three values:

1.	CullFace.BACK
2.	CullFace.FRONT
3.	CullFace.NONE

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

173173

where the first is default and means that you only see the triangles where you can see the
outside while the other means that you can only see the inside of the triangles which are
usually not visible. The last option means that you can see both kinds of triangles and thus
draw all the triangles. The program CylinderProgram opens the following window:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

174

which shows a cylinder drawn with DrawMode.LINE and CullFace.BACK. If you click the
cylinder with the mouse, you switch to CullFace.FRONT:

and click once to switch to CullFace.NONE, and then it all repeats itself. The code is simple
and similar to the above programs, just an event is added for the mouse:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

174

which shows a cylinder drawn with DrawMode.LINE and CullFace.BACK. If you click the
cylinder with the mouse, you switch to CullFace.FRONT:

and click once to switch to CullFace.NONE, and then it all repeats itself. The code is simple
and similar to the above programs, just an event is added for the mouse:

public class CylinderProgram extends Application
{
	private	CullFace[]	culls	=	{	CullFace.BACK,	CullFace.FRONT,	CullFace.NONE	
};
 private int pos = 0;
 private Cylinder cylinder;

 @Override
 public void start(Stage stage)
 {
 Group root = new Group(cylinder =
 createCylinder(500, 450, 600), createLight());
	 root.addEventHandler(MouseEvent.MOUSE_CLICKED,	
	 new	EventHandler<MouseEvent>()	{
	 public	void	handle(MouseEvent	e)	{	pos	=	(pos	+	1)	%	culls.length;
	 cylinder.setCullFace(culls[pos]);	};
 });
 Scene scene = new Scene(root, 600, 300, true);
 scene.setCamera(createCamera());
 stage.setScene(scene);
	 stage.setTitle("Cull");
 stage.show();
 }

 private Cylinder createCylinder(double x, double y, double z)
 {
 Cylinder c = new Cylinder(200, 400);

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

175

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

175

	 c.setMaterial(new	PhongMaterial(Color.BLUE));
	 c.setDrawMode(DrawMode.LINE);
	 c.setTranslateX(x);
	 c.setTranslateY(y);
	 c.setTranslateZ(z);
 return c;
 }

 …
}

8.5 CAMERA AND LIGHT

The camera is the most crucial factor in 3D graphics, but it can be difficult to predict the
effect. For example, if you create a sphere with radius 50 and without any kind of transition
and create a camera in the same way, you get the following window:

This corresponds to that the starting point of the coordinate system (0, 0, 0), which is the
center of the sphere. The camera is located in the same position, and if you changed the
window size, nothing happens with the shape. Since the sphere has no Material, a default
value is given, which is light gray color, and since there is no mention of light, a light
source with the same position as the camera is used.

If you move the shape 100 in each direction, the center of the sphere is shifted to (100,
100, 100) and the result is as shown below, where you should notice that the figure has
become smaller as it is shown 100 into the screen and thus away from the viewer:

8.5	 CAMERA AND LIGHT

The camera is the most crucial factor in 3D graphics, but it can be difficult to predict the
effect. For example, if you create a sphere with radius 50 and without any kind of transition
and create a camera in the same way, you get the following window:

This corresponds to that the starting point of the coordinate system (0, 0, 0), which is the
center of the sphere. The camera is located in the same position, and if you changed the
window size, nothing happens with the shape. Since the sphere has no Material, a default
value is given, which is light gray color, and since there is no mention of light, a light
source with the same position as the camera is used.

If you move the shape 100 in each direction, the center of the sphere is shifted to (100,
100, 100) and the result is as shown below, where you should notice that the figure has
become smaller as it is shown 100 into the screen and thus away from the viewer:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

176176

Note that the camera and the light are still in (0, 0, 0). If you then change the camera
-200 in the z axis direction, you will see that the figure becomes even smaller as the camera
has now moved further towards the viewer, and thus there is longer between the camera
and the figure:

The camera used above has the type PerspectiveCamera, but there is also a camera ParallelCamera,
and the difference is what kind of projection is used. A PerspectiveCamera is the most used
since, as the name says, it sees the object in perspective. A clip area is attached to a camera
so that shapes that are close to the camera do not appear and the same for shapes that are
far away.

http://s.bookboon.com/BI

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

177

To show a little about the effect of some of the many options and for experimentation, I
will look at a program that I have called Options3D:

The window has a Sphere object that sits in the upper left corner, and although it is not
visible, the surface has a red Material. To the right there are 10 Slider controls that can be
used to change the following settings:

1.	position of the figure – (x, y, x) coordinate
2.	 radius
3.	 location of light source – (x, y, x) coordinate
4.	 camera location – (x, y, x) coordinate

Below I have shown the result after moving the figure and the light source:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

178

The program’s code is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

178

The program’s code is as follows:

public	class	Options3D	extends	Application	
{
	private	Shape3D	shape;
 private PointLight light = new PointLight();
 private PerspectiveCamera camera = new PerspectiveCamera(false);
 private Label tx = new Label();
 private Label ty = new Label();
 private Label tz = new Label();
 private Label lx = new Label();
 private Label ly = new Label();
 private Label lz = new Label();
 private Label cx = new Label();
 private Label cy = new Label();
 private Label cz = new Label();
 private Label ra = new Label();

 @Override
 public void start(Stage stage)
 {
	 HBox	root	=	new	HBox(20,	create3D(),	create2D());
 Scene scene = new Scene(root, 800, 400, true);
 stage.setScene(scene);
	 stage.setTitle("3D	Options");
 stage.show();
 }

	private	SubScene	create3D()	
 {
 Group root = new Group(shape = new Sphere(100), light);
	 shape.setMaterial(new	PhongMaterial(Color.RED));
 SubScene subScene = new SubScene(root, 500, 400, true,
	 SceneAntialiasing.BALANCED);
 subScene.setCamera(camera);
 return subScene;
 }

	private	SubScene	create2D()	
 {
	 VBox	commands	=	new	VBox(10,	
	 createLabel("Translation",	tx,	ty,	tz,	shape.translateXProperty(),
	 shape.translateYProperty(),	shape.translateZProperty()),
	 createSlider(-500,	500,	0,	shape.translateXProperty()),
 createSlider(-500, 500, 0, shape.translateYProperty()),
	 createSlider(-500,	500,	0,	shape.translateZProperty()),
 createLabel("Radius", ra, ((Sphere)shape).radiusProperty()),
 createSlider(0, 250, 100, ((Sphere)shape).radiusProperty()),

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

179179

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

179179

	 createLabel("Light",	lx,	ly,	lz,	light.translateXProperty(),
	 light.translateYProperty(),	light.translateZProperty()),
	 createSlider(-500,	500,	0,	light.translateXProperty()),
 createSlider(-500, 500, 0, light.translateYProperty()),
	 createSlider(-500,	500,	0,	light.translateZProperty()),
	 createLabel("Camera",	cx,	cy,	cz,	camera.translateXProperty(),
	 camera.translateYProperty(),	camera.translateZProperty()),
	 createSlider(-500,	500,	0,	camera.translateXProperty()),
 createSlider(-500, 500, 0, camera.translateYProperty()),
	 createSlider(-500,	500,	0,	camera.translateZProperty()));
 commands.setPrefWidth(280);
 HBox root = new HBox(10, commands);
 root.setPadding(new Insets(10, 10, 10, 0));
 return new SubScene(root, 300, 380);
 }

	private	Pane	createLabel(String	text,	Label	r,	DoubleProperty	p)
 {
 r.textProperty().bind(p.asString("%3.1f"));
 HBox box = new HBox(new Label(text + ": ("), r, new Label(")"));
 return box;
 }

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

180

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3d shapes

180

 private Pane createLabel(String text, Label x, Label y, Label z,
	 DoubleProperty	px,	DoubleProperty	py,	DoubleProperty	pz)
 {
 x.textProperty().bind(px.asString("%3.1f"));
 y.textProperty().bind(py.asString("%3.1f"));
 z.textProperty().bind(pz.asString("%3.1f"));
 HBox box = new HBox(new Label(text + ": ("), x, new Label(", "), y,
 new Label(", "), z, new Label(")"));
 return box;
 }

 private Slider createSlider(double min, double max, double val,
	 DoubleProperty	property)
 {
 Slider slider = new Slider(min, max, val);
 slider.valueProperty().bindBidirectional(property);
 return slider;
 }

 public static void main(String[] args)
 {
 launch(args);
 }
}

There is a lot to note in the code. There are no less than 13 instance variables, the first
being a reference to the Sphere object. The two next are the light source and the camera
respectively. Finally, the 10 Label controls that are used to display the values of the 10
Slider controls.

As for the method start(), there is not much to say besides placing two components in a
HBox. However, there is a challenge. A Scene object can generally not display both 3D and
2D objects – at least not correct. To solve this problem, I have introduced the concept
of a SubScene that allows you to have more Scene objects in a window. It can be used for
multiple purposes (primarily in 3D graphics), and it can be used to split the window into
a part for 3D objects and a part for usual 2D objects. That is exactly what is the case in
this example.

The method create3D() creates a 3D Scene, where the root is a Group with a Sphere that
has a radius 100. Note that a Material is also defined. For this root, a SubScene is created.
In particular, note how to specify that anti-aliasing is used and that the camera is attached
to the SubScene object. This is why the image from the start is displayed black, because the
camera’s location in (0,0,0) corresponds to it is inside the ball.

There is a lot to note in the code. There are no less than 13 instance variables, the first
being a reference to the Sphere object. The two next are the light source and the camera
respectively. Finally, the 10 Label controls that are used to display the values of the 10
Slider controls.

As for the method start(), there is not much to say besides placing two components in a
HBox. However, there is a challenge. A Scene object can generally not display both 3D and
2D objects – at least not correct. To solve this problem, I have introduced the concept
of a SubScene that allows you to have more Scene objects in a window. It can be used for
multiple purposes (primarily in 3D graphics), and it can be used to split the window into
a part for 3D objects and a part for usual 2D objects. That is exactly what is the case in
this example.

The method create3D() creates a 3D Scene, where the root is a Group with a Sphere that
has a radius 100. Note that a Material is also defined. For this root, a SubScene is created.
In particular, note how to specify that anti-aliasing is used and that the camera is attached
to the SubScene object. This is why the image from the start is displayed black, because the
camera’s location in (0,0,0) corresponds to it is inside the ball.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

181

The method create2D() also creates a SubScene object, but this time it’s a usual 2D Scene.
The code is a part, but it is because many controls must be created, and the code does not
contain anything new in principle. When the individual controls (Slider controls) are created,
note how the value property binds to a property by either the Shape object, the Light object
or the Camera object. Similarly, the 10 Label controls are bound to the same properties,
but here with a unidirectional binding, as the values are to be converted to strings.

You are encouraged to experiment with the program.

