

2

﻿

POUL KLAUSEN

JAVA 6: JDBC
AND DATABASE
APPLICATIONS
SOFTWARE DEVELOPMENT

3

Java 6: JDBC and database applications: Software Development
1st edition
© 2017 Poul Klausen & bookboon.com
ISBN 978-87-403-1736-7
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 6: JDBC AND DATABASE APPLICATIONS

4

Contents

4

CONTENTS

	 Foreword	 6

1	 Introduction	 8

	 About surrogate keys	 10

2	 JDBC	 11

2.1	 HelloJDBC	 11

	 Exercise 1	 14

3	 Database operations	 15

3.1	 SQL statements	 15

	 Exercise 2	 20

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 6: JDBC AND DATABASE APPLICATIONS

5

Contents

4	 ResultSet	 22

4.1	 Update a ResultSet	 25

4.2	 Municipalities and zipcodes	 29

	 Exercise 3	 35

	 Problem 1	 35

4.3	 Stored procedures	 37

5	 Data types	 40

6	 Transactions	 47

6.1	 Bach updates	 51

	 Exercise 4	 53

7	 The component JTable	 54

7.1	 The demo program	 55

	 Problem 2	 90

8	 Files in databases	 92

	 Exercise 5	 96

9	 DDL commands	 97

10	 Final examples	 99

10.1	 World	 99

10.2	 MyWines	 107

	 Appendix A: Install MySQL	 140

	 Appendix B	 148

JAVA 6: JDBC AND DATABASE APPLICATIONS

6

Foreword

FOREWORD

This book is the sixth in a series of books on software development. The programming language
is Java, and the language and its syntax and semantics fills obviously much, but the books
have also largely focus on the process and how to develop good and robust applications.
The subject of the current book is database applications, and how to write programs in Java
that uses a database. In practice, programs that requiring many data transactions always uses
databases, and the development of database applications is an important issue and necessary
knowledge to work professionally as a software developer. In principle, it is simple, and a
good piece of the road is just a question of accepting that you should write as shown in the
book’s examples, but database programming requires knowledge of SQL, and the hardest
part is actually to write SQL statements correctly. Therefore, the book has an appendix that
provides a quick introduction to SQL and describes the most basic syntax. In addition to
SQL it is a prerequisite, to try out the book’s examples and solve the book’s exercises, that
the reader has a running database, and MySQL will be used. The book has an appendix
that shows how to install MySQL.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

JAVA 6: JDBC AND DATABASE APPLICATIONS

7

Foreword

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

-- NetBeans as IDE for application development
-- MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
-- GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 6: JDBC AND DATABASE APPLICATIONS

8

Introduction

1	 INTRODUCTION

Many applications need to use and maintain persistent data. In the preceding books, I have
solved such tasks by using object serialization or plain text files, which indeed in some cases
can be an excellent solution, but if there are large amounts of data with frequent updates,
or data where multiple users must have access to the data, it is not a viable option. In these
cases – and in practice, almost always – data are stored in databases.

A database is a collection of files that contains related data of one or another business,
but it’s a lot more because it is a software package that consists of programs that manages
and maintains the database system’s databases. This software package is called a database
management system, and by a database system is meant partly the management system as
well as the databases that the system maintains.

In this book I will address key concepts related to databases, but as the other of the books
seen by a programmer, and thus especially what a programmer needs to know. The subject
requires a specific database management system, and I will use MySQL. In fact, the system is
not so important, but MySQL is available in an open source version that can be downloaded
and installed for free. MySQL is today a powerful database system that supports all the
services that one would expect from a good database management system, and besides
MySQL is a widely used system in practice. In order to use MySQL from a Java program,
you must at least install three products:

1.	 the database management system it self, that is the MySQL server
2.	 a program called MySQL Workbench, that the user can use to manage the system
3.	 a class library called JDBC, which makes it possible to write Java applications that

uses databases

The book’s appendix A shows how these products can be installed on the machine.

The following is based on two assumptions:

1.	 that you have a running MySQL server installed with the above products (see
appendix A for how to install the products)

2.	 you have an introductory knowledge of SQL and know the most common statements
(see appendix B for an introduction).

JAVA 6: JDBC AND DATABASE APPLICATIONS

9

Introduction

To show how to use databases from a Java program, you must also have a database. Open
MySQL Workbench (see below). Perform then the command that is entered. You do this by
clicking on the third icon (lightning) in the toolbar. The result is the creation of a database
with the name padata. You may of course choose a different name if you wish, but it makes
it easier to follow the book’s examples and exercises if you choose the same name, which I
have used. So far, it is an empty database, but through the book I will create several tables
with data.

The folder to this book contains a SQL script called CreateHistorie.sql. Open this script in
MySQL Workbench. The contents are as shown below:

JAVA 6: JDBC AND DATABASE APPLICATIONS

9

IntroduCtIon

To show how to use databases from a Java program, you must also have a database. Open
MySQL Workbench (see below). Perform then the command that is entered. You do this by
clicking on the third icon (lightning) in the toolbar. The result is the creation of a database
with the name padata. You may of course choose a different name if you wish, but it makes
it easier to follow the book’s examples and exercises if you choose the same name, which I
have used. So far, it is an empty database, but through the book I will create several tables
with data.

The folder to this book contains a SQL script called CreateHistorie.sql. Open this script in
MySQL Workbench. The contents are as shown below:

use padata;
drop table if exists history;

create table history
(
 id int not null auto_increment primary key, # autogenerated surrogat key
 name varchar(50) not null, # the person's name
 title varchar(30), # the person's title
 birth int, # birth, start of reign, or equivalent
 death int, # death, end of reign, or equivalent
 country char(2), # the country the person comes from
 description text # a description
);

JAVA 6: JDBC AND DATABASE APPLICATIONS

10

Introduction

It is a script that creates a table with information about historical persons. A table consists of
rows and columns, and each row contains data (information) about a particular person. A column
has a type and a name. The name makes it possible to refer to the column in SQL statements,
while the type determines what kind of values the column can hold. Taking the above script,
indicating the first column, that the column must contain an auto-generated integer that starts
with 1 and increases by 1 each time adding a row to the table. In addition is definied that the
column must be the primary key, which means that the column’s values must be unique and
thus can serve to identify each row. The next two columns are of the type varchar, indicating
that the column can contain a string, which in this case must be maximum of, respectively 50
and 30 characters. The next two columns again may contain integers, and the column with
the name country must contain a string of 2 characters. Finally, the last column can contain
any text (however, maximum 65535 characters). The column name is defined not null, which
means that every row must have a value in that column. The other columns (except the first
that is the primary key) does not need to have a value, but may be null.

T﻿he book’s directory also contains a script InsertHistory.sql where below shows a few lines

JAVA 6: JDBC AND DATABASE APPLICATIONS

10

IntroduCtIon

It is a script that creates a table with information about historical persons. A table consists of
rows and columns, and each row contains data (information) about a particular person. A column
has a type and a name. The name makes it possible to refer to the column in SQL statements,
while the type determines what kind of values the column can hold. Taking the above script,
indicating the first column, that the column must contain an auto-generated integer that starts
with 1 and increases by 1 each time adding a row to the table. In addition is definied that the
column must be the primary key, which means that the column’s values must be unique and
thus can serve to identify each row. The next two columns are of the type varchar, indicating
that the column can contain a string, which in this case must be maximum of, respectively 50
and 30 characters. The next two columns again may contain integers, and the column with
the name country must contain a string of 2 characters. Finally, the last column can contain
any text (however, maximum 65535 characters). The column name is defined not null, which
means that every row must have a value in that column. The other columns (except the first
that is the primary key) does not need to have a value, but may be null.

The book’s directory also contains a script InsertHistory.sql where below shows a few lines

use padata;
insert into history (name, death, title, country) values
 ('Gorm den Gamle', 958, 'King', 'DK');
insert into history (name, birth, death, title, country) values
 ('Harald Blåtand', 958, 987, 'King', 'DK');
...

If you opens the script in MySQL Workbench and executes it, the script adds 52 rows to
the table history, where the rows contains data about Danish kings. The following assumes
that this table is created, and the script InsertHistory.sql is performed.

ABOUT SURROGATE KEYS

When you have to create (design) a database table, you must choose one or more columns
that can be used as the primary key (above id). This means that each row must have a unique
value in this column or columns. Is it not possible, you can define a column, which then
is assigned a unique value, and it is the case of the column id of the table history, when the
value is automatically incremented by 1 each time you add a row to the table. This column
can therefore be used as the primary key, and it is called a surrogate key corresponding to,
that it is a replacement for another key column. Actually one should, if possible, avoid
surrogate keys as they expand the table with data that does not tell anything, and in this
case one might avoid the key as the Kings have unique names and thus the name could be
used as the primary key. When I have nonetheless chosen a surrogate key, it is because a
string – a column of the type varchar – not always is a good candidate for a primary key,
first, it may be difficult to enter (you can misspell) and partly it is less effective than an int.

If you opens the script in MySQL Workbench and executes it, the script adds 52 rows to
the table history, where the rows contains data about Danish kings. The following assumes
that this table is created, and the script InsertHistory.sql is performed.

ABOUT SURROGATE KEYS

When you have to create (design) a database table, you must choose one or more columns
that can be used as the primary key (above id ). This means that each row must have a unique
value in this column or columns. Is it not possible, you can define a column, which then
is assigned a unique value, and it is the case of the column id of the table history, when the
value is automatically incremented by 1 each time you add a row to the table. This column
can therefore be used as the primary key, and it is called a surrogate key corresponding to,
that it is a replacement for another key column. Actually one should, if possible, avoid
surrogate keys as they expand the table with data that does not tell anything, and in this
case one might avoid the key as the Kings have unique names and thus the name could be
used as the primary key. When I have nonetheless chosen a surrogate key, it is because a
string – a column of the type varchar – not always is a good candidate for a primary key,
first, it may be difficult to enter (you can misspell) and partly it is less effective than an int.

JAVA 6: JDBC AND DATABASE APPLICATIONS

11

JDBC

2	 JDBC

JDBC is a family of classes that implements an interfaces defined in the JDBC API, and
which makes it possible, that a Java program can communicate with a database server. In
relation to the Java program the API has the necessary types as interfaces and classes defined
in the package java.sql, while the specific types are implemented by a JDBC driver. So there
has to be a JDBC driver available for each of the databases that the program must apply and
often it is the database supplier that develops the JDBC driver. You can think of a JDBC
driver as a layer between the database and the Java program that ensures that the program
can use the database in the same way, whether it is one or the other database system.

2.1	 HELLOJDBC

Before I go further and look at the details concerning JDBC, I will look at an example to
show that it is quite easy to use a database from a Java program. The following program
reads the rows in the table history and prints them on the screen:

JAVA 6: JDBC AND DATABASE APPLICATIONS

11

JdBC

2 JDBC

JDBC is a family of classes that implements an interfaces defined in the JDBC API, and
which makes it possible, that a Java program can communicate with a database server. In
relation to the Java program the API has the necessary types as interfaces and classes defined
in the package java.sql, while the specific types are implemented by a JDBC driver. So there
has to be a JDBC driver available for each of the databases that the program must apply and
often it is the database supplier that develops the JDBC driver. You can think of a JDBC
driver as a layer between the database and the Java program that ensures that the program
can use the database in the same way, whether it is one or the other database system.

2.1 HELLOJDBC

Before I go further and look at the details concerning JDBC, I will look at an example to
show that it is quite easy to use a database from a Java program. The following program
reads the rows in the table history and prints them on the screen:

package hellojdbc;

import java.sql.*;

public class HelloJDBC
{
 public static void main(String[] args)
 {
 Connection conn = null;
 Statement stmt = null;
 try
 {
 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");
 stmt = conn.createStatement();
 ResultSet res = stmt.executeQuery("SELECT * FROM history");
 while(res.next())
 {
 String name = res.getString("name");
 String title = res.getString("title");
 int birth = res.getInt("birth");
 int death = res.getInt("death");
 String country = res.getString("country");
 System.out.printf("%-25s%-10S%5d%5d %s\n", name, title, birth,
 death, country);
 }
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

12

JDBC

12

JAVA 6: JDBC AND DATABASE APPLICATIONS

12

JdBC

12

 catch(SQLException ex)
 {
 System.out.println(ex);
 }
 catch(Exception ex)
 {
 System.out.println(ex);
 }
 finally
 {
 try
 {
 if (stmt != null) stmt.close();
 if (conn != null) conn.close();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
 }
 }
}

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 6: JDBC AND DATABASE APPLICATIONS

13

JDBC

You must add an import statement to the necessary types:

JAVA 6: JDBC AND DATABASE APPLICATIONS

13

JdBC

You must add an import statement to the necessary types:

import java.sql.*;

Then you must define a connection to the database:

conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");

Writing this connection is in fact the only difficulty of writing database applications, as it
should be written correctly and as it depends on the specific database product. The method
getConnection() has three parameters. The first is a connection string, while the last two are
respectively the username and the password to the database. In this case, they are direct
encoded as strings, and it may of course not be the solution to an application which is used
in an operation condition, but about this later. Connection string consists of the database
server that here is a MySQL server on the local machine:

jdbc:mysql://localhost

This is followed by the port number (which incidentally is not necessary, since 3306 is
the default port number for MySQL), and finally follows the name of the database, which
here is padata. In this case, there is also provided an information that the database does
not require an SSL connection. If you need to use a database on another machine, you
must type something else than localhost (possible an IP) and you may also need to use
a different port number. Finally, be aware that the connection string looks different if is
another database than MySQL.

After the connection is defined the program creates of a Statement, which is an object that
represents a SQL statement, and the statement is executed by the method executeQuery(),
wherein the parameter is a SQL SELECT command. The result of this method is a ResultSet,
which is a collection with an object for each of the rows, the SQL command has extracted
from the database. After the statement is successful excuted, the application performs a
loop that iterates over the rows, and for each row prints a line with the values of the row’s
fields and thus the values in each column. You should note, how to refer to values using
methods in the class ResultSet and the column names from the database.

The most database operations can raise a SQLException, so the statements are placed in a
try block. The associated finally block closes the Statement and the Connection, and it is
important to release the resources allocated.

Then you must define a connection to the database:

JAVA 6: JDBC AND DATABASE APPLICATIONS

13

JdBC

You must add an import statement to the necessary types:

import java.sql.*;

Then you must define a connection to the database:

conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");

Writing this connection is in fact the only difficulty of writing database applications, as it
should be written correctly and as it depends on the specific database product. The method
getConnection() has three parameters. The first is a connection string, while the last two are
respectively the username and the password to the database. In this case, they are direct
encoded as strings, and it may of course not be the solution to an application which is used
in an operation condition, but about this later. Connection string consists of the database
server that here is a MySQL server on the local machine:

jdbc:mysql://localhost

This is followed by the port number (which incidentally is not necessary, since 3306 is
the default port number for MySQL), and finally follows the name of the database, which
here is padata. In this case, there is also provided an information that the database does
not require an SSL connection. If you need to use a database on another machine, you
must type something else than localhost (possible an IP) and you may also need to use
a different port number. Finally, be aware that the connection string looks different if is
another database than MySQL.

After the connection is defined the program creates of a Statement, which is an object that
represents a SQL statement, and the statement is executed by the method executeQuery(),
wherein the parameter is a SQL SELECT command. The result of this method is a ResultSet,
which is a collection with an object for each of the rows, the SQL command has extracted
from the database. After the statement is successful excuted, the application performs a
loop that iterates over the rows, and for each row prints a line with the values of the row’s
fields and thus the values in each column. You should note, how to refer to values using
methods in the class ResultSet and the column names from the database.

The most database operations can raise a SQLException, so the statements are placed in a
try block. The associated finally block closes the Statement and the Connection, and it is
important to release the resources allocated.

Writing this connection is in fact the only difficulty of writing database applications, as it
should be written correctly and as it depends on the specific database product. The method
getConnection() has three parameters. The first is a connection string, while the last two are
respectively the username and the password to the database. In this case, they are direct
encoded as strings, and it may of course not be the solution to an application which is used
in an operation condition, but about this later. Connection string consists of the database
server that here is a MySQL server on the local machine:

JAVA 6: JDBC AND DATABASE APPLICATIONS

13

JdBC

You must add an import statement to the necessary types:

import java.sql.*;

Then you must define a connection to the database:

conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");

Writing this connection is in fact the only difficulty of writing database applications, as it
should be written correctly and as it depends on the specific database product. The method
getConnection() has three parameters. The first is a connection string, while the last two are
respectively the username and the password to the database. In this case, they are direct
encoded as strings, and it may of course not be the solution to an application which is used
in an operation condition, but about this later. Connection string consists of the database
server that here is a MySQL server on the local machine:

jdbc:mysql://localhost

This is followed by the port number (which incidentally is not necessary, since 3306 is
the default port number for MySQL), and finally follows the name of the database, which
here is padata. In this case, there is also provided an information that the database does
not require an SSL connection. If you need to use a database on another machine, you
must type something else than localhost (possible an IP) and you may also need to use
a different port number. Finally, be aware that the connection string looks different if is
another database than MySQL.

After the connection is defined the program creates of a Statement, which is an object that
represents a SQL statement, and the statement is executed by the method executeQuery(),
wherein the parameter is a SQL SELECT command. The result of this method is a ResultSet,
which is a collection with an object for each of the rows, the SQL command has extracted
from the database. After the statement is successful excuted, the application performs a
loop that iterates over the rows, and for each row prints a line with the values of the row’s
fields and thus the values in each column. You should note, how to refer to values using
methods in the class ResultSet and the column names from the database.

The most database operations can raise a SQLException, so the statements are placed in a
try block. The associated finally block closes the Statement and the Connection, and it is
important to release the resources allocated.

T﻿his is followed by the port number (which incidentally is not necessary, since 3306 is
the default port number for MySQL), and finally follows the name of the database, which
here is padata. In this case, there is also provided an information that the database does
not require an SSL connection. If you need to use a database on another machine, you
must type something else than localhost (possible an IP) and you may also need to use
a different port number. Finally, be aware that the connection string looks different if is
another database than MySQL.

After the connection is defined the program creates of a Statement, which is an object that
represents a SQL statement, and the statement is executed by the method executeQuery(),
wherein the parameter is a SQL SELECT command. The result of this method is a ResultSet,
which is a collection with an object for each of the rows, the SQL command has extracted
from the database. After the statement is successful excuted, the application performs a
loop that iterates over the rows, and for each row prints a line with the values of the row’s
fields and thus the values in each column. You should note, how to refer to values using
methods in the class ResultSet and the column names from the database.

T﻿he most database operations can raise a SQLException, so the statements are placed in a
try block. The associated finally block closes the Statement and the Connection, and it is
important to release the resources allocated.

JAVA 6: JDBC AND DATABASE APPLICATIONS

14

JDBC

If you executes the program, you get the following result, where I have only shown the
first lines:

JAVA 6: JDBC AND DATABASE APPLICATIONS

14

JdBC

If you executes the program, you get the following result, where I have only shown the
first lines:

Gorm den Gamle KING 0 958 DK
Harald Blåtand KING 958 987 DK
Svend Tveskæg KING 987 1014 DK
Harad d. 2. KING 1014 1018 DK
Knud den Store KING 1018 1035 DK

As is apparent from this example, it is basically simple to perform a data operation from
a Java program. Of course there is more to tell than this example shows, and the the next
chapter shows many other examples, but the differences are concerning SQL actually much
more than Java.

EXERCISE 1

You must write a program that looks like HelloJDBC, but the program should only print
the name and the years and only for those persons who are either kings or queens, and
whose reign starts before 1500.

As is apparent from this example, it is basically simple to perform a data operation from
a Java program. Of course there is more to tell than this example shows, and the the next
chapter shows many other examples, but the differences are concerning SQL actually much
more than Java.

EXERCISE 1

You must write a program that looks like HelloJDBC, but the program should only print
the name and the years and only for those persons who are either kings or queens, and
whose reign starts before 1500.

JAVA 6: JDBC AND DATABASE APPLICATIONS

15

Database operations

15

3	 DATABASE OPERATIONS

T﻿he following describes a program, called DbOperations consisting of several test methods.
The methods should show how to perform the most basic database operations using JDBC,
where I only care about operations that maintains the database tables and hence SQL
INSERT, UPDATE and DELETE statements, as well as operations that extract data from
tables and thus SQL SELECT.

3.1	 SQL STATEMENTS

T﻿he following test method uses the table history, and starts to delete a row in the table,
insert a row, execute a query, update a row and finally execute a query again. This means
that the method performs all the above four database operations. The code is as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

15

dataBase operatIons

15

3 DATABASE OPERATIONS

The following describes a program, called DbOperations consisting of several test methods.
The methods should show how to perform the most basic database operations using JDBC,
where I only care about operations that maintains the database tables and hence SQL
INSERT, UPDATE and DELETE statements, as well as operations that extract data from
tables and thus SQL SELECT.

3.1 SQL STATEMENTS

The following test method uses the table history, and starts to delete a row in the table,
insert a row, execute a query, update a row and finally execute a query again. This means
that the method performs all the above four database operations. The code is as follows:

private static void test01()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 System.out.println(stmt.executeUpdate(

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 6: JDBC AND DATABASE APPLICATIONS

16

Database operations
JAVA 6: JDBC AND DATABASE APPLICATIONS

16

dataBase operatIons

 "DELETE FROM history WHERE name LIKE 'Ragnar Lodbrog'"));
 System.out.println(stmt.executeUpdate(
 "INSERT INTO history (name) VALUES('Ragnar Lodbrog')"));
 ResultSet res = stmt.executeQuery("SELECT name, title, birth, death, country
 FROM history WHERE name LIKE 'Ragnar Lodbrog'");
 while(res.next())
 System.out.printf("%-25s%-10s%5d%5d %s\n", res.getString("name"),
 res.getString("title"), res.getInt("birth"), res.getInt("death"),
 res.getString("country"));
 System.out.println(stmt.executeUpdate("UPDATE history SET title = 'Viking',
 country = 'DK' WHERE name LIKE 'Ragnar Lodbrog'"));
 res = stmt.executeQuery("SELECT name, title, birth, death, country FROM history
 WHERE name LIKE 'Ragnar Lodbrog'");
 while(res.next()) System.out.printf("%-25s%-10s%5d%5d %s\n",
 res.getString("name"), res.getString("title"), res.getInt("birth"),
 res.getInt("death"), res.getString("country"));
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

If the method is performed, you get the result:

0
1
Ragnar Lodbrog NULL 0 0 null
1
Ragnar Lodbrog VIKING 0 0 DK

In the same manner as in the program HelloJDBC the first thing is to open a connection
to the database, and it is done in exactly the same way, but with the difference, that the
Connection object this time is created within the parenteses in the try statement. This means
that the connection is automatically closed when the method exits the try block, and in
the same manner as in closing files it provides a more simple and also more readable code.
It should be noted that when a database connection is closed, it also closes any opening
statements that may be associated with the object.

If the method is performed, you get the result:

JAVA 6: JDBC AND DATABASE APPLICATIONS

16

dataBase operatIons

 "DELETE FROM history WHERE name LIKE 'Ragnar Lodbrog'"));
 System.out.println(stmt.executeUpdate(
 "INSERT INTO history (name) VALUES('Ragnar Lodbrog')"));
 ResultSet res = stmt.executeQuery("SELECT name, title, birth, death, country
 FROM history WHERE name LIKE 'Ragnar Lodbrog'");
 while(res.next())
 System.out.printf("%-25s%-10s%5d%5d %s\n", res.getString("name"),
 res.getString("title"), res.getInt("birth"), res.getInt("death"),
 res.getString("country"));
 System.out.println(stmt.executeUpdate("UPDATE history SET title = 'Viking',
 country = 'DK' WHERE name LIKE 'Ragnar Lodbrog'"));
 res = stmt.executeQuery("SELECT name, title, birth, death, country FROM history
 WHERE name LIKE 'Ragnar Lodbrog'");
 while(res.next()) System.out.printf("%-25s%-10s%5d%5d %s\n",
 res.getString("name"), res.getString("title"), res.getInt("birth"),
 res.getInt("death"), res.getString("country"));
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

If the method is performed, you get the result:

0
1
Ragnar Lodbrog NULL 0 0 null
1
Ragnar Lodbrog VIKING 0 0 DK

In the same manner as in the program HelloJDBC the first thing is to open a connection
to the database, and it is done in exactly the same way, but with the difference, that the
Connection object this time is created within the parenteses in the try statement. This means
that the connection is automatically closed when the method exits the try block, and in
the same manner as in closing files it provides a more simple and also more readable code.
It should be noted that when a database connection is closed, it also closes any opening
statements that may be associated with the object.

In the same manner as in the program HelloJDBC the first thing is to open a connection
to the database, and it is done in exactly the same way, but with the difference, that the
Connection object this time is created within the parenteses in the try statement. This means
that the connection is automatically closed when the method exits the try block, and in
the same manner as in closing files it provides a more simple and also more readable code.
It should be noted that when a database connection is closed, it also closes any opening
statements that may be associated with the object.

JAVA 6: JDBC AND DATABASE APPLICATIONS

17

Database operations

T﻿he try block starts to create a Statement object, and the next statement performs a SQL
DELETE. It is executed with the method executeUpdate() which, in addition to DELETE
is used to perform INSERT and UPDATE statements. The method returns the number
of rows that have changed. In this case, the statement delete the rows in which the name’s
value is Ragnar Lodbrog. If this is the first time that the method is run, there may not be
such a row, and the method will return 0. If the method has been completed, there are a
row with that value in the column name, and the method will return 1 and then will print
1 on the screen corresponding to the above result.

T﻿he next statement performs a SQL INSERT and inserts thus a row in the table. You should
note that the statement only add a value in the column name, which is okay because the
other columns allow null values. When this statement is executed, the method also prints
1 on the screen, because there are inserted one row in the table.

T﻿he next statement again performs a SQL SELECT, and this time it’s with executeQuery(),
which just is used to execute a SELECT. The query extract the rows where the column
name has the value Ragnar Lodbrog. There is only one such row, and the row is printed in
the next statement. The result is as shown in the third line above. Note that the method
loops over the objects in the ResultSet object using a while loop. It is obviously no need
for a loop when I know that there is only one row, but it is necessary to perform res.next()
to step to the first row.

Finally is performed a SQL UPDATE and again with the method executeUpdate(), and as
the last is performed a new query, showing that the row has been updated.

PREPAREDSTATEMENTS

In the above examples, all database operations are executed with a Statement object, which
is an object that represents a static SQL statement, and thus an SQL statement that can not
be changed. There is also a class called PreparedStatement, which represents a parameterized
SQL statement. The objective of the following test method is to show how, a SQL expression
can use parameters.

T﻿he project DbOperations have a class called Person that represents a row in the table history.
This means that class contains a variable for each column in the table:

JAVA 6: JDBC AND DATABASE APPLICATIONS

17

dataBase operatIons

The try block starts to create a Statement object, and the next statement performs a SQL
DELETE. It is executed with the method executeUpdate() which, in addition to DELETE
is used to perform INSERT and UPDATE statements. The method returns the number
of rows that have changed. In this case, the statement delete the rows in which the name’s
value is Ragnar Lodbrog. If this is the first time that the method is run, there may not be
such a row, and the method will return 0. If the method has been completed, there are a
row with that value in the column name, and the method will return 1 and then will print
1 on the screen corresponding to the above result.

The next statement performs a SQL INSERT and inserts thus a row in the table. You should
note that the statement only add a value in the column name, which is okay because the
other columns allow null values. When this statement is executed, the method also prints
1 on the screen, because there are inserted one row in the table.

The next statement again performs a SQL SELECT, and this time it’s with executeQuery(),
which just is used to execute a SELECT. The query extract the rows where the column
name has the value Ragnar Lodbrog. There is only one such row, and the row is printed in
the next statement. The result is as shown in the third line above. Note that the method
loops over the objects in the ResultSet object using a while loop. It is obviously no need
for a loop when I know that there is only one row, but it is necessary to perform res.next()
to step to the first row.

Finally is performed a SQL UPDATE and again with the method executeUpdate(), and as
the last is performed a new query, showing that the row has been updated.

PREPAREDSTATEMENTS

In the above examples, all database operations are executed with a Statement object, which
is an object that represents a static SQL statement, and thus an SQL statement that can not
be changed. There is also a class called PreparedStatement, which represents a parameterized
SQL statement. The objective of the following test method is to show how, a SQL expression
can use parameters.

The project DbOperations have a class called Person that represents a row in the table history.
This means that class contains a variable for each column in the table:

public class Person implements Comparable<Person>, Serializable
{
 private int id; // number, that is a surrogate key in the database
 private String name; // the person's name
 private String title; // the person's title

JAVA 6: JDBC AND DATABASE APPLICATIONS

18

Database operations

18

JAVA 6: JDBC AND DATABASE APPLICATIONS

18

dataBase operatIons

18

 private Integer birth; // birth, start to reign or other
 private Integer death; // year of death
 private String country; // country code as two characters
 private String description; // a description of the person

I will not show the full class here, partly because I earlier have seen on an almost identical
class, and partly because the class consisting primarily of get and set methods. Note, however,
that the type of birth and death is Integer not int. The reason is that the two columns in
the database could contain null (and an int can not be null).

The class DbOperations has the following method that creates an ArrayList with some Person
objects (I have only shown the first person – there are 12):

private static List<Person> createPersons()
{
 List<Person> list = new ArrayList();
 list.add(new Person(
 "Chlochilaicus", "Legends king", null, null, "DK", "Ruled about 515"));
 ...
 return list;
}

I will not show the full class here, partly because I earlier have seen on an almost identical
class, and partly because the class consisting primarily of get and set methods. Note, however,
that the type of birth and death is Integer not int. The reason is that the two columns in
the database could contain null (and an int can not be null ).

T﻿he class DbOperations has the following method that creates an ArrayList with some Person
objects (I have only shown the first person – there are 12):

JAVA 6: JDBC AND DATABASE APPLICATIONS

18

dataBase operatIons

18

 private Integer birth; // birth, start to reign or other
 private Integer death; // year of death
 private String country; // country code as two characters
 private String description; // a description of the person

I will not show the full class here, partly because I earlier have seen on an almost identical
class, and partly because the class consisting primarily of get and set methods. Note, however,
that the type of birth and death is Integer not int. The reason is that the two columns in
the database could contain null (and an int can not be null).

The class DbOperations has the following method that creates an ArrayList with some Person
objects (I have only shown the first person – there are 12):

private static List<Person> createPersons()
{
 List<Person> list = new ArrayList();
 list.add(new Person(
 "Chlochilaicus", "Legends king", null, null, "DK", "Ruled about 515"));
 ...
 return list;
}

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 6: JDBC AND DATABASE APPLICATIONS

19

Database operations

Then the test method:

JAVA 6: JDBC AND DATABASE APPLICATIONS

19

dataBase operatIons

Then the test method:

private static void test02()
{
 List<Person> list = createPersons();
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 PreparedStatement stmt =
 conn.prepareStatement("DELETE FROM history WHERE name LIKE ?");
 for (Person pers : list)
 {
 stmt.setString(1, pers.getName());
 stmt.executeUpdate();
 }
 stmt = conn.prepareStatement("INSERT INTO history
 (name, title, birth, death, country, description) VALUES (?, ?, ?, ?, ?, ?)");
 for (Person pers : list)
 {
 stmt.setString(1, pers.getName());
 stmt.setString(2, pers.getTitle());
 if (pers.getBirth() == null) stmt.setNull(3, java.sql.Types.INTEGER);
 else stmt.setInt(3, pers.getBirth());
 if (pers.getDeath() == null) stmt.setNull(4, java.sql.Types.INTEGER);
 else stmt.setInt(4, pers.getDeath());
 stmt.setString(5, pers.getCountry());
 stmt.setString(6, pers.getDescription());
 stmt.executeUpdate();
 }
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
 print("SELECT * FROM history WHERE title LIKE 'Legends king'");
}

First the method creates a list with the 12 Person objects. Then, opening a connection
to the database, and for this connection is created a PreparedStatement object. The class
PreparedStatement is derived from Statement and represents as such a SQL expression, but
an expression that may have parameters. In this case it is a SQL DELETE, and there is a
single parameter that is indicated with a question mark. The next loop must delete all the
people in the list (if available), and for each iteration the loop performs a DELETE, but
first it must insert a value for the column name in the SQL expression. That is, that the
question mark must be replaced by a value:

stmt.setString(1, pers.getNavn());

First the method creates a list with the 12 Person objects. Then, opening a connection
to the database, and for this connection is created a PreparedStatement object. The class
PreparedStatement is derived from Statement and represents as such a SQL expression, but
an expression that may have parameters. In this case it is a SQL DELETE, and there is a
single parameter that is indicated with a question mark. The next loop must delete all the
people in the list (if available), and for each iteration the loop performs a DELETE, but
first it must insert a value for the column name in the SQL expression. That is, that the
question mark must be replaced by a value:

JAVA 6: JDBC AND DATABASE APPLICATIONS

19

dataBase operatIons

Then the test method:

private static void test02()
{
 List<Person> list = createPersons();
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 PreparedStatement stmt =
 conn.prepareStatement("DELETE FROM history WHERE name LIKE ?");
 for (Person pers : list)
 {
 stmt.setString(1, pers.getName());
 stmt.executeUpdate();
 }
 stmt = conn.prepareStatement("INSERT INTO history
 (name, title, birth, death, country, description) VALUES (?, ?, ?, ?, ?, ?)");
 for (Person pers : list)
 {
 stmt.setString(1, pers.getName());
 stmt.setString(2, pers.getTitle());
 if (pers.getBirth() == null) stmt.setNull(3, java.sql.Types.INTEGER);
 else stmt.setInt(3, pers.getBirth());
 if (pers.getDeath() == null) stmt.setNull(4, java.sql.Types.INTEGER);
 else stmt.setInt(4, pers.getDeath());
 stmt.setString(5, pers.getCountry());
 stmt.setString(6, pers.getDescription());
 stmt.executeUpdate();
 }
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
 print("SELECT * FROM history WHERE title LIKE 'Legends king'");
}

First the method creates a list with the 12 Person objects. Then, opening a connection
to the database, and for this connection is created a PreparedStatement object. The class
PreparedStatement is derived from Statement and represents as such a SQL expression, but
an expression that may have parameters. In this case it is a SQL DELETE, and there is a
single parameter that is indicated with a question mark. The next loop must delete all the
people in the list (if available), and for each iteration the loop performs a DELETE, but
first it must insert a value for the column name in the SQL expression. That is, that the
question mark must be replaced by a value:

stmt.setString(1, pers.getNavn());

JAVA 6: JDBC AND DATABASE APPLICATIONS

20

Database operations

Here, 1 indicates it is the first parameter (and there is just the same), while the last parameter
is the value. The value is assigned the stmt object with setString() as the type of the column
is VARCHAR. There are similar methods for other column types.

When the loop is completed, another PreparedStatement is created, but this time for a SQL
INSERT. It has no fewer than six parameters, and it is used to insert a row in the table for
each person in the list. It happens in a loop, and for each repetition, the 6 parameters are
initialized. You should especially note how to specify that a value must be null.

Finally the test method perfoms the method print() with a SQL SELECT as parameter,
which is a method that prints the rows extracted.

EXERCISE 2

You should use MySQL Workbench to add a new table to the database padata. You should
do this by writing a script (the same way as shown for the table history) when the table
should be named currency, and it should have three columns:

1.	 code, which must be a currency code of three characters, which must be the
primary key

2.	name, that must be the name of the currency and can be up to 30 characters
3.	 rate, which must be the exchange rate and having the type DECIMAL with room

for 10 digits and 4 after the decimal point

You must then write a program using the following array to update the currency table. The
program should start by deleting the entire contents of the table (with a simple DELETE),
and then it must use a PreparedStatment and insert a row for each string in the array:

JAVA 6: JDBC AND DATABASE APPLICATIONS

20

dataBase operatIons

Here, 1 indicates it is the first parameter (and there is just the same), while the last parameter
is the value. The value is assigned the stmt object with setString() as the type of the column
is VARCHAR. There are similar methods for other column types.

When the loop is completed, another PreparedStatement is created, but this time for a SQL
INSERT. It has no fewer than six parameters, and it is used to insert a row in the table for
each person in the list. It happens in a loop, and for each repetition, the 6 parameters are
initialized. You should especially note how to specify that a value must be null.

Finally the test method perfoms the method print() with a SQL SELECT as parameter,
which is a method that prints the rows extracted.

EXERCISE 2

You should use MySQL Workbench to add a new table to the database padata. You should
do this by writing a script (the same way as shown for the table history) when the table
should be named currency, and it should have three columns:

1. code, which must be a currency code of three characters, which must be the
primary key

2. name, that must be the name of the currency and can be up to 30 characters
3. rate, which must be the exchange rate and having the type DECIMAL with room

for 10 digits and 4 after the decimal point

You must then write a program using the following array to update the currency table. The
program should start by deleting the entire contents of the table (with a simple DELETE),
and then it must use a PreparedStatment and insert a row for each string in the array:

private static String[] kurser =
{
 "Danske kroner;DKK;100.00",
 "Euro;EUR;746.00",
 "Amerikanske dollar;USD;674.44",
 "Britiske pund;GBP;1034.10",
 "Svenske kroner;SEK;79.31",
 "Norske kroner;NOK;79.68",
 "Schweiziske franc;CHF;685.66",
 "Japanske yen;JPY;5.6065",
 "Australske dollar;AUD;487.61",
 "Brasilianske real;BRL;171.98",
 "Bulgarske lev;BGN;381.43",
 "Canadiske dollar;CAD;510.19",
 "Filippinske peso;PHP;14.40",
 "Hongkong dollar;HKD;87.02",
 "Indiske rupee;INR;10.38",

JAVA 6: JDBC AND DATABASE APPLICATIONS

21

Database operations

21

JAVA 6: JDBC AND DATABASE APPLICATIONS

21

dataBase operatIons

21

 "Indonesiske rupiah;IDR;0.0494",
 "Israelske shekel;ILS;174.48",
 "Kinesiske Yuan renminbi;CNY;106.17",
 "Kroatiske kuna;HRK;97.87",
 "Malaysiske ringgit;MYR;157.78",
 "Mexicanske peso;MXN;40.65",
 "New Zealandske dollar;NZD;458.77",
 "Polske zloty;PLN;173.82",
 "Rumænske lei;RON;168.13",
 "Russiske rubel;RUB;10.42",
 "Singapore dollar;SGD;483.72",
 "Sydafrikanske rand;ZAR;49.08",
 "Sydkoreanske won;KRW;0.5933",
 "Thailandske baht;THB;19.00",
 "Tjekkiske koruna;CZK;27.53",
 "Tyrkiske lira;TRY;231.78",
 "Ungarske forint;HUF;2.385"
};

To insert a value for the rate in a PreparedStatement, you must specify that the type is
DECIMAL, and here you can use setBigDecimal().

Before you run the program, you may update the array with today’s current rates.

To insert a value for the rate in a PreparedStatement, you must specify that the type is
DECIMAL, and here you can use setBigDecimal().