EXERCISE 6

You must write a program similar to the program Options3D, but instead of a red Sphere,
the program must show blue Box, which is initially (100, 100, 100). The window below
shows the figure after several Slider controls have been moved. Note that two new Slider
controls (and associated Label controls) have been added so you can set both width, height
and depth of the Box. The easiest thing is to start with a copy of the Options3D program.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT 3D Shapes

182

EXERCISE 7

Write another version of the above program, but where the Shape3D object this time is a
green Cylinder, the size from start is (50, 100). You must be able to set both the radius and
the height, and the result could be as shown below:

8.6	 A LAST REMARK

As mentioned, a Shape3D shape is constructed using triangles, and it is possible – but far
from easy – to define custom shapes by defining the individual triangles. I do not want to
get closer to this in this book, and it takes a lot of practice, but the construction of custom
shapes is done using the class MeshView.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

183183

9	 CHARTS

In the final example of the book Java 10, I looked at a library that has classes for representation
of graphs. As mentioned, there are many such libraries, and there are actually many examples
of tasks where there is a desire for a graphical presentation of data, but in JavaFX it is
easy as there is an API directly for that purpose, which has the most common graphs. The
following is an introduction to this API, which basically include the following classes:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

184

In addition, there are other auxiliary classes, including classes that represents the data that
the individual graphs should illustrate, and there are classes to the axes of the coordinate
system. The API can thus show 8 different graphs divided into two categories consisting of
a PieChart and then the others. A graph is a graphical illustration of a number sequence,
and a PieChart can show a single number sequence, while the others can display more
called series in a xy-coordinate system. In the following example I would like to illustrate
the following graphs:

-- PieChart
-- BarChart (two versions)
-- StackedBarChart

For all graphs, there are of course a number of settings, and the example does not show
all settings, and the goal is to search the documentation yourself and experiment with the
different settings, including expanding the program with new graphs using other types than
the three mentioned above. It should be mentioned immediately that it is quite easy to
work with the API and that it is similarly independent of the graph type.

The program is called ChartProgram and it opens the following window:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

185

When displaying a graph (a Chart), you must have some data in the form of a number
material. What the numbers means is not so important for the current example, but the
numbers could be interpreted as revenue over the 12 months of the year and the numbers
above shows the revenue for the years 2008–2017. In order to experiment with graphs, the
numbers are generated random and you can at any time create new numbers by clicking
the Generate Data link:

You can also change the data by editing the table directly. The above dialog is called
ModelView, but I do not want to show the code here as it contains nothing new. The table
itself shows objects of the type Year and the datamodel of the table is called DataModel,
and these classes are not shown for the same reasons either.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

186186

If you click on the A Pie chart link, the following events are performed:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

186186

If you click on the A Pie chart link, the following events are performed:

private	void	pie(ActionEvent	e)
{
	int	n	=	table.getSelectionModel().getSelectedIndex();
	if	(n	>=	0)
 {
 Year year = model.getYears().get(n);
	 ObservableList<PieChart.Data>	data	=	FXCollections.	observableArrayList();
	 for	(int	i	=	0;	i	<	DataModel.names.length;	++i)
	 data.add(new	PieChart.Data(DataModel.names[i],	year.getValue(i)));
	 new	PieView(parent,	year.getYear(),	data);
 }
}

The method determines the index for the first row that is selected, and for this row, a
list of the type ObservableList<PieChart.Data> is created. You should note how this list is
initialized with PieChart.Data objects, consisting of pairs where the first value is the month
name (above the array names), while the other value is the numeric values from the row
that is selected. Next, a window will appear showing a PieChart:

The method determines the index for the first row that is selected, and for this row, a
list of the type ObservableList<PieChart.Data> is created. You should note how this list is
initialized with PieChart.Data objects, consisting of pairs where the first value is the month
name (above the array names), while the other value is the numeric values from the row
that is selected. Next, a window will appear showing a PieChart:

http://s.bookboon.com/Subscrybe

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

187

The graph uses as default up to 8 colors, after which they are repeated, but you can specify
more colors if you wish. The window’s code is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

187

The graph uses as default up to 8 colors, after which they are repeated, but you can specify
more colors if you wish. The window’s code is as follows:

public	class	PieView
{
	public	PieView(Window	owner,	int	year,	ObservableList<PieChart.Data>	data)	
 {
 Stage stage = new Stage();
 stage.initOwner(owner);
	 stage.initModality(Modality.APPLICATION_MODAL);
 PieChart chart = new PieChart();
	 chart.setTitle("Sales	for	"	+	year);
	 chart.setLegendSide(Side.LEFT);
	 chart.setData(data);
	 addTooltips(chart);
 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
	 stage.setTitle("A	Pie	chart");
 stage.show();
 }

	private	void	addTooltips(PieChart	chart)	
 {
 double sum = 0;
	 for	(PieChart.Data	data	:	chart.getData())	sum	+=	data.getPieValue();
	 for	(PieChart.Data	data	:	chart.getData())	
 {

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

188

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

188

	 double	value	=	data.getPieValue();
	 Tooltip	tip	=	new	Tooltip(data.getName()	+	"=	"	+	
 String.format("%.2f", value) + " (" +
 String.format("%.2f", value / sum * 100) + "%)");
	 tip.setStyle("-fx-background-color:	yellow;	-fx-text-fill:	black;");
	 Tooltip.install(data.getNode(),	tip);
 }
 }
}

and there is not much to explain. The hardest thing is actually the last method that links
tooltips to the PieChart component. You should note how to create a PieChart component
and specifically what properties are defined.

If in the main window you marks the numbers for three years and click on the link A
vertical bar chart, you get the following window:

which is an example of an XYChart. The event handler is as follows:

private	void	bar1(ActionEvent	e)
{
		ObservableList<Integer>	indices	=	table.
getSelectionModel().getSelectedIndices();
	if	(indices.size()	>	0)
 {
	 ObservableList<XYChart.Series<String,	Number>>	data	=	getXYData(indices);
	 new	VBarView(parent,	data);
 }
}

and there is not much to explain. The hardest thing is actually the last method that links
tooltips to the PieChart component. You should note how to create a PieChart component
and specifically what properties are defined.

If in the main window you marks the numbers for three years and click on the link A
vertical bar chart, you get the following window:

which is an example of an XYChart. The event handler is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

188

	 double	value	=	data.getPieValue();
	 Tooltip	tip	=	new	Tooltip(data.getName()	+	"=	"	+	
 String.format("%.2f", value) + " (" +
 String.format("%.2f", value / sum * 100) + "%)");
	 tip.setStyle("-fx-background-color:	yellow;	-fx-text-fill:	black;");
	 Tooltip.install(data.getNode(),	tip);
 }
 }
}

and there is not much to explain. The hardest thing is actually the last method that links
tooltips to the PieChart component. You should note how to create a PieChart component
and specifically what properties are defined.

If in the main window you marks the numbers for three years and click on the link A
vertical bar chart, you get the following window:

which is an example of an XYChart. The event handler is as follows:

private	void	bar1(ActionEvent	e)
{
		ObservableList<Integer>	indices	=	table.
getSelectionModel().getSelectedIndices();
	if	(indices.size()	>	0)
 {
	 ObservableList<XYChart.Series<String,	Number>>	data	=	getXYData(indices);
	 new	VBarView(parent,	data);
 }
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

189189

First, the indexes are determined on the rows that are selected, and on that basis, the graph
data is created as an object of the type ObservableList<XHChart.Series<String, Number>> to
be used to display the graph. The object is determined using the following method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

189189

First, the indexes are determined on the rows that are selected, and on that basis, the graph
data is created as an object of the type ObservableList<XHChart.Series<String, Number>> to
be used to display the graph. The object is determined using the following method:

private	ObservableList<XYChart.Series<String,	Number>>
	getXYData(ObservableList<Integer>	indices)	
{
	ObservableList<XYChart.Series<String,	Number>>	data	=
	 FXCollections.<XYChart.Series<String,	Number>>observableArrayList();
 for (int i = 0; i < indices.size(); ++i)
 {
 Year year = model.getYears().get(indices.get(i));
	 XYChart.Series<String,	Number>	series	=	new	XYChart.Series<>();
	 series.setName(""	+	year.getYear());
	 for	(int	j	=	0;	j	<	DataModel.names.length;	++j)
	 	series.getData().add(new	XYChart.Data(DataModel.

names[j],	year.getValue(j)));
 data.add(series);
 }
 return data;
}

http://s.bookboon.com/volvo

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

190

The method is, in principle, simple, but you should note how the graph’s data model is
built up as objects of the type XYChart.Series<String, Number>, each object being a pair
consisting of a name and a value.

The code for the graph window is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Charts

190

The method is, in principle, simple, but you should note how the graph’s data model is
built up as objects of the type XYChart.Series<String, Number>, each object being a pair
consisting of a name and a value.

The code for the graph window is as follows:

public	class	VBarView
{
		public	VBarView(Window	owner,	ObservableList<XYChart.
Series<String,Number>>	data)	

 {
 Stage stage = new Stage();
 stage.initOwner(owner);
	 stage.initModality(Modality.APPLICATION_MODAL);
 CategoryAxis xAxis = new CategoryAxis();
	 xAxis.setLabel("Month");
	 NumberAxis	yAxis	=	new	NumberAxis();
	 yAxis.setLabel("Turnover");
	 BarChart<String,	Number>	chart	=	new	BarChart<>(xAxis,	yAxis);
	 chart.setTitle("Sales	for	several	years");
	 chart.setData(data);
 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
	 stage.setTitle("A	vertical	bar	chart");
 stage.show();
 }
}

Here you should note how to create the axes and how to create the Chart object itself as
a node. In fact, it is simple to display a Chart as a Node in a scene graph once you have
created the data model. As mentioned in the introduction to this chapter, you should
investigate what other options exist for a BarChart.

The program has two other links, the first showing a horizontal bar chart, while the latter
shows a stacked bar chart. As for the latter, it is done in the same way as above, and the
data model is created in the same way, just the type is StackedBarChart. As for the first one,
it is a BarChart and the only difference is that the two axes need to be replaced, which in
turn means that the model data must also swapped. I do not want to show the code for the
last two graphs here, as they are, in principle, identical to the code for the first BarChart.

Here you should note how to create the axes and how to create the Chart object itself as
a node. In fact, it is simple to display a Chart as a Node in a scene graph once you have
created the data model. As mentioned in the introduction to this chapter, you should
investigate what other options exist for a BarChart.

The program has two other links, the first showing a horizontal bar chart, while the latter
shows a stacked bar chart. As for the latter, it is done in the same way as above, and the
data model is created in the same way, just the type is StackedBarChart. As for the first one,
it is a BarChart and the only difference is that the two axes need to be replaced, which in
turn means that the model data must also swapped. I do not want to show the code for the
last two graphs here, as they are, in principle, identical to the code for the first BarChart.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

191

10	 FINAL EXAMPLE

The final example of this book is a program where the user can enter an expression for a
mathematical function in one real variable, for example

� = 3�� − 2� + 1

and the program must then be able to draw the function’s graph. The requirements are
formulated continuously as the program is to be developed through a form of protyping, but
the main purpose of the program is that when you have drawn the graph for one or more
functions in a coordinate system, you must be able to copy the graph to the clipboard and
paste it into a word processor, for example. You can thus think of the program as a tool
that can be used by a writer of mathematical notes or books, but perhaps even by students
in daily mathematics education.

Regarding the other features of the program, there are primarily requirements for flexibility
and ease of use, as well as the types of graphs that the program can draw. Some of the
program’s features will relate to settings, including, for example, color and line thickness
settings, as well as settings for the coordinate system will be important.

More challenges are expected regarding the development, and the biggest challenge is assumed
to relate to performance, as it may take time to draw a complete graph. In particular,
expectations can be expected to change the size of the window, as it means both adjustments
of (redrawing) the graph itself, but also the coordinate system.

Another challenge is how to save the graph to a file where the graphs are not saved by
simple object serialization as it is sensitive to new versions of the program.

Regarding what a function must be (legal expressions), it is a problem that I have previously
solved, so for parsing and evaluating an expression, more or less direct code can be used,
which has previously been developed and tested.

The program is considered as a first version, and you must expect frequent changes/extensions
of the program for a period of time.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

192192

10.1	 DEVELOPMENT

As mentioned above, the program is to be developed through a form of proptotype where
the following iterations are planned:

1.	A simple prototype
2.	Drawing the x-axis
3.	Drawing the y-axis
4.	Drawing the coordinat system
5.	Drawing a function from a formal
6.	Drawing a plot
7.	 Implementing other features
8.	 Implementing options
9.	Styling the program

10.	Refactoring

but there may occur several and other iterations. The result of every iteration is a complete
program that can be used with the features that are implemenrated and each iteration is
an extension of the previous iteration.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

193

10.2	 A SIMPLE PROTOTYPE

The program’s first prototype opens the following window:

The program’s functions are defined as menu items, but for the time being, are only
shown headings which all are menus that near the first are empty. The first menu defines
5 functions (as an example) but has no action. 8 functions have shortcuts in a toolbar and
are from the left:

1.	New drawing
2.	Open existing drawing
3.	Save drawing
4.	Settings for coordinate system
5.	 Insert new function in the drawing
6.	Zoom out
7.	Zoom in
8.	Same division om both axes

The toolbar also contains an expression, and the idea is that the drawen functions should be
displayed as a link in the toolbar, so you can change the function’s data by clicking the link.

The cross with the frame around should illustrate a drawing drawn by a method showImage(),
and the figure consists of three Shape objects attached to a Group object. It is a preliminary
solution that may be changed later. The figure is preliminary hard-coded, but follows the
window size when it changes. There is a small problem with displaying the window in full
screen if you double-click the titlebar. Here’s a problem getting the window drawn correctly.
It is apparently a JavaFX issue (under Linux) and is fixed with a timer that updates the
window after ½ selund.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

194

10.3	 DRAWING THE AXES

This iteration involves drawing both axes of the coordinate system and thus the two next
iterations are combined into a single iteration. Generally, there are many challenges in drawing
the axes of the coordinate system, among other things because they have to behave nicely
when the size of the window changes, but JavaFX has in the Chart API classes representing
axes to a coordinate system, and especially the class NumberAxis. Since this class is actually
general (has enough settings), it has been decided to use it instead of to write a custom
component. Therefore, the two iterations to the coordinate system’s axes are combined into
a single iteration.

A single model class has been added that represents an axis:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

194

10.3 DRAWING THE AXES

This iteration involves drawing both axes of the coordinate system and thus the two next
iterations are combined into a single iteration. Generally, there are many challenges in drawing
the axes of the coordinate system, among other things because they have to behave nicely
when the size of the window changes, but JavaFX has in the Chart API classes representing
axes to a coordinate system, and especially the class NumberAxis. Since this class is actually
general (has enough settings), it has been decided to use it instead of to write a custom
component. Therefore, the two iterations to the coordinate system’s axes are combined into
a single iteration.

A single model class has been added that represents an axis:

public	class	AxisModel	
{
	private	DoubleProperty	min	=	new	SimpleDoubleProperty(-10);
	private	DoubleProperty	max	=	new	SimpleDoubleProperty(10);
 private IntegerProperty dec = new SimpleIntegerProperty(0);
 private IntegerProperty ticks = new SimpleIntegerProperty(1);
 private StringProperty label = new SimpleStringProperty("");
	private	DoubleProperty	cross	=	new	SimpleDoubleProperty(0);
	private	BooleanProperty	autoTicks	=	new	SimpleBooleanProperty(false);
	private	BooleanProperty	showTicks	=	new	SimpleBooleanProperty(true);
 private BooleanProperty showGitter = new SimpleBooleanProperty(false);
	private	BooleanProperty	showNumbers	=	new	SimpleBooleanProperty(true);

where the meaning is as follows:

 - the lowest value on the axis
 - the greatest value on the axis
 - number of decimals to be used to display the axis numerical values
 - the interval length between the points of the axis
 - label (name) to the axis
 - where the axis should cross the second axis
 - if the axis automatically determines the division from the smallest and greatest value
 - if the axis divisions are to be displayed
 - if grid lines should appears
 - if the numbers are to be displayed

The class FDrawer has two objects for the axes:

private	AxisModel	xModel	=	new	AxisModel();
private	AxisModel	yModel	=	new	AxisModel();

where the meaning is as follows:

-- the lowest value on the axis
-- the greatest value on the axis
-- number of decimals to be used to display the axis numerical values
-- the interval length between the points of the axis
-- label (name) to the axis
-- where the axis should cross the second axis
-- if the axis automatically determines the division from the smallest and greatest value
-- if the axis divisions are to be displayed
-- if grid lines should appears
-- if the numbers are to be displayed

The class FDrawer has two objects for the axes:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

194

10.3 DRAWING THE AXES

This iteration involves drawing both axes of the coordinate system and thus the two next
iterations are combined into a single iteration. Generally, there are many challenges in drawing
the axes of the coordinate system, among other things because they have to behave nicely
when the size of the window changes, but JavaFX has in the Chart API classes representing
axes to a coordinate system, and especially the class NumberAxis. Since this class is actually
general (has enough settings), it has been decided to use it instead of to write a custom
component. Therefore, the two iterations to the coordinate system’s axes are combined into
a single iteration.

A single model class has been added that represents an axis:

public	class	AxisModel	
{
	private	DoubleProperty	min	=	new	SimpleDoubleProperty(-10);
	private	DoubleProperty	max	=	new	SimpleDoubleProperty(10);
 private IntegerProperty dec = new SimpleIntegerProperty(0);
 private IntegerProperty ticks = new SimpleIntegerProperty(1);
 private StringProperty label = new SimpleStringProperty("");
	private	DoubleProperty	cross	=	new	SimpleDoubleProperty(0);
	private	BooleanProperty	autoTicks	=	new	SimpleBooleanProperty(false);
	private	BooleanProperty	showTicks	=	new	SimpleBooleanProperty(true);
 private BooleanProperty showGitter = new SimpleBooleanProperty(false);
	private	BooleanProperty	showNumbers	=	new	SimpleBooleanProperty(true);

where the meaning is as follows:

 - the lowest value on the axis
 - the greatest value on the axis
 - number of decimals to be used to display the axis numerical values
 - the interval length between the points of the axis
 - label (name) to the axis
 - where the axis should cross the second axis
 - if the axis automatically determines the division from the smallest and greatest value
 - if the axis divisions are to be displayed
 - if grid lines should appears
 - if the numbers are to be displayed

The class FDrawer has two objects for the axes:

private	AxisModel	xModel	=	new	AxisModel();
private	AxisModel	yModel	=	new	AxisModel();

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

195195

In addition, the class is expanded with two inner classes, one of which creates and drawes
the axes, while the other draws the graph as a Path object. These two classes will be key
and will be expanded several times. If you run the program, you get the following window
where the function is still hard-coded:

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

196

The important thing is that the coordinate system and the graph follows the window size.
There is still a lack of a part about the coordinate system, including the use of above settings,
which is only partly used until now. It is the subject of the next iteration.

10.4	 SETTINGS FOR THE COORDINATE SYSTEM

In this iteration I started with a little architecture. In the previous iteration, I have added
a package fdrawer.models, which contains the class AxisModel. I have expanded the model
with the following class:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

196

The important thing is that the coordinate system and the graph follows the window size.
There is still a lack of a part about the coordinate system, including the use of above settings,
which is only partly used until now. It is the subject of the next iteration.

10.4 SETTINGS FOR THE COORDINATE SYSTEM

In this iteration I started with a little architecture. In the previous iteration, I have added
a package fdrawer.models, which contains the class AxisModel. I have expanded the model
with the following class:

package fdrawer.models;

public	class	AxesModel	
{
	private	AxisModel	xaxis	=	new	AxisModel();
	private	AxisModel	yaxis	=	new	AxisModel();

	public	AxesModel()
 {
 }

	public	AxesModel(AxesModel	axes)
 {
	 xaxis	=	new	AxisModel(axes.getXaxis());
	 yaxis	=	new	AxisModel(axes.getYaxis());
 }

	public	AxisModel	getXaxis()
 {
 return xaxis;
 }

	public	AxisModel	getYaxis()
 {
 return yaxis;
 }
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

197

which is nothing but an enclosure of two axes. In addition, I have added the following class

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

197

which is nothing but an enclosure of two axes. In addition, I have added the following class

package fdrawer.models;

public	class	Model
{
	private	AxesModel	axes	=	new	AxesModel();

	public	AxesModel	getAxes()
 {
 return axes;
 }
}

that for the time being, it is trivial, but in the future it should be the main model of the
program. The main thing in the iteration is the following dialog box that is used to set the
options for the axis of the coordinate system:

It is a relatively complex dialog box that basically consists of a HBox with two GridPane
nodes. The code is placed in a package fdrawer.views and consists of two classes AxesPresenter
and AxesView.

that for the time being, it is trivial, but in the future it should be the main model of the
program. The main thing in the iteration is the following dialog box that is used to set the
options for the axis of the coordinate system:

It is a relatively complex dialog box that basically consists of a HBox with two GridPane
nodes. The code is placed in a package fdrawer.views and consists of two classes AxesPresenter
and AxesView.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

198198

In addition to the dialog, the main window must be updated so that the current settings
are also used, which is a relatively large work and relates to the two inner classes Axes and
Plot, but after that the coordinate system is also essentially complete. However, there are
two options that are not implemented:

1.	Number of decimals, as JavaFX itself decides the number of decimals, and since it
seems sensible, the function may later be removed.

2.	Auto division axis. This feature is implemented by the NumberAxis class, but as this
does not always seem appropriate, implementation of this feature is postponed to
later, and perhaps the feature should be removed.

To open the dialog, an event handler has been added to the button in the toolbar, but the
same event handler will later be added to the menu.