Before you run the program, you may update the array with today’s current rates.

http://s.bookboon.com/elearningforkids

JAVA 6: JDBC AND DATABASE APPLICATIONS

22

ResultSet

4	 RESULTSET

T﻿he most complex SQL statement is SELECT, and it is a very complex statement with many
options. From a Java program you can perform a SQL SELECT with executeQuery(), and
although the SELECT statement can be complex, the result seen from the Java program is
always the same: A ResultSet object. You can think of the object as a collection of objects
with an internal cursor that points to a current object (a row), or the cursor is null if it is
not pointing to anything. The class ResultSet defines many methods that can basically be
divided into three kinds:

1.	methods to move the cursor
2.	 get methods that returns the value for a column at the current row
3.	update methods that update the column value for the current row and you even

have the opportunity to write the changes back to the database

To create a Statement object, I have so far used the following syntax:

JAVA 6: JDBC AND DATABASE APPLICATIONS

22

resultset

4 RESULTSET

The most complex SQL statement is SELECT, and it is a very complex statement with many
options. From a Java program you can perform a SQL SELECT with executeQuery(), and
although the SELECT statement can be complex, the result seen from the Java program is
always the same: A ResultSet object. You can think of the object as a collection of objects
with an internal cursor that points to a current object (a row), or the cursor is null if it is
not pointing to anything. The class ResultSet defines many methods that can basically be
divided into three kinds:

1. methods to move the cursor
2. get methods that returns the value for a column at the current row
3. update methods that update the column value for the current row and you even

have the opportunity to write the changes back to the database

To create a Statement object, I have so far used the following syntax:

Statement stmt = connection.createStatement();

that creates a Statement object, but createStatement() has an override of the form:

createStatement(int resultSetType, int resultSetConcurrency)

Here you can for the first parameter set three values:

1. ResultSet.TYPE_FORWARD_ONLY, that means, that the cursor can move forward
and is the default value

2. ResultSet.TYPE_SCROLL_INSENSITIVE, that means, that the cursor kan move
both back and forth, and that the ResultSet is not updated with changes that other
users had to make to the database after this ResulSet is created

3. ResultSet.TYPE_SCROLL_SENSITIVE, which means the same as above, but with
the difference that the resultset is updated with changes that other users had to
make to the database after this ResulSet is created

As default a ResulSet is readonly, but for the last of above two parameters there are two options

1. ResultSet.CONCUR_READ_ONLY, that creates a readonly ResultSet and is the default
2. ResultSet.CONCUR_UPDATABLE, which creates a ResultSet, that is updatable

that creates a Statement object, but createStatement() has an override of the form:

JAVA 6: JDBC AND DATABASE APPLICATIONS

22

resultset

4 RESULTSET

The most complex SQL statement is SELECT, and it is a very complex statement with many
options. From a Java program you can perform a SQL SELECT with executeQuery(), and
although the SELECT statement can be complex, the result seen from the Java program is
always the same: A ResultSet object. You can think of the object as a collection of objects
with an internal cursor that points to a current object (a row), or the cursor is null if it is
not pointing to anything. The class ResultSet defines many methods that can basically be
divided into three kinds:

1. methods to move the cursor
2. get methods that returns the value for a column at the current row
3. update methods that update the column value for the current row and you even

have the opportunity to write the changes back to the database

To create a Statement object, I have so far used the following syntax:

Statement stmt = connection.createStatement();

that creates a Statement object, but createStatement() has an override of the form:

createStatement(int resultSetType, int resultSetConcurrency)

Here you can for the first parameter set three values:

1. ResultSet.TYPE_FORWARD_ONLY, that means, that the cursor can move forward
and is the default value

2. ResultSet.TYPE_SCROLL_INSENSITIVE, that means, that the cursor kan move
both back and forth, and that the ResultSet is not updated with changes that other
users had to make to the database after this ResulSet is created

3. ResultSet.TYPE_SCROLL_SENSITIVE, which means the same as above, but with
the difference that the resultset is updated with changes that other users had to
make to the database after this ResulSet is created

As default a ResulSet is readonly, but for the last of above two parameters there are two options

1. ResultSet.CONCUR_READ_ONLY, that creates a readonly ResultSet and is the default
2. ResultSet.CONCUR_UPDATABLE, which creates a ResultSet, that is updatable

Here you can for the first parameter set three values:

1.	ResultSet.TYPE_FORWARD_ONLY, that means, that the cursor can move forward
and is the default value

2.	ResultSet.TYPE_SCROLL_INSENSITIVE, that means, that the cursor kan move
both back and forth, and that the ResultSet is not updated with changes that other
users had to make to the database after this ResulSet is created

3.	ResultSet.TYPE_SCROLL_SENSITIVE, which means the same as above, but with
the difference that the resultset is updated with changes that other users had to
make to the database after this ResulSet is created

As default a ResulSet is readonly, but for the last of above two parameters there are two options

1.	ResultSet.CONCUR_READ_ONLY, that creates a readonly ResultSet and is the default
2.	ResultSet.CONCUR_UPDATABLE, which creates a ResultSet, that is updatable

JAVA 6: JDBC AND DATABASE APPLICATIONS

23

ResultSet

You can set the same parameters for prepareStatement() with the following syntax:

JAVA 6: JDBC AND DATABASE APPLICATIONS

23

resultset

You can set the same parameters for prepareStatement() with the following syntax:

prepareStatement(String sql, int resultSetType, int resultSetConcurrency)

A ResulSet has many ways to navigate the cursor, and you are encouraged to examine
the options. They are basically self-explanatory, and the following test method (which is a
method in DbOperations) gives examples of the use of the methods on a ResultSet, where
you can scroll back and forth:

private static void test03()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
 ResultSet res = stmt.executeQuery("SELECT name, birth, death FROM history
 where title LIKE 'King' OR title LIKE 'Queen'");
 res.last();
 print(res);
 res.first();
 print(res);
 res.next();
 print(res);
 res.previous();
 print(res);
 res.absolute(50);
 print(res);
 res.relative(-5);
 print(res);
 res.afterLast();
 while (res.previous()) if (res.getString(1).startsWith("Gorm")) break;
 print(res);
 System.out.println(res.getRow());
 res.last();
 System.out.println(res.getRow() + 1);
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

A ResulSet has many ways to navigate the cursor, and you are encouraged to examine
the options. They are basically self-explanatory, and the following test method (which is a
method in DbOperations) gives examples of the use of the methods on a ResultSet, where
you can scroll back and forth:

JAVA 6: JDBC AND DATABASE APPLICATIONS

23

resultset

You can set the same parameters for prepareStatement() with the following syntax:

prepareStatement(String sql, int resultSetType, int resultSetConcurrency)

A ResulSet has many ways to navigate the cursor, and you are encouraged to examine
the options. They are basically self-explanatory, and the following test method (which is a
method in DbOperations) gives examples of the use of the methods on a ResultSet, where
you can scroll back and forth:

private static void test03()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
 ResultSet res = stmt.executeQuery("SELECT name, birth, death FROM history
 where title LIKE 'King' OR title LIKE 'Queen'");
 res.last();
 print(res);
 res.first();
 print(res);
 res.next();
 print(res);
 res.previous();
 print(res);
 res.absolute(50);
 print(res);
 res.relative(-5);
 print(res);
 res.afterLast();
 while (res.previous()) if (res.getString(1).startsWith("Gorm")) break;
 print(res);
 System.out.println(res.getRow());
 res.last();
 System.out.println(res.getRow() + 1);
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

24

ResultSet

24

If you performs the method, you get the result:

JAVA 6: JDBC AND DATABASE APPLICATIONS

24

resultset

24

If you performs the method, you get the result:

Margrethe d. 2. 1972 0
Gorm den Gamle 0 958
Harald Blåtand 958 987
Gorm den Gamle 0 958
Frederik d. 9. 1947 1972
Christian d. 8. 1839 1848
Gorm den Gamle 0 958
1
52

Each line are printed with the method

private static void print(ResultSet res)
{
 try
 {
 String name = res.getString(1);
 int birth = res.getInt(2);
 int death = res.getInt(3);
 System.out.printf("%-20s%5d%5d\n", name, birth, death);
 }

Each line are printed with the method

JAVA 6: JDBC AND DATABASE APPLICATIONS

24

resultset

24

If you performs the method, you get the result:

Margrethe d. 2. 1972 0
Gorm den Gamle 0 958
Harald Blåtand 958 987
Gorm den Gamle 0 958
Frederik d. 9. 1947 1972
Christian d. 8. 1839 1848
Gorm den Gamle 0 958
1
52

Each line are printed with the method

private static void print(ResultSet res)
{
 try
 {
 String name = res.getString(1);
 int birth = res.getInt(2);
 int death = res.getInt(3);
 System.out.printf("%-20s%5d%5d\n", name, birth, death);
 }

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 6: JDBC AND DATABASE APPLICATIONS

25

ResultSet
JAVA 6: JDBC AND DATABASE APPLICATIONS

25

resultset

 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

A resultset has a number of methods used to retrieve the values for the current row, and
in the foregoing examples, I each time has referenced the values with the column name.
Actually, it is also allowed to enter an index, starting with 1 for the first column. You should
note that the index does not refer to the physical table, but the columns specified in the
SELECT statement. In this case, there are three columns, and the indexes are therefore 1,
2 and 3.

4.1 UPDATE A RESULTSET

The following test method shows that one can update a resultset:

private static void test04()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet res = stmt.executeQuery("SELECT * FROM history");
 insert(res);
 res.last();
 printRow(res);
 update(res, "King", "Probably lived between the years 400 and 500");
 printRow(res);
 update(res, "Legends king", res.getString("description") +
 " and his story is described in Rolf Krake's Saga");
 printRow(res);
 while (true)
 {
 res = stmt.executeQuery("SELECT id FROM history WHERE name LIKE 'Rolf%'");
 if (res.next())
 {
 int id;
 System.out.println(id = res.getInt("id"));
 print("SELECT * FROM history WHERE id = " + id);
 delete(res);
 } else break;
 }
 }

A resultset has a number of methods used to retrieve the values for the current row, and
in the foregoing examples, I each time has referenced the values with the column name.
Actually, it is also allowed to enter an index, starting with 1 for the first column. You should
note that the index does not refer to the physical table, but the columns specified in the
SELECT statement. In this case, there are three columns, and the indexes are therefore 1,
2 and 3.

4.1	 UPDATE A RESULTSET

T﻿he following test method shows that one can update a resultset:

JAVA 6: JDBC AND DATABASE APPLICATIONS

25

resultset

 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

A resultset has a number of methods used to retrieve the values for the current row, and
in the foregoing examples, I each time has referenced the values with the column name.
Actually, it is also allowed to enter an index, starting with 1 for the first column. You should
note that the index does not refer to the physical table, but the columns specified in the
SELECT statement. In this case, there are three columns, and the indexes are therefore 1,
2 and 3.

4.1 UPDATE A RESULTSET

The following test method shows that one can update a resultset:

private static void test04()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet res = stmt.executeQuery("SELECT * FROM history");
 insert(res);
 res.last();
 printRow(res);
 update(res, "King", "Probably lived between the years 400 and 500");
 printRow(res);
 update(res, "Legends king", res.getString("description") +
 " and his story is described in Rolf Krake's Saga");
 printRow(res);
 while (true)
 {
 res = stmt.executeQuery("SELECT id FROM history WHERE name LIKE 'Rolf%'");
 if (res.next())
 {
 int id;
 System.out.println(id = res.getInt("id"));
 print("SELECT * FROM history WHERE id = " + id);
 delete(res);
 } else break;
 }
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

26

ResultSet
JAVA 6: JDBC AND DATABASE APPLICATIONS

26

resultset

 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

First, you notice that the creation of a Statement object that allows you to update a ResultSet.
Next, all rows are extracted from the table history, and then the method insert() is called
with the ResultSet as a parameter:

private static void insert(ResultSet res)
{
 try
 {
 res.moveToInsertRow();
 res.updateString("name", "Rolf Krake");
 res.updateString("country", "DK");
 res.insertRow();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

This method adds a new row to the ResultSet object and assigns values to two of the columns.
The last method writes the changes physically back to the database. If you do not want that,
you can omit this statement, and the row is just inserted in the ResultSet object in memonry.

After the new row is inserted, the test method set the cursor to the last row and the prints
the row by a method printRow(). The next statement calls a method update(), which updates
the row that the cursor points to:

private static void update(ResultSet res, String title, String description)
{
 try
 {
 res.updateString("title", title);
 res.updateString("description", description);
 res.updateRow();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

First, you notice that the creation of a Statement object that allows you to update a ResultSet.
Next, all rows are extracted from the table history, and then the method insert() is called
with the ResultSet as a parameter:

JAVA 6: JDBC AND DATABASE APPLICATIONS

26

resultset

 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

First, you notice that the creation of a Statement object that allows you to update a ResultSet.
Next, all rows are extracted from the table history, and then the method insert() is called
with the ResultSet as a parameter:

private static void insert(ResultSet res)
{
 try
 {
 res.moveToInsertRow();
 res.updateString("name", "Rolf Krake");
 res.updateString("country", "DK");
 res.insertRow();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

This method adds a new row to the ResultSet object and assigns values to two of the columns.
The last method writes the changes physically back to the database. If you do not want that,
you can omit this statement, and the row is just inserted in the ResultSet object in memonry.

After the new row is inserted, the test method set the cursor to the last row and the prints
the row by a method printRow(). The next statement calls a method update(), which updates
the row that the cursor points to:

private static void update(ResultSet res, String title, String description)
{
 try
 {
 res.updateString("title", title);
 res.updateString("description", description);
 res.updateRow();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

T﻿his method adds a new row to the ResultSet object and assigns values to two of the columns.
The last method writes the changes physically back to the database. If you do not want that,
you can omit this statement, and the row is just inserted in the ResultSet object in memonry.

After the new row is inserted, the test method set the cursor to the last row and the prints
the row by a method printRow(). The next statement calls a method update(), which updates
the row that the cursor points to:

JAVA 6: JDBC AND DATABASE APPLICATIONS

26

resultset

 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

First, you notice that the creation of a Statement object that allows you to update a ResultSet.
Next, all rows are extracted from the table history, and then the method insert() is called
with the ResultSet as a parameter:

private static void insert(ResultSet res)
{
 try
 {
 res.moveToInsertRow();
 res.updateString("name", "Rolf Krake");
 res.updateString("country", "DK");
 res.insertRow();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

This method adds a new row to the ResultSet object and assigns values to two of the columns.
The last method writes the changes physically back to the database. If you do not want that,
you can omit this statement, and the row is just inserted in the ResultSet object in memonry.

After the new row is inserted, the test method set the cursor to the last row and the prints
the row by a method printRow(). The next statement calls a method update(), which updates
the row that the cursor points to:

private static void update(ResultSet res, String title, String description)
{
 try
 {
 res.updateString("title", title);
 res.updateString("description", description);
 res.updateRow();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

27

ResultSet

27

T﻿here is updated two columns, and again it’s the last statement, which writes the changes
back to the database. The test method prints then the row again, so you can see that the
changes are made, after which the row is updated once again.

Next, the method performs an infinite while loop where it starts to execute a query on
persons where the name starts with Rolf. There should only be 1. If there is such a row (res.
next() is true) the row is removed with the method delete(). If the row is not found a break
is performed, and the loop stops. The goals is to show that the updates are physically in
the database, so that in the next iteration, no rows are found. The method delete() is quite
simple and deletes the row that the cursor points to:

JAVA 6: JDBC AND DATABASE APPLICATIONS

27

resultset

27

There is updated two columns, and again it’s the last statement, which writes the changes
back to the database. The test method prints then the row again, so you can see that the
changes are made, after which the row is updated once again.

Next, the method performs an infinite while loop where it starts to execute a query on
persons where the name starts with Rolf. There should only be 1. If there is such a row (res.
next() is true) the row is removed with the method delete(). If the row is not found a break
is performed, and the loop stops. The goals is to show that the updates are physically in
the database, so that in the next iteration, no rows are found. The method delete() is quite
simple and deletes the row that the cursor points to:

private static void delete(ResultSet res)
{
 try
 {
 res.deleteRow();
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 6: JDBC AND DATABASE APPLICATIONS

28

ResultSet

You should note that the test method’s while loop in case there are found a row calls the
method print() with a SQL expression as a parameter. The objective is to show that the
new row is available on request associated with another connection, and thus the row is
physically stored in the database. If you performs the test method, the result could be:

JAVA 6: JDBC AND DATABASE APPLICATIONS

28

resultset

You should note that the test method’s while loop in case there are found a row calls the
method print() with a SQL expression as a parameter. The objective is to show that the
new row is available on request associated with another connection, and thus the row is
physically stored in the database. If you performs the test method, the result could be:

Rolf Krake null 0 0 DK
null

Rolf Krake King 0 0 DK
Probably lived between the years 400 and 500

Rolf Krake Legends king 0 0 DK
Probably lived between the years 400 and 500 and his
story is described in Rolf Krake's Saga

70
Rolf Krake Legends king 0 0 DK
Probably lived between the years 400 and 500 and his

story is described in Rolf Krake's Saga

The test method also uses a method printRow(), which prints a row on the screen (the row
that the cursor points to). The method requires no special explanation and is not shown
here, but it is has a statement that is commented out:

// System.out.println(res.rowInserted() + " " + res.rowUpdated() + " " +
 res.rowDeleted());

When it is commented out, it is simply because it does not work. The method should test
whether a ResultSet has a row that is inserted, updated, or deleted, and where the changes
are not yet written back to the database. Note specifically that when a row is deleted, there
is nothing else, than the row is marked as deleted in the resultset, but it is not removed.
These methods are described in the JDBC standard, but it is not the same as the supplier of
the JDBC driver implements these methods and it does not apply to the JDBC driver for
MySQL. The lesson is that whether the characteristics of the JDBC standard is implemented,
depends on the specific driver, and thus of the database product used, but also the version
of the driver.

T﻿he test method also uses a method printRow(), which prints a row on the screen (the row
that the cursor points to). The method requires no special explanation and is not shown
here, but it is has a statement that is commented out:

JAVA 6: JDBC AND DATABASE APPLICATIONS

28

resultset

You should note that the test method’s while loop in case there are found a row calls the
method print() with a SQL expression as a parameter. The objective is to show that the
new row is available on request associated with another connection, and thus the row is
physically stored in the database. If you performs the test method, the result could be:

Rolf Krake null 0 0 DK
null

Rolf Krake King 0 0 DK
Probably lived between the years 400 and 500

Rolf Krake Legends king 0 0 DK
Probably lived between the years 400 and 500 and his
story is described in Rolf Krake's Saga

70
Rolf Krake Legends king 0 0 DK
Probably lived between the years 400 and 500 and his

story is described in Rolf Krake's Saga

The test method also uses a method printRow(), which prints a row on the screen (the row
that the cursor points to). The method requires no special explanation and is not shown
here, but it is has a statement that is commented out:

// System.out.println(res.rowInserted() + " " + res.rowUpdated() + " " +
 res.rowDeleted());

When it is commented out, it is simply because it does not work. The method should test
whether a ResultSet has a row that is inserted, updated, or deleted, and where the changes
are not yet written back to the database. Note specifically that when a row is deleted, there
is nothing else, than the row is marked as deleted in the resultset, but it is not removed.
These methods are described in the JDBC standard, but it is not the same as the supplier of
the JDBC driver implements these methods and it does not apply to the JDBC driver for
MySQL. The lesson is that whether the characteristics of the JDBC standard is implemented,
depends on the specific driver, and thus of the database product used, but also the version
of the driver.

When it is commented out, it is simply because it does not work. The method should test
whether a ResultSet has a row that is inserted, updated, or deleted, and where the changes
are not yet written back to the database. Note specifically that when a row is deleted, there
is nothing else, than the row is marked as deleted in the resultset, but it is not removed.
These methods are described in the JDBC standard, but it is not the same as the supplier of
the JDBC driver implements these methods and it does not apply to the JDBC driver for
MySQL. The lesson is that whether the characteristics of the JDBC standard is implemented,
depends on the specific driver, and thus of the database product used, but also the version
of the driver.

JAVA 6: JDBC AND DATABASE APPLICATIONS

29

ResultSet

4.2	 MUNICIPALITIES AND ZIPCODES

Following the above, I will show a more realistic example of a database application. The
database is still padata, but I will expands it with four new tables. The first should be a
table of Danish regions:

regnr name

1081 Region Nordjylland

1082 Region Midtjylland

1083 Region Syddanmark

1084 Region Hovedstaden

1085 Region Sjælland

and is thus a simple table with two columns and five rows. The next table is a table of
Danish municipalities, where each municipality is recorded as

1.	 the municipality number (a unique number of 3 digits)
2.	 the municipality name
3.	 the region, that the municipalty belongs to
4.	 the municipality’s area in square kilometers
5.	 the municipality’s inhabitants
6.	 year of the municipality’s inhabitants

The region is the region number, so there is a 1:n relation between municipalities and
regions, such that each municipality is linked to a specific region.

The third table is a table of Danish zip codes and is a simple table with two columns that
contain respectively the code and the city name.

A municipality uses several zip codes, and a specific zip code can actually be used by several
municipalities, and such there is an m:n relation between municipalities and zip codes. Such a
relationship is implemented with a table where a row connects a zip code and a municipality.

Accordingly, you can expand the database with four new tables using the following script:

JAVA 6: JDBC AND DATABASE APPLICATIONS

29

resultset

4.2 MUNICIPALITIES AND ZIPCODES

Following the above, I will show a more realistic example of a database application. The
database is still padata, but I will expands it with four new tables. The first should be a
table of Danish regions:

regnr name

1081 Region Nordjylland

1082 Region Midtjylland

1083 Region Syddanmark

1084 Region Hovedstaden

1085 Region Sjælland

and is thus a simple table with two columns and five rows. The next table is a table of
Danish municipalities, where each municipality is recorded as

1. the municipality number (a unique number of 3 digits)
2. the municipality name
3. the region, that the municipalty belongs to
4. the municipality’s area in square kilometers
5. the municipality’s inhabitants
6. year of the municipality’s inhabitants

The region is the region number, so there is a 1:n relation between municipalities and
regions, such that each municipality is linked to a specific region.

The third table is a table of Danish zip codes and is a simple table with two columns that
contain respectively the code and the city name.

A municipality uses several zip codes, and a specific zip code can actually be used by several
municipalities, and such there is an m:n relation between municipalities and zip codes. Such a
relationship is implemented with a table where a row connects a zip code and a municipality.

Accordingly, you can expand the database with four new tables using the following script:

use padata;
drop table if exists post;
drop table if exists municipality;
drop table if exists region;
drop table if exists zipcode;

JAVA 6: JDBC AND DATABASE APPLICATIONS

30

ResultSet

30

JAVA 6: JDBC AND DATABASE APPLICATIONS

30

resultset

30

create table region
(
 regnr int not null primary key,
 name varchar(30) not null
);

create table municipality
(
 munnr int not null primary key,
 name varchar(30) not null,
 regnr int not null,
 area decimal(10, 2),
 number int,
 year int,
 foreign key (regnr) references region(regnr)
);

create table zipcode
(
 code char(4) not null primary key,
 city varchar(30) not null
);

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 6: JDBC AND DATABASE APPLICATIONS

31

ResultSet
JAVA 6: JDBC AND DATABASE APPLICATIONS

31

resultset

create table post
(
 code char(4) not null,
 munnr int not null,
 primary key (code, munnr),
 foreign key (code) references zipcode(code),
 foreign key (munnr) references municipality(munnr)
);

insert into region values (1081, 'Region Nordjylland');
insert into region values (1082, 'Region Midtjylland');
insert into region values (1083, 'Region Syddanmark');
insert into region values (1084, 'Region Hovedstaden');
insert into region values (1085, 'Region Sjælland');

There is not much to explain, but you should note that the script inserts the five rows in
the table region. The script is called CreateDenmark.sql.

It you performs the script, it creates the four tables, but the tables other than region are all
empty and contains no data. The books directory contains a file named zipcodes. It is a text
file that contains 1106 lines with Danish zip codes, where each line contains a code and
a city name separated by a semicolon. The file should be used to update the table zipcode,
and you can do that with a SQL command LOAD DATA INFILE. It is a command that
MySQL do not like, because it is not without risk, and you can, in principle, copy anything
into the database. Therefore, you can not immediately execute the command from MySQL
Workbench. To use the command to load the content of the file to a database, you has to
place the file in a special directory that only root has access to:

/var/lib/mysql-files

I have (as root) in this directory created a subdirectory data. Next, I have copied the
file zipcodes to this directory. Then the table can be updated using the following script
(LoadZipcodes.sql):

use padata;
load data infile '/var/lib/mysql-files/data/zipcodes' into table zipcode
CHARACTER SET UTF8
fields terminated by ';' lines terminated by '\n'
(code, city);

The result is that the table zipcode now have 1106 rows.

There is not much to explain, but you should note that the script inserts the five rows in
the table region. The script is called CreateDenmark.sql.

It you performs the script, it creates the four tables, but the tables other than region are all
empty and contains no data. The books directory contains a file named zipcodes. It is a text
file that contains 1106 lines with Danish zip codes, where each line contains a code and
a city name separated by a semicolon. The file should be used to update the table zipcode,
and you can do that with a SQL command LOAD DATA INFILE. It is a command that
MySQL do not like, because it is not without risk, and you can, in principle, copy anything
into the database. Therefore, you can not immediately execute the command from MySQL
Workbench. To use the command to load the content of the file to a database, you has to
place the file in a special directory that only root has access to:

JAVA 6: JDBC AND DATABASE APPLICATIONS

31

resultset

create table post
(
 code char(4) not null,
 munnr int not null,
 primary key (code, munnr),
 foreign key (code) references zipcode(code),
 foreign key (munnr) references municipality(munnr)
);

insert into region values (1081, 'Region Nordjylland');
insert into region values (1082, 'Region Midtjylland');
insert into region values (1083, 'Region Syddanmark');
insert into region values (1084, 'Region Hovedstaden');
insert into region values (1085, 'Region Sjælland');

There is not much to explain, but you should note that the script inserts the five rows in
the table region. The script is called CreateDenmark.sql.

It you performs the script, it creates the four tables, but the tables other than region are all
empty and contains no data. The books directory contains a file named zipcodes. It is a text
file that contains 1106 lines with Danish zip codes, where each line contains a code and
a city name separated by a semicolon. The file should be used to update the table zipcode,
and you can do that with a SQL command LOAD DATA INFILE. It is a command that
MySQL do not like, because it is not without risk, and you can, in principle, copy anything
into the database. Therefore, you can not immediately execute the command from MySQL
Workbench. To use the command to load the content of the file to a database, you has to
place the file in a special directory that only root has access to:

/var/lib/mysql-files

I have (as root) in this directory created a subdirectory data. Next, I have copied the
file zipcodes to this directory. Then the table can be updated using the following script
(LoadZipcodes.sql):

use padata;
load data infile '/var/lib/mysql-files/data/zipcodes' into table zipcode
CHARACTER SET UTF8
fields terminated by ';' lines terminated by '\n'
(code, city);

The result is that the table zipcode now have 1106 rows.

I have (as root) in this directory created a subdirectory data. Next, I have copied the
file zipcodes to this directory. Then the table can be updated using the following script
(LoadZipcodes.sql ):

JAVA 6: JDBC AND DATABASE APPLICATIONS

31

resultset

create table post
(
 code char(4) not null,
 munnr int not null,
 primary key (code, munnr),
 foreign key (code) references zipcode(code),
 foreign key (munnr) references municipality(munnr)
);

insert into region values (1081, 'Region Nordjylland');
insert into region values (1082, 'Region Midtjylland');
insert into region values (1083, 'Region Syddanmark');
insert into region values (1084, 'Region Hovedstaden');
insert into region values (1085, 'Region Sjælland');

There is not much to explain, but you should note that the script inserts the five rows in
the table region. The script is called CreateDenmark.sql.

It you performs the script, it creates the four tables, but the tables other than region are all
empty and contains no data. The books directory contains a file named zipcodes. It is a text
file that contains 1106 lines with Danish zip codes, where each line contains a code and
a city name separated by a semicolon. The file should be used to update the table zipcode,
and you can do that with a SQL command LOAD DATA INFILE. It is a command that
MySQL do not like, because it is not without risk, and you can, in principle, copy anything
into the database. Therefore, you can not immediately execute the command from MySQL
Workbench. To use the command to load the content of the file to a database, you has to
place the file in a special directory that only root has access to:

/var/lib/mysql-files

I have (as root) in this directory created a subdirectory data. Next, I have copied the
file zipcodes to this directory. Then the table can be updated using the following script
(LoadZipcodes.sql):

use padata;
load data infile '/var/lib/mysql-files/data/zipcodes' into table zipcode
CHARACTER SET UTF8
fields terminated by ';' lines terminated by '\n'
(code, city);

The result is that the table zipcode now have 1106 rows.The result is that the table zipcode now have 1106 rows.

JAVA 6: JDBC AND DATABASE APPLICATIONS

32

ResultSet

Then there is the table municipality, and the book’s directory has a file municipalities that
contains lines with data on Danish municipalities. Below is shown the first three lines:

JAVA 6: JDBC AND DATABASE APPLICATIONS

32

resultset

Then there is the table municipality, and the book’s directory has a file municipalities that
contains lines with data on Danish municipalities. Below is shown the first three lines:

773;Morsø Kommune;1081;364.42;20815;2015;7900;7950;7960;7970;7980;7990
787;Thisted Kommune;1081;1095.63;44078;2015;7700;7730;7741;7742;7752;
 7755;7760;7770
810;Brønderslev Kommune;1081;633.38;35781;2015;9320;9330;9340;9352;9370;
 9382;9440;9480;9700;9740;9750;9760

A line contains separated by semicolons

1. municipality number
2. municipality name
3. region number
4. area
5. number of inhabitants
6. year for number of inhabitants

This is followed by a variable number of zip codes, which are the zip codes that this
municipality uses. For each line in the file there must be inserted a row in the table
municipality, and for each zip code a row in the table post. The easiest is to write a small
program that reads the file and updates the database:

package createmunicipalities;

import java.sql.*;
import java.io.*;
import java.math.*;

public class CreateMunicipalities
{
 public static void main(String[] args)
 {
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");
 BufferedReader reader = new BufferedReader(
 new FileReader(System.getProperty("user.home") + "/data/municipalities")))
 {
 Statement stmt = conn.createStatement();
 stmt.execute("DELETE FROM post");
 stmt.execute("DELETE FROM municipality");
 PreparedStatement stmt1 = conn.prepareStatement(
 "INSERT INTO municipality VALUES(?, ?, ?, ?, ?, ?)");
 PreparedStatement stmt2 = conn.prepareStatement(
 "INSERT INTO post VALUES(?, ?)");

A line contains separated by semicolons

1.	municipality number
2.	municipality name
3.	 region number
4.	 area
5.	number of inhabitants
6.	 year for number of inhabitants

This is followed by a variable number of zip codes, which are the zip codes that this
municipality uses. For each line in the file there must be inserted a row in the table
municipality, and for each zip code a row in the table post. The easiest is to write a small
program that reads the file and updates the database:

JAVA 6: JDBC AND DATABASE APPLICATIONS

32

resultset

Then there is the table municipality, and the book’s directory has a file municipalities that
contains lines with data on Danish municipalities. Below is shown the first three lines:

773;Morsø Kommune;1081;364.42;20815;2015;7900;7950;7960;7970;7980;7990
787;Thisted Kommune;1081;1095.63;44078;2015;7700;7730;7741;7742;7752;
 7755;7760;7770
810;Brønderslev Kommune;1081;633.38;35781;2015;9320;9330;9340;9352;9370;
 9382;9440;9480;9700;9740;9750;9760

A line contains separated by semicolons

1. municipality number
2. municipality name
3. region number
4. area
5. number of inhabitants
6. year for number of inhabitants

This is followed by a variable number of zip codes, which are the zip codes that this
municipality uses. For each line in the file there must be inserted a row in the table
municipality, and for each zip code a row in the table post. The easiest is to write a small
program that reads the file and updates the database:

package createmunicipalities;

import java.sql.*;
import java.io.*;
import java.math.*;

public class CreateMunicipalities
{
 public static void main(String[] args)
 {
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");
 BufferedReader reader = new BufferedReader(
 new FileReader(System.getProperty("user.home") + "/data/municipalities")))
 {
 Statement stmt = conn.createStatement();
 stmt.execute("DELETE FROM post");
 stmt.execute("DELETE FROM municipality");
 PreparedStatement stmt1 = conn.prepareStatement(
 "INSERT INTO municipality VALUES(?, ?, ?, ?, ?, ?)");
 PreparedStatement stmt2 = conn.prepareStatement(
 "INSERT INTO post VALUES(?, ?)");

JAVA 6: JDBC AND DATABASE APPLICATIONS

33

ResultSet

33

JAVA 6: JDBC AND DATABASE APPLICATIONS

33

resultset

33

 for (String line = reader.readLine(); line != null; line = reader.readLine())
 {
 String[] elem = line.split(";");
 int munnr = Integer.parseInt(elem[0]);
 stmt1.setInt(1, munnr);
 stmt1.setString(2, elem[1]);
 stmt1.setInt(3, Integer.parseInt(elem[2]));
 stmt1.setBigDecimal(4, new BigDecimal(elem[3]));
 stmt1.setInt(5, Integer.parseInt(elem[4]));
 stmt1.setInt(6, Integer.parseInt(elem[5]));
 stmt1.executeUpdate();
 System.out.println(elem[1]);
 for (int i = 6; i < elem.length; ++i)
 {
 try
 {
 stmt2.setString(1, zipcode(elem[i]));
 stmt2.setInt(2, munnr);
 stmt2.executeUpdate();
 }
 catch (Exception ex)
 {
 System.out.println(munnr + " " + elem[i]);
 }

http://s.bookboon.com/EOT

JAVA 6: JDBC AND DATABASE APPLICATIONS

34

ResultSet
JAVA 6: JDBC AND DATABASE APPLICATIONS

34

resultset

 }
 }
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }

 private static String zipcode(String str)
 {
 if (str.length() == 3) str = "0" + str;
 return str;
 }
}

In the parentheses after try are in the usual way opened a connection to the database and
the file municipalities that I have copied to the folder data under my home directory. The
first thing that happens is that the content of the two database tables are deleted and then
are created two PreparedStatement objects with INSERT statements for the two tables. The
next for loop reads the file line by line, and each line is split into tokens that are used to
initialize the parameters of stmt1. After having inserted a row in the table municipalities,
there is inner for loop that runs over all zip codes and insert rows in the table post for this
municipality.

You should note that it actually takes a long time to execute the program. The program
executes more than 2000 SQL INSERT commands, and it is a tedious procces to make
it from Java, as shown in this example, and there are also as shown later better ways to
accomplish the same.

As an example of a program that uses the new tables, determines the following test method
(still a method in the program DbOperations) the number of residents in Region Midtjylland:

private static void test05()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 ResultSet res = stmt.executeQuery("SELECT number FROM municipality AS M,
 region AS R WHERE M.regnr = R.regnr AND R.name LIKE '%Midtjylland'");
 int count = 0;
 while (res.next()) count += res.getInt("number");

In the parentheses after try are in the usual way opened a connection to the database and
the file municipalities that I have copied to the folder data under my home directory. The
first thing that happens is that the content of the two database tables are deleted and then
are created two PreparedStatement objects with INSERT statements for the two tables. The
next for loop reads the file line by line, and each line is split into tokens that are used to
initialize the parameters of stmt1. After having inserted a row in the table municipalities,
there is inner for loop that runs over all zip codes and insert rows in the table post for this
municipality.

You should note that it actually takes a long time to execute the program. The program
executes more than 2000 SQL INSERT commands, and it is a tedious procces to make
it from Java, as shown in this example, and there are also as shown later better ways to
accomplish the same.

As an example of a program that uses the new tables, determines the following test method
(still a method in the program DbOperations) the number of residents in Region Midtjylland:

JAVA 6: JDBC AND DATABASE APPLICATIONS

34

resultset

 }
 }
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }

 private static String zipcode(String str)
 {
 if (str.length() == 3) str = "0" + str;
 return str;
 }
}

In the parentheses after try are in the usual way opened a connection to the database and
the file municipalities that I have copied to the folder data under my home directory. The
first thing that happens is that the content of the two database tables are deleted and then
are created two PreparedStatement objects with INSERT statements for the two tables. The
next for loop reads the file line by line, and each line is split into tokens that are used to
initialize the parameters of stmt1. After having inserted a row in the table municipalities,
there is inner for loop that runs over all zip codes and insert rows in the table post for this
municipality.

You should note that it actually takes a long time to execute the program. The program
executes more than 2000 SQL INSERT commands, and it is a tedious procces to make
it from Java, as shown in this example, and there are also as shown later better ways to
accomplish the same.

As an example of a program that uses the new tables, determines the following test method
(still a method in the program DbOperations) the number of residents in Region Midtjylland:

private static void test05()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 ResultSet res = stmt.executeQuery("SELECT number FROM municipality AS M,
 region AS R WHERE M.regnr = R.regnr AND R.name LIKE '%Midtjylland'");
 int count = 0;
 while (res.next()) count += res.getInt("number");

JAVA 6: JDBC AND DATABASE APPLICATIONS

35

ResultSet
JAVA 6: JDBC AND DATABASE APPLICATIONS

35

resultset

 System.out.println("Number of inhabitants in Region Midtjylland: " + count);
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

You should note that the only thing new is a little more complex SQL SELECT statement,
but from Java there is nothing new.

EXERCISE 3

Write a program that from the numbers in the table municipality on the screen prints the
population density in Jutland and Fyn.

PROBLEM 1

You must expand the database padata with two other tables. The first should be named
world and must contains the names of all continents:

create table world
(
 code char(2) not null primary key,
 name varchar(15) not null
);

The table must contain the following data:

 - AS Asia
 - AF Africa
 - NA North America
 - SA South America
 - AN Antarctica
 - EU Europe
 - OC Oceania

The second table should contain information on countries:

create table country
(
 code2 char(2) not null primary key, # country code
 code3 varchar(3), # country code
 name varchar(50) not null, # the country's name

You should note that the only thing new is a little more complex SQL SELECT statement,
but from Java there is nothing new.

EXERCISE 3

Write a program that from the numbers in the table municipality on the screen prints the
population density in Jutland and Fyn.

PROBLEM 1

You must expand the database padata with two other tables. The first should be named
world and must contains the names of all continents:

JAVA 6: JDBC AND DATABASE APPLICATIONS

35

resultset

 System.out.println("Number of inhabitants in Region Midtjylland: " + count);
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

You should note that the only thing new is a little more complex SQL SELECT statement,
but from Java there is nothing new.

EXERCISE 3

Write a program that from the numbers in the table municipality on the screen prints the
population density in Jutland and Fyn.

PROBLEM 1

You must expand the database padata with two other tables. The first should be named
world and must contains the names of all continents:

create table world
(
 code char(2) not null primary key,
 name varchar(15) not null
);

The table must contain the following data:

 - AS Asia
 - AF Africa
 - NA North America
 - SA South America
 - AN Antarctica
 - EU Europe
 - OC Oceania

The second table should contain information on countries:

create table country
(
 code2 char(2) not null primary key, # country code
 code3 varchar(3), # country code
 name varchar(50) not null, # the country's name

The table must contain the following data:

-- AS	 Asia
-- AF	 Africa
-- NA	 North America
-- SA	 South America
-- AN	 Antarctica
-- EU	 Europe
-- OC	 Oceania

The second table should contain information on countries:

JAVA 6: JDBC AND DATABASE APPLICATIONS

35

resultset

 System.out.println("Number of inhabitants in Region Midtjylland: " + count);
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

You should note that the only thing new is a little more complex SQL SELECT statement,
but from Java there is nothing new.

EXERCISE 3

Write a program that from the numbers in the table municipality on the screen prints the
population density in Jutland and Fyn.

PROBLEM 1

You must expand the database padata with two other tables. The first should be named
world and must contains the names of all continents:

create table world
(
 code char(2) not null primary key,
 name varchar(15) not null
);

The table must contain the following data:

 - AS Asia
 - AF Africa
 - NA North America
 - SA South America
 - AN Antarctica
 - EU Europe
 - OC Oceania

The second table should contain information on countries:

create table country
(
 code2 char(2) not null primary key, # country code
 code3 varchar(3), # country code
 name varchar(50) not null, # the country's name

JAVA 6: JDBC AND DATABASE APPLICATIONS

36

ResultSet

36

JAVA 6: JDBC AND DATABASE APPLICATIONS

36

resultset

36

 area int, # the country's area
 number int, # number of inhabitants
 continent char(2), # continent
 currency char(3), # currency code
 foreign key (continent) references world(code),
 foreign key (currency) references currency(code)
);

Write a script that creates these two tables and inserts information about the continents in
the first table.

The folder to this book contains a file called countries. It is a plain text file in which each
line contains information about a country. Below is the first lines:

AF;AFG;Afghanistan
AL;ALB;Albanien
DZ;DZA;Algir
AS;ASM;Amerikansk Samoa
US;USA;Amerikas Forenede Stater (USA);US Dollar;USD;553.14
AD;AND;Andorra
AO;AGO;Angola
AI;AIA;Anguilla

Write a script that creates these two tables and inserts information about the continents in
the first table.

The folder to this book contains a file called countries. It is a plain text file in which each
line contains information about a country. Below is the first lines:

JAVA 6: JDBC AND DATABASE APPLICATIONS

36

resultset

36

 area int, # the country's area
 number int, # number of inhabitants
 continent char(2), # continent
 currency char(3), # currency code
 foreign key (continent) references world(code),
 foreign key (currency) references currency(code)
);

Write a script that creates these two tables and inserts information about the continents in
the first table.

The folder to this book contains a file called countries. It is a plain text file in which each
line contains information about a country. Below is the first lines:

AF;AFG;Afghanistan
AL;ALB;Albanien
DZ;DZA;Algir
AS;ASM;Amerikansk Samoa
US;USA;Amerikas Forenede Stater (USA);US Dollar;USD;553.14
AD;AND;Andorra
AO;AGO;Angola
AI;AIA;Anguilla

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 6: JDBC AND DATABASE APPLICATIONS

37

ResultSet
JAVA 6: JDBC AND DATABASE APPLICATIONS

37

resultset

AQ;ATA;Antarktis
AG;ATG;Antigua og Barbuda
AR;ARG;Argentina
AM;ARM;Armenien
AW;ABW;Aruba
AZ;AZE;Aserbajdsjan
AU;AUS;Australien;Australsk dollar;AUD;568.80
BS;BHS;Bahama

BH;BHR;Bahrain

The fields are separated by semicolons. For each country there is at least 3 fields: country
code on 2 characters (primary key), country code on 3 characters (which may be blank)
and the country’s name. In addition, there may be three additional fields, that is the name
of the currency which the country uses, the currency code and an exchange rate.

You must now write a program that can update the table country by reading the above file.
If there is a currency, the currency code is inserted in the column for currency, otherwise
the value should just be null. There is a particular problem when the file for a country
indicates a currency, and that currency not exitst in the table currency. For these currencies,
the program must also update the table currency.

4.3 STORED PROCEDURES

A stored procedure is a script that contains SQL statements that is executed when the
procedure is performed. When one speaks of a stored procedure, it means that the procedure
is translated and stored in the database, which means that it is highly effective to execute a
stored procedure. In MySQL Workbench you can create a stored procedure by right-clicking
Stored Procedures for the database under Schemas, and you get as a skeleton for a procedure:

CREATE PROCEDURE 'new_procedure' ()
BEGIN

END

As an example, I have written a very simple procedure which OUT parameter returns the
number of persons in the table history where the year falls within a range:

CREATE PROCEDURE 'persons' (IN a int, IN b int, OUT c int)
BEGIN
 SELECT count(id) FROM history WHERE (a <= birth AND birth <= b) OR
 (a <= death AND death <= b) INTO c;
END

The fields are separated by semicolons. For each country there is at least 3 fields: country
code on 2 characters (primary key), country code on 3 characters (which may be blank)
and the country’s name. In addition, there may be three additional fields, that is the name
of the currency which the country uses, the currency code and an exchange rate.