10.5	 DRAWING A FUNCTION FROM A FORMAL

This iteration can be regarded as the most important iteration, and after the iteration
is completed, you have in principle a ready-made drawer, where you can draw a typical

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

199

mathematical function. The starting point is to expand the model with two classes Expression
and Tokens, which represents a mathematical expression. The classes are implemented in the
final example of the book Java 3 and support a mathematical expression where you can use
the four arithmetical operations and the following functions:

Sin Cos Tan Cot Ln Log

Asin Acos Atan Acot Exp Alog

Sqr Sqrt Pow Root Abs Floor

0.25�� + 0.75�� − 1.5� − 2

A function depends on one variable, and for example, the function

can be entered as

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

199

mathematical function. The starting point is to expand the model with two classes Expression
and Tokens, which represents a mathematical expression. The classes are implemented in the
final example of the book Java 3 and support a mathematical expression where you can use
the four arithmetical operations and the following functions:

Sin Cos Tan Cot Ln Log

Asin Acos Atan Acot Exp Alog

Sqr Sqrt Pow Root Abs Floor

0.25�� + 0.75�� − 1.5� − 2

A function depends on one variable, and for example, the function

can be entered as

0.25	 *	 pow(x,	 3)	 +	 0.75	 *	 sqr(x) – 1.5 * x – 2

The classes Expression and Tokens from Java 3 can almost be used unchanged, but they
support the use of multiple variables, and since it should not be an option in this program,
the classes are modified so that you can only use a single variable called x.

In order to create a function, the program is expanded with the following dialog box (the
classes ExpressionView og ExpressionPresenter):

where you can enter a function (above a simple linear function). You can also specify the
color based on a few fixed values, and in the same way you can specify line thickness (also
based on a few fixed values). Below is the program window, where two functions are drawn:

The classes Expression and Tokens from Java 3 can almost be used unchanged, but they
support the use of multiple variables, and since it should not be an option in this program,
the classes are modified so that you can only use a single variable called x.

In order to create a function, the program is expanded with the following dialog box (the
classes ExpressionView og ExpressionPresenter):

where you can enter a function (above a simple linear function). You can also specify the
color based on a few fixed values, and in the same way you can specify line thickness (also
based on a few fixed values). Below is the program window, where two functions are drawn:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

200

Since you need to be able to draw more functions in the same coordinate system (in practice
a few), the toolbar is changed where a combobox is added that shows the graph’s functions.
Additionally, a button has been added that opens the above dialog but for the function that
is selected in the combobox.

Then the program is able to display the graphs for one or more functions in a coordinate system.

10.6	 THE PROGRAM ARCHITECTURE

The result of the foregoing is that a very large part of the program code is located in the
class FDrawer, and the subsequent development will, with unchanged architecture, mean
that the class becomes even bigger and probably even much larger. This means that the class
becomes irreversible, and partly because the program does not follow the MVP pattern,
and both can make it more difficult to maintain the program in the future. That’s why I’ve
put in an extra iteration with the purpose of breaking down the class FDrawer into smaller
classes and thus ensuring a better program architecture. It is therefore an iteration that does
not directly generate momentum in the project.

It would of course be better to have made these considerations earlier in the project and
from the outset have planned a better program architecture. However, it is not always that
easy, and especially if you work on a program where the goal is not completely clear and

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

201201

where the requirements are determined ongoing. This may mean that you initially focus
on getting something on the screen, so partial results can be presented to the future users
to clarify the final requirements. The result will often be, as in the present case, a program
with inappropriate architecture, and you should then stop and perform a first refactoring.

In this case, the following classes have been added to fdrawer.views:

-- Axes, like the corresponding inner class in FDrawer, has been moved to its own
view class

-- Plot, like the corresponding inner class in FDrawer, has been moved to its own
view class

-- MainMenu, which is the code of the menu that has been moved to its own class
primarily to increase the clarity

-- MainView, which is the main window itself
-- MainPresenter, that is presenter for the main window

The class FDrawer has been changed accordingly and is then a class that does nothing but
instantiate a Model and a MainPresenter.

Finally, to fdrawer.views is added a class ViewTools that contains only static methods.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

202

10.7	 DRAWING A PLOT

By a plot I want to understand a function defined by a number of points. The program
must then display the function graph as a corresponding number of points in the coordinate
system and possibly associated with lines. The coordinate system must thus be able to
display two types of graphs, which are either a common function in one real variable as
already implemented and a plot graph implemented in this iteration. So far, a function has
been represented by the model class ExpressionModel, but in order to handle both types of
functions in the same way, the model is expanded as follows:

The class FunctionModel must assign an ID to the individual functions and will only keep
track of the color and the line thickness:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

202

10.7 DRAWING A PLOT

By a plot I want to understand a function defined by a number of points. The program
must then display the function graph as a corresponding number of points in the coordinate
system and possibly associated with lines. The coordinate system must thus be able to
display two types of graphs, which are either a common function in one real variable as
already implemented and a plot graph implemented in this iteration. So far, a function has
been represented by the model class ExpressionModel, but in order to handle both types of
functions in the same way, the model is expanded as follows:

The class FunctionModel must assign an ID to the individual functions and will only keep
track of the color and the line thickness:

public	abstract	class	FunctionModel
{
 private static int lastId = 0;
 private int id;
	private	ObjectProperty<ColorWrapper>	color	=
 new SimpleObjectProperty(Colors.list.get(0));
	private	ObjectProperty<Double>	stroke	=	new	SimpleObjectProperty(1.0);

	public	FunctionModel()
 {
 id = ++lastId;
 }

Note that the class is defined abstract so that it can not be instantiated. The class
ExpressionModel is then trivial

public	class	ExpressionModel	extends	FunctionModel
{
	private	Expression	expression;

but should implement equals() and toString(). The class PlotModel requires a little more as
there are more settings attached to a plot chart:

Note that the class is defined abstract so that it can not be instantiated. The class
ExpressionModel is then trivial

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

202

10.7 DRAWING A PLOT

By a plot I want to understand a function defined by a number of points. The program
must then display the function graph as a corresponding number of points in the coordinate
system and possibly associated with lines. The coordinate system must thus be able to
display two types of graphs, which are either a common function in one real variable as
already implemented and a plot graph implemented in this iteration. So far, a function has
been represented by the model class ExpressionModel, but in order to handle both types of
functions in the same way, the model is expanded as follows:

The class FunctionModel must assign an ID to the individual functions and will only keep
track of the color and the line thickness:

public	abstract	class	FunctionModel
{
 private static int lastId = 0;
 private int id;
	private	ObjectProperty<ColorWrapper>	color	=
 new SimpleObjectProperty(Colors.list.get(0));
	private	ObjectProperty<Double>	stroke	=	new	SimpleObjectProperty(1.0);

	public	FunctionModel()
 {
 id = ++lastId;
 }

Note that the class is defined abstract so that it can not be instantiated. The class
ExpressionModel is then trivial

public	class	ExpressionModel	extends	FunctionModel
{
	private	Expression	expression;

but should implement equals() and toString(). The class PlotModel requires a little more as
there are more settings attached to a plot chart:
but should implement equals() and toString(). The class PlotModel requires a little more as
there are more settings attached to a plot chart:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

203

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

203

public	class	PlotModel	extends	FunctionModel
{
		private	ObservableList<PlotPoint>	points	=	
FXCollections.observableArrayList();
 private StringProperty name = new SimpleStringProperty("");
	private	StringProperty	plotType	=
	 new	SimpleStringProperty(PlotType.types.get(0));
	private	ObjectProperty<Double>	plotsize	=	new	SimpleObjectProperty(5.0);
 private BooleanProperty drawLine = new SimpleBooleanProperty(false);
	private	StringProperty	lineType	=
	new	SimpleStringProperty(LineType.types.get(0));

This extension means some minor changes elsewhere in the code and, among other things,
the model has been changed to the following:

package fdrawer.models;

import javafx.collections.*;

public	class	Model
{
	private	AxesModel	axes	=	new	AxesModel();
	private	ObservableList<FunctionModel>	functions	=
	 FXCollections.observableArrayList();

	public	AxesModel	getAxes()
 {
 return axes;
 }

	public	ObservableList<FunctionModel>	getFunctions()
 {
 return functions;
 }
}

The iteration adds the following dialog that is used to define a plot graph:

This extension means some minor changes elsewhere in the code and, among other things,
the model has been changed to the following:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

203

public	class	PlotModel	extends	FunctionModel
{
		private	ObservableList<PlotPoint>	points	=	
FXCollections.observableArrayList();
 private StringProperty name = new SimpleStringProperty("");
	private	StringProperty	plotType	=
	 new	SimpleStringProperty(PlotType.types.get(0));
	private	ObjectProperty<Double>	plotsize	=	new	SimpleObjectProperty(5.0);
 private BooleanProperty drawLine = new SimpleBooleanProperty(false);
	private	StringProperty	lineType	=
	new	SimpleStringProperty(LineType.types.get(0));

This extension means some minor changes elsewhere in the code and, among other things,
the model has been changed to the following:

package fdrawer.models;

import javafx.collections.*;

public	class	Model
{
	private	AxesModel	axes	=	new	AxesModel();
	private	ObservableList<FunctionModel>	functions	=
	 FXCollections.observableArrayList();

	public	AxesModel	getAxes()
 {
 return axes;
 }

	public	ObservableList<FunctionModel>	getFunctions()
 {
 return functions;
 }
}

The iteration adds the following dialog that is used to define a plot graph:

The iteration adds the following dialog that is used to define a plot graph:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

204204

In the table on the left, you can enter points and the two buttons below the table are used
to create a point and delete a point where the button Remove row deletes the row that is
selected. The following type has been added to the model:

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

205

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

205

public class PlotPoint
{
	private	DoubleProperty	x	=	new	SimpleDoubleProperty(0);
	private	DoubleProperty	y	=	new	SimpleDoubleProperty(0);

which represents a point to a plot graph. To the right you can define options for the plot
graph. A graph must have a name that can be used to identify the graph at the user interface.
The type PlotType is used to specify the geometry of a point:

public	class	PlotType	
{
		public	static	ObservableList<String>	types	=	
FXCollections.observableArrayList();

 static
 {
	 types.addAll("Circle",	"Square",	"Rhombus",	"Cross");
 }
}

while the next two comboboxes defines the size and color of the point. The following
checkbox indicates whether the points should be joined by lines and, if applicable, there
are two options:

public	class	LineType	
{
		public	static	ObservableList<String>	types	=	
FXCollections.observableArrayList();
 static
 {
 types.addAll("Line", "Curve");
 }
}

To implement the dialog, the view layer is expanded with two classes: PlotView and
PlotPresenter. There was added a new button to the toolbar, but otherwise the biggest change
is the extension of the class Plot, so it can now also draw plot graphs.

10.8 REFACTORING THE EXPRESSION DIALOG

The program has a few missings in drawing graphs, as the class Plot does not take into account
the domain for a function. This may cause incorrect graphs or graphs that appear incorrect.
I have therefore introduced an iteration solely for the purpose of solving this problem.

which represents a point to a plot graph. To the right you can define options for the plot
graph. A graph must have a name that can be used to identify the graph at the user interface.
The type PlotType is used to specify the geometry of a point:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

205

public class PlotPoint
{
	private	DoubleProperty	x	=	new	SimpleDoubleProperty(0);
	private	DoubleProperty	y	=	new	SimpleDoubleProperty(0);

which represents a point to a plot graph. To the right you can define options for the plot
graph. A graph must have a name that can be used to identify the graph at the user interface.
The type PlotType is used to specify the geometry of a point:

public	class	PlotType	
{
		public	static	ObservableList<String>	types	=	
FXCollections.observableArrayList();

 static
 {
	 types.addAll("Circle",	"Square",	"Rhombus",	"Cross");
 }
}

while the next two comboboxes defines the size and color of the point. The following
checkbox indicates whether the points should be joined by lines and, if applicable, there
are two options:

public	class	LineType	
{
		public	static	ObservableList<String>	types	=	
FXCollections.observableArrayList();
 static
 {
 types.addAll("Line", "Curve");
 }
}

To implement the dialog, the view layer is expanded with two classes: PlotView and
PlotPresenter. There was added a new button to the toolbar, but otherwise the biggest change
is the extension of the class Plot, so it can now also draw plot graphs.