You must now write a program that can update the table country by reading the above file.
If there is a currency, the currency code is inserted in the column for currency, otherwise
the value should just be null. There is a particular problem when the file for a country
indicates a currency, and that currency not exitst in the table currency. For these currencies,
the program must also update the table currency.

4.3	 STORED PROCEDURES

A stored procedure is a script that contains SQL statements that is executed when the
procedure is performed. When one speaks of a stored procedure, it means that the procedure
is translated and stored in the database, which means that it is highly effective to execute a
stored procedure. In MySQL Workbench you can create a stored procedure by right-clicking
Stored Procedures for the database under Schemas, and you get as a skeleton for a procedure:

JAVA 6: JDBC AND DATABASE APPLICATIONS

37

resultset

AQ;ATA;Antarktis
AG;ATG;Antigua og Barbuda
AR;ARG;Argentina
AM;ARM;Armenien
AW;ABW;Aruba
AZ;AZE;Aserbajdsjan
AU;AUS;Australien;Australsk dollar;AUD;568.80
BS;BHS;Bahama

BH;BHR;Bahrain

The fields are separated by semicolons. For each country there is at least 3 fields: country
code on 2 characters (primary key), country code on 3 characters (which may be blank)
and the country’s name. In addition, there may be three additional fields, that is the name
of the currency which the country uses, the currency code and an exchange rate.

You must now write a program that can update the table country by reading the above file.
If there is a currency, the currency code is inserted in the column for currency, otherwise
the value should just be null. There is a particular problem when the file for a country
indicates a currency, and that currency not exitst in the table currency. For these currencies,
the program must also update the table currency.

4.3 STORED PROCEDURES

A stored procedure is a script that contains SQL statements that is executed when the
procedure is performed. When one speaks of a stored procedure, it means that the procedure
is translated and stored in the database, which means that it is highly effective to execute a
stored procedure. In MySQL Workbench you can create a stored procedure by right-clicking
Stored Procedures for the database under Schemas, and you get as a skeleton for a procedure:

CREATE PROCEDURE 'new_procedure' ()
BEGIN

END

As an example, I have written a very simple procedure which OUT parameter returns the
number of persons in the table history where the year falls within a range:

CREATE PROCEDURE 'persons' (IN a int, IN b int, OUT c int)
BEGIN
 SELECT count(id) FROM history WHERE (a <= birth AND birth <= b) OR
 (a <= death AND death <= b) INTO c;
END

As an example, I have written a very simple procedure which OUT parameter returns the
number of persons in the table history where the year falls within a range:

JAVA 6: JDBC AND DATABASE APPLICATIONS

37

resultset

AQ;ATA;Antarktis
AG;ATG;Antigua og Barbuda
AR;ARG;Argentina
AM;ARM;Armenien
AW;ABW;Aruba
AZ;AZE;Aserbajdsjan
AU;AUS;Australien;Australsk dollar;AUD;568.80
BS;BHS;Bahama

BH;BHR;Bahrain

The fields are separated by semicolons. For each country there is at least 3 fields: country
code on 2 characters (primary key), country code on 3 characters (which may be blank)
and the country’s name. In addition, there may be three additional fields, that is the name
of the currency which the country uses, the currency code and an exchange rate.

You must now write a program that can update the table country by reading the above file.
If there is a currency, the currency code is inserted in the column for currency, otherwise
the value should just be null. There is a particular problem when the file for a country
indicates a currency, and that currency not exitst in the table currency. For these currencies,
the program must also update the table currency.

4.3 STORED PROCEDURES

A stored procedure is a script that contains SQL statements that is executed when the
procedure is performed. When one speaks of a stored procedure, it means that the procedure
is translated and stored in the database, which means that it is highly effective to execute a
stored procedure. In MySQL Workbench you can create a stored procedure by right-clicking
Stored Procedures for the database under Schemas, and you get as a skeleton for a procedure:

CREATE PROCEDURE 'new_procedure' ()
BEGIN

END

As an example, I have written a very simple procedure which OUT parameter returns the
number of persons in the table history where the year falls within a range:

CREATE PROCEDURE 'persons' (IN a int, IN b int, OUT c int)
BEGIN
 SELECT count(id) FROM history WHERE (a <= birth AND birth <= b) OR
 (a <= death AND death <= b) INTO c;
END

JAVA 6: JDBC AND DATABASE APPLICATIONS

38

ResultSet

When you have written the procedure, you must click Apply, and you are then given a
window as shown on the next page, and click Apply again the procedure is translated and
store it in the database. Once the procedure is saved, it can be executed like like any other
SQL command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

38

resultset

When you have written the procedure, you must click Apply, and you are then given a
window as shown on the next page, and click Apply again the procedure is translated and
store it in the database. Once the procedure is saved, it can be executed like like any other
SQL command:

use padata;

call padata.persons(1100, 1600, @count);
select @count;

The following test method shows how to execute a stored procedure from a Java program:

private static void test06()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 CallableStatement stmt = conn.prepareCall("CALL persons(?, ?, ?)");
 stmt.setInt(1, 1200);
 stmt.setInt(2, 1300);
 stmt.registerOutParameter(3, Types.INTEGER);
 stmt.execute();
 System.out.println(stmt.getInt(3));
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

JDBC defines in form of the types Statement and PreparedStatement types that represents
a SQL statement, and there is also a type called CallableStatement, representing a stored
procedure. It is parameterized in the same way as a PreparedStatement, and the input
parameters are initialized in the same manner. By contrast, the output parameters must
be registered with a special syntax including to assign a type. After this, the procedure is
executed with the method execute().

The following test method shows how to execute a stored procedure from a Java program:

JAVA 6: JDBC AND DATABASE APPLICATIONS

38

resultset

When you have written the procedure, you must click Apply, and you are then given a
window as shown on the next page, and click Apply again the procedure is translated and
store it in the database. Once the procedure is saved, it can be executed like like any other
SQL command:

use padata;

call padata.persons(1100, 1600, @count);
select @count;

The following test method shows how to execute a stored procedure from a Java program:

private static void test06()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 CallableStatement stmt = conn.prepareCall("CALL persons(?, ?, ?)");
 stmt.setInt(1, 1200);
 stmt.setInt(2, 1300);
 stmt.registerOutParameter(3, Types.INTEGER);
 stmt.execute();
 System.out.println(stmt.getInt(3));
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

JDBC defines in form of the types Statement and PreparedStatement types that represents
a SQL statement, and there is also a type called CallableStatement, representing a stored
procedure. It is parameterized in the same way as a PreparedStatement, and the input
parameters are initialized in the same manner. By contrast, the output parameters must
be registered with a special syntax including to assign a type. After this, the procedure is
executed with the method execute().

JDBC defines in form of the types Statement and PreparedStatement types that represents
a SQL statement, and there is also a type called CallableStatement, representing a stored
procedure. It is parameterized in the same way as a PreparedStatement, and the input
parameters are initialized in the same manner. By contrast, the output parameters must
be registered with a special syntax including to assign a type. After this, the procedure is
executed with the method execute().

JAVA 6: JDBC AND DATABASE APPLICATIONS

39

ResultSet

39

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 6: JDBC AND DATABASE APPLICATIONS

40

Data types

5	 DATA TYPES

In a database table, each column has a data type and in Java data is stored in variables of
a particular type. It is therefore necessary to know how JDBC are converting types in the
database to the Java variables, and vice versa. The preceding programs have already shown
many examples, for example when values are retrieved from a ResultSet with a get method,
or when parameters in a PreparedStatement are initialized with a set method. The following
table shows the relationship between these types:

SQL Java Methods

VARCHAR String getString(), setString()

CHAR String getString(), setString()

LONGVARCHAR String getString(), setString()

BIT boolean getBoolean(), setBoolean()

NUMERIC java.math.BigDecimal getBigDecimal(), setBigDecimal()

TINYINT byte getByte(), setByte()

SMALLINT short getShort(), setShort()

INTEGER int getInt(), setInt()

BIGINT long getLong(), setLong()

REAL float getFloat(), setFloat()

FLOAT float getFloat(), setFloat()

DOUBLE double getDouble(), setDouble()

VARBINARY byte[] getBytes(), setBytes()

BINARY byte[] getBytes(), setBytes()

DATE java.sql.Date getDate(), setDate()

TIME java.sql.Time getTime(), setTime()

TIMESTAMP java.sql.Timestamp getTimestamp(), setTimestamp()

CLOB java.sql.Clob getClob(), setClob()

BLOB java.sql.Blob getBlob(), setBlob()

JAVA 6: JDBC AND DATABASE APPLICATIONS

41

Data types

SQL Java Methods

ARRAY java.sql.Array getArray(), setArray()

REF java.sql.Ref getRef(), setRef()

STRUCT java.sql.Struct getStruct(), setStruct()

Thus, it is important to note that the package java.sql defines special data types that correspond
to some of the SQL data types. Converting between types to date and time often results
in problems with database applications, and to facilitate the problem of converting these
types, I have expanded my library PaLib with the following class:

JAVA 6: JDBC AND DATABASE APPLICATIONS

41

data types

SQL Java Methods

ARRAY java.sql.Array getArray(), setArray()

REF java.sql.Ref getRef(), setRef()

STRUCT java.sql.Struct getStruct(), setStruct()

Thus, it is important to note that the package java.sql defines special data types that correspond
to some of the SQL data types. Converting between types to date and time often results
in problems with database applications, and to facilitate the problem of converting these
types, I have expanded my library PaLib with the following class:

package palib.util;

import java.util.*;

public class Db
{
 public static java.sql.Date toDate(Date date)
 {
 return new java.sql.Date(date.getTime());
 }

 public static java.sql.Time toTime(Date date)
 {
 return new java.sql.Time(date.getTime());
 }

 public static java.sql.Timestamp toTimestamp(Date date)
 {
 return new java.sql.Timestamp(date.getTime());
 }

 public static java.sql.Date toDate(Calendar date)
 {
 return new java.sql.Date(date.getTimeInMillis());
 }

 public static java.sql.Time toTime(Calendar date)
 {
 return new java.sql.Time(date.getTimeInMillis());
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

42

Data types

42

JAVA 6: JDBC AND DATABASE APPLICATIONS

42

data types

42

 public static java.sql.Timestamp toTimestamp(Calendar date)
 {
 return new java.sql.Timestamp(date.getTimeInMillis());
 }

 public static Calendar toCalendar(java.sql.Date date)
 {
 Calendar c = new GregorianCalendar();
 c.setTime(date);
 return c;
 }

 public static Calendar toCalendar(java.sql.Time time)
 {
 Calendar c = new GregorianCalendar();
 c.setTime(time);
 return c;
 }

http://s.bookboon.com/GTca

JAVA 6: JDBC AND DATABASE APPLICATIONS

43

Data typesJAVA 6: JDBC AND DATABASE APPLICATIONS

43

data types

 public static Calendar toCalendar(java.sql.Date date, java.sql.Time time)
 {
 Calendar c1 = new GregorianCalendar();
 Calendar c2 = new GregorianCalendar();
 c1.setTime(date);
 c2.setTime(time);
 c1.set(Calendar.HOUR_OF_DAY, c2.get(Calendar.HOUR_OF_DAY));
 c1.set(Calendar.MINUTE, c2.get(Calendar.MINUTE));
 c1.set(Calendar.SECOND, c2.get(Calendar.SECOND));
 return c1;
 }

 /**
 * Converts a string to a Calendar object. The string should be of the form
 * DD-MM-YYYY HH:MM:SS
 * and must represent a valid date and time. The year must be at least
 * 1700, as the date must be from the Gregorian calendar.
 * It is permitted only to indicate the date and not a time indication.
 * @param str The string to be converted
 * @return The string is converted into a Calendar object
 * @throws UtilException If the string does not represent a valid date
 */ public static Calendar toCalendar(String str) throws UtilException
 {
 try
 {
 int day = Integer.parseInt(str.substring(0, 2));
 int month = Integer.parseInt(str.substring(3, 5));
 int year = Integer.parseInt(str.substring(6, 10));
 int hour = 0;
 int minute = 0;
 int second = 0;
 if (str.length() > 10)
 {
 hour = Integer.parseInt(str.substring(11, 13));
 minute = Integer.parseInt(str.substring(14, 16));
 second = Integer.parseInt(str.substring(17).trim());
 }
 if (year >= 1700 && month >= 1 && month <= 12 && day >= 1 &&
 day <= days(year, month) && hour >= 0 && hour <= 23 && minute >= 0 &&
 minute <= 59 && second >= 0 && second <= 59)
 return new GregorianCalendar(year, month – 1, day, hour, minute, second);
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

44

Data types
JAVA 6: JDBC AND DATABASE APPLICATIONS

44

data types

 catch (Exception ex)
 {
 }
 throw new UtilException("String can not be converted to a Calendar object");
 }

 public static String toStr(Calendar cal)
 {
 return String.format("%02d-%02d-%04d %02d:%02d:%02d",
 cal.get(Calendar.DAY_OF_MONTH), cal.get(Calendar.MONTH) + 1,
 cal.get(Calendar.YEAR), cal.get(Calendar.HOUR_OF_DAY),
 cal.get(Calendar.MINUTE), cal.get(Calendar.SECOND));
 }

 public static boolean leapYear(int aar)
 {
 return aar % 100 == 0 ? aar % 400 == 0 : aar % 4 == 0;
 }

 private static int days(int aar, int mdr)
 {
 if (mdr == 2) return leapYear(aar) ? 29 : 28;
 if (mdr == 4 || mdr == 6 || mdr == 9 || mdr == 11) return 30;
 return 31;
 }
}

It should be easy enough to figure out each method, and from practical programming, it is
especially important to be able to convert to and from Calendar objects and the corresponding
SQL data types. The following test method uses the above conversion methods:

private static void test07()
{
 System.out.println(Db.toDate(new java.util.Date()));
 System.out.println(Db.toTime(new java.util.Date()));
 System.out.println(Db.toDate(Calendar.getInstance()));
 System.out.println(Db.toTime(Calendar.getInstance()));
 System.out.println(Db.toStr(Db.toCalendar(Db.toDate(new java.util.Date()))));
 System.out.println(Db.toStr(Db.toCalendar(Db.toTime(new java.util.Date()))));
 System.out.println(Db.toStr(Db.toCalendar(Db.toDate(new java.util.Date()),
 Db.toTime(new java.util.Date()))));
}

It should be easy enough to figure out each method, and from practical programming, it is
especially important to be able to convert to and from Calendar objects and the corresponding
SQL data types. The following test method uses the above conversion methods:

JAVA 6: JDBC AND DATABASE APPLICATIONS

44

data types

 catch (Exception ex)
 {
 }
 throw new UtilException("String can not be converted to a Calendar object");
 }

 public static String toStr(Calendar cal)
 {
 return String.format("%02d-%02d-%04d %02d:%02d:%02d",
 cal.get(Calendar.DAY_OF_MONTH), cal.get(Calendar.MONTH) + 1,
 cal.get(Calendar.YEAR), cal.get(Calendar.HOUR_OF_DAY),
 cal.get(Calendar.MINUTE), cal.get(Calendar.SECOND));
 }

 public static boolean leapYear(int aar)
 {
 return aar % 100 == 0 ? aar % 400 == 0 : aar % 4 == 0;
 }

 private static int days(int aar, int mdr)
 {
 if (mdr == 2) return leapYear(aar) ? 29 : 28;
 if (mdr == 4 || mdr == 6 || mdr == 9 || mdr == 11) return 30;
 return 31;
 }
}

It should be easy enough to figure out each method, and from practical programming, it is
especially important to be able to convert to and from Calendar objects and the corresponding
SQL data types. The following test method uses the above conversion methods:

private static void test07()
{
 System.out.println(Db.toDate(new java.util.Date()));
 System.out.println(Db.toTime(new java.util.Date()));
 System.out.println(Db.toDate(Calendar.getInstance()));
 System.out.println(Db.toTime(Calendar.getInstance()));
 System.out.println(Db.toStr(Db.toCalendar(Db.toDate(new java.util.Date()))));
 System.out.println(Db.toStr(Db.toCalendar(Db.toTime(new java.util.Date()))));
 System.out.println(Db.toStr(Db.toCalendar(Db.toDate(new java.util.Date()),
 Db.toTime(new java.util.Date()))));
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

45

Data types

45

and an example of running the method could be:

JAVA 6: JDBC AND DATABASE APPLICATIONS

45

data types

45

and an example of running the method could be:

2017-01-01
16:41:08
2017-01-01
16:41:08
01-01-2017 16:41:08
01-01-2017 16:41:08
01-01-2017 16:41:08

Another problem concerning data type is NULL values as null in databases and Java is not
the same. For example will a ResultSet’s get methods convert a NULL value for a primitive
type to the default value (often 0), which is not always appropriate. In the test method
test02(), I have shown how you from an application can write NULL values to the database.
The following test method demonstrates an application of the method wasNull() where a
ResultSet tests whether the last value, that is returned with a get method, was NULL:

Another problem concerning data type is NULL values as null in databases and Java is not
the same. For example will a ResultSet’s get methods convert a NULL value for a primitive
type to the default value (often 0), which is not always appropriate. In the test method
test02(), I have shown how you from an application can write NULL values to the database.
The following test method demonstrates an application of the method wasNull() where a
ResultSet tests whether the last value, that is returned with a get method, was NULL:

 .

http://s.bookboon.com/AlcatelLucent

JAVA 6: JDBC AND DATABASE APPLICATIONS

46

Data types
JAVA 6: JDBC AND DATABASE APPLICATIONS

46

data types

private static void test08()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 ResultSet res = stmt.executeQuery("SELECT name, birth, death FROM history
 WHERE title Like 'Queen'");
 while (res.next())
 {
 String navn = res.getString(1);
 String birth = "";
 int t = res.getInt(2);
 if (!res.wasNull()) birth = "" + t;
 String death = "";
 t = res.getInt(3);
 if (!res.wasNull()) death = "" + t;
 System.out.printf("%-25s%4s – %4s\n", navn, birth, death);
 }
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

If the method is performed, you get the result:

Margrete d. 1. 1387 – 1412
Margrethe d. 2. 1972 –

If the method is performed, you get the result:

JAVA 6: JDBC AND DATABASE APPLICATIONS

46

data types

private static void test08()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 ResultSet res = stmt.executeQuery("SELECT name, birth, death FROM history
 WHERE title Like 'Queen'");
 while (res.next())
 {
 String navn = res.getString(1);
 String birth = "";
 int t = res.getInt(2);
 if (!res.wasNull()) birth = "" + t;
 String death = "";
 t = res.getInt(3);
 if (!res.wasNull()) death = "" + t;
 System.out.printf("%-25s%4s – %4s\n", navn, birth, death);
 }
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

If the method is performed, you get the result:

Margrete d. 1. 1387 – 1412
Margrethe d. 2. 1972 –

JAVA 6: JDBC AND DATABASE APPLICATIONS

47

Transactions

6	 TRANSACTIONS

When performing an SQL statement using either a Statement or PreparedStatement object,
the database is immediately updated. Sometimes it is not appropriate, since you often have
multiple SQL statements thart must be executed as a whole, where either all statements are
executed correctly or everyone are ignored. In database contexts wee talks about a transaction
that simply means that multiple SQL statements can be perceived as a whole. The following
test method inserts three rows in the table history, where the three statements is performed
as a transaction:

JAVA 6: JDBC AND DATABASE APPLICATIONS

47

transaCtIons

6 TRANSACTIONS

When performing an SQL statement using either a Statement or PreparedStatement object,
the database is immediately updated. Sometimes it is not appropriate, since you often have
multiple SQL statements thart must be executed as a whole, where either all statements are
executed correctly or everyone are ignored. In database contexts wee talks about a transaction
that simply means that multiple SQL statements can be perceived as a whole. The following
test method inserts three rows in the table history, where the three statements is performed
as a transaction:

private static void test09()
{
 Connection conn = null;
 try
 {
 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");
 conn.setAutoCommit(false);
 ArrayList<Integer> list = new ArrayList();
 PreparedStatement stmt = conn.prepareStatement(
 "INSERT INTO history (name, title) VALUES (?, ?)");
 insert(stmt, "Egil Skallegrimson", null, list);
 insert(stmt, "Knud Larvard", "Duke", list);
 insert(stmt, null, "Rebel", list);
 conn.commit();
 }
 catch(SQLException ex)
 {
 if (conn != null) try { conn.rollback(); } catch (Exception ex2) {}
 System.out.println(ex);
 }
 finally
 {
 try { if (conn != null) conn.close(); } catch (SQLException ex) {}
 }
}

First as before is in the usual way created a connection to the database, and the next statement
says that there should be no auto commit. This means that subsequent SQL statements are
not immediately been performed on the database (they are marked as statements that can
be rolled back), and the effect will not appear before performing a commit(). The statement

conn.setAutoCommit(false);

First as before is in the usual way created a connection to the database, and the next statement
says that there should be no auto commit. This means that subsequent SQL statements are
not immediately been performed on the database (they are marked as statements that can
be rolled back), and the effect will not appear before performing a commit(). The statement

JAVA 6: JDBC AND DATABASE APPLICATIONS

47

transaCtIons

6 TRANSACTIONS

When performing an SQL statement using either a Statement or PreparedStatement object,
the database is immediately updated. Sometimes it is not appropriate, since you often have
multiple SQL statements thart must be executed as a whole, where either all statements are
executed correctly or everyone are ignored. In database contexts wee talks about a transaction
that simply means that multiple SQL statements can be perceived as a whole. The following
test method inserts three rows in the table history, where the three statements is performed
as a transaction:

private static void test09()
{
 Connection conn = null;
 try
 {
 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");
 conn.setAutoCommit(false);
 ArrayList<Integer> list = new ArrayList();
 PreparedStatement stmt = conn.prepareStatement(
 "INSERT INTO history (name, title) VALUES (?, ?)");
 insert(stmt, "Egil Skallegrimson", null, list);
 insert(stmt, "Knud Larvard", "Duke", list);
 insert(stmt, null, "Rebel", list);
 conn.commit();
 }
 catch(SQLException ex)
 {
 if (conn != null) try { conn.rollback(); } catch (Exception ex2) {}
 System.out.println(ex);
 }
 finally
 {
 try { if (conn != null) conn.close(); } catch (SQLException ex) {}
 }
}

First as before is in the usual way created a connection to the database, and the next statement
says that there should be no auto commit. This means that subsequent SQL statements are
not immediately been performed on the database (they are marked as statements that can
be rolled back), and the effect will not appear before performing a commit(). The statement

conn.setAutoCommit(false);

JAVA 6: JDBC AND DATABASE APPLICATIONS

48

Transactions

48

means that a transaction is starting. The next statement creates an ArrayList and is explained
shortly. Next, is created a PreparedStatement, which represents a SQL command that inserts
a row in the table history, but only insert values in the columns name and title. Then the
method performs three calls of a method insert(), which inserts a row in the table. If it goes
well, a commit() is performed, and the three insertions of rows are permanent inserted in
the database. If, however, one of the three insert() raises a SQLException, the catch block is
performed and executes a rollback(), which means that the database operations performed
after the start of the transaction is rolled back and the database has the same condition as
before the transaction was started.

Then there is the method insert():

JAVA 6: JDBC AND DATABASE APPLICATIONS

48

transaCtIons

48

means that a transaction is starting. The next statement creates an ArrayList and is explained
shortly. Next, is created a PreparedStatement, which represents a SQL command that inserts
a row in the table history, but only insert values in the columns name and title. Then the
method performs three calls of a method insert(), which inserts a row in the table. If it goes
well, a commit() is performed, and the three insertions of rows are permanent inserted in
the database. If, however, one of the three insert() raises a SQLException, the catch block is
performed and executes a rollback(), which means that the database operations performed
after the start of the transaction is rolled back and the database has the same condition as
before the transaction was started.

Then there is the method insert():

private static void insert(PreparedStatement
stmt, String navn, String titel,
 ArrayList<Integer> list) throws SQLException
{
 prepareStatement(stmt, navn, titel);
 stmt.executeUpdate();
 list.add(getId(stmt));
}

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 6: JDBC AND DATABASE APPLICATIONS

49

Transactions

The method performs a call to a method that inserts the values for the parameters in stmt,
and then the statement is executed. The primary key of the table history is an auto-generated
Integer, and sometimes you need to know the id when a row is assigned. This can be done
in several ways, but I’ve written a little method for this purpose:

JAVA 6: JDBC AND DATABASE APPLICATIONS

49

transaCtIons

The method performs a call to a method that inserts the values for the parameters in stmt,
and then the statement is executed. The primary key of the table history is an auto-generated
Integer, and sometimes you need to know the id when a row is assigned. This can be done
in several ways, but I’ve written a little method for this purpose:

private static int getId(Statement stmt) throws SQLException
{
 ResultSet res = stmt.executeQuery("SELECT LAST_INSERT_ID()");
 res.next();
 return res.getInt(1);
}

Here is LAST_INSERT_ID() a function in MySQL, which returns the last assigned auto-
generated ID. These keys are in this example added to an ArrayList that is not used for
anything, but it does in the next example, and here you must mainly observe how to grab
an auto generated key.

If one executes the above test method, the last INSERT fails, since there is no value for
the column name, and in the database is defined that this column must have a value. That
is, there is a rool back. If you open MySQL Workbench, you can easily convince yourself
that the rows are not inserted.

The example shows basically what there is to say about transactions, but there is also a
possibility to define a Savepoint, which can be used to indicate that not all operations
has to be rolled back. Consider the following test method, which is an extension of the
above method:

private static void test10()
{
 Connection conn = null;
 Savepoint point = null;
 try
 {
 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");
 conn.setAutoCommit(false);
 ArrayList<Integer> list = new ArrayList();
 PreparedStatement stmt1 = conn.prepareStatement(
 "INSERT INTO history (name, title) VALUES (?, ?)");
 PreparedStatement stmt2 = conn.prepareStatement(
 "UPDATE history SET country = ? WHERE id = ?");
 insert(stmt1, "Egil Skallegrimson", null, list);
 insert(stmt1, "Knud Larvard", "Duke", list);

Here is LAST_INSERT_ID() a function in MySQL, which returns the last assigned auto-
generated ID. These keys are in this example added to an ArrayList that is not used for
anything, but it does in the next example, and here you must mainly observe how to grab
an auto generated key.

If one executes the above test method, the last INSERT fails, since there is no value for
the column name, and in the database is defined that this column must have a value. That
is, there is a rool back. If you open MySQL Workbench, you can easily convince yourself
that the rows are not inserted.

The example shows basically what there is to say about transactions, but there is also a
possibility to define a Savepoint, which can be used to indicate that not all operations
has to be rolled back. Consider the following test method, which is an extension of the
above method:

JAVA 6: JDBC AND DATABASE APPLICATIONS

49

transaCtIons

The method performs a call to a method that inserts the values for the parameters in stmt,
and then the statement is executed. The primary key of the table history is an auto-generated
Integer, and sometimes you need to know the id when a row is assigned. This can be done
in several ways, but I’ve written a little method for this purpose:

private static int getId(Statement stmt) throws SQLException
{
 ResultSet res = stmt.executeQuery("SELECT LAST_INSERT_ID()");
 res.next();
 return res.getInt(1);
}

Here is LAST_INSERT_ID() a function in MySQL, which returns the last assigned auto-
generated ID. These keys are in this example added to an ArrayList that is not used for
anything, but it does in the next example, and here you must mainly observe how to grab
an auto generated key.

If one executes the above test method, the last INSERT fails, since there is no value for
the column name, and in the database is defined that this column must have a value. That
is, there is a rool back. If you open MySQL Workbench, you can easily convince yourself
that the rows are not inserted.

The example shows basically what there is to say about transactions, but there is also a
possibility to define a Savepoint, which can be used to indicate that not all operations
has to be rolled back. Consider the following test method, which is an extension of the
above method:

private static void test10()
{
 Connection conn = null;
 Savepoint point = null;
 try
 {
 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234");
 conn.setAutoCommit(false);
 ArrayList<Integer> list = new ArrayList();
 PreparedStatement stmt1 = conn.prepareStatement(
 "INSERT INTO history (name, title) VALUES (?, ?)");
 PreparedStatement stmt2 = conn.prepareStatement(
 "UPDATE history SET country = ? WHERE id = ?");
 insert(stmt1, "Egil Skallegrimson", null, list);
 insert(stmt1, "Knud Larvard", "Duke", list);

JAVA 6: JDBC AND DATABASE APPLICATIONS

50

Transactions

JAVA 6: JDBC AND DATABASE APPLICATIONS

50

transaCtIons

 insert(stmt1, "Skipper Clement", "Rebel", list);
 conn.commit();
 point = conn.setSavepoint();
 update(stmt2, "DK", list.get(1));
 update(stmt2, "DK", list.get(2));
 update(stmt2, "Island", list.get(0));
 conn.commit();
 }
 catch(SQLException ex)
 {
 if (conn != null)
 try
 {
 if (point == null) conn.rollback(); else conn.rollback(point);
 } catch (Exception ex2) {}
 System.out.println(ex);
 }
 finally
 {
 try { if (conn != null) conn.close(); } catch (SQLException ex) {}
 }
}

The first part is basically the same as the method test09(), except that there is defined an
additional PreparedStatement to a SQL UPDATE. Furthermore, there is defined a name
for the last INSERT, such it will not fails. After the three inserts() methods are performed,
the test method performs a commit() and defines a Savepoint, indicating that up to this
point of the transaction the statements are executed correct. Next, the method update() is
executed for each of the three rows that are inserted in the table. The method updates the
column country and it is here that I uses the keys that are stored in the list. Here are the
first two update() done correctly, but the last one raises a SQLException when the column
country only has room for two characters. The result is that control is transferred to the
catch block, which perform a rollback, but when the Savepoint object is not null, one can
conclude that the Savepoint is reached, and thus the three insert() methods are performed
without error. Therefore is only rolled back from the Savepoint. If you examine the table
in MySQL Workbench you will see that the three INSERT statements are executed, but the
three UPDATE statements are not.

The first part is basically the same as the method test09(), except that there is defined an
additional PreparedStatement to a SQL UPDATE. Furthermore, there is defined a name
for the last INSERT, such it will not fails. After the three inserts() methods are performed,
the test method performs a commit() and defines a Savepoint, indicating that up to this
point of the transaction the statements are executed correct. Next, the method update() is
executed for each of the three rows that are inserted in the table. The method updates the
column country and it is here that I uses the keys that are stored in the list. Here are the
first two update() done correctly, but the last one raises a SQLException when the column
country only has room for two characters. The result is that control is transferred to the
catch block, which perform a rollback, but when the Savepoint object is not null, one can
conclude that the Savepoint is reached, and thus the three insert() methods are performed
without error. Therefore is only rolled back from the Savepoint. If you examine the table
in MySQL Workbench you will see that the three INSERT statements are executed, but the
three UPDATE statements are not.

JAVA 6: JDBC AND DATABASE APPLICATIONS

51

Transactions

51

6.1	 BACH UPDATES

As a last thing concerning JDBC and database operations, I will mention batch updates.
If you have to perform many database operations – such as many INSERT statements – it
may take a long time, if the program calls the database for each statement. You can then
gather all operations in a batch, which is possible for a Statement, a PreparedStatement and
a CallableStatement, and then performs all operations at once with a single connection to
the database. The following test method shows the syntax:

JAVA 6: JDBC AND DATABASE APPLICATIONS

51

transaCtIons

51

6.1 BACH UPDATES

As a last thing concerning JDBC and database operations, I will mention batch updates.
If you have to perform many database operations – such as many INSERT statements – it
may take a long time, if the program calls the database for each statement. You can then
gather all operations in a batch, which is possible for a Statement, a PreparedStatement and
a CallableStatement, and then performs all operations at once with a single connection to
the database. The following test method shows the syntax:

private static void test11()
{
 List<Person> list = createKings();
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 PreparedStatement stmt1 =
 conn.prepareStatement("DELETE FROM history WHERE name LIKE ?");
 PreparedStatement stmt2 = conn.prepareStatement("INSERT INTO history
 (name, title, birth, death, country, description) VALUES (?, ?, ?, ?, ?, ?)");

http://s.bookboon.com/BI

JAVA 6: JDBC AND DATABASE APPLICATIONS

52

Transactions

JAVA 6: JDBC AND DATABASE APPLICATIONS

52

transaCtIons

 DatabaseMetaData metaData = conn.getMetaData();
 if (metaData.supportsBatchUpdates())
 {
 for (Person pers : list)
 {
 stmt1.setString(1, pers.getName());
 stmt1.addBatch();
 }
 for (Person pers : list)
 {
 prepareStatement(stmt2, pers);
 stmt2.addBatch();
 }
 stmt1.executeBatch();
 stmt2.executeBatch();
 }
 else System.out.println("This database does not support batch updates");
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
}

createKings() is a method that, in principle, is identical to createPersons() (it creates just
some other Person objects). Inside the try block the method creates two PreparedStatement
objects respectively a DELETE and an INSERT. Since it is not a requirement that JDBC
supports batch updates, is is first tested whether that is the case, and if so a loop of all
the objects in the list, add statements to delete the corresponding rows, if they exist, but
instead of performing excecuteUpdate() is performed an addBatch(), which adds that database
operations to a list of operations in the object stmt1. Subsequently, the same happens for
all objects in the list, but this time as stmt2 objects. So far, the database operations are not
performed, but it happens eventually with the method executeBatch().

createKings() is a method that, in principle, is identical to createPersons() (it creates just
some other Person objects). Inside the try block the method creates two PreparedStatement
objects respectively a DELETE and an INSERT. Since it is not a requirement that JDBC
supports batch updates, is is first tested whether that is the case, and if so a loop of all
the objects in the list, add statements to delete the corresponding rows, if they exist, but
instead of performing excecuteUpdate() is performed an addBatch(), which adds that database
operations to a list of operations in the object stmt1. Subsequently, the same happens for
all objects in the list, but this time as stmt2 objects. So far, the database operations are not
performed, but it happens eventually with the method executeBatch().

JAVA 6: JDBC AND DATABASE APPLICATIONS

53

Transactions

EXERCISE 4

The following lines show the country code, code for the continent, the country’s area and
size of population of seven countries:

JAVA 6: JDBC AND DATABASE APPLICATIONS

53

transaCtIons

EXERCISE 4

The following lines show the country code, code for the continent, the country’s area and
size of population of seven countries:

AF;AS;652225;28150000
AL;EU;28748;3100112
DZ;AF;2381740;32531853
AS;NA;199;57902
US;NA;9826675;310322000
AD;EU;467.63;85458
AO;AF;1246700;18565269

You must write a program that updates the table country with the information above when

1. it must be done with a batch update
2. you must use a Statement object instead of a PreparedStatement object

Note that the method addBatch() may have a SQL expression as a parameter.

After the table is updated, you must perform a SQL SELECT that extracts the name of the
countries in which the area is not NULL, and prints the names on the screen.

You must write a program that updates the table country with the information above when

1.	 it must be done with a batch update
2.	 you must use a Statement object instead of a PreparedStatement object

Note that the method addBatch() may have a SQL expression as a parameter.

After the table is updated, you must perform a SQL SELECT that extracts the name of the
countries in which the area is not NULL, and prints the names on the screen.

JAVA 6: JDBC AND DATABASE APPLICATIONS

54

The component JTable

54

7	 THE COMPONENT JTABLE

This chapter describes one of the most complex Swing components called JTable. In principle,
it has not something with JDBC or databases to do, but the component is intended to
display data organized in rows and columns, and therefore the component finds specific
application to display the contents of database tables. This is the reason why it is referred
to at this place.

It is a very important component, it is very flexible with many options and customizations,
but it is equally complex and it is not always so easily to figure out how it works. The class
name is as mentioned JTable, and first of all it is important to note, that a JTable object does
not contains data, but it can display data defined by a data model. The class uses several
(actually many) helper classes that are commonly found in the package javax.swing.table.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 6: JDBC AND DATABASE APPLICATIONS

55

The component JTable

7.1	 THE DEMO PROGRAM

I’ll start simple, and below shows a window with a JTabel that shows some data laid out
in a table with 6 columns and nine rows:

T﻿he individual data elements are not important, but they show data about 9 books. If you
run the program, you must observe the following:

-- You can change the window size. If you changes the height, so there is no room
for the entire table, you get a scrollbar. If you changes the the width, the column
widths are changed, but there is no scrollbar. However, the width of the two columns
for ISBN and Pages do not change.

-- It is possible to select multiple rows by clicking with the mouse, and there are the
usual features that apply in combination with Ctrl and Shift keys.

-- You can change the width of each column by dragging the divider between two
column headers.

-- You can edit the contents of the individual cells. You opens a cell for editing by
double-clicking with the mouse.

T﻿here are so many attached functions to a JTable, and what is mentioned above is the
default settings (except the two columns that have fixed width).

The code is as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

55

the Component JtaBle

7.1 THE DEMO PROGRAM

I’ll start simple, and below shows a window with a JTabel that shows some data laid out
in a table with 6 columns and nine rows:

The individual data elements are not important, but they show data about 9 books. If you
run the program, you must observe the following:

 - You can change the window size. If you changes the height, so there is no room
for the entire table, you get a scrollbar. If you changes the the width, the column
widths are changed, but there is no scrollbar. However, the width of the two columns
for ISBN and Pages do not change.

 - It is possible to select multiple rows by clicking with the mouse, and there are the
usual features that apply in combination with Ctrl and Shift keys.

 - You can change the width of each column by dragging the divider between two
column headers.

 - You can edit the contents of the individual cells. You opens a cell for editing by
double-clicking with the mouse.

There are so many attached functions to a JTable, and what is mentioned above is the
default settings (except the two columns that have fixed width).

The code is as follows:

package jtabledemo;

import javax.swing.*;
import java.awt.*;
import javax.swing.table.*;

JAVA 6: JDBC AND DATABASE APPLICATIONS

56

The component JTable
JAVA 6: JDBC AND DATABASE APPLICATIONS

56

the Component JtaBle

public class Demo01 extends JDialog
{
 private String[] colNames =
 { "Isbn", "Titel", "Edition", "Published", "Pages", "Lent" };
 private Object[][] data = {
 { "0-672-32584-5", "MySQL Tutorial", 1, 2004, 267, false },
 { "978-1-59059-855-9", "Beginning Fedora, From Novice to Professional", 1,
 2005, 519, false },
 { "978-9935-9198-1-6", "Islændingesagaerne bind I", 1, 2014, 440, true },
 { "978-9935-9198-2-3", "Islændingesagaerne bind II", 1, 2014, 501, true },
 { "978-9935-9198-3-0", "Islændingesagaerne bind III", 1, 2014, 501, true },
 { "978-9935-9198-4-7", "Islændingesagaerne bind IV", 1, 2014, 507, true },
 { "978-9935-9198-5-4", "Islændingesagaerne bind V", 1, 2014, 531, true },
 { "978-0-13-255317-9", "Computer Networkks", 5, 2011, 951, false },
 { "978-87-02-15535-8", "Toscana, Maden, vinen, kulturen & landskabet", 1, 2014,
 329, true }
 };

 public Demo01()
 {
 super(null, "Demo01", JDialog.ModalityType.APPLICATION_MODAL);
 setSize(750, 300);
 this.setLocationRelativeTo(null);
 setLayout(new BorderLayout());
 add(new JScrollPane(createTable()));
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 setVisible(true);
 }

 private JTable createTable()
 {
 JTable table = new JTable(data, colNames);
 setColumnWidth(table.getColumnModel().getColumn(0), 130);
 setColumnWidth(table.getColumnModel().getColumn(4), 50);
 return table;
 }

 private void setColumnWidth(TableColumn col, int width)
 {
 col.setPreferredWidth(width);
 col.setMinWidth(width);
 col.setMaxWidth(width);
 }
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

57

The component JTable

57

In the beginning of the code is laid out the data to be displayed. The first array is the
column headings, while the next two-dimensional array is the table’s data. You should note
that the array’s data is of the type Object, and since some of the data are simple data types
there are used auto boxing for objects to type Integer and Boolean. The table is created in
the method createTable() where the two data structures (arrays) are sent as parameters to
the constructor in JTabel and the constructor will then based on these structures create a
data model. Next is called the method setColumnWidth() for column 0 and column 4 to
define a fixed width for these columns. When looking at the syntax, there is not much
mystery in it, but it is far from a typical application, and take the many opportunities for
user interaction into account is clear that there is a part that must be learned.

T﻿he class is part of a project called JTableDemo and when you run the program, you get
the following window:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 6: JDBC AND DATABASE APPLICATIONS

58

The component JTable

and thus a window with 12 buttons. Each button opens a dialog box, showing an example
of a JTable, and the upper left is the example mentioned above.

THE DATA MODEL

I will now look at the data model as a JTable displays the objects in a data model. In the
previous example it was the constructor of the class JTable that created the model, but
typically it happens otherwise. A data model is a class that inherits AbstractTableModel, and
a model for the same data as above could be:

JAVA 6: JDBC AND DATABASE APPLICATIONS

58

the Component JtaBle

and thus a window with 12 buttons. Each button opens a dialog box, showing an example
of a JTable, and the upper left is the example mentioned above.

THE DATA MODEL

I will now look at the data model as a JTable displays the objects in a data model. In the
previous example it was the constructor of the class JTable that created the model, but
typically it happens otherwise. A data model is a class that inherits AbstractTableModel, and
a model for the same data as above could be:

package jtabledemo;

import javax.swing.table.*;

public class DemoDataModel extends AbstractTableModel
{
 private String[] colNames =
 { "Isbn", "Titel", "Edition", "Published", "Pages", "Lent" };
 private Object[][] data = {
 { "0-672-32584-5", "MySQL Tutorial", 1, 2004, 267, false },
 { "978-1-59059-855-9", "Beginning Fedora, From Novice to Professional", 1,
 2005, 519, false },
 { "978-9935-9198-1-6", "Islændingesagaerne bind I", 1, 2014, 440, true },
 { "978-9935-9198-2-3", "Islændingesagaerne bind II", 1, 2014, 501, true },
 { "978-9935-9198-3-0", "Islændingesagaerne bind III", 1, 2014, 501, true },
 { "978-9935-9198-4-7", "Islændingesagaerne bind IV", 1, 2014, 507, true },
 { "978-9935-9198-5-4", "Islændingesagaerne bind V", 1, 2014, 531, true },
 { "978-0-13-255317-9", "Computer Networkks", 5, 2011, 951, false },
 { "978-87-02-15535-8", "Toscana, Maden, vinen, kulturen & landskabet", 1, 2014,
 329, true }
 };

JAVA 6: JDBC AND DATABASE APPLICATIONS

59

The component JTable

JAVA 6: JDBC AND DATABASE APPLICATIONS

59

the Component JtaBle

 public DemoDataModel()
 {
 super();
 }

 public int getColumnCount()
 {
 return colNames.length;
 }

 public int getRowCount()
 {
 return data.length;
 }

 public String getColumnName(int col)
 {
 return colNames[col];
 }

 public Object getValueAt(int row, int col)
 {
 return data[row][col];
 }

 public Class getColumnClass(int c)
 {
 return getValueAt(0, c).getClass();
 }

 public boolean isCellEditable(int row, int col)
 {
 return col > 2;
 }

 public void setValueAt(Object value, int row, int col)
 {
 data[row][col] = value;
 fireTableCellUpdated(row, col);
 }
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

60

The component JTable

60

that in addition to the data definitions alone is overriden methods from the base class.
In fact, only three of these methods are necessary (getColumnCount(), getRowCount() and
getValueAt()) because the others have default implementations in AbstractTableModel. However
getColumnName() is necessary to get the correct column names. The methods are generally
simple, but you should note the method isCellEditable(), which in this case defines that only
columns with index greater than 2 can be edited. Note also the method getColumnClass(),
which returns the data type of each column. In general (as in the previous example), a
JTable display the value of a datalement as a string in the form of toString(), but with the
data type available, the cells will be rendered differently. For example the cells containing
the numerical values show the content right justified, and as another example, a Boolean
(the last column in this case) is displayed as a JCheckBox component.

Below is a window showing a JTable on the basis of the above data model. The example
should show two things:

1.	how to apply a data model
2.	how the selection of rows and columns in JTabel works

The first is very simple, while the selection of cells is a little more difficult to figure out.

http://s.bookboon.com/Subscrybe

JAVA 6: JDBC AND DATABASE APPLICATIONS

61

The component JTable

In addition to the table, the window has some radio buttons and checkboxes, so the user
can specify how the selection of cells works. If you click in the table, it displays a message
box that tells what is clicked:

You are encouraged to run the program, so you get an idea of how the selection of cells
works depending on the settings of the program’s buttons.

The following method creates the table, and you must mainly observe how to map the data
model, which is done with a parameter to the constructor:

JAVA 6: JDBC AND DATABASE APPLICATIONS

61

the Component JtaBle

In addition to the table, the window has some radio buttons and checkboxes, so the user
can specify how the selection of cells works. If you click in the table, it displays a message
box that tells what is clicked:

You are encouraged to run the program, so you get an idea of how the selection of cells
works depending on the settings of the program’s buttons.

The following method creates the table, and you must mainly observe how to map the data
model, which is done with a parameter to the constructor:

private JTable createTable()
{
 table = new JTable(new DemoDataModel());
 table.setFillsViewportHeight(true);
 table.getSelectionModel().addListSelectionListener(new RowListener());
 table.getColumnModel().getSelectionModel().addListSelectionListener(
 new ColumnListener());
 return table;
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

62

The component JTable

The next statement is not really necessary, but it means that a JTable component fills the part
of the container that is not used for other components, and thus the white space between
the table and the bottom components are part of the JTable component. For example, it
could be important if the program uses drag and drop. The last two statements are related
to event handlers, respectively selection of rows and columns, that among other things,
opens a message box as shown above. The goal of this event handling is to show how to
catch events concerning selection of rows and columns and including which cell is clicked.

The rest of the program code fills a part, but contains nothing new. A part of the code
concerning the design of the user interface, where the components are laid out with a
BoxLayout. Moreover, there are event handlers for each of the 6 buttons, and when the
three check boxes is not independent of each other, the program must implement a logic
that controls when a check box must be selected.

EDIT CELLS

As mentioned in the first example, you can immediately edit the contents of the cells (if
permitted according to the data model, which means that in this case you can not edit the
contents of the first three columns). It is an example of a window with a JTabel showing
the same data model as in the previous example. Here you can edit a cell by double-clicking
on it:

JAVA 6: JDBC AND DATABASE APPLICATIONS

63

The component JTable

63

and if you then leave the cell (for example by pressing Enter), you get a message box that
tells that the cell is changed:

The content of the cell should in this case (the model) be an integer, and if you enter
something that is not an integer and press Enter, the cell will be selected, which shows that
the content is illegal (see below).

This is the standard error handling, but I show later, how you can control the editing of
cells, and what should happens if you enter something illegal.

http://s.bookboon.com/volvo

JAVA 6: JDBC AND DATABASE APPLICATIONS

64

The component JTable

With regard to the code there is not much to explain, and the most important is to show
how to assign an event handler that captures changes to the table:

JAVA 6: JDBC AND DATABASE APPLICATIONS

64

the Component JtaBle

With regard to the code there is not much to explain, and the most important is to show
how to assign an event handler that captures changes to the table:

private JTable createTable()
{
 JTable table = new JTable(new DemoDataModel());
 table.getModel().addTableModelListener(new TableChangedListener());
 return table;
}

class TableChangedListener implements TableModelListener
{
 public void tableChanged(TableModelEvent e)
 {
 int row = e.getFirstRow();
 int col = e.getColumn();
 DemoDataModel model = (DemoDataModel)e.getSource();
 String name = model.getColumnName(col);
 Object value = model.getValueAt(row, col);
 JOptionPane.showMessageDialog(Demo03.this, name + ": " + value);
 }
}

Here you particularly should note how to references the cell that is modified, including its
content.

As mentioned, you can associates an editor for editing the individual cells, as you do in
the following way:

table.getColumnModel().getColumn(3).setCellEditor(new IntegerEditor(1000, 2100));

Here you particularly should note how to references the cell that is modified, including its
content.

As mentioned, you can associates an editor for editing the individual cells, as you do in
the following way:

JAVA 6: JDBC AND DATABASE APPLICATIONS

64

the Component JtaBle

With regard to the code there is not much to explain, and the most important is to show
how to assign an event handler that captures changes to the table:

private JTable createTable()
{
 JTable table = new JTable(new DemoDataModel());
 table.getModel().addTableModelListener(new TableChangedListener());
 return table;
}

class TableChangedListener implements TableModelListener
{
 public void tableChanged(TableModelEvent e)
 {
 int row = e.getFirstRow();
 int col = e.getColumn();
 DemoDataModel model = (DemoDataModel)e.getSource();
 String name = model.getColumnName(col);
 Object value = model.getValueAt(row, col);
 JOptionPane.showMessageDialog(Demo03.this, name + ": " + value);
 }
}

Here you particularly should note how to references the cell that is modified, including its
content.

As mentioned, you can associates an editor for editing the individual cells, as you do in
the following way:

table.getColumnModel().getColumn(3).setCellEditor(new IntegerEditor(1000, 2100));

JAVA 6: JDBC AND DATABASE APPLICATIONS

65

The component JTable

where is assigned a CellEditor to the third column (the column of the year), which requires
that the value must be an integer between 1000 and 2100. When you edit the content of
a cell, the content of the cell are copied into a corresponding JTextField where you can edit
it. In this case there is only attached a CellEditor to column 3, and so you can edit the
content of the column 4 (the number of pages) as default. Below is a window where the
page number is changed and the cell for a year is editing. Now if you press Enter, you get
the following message box that says that you have entered an illegal value:

If you here click Alter, you can continue to edit the cell, and if you click Cancel, the old
value is inserted again.

A CellEditor is a class that inherits DefaultCellEditor, which in turn inherits JTextField. In
this example, the editor is written as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

65

the Component JtaBle

where is assigned a CellEditor to the third column (the column of the year), which requires
that the value must be an integer between 1000 and 2100. When you edit the content of
a cell, the content of the cell are copied into a corresponding JTextField where you can edit
it. In this case there is only attached a CellEditor to column 3, and so you can edit the
content of the column 4 (the number of pages) as default. Below is a window where the
page number is changed and the cell for a year is editing. Now if you press Enter, you get
the following message box that says that you have entered an illegal value:

If you here click Alter, you can continue to edit the cell, and if you click Cancel, the old
value is inserted again.

A CellEditor is a class that inherits DefaultCellEditor, which in turn inherits JTextField. In
this example, the editor is written as follows:

class IntegerEditor extends DefaultCellEditor
{
 JFormattedTextField field;
 NumberFormat format;
 private Integer min, max;

 public IntegerEditor(int min, int max)
 {
 super(new JFormattedTextField());
 field = (JFormattedTextField)getComponent();

JAVA 6: JDBC AND DATABASE APPLICATIONS

66

The component JTable

66

JAVA 6: JDBC AND DATABASE APPLICATIONS

66

the Component JtaBle

66

 this.min = min;
 this.max = max;
 format = NumberFormat.getIntegerInstance();
 NumberFormatter formatter = new NumberFormatter(format);
 formatter.setFormat(format);
 formatter.setMinimum(min);
 formatter.setMaximum(max);
 field.setFormatterFactory(new DefaultFormatterFactory(formatter));
 field.setValue(min);
 field.setHorizontalAlignment(JTextField.TRAILING);
 field.setFocusLostBehavior(JFormattedTextField.PERSIST);
 field.getInputMap().put(KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0), "check");
 field.getActionMap().put("check", new CheckAction());
 }

 public Component getTableCellEditorComponent(JTable table, Object value,
 boolean isSelected, int row, int column)
 {
 JFormattedTextField field =
 (JFormattedTextField)super.getTableCellEditorComponent(
 table, value, isSelected, row, column);
 field.setValue(value);
 return field;
 }

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 6: JDBC AND DATABASE APPLICATIONS

67

The component JTable
JAVA 6: JDBC AND DATABASE APPLICATIONS

67

the Component JtaBle

 public Object getCellEditorValue()
 {
 JFormattedTextField field = (JFormattedTextField)getComponent();
 Object value = field.getValue();
 if (value instanceof Integer) return value;
 else if (value instanceof Number)
 return new Integer(((Number)value).intValue());
 else
 {
 try
 {
 return format.parseObject(value.toString());
 }
 catch (ParseException exc)
 {
 return null;
 }
 }
 }

 public boolean stopCellEditing()
 {
 JFormattedTextField field = (JFormattedTextField)getComponent();
 if (field.isEditValid())
 {
 try
 {
 field.commitEdit();
 }
 catch (java.text.ParseException exc)
 {
 }
 }
 else
 {
 if (!revert()) return false;
 }
 return super.stopCellEditing();
 }

 protected boolean revert()
 {
 Toolkit.getDefaultToolkit().beep();
 field.selectAll();
 Object[] options = {"Alter", "Cancel" };
 if (JOptionPane.showOptionDialog(SwingUtilities.getWindowAncestor(field),
 "The value ", "Illegal value", JOptionPane.YES_NO_OPTION,

JAVA 6: JDBC AND DATABASE APPLICATIONS

68

The component JTable
JAVA 6: JDBC AND DATABASE APPLICATIONS

68

the Component JtaBle

 JOptionPane.ERROR_MESSAGE, null, options, options[1]) == 1)
 {
 field.setValue(field.getValue());
 return true;
 }
 return false;
 }

 class CheckAction extends AbstractAction
 {
 public void actionPerformed(ActionEvent e)
 {
 if (!field.isEditValid())
 {
 if (revert()) field.postActionEvent();
 }
 else
 try
 {
 field.commitEdit();
 field.postActionEvent();
 }
 catch (java.text.ParseException exc)
 {
 }
 }
 }
}

It is a comprehensive class, simply because it is complex to edit the content of a field.
Essentially the following happens:

The class inherits DefaultCellEditor and thus specifically a JTextField. The constructor has
two parameters, similar to that you have to edit a number within a range. The constructor
starts to replace its editing component (which is a JTextField) with another Swing component
called a JFormattedTextField, that is a JTextField that has an associated object, which can
format the text entered. In this case it is a NumberFormatter object that is initialized with
a NumberFormat object for formatting integers and the range within which the number
must lie. Then is defined that the field should be right justified, and an event handler to
the Enter key is added, such you returns from the field when you hit the Enter key.

It is a comprehensive class, simply because it is complex to edit the content of a field.
Essentially the following happens:

The class inherits DefaultCellEditor and thus specifically a JTextField. The constructor has
two parameters, similar to that you have to edit a number within a range. The constructor
starts to replace its editing component (which is a JTextField ) with another Swing component
called a JFormattedTextField, that is a JTextField that has an associated object, which can
format the text entered. In this case it is a NumberFormatter object that is initialized with
a NumberFormat object for formatting integers and the range within which the number
must lie. Then is defined that the field should be right justified, and an event handler to
the Enter key is added, such you returns from the field when you hit the Enter key.

JAVA 6: JDBC AND DATABASE APPLICATIONS

69

The component JTable

69

The event handler is defined as an inner class. It begins by testing whether the content of
the field is legal in relation to the formatter, and is it not the case, the method revert() is
called. It is the method that displays the above message box where you can choose whether
you want to change the entered value, or cancel and return to the old content. If you choose
the last, the handler is terminated with a postActionEvent(). Is the content of the field legally,
the result is marked as commited, and again finish with a postActionEvent().

The class has three other methods. The first

JAVA 6: JDBC AND DATABASE APPLICATIONS

69

the Component JtaBle

69

The event handler is defined as an inner class. It begins by testing whether the content of
the field is legal in relation to the formatter, and is it not the case, the method revert() is
called. It is the method that displays the above message box where you can choose whether
you want to change the entered value, or cancel and return to the old content. If you choose
the last, the handler is terminated with a postActionEvent(). Is the content of the field legally,
the result is marked as commited, and again finish with a postActionEvent().

The class has three other methods. The first

getTableCellEditorComponent(JTable table, Object value, boolean isSelected,
 int row, int column)

returns the component (the input field) that is assigned to a particular cell and assign it a
value, while the next

Object getCellEditorValue()

returns the object which is currently edited as an Integer object. Finally the last method
that is performed when editing ends.

returns the component (the input field) that is assigned to a particular cell and assign it a
value, while the next

JAVA 6: JDBC AND DATABASE APPLICATIONS

69

the Component JtaBle

69

The event handler is defined as an inner class. It begins by testing whether the content of
the field is legal in relation to the formatter, and is it not the case, the method revert() is
called. It is the method that displays the above message box where you can choose whether
you want to change the entered value, or cancel and return to the old content. If you choose
the last, the handler is terminated with a postActionEvent(). Is the content of the field legally,
the result is marked as commited, and again finish with a postActionEvent().

The class has three other methods. The first

getTableCellEditorComponent(JTable table, Object value, boolean isSelected,
 int row, int column)

returns the component (the input field) that is assigned to a particular cell and assign it a
value, while the next

Object getCellEditorValue()

returns the object which is currently edited as an Integer object. Finally the last method
that is performed when editing ends.
returns the object which is currently edited as an Integer object. Finally the last method
that is performed when editing ends.

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 6: JDBC AND DATABASE APPLICATIONS

70

The component JTable

RENDERING CELLS

A CellEditor allows you to define how the content of cells in a JTable can be edited, but
a column can also be associated with a CellRenderer that indicates how the content of the
column’s cells should appear. As already mentioned the default is as a string in which the
cell shows an object as the result of its toString() method, but if a JTable is defined on the
basis of a TableModel and implements the method getColumnClass(), it is instead the objects’
data type, which determines how the values appear. For example becomes a Boolean type
shown – or rendered – as a JCheckBox. How each column should render their cells values
can also be defined with a CellRenderer, which is a class that defines how.

Consider the above window, which has a JTable showing the same data model as above.
Here you should note

-- if you clicks on a cell in the column Published, you get a combo box from which
you can select a date

-- a cell in the column Pages appears as a button, and if you clicks the button, you
get a message box as shown below

-- the last column shows not only a check box, but also a text

JAVA 6: JDBC AND DATABASE APPLICATIONS

71

The component JTable

The reason is that there is associated a CellRenderer for each of the last three columns. For
the column Published the renderer is defined it as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

71

the Component JtaBle

The reason is that there is associated a CellRenderer for each of the last three columns. For
the column Published the renderer is defined it as follows:

public void setYearColumn(JTable table, TableColumn column)
{
 JComboBox comboBox = new JComboBox();
 for (int i = 1950; i <= 2025; ++i) comboBox.addItem(i);
 column.setCellEditor(new DefaultCellEditor(comboBox));
 DefaultTableCellRenderer renderer = new DefaultTableCellRenderer();
 renderer.setToolTipText("Klik for at åbne dropdown boks");
 renderer.setHorizontalAlignment(JLabel.RIGHT);
 column.setCellRenderer(renderer);
}

This creates a usual JComboBox component that is initialized with a year between 1950 and
2025. It can then be directly assigned to the column as a CellEditor, which means that if you
double-click a cell, the combo box is opend, so you can choose a date. In addition, there is
created a DefaultTableCellRenderer, that has attached a tooltip. The DefaultTableCellRenderer
is then associated the column as a CellRenderer.

Then there is the column Pages where the content should be displayed as a button. Here a
renderer is defined as follows:

public void setPageColumn(JTable table, TableColumn column)
{
 column.setCellRenderer(new PageCells());
 column.setCellEditor(new PageCells());
}

class PageCells extends AbstractCellEditor
 implements TableCellEditor, TableCellRenderer
{
 public Component getTableCellEditorComponent
 (JTable table, Object value, boolean isSelected, int row, int column)
 {
 return table.getCellRenderer(row, column).ge
tTableCellRendererComponent(table,
 value, isSelected, isSelected, row, column);
 }

 public Object getCellEditorValue()
 {
 return null;
 }

This creates a usual JComboBox component that is initialized with a year between 1950 and
2025. It can then be directly assigned to the column as a CellEditor, which means that if you
double-click a cell, the combo box is opend, so you can choose a date. In addition, there is
created a DefaultTableCellRenderer, that has attached a tooltip. The DefaultTableCellRenderer
is then associated the column as a CellRenderer.

Then there is the column Pages where the content should be displayed as a button. Here a
renderer is defined as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

71

the Component JtaBle

The reason is that there is associated a CellRenderer for each of the last three columns. For
the column Published the renderer is defined it as follows:

public void setYearColumn(JTable table, TableColumn column)
{
 JComboBox comboBox = new JComboBox();
 for (int i = 1950; i <= 2025; ++i) comboBox.addItem(i);
 column.setCellEditor(new DefaultCellEditor(comboBox));
 DefaultTableCellRenderer renderer = new DefaultTableCellRenderer();
 renderer.setToolTipText("Klik for at åbne dropdown boks");
 renderer.setHorizontalAlignment(JLabel.RIGHT);
 column.setCellRenderer(renderer);
}

This creates a usual JComboBox component that is initialized with a year between 1950 and
2025. It can then be directly assigned to the column as a CellEditor, which means that if you
double-click a cell, the combo box is opend, so you can choose a date. In addition, there is
created a DefaultTableCellRenderer, that has attached a tooltip. The DefaultTableCellRenderer
is then associated the column as a CellRenderer.

Then there is the column Pages where the content should be displayed as a button. Here a
renderer is defined as follows:

public void setPageColumn(JTable table, TableColumn column)
{
 column.setCellRenderer(new PageCells());
 column.setCellEditor(new PageCells());
}

class PageCells extends AbstractCellEditor
 implements TableCellEditor, TableCellRenderer
{
 public Component getTableCellEditorComponent
 (JTable table, Object value, boolean isSelected, int row, int column)
 {
 return table.getCellRenderer(row, column).ge
tTableCellRendererComponent(table,
 value, isSelected, isSelected, row, column);
 }

 public Object getCellEditorValue()
 {
 return null;
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

72

The component JTable

72

JAVA 6: JDBC AND DATABASE APPLICATIONS

72

the Component JtaBle

72

 public Component getTableCellRendererComponent(JTable table, Object value,
 boolean isSelected, boolean hasFocus, int row, int column)
 {
 AbstractAction action = new AbstractAction("Klik")
 {
 public void actionPerformed(ActionEvent e)
 {
 JOptionPane.showMessageDialog(Demo05.this, "Antal sider: " + value);
 }
 };
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(3, 3, 3, 3));
 panel.add(new JButton(action));
 return panel;
 }
}

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 6: JDBC AND DATABASE APPLICATIONS

73

The component JTable

This time is defined an inner class. The class inherits AbstratCellEditor and implements interfaces
to both a CellEditor and a CellRenderer. The method getTableCellEditorComponent() is not as
important in this context and does nothing more than to return the current CellEditor, but
the important things are happening in the method getTableCellRendererComponent(), which
returns the component that should render the contents of the cell. It starts with defining an
Action, which displays a message box with the value for number of pages. Next is created
a JPanel with a button for this action, and the result is that the cell will contain a button,
so you also can click the button. You should note that to be possible to click the button,
the column must in the model be defined as editable.

The last column with the check box works the same way, and the difference is mainly that
the panel created in getTableCellRendererComponent() this time contains two components.
Since it should be possible to edit the content – put a check mark – the method
getCellEditorValue() must this time return a value that must be initialized in the method
getTableCellEditorComponent().

The table is created as follows, with all the columns except the column for the title are
assigned a fixed width:

JAVA 6: JDBC AND DATABASE APPLICATIONS

73

the Component JtaBle

This time is defined an inner class. The class inherits AbstratCellEditor and implements interfaces
to both a CellEditor and a CellRenderer. The method getTableCellEditorComponent() is not as
important in this context and does nothing more than to return the current CellEditor, but
the important things are happening in the method getTableCellRendererComponent(), which
returns the component that should render the contents of the cell. It starts with defining an
Action, which displays a message box with the value for number of pages. Next is created
a JPanel with a button for this action, and the result is that the cell will contain a button,
so you also can click the button. You should note that to be possible to click the button,
the column must in the model be defined as editable.

The last column with the check box works the same way, and the difference is mainly that
the panel created in getTableCellRendererComponent() this time contains two components.
Since it should be possible to edit the content – put a check mark – the method
getCellEditorValue() must this time return a value that must be initialized in the method
getTableCellEditorComponent().

The table is created as follows, with all the columns except the column for the title are
assigned a fixed width:

private JTable createTable()
{
 JTable table = new JTable(new DemoDataModel());
 table.setRowHeight(35);
 setColumnWidth(table.getColumnModel().getColumn(0), 130);
 setColumnWidth(table.getColumnModel().getColumn(2), 60);
 setColumnWidth(table.getColumnModel().getColumn(3), 70);
 setColumnWidth(table.getColumnModel().getColumn(4), 80);
 setColumnWidth(table.getColumnModel().getColumn(5), 110);
 setYearColumn(table, table.getColumnModel().getColumn(3));
 setPageColumn(table, table.getColumnModel().getColumn(4));
 setCheckColumn(table, table.getColumnModel().getColumn(5));
 return table;
}

private void setColumnWidth(TableColumn col, int width)
{
 col.setPreferredWidth(width);
 col.setMinWidth(width);
 col.setMaxWidth(width);
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

74

The component JTable

As another example of a renderer displays the following window the first two columns with
a different color:

The code is the following:

JAVA 6: JDBC AND DATABASE APPLICATIONS

74

the Component JtaBle

As another example of a renderer displays the following window the first two columns with
a different color:

The code is the following:

package jtabledemo;

import javax.swing.*;
import java.awt.*;
import javax.swing.table.*;

public class Demo06 extends JDialog
{
 public Demo06()
 {
 super(null, "Demo06", JDialog.ModalityType.APPLICATION_MODAL);
 setSize(750, 400);
 this.setLocationRelativeTo(null);
 setLayout(new BorderLayout());
 add(new JScrollPane(createTable()));
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 setVisible(true);
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

75

The component JTable

75

JAVA 6: JDBC AND DATABASE APPLICATIONS

75

the Component JtaBle

75

 private JTable createTable()
 {
 JTable table = new JTable(new DemoDataModel());
 table.setDefaultRenderer(String.class, new ColorRenderer());
 table.setRowHeight(30);
 return table;
 }
}

class ColorRenderer extends JLabel implements TableCellRenderer
{
 public Component getTableCellRendererComponent(JTable table, Object value,
 boolean isSelected, boolean hasFocus, int row, int column)
 {
 setText(value.toString());
 setForeground(column == 0 ? Color.red : Color.blue);
 setFont(new Font("Liberation Serif", Font.PLAIN, 18));
 setToolTipText(column == 0 ? "ISBN is red" : "Title is blue");
 return this;
 }
}

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 6: JDBC AND DATABASE APPLICATIONS

76

The component JTable

The render object is defined by the class ColorRenderer and there is not much to explain,
but you will notice how the render object is assigned in createTable():

JAVA 6: JDBC AND DATABASE APPLICATIONS

76

the Component JtaBle

The render object is defined by the class ColorRenderer and there is not much to explain,
but you will notice how the render object is assigned in createTable():

table.setDefaultRenderer(String.class, new ColorRenderer());

This means that all columns that contains objects of type String uses this renderer and thus
the first two columns.

SORTING ROWS

A JTable supports sorting of rows by clicking the mouse on a column. Clicking once sorted
rows of the column’s values in ascending order, and click it again to sort in descending
order. The example Demo07 demonstrates how it works. The data model is the same as in
the above examples, and the only thing that must happen is that you have to specify that
it must be possible when the table is created:

private JTable createTable()
{
 JTable table = new JTable(new DemoDataModel());
 table.setAutoCreateRowSorter(true);
 return table;
}

FILTERS

This example shows how to assign a filter. The data model is again the same with 9 rows,
but if you enter something in the input field below the table, only the rows where the title
starts with what is entered are shown. Below I has entered a large I:

This means that all columns that contains objects of type String uses this renderer and thus
the first two columns.

SORTING ROWS

A JTable supports sorting of rows by clicking the mouse on a column. Clicking once sorted
rows of the column’s values in ascending order, and click it again to sort in descending
order. The example Demo07 demonstrates how it works. The data model is the same as in
the above examples, and the only thing that must happen is that you have to specify that
it must be possible when the table is created:

JAVA 6: JDBC AND DATABASE APPLICATIONS

76

the Component JtaBle

The render object is defined by the class ColorRenderer and there is not much to explain,
but you will notice how the render object is assigned in createTable():

table.setDefaultRenderer(String.class, new ColorRenderer());

This means that all columns that contains objects of type String uses this renderer and thus
the first two columns.

SORTING ROWS

A JTable supports sorting of rows by clicking the mouse on a column. Clicking once sorted
rows of the column’s values in ascending order, and click it again to sort in descending
order. The example Demo07 demonstrates how it works. The data model is the same as in
the above examples, and the only thing that must happen is that you have to specify that
it must be possible when the table is created:

private JTable createTable()
{
 JTable table = new JTable(new DemoDataModel());
 table.setAutoCreateRowSorter(true);
 return table;
}

FILTERS

This example shows how to assign a filter. The data model is again the same with 9 rows,
but if you enter something in the input field below the table, only the rows where the title
starts with what is entered are shown. Below I has entered a large I:

FILTERS

This example shows how to assign a filter. The data model is again the same with 9 rows,
but if you enter something in the input field below the table, only the rows where the title
starts with what is entered are shown. Below I has entered a large I:

JAVA 6: JDBC AND DATABASE APPLICATIONS

77

The component JTable

The code is as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

77

the Component JtaBle

The code is as follows:

public class Demo08 extends JDialog
{
 private JTextField filterText;
 private TableRowSorter<DemoDataModel> sorter;

 public Demo08()
 {
 super(null, "Demo08", JDialog.ModalityType.APPLICATION_MODAL);
 setSize(750, 300);
 this.setLocationRelativeTo(null);
 setLayout(new BorderLayout());
 add(new JScrollPane(createTable()));
 add(createBottom(), BorderLayout.SOUTH);
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 setVisible(true);
 }

 private JTable createTable()
 {
 DemoDataModel model = new DemoDataModel();
 sorter = new TableRowSorter(model);
 JTable table = new JTable(model);
 table.setRowSorter(sorter);
 return table;
 }

 private JPanel createBottom()
 {
 JPanel panel = new JPanel(new BorderLayout(20, 0));
 panel.add(new JLabel("Enter filter"), BorderLayout.WEST);
 panel.add(filterText = new JTextField());
 filterText.getDocument().addDocumentListener(new Filter());
 return panel;
 }

 private void newFilter()
 {
 RowFilter<DemoDataModel, Object> filter = null;
 try
 {
 filter = RowFilter.regexFilter(filterText.getText(), 1);
 }
 catch (java.util.regex.PatternSyntaxException ex)
 {

JAVA 6: JDBC AND DATABASE APPLICATIONS

78

The component JTable

78

JAVA 6: JDBC AND DATABASE APPLICATIONS

78

the Component JtaBle

78

 return;
 }
 sorter.setRowFilter(filter);
 }

 class Filter implements DocumentListener
 {
 public void changedUpdate(DocumentEvent e)
 {
 newFilter();
 }

 public void insertUpdate(DocumentEvent e)
 {
 newFilter();
 }

 public void removeUpdate(DocumentEvent e)
 {
 newFilter();
 }
 }
}

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 6: JDBC AND DATABASE APPLICATIONS

79

The component JTable

The first thing you should notice is that there are defined two instance variables, the first
refers to the input field, while the other has the type TableRowSorter and is for the used
data model (that is DemoDataModel ). In the constructor is nothing new, but the method
createTable() creates the sorter object and attached it to the table. The method createBottom()
creates the input field, and associates the filter to the field the following statement:

JAVA 6: JDBC AND DATABASE APPLICATIONS

79

the Component JtaBle

The first thing you should notice is that there are defined two instance variables, the first
refers to the input field, while the other has the type TableRowSorter and is for the used
data model (that is DemoDataModel). In the constructor is nothing new, but the method
createTable() creates the sorter object and attached it to the table. The method createBottom()
creates the input field, and associates the filter to the field the following statement:

filterText.getDocument().addDocumentListener(new Filter());

where Filter is an inner class that implements an interface called DocumentListener. This
interface defines three methods that are executed when the content of the input field is
changed, and therefore if the user enters or deletes anything. In all three cases, the methods
called newFilter(), and it is the method it is all about. It creates a filter as a regular expression,
and note especially that by an index indicating which column the filter must apply to – in
this case, index 1 and thus the title column. Finally the sorter object is used to the filter
the table rows.

PRINT A JTABLE

The next example Demo09 is simple and shows the same table as above, but the example
demonstrates how to print the table of the printer, and it could hardly be simpler. The
window has a Print button, and all that is needed is done in the event handler for this button:

private void print(ActionEvent e)
{
 MessageFormat header = new MessageFormat("Side {0, number, integer}");
 try
 {
 table.print(JTable.PrintMode.NORMAL, header, null);
 }
 catch (java.awt.print.PrinterException ex)
 {
 JOptionPane.showMessageDialog(this, ex.getMessage());
 }
}

where Filter is an inner class that implements an interface called DocumentListener. This
interface defines three methods that are executed when the content of the input field is
changed, and therefore if the user enters or deletes anything. In all three cases, the methods
called newFilter(), and it is the method it is all about. It creates a filter as a regular expression,
and note especially that by an index indicating which column the filter must apply to – in
this case, index 1 and thus the title column. Finally the sorter object is used to the filter
the table rows.

PRINT A JTABLE

The next example Demo09 is simple and shows the same table as above, but the example
demonstrates how to print the table of the printer, and it could hardly be simpler. The
window has a Print button, and all that is needed is done in the event handler for this button:

JAVA 6: JDBC AND DATABASE APPLICATIONS

79

the Component JtaBle

The first thing you should notice is that there are defined two instance variables, the first
refers to the input field, while the other has the type TableRowSorter and is for the used
data model (that is DemoDataModel). In the constructor is nothing new, but the method
createTable() creates the sorter object and attached it to the table. The method createBottom()
creates the input field, and associates the filter to the field the following statement:

filterText.getDocument().addDocumentListener(new Filter());

where Filter is an inner class that implements an interface called DocumentListener. This
interface defines three methods that are executed when the content of the input field is
changed, and therefore if the user enters or deletes anything. In all three cases, the methods
called newFilter(), and it is the method it is all about. It creates a filter as a regular expression,
and note especially that by an index indicating which column the filter must apply to – in
this case, index 1 and thus the title column. Finally the sorter object is used to the filter
the table rows.

PRINT A JTABLE

The next example Demo09 is simple and shows the same table as above, but the example
demonstrates how to print the table of the printer, and it could hardly be simpler. The
window has a Print button, and all that is needed is done in the event handler for this button:

private void print(ActionEvent e)
{
 MessageFormat header = new MessageFormat("Side {0, number, integer}");
 try
 {
 table.print(JTable.PrintMode.NORMAL, header, null);
 }
 catch (java.awt.print.PrinterException ex)
 {
 JOptionPane.showMessageDialog(this, ex.getMessage());
 }
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

80

The component JTable

SYNCHRONIZING TWO TABLES

The next example shows a JTable and JList, and both using the the same data model, but
this time a different data model, there is a list of Danish kings:

Both components thus uses the same data model, and the most important thing about the
model is that there are so many rows, that you needs to scroll the table. The one component
shows only one of the model’s columns, while the second shows all columns. The example
should show that if you click on a row in one of the two components they both scrolls, so
the row that is selected appears at the top (se below).

The data model is called Kings and is relatively complex. It is defined as a class derived
from DefaultListModel, but really it should be an AbstractTableModel (see examples in front).
However, it is not necessary, but it is sufficient to implement the interface TableModel (what
AbstractTableModel do). In return, the class Kings must implement all methods defined by
TableModel. This is possible by defining an object of the type KingsModel that is an inner
class that inherits AbstractTableModel, and the class Kings may then delegates the methods
of the class KingsModel. You are encouraged to study the in principle simple, but a little
unusual implementation of the data model.

JAVA 6: JDBC AND DATABASE APPLICATIONS

81

The component JTable

81

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 6: JDBC AND DATABASE APPLICATIONS

82

The component JTable

Then there is the code of the user interface:

JAVA 6: JDBC AND DATABASE APPLICATIONS

82

the Component JtaBle

Then there is the code of the user interface:

public class Demo10 extends JDialog
{
 private Font font = new Font("Liberation Serif", Font.PLAIN, 16);
 private Kings dataModel = new Kings();
 private JList list;
 private JTable table;
 private ListSelectionModel listSelectionModel;

 public Demo10()
 {
 super(null, "Demo10", JDialog.ModalityType.APPLICATION_MODAL);
 setSize(600, 400);
 this.setLocationRelativeTo(null);
 setLayout(new BorderLayout());
 add(createList(), BorderLayout.WEST);
 add(new JScrollPane(createTable()));
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 setVisible(true);
 }

 private JPanel createList()
 {
 JPanel panel = new JPanel(new BorderLayout());
 JLabel label = new JLabel(dataModel.getColumnName(0), JLabel.CENTER);
 label.setPreferredSize(new Dimension(0, 32));
 label.setBorder(new LineBorder(Color.LIGHT_GRAY));
 label.setFont(font);
 panel.add(label, BorderLayout.NORTH);
 list = new JList(dataModel);
 list.setFont(font);
 list.setCellRenderer(new DefaultListCellRenderer()
 {
 public Component getListCellRendererComponent(JList list, Object value,
 int index, boolean selected, boolean focus)
 {
 King king = (King)value;
 Component component = super.getListCellRendererComponent(
 list, king.getName(), index, selected, focus);
 component.setPreferredSize(new Dimension(150, 25));
 return component;
 }
 });
 listSelectionModel = list.getSelectionModel();
 listSelectionModel.addListSelectionListener(new ListSelectionHandler());
 panel.add(new JScrollPane(list));
 return panel;
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

83

The component JTable
JAVA 6: JDBC AND DATABASE APPLICATIONS

83

the Component JtaBle

 private JTable createTable()
 {
 table = new JTable(dataModel);
 table.setSelectionModel(listSelectionModel);
 JTableHeader header = table.getTableHeader();
 header.setPreferredSize(new Dimension(0, 32));
 table.setFont(font);
 table.setRowHeight(25);
 return table;
 }

 class ListSelectionHandler implements ListSelectionListener
 {
 public void valueChanged(ListSelectionEvent e)
 {
 int index = e.getSource() ==
 table ? table.getSelectedRow() : list.getSelectedIndex();
 list.ensureIndexIsVisible(index);
 Rectangle rect = table.getCellRect(index, 0, true);
 table.scrollRectToVisible(rect);
 table.scrollRectToVisible(list.getCellBounds(
 index, dataModel.getSize() – 1));
 list.scrollRectToVisible(list.getCellBounds(index, dataModel.getSize() – 1));
 }
 }
}

The components are placed in the window in the constructor. The JList component
is created in the method createList(), where it is placed in a panel with a label above.
Next the list is assigned a new CellRenderer object created on the basis of an anonymous
class that inherits DefaultListCellRenderer, and does not much, but overrides the method
getListCellRendererComponent(). The list’s data model is kings, and the method has to ensure
that only the name is shown and the cell has a preferred size to fit the height of the rows
in the JTable component. Next the variable listSelectionModel is set to refer to list box’s
SelectionModel, and to this is attached an event handler of the type ListSelectionHandler
(that is an inner class).

Then there is the method createTabel(), and here you mainly notice how to defines the
height of the table’s header and rows. Finally, note that the table is assigned to the same
SelectionModel as the list box. This means that it is the same event handler that is executed
if you click on one of the two components, and it is this handler that scrolls the two
components so that the element that is clicked, is at the top.

The components are placed in the window in the constructor. The JList component
is created in the method createList(), where it is placed in a panel with a label above.
Next the list is assigned a new CellRenderer object created on the basis of an anonymous
class that inherits DefaultListCellRenderer, and does not much, but overrides the method
getListCellRendererComponent(). The list’s data model is kings, and the method has to ensure
that only the name is shown and the cell has a preferred size to fit the height of the rows
in the JTable component. Next the variable listSelectionModel is set to refer to list box’s
SelectionModel, and to this is attached an event handler of the type ListSelectionHandler
(that is an inner class).

Then there is the method createTabel(), and here you mainly notice how to defines the
height of the table’s header and rows. Finally, note that the table is assigned to the same
SelectionModel as the list box. This means that it is the same event handler that is executed
if you click on one of the two components, and it is this handler that scrolls the two
components so that the element that is clicked, is at the top.

JAVA 6: JDBC AND DATABASE APPLICATIONS

84

The component JTable

84

JTABLE AND DATABASE TABLES

The example Demo11 shows how to display the content of a database table with a JTable.
The example opens the window below. The window shows a JTable with the content of the
table zipcode. At the bottom of the window, there is a button and two input fields. The
input fields act as filters for the two columns, while button clears the fields. Regarding the
definition of the table and window and including the filters there is nothing new, so it is
the data model you need to be interested, and here is actually not very new:

JAVA 6: JDBC AND DATABASE APPLICATIONS

84

the Component JtaBle

84

JTABLE AND DATABASE TABLES

The example Demo11 shows how to display the content of a database table with a JTable.
The example opens the window below. The window shows a JTable with the content of the
table zipcode. At the bottom of the window, there is a button and two input fields. The
input fields act as filters for the two columns, while button clears the fields. Regarding the
definition of the table and window and including the filters there is nothing new, so it is
the data model you need to be interested, and here is actually not very new:

package jtabledemo;

import java.sql.*;
import java.util.*;
import javax.swing.table.*;

public class Zipcodes extends AbstractTableModel
{
 private List<Zipcode> list = new ArrayList();

 public Zipcodes()
 {
 try (Connection conn = DriverManager.getConnection(

http://s.bookboon.com/elearningforkids

JAVA 6: JDBC AND DATABASE APPLICATIONS

85

The component JTable

JAVA 6: JDBC AND DATABASE APPLICATIONS

85

the Component JtaBle

 "jdbc:mysql://localhost:3306/padata?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 ResultSet res = stmt.executeQuery("SELECT * FROM zipcode");
 while(res.next())
 list.add(new Zipcode(res.getString("code"), res.getString("city")));
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 }
 }

 public int getColumnCount()
 {
 return 2;
 }

 public int getRowCount()
 {
 return list.size();
 }

 public String getColumnName(int col)
 {
 return col == 0 ? "Code" : "City";
 }

 public Object getValueAt(int row, int col)
 {
 return col == 0 ? list.get(row).getCode() : list.get(row).getCity();
 }

 public Class getColumnClass(int c)
 {
 return String.class;
 }

 public boolean isCellEditable(int row, int col)
 {
 return false;
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

86

The component JTable
JAVA 6: JDBC AND DATABASE APPLICATIONS

86

the Component JtaBle

 public void setValueAt(Object value, int row, int col)
 {
 if (col == 0)
 list.get(row).setCode((String)value);
 else
 list.get(row).setCity((String)value);
 fireTableCellUpdated(row, col);
 }
}

The only place where is something new is in the constructor, and it is nothing more than
the initial examples in this book has illustrated, that is how to read a database table.

The conclusion is that it is quite simple to display the content of a database table using a
JTable – you just need to initialize the data model with the content of the database table.