10.8 REFACTORING THE EXPRESSION DIALOG

The program has a few missings in drawing graphs, as the class Plot does not take into account
the domain for a function. This may cause incorrect graphs or graphs that appear incorrect.
I have therefore introduced an iteration solely for the purpose of solving this problem.

while the next two comboboxes defines the size and color of the point. The following
checkbox indicates whether the points should be joined by lines and, if applicable, there
are two options:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

205

public class PlotPoint
{
	private	DoubleProperty	x	=	new	SimpleDoubleProperty(0);
	private	DoubleProperty	y	=	new	SimpleDoubleProperty(0);

which represents a point to a plot graph. To the right you can define options for the plot
graph. A graph must have a name that can be used to identify the graph at the user interface.
The type PlotType is used to specify the geometry of a point:

public	class	PlotType	
{
		public	static	ObservableList<String>	types	=	
FXCollections.observableArrayList();

 static
 {
	 types.addAll("Circle",	"Square",	"Rhombus",	"Cross");
 }
}

while the next two comboboxes defines the size and color of the point. The following
checkbox indicates whether the points should be joined by lines and, if applicable, there
are two options:

public	class	LineType	
{
		public	static	ObservableList<String>	types	=	
FXCollections.observableArrayList();
 static
 {
 types.addAll("Line", "Curve");
 }
}

To implement the dialog, the view layer is expanded with two classes: PlotView and
PlotPresenter. There was added a new button to the toolbar, but otherwise the biggest change
is the extension of the class Plot, so it can now also draw plot graphs.

10.8 REFACTORING THE EXPRESSION DIALOG

The program has a few missings in drawing graphs, as the class Plot does not take into account
the domain for a function. This may cause incorrect graphs or graphs that appear incorrect.
I have therefore introduced an iteration solely for the purpose of solving this problem.

To implement the dialog, the view layer is expanded with two classes: PlotView and
PlotPresenter. There was added a new button to the toolbar, but otherwise the biggest change
is the extension of the class Plot, so it can now also draw plot graphs.

10.8	 REFACTORING THE EXPRESSION DIALOG

The program has a few missings in drawing graphs, as the class Plot does not take into account
the domain for a function. This may cause incorrect graphs or graphs that appear incorrect.
I have therefore introduced an iteration solely for the purpose of solving this problem.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

206

Basically, it is important to specify a function’s domain, and the dialog ExpressionView is
therefore expanded to:

It is now possible to add a number of intervals where the union of these intervals is the
domain. If you do not enter any intervals, the domain is perceived as the real axis. For each
interval you can enter 4 values:

1.	A is the left end point. If the value is blank, the left end point is minus infinity.
2.	Start indicating a mark for the starting point. If blank, no mark is displayed, but

otherwise it may be Close, which means a filled circle or Open, which means an
open circle.

3.	B is the right end point. If the value is blank, the right end point is infinite.
4.	End that indicates a mark for the end point. If blank, no mark is displayed, but

otherwise it may be Close, which means a filled circle or Open, which means an
open circle.

The extension means some changes to the model where there is a model class for an interval:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

206

Basically, it is important to specify a function’s domain, and the dialog ExpressionView is
therefore expanded to:

It is now possible to add a number of intervals where the union of these intervals is the
domain. If you do not enter any intervals, the domain is perceived as the real axis. For each
interval you can enter 4 values:

1. A is the left end point. If the value is blank, the left end point is minus infinity.
2. Start indicating a mark for the starting point. If blank, no mark is displayed, but

otherwise it may be Close, which means a filled circle or Open, which means an
open circle.

3. B is the right end point. If the value is blank, the right end point is infinite.
4. End that indicates a mark for the end point. If blank, no mark is displayed, but

otherwise it may be Close, which means a filled circle or Open, which means an
open circle.

The extension means some changes to the model where there is a model class for an interval:

public class Interval
{
	private	DoubleProperty	a	=	new	
	 SimpleDoubleProperty(Double.NEGATIVE_INFINITY);
 private StringProperty lower = new SimpleStringProperty("");
		private	DoubleProperty	b	=	new	SimpleDoubleProperty(Double.
POSITIVE_INFINITY);
 private StringProperty upper = new SimpleStringProperty("");

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

207207

and the class ExpressionModel is also changed

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

207207

and the class ExpressionModel is also changed

public	class	ExpressionModel	extends	FunctionModel
{
	private	Expression	expression;
		private	ObservableList<Interval>	intervals	=	
FXCollections.observableArrayList();

The most comprehensive changes in this iteration, however, are the class Plot, since it must
take into account that a function can now have a domain, and eventually endpoints may
be drawn. Finally, the class should behave nicely if you draw a graph that is not defined on
the entire real axis, but fails to specify a domain. As a result, the class has gradually become
relatively complex, and the class may eventually be included in a refactoring.

10.9 IMPLEMENTING THE FUNCTIONS MENU

The next iteration includes, according to the plan, to implement all functions in the menu.
There are some, and some of them are even quite complex, so here I shared the iteration

The most comprehensive changes in this iteration, however, are the class Plot, since it must
take into account that a function can now have a domain, and eventually endpoints may
be drawn. Finally, the class should behave nicely if you draw a graph that is not defined on
the entire real axis, but fails to specify a domain. As a result, the class has gradually become
relatively complex, and the class may eventually be included in a refactoring.

10.9	 IMPLEMENTING THE FUNCTIONS MENU

The next iteration includes, according to the plan, to implement all functions in the menu.
There are some, and some of them are even quite complex, so here I shared the iteration

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

208

into multiple iterations with one iteration for each menu. In this iteration I will look at
the Functions menu that should include the following menu items:

-- Create new function
-- Create/modify tanget
-- Create/modify vertical lines
-- Insert/modify hatching
-- Create point series
-- Modify functions
-- Modify point series

The class MainMenu is updated accordingly. The class has an instance variable

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

208

into multiple iterations with one iteration for each menu. In this iteration I will look at
the Functions menu that should include the following menu items:

 - Create new function
 - Create/modify tanget
 - Create/modify vertical lines
 - Insert/modify hatching
 - Create point series
 - Modify functions
 - Modify point series

The class MainMenu is updated accordingly. The class has an instance variable

Map<String,	MenuItem>	items	=	new	HashMap();

with package visibility, where each menu item is identified by a key, and the map is used to
allow in MainPresenter to assign event handlers to the individual menu items. The first and
third last menu items corresponds to functions (create new function and create plot) that are
already implemented as buttons in the toolbar, so nothing else than the class MainPresenter
has to associate the right event handler.

The menu item Create/modify tangent is a new function, where it should be possible to draw
a tangent to a function at a given point. If you select the function, you will receive the
following window, which at the bottom shows a summary of the functions added to the
drawing, and if you select one of these functions, you can add points for tangents in the
upper table, as well as parameters for the color and thickness of the tangent:

with package visibility, where each menu item is identified by a key, and the map is used to
allow in MainPresenter to assign event handlers to the individual menu items. The first and
third last menu items corresponds to functions (create new function and create plot) that are
already implemented as buttons in the toolbar, so nothing else than the class MainPresenter
has to associate the right event handler.

The menu item Create/modify tangent is a new function, where it should be possible to draw
a tangent to a function at a given point. If you select the function, you will receive the
following window, which at the bottom shows a summary of the functions added to the
drawing, and if you select one of these functions, you can add points for tangents in the
upper table, as well as parameters for the color and thickness of the tangent:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

209

When you click OK, the appropriate tangents are drawn. The function requires an expansion
of the class ExpressionModel, as a function can now have associated tangents:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

209

When you click OK, the appropriate tangents are drawn. The function requires an expansion
of the class ExpressionModel, as a function can now have associated tangents:

public	class	ExpressionModel	extends	FunctionModel
{
	private	Expression	expression;
		private	ObservableList<Interval>	intervals	=	
FXCollections.observableArrayList();
		private	ObservableList<LineModel>	tangents	=	
FXCollections.observableArrayList();

Here, LineModel is a simple model class that extends the class FunctionModel with a single
property for the tangent’s foot point. In order to draw a tangent, the Expression class is
expanded with a method that, as a limit value, can calculate the differential quotient in
a point.

The menu item Create / Modify vertical lines should be used to inserts vertical lines into a
drawing, for example, vertical asymptotes. The function opens the following window:

Here, LineModel is a simple model class that extends the class FunctionModel with a single
property for the tangent’s foot point. In order to draw a tangent, the Expression class is
expanded with a method that, as a limit value, can calculate the differential quotient in
a point.

The menu item Create / Modify vertical lines should be used to inserts vertical lines into a
drawing, for example, vertical asymptotes. The function opens the following window:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

210210

where you can add points (x-values) where the vertical line has to cross the x-axis. The
function is relatively simple, but requires an extension of the model:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

210210

where you can add points (x-values) where the vertical line has to cross the x-axis. The
function is relatively simple, but requires an extension of the model:

public	class	Model
{
	private	AxesModel	axes	=	new	AxesModel();
	private	ObservableList<FunctionModel>	functions	=
	 FXCollections.observableArrayList();
	private	ObservableList<LineModel>	lines	=	FXCollections.observableArrayList();

http://s.bookboon.com/elearningforkids

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

211

and similarly, the class Plot must be updated so that it draws the vertical lines.

The next feature Insert/Modify hatching allows you to insert hatching below or above a
function and if you selects the menu item, you get the following window:

where to choose the function. If you click OK then you get the window:

Here you can insert vertical and horizontal constraints on the area to be hatched, as well
as selecting the color for the hatching, as well as whether it should be a standard fill or
a pattern. The function is not quite simple to implement, and the class Plot should be
significantly expanded. In addition, the model class ExpressionModel must be expanded
with a new variable:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

212

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

212

public	class	ExpressionModel	extends	FunctionModel
{
	private	Expression	expression;
	private	HatchModel	hatching;
		private	ObservableList<Interval>	intervals	=	
FXCollections.observableArrayList();
		private	ObservableList<LineModel>	tangents	=	
FXCollections.observableArrayList();

The function may possibly hatch an unintended area if restrictions are set on x and y and
if the function’s graph cross through the selected area. The reason is that the hatching area
is defined as a Path, and it should be changed in a future version of the program.

The last two functions of the Functions menu are in principle implemented, as they correspond
to edit a function or edit a plot already created. The only thing missing is a way to choose
the function or plot to be edited, and it is done in the same way as above with hatching.

In connection with this iteration, the function for drawing a plot is expanded, so the line
type to connect the points now can also can be a regression line.