The only place where is something new is in the constructor, and it is nothing more than
the initial examples in this book has illustrated, that is how to read a database table.

The conclusion is that it is quite simple to display the content of a database table using a
JTable – you just need to initialize the data model with the content of the database table.

JAVA 6: JDBC AND DATABASE APPLICATIONS

87

The component JTable

BIG TABLES

The last example will opens the following window:

The window shows a JTable, and there are 10000 rows and 200 columns and thus 2 million
cells. The example will primarily show that a JTabel can have many cells, and it is still
effective. You can also edit the individual cells except the last row and the last column. In
the cells you can enter numbers, and the bottom row shows all the time the column sum,
while the last column shows all the time the row sum.

The data model is simple and adds nothing new:

JAVA 6: JDBC AND DATABASE APPLICATIONS

87

the Component JtaBle

BIG TABLES

The last example will opens the following window:

The window shows a JTable, and there are 10000 rows and 200 columns and thus 2 million
cells. The example will primarily show that a JTabel can have many cells, and it is still
effective. You can also edit the individual cells except the last row and the last column. In
the cells you can enter numbers, and the bottom row shows all the time the column sum,
while the last column shows all the time the row sum.

The data model is simple and adds nothing new:

class SpreadsheetModel extends AbstractTableModel
{
 private Object[][] data;

 public SpreadsheetModel(int rows, int cols)
 {
 data = new Object[rows + 1][cols + 1];
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

88

The component JTable

88

JAVA 6: JDBC AND DATABASE APPLICATIONS

88

the Component JtaBle

88

 public int getColumnCount()
 {
 return data[0].length;
 }

 public int getRowCount()
 {
 return data.length;
 }

 public Object getValueAt(int row, int col)
 {
 return data[row][col];
 }

 public Class getColumnClass(int c)
 {
 return Double.class;
 }

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 6: JDBC AND DATABASE APPLICATIONS

89

The component JTable

JAVA 6: JDBC AND DATABASE APPLICATIONS

89

the Component JtaBle

 public boolean isCellEditable(int row, int col)
 {
 return col < data[0].length – 1 && row < data.length – 1;
 }

 public void setValueAt(Object value, int row, int col)
 {
 data[row][col] = value;
 fireTableCellUpdated(row, col);
 }
}

You should notice how it is defined that to the last row and last column must not be edited,
while all other cells must. You should also notice that each column contains objects of the
type Double and thus numbers.

Then there is the dialog box, where there is more to note. I will not show the code here,
partly it fills a lot, and secondly, it is mainly something as discussed earlier in this chapter,
so I’ll just mention a few things that you need to notice when you study the code:

1. There are two defined constants which define the table size. You could try to
experiment and change these constants.

2. How to define a RowHeader that is encapsulated in a JViewPort that is inserted in
the JScrollPane that contains the JTable component.

3. An inner class CellEditorHandler that is event handler for editing a cell
4. A class DoubleEditor, that is a CellEditor.
5. A class RowNumberHeader, that is a JTable and defines the type of table’s RowHeader.

You should notice how it is defined that to the last row and last column must not be edited,
while all other cells must. You should also notice that each column contains objects of the
type Double and thus numbers.

Then there is the dialog box, where there is more to note. I will not show the code here,
partly it fills a lot, and secondly, it is mainly something as discussed earlier in this chapter,
so I’ll just mention a few things that you need to notice when you study the code:

1.	There are two def﻿ined constants which define the table size. You could try to
experiment and change these constants.

2.	How to define a RowHeader that is encapsulated in a JViewPort that is inserted in
the JScrollPane that contains the JTable component.

3.	An inner class CellEditorHandler that is event handler for editing a cell
4.	A class DoubleEditor, that is a CellEditor.
5.	A class RowNumberHeader, that is a JTable and defines the type of table’s RowHeader.

JAVA 6: JDBC AND DATABASE APPLICATIONS

90

The component JTable

PROBLEM 2

You must write a program that you can call the Denmark, which opens the following window:

The window shows two JTable components located in a JSplitPane. The table on the left
shows all rows in the table zipcode while the table on the right shows all rows in the table
municipality, but only the municipality’s name and the name of the region. During the two
tables, there are four input fields used for filters, to the above column. The two buttons at
the top is used to clear the filters.

If you double-click on a line in the table with the zip codes, you should get the following
window:

that for the zip code displays the names of the municipalities that uses this zip code. If
you double-click a line in the table with municipalities, you must get a window as shown
below, where you partly receive the municipality’s area and number of inhabitants, and
partly a table with the zip codes that this municipality uses. This table (the table with local
zip codes) must be a JTable component.

JAVA 6: JDBC AND DATABASE APPLICATIONS

91

The component JTable

91

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 6: JDBC AND DATABASE APPLICATIONS

92

Files in databases

8	 FILES IN DATABASES

It is also possible to save files in databases, for example PDF documents, XML documents
or images. It has limited use, but with web applications one sometimes sees examples where
images are stored in databases, and if these are small files, there may also be situations where
it is ok. In this section I will show how to do that.

A column that must contain a file must be of the type TEXT (for documents) or BLOB
(binary files like images). The following script (CreateFileDb.sql ) creates a database with
two tables, one table to documents, while the other is for images:

JAVA 6: JDBC AND DATABASE APPLICATIONS

92

FIles In dataBases

8 FILES IN DATABASES

It is also possible to save files in databases, for example PDF documents, XML documents
or images. It has limited use, but with web applications one sometimes sees examples where
images are stored in databases, and if these are small files, there may also be situations where
it is ok. In this section I will show how to do that.

A column that must contain a file must be of the type TEXT (for documents) or BLOB
(binary files like images). The following script (CreateFileDb.sql) creates a database with
two tables, one table to documents, while the other is for images:

use sys;
drop database if exists filedb;
create database filedb;
use filedb;

create table documents (
 filename varchar(100), # the documents name
 description varchar(100), # a short description
 content longtext, # the documents content
 primary key(filename)
);

create table pictures (
 filename varchar(100), # the filename
 description varchar(100), # a short description
 content longblob, # picture data
 primary key(filename)
);

The following program is called UploadDocs and opens the following window:The following program is called UploadDocs and opens the following window:

JAVA 6: JDBC AND DATABASE APPLICATIONS

93

Files in databases

When you click the Upload button, you get a standard dialog where you can browse file
systems and find the file that you want to store in the database. If you double-click at a
line in the table, you get a similar dialog box where you can browse to a folder, and the
program must then save the content of the database row as a file in that folder.

The event handler for the button is:

JAVA 6: JDBC AND DATABASE APPLICATIONS

93

FIles In dataBases

When you click the Upload button, you get a standard dialog where you can browse file
systems and find the file that you want to store in the database. If you double-click at a
line in the table, you get a similar dialog box where you can browse to a folder, and the
program must then save the content of the database row as a file in that folder.

The event handler for the button is:

private void upload(ActionEvent e)
{
 JFileChooser fc = new JFileChooser();
 fc.setCurrentDirectory(new File(System.getProperty("user.home")));
 if (fc.showOpenDialog(this) == JFileChooser.APPROVE_OPTION)
 {
 File file = fc.getSelectedFile();
 String description = JOptionPane.showInputDialog(this, "Description:",
 "Enter text", JOptionPane.PLAIN_MESSAGE);
 streamFile(file, description);
 }
}

private void streamFile(File file, String description)
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/filedb?useSSL=false", "pa", "Volmer_1234"))
 {
 long length = file.length();
 FileInputStream in = new FileInputStream(file);
 PreparedStatement stmt =
 conn.prepareStatement("INSERT INTO documents VALUES(?, ?, ?)");
 stmt.setString(1, file.getName());
 if (description == null) stmt.setNull(2, java.sql.Types.VARCHAR);
 else stmt.setString(2, description);
 stmt.setAsciiStream(3, in, length);
 stmt.executeUpdate();
 model.add(new Document(file.getName(), description));
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this, file.getAbsolutePath() +
 " could not be streamed to the database\n" + ex,
 "Error message", JOptionPane.ERROR_MESSAGE);
 }
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

94

Files in databases

94

The event handler creates a JFileChooser object and open the dialog box so that you are placed
in the user’s home directory. If the user selects a file, the user should enter a description
of the document (the file). Then the method streamFile() is called, that streams the file to
the database. This method opens a FileInputStream to the file and then a connection to
the database and initialize a PreparedStatement. The only thing to note is the fact that the
column 3 (the third parameter in stmt ) is initialized with the method setAsciiStream() with
the InputStream as a parameter.

You should note that the program does not try to validate the file, and in fact the program
can upload any file and store it in the database – even a picture.

If you double-click a line in the table, the following event handler is performed:

JAVA 6: JDBC AND DATABASE APPLICATIONS

94

FIles In dataBases

94

The event handler creates a JFileChooser object and open the dialog box so that you are placed
in the user’s home directory. If the user selects a file, the user should enter a description
of the document (the file). Then the method streamFile() is called, that streams the file to
the database. This method opens a FileInputStream to the file and then a connection to
the database and initialize a PreparedStatement. The only thing to note is the fact that the
column 3 (the third parameter in stmt) is initialized with the method setAsciiStream() with
the InputStream as a parameter.

You should note that the program does not try to validate the file, and in fact the program
can upload any file and store it in the database – even a picture.

If you double-click a line in the table, the following event handler is performed:

class MouseHandler extends MouseAdapter
{
 public void mousePressed(MouseEvent e)
 {
 try
 {
 if (e.getClickCount() == 2)
 {

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 6: JDBC AND DATABASE APPLICATIONS

95

Files in databases
JAVA 6: JDBC AND DATABASE APPLICATIONS

95

FIles In dataBases

 int row = table.getSelectedRow();
 Document doc = model.getDocument((Integer)table.getValueAt(row, 0));
 JFileChooser fc = new JFileChooser();
 fc.setCurrentDirectory(new File(System.getProperty("user.home")));
 fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);
 if (fc.showSaveDialog(MainView.this) == JFileChooser.APPROVE_OPTION)
 streamFile(fc.getSelectedFile(), doc);
 }
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(MainView.this,
 "could not be streamed trom the database\n" + ex,
 "Error message", JOptionPane.ERROR_MESSAGE);
 }
 }
}

There is not so much new, but the user will be able to select the directory to where the file
should be saved. If a directory is selected the method streamFile() is called, which creates
the file, and retrieves the content from the database:

private void streamFile(File file, Document doc) throws Exception
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/filedb?useSSL=false", "pa", "Volmer_1234"))
 {
 PreparedStatement stmt =
 conn.prepareStatement("SELECT content FROM documents WHERE filename = ?");
 stmt.setString(1, doc.getFilename());
 ResultSet res = stmt.executeQuery();
 if (res.next())
 {
 InputStream stream = res.getAsciiStream (1);
 BufferedInputStream in = new BufferedInputStream(stream);
 String filename = file.getAbsolutePath() + "/" + doc.getFilename();
 BufferedOutputStream out =
 new BufferedOutputStream(new FileOutputStream(filename));
 int c;
 while ((c = in.read ()) != -1) out.write(c);
 out.close();
 }
 }
}

There is not so much new, but the user will be able to select the directory to where the file
should be saved. If a directory is selected the method streamFile() is called, which creates
the file, and retrieves the content from the database:

JAVA 6: JDBC AND DATABASE APPLICATIONS

95

FIles In dataBases

 int row = table.getSelectedRow();
 Document doc = model.getDocument((Integer)table.getValueAt(row, 0));
 JFileChooser fc = new JFileChooser();
 fc.setCurrentDirectory(new File(System.getProperty("user.home")));
 fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);
 if (fc.showSaveDialog(MainView.this) == JFileChooser.APPROVE_OPTION)
 streamFile(fc.getSelectedFile(), doc);
 }
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(MainView.this,
 "could not be streamed trom the database\n" + ex,
 "Error message", JOptionPane.ERROR_MESSAGE);
 }
 }
}

There is not so much new, but the user will be able to select the directory to where the file
should be saved. If a directory is selected the method streamFile() is called, which creates
the file, and retrieves the content from the database:

private void streamFile(File file, Document doc) throws Exception
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/filedb?useSSL=false", "pa", "Volmer_1234"))
 {
 PreparedStatement stmt =
 conn.prepareStatement("SELECT content FROM documents WHERE filename = ?");
 stmt.setString(1, doc.getFilename());
 ResultSet res = stmt.executeQuery();
 if (res.next())
 {
 InputStream stream = res.getAsciiStream (1);
 BufferedInputStream in = new BufferedInputStream(stream);
 String filename = file.getAbsolutePath() + "/" + doc.getFilename();
 BufferedOutputStream out =
 new BufferedOutputStream(new FileOutputStream(filename));
 int c;
 while ((c = in.read ()) != -1) out.write(c);
 out.close();
 }
 }
}

JAVA 6: JDBC AND DATABASE APPLICATIONS

96

Files in databases

Again, there is not much new to explain. The method creates a PreparedStatement with one
parameter, which is value to the primary key. The SELECT statement defines only a single
column, as the column of file’s content. If the row is found the content in the column is
referenced to with the method getAsciiStream(), which is an InputStream. It is encapsulated in
a BufferedInputStream (of performance reasons), and then is created a BufferedOutputStream
that represents the file to which the database content must be streamed.

In the example, the data streaming to and from the database is performed with an AsciiStream
that treat data as ASCII bytes encoded as ISO-Latin-1. There are other options:

-- UnicodeStream, where the data is treated as 16-bits unicode
-- BinaryStream, where the data is treated as raw bytes

and the difference is, what services these types provides.

EXERCISE 5

You must write a program similar to the above, and the program should open a window,
as shown below:

The program must upload pictures to the filedb database and store the pictures in the
table pictures, but in contrast to the above program it must use a BinaryStream. It should
only be possible to upload jpg, gif and png files. If you double-click a line in the table,
the corresponding file should in the same manner as in the above program be copied to a
directory in the file system.

The table's right column consists of check boxes. If you click on the Remove button, the
images selected must be removed from the database.

JAVA 6: JDBC AND DATABASE APPLICATIONS

97

DDL commands

97

9	 DDL COMMANDS

If you have to create a database and including its tables, you will in practice usually write
a SQL script. When a script consists of SQL commands, these commands can of course
also be performed using JDBC, and I close this explanation of JDBC with an example that
shows how to create a database and a table in the database. Actually, it’s just to, and the
following test method creates a database:

JAVA 6: JDBC AND DATABASE APPLICATIONS

97

ddl Commands

97

9 DDL COMMANDS

If you have to create a database and including its tables, you will in practice usually write
a SQL script. When a script consists of SQL commands, these commands can of course
also be performed using JDBC, and I close this explanation of JDBC with an example that
shows how to create a database and a table in the database. Actually, it’s just to, and the
following test method creates a database:

private static void test12()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate("CREATE DATABASE contacts");
 }
 catch(SQLException ex)
 {
 System.out.println(ex);
 }
}

http://s.bookboon.com/EOT

JAVA 6: JDBC AND DATABASE APPLICATIONS

98

DDL commands

The next method creates a table in this database:

JAVA 6: JDBC AND DATABASE APPLICATIONS

98

ddl Commands

The next method creates a table in this database:

private static void test13()
{
 try (Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306?useSSL=false", "pa", "Volmer_1234"))
 {
 Statement stmt = conn.createStatement();
 stmt.execute("use contacts");
 stmt.executeUpdate("CREATE TABLE persons (
 id int auto_increment not null primary key,
 name varchar(50) not null, phone varchar(20), email varchar(50))");
 }
 catch(SQLException ex)
 {
 System.out.println(ex);
 }
}

and then it should be clear that all DDL commands immediately can be executable from
a Java program – if you have the rights to perform the commands.

and then it should be clear that all DDL commands immediately can be executable from
a Java program – if you have the rights to perform the commands.

JAVA 6: JDBC AND DATABASE APPLICATIONS

99

Final examples

10	 FINAL EXAMPLES

I will finish this book about JDBC and databases with two examples of database applications.
The two examples are similar and are classic examples of database applications and in addition
to the size in which the first is a small program, while the other is slightly larger, so the
difference is that the first use an existing database, while the latter shows the development of
a database program right from the start, which also includes the design and implementation
of the database.

10.1	 WORLD

In the exercises and problems in this book you have expanded the database padata with
three tables

-- world
-- country
-- currency

The task now is to write a program that can maintain these tables, and thus a program
where you can search the tables, as well as edit and delete data. The program must have a
graphical user interface.

THE REQUIREMENTS

Before I will address the development, the requirements must be defined and therefore
which functions the program must be able to perform.

1.	The program should open a window (the main view) with two tables, one table
provides an overview of all countries, while the second shows an overview of
all currencies.

2.	 It should be possible to create a new country.
3.	 It should be possible to edit the information about a country.
4.	 It must be possible to delete a country.
5.	 It must be possible to create a new currency.
6.	 It should be possible to edit information about a currency and here especially the

exchange rate.
7.	 It must be possible to delete a currency, if there is no country that uses this currency.
8.	 It should be possible to update exchange rates with data from a CSV file.

JAVA 6: JDBC AND DATABASE APPLICATIONS

100

Final examples

100

It has been decided that you should not be able to maintain the table world with information
about the world’s continents.

Except for the first and the last function the requires does not needs further explanation.
With regard to the main view I will define it a prototype. As regards the last function, a
CSV file must consist of lines of the form

JAVA 6: JDBC AND DATABASE APPLICATIONS

100

FInal examples

100

It has been decided that you should not be able to maintain the table world with information
about the world’s continents.

Except for the first and the last function the requires does not needs further explanation.
With regard to the main view I will define it a prototype. As regards the last function, a
CSV file must consist of lines of the form

code;rate[;name]

and there must at least be a currency code and a currency exchange rate om each line. If
the currency is available i the database, the currency’s rate is updated. Otherwise, a new
currency should be created, if the line contains a name for the currency. The function should
show lines that contains errors and can not update the table.

and there must at least be a currency code and a currency exchange rate om each line. If
the currency is available i the database, the currency’s rate is updated. Otherwise, a new
currency should be created, if the line contains a name for the currency. The function should
show lines that contains errors and can not update the table.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 6: JDBC AND DATABASE APPLICATIONS

101

Final examples

THE PROTOTYPE

The prototype is a program called World, which opens the following window:

The program should show the design of the main view. The window shows two JTable
components in a JSplitPane and the tables shows an overview for respectively currencies
and countries. Search is implemented with filters below each table, and the Clear buttons
are used to remove the filters. The two buttons above the currency table are used for

-- import of currency exchange rates from a CSV file
-- add a new currency to the table (and the database)

The button above the countries table is used to add a new country, while the combo
box contains a list of all continnents in the world and offers the opportunity to filter the
countries table by continent.

To edit and possible delete either a currency or a country is decided that you have to
double click the current object in one of the two tables, and then you get a dialog box
that displays the object’s data.

JAVA 6: JDBC AND DATABASE APPLICATIONS

102

Final examples

To write the prototype I have created a new project World in NetBeans, and besides the
main-class, are added the following classes (files)

-- MainView, that is the above window
-- Currencies, that is a data model for the currency table
-- Countries, that is a data model for the country table

The last two are trivial, but they are necessary for the prototype can create the two JTable
components. As an example is shown the one below:

JAVA 6: JDBC AND DATABASE APPLICATIONS

102

FInal examples

To write the prototype I have created a new project World in NetBeans, and besides the
main-class, are added the following classes (files)

 - MainView, that is the above window
 - Currencies, that is a data model for the currency table
 - Countries, that is a data model for the country table

The last two are trivial, but they are necessary for the prototype can create the two JTable
components. As an example is shown the one below:

package world;

import javax.swing.table.*;

public class Countries extends AbstractTableModel
{
 public int getColumnCount()
 {
 return 2;
 }

 public int getRowCount()
 {
 return 0;
 }

 public String getColumnName(int col)
 {
 return col == 0 ? "Code" : "Name";
 }

 public Object getValueAt(int row, int col)
 {
 return null;
 }

 public boolean isCellEditable(int row, int col)
 {
 return false;
 }
}

After the prototype is finished, I’ve created a copy of the project, which I have called
World0. I will now continue to work on the project, but with the copy I can always return
to the prototype.

After the prototype is finished, I’ve created a copy of the project, which I have called
World0. I will now continue to work on the project, but with the copy I can always return
to the prototype.

JAVA 6: JDBC AND DATABASE APPLICATIONS

103

Final examples

103

THE DATA MODEL

As a next step I have written some model classes, and thus the classes to represent the
program’s data.

There’s added three very simple model classes, representing respectively a continent, a
country and currency:

-- Continent
-- Country
-- Currency

The classes are directly modeling the rows in the corresponding database tables, however,
the class Currency extends with a list containing Country objects for the countries using
this currency.

There are also defined a collection for each of the above types:

-- Continents
-- Countries
-- Currencies

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 6: JDBC AND DATABASE APPLICATIONS

104

Final examples

each of which includes an object for each row in the corresponding database table. Here the
first of the classes is trivial, while the other two are reprogrammings of the corresponding
classes from the prototype. The two classes are thus at the same time model for the program’s
JTable components.

The total model is represented by the class DataModel, which is a simple class that is
made up of an object by each of the above three collections. The program’s model can be
illustrated as follows:

The three collections must be initialized, which is done by reading the corresponding database
tables. To this end, it is written a class Repository, which only has static methods, including
among others, methods that creates the three collection classes. The class Repository also has
update methods for the tables currency and country, and that means that everything that
has to do with the database is collected in this class. If the application must use a different
database, it means that only this class has to be changed. The class Repository is a relatively
complex class, as everything concerning the database and SQL are gathered here, and thus
everything that is introduced in this book.

THE USER INTERFACE

The program’s user interface consists besides MainView of

-- CurrencyView which is a dialog box for maintenance of currencies
-- CountryView which is a dialog box for maintaining the countries

Furthermore, there is a secondary dialog box called ErrorView and is used to display a list
of errors with the import of exchange rates. Below is the MainView, which is the same view
as in the prototype, but this time initialized with data:

JAVA 6: JDBC AND DATABASE APPLICATIONS

105

Final examples

For each view (except ErrorView) there is attached a controller. The goal is that the controller
class should validate the user input and choices, and it is also, where appropriate the controller
classes that calls the methods in the class Repository to update the model. The controller
classes for the two dialog boxes for maintaining respectively currencies and countries works
in principle the same. Below is the dialog for maintaining currency:

JAVA 6: JDBC AND DATABASE APPLICATIONS

106

Final examples

106

It is the same dialog that is used regardless of whether to create a new currency, or to edit
an existing currency. In this case, there is double clicked EUR, in the main window.

Similarly is below shown the dialog box for the maintenance of countries and where there
are double clicked on US:

http://s.bookboon.com/GTca

JAVA 6: JDBC AND DATABASE APPLICATIONS

107

Final examples

By thus associating a controller for a dialog you achieves two things:

1.	 everything regarding algorithms and business logic is moved into a separate class
2.	 the code of dialog box becomes simpler and easier to understand

Now one should not at any price attach a controller class for a dialog/window. A controller
class must contain something interesting for it to makes sense.

IMPORT AF CSV FILE

The last feature that is missing is updating the exchange rates from a CSV file. This includes
being able to open the file, parse it and use the result of the pasing to update the database
table currency. With regards to browse the file, it is an activity that belongs in an event
handler in the MainView. When the file is selected, it is sent to the controller class for
MainView, which then parses the file and validate the individual lines. On the basis of the
legal lines it creates Currency objects, which are sent to a method in the class Repository,
which then updates the database.

10.2	 MYWINES

The following project is to write a classic database application. This means that you must
create a database and write a program that can maintain this database. The program is an
ordinary PC application, that should maintain information about a private wine cellar,
which is not entirely realistic. Should such a program be written in practice, you would
probably write a web application. It should be ignored, and the purpose of the project is
to test most of the substance that is treated in this book.

Compared with the programs that I have shown in this and the previous books, it is a
relatively large program, and it is also a program that can be used in practice if one has
a wine cellar and feel a need to register his wine consumption. The program consists of
many classes (about 80), and there are more than 25 windows (dialogs). Now it’s all not
as violent as it sounds. Most of the dialog boxes are simple, and the same goes for the
corresponding classes. All dialog boxes are implemented in the same manner with a view
class that implements everything concerning the user interface, and then one or two model
classes. There will always be a model class, which models the object which the dialog box
maintains, and in the case where the dialog box has to display a collection of objects
(rows in a database table), a JTabel is used in the user interface, and the dialog box has
also assigned a data model for a JTable. In addition to model classes most dialog boxes
also have a controller class that validates the user input and possible calls methods in the
application’s repository to update the database. You should therefore note that many dialog
boxes are implemented in the same way that makes it easier to understand the program
and thus maintain the code.

JAVA 6: JDBC AND DATABASE APPLICATIONS

108

Final examples

When you have to write a program which, that as in this example, will consist of many
dialog boxes (the program has many features) which are similar and almost works the same
way, you can then try to reduce the code and the number of dialog boxes by parameter
control the dialog boxes and apply them to multiple functions depending on the parameters
that are transferred to the constructors. If you do that, you get less code and fewer classes
and thus, in principle, a program that is easier to maintain, but however more complex
classes, which can be difficult to understand, because you have dialog boxes that perform
several functions. Conversely, a dialog box for every function mean that the number of
classes becomes very large, which in turn may mean that you have to change in many places
for maintains the program. It is a choice, and in the current solution I have tried to some
extent to parameter control dialogs without letting it go beyond clarity.

You are encouraged to spend the time reading the following description of how the program
is designed and also to study the final result and including primary the program’s code and
to test the program.

THE TASK

Many private wine lovers has a substantially wine storage – perhaps several hundred bottles
or more. It requires control, including to ensure that the wine is not too old, but also for
the sake of historical data with information about prices, ratings, etc. These historical data
are vital when buying the same wine again, but also to learn from experience and in general
as documentation of purchase and consumption. There is thus not only a need to keep
track of the current stock, but at least as much a need to store information about wines
that are drunk and removed from the wine cellar.

The wines are acquired from different Danish suppliers – including grocery stores, but there
may also be stock entries either in the form of direct import (that is from holidays or trips
to wine countries) or gifts. The wines are purchased at greatly varying prices, and especially
in connection with gifts, the price can be 0 (or lack of). It is common in the business, the
granting of large discounts (and, arguably, even unrealistically large similar to that the list
prices is not real). The price, and thus the discount granted is often determined by whether
you buy single bottles or boxes (of 6 or 12 bottles).

The task is to write a program called MyWines that should be used to manage a private wine
cellar. The program should be written in accordance with the following requirements/wishes.

JAVA 6: JDBC AND DATABASE APPLICATIONS

109

Final examples

109

In general, it should be possible to record the following information about a wine:

Information on the supplier (where the wine is purchased or obtained):

The supplier’s phone number

-- The supplier’s name (company name or other)
-- The supplier’s address
-- The supplier’s zip code
-- The supplier’s city
-- The supplier’s email address

Which supplier information that actual should be recorded may vary, because a wine can
be a gift or be imported from abroad.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 6: JDBC AND DATABASE APPLICATIONS

110

Final examples

Information about the wine (that is facts about the product):

-- The wine’s name
-- The producer’s name
-- The wine’s type (white, red, rosé, sparkling, dessert, port)
-- The country where the wine is produced
-- The country’s code
-- Wine district (for example Alsace, Barolo etc.)
-- The grapes used for the production of the wine and in what quantities
-- Classification if there is a classification (for example Chianti Classico Riserva DOCG)
-- The wine’s vintage
-- Alcohol percent
-- Size of the bootle/packing (in cl)

Information about the purchase:

-- The date when the wine is purchased
-- Expiry date (date when the wine latest should be drunk)
-- The wine’s price without discount
-- Discount price
-- The number of bottles purchased
-- Quality (D = daily wine, H = house wine, Q = quality wine, C = cellar wine,

X = cult wine)

The stock levels:

-- Stock level (the current number of bottles)
-- Revised quality (D, H, Q, C, X)
-- Rating – an assessment consists of a date and a character from 0 to 100
-- A description of the wine as a text

Every time there is used a bottle from the store, you have to register, which wine it is, how
many bottles are taking and when.

JAVA 6: JDBC AND DATABASE APPLICATIONS

111

Final examples

For both the supplier and the wine itself one can not expect that all the information is
present, and the same goes for how long the wine can be saved, discount and classification
when a new wine must be added to the store, and in general you should be aware that
sometimes you only have the knowledge that you can get from the label on the bottle.

The program should basically have the following features:

1.	Register/create new wines (purchase)
2.	Updates (consumption from the store and classifications)
3.	Search functions

Because the work of records information about wines can be comprehensive (there may be
many details), you should aim for a solution where you have to enter as little as possible,
and where it is easy to get the data available, which is already in the system. On the whole,
you should priority that the program is easy to use and it is important that the program is
robust and react sensibly by improper operation.

The program must have a search function where one can easily search wines from several
criteria. You should aim for enhanced flexibility when searching, but conversely, the function
should not be too complex. In connection with the search for wines, one should get:

-- an overview of the total wine purchases within a given period and if necessary with
the possibility of demarcation on country or by other criteria

-- an overview of the total consumption within a given period and if necessary with
the possibility of demarcation on country or by other criteria

-- an overview of a wine’s rating assessments over time (points)

It is also a desire that the program has a feature where one quickly can get a list of the
wines that have reached the expiration date, and possibly has exceeded the expiration date,
but also wines that should be drunk within the next time.

JAVA 6: JDBC AND DATABASE APPLICATIONS

112

Final examples

112

DATABASE DESIGN

I will start the development with design and implentation of the database. If I look at the
above description of the task, the database should contain infomation about suppliers, and
the analysis of the description results in two tables (se below). Basically, it is an address book,
and here you will usually place the zip code and the city name in a table for zip codes, and
then let code be a foreign key in the table supplier. Sometimes one can illustrate database
tables with a figure as below, here indicates that there are two tables, and what columns
these tables must have. If the name of a column is underlined it means that the column
is a primary key. Which columns there should be, comes from the description of the task,
but in practice the software developer through an analysis must contact the person who
has proposed the task to clarify uncertainties, but also exactly to define the data types to
be used. In this case, information about the supplier has been expanded with a new value,
where it is possible to register a description of the supplier. On a figure as below the arrow
shows, that the table supplier must have a foreign key to the table zipcode.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 6: JDBC AND DATABASE APPLICATIONS

113

Final examples

The primary database table is a table wine, which should contain information about a
particular wine, and thus a wine to be included in the cellar. This table would have among
others the following columns:

JAVA 6: JDBC AND DATABASE APPLICATIONS

113

FInal examples

The primary database table is a table wine, which should contain information about a
particular wine, and thus a wine to be included in the cellar. This table would have among
others the following columns:

wineid int # surrogate key
name varchar(50), # the wine's name
year int, # the wine's production year
time int, # expiration time in years
percent decimal(5,1), # alcohol percent
store varchar(100), # storing on barrel / tank / bottle
amount int, # current amount
text text, # description of the wine

and here it is also agreed that it should be possible to register a description of a wine. A
wine has to be identified by a surrogate key, and it is agreed that two wines are considered
different, if they do not have the same production year. Furthermore, for each wine it must
be possible to define

 - supplier
 - packing (bottle, bib, other)
 - producer
 - production country
 - district
 - classification
 - wine type
 - wine category

and here it is also agreed that it should be possible to register a description of a wine. A
wine has to be identified by a surrogate key, and it is agreed that two wines are considered
different, if they do not have the same production year. Furthermore, for each wine it must
be possible to define

-- supplier
-- packing (bottle, bib, other)
-- producer
-- production country
-- district
-- classification
-- wine type
-- wine category

JAVA 6: JDBC AND DATABASE APPLICATIONS

114

Final examples

Here are suppliers already described and the table wine must have a foreign key to the
supplier. The 7 other informations is in principle text, but it has been decided to register
the individual information in their own table. The argument is partly that several wines
must be registered with the same value, and second, that it can be difficult to ensure that
the same text is spelled the same way each time, and finally you have for packing and
district to register an addional information which is respectively the packing’s volume and
the district’s country. For the type of wine and wine categories the description of the task
defines a natural primary key (one letter), but for the other 5 I has to choose a surrogate
key. The design should therefore be extended with 7 other but simple tables (these tables are
sometimes called dimension tables) and the table wine must have additional 8 foreign keys.

There is also a need for a table to purchases:

where a purchase is identified by the primary key of the table wine as well as a date. Based
on the analysis it has been decided that the same wine can not be purchased twice the same
day. Should the same wine could be purchased several times on the same day, it would be
necessary to expand the table with a surrogate key.

Similarly, there must be a table with information on consumption of wines:

Here however, it is decided to use a surrogate key corresponding to the possibility of
consuming the same wine several times on the same day.

Finally, there must be a table to record the user’s ratings by the 100 points scale:

JAVA 6: JDBC AND DATABASE APPLICATIONS

115

Final examples

115

and here it is again assumed that the individual wine has only one registration per day (only
one rating for a wine the same day).

After these considerations, the design of the database is illustrated as shown below.

Along with the project is a script called Wine.sql that creates the database. I will not show
the script here, but in addition to the database – called cellar – the script initializes the
four tables:

-- zipcode
-- winetype
-- category
-- pack

http://s.bookboon.com/BI

JAVA 6: JDBC AND DATABASE APPLICATIONS

116

Final examples

PROGRAM ARCHITECTURE

The program should in principle be able to maintain the above database, and to that purpose
the program must use some windows and dialog boxes, and the program will consist of
many files (types). As a start, I have therefore created a project MyWines and created the
following packages:

JAVA 6: JDBC AND DATABASE APPLICATIONS

117

Final examples

-- mywines is the default package created by NetBeans, and should just contain the
class with the main() method

-- mywines.ctrls should contain all controller classes to dialog boxes
-- mywines.models should be used for model classes, which is essentially a model class

for every database table
-- mywines.repositories that should contain classes with the SQL code, and then the

code that extracts data from tables and update the tabels
-- mywines.tables that belongs to the user interface layer and consists at classes thatt

act as data models for JTable components
-- mywines.views that shouls contain dialog boxes

In addition is added a reference to my class library PaLib, when I will use tools from
this library.

THE MODEL LAYER

I am now ready to start on the development of the program and I will begin with the model
layer and writes the first model classes, when a model class should modeling a row in a
database table. So far, I will concentrate on the table wine and the tables which it refers,
and I will write the following model classes:

-- Zipcode
-- Supplier
-- Producer
-- Category
-- Classification
-- Winetyper
-- Grape
-- Country
-- District
-- Packing
-- Wine

JAVA 6: JDBC AND DATABASE APPLICATIONS

118

Final examples

118

Except the last they are all simple and vary only in terms of the fields they contains. As an
example is shown the class District that is modeling the table distrct:

JAVA 6: JDBC AND DATABASE APPLICATIONS

118

FInal examples

118

Except the last they are all simple and vary only in terms of the fields they contains. As an
example is shown the class District that is modeling the table distrct:

package mywines.models;

public class District
{
 public static final int NAME = 50;
 private final int id;
 private String name;
 private String code;

 public District(int id, String name, String code)
 {
 this.id = id;
 this.name = name;
 this.code = code;
 }

 public int getId()
 {
 return id;
 }

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 6: JDBC AND DATABASE APPLICATIONS

119

Final examples
JAVA 6: JDBC AND DATABASE APPLICATIONS

119

FInal examples

 public String getName()
 {
 return name;
 }

 public String getCode()
 {
 return code;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 public void setCode(String code)
 {
 this.code = code;
 }

 @Override
 public boolean equals(Object obj)
 {
 if (obj == null) return false;
 if (getClass() == obj.getClass()) return id == ((District)obj).id;
 return false;
 }

 @Override
 public int hashCode()
 {
 return id;
 }

 @Override
 public String toString()
 {
 return name;
 }
}

The class is simple since it only contains get and set methods for the class’s variables, but
note that the class overrides equals() so that two objects are equal, if the corresponding
rows in the database have the same primary key. Also note that there are initially defined
a public constant NAME, that indicates how many characters are reserved in the database
for the column name (in the database the type is VARCHAR(50)).

The class is simple since it only contains get and set methods for the class’s variables, but
note that the class overrides equals() so that two objects are equal, if the corresponding
rows in the database have the same primary key. Also note that there are initially defined
a public constant NAME, that indicates how many characters are reserved in the database
for the column name (in the database the type is VARCHAR(50) ).

JAVA 6: JDBC AND DATABASE APPLICATIONS

120

Final examples

The development of a database application will typically start to write that kind of model
classes. There may of course be variations, but basically they will model the database table’s
columns, and often the classes will also be expanded later in the development process.

The class wine is basically designed in the same way, but it takes up a lot more, as the table
wine has many columns. The beginning of the class is:

JAVA 6: JDBC AND DATABASE APPLICATIONS

120

FInal examples

The development of a database application will typically start to write that kind of model
classes. There may of course be variations, but basically they will model the database table’s
columns, and often the classes will also be expanded later in the development process.

The class wine is basically designed in the same way, but it takes up a lot more, as the table
wine has many columns. The beginning of the class is:

public class Wine
{
 private int id;
 private String name;
 private Integer year;
 private Integer time;
 private BigDecimal pct;
 private String barrel;
 private int units;
 private String text;
 private Packing packing;
 private Supplier supplier;
 private Producer producer;
 private Country country;
 private District district;
 private Classification classification;
 private Category category;
 private Winetype winetype;
 private List<Cuve> cuve;
 private boolean mark = false;

Here you should note how the columns for the foreign keys are defined as a reference to
an object of that model type. That is, if you, for example, consider the supplier, it is not a
String (for the primary key phone), but a reference to a Supplier object.

You should also note the variable cuve, that is a collection with objects of the type Cuve.
The database has a table cuve that is a relation table between wine and grapes and defines
which grapes are part of a wine. The class Cuve modelings this table, but is expanded with
a variable for the grape’s name:

public class Cuve
{
 private int wineid;
 private int grapeid;
 private String name;
 private Integer pct;
 private boolean mark = false;

Here you should note how the columns for the foreign keys are defined as a reference to
an object of that model type. That is, if you, for example, consider the supplier, it is not a
String (for the primary key phone), but a reference to a Supplier object.

You should also note the variable cuve, that is a collection with objects of the type Cuve.
The database has a table cuve that is a relation table between wine and grapes and defines
which grapes are part of a wine. The class Cuve modelings this table, but is expanded with
a variable for the grape’s name:

JAVA 6: JDBC AND DATABASE APPLICATIONS

120

FInal examples

The development of a database application will typically start to write that kind of model
classes. There may of course be variations, but basically they will model the database table’s
columns, and often the classes will also be expanded later in the development process.

The class wine is basically designed in the same way, but it takes up a lot more, as the table
wine has many columns. The beginning of the class is:

public class Wine
{
 private int id;
 private String name;
 private Integer year;
 private Integer time;
 private BigDecimal pct;
 private String barrel;
 private int units;
 private String text;
 private Packing packing;
 private Supplier supplier;
 private Producer producer;
 private Country country;
 private District district;
 private Classification classification;
 private Category category;
 private Winetype winetype;
 private List<Cuve> cuve;
 private boolean mark = false;

Here you should note how the columns for the foreign keys are defined as a reference to
an object of that model type. That is, if you, for example, consider the supplier, it is not a
String (for the primary key phone), but a reference to a Supplier object.

You should also note the variable cuve, that is a collection with objects of the type Cuve.
The database has a table cuve that is a relation table between wine and grapes and defines
which grapes are part of a wine. The class Cuve modelings this table, but is expanded with
a variable for the grape’s name:

public class Cuve
{
 private int wineid;
 private int grapeid;
 private String name;
 private Integer pct;
 private boolean mark = false;

JAVA 6: JDBC AND DATABASE APPLICATIONS

121

Final examples

121

There is also a variable mark, which allows to highlight (select) objects in a collection.
The class wine has a corresponding variable. You will se, how this variables are used in the
user interface.

THE MAINVIEW

I will then write the program’s MainView, but first I have in MySQL Workbench performed
the following script that creates a supplier and three wines:

JAVA 6: JDBC AND DATABASE APPLICATIONS

121

FInal examples

121

There is also a variable mark, which allows to highlight (select) objects in a collection. The
class wine has a corresponding variable. You will se, how this variables are used in the user
interface.

THE MAINVIEW

I will then write the program’s MainView, but first I have in MySQL Workbench performed
the following script that creates a supplier and three wines:

use cellar;

INSERT INTO supplier (phone, name, address, code, email) VALUES
('98921853', 'Supervin', 'Skagensvej 201', '9800', 'info@supervin.dk');
INSERT INTO wine (name, year, phone) VALUES
('Clos Sainte Anne', 2013, '98921853');
INSERT INTO wine (name, year, phone) VALUES
('Chateau Lamartine', 2011, '98921853');
INSERT INTO wine (name, year, phone) VALUES
('Montecore Primitivo', 2015, '98921853');

The script is called Threewines.sql, and the aim is, that the database should contain data,
which can be displayed on the front window.

The script is called Threewines.sql, and the aim is, that the database should contain data,
which can be displayed on the front window.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 6: JDBC AND DATABASE APPLICATIONS

122

Final examples

When I start with the main window, it is because I as quickly as possible wants to get a
running program, so the program’s user interface can be presented and finally defined with
the future users.