10.10 IMPLEMENTING THE ZOOM MENU

The menu must have the following features:

 - Zoom out
 - Zoom in
 - Divide after x-axis
 - Divide after y-axis
 - Default

Here, the third and fourth function means that the two axes determined by the division
of the x-axis and the y-axis respectively, must use the same distance between the points
on the axes. The last menu item must reset the axes to default. The toolbar initially had
three buttons for zoom, but the latter is replaced by two other buttons, so there are now
4 buttons corresponding to the top 4 menu items.

In principle, it is quite simple to implement these functions and requires only simple
changes in the two classes AxisModel and AxesModel and, of course, changes in the class
MainPresenter, so that event handlers are associated.

The function may possibly hatch an unintended area if restrictions are set on x and y and
if the function’s graph cross through the selected area. The reason is that the hatching area
is defined as a Path, and it should be changed in a future version of the program.

The last two functions of the Functions menu are in principle implemented, as they correspond
to edit a function or edit a plot already created. The only thing missing is a way to choose
the function or plot to be edited, and it is done in the same way as above with hatching.

In connection with this iteration, the function for drawing a plot is expanded, so the line
type to connect the points now can also can be a regression line.

10.10	 IMPLEMENTING THE ZOOM MENU

The menu must have the following features:

-- Zoom out
-- Zoom in
-- Divide after x-axis
-- Divide after y-axis
-- Default

Here, the third and fourth function means that the two axes determined by the division
of the x-axis and the y-axis respectively, must use the same distance between the points
on the axes. The last menu item must reset the axes to default. The toolbar initially had
three buttons for zoom, but the latter is replaced by two other buttons, so there are now
4 buttons corresponding to the top 4 menu items.

In principle, it is quite simple to implement these functions and requires only simple
changes in the two classes AxisModel and AxesModel and, of course, changes in the class
MainPresenter, so that event handlers are associated.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

213213

However, there is a single challenge to be solved. Until this place it is assumed that the two
axes intersect at the center of the window. It does not work if it’s possible to zoom, and
more generally if you change the smallest and greatest values of the axes. It is necessary to
change both in the Axes class and the class Plot, so they take into account that the coordinate
system’s origin is not necessarily centered in the window.

10.11	 IMPLEMENTING THE EDIT MENU

This menu must have 4 menu items:

-- Undo
-- Redo
-- Screen clip
-- Axes

Here is the last the function for maintaining the coordinate system’s axes and thus the same
function implemented on one of the toolbar buttons. The Screen clip feature is one of the

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

214

program’s most important functions and is one of the goals of the entire application. The
function, on the other hand, is simple to implement, as JavaFX offers it all:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

214

program’s most important functions and is one of the goals of the entire application. The
function, on the other hand, is simple to implement, as JavaFX offers it all:

private	void	clipGraph(ActionEvent	e)
{
 WritableImage image = view.imagePane.
 snapshot(new SnapshotParameters(), null);
 ClipboardContent cc = new ClipboardContent();
 cc.putImage(image);
 Clipboard.getSystemClipboard().setContent(cc);
}

A Node – and here it is a StackPane – has a method snapshot() which simply takes a picture
of the component. In fact, it is a PNG image and the image can be placed immediately
on the clipboard.

Then there are the other two features, and on the other hand, it is not simple. For some
reasons, JavaFX does not support Undo/Redo, but it must be assumed that it will be included
in later versions of the API. One can find more open source APIs for Undo/Redo online,
and it may be a good task to replace the following with one of these APIs. On the other
hand, it is not entirely easy, partly because the APIs in question may not be comprehensive
enough, and partly because they can be so general that it is in itself a piece of work to learn
how they are used. In this case, I have solved the problem by programming the necessary
from scratch. In fact, it is not particularly difficult, but the problem is of course that it is
not modifiable and can not immediately be used in other programs.

In principle, Undo/Redo is about when you perform an operation in the program, it is
simultaneously stored on a stack, and if you executes an Undo (keys Ctrl + Z), the operation
must be rolled back and then placed on the redo stack . Redo (when keying Ctrl + Y) basically
happens in the same way, just do not undo the operation but instead restore it and move it
over to the undo stack. For so long it’s all simple, but there are two outstanding problems:

1. What is an operation – what is it you should be able to undo and redo?
2. What should be pushed on the stack?

In this case, it has been decided that the operations to be rolled back are:

 - Change the coordinate system’s settings – an AxesModel object
 - Add a new function – an ExpressionModel object
 - Change a function – an ExpressionModel object
 - Delete a function – an ExpressionModel object
 - Add a new plot to the graph – an object of the type PlotModel

A Node – and here it is a StackPane – has a method snapshot() which simply takes a picture
of the component. In fact, it is a PNG image and the image can be placed immediately
on the clipboard.

Then there are the other two features, and on the other hand, it is not simple. For some
reasons, JavaFX does not support Undo/Redo, but it must be assumed that it will be included
in later versions of the API. One can find more open source APIs for Undo/Redo online,
and it may be a good task to replace the following with one of these APIs. On the other
hand, it is not entirely easy, partly because the APIs in question may not be comprehensive
enough, and partly because they can be so general that it is in itself a piece of work to learn
how they are used. In this case, I have solved the problem by programming the necessary
from scratch. In fact, it is not particularly difficult, but the problem is of course that it is
not modifiable and can not immediately be used in other programs.

In principle, Undo/Redo is about when you perform an operation in the program, it is
simultaneously stored on a stack, and if you executes an Undo (keys Ctrl + Z), the operation
must be rolled back and then placed on the redo stack . Redo (when keying Ctrl + Y) basically
happens in the same way, just do not undo the operation but instead restore it and move it
over to the undo stack. For so long it’s all simple, but there are two outstanding problems:

1.	What is an operation – what is it you should be able to undo and redo?
2.	What should be pushed on the stack?

In this case, it has been decided that the operations to be rolled back are:

-- Change the coordinate system’s settings – an AxesModel object
-- Add a new function – an ExpressionModel object
-- Change a function – an ExpressionModel object
-- Delete a function – an ExpressionModel object
-- Add a new plot to the graph – an object of the type PlotModel

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

215

-- Changing a plot – an object of the type PlotModel
-- Delete a plot – an object of the type PlotModel
-- Change a function’s tangent – an OberservableList object<LineModel> object
-- Changing the vertical lines of the graph – an OberservableList object<LineModel> object
-- Add a hatching to a function – an object of the type HatchModel
-- Change a function’s hatching – an object of the type HatchModel
-- Delete a function’s hatching – an object of the type HatchModel

These possible operations (the operations to be saved for undo) are defined using the
following enumeration:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

215

 - Changing a plot – an object of the type PlotModel
 - Delete a plot – an object of the type PlotModel
 - Change a function’s tangent – an OberservableList object<LineModel> object
 - Changing the vertical lines of the graph – an OberservableList object<LineModel> object
 - Add a hatching to a function – an object of the type HatchModel
 - Change a function’s hatching – an object of the type HatchModel
 - Delete a function’s hatching – an object of the type HatchModel

These possible operations (the operations to be saved for undo) are defined using the
following enumeration:

public	enum	GraphOperations	{	AXES,	ADDFUNC,	MODFUNC,	DELFUNC,	ADDPLOT,	
MODPLOT,	DELPLOT,	MODTANG,	MODLINE,	ADDHATCH,	MODHATCH,	DELHATCH	}

An Undo / Redo operation is then defined as follows:

public class GraphOperation
{
 private GraphOperations operation;
 private Object value;

 public GraphOperation(GraphOperations operation, Object value)
 {
 this.operation = operation;
 this.value = value;
 }

 public GraphOperations getOperation()
 {
 return operation;
 }

	public	Object	getValue()
 {
 return value;
 }

	public	void	setValue(Object	value)
 {
 this.value = value;
 }
}

An Undo / Redo operation is then defined as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

215

 - Changing a plot – an object of the type PlotModel
 - Delete a plot – an object of the type PlotModel
 - Change a function’s tangent – an OberservableList object<LineModel> object
 - Changing the vertical lines of the graph – an OberservableList object<LineModel> object
 - Add a hatching to a function – an object of the type HatchModel
 - Change a function’s hatching – an object of the type HatchModel
 - Delete a function’s hatching – an object of the type HatchModel

These possible operations (the operations to be saved for undo) are defined using the
following enumeration:

public	enum	GraphOperations	{	AXES,	ADDFUNC,	MODFUNC,	DELFUNC,	ADDPLOT,	
MODPLOT,	DELPLOT,	MODTANG,	MODLINE,	ADDHATCH,	MODHATCH,	DELHATCH	}

An Undo / Redo operation is then defined as follows:

public class GraphOperation
{
 private GraphOperations operation;
 private Object value;

 public GraphOperation(GraphOperations operation, Object value)
 {
 this.operation = operation;
 this.value = value;
 }

 public GraphOperations getOperation()
 {
 return operation;
 }

	public	Object	getValue()
 {
 return value;
 }

	public	void	setValue(Object	value)
 {
 this.value = value;
 }
}

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

216216

and you can thus save any object, but with an indication of which operation the object is
about. Back is the UndoManager class as the class that saves the operations and performs
an undo() or a redo():

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

216216

and you can thus save any object, but with an indication of which operation the object is
about. Back is the UndoManager class as the class that saves the operations and performs
an undo() or a redo():

public	class	UndoManager	
{
	private	static	UndoManager	instance;
	private	Stack<GraphOperation>	undoOperations	=	new	Stack();
	private	Stack<GraphOperation>	redoOperations	=	new	Stack();

	private	UndoManager()	{}

	public	static	UndoManager	getInstance()	{	…	}

 public void add(GraphOperation opr)
 {
 undoOperations.push(opr);
 }

	public	void	undo(Model	model)
 {
 doOperation(model, undoOperations, redoOperations, true);
 }

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

217

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

217

	public	void	redo(Model	model)
 {
 doOperation(model, redoOperations, undoOperations, false);
 }

	private	void	doOperation(Model	model,	Stack<GraphOperation>	stack1,
	 Stack<GraphOperation>	stack2,	boolean	undo)
 {
 if (!stack1.empty())
 {
 GraphOperation opr = stack1.pop();
 try
 {
 switch (opr.getOperation())
 {
	 case	AXES:
	 AxesModel	axes	=	model.getAxes();
	 model.setAxes((AxesModel)opr.getValue());
	 opr.setValue(axes);
 break;
 …
 }
 stack2.push(opr);
 }
	 catch	(Exception	ex)
 {
 }
 }
 }
}

The class is written as a singleton, and the entire work is in the private method doOperation(),
where there is a case entry for every possible operation.

Each time the program performs an operation, it must be saved and thus the method add()
above must be performed. It happens in the presenter classes of the individual dialog boxes,
where copies of the individual operations are wrapped in GraphOperation objects that are
then pushed on the undo stack. When you want to perform an undo or redo either by
clicking the menu or by pressing Ctrl+Z or Ctrl+Y, the corresponding method is executed
in the class UndoManager.

The class is written as a singleton, and the entire work is in the private method doOperation(),
where there is a case entry for every possible operation.

Each time the program performs an operation, it must be saved and thus the method add()
above must be performed. It happens in the presenter classes of the individual dialog boxes,
where copies of the individual operations are wrapped in GraphOperation objects that are
then pushed on the undo stack. When you want to perform an undo or redo either by
clicking the menu or by pressing Ctrl+Z or Ctrl+Y, the corresponding method is executed
in the class UndoManager.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

218

10.12	 IMPLEMENTING THE CALCULATIONS MENU

It’s a very simple iteration as this menu only should have a single function:

-- Function table

The idea is that the menu will later be expanded with other calculation functions. The
current function opens a window for a particular function, where you can create a table of
function values within an interval:

Implementation of the function simply means writing the code for the above dialog box:
FuncTableView and FuncTablePresenter, as well as for other functions in the menu, a simple
dialog for selecting the function.

10.13	 IMPLEMENTING THE FILE MENU

This iteration includes the last menu that must have 5 functions:

-- New
-- Open
-- Save
-- Save as
-- Exit

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

219219

Here is the last trivial, while the top three are also assigned to buttons in the toolbar. The
goal is that it should be possible to save a drawing and later re-load the drawing. Since the
program is a tool that should be easy to install, drawings must not be saved in a database,
but in ordinary files. Here are four options:

1.	 to save drawings as JSON documents
2.	 to save drawings as XML documents
3.	 to save the drawings by conventional object serialization
4.	 to save drawings in a custom format

Here is the first the most obvious, as JSON does not fill up much, is a standard and is text
and can therefore be read by everyone and thus other programs. It requires that a Model
object can be converted to JSON, and that the JSON text loading again can create a Java
object. There are open source APIs that can do that and examples are GSON and Jackson,
which are both excellent products. Unfortunately, they do not work in the current case,
and the reason is that it is a deep and complex object structure, but primarily that JavaFX
is causing problems. Both products outline solutions that more or less directly solve the
problems. It is apparently not quite simple, but one expects that future versions can be
used directly. Because of that, I have abandoned using JSON.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

220

As for XML, it’s a bit the same, and the benefits are the same except that XML fills a lot.
Also here are finished products that can be used, and JAXB is even an integral part of Java.
If you often need to work with XML documents, it may be worth learning JAXB, and it
would be a good job to replace the following with XML.

Storing drawings using object serialization is not appropriate in this case. Among other
things, at the start of the project, I mentioned that it was not desirable, but in fact it also
gives a problem to JavaFX, as properties and other JavaFX types are not serializable. At
least, serialization of objects would require some extra work.

I will therefore choose the last of the above options and save drawings as text files, but in a
custom format. In practice, it may sometimes be of interest, and it is also not very difficult,
but in turn, there are a few significant disadvantages. Since it is a custom and non-transparent
format, it is difficult to apply the files in other contexts than in the current application.
The contents of the files do not follow any standard. That in itself will often mean that a
method like the following is rejected. Secondly, a custom format like the following is not
easy to maintain, and if the model is changed, the code to save drawings and read them
again must be changed accordingly, which means it is very expensive to change the model.
The question is then whether there are any benefits and that’s hardly, but should I imply
two, it should be that the format is very compact and saved drawings do not fill up much,
which may be important if drawings should send over a network, and second as an example
of what it takes to build an object hierarchy from a text (it is by default what parsing either
JSON or XML does).

So to the specific solution. There are generally two things to do:

1.	 a Model object must be converted into a text which can be saved in a file
2.	 the content of a file (a saved drawing) must be split into values to be used to

construct a Model object identical to the object that has been saved.

To solve these problems, it is necessary to use some separators that can be used to separate
values, and the only requirement is that it should be characters that can not occur in the
individual data elements. In this case, I need three, and I want to apply line breaks, carrige
return and tabs, and thus \n, \r and \t. As the next step, each model class, whose objects
are to be saved as part of the drawing, are expanded with a method asText(), which returns
the object’s data elements separated with the separators. As an example, the class AxisModel
is expanded with the following method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

221

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

221

public	String	asText()
{
 StringBuilder builder = new StringBuilder();
	builder.append(getMin());
	builder.append('\t');
	builder.append(getMax());
	builder.append('\t');
	builder.append(getDec());
	builder.append('\t');
	builder.append(getTicks());
	builder.append('\t');
 builder.append(getLabel());
	builder.append('\t');
 builder.append(getCross());
	builder.append('\t');
	builder.append(isAutoTicks());
	builder.append('\t');
	builder.append(isShowTicks());
	builder.append('\t');
 builder.append(isShowGitter());
	builder.append('\t');
	builder.append(isShowNumbers());
 return builder.toString();
}

That is, the method returns all settings for a number axis as a string where the individual
values are separated by the tab character. Similarly, the class AxesModel is expanded using
the following method:

public	String	asText()
{
	return	xaxis.asText()	+	'\r'	+	yaxis.asText();
}

which returns data for the x-axis and y-axis, respectively, separated by a carrige return. The
same applies to the other model classes:

 - ColorWrapper
 - PlotPoint
 - PlotModel
 - LineModel
 - Interval
 - HatchModel
 - ExpressionModel
 - Model

That is, the method returns all settings for a number axis as a string where the individual
values are separated by the tab character. Similarly, the class AxesModel is expanded using
the following method:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

221

public	String	asText()
{
 StringBuilder builder = new StringBuilder();
	builder.append(getMin());
	builder.append('\t');
	builder.append(getMax());
	builder.append('\t');
	builder.append(getDec());
	builder.append('\t');
	builder.append(getTicks());
	builder.append('\t');
 builder.append(getLabel());
	builder.append('\t');
 builder.append(getCross());
	builder.append('\t');
	builder.append(isAutoTicks());
	builder.append('\t');
	builder.append(isShowTicks());
	builder.append('\t');
 builder.append(isShowGitter());
	builder.append('\t');
	builder.append(isShowNumbers());
 return builder.toString();
}

That is, the method returns all settings for a number axis as a string where the individual
values are separated by the tab character. Similarly, the class AxesModel is expanded using
the following method:

public	String	asText()
{
	return	xaxis.asText()	+	'\r'	+	yaxis.asText();
}

which returns data for the x-axis and y-axis, respectively, separated by a carrige return. The
same applies to the other model classes:

 - ColorWrapper
 - PlotPoint
 - PlotModel
 - LineModel
 - Interval
 - HatchModel
 - ExpressionModel
 - Model

which returns data for the x-axis and y-axis, respectively, separated by a carrige return. The
same applies to the other model classes:

-- ColorWrapper
-- PlotPoint
-- PlotModel
-- LineModel
-- Interval
-- HatchModel
-- ExpressionModel
-- Model

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

222222

where some of course are more complex than the above. As an example, below is shown
asText() from the class Model, which returns the text to be saved:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

222222

where some of course are more complex than the above. As an example, below is shown
asText() from the class Model, which returns the text to be saved:

public	String	asText()
{
 StringBuilder builder = new StringBuilder();
	builder.append(axes.asText());
	for	(FunctionModel	fm	:	functions)
 {
	 builder.append('\n');
	 builder.append(fm.asText());
 }
	if	(lines.size()	>	0)
 {
	 for	(LineModel	lm	:	lines)
 {
	 builder.append('\n');
	 builder.append(lm.asText());
 }
 }
 return builder.toString();
}

http://s.bookboon.com/EOT

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

223

where the result technically is a text divided into lines. Then an event handler in MainPresenter
can write the text of a file:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

223

where the result technically is a text divided into lines. Then an event handler in MainPresenter
can write the text of a file:

try	(FileWriter	writer	=	new	FileWriter(filename))
{
	writer.write(model.asText());
}
catch	(IOException	ex)
{
 …
}

It is then easy to read the content of the file again:

try	(FileReader	reader	=	new	FileReader(filename))
{
 char[] buffer = new char[2048];
 StringBuilder builder = new StringBuilder();
 for (int count = reader.read(buffer, 0, buffer.length); count != -1;
 count = reader.read(buffer, 0, buffer.length))
 builder.append(buffer, 0, count);
	if	(!model.parse(builder.toString()))	throw	new	Exception();
}
catch	(Exception	ex)
{
 …
}

where a string with the file’s content is built, which is parsed by a method parse() in the class
Model. It is this method that is responsible for splitting the content of the file into values
and using these to initialize the Model object. The code of the method parse() is as follows:

public boolean parse(String text)
{
 try
 {
 String[] elems = text.split("\n");
	 if	(elems.length	==	0)	throw	new	Exception();
	 AxesModel	am	=	parseAxes(elems[0]);
	 	ObservableList<FunctionModel>	functions	=	
FXCollections.observableArrayList();

	 ObservableList<LineModel>	lines	=	FXCollections.observableArrayList();
 for (int i = 1; i < elems.length; ++i)
 {
	 if	(elems[i].charAt(0)	==	'E')	functions.add(parseExpression(elems[i]));
	 else	if	(elems[i].charAt(0)	==	'P')	functions.add(parsePlot(elems[i]));
	 else	if	(elems[i].charAt(0)	==	'L')	lines.add(parseLine(elems[i]));
 }

It is then easy to read the content of the file again:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

223

where the result technically is a text divided into lines. Then an event handler in MainPresenter
can write the text of a file:

try	(FileWriter	writer	=	new	FileWriter(filename))
{
	writer.write(model.asText());
}
catch	(IOException	ex)
{
 …
}

It is then easy to read the content of the file again:

try	(FileReader	reader	=	new	FileReader(filename))
{
 char[] buffer = new char[2048];
 StringBuilder builder = new StringBuilder();
 for (int count = reader.read(buffer, 0, buffer.length); count != -1;
 count = reader.read(buffer, 0, buffer.length))
 builder.append(buffer, 0, count);
	if	(!model.parse(builder.toString()))	throw	new	Exception();
}
catch	(Exception	ex)
{
 …
}

where a string with the file’s content is built, which is parsed by a method parse() in the class
Model. It is this method that is responsible for splitting the content of the file into values
and using these to initialize the Model object. The code of the method parse() is as follows:

public boolean parse(String text)
{
 try
 {
 String[] elems = text.split("\n");
	 if	(elems.length	==	0)	throw	new	Exception();
	 AxesModel	am	=	parseAxes(elems[0]);
	 	ObservableList<FunctionModel>	functions	=	
FXCollections.observableArrayList();

	 ObservableList<LineModel>	lines	=	FXCollections.observableArrayList();
 for (int i = 1; i < elems.length; ++i)
 {
	 if	(elems[i].charAt(0)	==	'E')	functions.add(parseExpression(elems[i]));
	 else	if	(elems[i].charAt(0)	==	'P')	functions.add(parsePlot(elems[i]));
	 else	if	(elems[i].charAt(0)	==	'L')	lines.add(parseLine(elems[i]));
 }

where a string with the file’s content is built, which is parsed by a method parse() in the class
Model. It is this method that is responsible for splitting the content of the file into values
and using these to initialize the Model object. The code of the method parse() is as follows:

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

223

where the result technically is a text divided into lines. Then an event handler in MainPresenter
can write the text of a file:

try	(FileWriter	writer	=	new	FileWriter(filename))
{
	writer.write(model.asText());
}
catch	(IOException	ex)
{
 …
}