When the program is executed, it should show the follwing window:

Center is a JTable, that shows an overview over all wines, but later it should show only be
the wines, where the number of bottles in stock are positive. The last column with the check
boxes should be used to select rows, that shows wines to be drunk. The JTextField’s at the
bottom are for filters. If the user double-click on a wine in the table, the program should
open a dialog box with all the details about that wine. The menu has the following functions:

-- The wines properties
1.	Maintenance of suppliers
2.	Maintenance of producers
3.	Maintenance of countries
4.	Maintenance of districts
5.	Maintenance of classifications
6.	Maintenance of grapes
7.	Maintenance of wine types
8.	Maintenance of wine categories
9.	Maintenance of bottles/packings

JAVA 6: JDBC AND DATABASE APPLICATIONS

123

Final examples

-- Other functions
1.	Advanced Search
2.	Purchase
3.	Consumption

To write the class Mainiew I have also written the following classes

-- mywines.tables.Wines
-- mywines.repositories.DB
-- mywines.repositories.Repository

The class Wines is a simple model class to a JTable, and contains nothing new. The class
DB should represents a connection to a database and is written as a singleton:

JAVA 6: JDBC AND DATABASE APPLICATIONS

123

FInal examples

 - Other functions
1. Advanced Search
2. Purchase
3. Consumption

To write the class Mainiew I have also written the following classes

 - mywines.tables.Wines
 - mywines.repositories.DB
 - mywines.repositories.Repository

The class Wines is a simple model class to a JTable, and contains nothing new. The class
DB should represents a connection to a database and is written as a singleton:

package mywines.repositories;

import java.sql.*;

public class DB
{
 private static DB instance = null;
 private String host = "localhost";
 private String port = "3306";
 private String data = "cellar";
 private String user = "pa";
 private String code = "Volmer_1234";

 private DB()
 {
 }

 public static DB getInstance()
 {
 if (instance == null)
 {
 synchronized (Repository.class)
 {
 if (instance == null) instance = new DB();
 }
 }
 return instance;
 }

JAVA 6: JDBC AND DATABASE APPLICATIONS

124

Final examples

124

JAVA 6: JDBC AND DATABASE APPLICATIONS

124

FInal examples

124

 public Connection getConnection() throws SQLException
 {
 return DriverManager.getConnection(String.format(
 "jdbc:mysql://%s:%s/%s?useSSL=false", host, port, data), user, code);
 }
}

Immediately the class makes little sense, since it merely consists of variables that contains
parameters for the database, but the class must be used to solve the problem that the database
parameters are hard coded so they can be lifted out of the program to a configuration file.

The class Repository is also written as a singleton, and so far it has only a single method
that can return a Wine object for all rows in the table wine. However, it is the program’s
central class, and will includes all methods for database operations. It thus becomes a very
extensive class. Al SQL is hidden away in this class.

Immediately the class makes little sense, since it merely consists of variables that contains
parameters for the database, but the class must be used to solve the problem that the database
parameters are hard coded so they can be lifted out of the program to a configuration file.

The class Repository is also written as a singleton, and so far it has only a single method
that can return a Wine object for all rows in the table wine. However, it is the program’s
central class, and will includes all methods for database operations. It thus becomes a very
extensive class. Al SQL is hidden away in this class.

http://s.bookboon.com/Subscrybe

JAVA 6: JDBC AND DATABASE APPLICATIONS

125

Final examples

THE DIMENSION TABLES

As a next step I want to write the code for the maintenance the dimension tables, and thus
all functions under the menu The wines properties. All functions works in principle the same
way, and I will as an eksemple look at the Maintenance of wine types. If you click the menu
item, the program opens the following dialog box:

The dialog box shows a JTable with all wine types and such the content of the table winetype,
and at the bottom is defined a filter to the table. The two buttons are used to create a new
wine type and to remove a filter. Double-Clicking on a line in the table, you get a dialog
box where you can edit (and delete) a wine type, for example:

It is the same dialog used if you create a new wine type.

JAVA 6: JDBC AND DATABASE APPLICATIONS

126

Final examples

The menu item The wines properties has 9 functions, and for each of the 9 functions the
following should happens:

1.	The class Repository must be extended with 4 new methods, a method that returns
a list of objects corresponding to the content of the database table, a method that
creates a new row in the database, a method that updates an existing row and a
method that deletes an existing row.

2.	A class that is a data model for the JTable component.
3.	A class that is the dialog box with the JTable component.
4.	A class that is a controller for the dialog box to edit an object.
5.	A class that is the last dialog box.

When the menu has 9 functions it means that the program may be expanded with 36 new
classes like the class Repositoty must be expanded with 36 new methods. It sounds like a lot
and it is, but conversely note, that there is also talk about the program code to maintain
9 database tables, and finally you should note that the classes are generally simple, and the
same applies to the methods in the class Repository.

You should also note that the implementation is a form of a pattern for a program to
maintain a database table, where you have a dialog box with a JTable and filter that displays
the content of the database table, and where you can open a dialog to add or edit a row
in the table. I like to do the job in this way, because it is clear when the table is changed,
but there are other ways, and here it is particularly important to note that one can edit
the contents of a JTable directly.

THE WINE TABLE

Maintenance of the table wine follow the same pattern. That is, the MainView has a button
to create a new wine, and if you double-click on a line in the table, you can edit the wine.
In both cases the same dialog box is used, and in principle it means as above

-- the class Repository must be expanded with 3 new features (the function that returns
all wines have already been implemented)

-- to write a controller for the dialog
-- the dialog box itself must be written

The difference is that this time it is a very complex dialog that has a number of other
functions. If you double-click a wine in the main window, the result could be the window
as shown below.

JAVA 6: JDBC AND DATABASE APPLICATIONS

127

Final examples

127

The dialog box has to the left input fields for the information, that can be entered, while
the right side is combo boxes to select a value from a dimension table. Everything should
be self-explanatory except for the two JTable components for the grapes. The bottom
shows a table with all the grapes in the database with an associated filter. The top is to the
grapes used in this wine. If you in the lower JTable choose one or more grapes by placing a
checkmark in the check box and click the Add button, these grapes are added to the upper
JTable and therefore grapes that are part of the wine. In the upper JTable you can similarly
set a checkmark in one or more check boxes, and if you clicks on Remove, the grapes are
removed from the wine. The top JTable also has a column that is to the grape’s part in this
wine if it is composed of several grapes. This column is edited by directly entering a value
(in percent).

At the top of the window there are 6 buttons. They are used to create an object of that
kind and thus has the same function as the functions that can be selected from the menu.
The meaning of these shortcuts is, that if you are about to create a new wine (or edit an
existing wine), and you as such discovers that the wine is from a district which was not
been created, that you can instantly create the district. These 6 functions are using the same
dialog boxes that are created earlier for maintenance of dimension tables.

http://s.bookboon.com/volvo

JAVA 6: JDBC AND DATABASE APPLICATIONS

128

Final examples

At the bottom of the window are a further 8 buttons, and the meaning of the buttons OK
and Cancel gives itself. The 6 other can only be activated if you are editing a wine, but not
when you create a new wine. There function are explained below.

The button Remove is used til remove a wine. The function also removes all other information
related to this wine.

The button Copy is used to create a new wine with virtually the same data, but where the
fields year, drunk and units is null. The reason is that the same wine in another year is
considered as another wine, and then a new year can be created without to enter all the
information again.

JAVA 6: JDBC AND DATABASE APPLICATIONS

129

Final examples

The button Point opens a dialog box called PointView as shown below. The function is used
to assign a rating to this wine. The dialog box inserts today (that can be changed), and
you should enter the point as a number between 0 and 100. A rating can not directly be
changed, but if you double-click on a rating, you can remove it, and you can create all the
ratings you like, but you can only create one rating for the same date. If you enter a rating
for an existing date, the old value is overriden.

You should note, that dialog box has a JTable, and as so need a data model for the table
(in the package mywines.tables). The same applies to the two JTable components above for
the grapes. It means that every JTable add a class, and for the three mentioned here it is
Ratings, Cuves and Grapes. PointView is a simple dialog box, but should update the database,
and for that is assigned a controller with the name PointCtrl.

The buton Purchase opens the following dialog box:

JAVA 6: JDBC AND DATABASE APPLICATIONS

130

Final examples

130

that is used to enter information about a purchase of a wine, and that is the price and
number og units. The dialog box is called PurchaseView and the controller PurchaseCtrl.

The button Consume opens a dialog box to enten information about a consumption:

The dialog box is called ConsumptionView and the controller CunsumptionCtrl.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 6: JDBC AND DATABASE APPLICATIONS

131

Final examples

The last button Units opens a dialog box that shows what has happened with the store for
this wine, that is alle purchases and consumptions:

The dialog box shows primarily a JTable with a filter. If you double-click on a row in the
table you are allowed to delete the actual purchase or consumption. The dialog box is called
UnitView, and the data model to the JTable is called Units. The dialog also has a controller
called UnitCtrl.

As described above, maintenance of wines is a function which extends the program with
several new classes. Furthermore the function results in an extension of the class Repository
with many new methods, and here you should special note, that several of these methods
are implemented as database transactions.

JAVA 6: JDBC AND DATABASE APPLICATIONS

132

Final examples

THE SEARCH FUNCTIONS

Then there is the three functions in the last menu. The three functions are very similar and
opens dialogs with almost the same design. The first opens a dialog box as shown below
and is used to search for wines based on several criteria. The window shows an example
where there has been searched on all French wines. If a field is empty (has not been selected
a search criteria), it is ignored in the search. If you enter a value in the fields Name and
Description it means that a row in the database to match must contain the value in the actual
column. For a criteria where you can enter two values, it means a from and to value, and if
you only enter one value if means either from or to. If you select a value in a combo box
a row in the wine table must have that value in the actual column (in the example belov
a row must have the value FR for country.

If you double-click a row in the table, the program opens til dialog box WineView for that
wine, and you kan maintain the wine.

JAVA 6: JDBC AND DATABASE APPLICATIONS

133

Final examples

133

The two other search functions opens corresponding dialogs, and I will not show these
dialogs here. The difference is that for both dialogs you also can choose a period as search
criteria, and the JTable component has some other columns. Moreover, both dialogs shows
some totals at the bottom. The first dialog is called PurchasesView and displays a list of all
the purchases that matches the search criteria.

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 6: JDBC AND DATABASE APPLICATIONS

134

Final examples

If you double-click a row in the table, you get the above dialog box showing all ratings
for the wine. The last function works similar, but shows an overview of consumptions that
matches the search criteria. If you here double-click a row, you get the following dialog:

The dialog box displays consumption by dates and again an overview of all ratings.

The three functions in turn results in a number of new classes, and I will not mention
them here, but the three dialogs with search criteria are extensive but similar each other
and therefore everything they have in common are moved to a base class:

There should be written some code to implement these three functions, but there is not
much new compared to what already is mentioned. The most complex is to create the SQL
expression to be used, partly because there are JOIN operations on many tables, and partly
because the WHERE part depends on the search criteria selected. Everything happens in
class Repository, and you are encouraged to study the code and the many details.

JAVA 6: JDBC AND DATABASE APPLICATIONS

135

Final examples

THE LAST THINGS

Back there are two things:

1.	moving the database parameters from the program code to a configuration file
2.	write an installation script

Regarding the first problem, I will use the following configuration file called mywines.config

JAVA 6: JDBC AND DATABASE APPLICATIONS

135

FInal examples

THE LAST THINGS

Back there are two things:

1. moving the database parameters from the program code to a configuration file
2. write an installation script

Regarding the first problem, I will use the following configuration file called mywines.config

host:localhost
port:3306
data:cellar
user:pa
code:Volmer_1234

Next, the class DB is changed:

package mywines.repositories;

import java.io.*;
import javax.swing.*;
import java.sql.*;

public class DB
{
 private static String path = System.getProperty("user.home") + "/";
 private static DB instance = null;
 private String host = "";
 private String port = "";
 private String data = "";
 private String user = "";
 private String code = "";

 private DB()
 {
 try (BufferedReader reader =
 new BufferedReader(new FileReader(path + "mywines.config")))
 {
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 {
 String[] item = line.trim().split(":");
 if (item.length == 2)
 {
 String key = item[0].trim();
 if (key.equals("host")) host = item[1].trim();

JAVA 6: JDBC AND DATABASE APPLICATIONS

136

Final examples

136

JAVA 6: JDBC AND DATABASE APPLICATIONS

136

FInal examples

136

 else if (key.equals("port")) port = item[1].trim();
 else if (key.equals("data")) data = item[1].trim();
 else if (key.equals("user")) user = item[1].trim();
 else if (key.equals("code")) code = item[1].trim();
 }
 }
 }
 catch (IOException ex)
 {
 JOptionPane.showMessageDialog(null,
 "The program can not connect to the database.",
 "ErrorMessage", JOptionPane.ERROR_MESSAGE);
 System.exit(0);
 }
 }

 public static DB getInstance()
 {
 if (instance == null)
 {
 synchronized (Repository.class)
 {
 if (instance == null) instance = new DB();
 }

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 6: JDBC AND DATABASE APPLICATIONS

137

Final examples
JAVA 6: JDBC AND DATABASE APPLICATIONS

137

FInal examples

 }
 return instance;
 }

 public static void setPath(String pathname)
 {
 if (!pathname.endsWith("/")) pathname += "/";
 path = pathname;
 }

 public Connection getConnection() throws SQLException
 {
 return DriverManager.getConnection(String.format(
 "jdbc:mysql://%s:%s/%s?useSSL=false", host, port, data), user, code);
 }
}

The database parameters are now blank, and in return, the private constructor is changed
to read the configuration file and initializes the parameters. Is it not possible, and here you
must remember that the constructor is performed the first time the method getInstance() is
called, it shows a message box, and the program terminates.

By default the constructor assumes that the configuration file exists in the user’s home
directory. It does of course not have to be the case, and therefore the class has a static
method that can be used to define the directory that contains the configuration file.

After this class with main() method is changed:

package mywines;

public class MyWines
{
 public static void main(String[] args)
 {
 if (args != null && args.length > 0) mywines.repositories.DB.setPath(args[0]);
 javax.swing.SwingUtilities.invokeLater(() -> new mywines.views.MainView());
 }
}

If main() has an argument on the command line, use the first argument as a directory for
the configuration file. You should also note that the MainView is opened in a different way.
It is explained in the book Java 8 and can be ignored in this place, but it is the right way
to start the program.

The database parameters are now blank, and in return, the private constructor is changed
to read the configuration file and initializes the parameters. Is it not possible, and here you
must remember that the constructor is performed the first time the method getInstance() is
called, it shows a message box, and the program terminates.

By default the constructor assumes that the configuration file exists in the user’s home
directory. It does of course not have to be the case, and therefore the class has a static
method that can be used to define the directory that contains the configuration file.

After this class with main() method is changed:

JAVA 6: JDBC AND DATABASE APPLICATIONS

137

FInal examples

 }
 return instance;
 }

 public static void setPath(String pathname)
 {
 if (!pathname.endsWith("/")) pathname += "/";
 path = pathname;
 }

 public Connection getConnection() throws SQLException
 {
 return DriverManager.getConnection(String.format(
 "jdbc:mysql://%s:%s/%s?useSSL=false", host, port, data), user, code);
 }
}

The database parameters are now blank, and in return, the private constructor is changed
to read the configuration file and initializes the parameters. Is it not possible, and here you
must remember that the constructor is performed the first time the method getInstance() is
called, it shows a message box, and the program terminates.

By default the constructor assumes that the configuration file exists in the user’s home
directory. It does of course not have to be the case, and therefore the class has a static
method that can be used to define the directory that contains the configuration file.

After this class with main() method is changed:

package mywines;

public class MyWines
{
 public static void main(String[] args)
 {
 if (args != null && args.length > 0) mywines.repositories.DB.setPath(args[0]);
 javax.swing.SwingUtilities.invokeLater(() -> new mywines.views.MainView());
 }
}

If main() has an argument on the command line, use the first argument as a directory for
the configuration file. You should also note that the MainView is opened in a different way.
It is explained in the book Java 8 and can be ignored in this place, but it is the right way
to start the program.

If main() has an argument on the command line, use the first argument as a directory for
the configuration file. You should also note that the MainView is opened in a different way.
It is explained in the book Java 8 and can be ignored in this place, but it is the right way
to start the program.

JAVA 6: JDBC AND DATABASE APPLICATIONS

138

Final examples

Then there’s the final challenge with an installation script. The following files should be
installed:

MyWines.jar
lib/PaLib.jar
mywines.png
mywines.config

The script is called mywines.sh. I will not show the script here, because in principle it works
the same way, as I have shown before.

To run the program, the database must be created and therefore the database script must be
executed before the program can be used. To distribute the program, I packs it all together
in a tar file. First I copied all files to the directory data/mywines in my home directry:

JAVA 6: JDBC AND DATABASE APPLICATIONS

138

FInal examples

Then there’s the final challenge with an installation script. The following files should be
installed:

MyWines.jar
lib/PaLib.jar
mywines.png
mywines.config

The script is called mywines.sh. I will not show the script here, because in principle it works
the same way, as I have shown before.

To run the program, the database must be created and therefore the database script must be
executed before the program can be used. To distribute the program, I packs it all together
in a tar file. First I copied all files to the directory data/mywines in my home directry:

[pa@localhost ~]$ ls -lR data/mywines
data/mywines:
totalt 488
drwxrwxr-x. 2 pa pa 4096 12 jan 21:38 lib
-rwxrwxrwx. 1 pa pa 63 12 jan 21:13 mywines.config
-rw-rw-r--. 1 pa pa 456246 12 jan 23:06 MyWines.jar
-rwxrwxrwx. 1 pa pa 20297 12 jan 21:37 mywines.png
-rwxrwxrwx. 1 pa pa 988 13 jan 17:30 mywines.sh
-rw-rw-r--. 1 pa pa 6886 7 jan 12:09 Wine.sql

data/mywines/lib:
totalt 44
-rw-rw-r--. 1 pa pa 43682 12 jan 21:38 PaLib.jar

Next, I created the tar file:

[pa@localhost ~]$ tar -tvf mywines.tar
drwxr-xr-x pa/pa 0 2017-01-13 17:49 data/mywines/
drwxrwxr-x pa/pa 0 2017-01-12 21:38 data/mywines/lib/
-rw-rw-r-- pa/pa 43682 2017-01-12 21:38 data/mywines/lib/PaLib.jar
-rwxrwxrwx pa/pa 988 2017-01-13 17:30 data/mywines/mywines.sh
-rwxrwxrwx pa/pa 63 2017-01-12 21:13 data/mywines/mywines.config
-rwxrwxrwx pa/pa 20297 2017-01-12 21:37 data/mywines/mywines.png
-rw-rw-r-- pa/pa 456246 2017-01-12 23:06 data/mywines/MyWines.jar
-rw-rw-r-- pa/pa 6886 2017-01-07 12:09 data/mywines/Wine.sql

JAVA 6: JDBC AND DATABASE APPLICATIONS

139

Final examples

139

and the result is that my home directory contains the file mywines.tar, and hence the file
which can be distributed to users of the program. Here the user must extract the file:

JAVA 6: JDBC AND DATABASE APPLICATIONS

139

FInal examples

139

and the result is that my home directory contains the file mywines.tar, and hence the file
which can be distributed to users of the program. Here the user must extract the file:

$ tar -xvf mywines.tar

If the user is in the directory where the files are extracted and perform the following:

1. edit the configuration file
2. opens MySQL Workbench and performed the script Wine.sql
3. performs the installation script

and then the program should be running.

But there may be a problem with Java and the JDBC driver. If appropriate, you can find
the solution in appendix A.

If the user is in the directory where the files are extracted and perform the following:

1.	 edit the configuration file
2.	opens MySQL Workbench and performed the script Wine.sql
3.	performs the installation script

and then the program should be running.

But there may be a problem with Java and the JDBC driver. If appropriate, you can find
the solution in appendix A.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 6: JDBC AND DATABASE APPLICATIONS

140

Final examples

APPENDIX A: INSTALL MYSQL

The following is a brief description of how to install the database server MySQL, and as
mentioned at the beginning of this book, you must install three products:

1.	 the database server
2.	 a client tool for managing and maintaining databases
3.	 a JDBC driver

Generally the three products are installed without major problems, and the following shows
how I installed the products on a regular PC running Fedora 23.

THE DATABASE SERVER

The server can be downloaded from the page

JAVA 6: JDBC AND DATABASE APPLICATIONS

140

FInal examples

APPENDIX A: INSTALL MYSQL

The following is a brief description of how to install the database server MySQL, and as
mentioned at the beginning of this book, you must install three products:

1. the database server
2. a client tool for managing and maintaining databases
3. a JDBC driver

Generally the three products are installed without major problems, and the following shows
how I installed the products on a regular PC running Fedora 23.

THE DATABASE SERVER

The server can be downloaded from the page

http://dev.mysql.com/downloads/mysql/

Here, you should select platform (for example Fedora), and when you then click Download
you will be asked to log in, and is it the first time you download MySQL, you must create
an user logon. After you have logged in, select the product, and I have chosen:

Fedora 23 (Architecture Independent), RPM Package

Then you get the usual window for Download / Installation, which in this case is a rpm
package:

Here, you should select platform (for example Fedora), and when you then click Download
you will be asked to log in, and is it the first time you download MySQL, you must create
an user logon. After you have logged in, select the product, and I have chosen:

JAVA 6: JDBC AND DATABASE APPLICATIONS

140

FInal examples

APPENDIX A: INSTALL MYSQL

The following is a brief description of how to install the database server MySQL, and as
mentioned at the beginning of this book, you must install three products:

1. the database server
2. a client tool for managing and maintaining databases
3. a JDBC driver

Generally the three products are installed without major problems, and the following shows
how I installed the products on a regular PC running Fedora 23.

THE DATABASE SERVER

The server can be downloaded from the page

http://dev.mysql.com/downloads/mysql/

Here, you should select platform (for example Fedora), and when you then click Download
you will be asked to log in, and is it the first time you download MySQL, you must create
an user logon. After you have logged in, select the product, and I have chosen:

Fedora 23 (Architecture Independent), RPM Package

Then you get the usual window for Download / Installation, which in this case is a rpm
package:

Then you get the usual window for Download / Installation, which in this case is a rpm
package:

JAVA 6: JDBC AND DATABASE APPLICATIONS

141

Final examples

I have chosen Software installation, so the product will be installed in my software repository.
It does not take many moments, and then the product must be installed, which means that
the individual packages (there are 6 in all) must be downloaded and installed. It happens
quite by itself with the program Software:

Once installation is complete, you can start the server with the following command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

141

FInal examples

I have chosen Software installation, so the product will be installed in my software repository.
It does not take many moments, and then the product must be installed, which means that
the individual packages (there are 6 in all) must be downloaded and installed. It happens
quite by itself with the program Software:

Once installation is complete, you can start the server with the following command:

sudo service mysqld start

and then the server will automatically start every time you start the machine. You can test
that the server is running with the following command:

sudo service mysqld status

and then the server will automatically start every time you start the machine. You can test
that the server is running with the following command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

141

FInal examples

I have chosen Software installation, so the product will be installed in my software repository.
It does not take many moments, and then the product must be installed, which means that
the individual packages (there are 6 in all) must be downloaded and installed. It happens
quite by itself with the program Software:

Once installation is complete, you can start the server with the following command:

sudo service mysqld start

and then the server will automatically start every time you start the machine. You can test
that the server is running with the following command:

sudo service mysqld status

JAVA 6: JDBC AND DATABASE APPLICATIONS

142

Final examples

142

After that MySQL in principle is been installed and running. What is lacking is a kind
of configuration which is done using a script. After MySQL is installed, there is created a
database administrator called root and is the only database user. As part of the installation
the script has auto-generated a password for this user that is stored in the file /var/log/mysqld.
log. You can for example find this password with the command

JAVA 6: JDBC AND DATABASE APPLICATIONS

142

FInal examples

142

After that MySQL in principle is been installed and running. What is lacking is a kind
of configuration which is done using a script. After MySQL is installed, there is created a
database administrator called root and is the only database user. As part of the installation
the script has auto-generated a password for this user that is stored in the file /var/log/mysqld.
log. You can for example find this password with the command

sudo grep 'temporary password' /var/log/mysqld.log

Once you have found this password, you must run a script:

mysql_secure_installation

Here you will be prompted to enter the password, and then select a new password for root.
The script will then ask you about different things, all of which have to do with security
(and also a little clean-up), and you just answer Yes to all.

After the script is completed, the database is installed and ready for use.

Once you have found this password, you must run a script:

JAVA 6: JDBC AND DATABASE APPLICATIONS

142

FInal examples

142

After that MySQL in principle is been installed and running. What is lacking is a kind
of configuration which is done using a script. After MySQL is installed, there is created a
database administrator called root and is the only database user. As part of the installation
the script has auto-generated a password for this user that is stored in the file /var/log/mysqld.
log. You can for example find this password with the command

sudo grep 'temporary password' /var/log/mysqld.log

Once you have found this password, you must run a script:

mysql_secure_installation

Here you will be prompted to enter the password, and then select a new password for root.
The script will then ask you about different things, all of which have to do with security
(and also a little clean-up), and you just answer Yes to all.

After the script is completed, the database is installed and ready for use.

Here you will be prompted to enter the password, and then select a new password for root.
The script will then ask you about different things, all of which have to do with security
(and also a little clean-up), and you just answer Yes to all.

After the script is completed, the database is installed and ready for use.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 6: JDBC AND DATABASE APPLICATIONS

143

Final examples

THE CLIENT TOOL

Together with the database server is installed a command-oriented client tool, but there
is also a GUI program called MySQL Workbench, which should be installed. The program
can be downloaded from

http://dev.mysql.com/downloads/workbench/

and here one must again choose platform and the product that you want to download. I
have chosen

Fedora 23 (x86, 64-bit), RPM Package

and again I get the download window:

If you choose Software Installation and click OK, go it all by itself. It takes some time,
but then the tool is installed and you’ve got a desktop icon. If you open the program, you
must log in as root with the password that you have just chosen. Then you can work with
MySQL, administrate the server, create databases, etc. As the first thing you should create a
new user and only use root if the need arises. I created a user called pa, which I have given
DBA privileges. It is of course to high for everyday use, but until you learn to work with
MySQL, it can be quite reasonable.

JAVA 6: JDBC AND DATABASE APPLICATIONS

144

Final examples

JDBC

The JDBC driver can be downloaded from:

https://dev.mysql.com/downloads/connector/j/

Here you must choose

Platform Independent (Architecture Independent), Compressed TAR Archive

and in the subsequent download window, this time select Save File

JAVA 6: JDBC AND DATABASE APPLICATIONS

145

Final examples

145

The program is downloaded to the folder Downloads. Open a terminal window and change
the current directory to this directory:

JAVA 6: JDBC AND DATABASE APPLICATIONS

145

FInal examples

145

The program is downloaded to the folder Downloads. Open a terminal window and change
the current directory to this directory:

cd Downloads

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 6: JDBC AND DATABASE APPLICATIONS

146

Final examples

The file downloaded is called mysql-connector-java-5.1.38.tar.gz (when the number is
determined by the version). I’ve copied the file to another directory (it is not necessary)
and made it to my current directory:

JAVA 6: JDBC AND DATABASE APPLICATIONS

146

FInal examples

The file downloaded is called mysql-connector-java-5.1.38.tar.gz (when the number is
determined by the version). I’ve copied the file to another directory (it is not necessary)
and made it to my current directory:

sudo cp mysql-connector-java-5.1.38.tar.gz /usr/local
cd /usr/local

As a next step, the content of the file is unpacked, which is done with the command:

tar -zxvf mysql-jdbc.tar.gz

The result is a directory mysql-connector-java-5.1.38, which contains the driver:

cd mysql-connector-java-5.1.38

You now must know where your Java runtime system is installed, and it is probably

/usr/java/jdk1.8.0_102

possibly with a different version number, and back is only to copy the driver to the right
place:

sudo cp mysql-connector-java-5.1.38-bin.jar
 /usr/java/jdk1.8.0_102/jre/lib/ext

Then you are ready to write database applications in Java.

This applies at least as long as you execute the programs from NetBeans, but if you are
performing programs from a terminal, they may not run, and you are told that Java can
not find the JDBC driver. The reason is that Fedora (and other Linux distributions) by
default uses openjdk and not Oracle’s Java. They are two solutions

1. To ensure that the JDBC driver is available for openjdk
2. To ensure that Oracle java is used as default

I will show how to select the second solution. First I entered the folowing command:

$ java -version
openjdk version "1.8.0_111"
OpenJDK Runtime Environment (build 1.8.0_111-b16)
OpenJDK 64-Bit Server VM (build 25.111-b16, mixed mode)

As a next step, the content of the file is unpacked, which is done with the command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

146

FInal examples

The file downloaded is called mysql-connector-java-5.1.38.tar.gz (when the number is
determined by the version). I’ve copied the file to another directory (it is not necessary)
and made it to my current directory:

sudo cp mysql-connector-java-5.1.38.tar.gz /usr/local
cd /usr/local

As a next step, the content of the file is unpacked, which is done with the command:

tar -zxvf mysql-jdbc.tar.gz

The result is a directory mysql-connector-java-5.1.38, which contains the driver:

cd mysql-connector-java-5.1.38

You now must know where your Java runtime system is installed, and it is probably

/usr/java/jdk1.8.0_102

possibly with a different version number, and back is only to copy the driver to the right
place:

sudo cp mysql-connector-java-5.1.38-bin.jar
 /usr/java/jdk1.8.0_102/jre/lib/ext

Then you are ready to write database applications in Java.

This applies at least as long as you execute the programs from NetBeans, but if you are
performing programs from a terminal, they may not run, and you are told that Java can
not find the JDBC driver. The reason is that Fedora (and other Linux distributions) by
default uses openjdk and not Oracle’s Java. They are two solutions

1. To ensure that the JDBC driver is available for openjdk
2. To ensure that Oracle java is used as default

I will show how to select the second solution. First I entered the folowing command:

$ java -version
openjdk version "1.8.0_111"
OpenJDK Runtime Environment (build 1.8.0_111-b16)
OpenJDK 64-Bit Server VM (build 25.111-b16, mixed mode)

The result is a directory mysql-connector-java-5.1.38, which contains the driver:

JAVA 6: JDBC AND DATABASE APPLICATIONS

146

FInal examples

The file downloaded is called mysql-connector-java-5.1.38.tar.gz (when the number is
determined by the version). I’ve copied the file to another directory (it is not necessary)
and made it to my current directory:

sudo cp mysql-connector-java-5.1.38.tar.gz /usr/local
cd /usr/local

As a next step, the content of the file is unpacked, which is done with the command:

tar -zxvf mysql-jdbc.tar.gz

The result is a directory mysql-connector-java-5.1.38, which contains the driver:

cd mysql-connector-java-5.1.38

You now must know where your Java runtime system is installed, and it is probably

/usr/java/jdk1.8.0_102

possibly with a different version number, and back is only to copy the driver to the right
place:

sudo cp mysql-connector-java-5.1.38-bin.jar
 /usr/java/jdk1.8.0_102/jre/lib/ext

Then you are ready to write database applications in Java.

This applies at least as long as you execute the programs from NetBeans, but if you are
performing programs from a terminal, they may not run, and you are told that Java can
not find the JDBC driver. The reason is that Fedora (and other Linux distributions) by
default uses openjdk and not Oracle’s Java. They are two solutions

1. To ensure that the JDBC driver is available for openjdk
2. To ensure that Oracle java is used as default

I will show how to select the second solution. First I entered the folowing command:

$ java -version
openjdk version "1.8.0_111"
OpenJDK Runtime Environment (build 1.8.0_111-b16)
OpenJDK 64-Bit Server VM (build 25.111-b16, mixed mode)

You now must know where your Java runtime system is installed, and it is probably

/usr/java/jdk1.8.0_102

possibly with a different version number, and back is only to copy the driver to the right
place:

JAVA 6: JDBC AND DATABASE APPLICATIONS

146

FInal examples

The file downloaded is called mysql-connector-java-5.1.38.tar.gz (when the number is
determined by the version). I’ve copied the file to another directory (it is not necessary)
and made it to my current directory:

sudo cp mysql-connector-java-5.1.38.tar.gz /usr/local
cd /usr/local

As a next step, the content of the file is unpacked, which is done with the command:

tar -zxvf mysql-jdbc.tar.gz

The result is a directory mysql-connector-java-5.1.38, which contains the driver:

cd mysql-connector-java-5.1.38

You now must know where your Java runtime system is installed, and it is probably

/usr/java/jdk1.8.0_102

possibly with a different version number, and back is only to copy the driver to the right
place:

sudo cp mysql-connector-java-5.1.38-bin.jar
 /usr/java/jdk1.8.0_102/jre/lib/ext

Then you are ready to write database applications in Java.

This applies at least as long as you execute the programs from NetBeans, but if you are
performing programs from a terminal, they may not run, and you are told that Java can
not find the JDBC driver. The reason is that Fedora (and other Linux distributions) by
default uses openjdk and not Oracle’s Java. They are two solutions

1. To ensure that the JDBC driver is available for openjdk
2. To ensure that Oracle java is used as default

I will show how to select the second solution. First I entered the folowing command:

$ java -version
openjdk version "1.8.0_111"
OpenJDK Runtime Environment (build 1.8.0_111-b16)
OpenJDK 64-Bit Server VM (build 25.111-b16, mixed mode)

Then you are ready to write database applications in Java.

This applies at least as long as you execute the programs from NetBeans, but if you are
performing programs from a terminal, they may not run, and you are told that Java can
not find the JDBC driver. The reason is that Fedora (and other Linux distributions) by
default uses openjdk and not Oracle’s Java. They are two solutions

1.	To ensure that the JDBC driver is available for openjdk
2.	To ensure that Oracle java is used as default

I will show how to select the second solution. First I entered the folowing command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

146

FInal examples

The file downloaded is called mysql-connector-java-5.1.38.tar.gz (when the number is
determined by the version). I’ve copied the file to another directory (it is not necessary)
and made it to my current directory:

sudo cp mysql-connector-java-5.1.38.tar.gz /usr/local
cd /usr/local

As a next step, the content of the file is unpacked, which is done with the command:

tar -zxvf mysql-jdbc.tar.gz

The result is a directory mysql-connector-java-5.1.38, which contains the driver:

cd mysql-connector-java-5.1.38

You now must know where your Java runtime system is installed, and it is probably

/usr/java/jdk1.8.0_102

possibly with a different version number, and back is only to copy the driver to the right
place:

sudo cp mysql-connector-java-5.1.38-bin.jar
 /usr/java/jdk1.8.0_102/jre/lib/ext

Then you are ready to write database applications in Java.

This applies at least as long as you execute the programs from NetBeans, but if you are
performing programs from a terminal, they may not run, and you are told that Java can
not find the JDBC driver. The reason is that Fedora (and other Linux distributions) by
default uses openjdk and not Oracle’s Java. They are two solutions

1. To ensure that the JDBC driver is available for openjdk
2. To ensure that Oracle java is used as default

I will show how to select the second solution. First I entered the folowing command:

$ java -version
openjdk version "1.8.0_111"
OpenJDK Runtime Environment (build 1.8.0_111-b16)
OpenJDK 64-Bit Server VM (build 25.111-b16, mixed mode)

JAVA 6: JDBC AND DATABASE APPLICATIONS

147

Final examples

that shows that the current runtime system is openjdk. Then I add an alternative for
runtime system:

JAVA 6: JDBC AND DATABASE APPLICATIONS

147

FInal examples

that shows that the current runtime system is openjdk. Then I add an alternative for
runtime system:

$ sudo alternatives --install /usr/bin/
java java /usr/java/latest/bin/java 1
[sudo] adgangskode for pa:

Then I select the new runtime system (Oracle’s java) as default:

$ sudo update-alternatives --config java

There is 3 programms that supplies "java".

Select Command

*+ 1 /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.111-1.
b16.fc23.x86_64/jre/bin/java
 2 /usr/java/jdk1.8.0_111/jre/bin/java
 3 /usr/java/latest/bin/java

Press enter for the current selection[+], or
enter the number for the selection: 3

Then I select the new runtime system (Oracle’s java) as default:

JAVA 6: JDBC AND DATABASE APPLICATIONS

147

FInal examples

that shows that the current runtime system is openjdk. Then I add an alternative for
runtime system:

$ sudo alternatives --install /usr/bin/
java java /usr/java/latest/bin/java 1
[sudo] adgangskode for pa:

Then I select the new runtime system (Oracle’s java) as default:

$ sudo update-alternatives --config java

There is 3 programms that supplies "java".

Select Command

*+ 1 /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.111-1.
b16.fc23.x86_64/jre/bin/java
 2 /usr/java/jdk1.8.0_111/jre/bin/java
 3 /usr/java/latest/bin/java

Press enter for the current selection[+], or
enter the number for the selection: 3

JAVA 6: JDBC AND DATABASE APPLICATIONS

148

Final examples

148

APPENDIX B

The following is a short introduction to SQL, and the purpose is to show the syntax for the
most important statements. Now SQL is not just SQL, and the different database vendors
have their variants of the language, and although the following examples are tested against
a MySQL database server, they will practically all could be used by any database server.
Thus, it will be a number of extensions to SQL, which is not dealt with, and the following
should not be percieved as a complete manual for SQL.

Before addressing the actual SQL language, I will mention a few basic database concepts.

http://s.bookboon.com/elearningforkids

JAVA 6: JDBC AND DATABASE APPLICATIONS

149

Final examples

A database is a collection of related tables, and a table contains data organized into columns
and rows. As an example is shown a part of a database table for books, where there are
seven columns:

Each column has a name, and the name should be unique within each table. Each column
has a data type that determines which data the column can contain. A row contains data
about a particular book, and the row’s value in a column is called a field and must match
the column’s data type. A row is also called for a record. The value of a particular field can
be null, which simply means that the field has no value, and it is important to note that
it is not the same as 0 or blank.

A column can be assigned constraint’s that one can think of as conditions, the values in
that column must meet. If they do not, the database management system is rejecting the
database operation. The most important constraints are:

-- NOT NULL, which indicates that a column can not contain null values, and the
row thus must have a value in that column.

-- DEFAULT, where you can specify a default value that is used, if there is not given
a value for the column.

-- UNIQUE, which means that the column’s values must be unique.
-- PRIMARY KEY, indicating that all rows in this column should have a unique value

that identifies the record.
-- FOREIGN KEY, which defines a reference to a primary key in another table

(possibly the same table). The column’s value must be the value of a primary key
in the other table or null.

-- CHECK, where it is possible to define that the column’s values must satisfy a
condition.

-- INDEX, defines an index (table of content) for the column’s values.

JAVA 6: JDBC AND DATABASE APPLICATIONS

150

Final examples

The database management system is the family of programs that maintains the database’s
databases, and is a daemon that constantly runs in the background and waiting for requests
from users in form of SQL commands. In addition to performing these commands, it is
also the database management system that validates that the commands can be executed
properly and in this context tests whether the above constraints are respected. The database
management system has to ensure the integrity of the database, and you talk about the
following integrity rules:

1.	Entity integritet, which mean that no rows must have a NULL value in the primary
key column and all values in this column are different.

2.	Domain integritet, which ensures that the values in a column are in accordance
with the type of the definition and the constraints.

3.	Referential integritet, which guarantees that a row can not be deleted if the database
contains a different row (typically in another table), which refers to this row.

4.	User defined integritet, where it is possible to define special rules that do not fall
under the three above rules.

These rules help to ensure that data in the database always contains legal values, but they do
not ensure efficiency, which is a matter of how the database is designed and created. There
are several guidelines for good database design, and one of them is called normalization. Very
briefly, it is a variety of conditions a database design must meet. Usually one uses only the
first three (but there are several), and speaking about that the database is in third normal
form. I will not mention normalization of databases here, but refer to books or articles on
database theory or the book Java 7.

A BOOK DATABASE

In order to show specific SQL commands I needs a database to be able to perform them. I
want to use a database which consists of 5 tables. The primary table contains information
about books:

-- the books ISBN
-- the books title
-- the books edition
-- the books publisher year
-- the number of pages in the book

JAVA 6: JDBC AND DATABASE APPLICATIONS

151

Final examples

151

Books are published by a publishing house, and there is also a publishing table, that a book
can refer to by a foreign key. Similarly the books are divided into categories, and there is a
category table as a book can refer to. Final has a book one or more authors whose names
are stored in a table author, but as the same author may have written several books, it is
necessary with a table that can relate books and authors. Correspondingly, the database can
be created with the following script called Books.sql:

JAVA 6: JDBC AND DATABASE APPLICATIONS

151

FInal examples

151

Books are published by a publishing house, and there is also a publishing table, that a book
can refer to by a foreign key. Similarly the books are divided into categories, and there is a
category table as a book can refer to. Final has a book one or more authors whose names
are stored in a table author, but as the same author may have written several books, it is
necessary with a table that can relate books and authors. Correspondingly, the database can
be created with the following script called Books.sql:

use sys;
drop database if exists books;
create database books;
use books;

drop table if exists written;
drop table if exists author;
drop table if exists book;
drop table if exists publisher;
drop table if exists category;

create table category (
catnr int not null,
name varchar(30) not null,
primary key (catnr));

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 6: JDBC AND DATABASE APPLICATIONS

152

Final examples
JAVA 6: JDBC AND DATABASE APPLICATIONS

152

FInal examples

create table publisher (
pubnr int not null,
name varchar(40) not null,
primary key (pubnr));

create table author (
autnr int not null,
firstname varchar(50),
lastname varchar(20) not null,
primary key (autnr));

create table book (
isbn char(13) not null,
title varchar(100) not null,
edition int,
year char(4),
pages int,
pubnr int not null,
catnr int,
primary key (isbn),
foreign key (pubnr) references publisher (pubnr),
foreign key (catnr) references category (catnr));

create table written (
isbn char(13) not null,
autnr int not null,
primary key (isbn, autnr),
foreign key (isbn) references book (isbn),
foreign key (autnr) references author (autnr));

A script is simply a text file containing SQL commands. If the file is opened in MySQL
Workbench, and performed the script creates the database. Preliminary ignore the individual
commands because they are all dealt with below.

After the script is done, you have an empty database, but you must have something to do
with, and you must add data to the database. In the folder for this book there are 5 text
files with data for the 5 tables:

Category.txt
Publisher.txt
Author.txt
Book.txt
Written.txt

A script is simply a text file containing SQL commands. If the file is opened in MySQL
Workbench, and performed the script creates the database. Preliminary ignore the individual
commands because they are all dealt with below.

After the script is done, you have an empty database, but you must have something to do
with, and you must add data to the database. In the folder for this book there are 5 text
files with data for the 5 tables:

Category.txt
Publisher.txt
Author.txt
Book.txt
Written.txt

JAVA 6: JDBC AND DATABASE APPLICATIONS

153

Final examples

If you copy these files to the /var/lib/mysql-files/data (requires you are root) so the database
can be loaded with data using the following script (LoadBooks.sql ):

JAVA 6: JDBC AND DATABASE APPLICATIONS

153

FInal examples

If you copy these files to the /var/lib/mysql-files/data (requires you are root) so the database
can be loaded with data using the following script (LoadBooks.sql):

use books;

load data infile '/var/lib/mysql-files/data/Category.txt'
into table category
fields terminated by '\t'
lines terminated by '\r\n';

load data infile '/var/lib/mysql-files/data/Publisher.txt'
into table publisher
fields terminated by '\t'
lines terminated by '\r\n';

load data infile '/var/lib/mysql-files/data/Author.txt'
into table author
fields terminated by '\t'
lines terminated by '\r\n';

load data infile '/var/lib/mysql-files/data/Book.txt'
into table book
fields terminated by '\t'
lines terminated by '\r\n';

load data infile '/var/lib/mysql-files/data/Written.txt'
into table written
fields terminated by '\t'
lines terminated by '\r\n';

The result is that you now have a simple database with 5 tables.

SQL DATA TYPES

As shown in the above script that creates the database books, then each column has a data
type. There are the following options:

 - Int, that can contain an integer between -2147483648 and 2147483647.
 - Smallint, that can contain an integer between -32768 and 32767.
 - Tinyint, that can contain an integer between 0 and 255.
 - Bit, there is 0 or 1 (in MySQL you can also write Bool, that means the same).
 - Bigint, that can contain an integer between the two integers -9223372036854775808

and 9223372036854775807.
 - Numeric (or Decimal) to decimal numbers between -10^38 +1 and 10^38 -1
 - Money to currency values and can contain a value between -922337203685477.5808

and 922337203685477.5807

The result is that you now have a simple database with 5 tables.

SQL DATA TYPES

As shown in the above script that creates the database books, then each column has a data
type. There are the following options:

-- Int, that can contain an integer between -2147483648 and 2147483647.
-- Smallint, that can contain an integer between -32768 and 32767.
-- Tinyint, that can contain an integer between 0 and 255.
-- Bit, there is 0 or 1 (in MySQL you can also write Bool, that means the same).
-- Bigint, that can contain an integer between the two integers -9223372036854775808

and 9223372036854775807.
-- Numeric (or Decimal ) to decimal numbers between -10^38 +1 and 10^38 -1
-- Money to currency values and can contain a value between -922337203685477.5808

and 922337203685477.5807

JAVA 6: JDBC AND DATABASE APPLICATIONS

154

Final examples

154

-- Smallmoney to currencies values from -214748.3648 to 214748.3647
-- Float to floating points from -3.40E + 38 to 3.40E + 38 (the type is also called Real).
-- Double to floating points from -1.79E+308 to 1.79F+308.
-- Datetime to timekeeping from 1. January 1753 to 31 December 9999.
-- Smalldatetime to timekeeping from 1. January 1900 to 6. June 2079.
-- Date to dates on the form YYYYMMDD
-- Time to time on the form HHMMSS
-- Char to text of a fixed length with max 255 characters, where the field is filled

with blanks.
-- Varchar to text of variable length, which can be up to 65535 characters.

In addition, there are two types Text and Blob, which fills the same (the same capacity), but
are used respectively to text and binary data. They come in several varieties:

-- Tinytext and Tinyblob with space for max 255 bytes.
-- Text and Blob with space for max 65535 bytes.
-- Mediumtext and Mediumblob with space for max 16777215 bytes.
-- Longtext and Longblob with space for max 4294967295 bytes.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 6: JDBC AND DATABASE APPLICATIONS

155

Final examples

The above applies to MySQL, but other databases can have several data types.

In addition to data types, there are similar to other programming languages operators, and
in terms to arithmetical operators and operators for comparison the syntax is almost the
same as in Java. However, there are some other operators, as I will explain in connection
with examples, but the list is as follows:

-- ALL
-- AND
-- ANY
-- BETWEEN
-- EXISTS
-- IN
-- LIKE
-- NOT
-- OR
-- IS NULL
-- UNIQUE

SQL COMMANDS

SQL is a command language, and there are the following commands:

-- CREATE, that is used to create database objects such as tables
-- ALTER, that is used to modify existing objects, such as tables
-- DROP, that is used to delete objects such as tables

These commands are called DDL commands for Data Def﻿inition Language.

-- GRANT, that is used to assign the rights for users
-- REVOKE, that is used to remove rights from users

These commands are called DCL commands for Data Control Language.

-- INSERT, which is used to insert a row in a table
-- UPDATE, which is used to modify the content of one or more rows in a table
-- DELETE, which is used to delete one or more rows in a table

JAVA 6: JDBC AND DATABASE APPLICATIONS

156

Final examples

These commands are called DML commands for Data Manipulation Language.

-- SELECT, which is used for extracting rows from one or more tables

This command is called a DQL command for Data Query Language.

There are as such 9 commands so SQL should be easy to learn, and it also is, and it is only
the last, which is complex with a very comprehensive syntax.

Note first that SQL does not differentiate between small and capital letters, but in the
following, I generally write SQL names with capital letters and it is only because it for the
reader should be clear what is SQL key words.

As an example is shown a command that creates a database:

JAVA 6: JDBC AND DATABASE APPLICATIONS

156

FInal examples

These commands are called DML commands for Data Manipulation Language.

 - SELECT, which is used for extracting rows from one or more tables

This command is called a DQL command for Data Query Language.

There are as such 9 commands so SQL should be easy to learn, and it also is, and it is only
the last, which is complex with a very comprehensive syntax.

Note first that SQL does not differentiate between small and capital letters, but in the
following, I generally write SQL names with capital letters and it is only because it for the
reader should be clear what is SQL key words.

As an example is shown a command that creates a database:

CREATE DATABASE books;

If you want to delete the database again, you can do it with the command

DROP DATABASE books;

One must of course be wary of a command as above, that you do not delete a database
with data – unless this is exactly what you want.

If the database management system is used to manage multiple databases (and it will always
be the case), and you opens MySQL Workbench, you must tell which database the SQL
commands should works on. You do this with a command like

USE books;

which makes the database books to the current database.

Is the database books the current database, you can create a table as follows:

CREATE TABLE publisher (
pubnr INT NOT NULL,
name VARCHAR(40) NOT NULL,
PRIMARY KEY (pubnr));

If you want to delete the database again, you can do it with the command

JAVA 6: JDBC AND DATABASE APPLICATIONS

156

FInal examples

These commands are called DML commands for Data Manipulation Language.

 - SELECT, which is used for extracting rows from one or more tables

This command is called a DQL command for Data Query Language.

There are as such 9 commands so SQL should be easy to learn, and it also is, and it is only
the last, which is complex with a very comprehensive syntax.

Note first that SQL does not differentiate between small and capital letters, but in the
following, I generally write SQL names with capital letters and it is only because it for the
reader should be clear what is SQL key words.

As an example is shown a command that creates a database:

CREATE DATABASE books;

If you want to delete the database again, you can do it with the command

DROP DATABASE books;

One must of course be wary of a command as above, that you do not delete a database
with data – unless this is exactly what you want.

If the database management system is used to manage multiple databases (and it will always
be the case), and you opens MySQL Workbench, you must tell which database the SQL
commands should works on. You do this with a command like

USE books;

which makes the database books to the current database.

Is the database books the current database, you can create a table as follows:

CREATE TABLE publisher (
pubnr INT NOT NULL,
name VARCHAR(40) NOT NULL,
PRIMARY KEY (pubnr));

One must of course be wary of a command as above, that you do not delete a database
with data – unless this is exactly what you want.

If the database management system is used to manage multiple databases (and it will always
be the case), and you opens MySQL Workbench, you must tell which database the SQL
commands should works on. You do this with a command like

JAVA 6: JDBC AND DATABASE APPLICATIONS

156

FInal examples

These commands are called DML commands for Data Manipulation Language.

 - SELECT, which is used for extracting rows from one or more tables

This command is called a DQL command for Data Query Language.

There are as such 9 commands so SQL should be easy to learn, and it also is, and it is only
the last, which is complex with a very comprehensive syntax.

Note first that SQL does not differentiate between small and capital letters, but in the
following, I generally write SQL names with capital letters and it is only because it for the
reader should be clear what is SQL key words.

As an example is shown a command that creates a database:

CREATE DATABASE books;

If you want to delete the database again, you can do it with the command

DROP DATABASE books;

One must of course be wary of a command as above, that you do not delete a database
with data – unless this is exactly what you want.

If the database management system is used to manage multiple databases (and it will always
be the case), and you opens MySQL Workbench, you must tell which database the SQL
commands should works on. You do this with a command like

USE books;

which makes the database books to the current database.

Is the database books the current database, you can create a table as follows:

CREATE TABLE publisher (
pubnr INT NOT NULL,
name VARCHAR(40) NOT NULL,
PRIMARY KEY (pubnr));

which makes the database books to the current database.

Is the database books the current database, you can create a table as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

156

FInal examples

These commands are called DML commands for Data Manipulation Language.

 - SELECT, which is used for extracting rows from one or more tables

This command is called a DQL command for Data Query Language.

There are as such 9 commands so SQL should be easy to learn, and it also is, and it is only
the last, which is complex with a very comprehensive syntax.

Note first that SQL does not differentiate between small and capital letters, but in the
following, I generally write SQL names with capital letters and it is only because it for the
reader should be clear what is SQL key words.

As an example is shown a command that creates a database:

CREATE DATABASE books;

If you want to delete the database again, you can do it with the command

DROP DATABASE books;

One must of course be wary of a command as above, that you do not delete a database
with data – unless this is exactly what you want.

If the database management system is used to manage multiple databases (and it will always
be the case), and you opens MySQL Workbench, you must tell which database the SQL
commands should works on. You do this with a command like

USE books;

which makes the database books to the current database.

Is the database books the current database, you can create a table as follows:

CREATE TABLE publisher (
pubnr INT NOT NULL,
name VARCHAR(40) NOT NULL,
PRIMARY KEY (pubnr));

JAVA 6: JDBC AND DATABASE APPLICATIONS

157

Final examples

157

Here you creates a table named publisher. The table has two columns, where the first is
called pubnr and has the type INT and thus must contain integers, while the other is called
name and has type VARCHAR to hold max 40 characters and then can contain text. Both
columns are defined NOT NULL, and a row must have a value for both pubnr and name.
Finally is defined that the column pubnr must be primary key. The command is written on
several lines. It is not necessary and is only done for the sake of readability, but you should
note where there is a comma, as they must be there. The command in question may in
addition also be written as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

157

FInal examples

157

Here you creates a table named publisher. The table has two columns, where the first is
called pubnr and has the type INT and thus must contain integers, while the other is called
name and has type VARCHAR to hold max 40 characters and then can contain text. Both
columns are defined NOT NULL, and a row must have a value for both pubnr and name.
Finally is defined that the column pubnr must be primary key. The command is written on
several lines. It is not necessary and is only done for the sake of readability, but you should
note where there is a comma, as they must be there. The command in question may in
addition also be written as follows:

CREATE TABLE publisher (
pubnr INT PRIMARY KEY,
name VARCHAR(40) NOT NULL);

When I have not specified NOT NULL for the column pubnr, it is because a column
defined as a primary key will automatically be NOT NULL.

When I have not specified NOT NULL for the column pubnr, it is because a column
defined as a primary key will automatically be NOT NULL.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 6: JDBC AND DATABASE APPLICATIONS

158

Final examples

Below is another example of a command that creates a table:

JAVA 6: JDBC AND DATABASE APPLICATIONS

158

FInal examples

Below is another example of a command that creates a table:

CREATE TABLE book (
isbn CHAR(13) NOT NULL,
title VARCHAR(100) NOT NULL,
edition INT,
year CHAR(4),
pages INT,
pubnr INT, NOT NULL,
catnr INT,
PRIMARY KEY (isbn),
FOREIGN KEY (pubnr) REFERENCES publisher (pubnr),
FOREIGN KEY (catnr) REFERENCES category (catnr));

Here you creates a table book with 7 columns, which should contain information about a
book. Here is the first column is primary key. The next column is defined NOT NULL
corresponding to that a book must have a title. The next three columns allow NULL values
because you are welcome to create a book without knowing when the book is released, the
edition and the page number. The column pubnr is foreign key to the publisher table and
is defined NOT NULL. This means that a book must have a publisher. The column catnr
is also a foreign key (to the table category), but it may well be null. This means that a book
need not be assigned to a category, but if there is a value in the column, it must be the
number of an existing category.

If you want to delete a table, the syntax is

DROP TABLE book;

which deletes the table book with all its data. You should note that if you instead tries to
execute the command

DROP TABLE publisher;

would get an error when the table book via the foreign key refers to the table publisher.

It is also possible to modify database objects. As an example the following command adds
a new column to the table book:

ALTER TABLE book ADD info VARCHAR(1024);

Here you creates a table book with 7 columns, which should contain information about a
book. Here is the first column is primary key. The next column is defined NOT NULL
corresponding to that a book must have a title. The next three columns allow NULL values
because you are welcome to create a book without knowing when the book is released, the
edition and the page number. The column pubnr is foreign key to the publisher table and
is defined NOT NULL. This means that a book must have a publisher. The column catnr
is also a foreign key (to the table category), but it may well be null. This means that a book
need not be assigned to a category, but if there is a value in the column, it must be the
number of an existing category.

If you want to delete a table, the syntax is

JAVA 6: JDBC AND DATABASE APPLICATIONS

158

FInal examples

Below is another example of a command that creates a table:

CREATE TABLE book (
isbn CHAR(13) NOT NULL,
title VARCHAR(100) NOT NULL,
edition INT,
year CHAR(4),
pages INT,
pubnr INT, NOT NULL,
catnr INT,
PRIMARY KEY (isbn),
FOREIGN KEY (pubnr) REFERENCES publisher (pubnr),
FOREIGN KEY (catnr) REFERENCES category (catnr));

Here you creates a table book with 7 columns, which should contain information about a
book. Here is the first column is primary key. The next column is defined NOT NULL
corresponding to that a book must have a title. The next three columns allow NULL values
because you are welcome to create a book without knowing when the book is released, the
edition and the page number. The column pubnr is foreign key to the publisher table and
is defined NOT NULL. This means that a book must have a publisher. The column catnr
is also a foreign key (to the table category), but it may well be null. This means that a book
need not be assigned to a category, but if there is a value in the column, it must be the
number of an existing category.

If you want to delete a table, the syntax is

DROP TABLE book;

which deletes the table book with all its data. You should note that if you instead tries to
execute the command

DROP TABLE publisher;

would get an error when the table book via the foreign key refers to the table publisher.

It is also possible to modify database objects. As an example the following command adds
a new column to the table book:

ALTER TABLE book ADD info VARCHAR(1024);

which deletes the table book with all its data. You should note that if you instead tries to
execute the command

JAVA 6: JDBC AND DATABASE APPLICATIONS

158

FInal examples

Below is another example of a command that creates a table:

CREATE TABLE book (
isbn CHAR(13) NOT NULL,
title VARCHAR(100) NOT NULL,
edition INT,
year CHAR(4),
pages INT,
pubnr INT, NOT NULL,
catnr INT,
PRIMARY KEY (isbn),
FOREIGN KEY (pubnr) REFERENCES publisher (pubnr),
FOREIGN KEY (catnr) REFERENCES category (catnr));

Here you creates a table book with 7 columns, which should contain information about a
book. Here is the first column is primary key. The next column is defined NOT NULL
corresponding to that a book must have a title. The next three columns allow NULL values
because you are welcome to create a book without knowing when the book is released, the
edition and the page number. The column pubnr is foreign key to the publisher table and
is defined NOT NULL. This means that a book must have a publisher. The column catnr
is also a foreign key (to the table category), but it may well be null. This means that a book
need not be assigned to a category, but if there is a value in the column, it must be the
number of an existing category.

If you want to delete a table, the syntax is

DROP TABLE book;

which deletes the table book with all its data. You should note that if you instead tries to
execute the command

DROP TABLE publisher;

would get an error when the table book via the foreign key refers to the table publisher.

It is also possible to modify database objects. As an example the following command adds
a new column to the table book:

ALTER TABLE book ADD info VARCHAR(1024);

would get an error when the table book via the foreign key refers to the table publisher.

It is also possible to modify database objects. As an example the following command adds
a new column to the table book:

JAVA 6: JDBC AND DATABASE APPLICATIONS

158

FInal examples

Below is another example of a command that creates a table:

CREATE TABLE book (
isbn CHAR(13) NOT NULL,
title VARCHAR(100) NOT NULL,
edition INT,
year CHAR(4),
pages INT,
pubnr INT, NOT NULL,
catnr INT,
PRIMARY KEY (isbn),
FOREIGN KEY (pubnr) REFERENCES publisher (pubnr),
FOREIGN KEY (catnr) REFERENCES category (catnr));

Here you creates a table book with 7 columns, which should contain information about a
book. Here is the first column is primary key. The next column is defined NOT NULL
corresponding to that a book must have a title. The next three columns allow NULL values
because you are welcome to create a book without knowing when the book is released, the
edition and the page number. The column pubnr is foreign key to the publisher table and
is defined NOT NULL. This means that a book must have a publisher. The column catnr
is also a foreign key (to the table category), but it may well be null. This means that a book
need not be assigned to a category, but if there is a value in the column, it must be the
number of an existing category.

If you want to delete a table, the syntax is

DROP TABLE book;

which deletes the table book with all its data. You should note that if you instead tries to
execute the command

DROP TABLE publisher;

would get an error when the table book via the foreign key refers to the table publisher.

It is also possible to modify database objects. As an example the following command adds
a new column to the table book:

ALTER TABLE book ADD info VARCHAR(1024);

JAVA 6: JDBC AND DATABASE APPLICATIONS

159

Final examples

Similarly, the following command is used to change the data type of the new column:

JAVA 6: JDBC AND DATABASE APPLICATIONS

159

FInal examples

Similarly, the following command is used to change the data type of the new column:

ALTER TABLE book MODIFY info Text;

If you want to delete the new column again, you can do it with the following command:

ALTER TABLE book DROP COLUMN info;

If, for example it is such that the book’s edition must be less than 20, you can execute
the command:

ALTER TABLE book ADD CONSTRAINT editionCheck CHECK (edition < 20);

where the constraint has been given a name, so you can refer to it in SQL commands.
Subsequently, one could modficere this constraint as follows:

ALTER TABLE book ADD CONSTRAINT editionCheck
CHECK (edition IS NULL OR (edition BETWEEN 1 AND 19));

there would be a more accurate control.

As a final example the below shows a command that changes the name of a column:

ALTER TABLE book CHANGE edition edit INT;

I mention the command because it can be useful, but also because it is an example of a
command whose syntax depends on the current database management system.

There are many other options with the command ALTER but the above gives an impression
of the syntax and what is possible.

DML COMMANDS

The above commands are all examples of DDL commands and thus commands that modify
the structure of the database. The main use of these commands are in scripts that create
databases. In this section I will show the syntax of the three DML commands, and unlike
DDL commands, these are commands that change the content of the tables.

In this section and also in the rest of this appendix, it is assumed that the database books
are as described in the introduction and is loaded with data as described there.

If you want to delete the new column again, you can do it with the following command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

159

FInal examples

Similarly, the following command is used to change the data type of the new column:

ALTER TABLE book MODIFY info Text;

If you want to delete the new column again, you can do it with the following command:

ALTER TABLE book DROP COLUMN info;

If, for example it is such that the book’s edition must be less than 20, you can execute
the command:

ALTER TABLE book ADD CONSTRAINT editionCheck CHECK (edition < 20);

where the constraint has been given a name, so you can refer to it in SQL commands.
Subsequently, one could modficere this constraint as follows:

ALTER TABLE book ADD CONSTRAINT editionCheck
CHECK (edition IS NULL OR (edition BETWEEN 1 AND 19));

there would be a more accurate control.

As a final example the below shows a command that changes the name of a column:

ALTER TABLE book CHANGE edition edit INT;

I mention the command because it can be useful, but also because it is an example of a
command whose syntax depends on the current database management system.

There are many other options with the command ALTER but the above gives an impression
of the syntax and what is possible.

DML COMMANDS

The above commands are all examples of DDL commands and thus commands that modify
the structure of the database. The main use of these commands are in scripts that create
databases. In this section I will show the syntax of the three DML commands, and unlike
DDL commands, these are commands that change the content of the tables.

In this section and also in the rest of this appendix, it is assumed that the database books
are as described in the introduction and is loaded with data as described there.

If, for example it is such that the book’s edition must be less than 20, you can execute
the command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

159

FInal examples

Similarly, the following command is used to change the data type of the new column:

ALTER TABLE book MODIFY info Text;

If you want to delete the new column again, you can do it with the following command:

ALTER TABLE book DROP COLUMN info;

If, for example it is such that the book’s edition must be less than 20, you can execute
the command:

ALTER TABLE book ADD CONSTRAINT editionCheck CHECK (edition < 20);

where the constraint has been given a name, so you can refer to it in SQL commands.
Subsequently, one could modficere this constraint as follows:

ALTER TABLE book ADD CONSTRAINT editionCheck
CHECK (edition IS NULL OR (edition BETWEEN 1 AND 19));

there would be a more accurate control.

As a final example the below shows a command that changes the name of a column:

ALTER TABLE book CHANGE edition edit INT;

I mention the command because it can be useful, but also because it is an example of a
command whose syntax depends on the current database management system.

There are many other options with the command ALTER but the above gives an impression
of the syntax and what is possible.

DML COMMANDS

The above commands are all examples of DDL commands and thus commands that modify
the structure of the database. The main use of these commands are in scripts that create
databases. In this section I will show the syntax of the three DML commands, and unlike
DDL commands, these are commands that change the content of the tables.

In this section and also in the rest of this appendix, it is assumed that the database books
are as described in the introduction and is loaded with data as described there.

where the constraint has been given a name, so you can refer to it in SQL commands.
Subsequently, one could modficere this constraint as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

159

FInal examples

Similarly, the following command is used to change the data type of the new column:

ALTER TABLE book MODIFY info Text;

If you want to delete the new column again, you can do it with the following command:

ALTER TABLE book DROP COLUMN info;

If, for example it is such that the book’s edition must be less than 20, you can execute
the command:

ALTER TABLE book ADD CONSTRAINT editionCheck CHECK (edition < 20);

where the constraint has been given a name, so you can refer to it in SQL commands.
Subsequently, one could modficere this constraint as follows:

ALTER TABLE book ADD CONSTRAINT editionCheck
CHECK (edition IS NULL OR (edition BETWEEN 1 AND 19));

there would be a more accurate control.

As a final example the below shows a command that changes the name of a column:

ALTER TABLE book CHANGE edition edit INT;

I mention the command because it can be useful, but also because it is an example of a
command whose syntax depends on the current database management system.

There are many other options with the command ALTER but the above gives an impression
of the syntax and what is possible.

DML COMMANDS

The above commands are all examples of DDL commands and thus commands that modify
the structure of the database. The main use of these commands are in scripts that create
databases. In this section I will show the syntax of the three DML commands, and unlike
DDL commands, these are commands that change the content of the tables.

In this section and also in the rest of this appendix, it is assumed that the database books
are as described in the introduction and is loaded with data as described there.

there would be a more accurate control.

As a final example the below shows a command that changes the name of a column:

JAVA 6: JDBC AND DATABASE APPLICATIONS

159

FInal examples

Similarly, the following command is used to change the data type of the new column:

ALTER TABLE book MODIFY info Text;

If you want to delete the new column again, you can do it with the following command:

ALTER TABLE book DROP COLUMN info;

If, for example it is such that the book’s edition must be less than 20, you can execute
the command:

ALTER TABLE book ADD CONSTRAINT editionCheck CHECK (edition < 20);

where the constraint has been given a name, so you can refer to it in SQL commands.
Subsequently, one could modficere this constraint as follows:

ALTER TABLE book ADD CONSTRAINT editionCheck
CHECK (edition IS NULL OR (edition BETWEEN 1 AND 19));

there would be a more accurate control.

As a final example the below shows a command that changes the name of a column:

ALTER TABLE book CHANGE edition edit INT;

I mention the command because it can be useful, but also because it is an example of a
command whose syntax depends on the current database management system.

There are many other options with the command ALTER but the above gives an impression
of the syntax and what is possible.

DML COMMANDS

The above commands are all examples of DDL commands and thus commands that modify
the structure of the database. The main use of these commands are in scripts that create
databases. In this section I will show the syntax of the three DML commands, and unlike
DDL commands, these are commands that change the content of the tables.

In this section and also in the rest of this appendix, it is assumed that the database books
are as described in the introduction and is loaded with data as described there.

I mention the command because it can be useful, but also because it is an example of a
command whose syntax depends on the current database management system.

There are many other options with the command ALTER but the above gives an impression
of the syntax and what is possible.

DML COMMANDS

The above commands are all examples of DDL commands and thus commands that modify
the structure of the database. The main use of these commands are in scripts that create
databases. In this section I will show the syntax of the three DML commands, and unlike
DDL commands, these are commands that change the content of the tables.

In this section and also in the rest of this appendix, it is assumed that the database books
are as described in the introduction and is loaded with data as described there.

JAVA 6: JDBC AND DATABASE APPLICATIONS

160

Final examples

160

I will start with the command INSERT, that insert a row in a table. As an example, the
following command inserts a row in the author table:

JAVA 6: JDBC AND DATABASE APPLICATIONS

160

FInal examples

160

I will start with the command INSERT, that insert a row in a table. As an example, the
following command inserts a row in the author table:

INSERT INTO author VALUES (186, 'Mogens', 'Trolle');

In order that the command can be executed, there are two requirements:

1. After VALUES must be in parentheses a value for each of the three columns in the
table and the types must match.

2. The value of autnr (the value 186) must not already exist – the column are primary key

In many ways it is the simplest INSERT command, as one can imagine.

Often, the insertion of a row, however, require the insertion of rows in multiple tables. If
for example, I want to create the book

78-7900-910-7, Afrikas dyreliv publiched on Globe as 1. edition and written by Mogens Trolle

In order that the command can be executed, there are two requirements:

1.	After VALUES must be in parentheses a value for each of the three columns in the
table and the types must match.

2.	The value of autnr (the value 186) must not already exist – the column are primary key

In many ways it is the simplest INSERT command, as one can imagine.

Often, the insertion of a row, however, require the insertion of rows in multiple tables. If
for example, I want to create the book

78-7900-910-7, Afrikas dyreliv publiched on Globe as 1. edition and written by Mogens Trolle

http://s.bookboon.com/EOT

JAVA 6: JDBC AND DATABASE APPLICATIONS

161

Final examples

then the publisher does not exists and must first be created. When the author is already
created (with the command above), there must also be added a row to the table written
and the book can be created as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

161

FInal examples

then the publisher does not exists and must first be created. When the author is already
created (with the command above), there must also be added a row to the table written
and the book can be created as follows:

INSERT INTO publisher VALUES (21, 'Globe');
INSERT INTO book (isbn, title, edition, pubnr)
 VALUES ('87-7900-910-7', 'Afrikas dyreliv', 1, 21);
INSERT INTO written VALUES ('87-7900-910-7', 186);

The first command requires no additional comments beyond again to be aware that publisher
number 21 must not already exist.

The second command does not insert values in all columns, and therefore you must specify
in which columns to be inserted values. This is done by listing the column names in
parentheses after the table name. Then VALUES must specify values for these columns. You
should note that isbn is necessary because it is the primary key. Also the title is necessary,
when this column is defined NOT NULL and it is ok that there is no value for year and
pages, as the columns may contain NULL values. pubnr is defined NOT NULL, and you
must indicate a publishing number, and when the column is a foreign key to the table
publisher it must be a number on an existing publishers. It is therefore necessary, that the
command that creates the publisher is executed before the command that creates the book.
Note, finally, that there is not defined a category, although this column (column catnr) is
a foreign key to the table category. It is not necessary, because the column allows NULL
values, which in turn corresponds to, that a book does not need to have a category.

Then there is finally the last command, as there is not much to say, but you should note
that the two values is a composite key, and each part of the key is a foreign key, respectively
to the table book and table author.

The command UPDATE is used to change the values in the columns, and by way of the
example, the following command updates a row in table book:

UPDATE book SET year = '2010', pages = 255 WHERE isbn = '87-7900-910-7';

The first command requires no additional comments beyond again to be aware that publisher
number 21 must not already exist.

The second command does not insert values in all columns, and therefore you must specify
in which columns to be inserted values. This is done by listing the column names in
parentheses after the table name. Then VALUES must specify values for these columns. You
should note that isbn is necessary because it is the primary key. Also the title is necessary,
when this column is defined NOT NULL and it is ok that there is no value for year and
pages, as the columns may contain NULL values. pubnr is defined NOT NULL, and you
must indicate a publishing number, and when the column is a foreign key to the table
publisher it must be a number on an existing publishers. It is therefore necessary, that the
command that creates the publisher is executed before the command that creates the book.
Note, finally, that there is not defined a category, although this column (column catnr) is
a foreign key to the table category. It is not necessary, because the column allows NULL
values, which in turn corresponds to, that a book does not need to have a category.

Then there is finally the last command, as there is not much to say, but you should note
that the two values is a composite key, and each part of the key is a foreign key, respectively
to the table book and table author.

The command UPDATE is used to change the values in the columns, and by way of the
example, the following command updates a row in table book:

JAVA 6: JDBC AND DATABASE APPLICATIONS

161

FInal examples

then the publisher does not exists and must first be created. When the author is already
created (with the command above), there must also be added a row to the table written
and the book can be created as follows:

INSERT INTO publisher VALUES (21, 'Globe');
INSERT INTO book (isbn, title, edition, pubnr)
 VALUES ('87-7900-910-7', 'Afrikas dyreliv', 1, 21);
INSERT INTO written VALUES ('87-7900-910-7', 186);

The first command requires no additional comments beyond again to be aware that publisher
number 21 must not already exist.

The second command does not insert values in all columns, and therefore you must specify
in which columns to be inserted values. This is done by listing the column names in
parentheses after the table name. Then VALUES must specify values for these columns. You
should note that isbn is necessary because it is the primary key. Also the title is necessary,
when this column is defined NOT NULL and it is ok that there is no value for year and
pages, as the columns may contain NULL values. pubnr is defined NOT NULL, and you
must indicate a publishing number, and when the column is a foreign key to the table
publisher it must be a number on an existing publishers. It is therefore necessary, that the
command that creates the publisher is executed before the command that creates the book.
Note, finally, that there is not defined a category, although this column (column catnr) is
a foreign key to the table category. It is not necessary, because the column allows NULL
values, which in turn corresponds to, that a book does not need to have a category.

Then there is finally the last command, as there is not much to say, but you should note
that the two values is a composite key, and each part of the key is a foreign key, respectively
to the table book and table author.

The command UPDATE is used to change the values in the columns, and by way of the
example, the following command updates a row in table book:

UPDATE book SET year = '2010', pages = 255 WHERE isbn = '87-7900-910-7';

JAVA 6: JDBC AND DATABASE APPLICATIONS

162

Final examples

The command is easy enough to understand. After SET follows a comma-separated list of
column names and values, where the values are the new values. Then there is the WHERE
clause, which is followed by a condition that determines which rows to be modified. A
WHERE clause can be extremely complex, which also will appear from the following about
SELECT, but in this case it defines exactly one row. A WHERE may well define multiple
rows, and where appropriate, all the rows that satisfy the condition are updated. You must
specifically note that it is not a requirement that an UPDATE command has a WHERE
part, and if not, all the table’s rows are updated. Also note that you can not change the
value of the primary key.

As another example the following command shows how to set value in a column to NULL:

JAVA 6: JDBC AND DATABASE APPLICATIONS

162

FInal examples

The command is easy enough to understand. After SET follows a comma-separated list of
column names and values, where the values are the new values. Then there is the WHERE
clause, which is followed by a condition that determines which rows to be modified. A
WHERE clause can be extremely complex, which also will appear from the following about
SELECT, but in this case it defines exactly one row. A WHERE may well define multiple
rows, and where appropriate, all the rows that satisfy the condition are updated. You must
specifically note that it is not a requirement that an UPDATE command has a WHERE
part, and if not, all the table’s rows are updated. Also note that you can not change the
value of the primary key.

As another example the following command shows how to set value in a column to NULL:

UPDATE book SET edition = NULL WHERE isbn = '87-7900-910-7';

The command assumes of course that the column allows NULL values.

Then there is the DELETE command that is used to delete rows. Suppose you have
performed the following command:

INSERT INTO category VALUES (10, 'Test category');

that inserts a row in the table category. If you want to delete the row again, you can do it
in the following way:

DELETE FROM category WHERE catnr = 10;

So it is simple to delete rows in a table, but there are a few things you should be aware
of. First, the WHERE part can specify multiple rows, and if so all rows that satisfy the
condition after the WHERE clause are deleted. Moreover, it is allowed to completely omit
the WHERE clause, and if so, the command deletes all rows in the table. One should
therefore be careful with DELETE, since it’s easy to delete more than the thought is.

In this case, the table book has a foreign key to the table category, and if there is a book
that refers to the category with the key 10, the row is not deleted. It is at least the default,
but there are other options. In the table book could have defined foreign key as follows:

FOREIGN KEY (catnr) REFERENCES category (catnr) ON DELETE SET NULL

The command assumes of course that the column allows NULL values.

Then there is the DELETE command that is used to delete rows. Suppose you have
performed the following command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

162

FInal examples

The command is easy enough to understand. After SET follows a comma-separated list of
column names and values, where the values are the new values. Then there is the WHERE
clause, which is followed by a condition that determines which rows to be modified. A
WHERE clause can be extremely complex, which also will appear from the following about
SELECT, but in this case it defines exactly one row. A WHERE may well define multiple
rows, and where appropriate, all the rows that satisfy the condition are updated. You must
specifically note that it is not a requirement that an UPDATE command has a WHERE
part, and if not, all the table’s rows are updated. Also note that you can not change the
value of the primary key.

As another example the following command shows how to set value in a column to NULL:

UPDATE book SET edition = NULL WHERE isbn = '87-7900-910-7';

The command assumes of course that the column allows NULL values.

Then there is the DELETE command that is used to delete rows. Suppose you have
performed the following command:

INSERT INTO category VALUES (10, 'Test category');

that inserts a row in the table category. If you want to delete the row again, you can do it
in the following way:

DELETE FROM category WHERE catnr = 10;

So it is simple to delete rows in a table, but there are a few things you should be aware
of. First, the WHERE part can specify multiple rows, and if so all rows that satisfy the
condition after the WHERE clause are deleted. Moreover, it is allowed to completely omit
the WHERE clause, and if so, the command deletes all rows in the table. One should
therefore be careful with DELETE, since it’s easy to delete more than the thought is.

In this case, the table book has a foreign key to the table category, and if there is a book
that refers to the category with the key 10, the row is not deleted. It is at least the default,
but there are other options. In the table book could have defined foreign key as follows:

FOREIGN KEY (catnr) REFERENCES category (catnr) ON DELETE SET NULL

that inserts a row in the table category. If you want to delete the row again, you can do it
in the following way:

JAVA 6: JDBC AND DATABASE APPLICATIONS

162

FInal examples

The command is easy enough to understand. After SET follows a comma-separated list of
column names and values, where the values are the new values. Then there is the WHERE
clause, which is followed by a condition that determines which rows to be modified. A
WHERE clause can be extremely complex, which also will appear from the following about
SELECT, but in this case it defines exactly one row. A WHERE may well define multiple
rows, and where appropriate, all the rows that satisfy the condition are updated. You must
specifically note that it is not a requirement that an UPDATE command has a WHERE
part, and if not, all the table’s rows are updated. Also note that you can not change the
value of the primary key.

As another example the following command shows how to set value in a column to NULL:

UPDATE book SET edition = NULL WHERE isbn = '87-7900-910-7';

The command assumes of course that the column allows NULL values.

Then there is the DELETE command that is used to delete rows. Suppose you have
performed the following command:

INSERT INTO category VALUES (10, 'Test category');

that inserts a row in the table category. If you want to delete the row again, you can do it
in the following way:

DELETE FROM category WHERE catnr = 10;

So it is simple to delete rows in a table, but there are a few things you should be aware
of. First, the WHERE part can specify multiple rows, and if so all rows that satisfy the
condition after the WHERE clause are deleted. Moreover, it is allowed to completely omit
the WHERE clause, and if so, the command deletes all rows in the table. One should
therefore be careful with DELETE, since it’s easy to delete more than the thought is.

In this case, the table book has a foreign key to the table category, and if there is a book
that refers to the category with the key 10, the row is not deleted. It is at least the default,
but there are other options. In the table book could have defined foreign key as follows:

FOREIGN KEY (catnr) REFERENCES category (catnr) ON DELETE SET NULL

So it is simple to delete rows in a table, but there are a few things you should be aware
of. First, the WHERE part can specify multiple rows, and if so all rows that satisfy the
condition after the WHERE clause are deleted. Moreover, it is allowed to completely omit
the WHERE clause, and if so, the command deletes all rows in the table. One should
therefore be careful with DELETE, since it’s easy to delete more than the thought is.

In this case, the table book has a foreign key to the table category, and if there is a book
that refers to the category with the key 10, the row is not deleted. It is at least the default,
but there are other options. In the table book could have defined foreign key as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

162

FInal examples

The command is easy enough to understand. After SET follows a comma-separated list of
column names and values, where the values are the new values. Then there is the WHERE
clause, which is followed by a condition that determines which rows to be modified. A
WHERE clause can be extremely complex, which also will appear from the following about
SELECT, but in this case it defines exactly one row. A WHERE may well define multiple
rows, and where appropriate, all the rows that satisfy the condition are updated. You must
specifically note that it is not a requirement that an UPDATE command has a WHERE
part, and if not, all the table’s rows are updated. Also note that you can not change the
value of the primary key.

As another example the following command shows how to set value in a column to NULL:

UPDATE book SET edition = NULL WHERE isbn = '87-7900-910-7';

The command assumes of course that the column allows NULL values.

Then there is the DELETE command that is used to delete rows. Suppose you have
performed the following command:

INSERT INTO category VALUES (10, 'Test category');

that inserts a row in the table category. If you want to delete the row again, you can do it
in the following way:

DELETE FROM category WHERE catnr = 10;

So it is simple to delete rows in a table, but there are a few things you should be aware
of. First, the WHERE part can specify multiple rows, and if so all rows that satisfy the
condition after the WHERE clause are deleted. Moreover, it is allowed to completely omit
the WHERE clause, and if so, the command deletes all rows in the table. One should
therefore be careful with DELETE, since it’s easy to delete more than the thought is.

In this case, the table book has a foreign key to the table category, and if there is a book
that refers to the category with the key 10, the row is not deleted. It is at least the default,
but there are other options. In the table book could have defined foreign key as follows:

FOREIGN KEY (catnr) REFERENCES category (catnr) ON DELETE SET NULL

JAVA 6: JDBC AND DATABASE APPLICATIONS

163

Final examples

163

Where appropriate, the references with value 10 for catnr in the table book automatically
be set to NULL. Another option is to write:

JAVA 6: JDBC AND DATABASE APPLICATIONS

163

FInal examples

163

Where appropriate, the references with value 10 for catnr in the table book automatically
be set to NULL. Another option is to write:

FOREIGN KEY (catnr) REFERENCES category (catnr) ON DELETE CASCACE

If so, the rows of the table book that refers to the number in the category table will also be
deleted. Cascade can be important for ensuring the integrity of the database, but there is
still reason to warn a little against this clause. If you have defined foreign key catnr as ON
DELETE CASCADE, and you performs the command

DELETE FROM category WHERE catnr = 1;

then you deletes not only a row in the table category, but you also deletes all rows in the
table book that refers to this row, and that is the vast majority (if not som of them are
prevented to be deleted by a foreign key in the table written).

If so, the rows of the table book that refers to the number in the category table will also be
deleted. Cascade can be important for ensuring the integrity of the database, but there is
still reason to warn a little against this clause. If you have defined foreign key catnr as ON
DELETE CASCADE, and you performs the command

JAVA 6: JDBC AND DATABASE APPLICATIONS

163

FInal examples

163

Where appropriate, the references with value 10 for catnr in the table book automatically
be set to NULL. Another option is to write:

FOREIGN KEY (catnr) REFERENCES category (catnr) ON DELETE CASCACE

If so, the rows of the table book that refers to the number in the category table will also be
deleted. Cascade can be important for ensuring the integrity of the database, but there is
still reason to warn a little against this clause. If you have defined foreign key catnr as ON
DELETE CASCADE, and you performs the command

DELETE FROM category WHERE catnr = 1;

then you deletes not only a row in the table category, but you also deletes all rows in the
table book that refers to this row, and that is the vast majority (if not som of them are
prevented to be deleted by a foreign key in the table written).

then you deletes not only a row in the table category, but you also deletes all rows in the
table book that refers to this row, and that is the vast majority (if not som of them are
prevented to be deleted by a foreign key in the table written).