It is then easy to read the content of the file again:

try	(FileReader	reader	=	new	FileReader(filename))
{
 char[] buffer = new char[2048];
 StringBuilder builder = new StringBuilder();
 for (int count = reader.read(buffer, 0, buffer.length); count != -1;
 count = reader.read(buffer, 0, buffer.length))
 builder.append(buffer, 0, count);
	if	(!model.parse(builder.toString()))	throw	new	Exception();
}
catch	(Exception	ex)
{
 …
}

where a string with the file’s content is built, which is parsed by a method parse() in the class
Model. It is this method that is responsible for splitting the content of the file into values
and using these to initialize the Model object. The code of the method parse() is as follows:

public boolean parse(String text)
{
 try
 {
 String[] elems = text.split("\n");
	 if	(elems.length	==	0)	throw	new	Exception();
	 AxesModel	am	=	parseAxes(elems[0]);
	 	ObservableList<FunctionModel>	functions	=	
FXCollections.observableArrayList();

	 ObservableList<LineModel>	lines	=	FXCollections.observableArrayList();
 for (int i = 1; i < elems.length; ++i)
 {
	 if	(elems[i].charAt(0)	==	'E')	functions.add(parseExpression(elems[i]));
	 else	if	(elems[i].charAt(0)	==	'P')	functions.add(parsePlot(elems[i]));
	 else	if	(elems[i].charAt(0)	==	'L')	lines.add(parseLine(elems[i]));
 }

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

224

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT FInal eXaMple

224

 this.axes = am;
 this.functions = functions;
 this.lines = lines;
 return true;
 }
	catch	(Exception	ex)
 {
 }
 return false;
}

but it uses several auxiliary methods. However, the above can give an impression of how
the method works:

1. the string that is read in the file is split into lines (the separator character \n)
2. the first line is parsed to an AxesModel object
3. then iterates over the remaining lines (in principle, there only have to be the one

for axes) and each element is parsed as either an ExpressionModel, a PlotModel or
a LineModel object

If an exception occurs during the process, the parsing is interrupted and the method returns
false, but if all goes well, the current Model object is initialized with the values parsed and
the method returns true.

The Iteration includes a little more than what is shown above, but it is nothing but what
is shown in other programs. You have to keep track of when a drawing has been changed,
and before it should be deleted you should get a warning. It is a task left for the class
UndoHandler, although the task because of cohesion probably not should be located there.

10.14 A FINAL ITERATION

According to the plan, there should now be two iterations left, but it has been merged into
one. The program is in principle complete and can be used for what was the purpose. In the
following, I will review the program’s classes to remove inconvenience and adjust the user
interface in some places. Below I have briefly mentioned the most important adjustments.

 - A style sheet has been added to the application that primarily contains empty style
classes that are used in the application’s dialogs for later styling of the program.

 - MainView has changed slightly where some icons have been replaced and the
background color has been changed using a style. An icon has been added to the
toolbar to copy a drawing to the clipboard, and tooltips have been added to all
toolbar icons.

but it uses several auxiliary methods. However, the above can give an impression of how
the method works:

1.	 the string that is read in the file is split into lines (the separator character \n)
2.	 the first line is parsed to an AxesModel object
3.	 then iterates over the remaining lines (in principle, there only have to be the one

for axes) and each element is parsed as either an ExpressionModel, a PlotModel or
a LineModel object

If an exception occurs during the process, the parsing is interrupted and the method returns
false, but if all goes well, the current Model object is initialized with the values parsed and
the method returns true.

The Iteration includes a little more than what is shown above, but it is nothing but what
is shown in other programs. You have to keep track of when a drawing has been changed,
and before it should be deleted you should get a warning. It is a task left for the class
UndoHandler, although the task because of cohesion probably not should be located there.

10.14	 A FINAL ITERATION

According to the plan, there should now be two iterations left, but it has been merged into
one. The program is in principle complete and can be used for what was the purpose. In the
following, I will review the program’s classes to remove inconvenience and adjust the user
interface in some places. Below I have briefly mentioned the most important adjustments.

-- A style sheet has been added to the application that primarily contains empty style
classes that are used in the application’s dialogs for later styling of the program.

-- MainView has changed slightly where some icons have been replaced and the
background color has been changed using a style. An icon has been added to the
toolbar to copy a drawing to the clipboard, and tooltips have been added to all
toolbar icons.

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

225225

-- MainPresenter has been updated in several areas. There are removed two event
handlers (axes() and func()), which have been replaced by a call to the method
openDialog(). This method was previously found as a static method in the class
ViewTools and as a private method in MainPresenter. Here is the last removed, so
the class MainPresenter now also uses the static method in ViewTools. Finally, all
calls to Alert are replaced by static methods in the class MessageDialogs. The result
is that unnecessary code has been removed.

-- AxesView has two fields (number of decimals and auto tickmarks) on both axes that
are not used. These four fields have been removed. Fields for entering numbers
use a converter called ValueConverter. It’s an inner class, but it is moved to a class
with the package visibility in a file Converters.java. More dialogs uses converters,
and the goal is to gather these converters somewhere.

-- Three of the functions in the Functions menu and the function in Calculations
menu opens a simple dialog box for selecting a function. The respective views are
FuncSelectView, FuncTableSelectView, HatchSelectView and TangentSelectView. These
four classes are actually the same and are replaced by a single view called SelectView.
The corresponding presenter classes are also almost the same, but not entirely, and
instead of replacing them with a new one, I have kept the old ones as they are,
since they are small and quite simple.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

226

-- In general, I have been through all dialogs and assigned styles to all controls.
-- The model classes are generally unchanged, but two of the classes use converters,

and they are as in the same way as in the view layer moved into their own file
called Converters.java. However, the classes Model and UndoManager are modified
as follows.

-- The class UndoManager actually encapsulates two concepts, namely undo/redo, and
to keep track of whether the model has been changed. In principle, it is unfortunate,
and the last functionality regarding the state of the model has therefore been moved
to its own class called ChangedManager. The class is written as a singleton and is
very simple.

-- The class Model was expanded in the previous iteration with the method parse()
used to parse the text read in a file. The disadvantage is that the class Model now
fills a lot, and so I have moved the parse() method into its own class called Parser.
The class has no other methods, and the only advantage is that the model class
becomes simpler and more manageable, but it may also make it easier to replace
how drawings are saved with something else.

After that, the program is complete and ready for use and as the last, I have written an
installation script so that the program can be easily installed on the machine.

10.15	 A LAST REMARK

As mentioned in the introduction to this chapter, the FDrawer program is developed by a
form of prototyping. The term prototyping is sometimes used for a development as above,
although the word is not correctly used. By the term prototyping one understands the
development of a program, which is intended to illustrate the ideas of an application, and
after the prototype has been developed and presented, the actual system development begins
from the beginning, but not as a further development of the prototype. The prototype
is itself a model that is not used as part of the final system development. It is therefore
more correct to say that the program FDrawer is developed by a form of iterative system
development through very small iterations, sometimes referred to as sprints.

Today, all just a bit bigger programs are developed through a number of iterations, and
the difference is primarily how large these iterations are. In the present case they have been
very small and it has its pros and cons. The advantage is that you often observe progress in
the work and that the future users through presentations seeing frequently experience and
something is happening and thus maintain the interest for the program. It also supports
the fact that the requirements are determined continuously throughout the development
period, and thus the situation that, from the start, it is not entirely clear where it all will

JAVA 15: MORE ABOUT JAVAFX:
SOFTWARE DEVELOPMENT Final Example

227

end. It is also an advantage that you can quickly detect malicious decisions and unfortunate
solutions and thus quickly correct before you reach too far in the development of a particular
feature. A system development with many and very small iterations opens up a very close
course with the upcoming users and helps to end with a solution that meets the users’
requirements for the completed program. However, there are also disadvantages, and in
particular there is a risk that you will always have to change the code that has been made.
When you build on iteration on iteration, there is a great chance that you have to go back
and change something that has been programmed in previous iterations, among other things
because there are always new demands and wishes. That is precisely why traditional system
development speaks of analysis and design, which defines the requirements for the finished
program through the analysis, and under the design, it will be decided how to write the
program before doing the programming itself.

Now, it’s not a either or and you can perfectly combine iterative system development with
more traditional system development and will even always do. Today, it has been acknowledged
that by simply a slightly larger program it is impossible to carry out an analysis where all
requirements are identified and determined. All experience shows that if you do it, it still
does not meets the requirements. It’s simply impossible to think about it all and there will
certainly be new demands of requirements over the development period, and if there is no
user interaction at the development, one can almost be sure that the end of a program has
so many shortcomings and inconveniences that the user does not bother using it. Therefore,
in iterative system development, an iteration is a system development in its own, but not
necessarily as small iterations as the current example suggests. An iteration will generally have
a limited amount in time, and must lead the program from one stable state to another. The
result of an iteration is a milestone in system development, where the state of the program
can be presented and assessed by the upcoming users or the customer and possibly lead to
something being corrected and new requirements to be set. Typically, an iteration will be a
system development process in itself, including analysis, design, programming and testing,
but so that the weight changes over time, with the emphasis on analysis and design in the
first iterations, but in later iterations the analysis and design fill less as the requirements
are now established and the most important decisions regarding the design of the program
are also in place.

There are (many) guidelines for how many iterations there should be, but the truth is
that there are no golden rules. In general, experiments in system development, where the
goals are not clear, and where you experience is gained along the way, speak for very short
sprints, and perhaps something towards that illustrated in the current example, while tasks
where the goals are clearer speaks for a little longer iterations involving traditional system
development to ensure stable and secure progress in the development.

	Foreword
	1	Introduction
	2	JavaFX properties
	2.1	Binding properties
	Exercise 1
	2.2	Observable collections
	2.3	Binding observable collections
	Exercise 2
	2.4	Binding persons
	2.5	The screen
	2.6	Decorations
	2.7	Modality
	Problem 1

	3	Advanced controls
	3.1	TableView
	Exercise 3
	3.2	Edit cells in a TableView
	Problem 2
	3.3	Filters
	Exercise 4
	3.4	A TreeView control
	Exercise 5
	3.5	A TreeView with Country objects
	3.6	A TreeTableView
	3.7	A TreeTableView, an extended example

	4	Drag and drop
	4.1	Simple press-drag-release gesture
	4.2	Full press-drag-release gesture
	4.3	Drag-and-drop gesture

	5	MVC
	6	User defined controls
	6.1	A LabelField
	6.2	A Canvas
	6.3	A Spinner

	7	JavaFX and concurrency
	7.1	A Task
	7.2	A Service

	8	D Shapes
	8.1	Box, Sphere and Cylinder
	8.2	Material
	8.3	Draw mode
	8.4	Cull face
	8.5	Camera and Light
	Exercise 6
	Exercise 7
	8.6	A last remark

	9	Charts
	10	Final Example
	10.1	Development
	10.2	A simple prototype
	10.3	Drawing the axes
	10.4	Settings for the coordinate system
	10.5	Drawing a function from a formal
	10.6	The program architecture
	10.7	Drawing a plot
	10.8	Refactoring the expression dialog
	10.9	Implementing the Functions menu
	10.10	Implementing the Zoom menu
	10.11	Implementing the Edit menu
	10.12	Implementing the Calculations menu
	10.13	Implementing the File menu
	10.14	A final iteration
	10.15	A last remark