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 6: JDBC AND DATABASE APPLICATIONS

164

Final examples

THE SELECT COMMAND

Then there is the SELECT command, which absolutely is the command where there is most
to say. The simplest command you can think of is a command of the form:

JAVA 6: JDBC AND DATABASE APPLICATIONS

164

FInal examples

THE SELECT COMMAND

Then there is the SELECT command, which absolutely is the command where there is most
to say. The simplest command you can think of is a command of the form:

SELECT * FROM publisher;

which extracts all rows from the table publisher. A * means all columns and hence the result
consists of rows that should contain values from all columns. You can replace * with the
names of the columns whose values you wants to show:

SELECT title, pages FROM book;

A SELECT can have a WHERE part, where you specify the rows to extract:

SELECT title, pages FROM book WHERE edition = 4;

The WHERE part can by using boolean operators to define more complex conditions:

SELECT title, pages FROM book
WHERE (edition = 1 OR edition = 3) AND pages > 650 AND pages < 700;

It is also possible to specify substrings. As an example the following command extracts all
rows where title starts with the word Java

SELECT title, pages FROM book WHERE title LIKE 'Java%';

which extracts all rows from the table publisher. A * means all columns and hence the result
consists of rows that should contain values from all columns. You can replace * with the
names of the columns whose values you wants to show:

JAVA 6: JDBC AND DATABASE APPLICATIONS

164

FInal examples

THE SELECT COMMAND

Then there is the SELECT command, which absolutely is the command where there is most
to say. The simplest command you can think of is a command of the form:

SELECT * FROM publisher;

which extracts all rows from the table publisher. A * means all columns and hence the result
consists of rows that should contain values from all columns. You can replace * with the
names of the columns whose values you wants to show:

SELECT title, pages FROM book;

A SELECT can have a WHERE part, where you specify the rows to extract:

SELECT title, pages FROM book WHERE edition = 4;

The WHERE part can by using boolean operators to define more complex conditions:

SELECT title, pages FROM book
WHERE (edition = 1 OR edition = 3) AND pages > 650 AND pages < 700;

It is also possible to specify substrings. As an example the following command extracts all
rows where title starts with the word Java

SELECT title, pages FROM book WHERE title LIKE 'Java%';

A SELECT can have a WHERE part, where you specify the rows to extract:

JAVA 6: JDBC AND DATABASE APPLICATIONS

164

FInal examples

THE SELECT COMMAND

Then there is the SELECT command, which absolutely is the command where there is most
to say. The simplest command you can think of is a command of the form:

SELECT * FROM publisher;

which extracts all rows from the table publisher. A * means all columns and hence the result
consists of rows that should contain values from all columns. You can replace * with the
names of the columns whose values you wants to show:

SELECT title, pages FROM book;

A SELECT can have a WHERE part, where you specify the rows to extract:

SELECT title, pages FROM book WHERE edition = 4;

The WHERE part can by using boolean operators to define more complex conditions:

SELECT title, pages FROM book
WHERE (edition = 1 OR edition = 3) AND pages > 650 AND pages < 700;

It is also possible to specify substrings. As an example the following command extracts all
rows where title starts with the word Java

SELECT title, pages FROM book WHERE title LIKE 'Java%';

The WHERE part can by using boolean operators to def﻿ine more complex conditions:

JAVA 6: JDBC AND DATABASE APPLICATIONS

164

FInal examples

THE SELECT COMMAND

Then there is the SELECT command, which absolutely is the command where there is most
to say. The simplest command you can think of is a command of the form:

SELECT * FROM publisher;

which extracts all rows from the table publisher. A * means all columns and hence the result
consists of rows that should contain values from all columns. You can replace * with the
names of the columns whose values you wants to show:

SELECT title, pages FROM book;

A SELECT can have a WHERE part, where you specify the rows to extract:

SELECT title, pages FROM book WHERE edition = 4;

The WHERE part can by using boolean operators to define more complex conditions:

SELECT title, pages FROM book
WHERE (edition = 1 OR edition = 3) AND pages > 650 AND pages < 700;

It is also possible to specify substrings. As an example the following command extracts all
rows where title starts with the word Java

SELECT title, pages FROM book WHERE title LIKE 'Java%';

It is also possible to specify substrings. As an example the following command extracts all
rows where title starts with the word Java

JAVA 6: JDBC AND DATABASE APPLICATIONS

164

FInal examples

THE SELECT COMMAND

Then there is the SELECT command, which absolutely is the command where there is most
to say. The simplest command you can think of is a command of the form:

SELECT * FROM publisher;

which extracts all rows from the table publisher. A * means all columns and hence the result
consists of rows that should contain values from all columns. You can replace * with the
names of the columns whose values you wants to show:

SELECT title, pages FROM book;

A SELECT can have a WHERE part, where you specify the rows to extract:

SELECT title, pages FROM book WHERE edition = 4;

The WHERE part can by using boolean operators to define more complex conditions:

SELECT title, pages FROM book
WHERE (edition = 1 OR edition = 3) AND pages > 650 AND pages < 700;

It is also possible to specify substrings. As an example the following command extracts all
rows where title starts with the word Java

SELECT title, pages FROM book WHERE title LIKE 'Java%';

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

Final examples

while the following command extracts all rows where the title contains the word Java

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

FInal examples

while the following command extracts all rows where the title contains the word Java

SELECT title, pages FROM book WHERE title LIKE '%Java%';

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

SELECT title, year, pages FROM book WHERE year LIKE '19__';

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

SELECT title FROM book LIMIT 3;

LIMIT can also be combined with a WHERE:

SELECT title FROM book WHERE edition = 2 LIMIT 3;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

SELECT isbn, title FROM book ORDER BY title;

If you wish instead that the rows are sorted in descending order, one can write:

SELECT isbn, title FROM book ORDER BY title DESC;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

SELECT isbn, title, edition FROM book WHERE catnr = 1
 ORDER BY edition, title;

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

FInal examples

while the following command extracts all rows where the title contains the word Java

SELECT title, pages FROM book WHERE title LIKE '%Java%';

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

SELECT title, year, pages FROM book WHERE year LIKE '19__';

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

SELECT title FROM book LIMIT 3;

LIMIT can also be combined with a WHERE:

SELECT title FROM book WHERE edition = 2 LIMIT 3;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

SELECT isbn, title FROM book ORDER BY title;

If you wish instead that the rows are sorted in descending order, one can write:

SELECT isbn, title FROM book ORDER BY title DESC;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

SELECT isbn, title, edition FROM book WHERE catnr = 1
 ORDER BY edition, title;

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

FInal examples

while the following command extracts all rows where the title contains the word Java

SELECT title, pages FROM book WHERE title LIKE '%Java%';

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

SELECT title, year, pages FROM book WHERE year LIKE '19__';

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

SELECT title FROM book LIMIT 3;

LIMIT can also be combined with a WHERE:

SELECT title FROM book WHERE edition = 2 LIMIT 3;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

SELECT isbn, title FROM book ORDER BY title;

If you wish instead that the rows are sorted in descending order, one can write:

SELECT isbn, title FROM book ORDER BY title DESC;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

SELECT isbn, title, edition FROM book WHERE catnr = 1
 ORDER BY edition, title;

LIMIT can also be combined with a WHERE:

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

FInal examples

while the following command extracts all rows where the title contains the word Java

SELECT title, pages FROM book WHERE title LIKE '%Java%';

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

SELECT title, year, pages FROM book WHERE year LIKE '19__';

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

SELECT title FROM book LIMIT 3;

LIMIT can also be combined with a WHERE:

SELECT title FROM book WHERE edition = 2 LIMIT 3;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

SELECT isbn, title FROM book ORDER BY title;

If you wish instead that the rows are sorted in descending order, one can write:

SELECT isbn, title FROM book ORDER BY title DESC;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

SELECT isbn, title, edition FROM book WHERE catnr = 1
 ORDER BY edition, title;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

FInal examples

while the following command extracts all rows where the title contains the word Java

SELECT title, pages FROM book WHERE title LIKE '%Java%';

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

SELECT title, year, pages FROM book WHERE year LIKE '19__';

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

SELECT title FROM book LIMIT 3;

LIMIT can also be combined with a WHERE:

SELECT title FROM book WHERE edition = 2 LIMIT 3;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

SELECT isbn, title FROM book ORDER BY title;

If you wish instead that the rows are sorted in descending order, one can write:

SELECT isbn, title FROM book ORDER BY title DESC;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

SELECT isbn, title, edition FROM book WHERE catnr = 1
 ORDER BY edition, title;

If you wish instead that the rows are sorted in descending order, one can write:

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

FInal examples

while the following command extracts all rows where the title contains the word Java

SELECT title, pages FROM book WHERE title LIKE '%Java%';

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

SELECT title, year, pages FROM book WHERE year LIKE '19__';

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

SELECT title FROM book LIMIT 3;

LIMIT can also be combined with a WHERE:

SELECT title FROM book WHERE edition = 2 LIMIT 3;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

SELECT isbn, title FROM book ORDER BY title;

If you wish instead that the rows are sorted in descending order, one can write:

SELECT isbn, title FROM book ORDER BY title DESC;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

SELECT isbn, title, edition FROM book WHERE catnr = 1
 ORDER BY edition, title;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

JAVA 6: JDBC AND DATABASE APPLICATIONS

165

FInal examples

while the following command extracts all rows where the title contains the word Java

SELECT title, pages FROM book WHERE title LIKE '%Java%';

The rule is that % matches 0 or more arbitrary characters. As another example extracts the
command

SELECT title, year, pages FROM book WHERE year LIKE '19__';

all rows where the year (publisher year) starts with 19 and is followed by two characters,
since the rule is that _ exactly matches one character.

The following command extracts the first three titles in the table book:

SELECT title FROM book LIMIT 3;

LIMIT can also be combined with a WHERE:

SELECT title FROM book WHERE edition = 2 LIMIT 3;

You should be aware that other database systems instead of LIMIT uses SELECT TOP.

A SELECT can have an ORDER BY, where the rows are sorted according to values in a
particular column. Thus, the following command sorts the rows by title in ascending order:

SELECT isbn, title FROM book ORDER BY title;

If you wish instead that the rows are sorted in descending order, one can write:

SELECT isbn, title FROM book ORDER BY title DESC;

You can also sort by multiple criteria. Consider the following command, which extracts
isbn, title and edition for all rows where the category number is 1, but so that the rows first
are sorted by edition, and within each edition by the title:

SELECT isbn, title, edition FROM book WHERE catnr = 1
 ORDER BY edition, title;

JAVA 6: JDBC AND DATABASE APPLICATIONS

166

Final examples

166

GROUP BY

For a SELECT you can also define GROUP BY, which indicates that the result should
contain one row for each value in the column that will be grouped. For example

JAVA 6: JDBC AND DATABASE APPLICATIONS

166

FInal examples

166

GROUP BY

For a SELECT you can also define GROUP BY, which indicates that the result should
contain one row for each value in the column that will be grouped. For example

SELECT edition FROM book GROUP BY edition;

that will show all editions. There are six rows with the numbers 1, 2, 3, …, 6. It is not so
interesting for the same result could be achieved in other ways, and GROUP BY has also
only of interest if you want to do something by the rows that fall within the individual
groups. If, for example you were interested in determining the sum of all pages distributed
on edition you could use the command:

SELECT edition, SUM(pages) FROM book GROUP BY edition;

that will show all editions. There are six rows with the numbers 1, 2, 3, …, 6. It is not so
interesting for the same result could be achieved in other ways, and GROUP BY has also
only of interest if you want to do something by the rows that fall within the individual
groups. If, for example you were interested in determining the sum of all pages distributed
on edition you could use the command:

JAVA 6: JDBC AND DATABASE APPLICATIONS

166

FInal examples

166

GROUP BY

For a SELECT you can also define GROUP BY, which indicates that the result should
contain one row for each value in the column that will be grouped. For example

SELECT edition FROM book GROUP BY edition;

that will show all editions. There are six rows with the numbers 1, 2, 3, …, 6. It is not so
interesting for the same result could be achieved in other ways, and GROUP BY has also
only of interest if you want to do something by the rows that fall within the individual
groups. If, for example you were interested in determining the sum of all pages distributed
on edition you could use the command:

SELECT edition, SUM(pages) FROM book GROUP BY edition;

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 6: JDBC AND DATABASE APPLICATIONS

167

Final examples

You should note that the result shows 7 rows. This is because there is a book in which the
value of edition is NULL.

GROUP BY can be combined with both WHERE and ORDER BY, and the order must
be as shown below:

JAVA 6: JDBC AND DATABASE APPLICATIONS

167

FInal examples

You should note that the result shows 7 rows. This is because there is a book in which the
value of edition is NULL.

GROUP BY can be combined with both WHERE and ORDER BY, and the order must
be as shown below:

SELECT edition, SUM(pages), COUNT(*) FROM book
WHERE pages < 1000 GROUP BY edition ORDER BY edition DESC;

Here is selected the group (the edition), the sum of all pages within the group, the number
of rows within the group, but only for the books where the page number is less than 1000:

A WHERE clause defines which rows to be extracted, and you can therefore think of the
WHERE clause as a filter that filters the rows. Similarly with GROUP BY there is a HAVING
clause, that is a filter that specifies which groups to include. The syntax is as follows:

SELECT edition, SUM(pages), COUNT(*) FROM book
WHERE pages < 1000 GROUP BY edition
HAVING edition = 2 OR edition = 4 OR edition = 6 ORDER BY edition DESC;

Here is selected the group (the edition), the sum of all pages within the group, the number
of rows within the group, but only for the books where the page number is less than 1000:

A WHERE clause defines which rows to be extracted, and you can therefore think of the
WHERE clause as a filter that filters the rows. Similarly with GROUP BY there is a HAVING
clause, that is a filter that specifies which groups to include. The syntax is as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

167

FInal examples

You should note that the result shows 7 rows. This is because there is a book in which the
value of edition is NULL.

GROUP BY can be combined with both WHERE and ORDER BY, and the order must
be as shown below:

SELECT edition, SUM(pages), COUNT(*) FROM book
WHERE pages < 1000 GROUP BY edition ORDER BY edition DESC;

Here is selected the group (the edition), the sum of all pages within the group, the number
of rows within the group, but only for the books where the page number is less than 1000:

A WHERE clause defines which rows to be extracted, and you can therefore think of the
WHERE clause as a filter that filters the rows. Similarly with GROUP BY there is a HAVING
clause, that is a filter that specifies which groups to include. The syntax is as follows:

SELECT edition, SUM(pages), COUNT(*) FROM book
WHERE pages < 1000 GROUP BY edition
HAVING edition = 2 OR edition = 4 OR edition = 6 ORDER BY edition DESC;

JAVA 6: JDBC AND DATABASE APPLICATIONS

168

Final examples

where the HAVING clause specifies that only groups with a value of 2, 4 or 6 should be
extracted:

If you execute the command

JAVA 6: JDBC AND DATABASE APPLICATIONS

168

FInal examples

where the HAVING clause specifies that only groups with a value of 2, 4 or 6 should be
extracted:

If you execute the command

SELECT edition FROM book;

you get shown all editions, and there are 87 rows. This means that the same value appears
several times. If you do not want that, you can write

SELECT DISTINCT edition FROM book;

which simply means that all rows must be different.

JOIN

It is also possible to perform a SELECT command that extracts rows from multiple tables,
and we often talk about a JOIN. As an example is shown a JOIN command, that extracts
the title from the book table and the name from the publishers table, but such that there
only are extracted a row where the value in column pubnr is similar in the two tables:

SELECT title, name FROM book, publisher WHERE book.pubnr = publisher.pubnr;

Put slightly differently, so are each row of the book table combined with each row in the
publisher table, but only rows with same value in the columns for pubnr are included in
the result. The result has then 87 rows with two columns. You should note that the two
columns names title and name are unique determined in the combination of the two tables
but both tables has a column named pubnr, and therefore it is necessary to qualify the name
with the table name in the WHERE part.

If you do not specify concrete columns in a join such as

SELECT * FROM book, publisher WHERE book.pubnr = publisher.pubnr;

you get shown all editions, and there are 87 rows. This means that the same value appears
several times. If you do not want that, you can write

JAVA 6: JDBC AND DATABASE APPLICATIONS

168

FInal examples

where the HAVING clause specifies that only groups with a value of 2, 4 or 6 should be
extracted:

If you execute the command

SELECT edition FROM book;

you get shown all editions, and there are 87 rows. This means that the same value appears
several times. If you do not want that, you can write

SELECT DISTINCT edition FROM book;

which simply means that all rows must be different.

JOIN

It is also possible to perform a SELECT command that extracts rows from multiple tables,
and we often talk about a JOIN. As an example is shown a JOIN command, that extracts
the title from the book table and the name from the publishers table, but such that there
only are extracted a row where the value in column pubnr is similar in the two tables:

SELECT title, name FROM book, publisher WHERE book.pubnr = publisher.pubnr;

Put slightly differently, so are each row of the book table combined with each row in the
publisher table, but only rows with same value in the columns for pubnr are included in
the result. The result has then 87 rows with two columns. You should note that the two
columns names title and name are unique determined in the combination of the two tables
but both tables has a column named pubnr, and therefore it is necessary to qualify the name
with the table name in the WHERE part.

If you do not specify concrete columns in a join such as

SELECT * FROM book, publisher WHERE book.pubnr = publisher.pubnr;

which simply means that all rows must be different.

JOIN

It is also possible to perform a SELECT command that extracts rows from multiple tables,
and we often talk about a JOIN. As an example is shown a JOIN command, that extracts
the title from the book table and the name from the publishers table, but such that there
only are extracted a row where the value in column pubnr is similar in the two tables:

JAVA 6: JDBC AND DATABASE APPLICATIONS

168

FInal examples

where the HAVING clause specifies that only groups with a value of 2, 4 or 6 should be
extracted:

If you execute the command

SELECT edition FROM book;

you get shown all editions, and there are 87 rows. This means that the same value appears
several times. If you do not want that, you can write

SELECT DISTINCT edition FROM book;

which simply means that all rows must be different.

JOIN

It is also possible to perform a SELECT command that extracts rows from multiple tables,
and we often talk about a JOIN. As an example is shown a JOIN command, that extracts
the title from the book table and the name from the publishers table, but such that there
only are extracted a row where the value in column pubnr is similar in the two tables:

SELECT title, name FROM book, publisher WHERE book.pubnr = publisher.pubnr;

Put slightly differently, so are each row of the book table combined with each row in the
publisher table, but only rows with same value in the columns for pubnr are included in
the result. The result has then 87 rows with two columns. You should note that the two
columns names title and name are unique determined in the combination of the two tables
but both tables has a column named pubnr, and therefore it is necessary to qualify the name
with the table name in the WHERE part.

If you do not specify concrete columns in a join such as

SELECT * FROM book, publisher WHERE book.pubnr = publisher.pubnr;

Put slightly differently, so are each row of the book table combined with each row in the
publisher table, but only rows with same value in the columns for pubnr are included in
the result. The result has then 87 rows with two columns. You should note that the two
columns names title and name are unique determined in the combination of the two tables
but both tables has a column named pubnr, and therefore it is necessary to qualify the name
with the table name in the WHERE part.

If you do not specify concrete columns in a join such as

JAVA 6: JDBC AND DATABASE APPLICATIONS

168

FInal examples

where the HAVING clause specifies that only groups with a value of 2, 4 or 6 should be
extracted:

If you execute the command

SELECT edition FROM book;

you get shown all editions, and there are 87 rows. This means that the same value appears
several times. If you do not want that, you can write

SELECT DISTINCT edition FROM book;

which simply means that all rows must be different.

JOIN

It is also possible to perform a SELECT command that extracts rows from multiple tables,
and we often talk about a JOIN. As an example is shown a JOIN command, that extracts
the title from the book table and the name from the publishers table, but such that there
only are extracted a row where the value in column pubnr is similar in the two tables:

SELECT title, name FROM book, publisher WHERE book.pubnr = publisher.pubnr;

Put slightly differently, so are each row of the book table combined with each row in the
publisher table, but only rows with same value in the columns for pubnr are included in
the result. The result has then 87 rows with two columns. You should note that the two
columns names title and name are unique determined in the combination of the two tables
but both tables has a column named pubnr, and therefore it is necessary to qualify the name
with the table name in the WHERE part.

If you do not specify concrete columns in a join such as

SELECT * FROM book, publisher WHERE book.pubnr = publisher.pubnr;

JAVA 6: JDBC AND DATABASE APPLICATIONS

169

Final examples

169

the result is still the 87 rows, but all columns from both tables is there

Note especially that the column pubnr is there twice.

There are several types of JOIN on tables, and an example as the above is called an INNER
JOIN and can also be written as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

169

FInal examples

169

the result is still the 87 rows, but all columns from both tables is there

Note especially that the column pubnr is there twice.

There are several types of JOIN on tables, and an example as the above is called an INNER
JOIN and can also be written as follows:

SELECT title, name FROM book INNER JOIN publisher
ON book.pubnr = publisher.pubnr;

http://s.bookboon.com/GTca

JAVA 6: JDBC AND DATABASE APPLICATIONS

170

Final examples

An INNER JOIN between two tables returns rows in which there are matches in both
tables. An INNER JOIN (and all other JOIN operations) can also be combined with a
WHERE clause as such

JAVA 6: JDBC AND DATABASE APPLICATIONS

170

FInal examples

An INNER JOIN between two tables returns rows in which there are matches in both
tables. An INNER JOIN (and all other JOIN operations) can also be combined with a
WHERE clause as such

SELECT title, name FROM book INNER JOIN category ON
book.catnr = category.catnr WHERE isbn LIKE '87-%';

that returns the title and category name for the books where isbn starts with 87- (all
Danish titles):

In addition to INNER JOIN, there are the following JOIN operations:

 - LEFT JOIN, which returns all rows from the left table, even if there is no match
in the right table.

 - RIGHT JOIN, which returns all rows of the right table, even if there is no match
in the left table.

 - FULL JOIN, which returns all rows even if there is no match in one of the two tables.
 - CARTESIAN JOIN, that returns the cartesian product of the two tables.

You should be aware that a FULL JOIN is not supported by MySQL. As an example I
will show a LEFT JOIN:

SELECT title, name FROM book LEFT JOIN category ON
book.catnr = category.catnr WHERE isbn LIKE '87-%';

Note that in principle it is the same JOIN as above, but this time the result shows seven
rows. This is because the book table has a row, which is NULL in the column catnr and
therefore does not match a row in the category table, but it is included in the result as
opposed to an INNER JOIN where there must be a match in both tables.

that returns the title and category name for the books where isbn starts with 87- (all
Danish titles):

In addition to INNER JOIN, there are the following JOIN operations:

-- LEFT JOIN, which returns all rows from the left table, even if there is no match
in the right table.

-- RIGHT JOIN, which returns all rows of the right table, even if there is no match
in the left table.

-- FULL JOIN, which returns all rows even if there is no match in one of the two tables.
-- CARTESIAN JOIN, that returns the cartesian product of the two tables.

You should be aware that a FULL JOIN is not supported by MySQL. As an example I
will show a LEFT JOIN:

JAVA 6: JDBC AND DATABASE APPLICATIONS

170

FInal examples

An INNER JOIN between two tables returns rows in which there are matches in both
tables. An INNER JOIN (and all other JOIN operations) can also be combined with a
WHERE clause as such

SELECT title, name FROM book INNER JOIN category ON
book.catnr = category.catnr WHERE isbn LIKE '87-%';

that returns the title and category name for the books where isbn starts with 87- (all
Danish titles):

In addition to INNER JOIN, there are the following JOIN operations:

 - LEFT JOIN, which returns all rows from the left table, even if there is no match
in the right table.

 - RIGHT JOIN, which returns all rows of the right table, even if there is no match
in the left table.

 - FULL JOIN, which returns all rows even if there is no match in one of the two tables.
 - CARTESIAN JOIN, that returns the cartesian product of the two tables.

You should be aware that a FULL JOIN is not supported by MySQL. As an example I
will show a LEFT JOIN:

SELECT title, name FROM book LEFT JOIN category ON
book.catnr = category.catnr WHERE isbn LIKE '87-%';

Note that in principle it is the same JOIN as above, but this time the result shows seven
rows. This is because the book table has a row, which is NULL in the column catnr and
therefore does not match a row in the category table, but it is included in the result as
opposed to an INNER JOIN where there must be a match in both tables.

Note that in principle it is the same JOIN as above, but this time the result shows seven
rows. This is because the book table has a row, which is NULL in the column catnr and
therefore does not match a row in the category table, but it is included in the result as
opposed to an INNER JOIN where there must be a match in both tables.

JAVA 6: JDBC AND DATABASE APPLICATIONS

171

Final examples

Below is a RIGHT JOIN:

JAVA 6: JDBC AND DATABASE APPLICATIONS

171

FInal examples

Below is a RIGHT JOIN:

SELECT title, name FROM book RIGHT JOIN category
ON book.catnr = category.catnr
WHERE isbn LIKE '87-%';

It also shows 6 rows (that is the same result as the corresponding INNER JOIN) because
the table category does not have rows with a value in column catnr, which does not match
a row in the book table.

The next command is again an example of a INNER JOIN:

SELECT title, name FROM book, publisher
WHERE book.pubnr = publisher.pubnr AND isbn LIKE '87-%';

and the result is 7 rows. If you delete the JOIN condition, you get a CARTESIAN JOIN:

SELECT title, name FROM book, publisher WHERE isbn LIKE '87-%';

and the result is 147 rows. The reason is that each row of the table book (there are 7 meeting
the WHERE clause) is combined with all rows in the publisher table (which is 21), and the
result is a total of 7 × 21 = 147 rows.

It is also possible to join more than two tables. The following command is a JOIN between
three tables showing for each title, where the isbn starts with 87 a row with the title and
author’s name (one row for each author):

SELECT title, firstname, lastname FROM book
INNER JOIN written ON book.isbn = written.isbn
INNER JOIN author ON written.autnr = author.autnr
WHERE book.isbn LIKE '87-%';

By combining (join) book and written you get for each book the author numbers for the
book’s authors, and by combining this result with the table author you can obtain the
authors’ names. The command in question can also be written as follows:

SELECT title, firstname, lastname FROM book, written, author
WHERE book.isbn = written.isbn AND written.autnr = author.autnr
AND book.isbn LIKE '87-%';

It also shows 6 rows (that is the same result as the corresponding INNER JOIN) because
the table category does not have rows with a value in column catnr, which does not match
a row in the book table.

The next command is again an example of a INNER JOIN:

JAVA 6: JDBC AND DATABASE APPLICATIONS

171

FInal examples

Below is a RIGHT JOIN:

SELECT title, name FROM book RIGHT JOIN category
ON book.catnr = category.catnr
WHERE isbn LIKE '87-%';

It also shows 6 rows (that is the same result as the corresponding INNER JOIN) because
the table category does not have rows with a value in column catnr, which does not match
a row in the book table.

The next command is again an example of a INNER JOIN:

SELECT title, name FROM book, publisher
WHERE book.pubnr = publisher.pubnr AND isbn LIKE '87-%';

and the result is 7 rows. If you delete the JOIN condition, you get a CARTESIAN JOIN:

SELECT title, name FROM book, publisher WHERE isbn LIKE '87-%';

and the result is 147 rows. The reason is that each row of the table book (there are 7 meeting
the WHERE clause) is combined with all rows in the publisher table (which is 21), and the
result is a total of 7 × 21 = 147 rows.

It is also possible to join more than two tables. The following command is a JOIN between
three tables showing for each title, where the isbn starts with 87 a row with the title and
author’s name (one row for each author):

SELECT title, firstname, lastname FROM book
INNER JOIN written ON book.isbn = written.isbn
INNER JOIN author ON written.autnr = author.autnr
WHERE book.isbn LIKE '87-%';

By combining (join) book and written you get for each book the author numbers for the
book’s authors, and by combining this result with the table author you can obtain the
authors’ names. The command in question can also be written as follows:

SELECT title, firstname, lastname FROM book, written, author
WHERE book.isbn = written.isbn AND written.autnr = author.autnr
AND book.isbn LIKE '87-%';

and the result is 7 rows. If you delete the JOIN condition, you get a CARTESIAN JOIN:

JAVA 6: JDBC AND DATABASE APPLICATIONS

171

FInal examples

Below is a RIGHT JOIN:

SELECT title, name FROM book RIGHT JOIN category
ON book.catnr = category.catnr
WHERE isbn LIKE '87-%';

It also shows 6 rows (that is the same result as the corresponding INNER JOIN) because
the table category does not have rows with a value in column catnr, which does not match
a row in the book table.

The next command is again an example of a INNER JOIN:

SELECT title, name FROM book, publisher
WHERE book.pubnr = publisher.pubnr AND isbn LIKE '87-%';

and the result is 7 rows. If you delete the JOIN condition, you get a CARTESIAN JOIN:

SELECT title, name FROM book, publisher WHERE isbn LIKE '87-%';

and the result is 147 rows. The reason is that each row of the table book (there are 7 meeting
the WHERE clause) is combined with all rows in the publisher table (which is 21), and the
result is a total of 7 × 21 = 147 rows.

It is also possible to join more than two tables. The following command is a JOIN between
three tables showing for each title, where the isbn starts with 87 a row with the title and
author’s name (one row for each author):

SELECT title, firstname, lastname FROM book
INNER JOIN written ON book.isbn = written.isbn
INNER JOIN author ON written.autnr = author.autnr
WHERE book.isbn LIKE '87-%';

By combining (join) book and written you get for each book the author numbers for the
book’s authors, and by combining this result with the table author you can obtain the
authors’ names. The command in question can also be written as follows:

SELECT title, firstname, lastname FROM book, written, author
WHERE book.isbn = written.isbn AND written.autnr = author.autnr
AND book.isbn LIKE '87-%';

and the result is 147 rows. The reason is that each row of the table book (there are 7 meeting
the WHERE clause) is combined with all rows in the publisher table (which is 21), and the
result is a total of 7 × 21 = 147 rows.

It is also possible to join more than two tables. The following command is a JOIN between
three tables showing for each title, where the isbn starts with 87 a row with the title and
author’s name (one row for each author):

JAVA 6: JDBC AND DATABASE APPLICATIONS

171

FInal examples

Below is a RIGHT JOIN:

SELECT title, name FROM book RIGHT JOIN category
ON book.catnr = category.catnr
WHERE isbn LIKE '87-%';

It also shows 6 rows (that is the same result as the corresponding INNER JOIN) because
the table category does not have rows with a value in column catnr, which does not match
a row in the book table.

The next command is again an example of a INNER JOIN:

SELECT title, name FROM book, publisher
WHERE book.pubnr = publisher.pubnr AND isbn LIKE '87-%';

and the result is 7 rows. If you delete the JOIN condition, you get a CARTESIAN JOIN:

SELECT title, name FROM book, publisher WHERE isbn LIKE '87-%';

and the result is 147 rows. The reason is that each row of the table book (there are 7 meeting
the WHERE clause) is combined with all rows in the publisher table (which is 21), and the
result is a total of 7 × 21 = 147 rows.

It is also possible to join more than two tables. The following command is a JOIN between
three tables showing for each title, where the isbn starts with 87 a row with the title and
author’s name (one row for each author):

SELECT title, firstname, lastname FROM book
INNER JOIN written ON book.isbn = written.isbn
INNER JOIN author ON written.autnr = author.autnr
WHERE book.isbn LIKE '87-%';

By combining (join) book and written you get for each book the author numbers for the
book’s authors, and by combining this result with the table author you can obtain the
authors’ names. The command in question can also be written as follows:

SELECT title, firstname, lastname FROM book, written, author
WHERE book.isbn = written.isbn AND written.autnr = author.autnr
AND book.isbn LIKE '87-%';

By combining (join) book and written you get for each book the author numbers for the
book’s authors, and by combining this result with the table author you can obtain the
authors’ names. The command in question can also be written as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

171

FInal examples

Below is a RIGHT JOIN:

SELECT title, name FROM book RIGHT JOIN category
ON book.catnr = category.catnr
WHERE isbn LIKE '87-%';

It also shows 6 rows (that is the same result as the corresponding INNER JOIN) because
the table category does not have rows with a value in column catnr, which does not match
a row in the book table.

The next command is again an example of a INNER JOIN:

SELECT title, name FROM book, publisher
WHERE book.pubnr = publisher.pubnr AND isbn LIKE '87-%';

and the result is 7 rows. If you delete the JOIN condition, you get a CARTESIAN JOIN:

SELECT title, name FROM book, publisher WHERE isbn LIKE '87-%';

and the result is 147 rows. The reason is that each row of the table book (there are 7 meeting
the WHERE clause) is combined with all rows in the publisher table (which is 21), and the
result is a total of 7 × 21 = 147 rows.

It is also possible to join more than two tables. The following command is a JOIN between
three tables showing for each title, where the isbn starts with 87 a row with the title and
author’s name (one row for each author):

SELECT title, firstname, lastname FROM book
INNER JOIN written ON book.isbn = written.isbn
INNER JOIN author ON written.autnr = author.autnr
WHERE book.isbn LIKE '87-%';

By combining (join) book and written you get for each book the author numbers for the
book’s authors, and by combining this result with the table author you can obtain the
authors’ names. The command in question can also be written as follows:

SELECT title, firstname, lastname FROM book, written, author
WHERE book.isbn = written.isbn AND written.autnr = author.autnr
AND book.isbn LIKE '87-%';

JAVA 6: JDBC AND DATABASE APPLICATIONS

172

Final examples

172

As another example, shows the following command isbn and title of all mathematics books
published by Prentice Hall:

JAVA 6: JDBC AND DATABASE APPLICATIONS

172

FInal examples

172

As another example, shows the following command isbn and title of all mathematics books
published by Prentice Hall:

SELECT isbn, title FROM book, category, publisher
WHERE book.catnr = category.catnr AND book.pubnr = publisher.pubnr
AND category.name LIKE '%Matematik%'
AND publisher.name LIKE '%Prentice Hall%';

As appears from the JOIN operations NULL values can sometimes lead to unexpected
results. Although it has nothing to do with joins, please note the following syntax

SELECT * FROM book WHERE edition IS NULL;

which returns all books whose value for edition is NULL. Similarly, one can write

SELECT * FROM book WHERE edition IS NOT NULL;

As appears from the JOIN operations NULL values can sometimes lead to unexpected
results. Although it has nothing to do with joins, please note the following syntax

JAVA 6: JDBC AND DATABASE APPLICATIONS

172

FInal examples

172

As another example, shows the following command isbn and title of all mathematics books
published by Prentice Hall:

SELECT isbn, title FROM book, category, publisher
WHERE book.catnr = category.catnr AND book.pubnr = publisher.pubnr
AND category.name LIKE '%Matematik%'
AND publisher.name LIKE '%Prentice Hall%';

As appears from the JOIN operations NULL values can sometimes lead to unexpected
results. Although it has nothing to do with joins, please note the following syntax

SELECT * FROM book WHERE edition IS NULL;

which returns all books whose value for edition is NULL. Similarly, one can write

SELECT * FROM book WHERE edition IS NOT NULL;

which returns all books whose value for edition is NULL. Similarly, one can write

JAVA 6: JDBC AND DATABASE APPLICATIONS

172

FInal examples

172

As another example, shows the following command isbn and title of all mathematics books
published by Prentice Hall:

SELECT isbn, title FROM book, category, publisher
WHERE book.catnr = category.catnr AND book.pubnr = publisher.pubnr
AND category.name LIKE '%Matematik%'
AND publisher.name LIKE '%Prentice Hall%';

As appears from the JOIN operations NULL values can sometimes lead to unexpected
results. Although it has nothing to do with joins, please note the following syntax

SELECT * FROM book WHERE edition IS NULL;

which returns all books whose value for edition is NULL. Similarly, one can write

SELECT * FROM book WHERE edition IS NOT NULL;

 .

http://s.bookboon.com/AlcatelLucent

JAVA 6: JDBC AND DATABASE APPLICATIONS

173

Final examples

When you joins several tables that can occur name matches where two columns has the same
name. As shown above, one can solve this problem by qualifying the name with the table
name. It can lead to a somewhat clumsy syntax, and additionally, it may mean that there are
two columns in the result, with the same name. To solve these problems, you can use the
concept of an alias, where you can give a table or a column a custom name. The following
command determines the title, publisher name and category name for all Danish books:

JAVA 6: JDBC AND DATABASE APPLICATIONS

173

FInal examples

When you joins several tables that can occur name matches where two columns has the same
name. As shown above, one can solve this problem by qualifying the name with the table
name. It can lead to a somewhat clumsy syntax, and additionally, it may mean that there are
two columns in the result, with the same name. To solve these problems, you can use the
concept of an alias, where you can give a table or a column a custom name. The following
command determines the title, publisher name and category name for all Danish books:

SELECT title AS Text, P.name AS 'Publisher
name', C.Name AS 'Category name'
FROM book AS B, publisher AS P, category AS C
WHERE B.pubnr = P.pubnr AND B.catnr = C.catnr AND isbn LIKE '87-%';

There is extracted data from three tables: book, publisher and category, but these tables are
assigned names B, P and C. In addition are each of the three columns assigned a name,
and you should note that this names are used in the result:

SET OPERATIONS

If two SELECT commands are union compatible, that is they results in the same number of
columns, columns of the same types, and the columns in the same order, one can perform
the UNION:

SELECT isbn, title, edition FROM book WHERE isbn LIKE '87-%'
UNION
SELECT isbn, title, edition FROM book WHERE edition = 3 OR edition = 4;

The first command returns 7 rows and the second 11 rows. Because UNION removes
duplicate rows, and there are two rows that are identical, the command will result in 16
rows. If you instead writes

SELECT isbn, title, edition FROM book WHERE isbn LIKE '87-%'
UNION ALL
SELECT isbn, title, edition FROM book WHERE edition = 3 OR edition = 4;

are duplicate rows retained, and the command will result in 18 rows.

There is extracted data from three tables: book, publisher and category, but these tables are
assigned names B, P and C. In addition are each of the three columns assigned a name,
and you should note that this names are used in the result:

SET OPERATIONS

If two SELECT commands are union compatible, that is they results in the same number of
columns, columns of the same types, and the columns in the same order, one can perform
the UNION:

JAVA 6: JDBC AND DATABASE APPLICATIONS

173

FInal examples

When you joins several tables that can occur name matches where two columns has the same
name. As shown above, one can solve this problem by qualifying the name with the table
name. It can lead to a somewhat clumsy syntax, and additionally, it may mean that there are
two columns in the result, with the same name. To solve these problems, you can use the
concept of an alias, where you can give a table or a column a custom name. The following
command determines the title, publisher name and category name for all Danish books:

SELECT title AS Text, P.name AS 'Publisher
name', C.Name AS 'Category name'
FROM book AS B, publisher AS P, category AS C
WHERE B.pubnr = P.pubnr AND B.catnr = C.catnr AND isbn LIKE '87-%';

There is extracted data from three tables: book, publisher and category, but these tables are
assigned names B, P and C. In addition are each of the three columns assigned a name,
and you should note that this names are used in the result:

SET OPERATIONS

If two SELECT commands are union compatible, that is they results in the same number of
columns, columns of the same types, and the columns in the same order, one can perform
the UNION:

SELECT isbn, title, edition FROM book WHERE isbn LIKE '87-%'
UNION
SELECT isbn, title, edition FROM book WHERE edition = 3 OR edition = 4;

The first command returns 7 rows and the second 11 rows. Because UNION removes
duplicate rows, and there are two rows that are identical, the command will result in 16
rows. If you instead writes

SELECT isbn, title, edition FROM book WHERE isbn LIKE '87-%'
UNION ALL
SELECT isbn, title, edition FROM book WHERE edition = 3 OR edition = 4;

are duplicate rows retained, and the command will result in 18 rows.

The first command returns 7 rows and the second 11 rows. Because UNION removes
duplicate rows, and there are two rows that are identical, the command will result in 16
rows. If you instead writes

JAVA 6: JDBC AND DATABASE APPLICATIONS

173

FInal examples

When you joins several tables that can occur name matches where two columns has the same
name. As shown above, one can solve this problem by qualifying the name with the table
name. It can lead to a somewhat clumsy syntax, and additionally, it may mean that there are
two columns in the result, with the same name. To solve these problems, you can use the
concept of an alias, where you can give a table or a column a custom name. The following
command determines the title, publisher name and category name for all Danish books:

SELECT title AS Text, P.name AS 'Publisher
name', C.Name AS 'Category name'
FROM book AS B, publisher AS P, category AS C
WHERE B.pubnr = P.pubnr AND B.catnr = C.catnr AND isbn LIKE '87-%';

There is extracted data from three tables: book, publisher and category, but these tables are
assigned names B, P and C. In addition are each of the three columns assigned a name,
and you should note that this names are used in the result:

SET OPERATIONS

If two SELECT commands are union compatible, that is they results in the same number of
columns, columns of the same types, and the columns in the same order, one can perform
the UNION:

SELECT isbn, title, edition FROM book WHERE isbn LIKE '87-%'
UNION
SELECT isbn, title, edition FROM book WHERE edition = 3 OR edition = 4;

The first command returns 7 rows and the second 11 rows. Because UNION removes
duplicate rows, and there are two rows that are identical, the command will result in 16
rows. If you instead writes

SELECT isbn, title, edition FROM book WHERE isbn LIKE '87-%'
UNION ALL
SELECT isbn, title, edition FROM book WHERE edition = 3 OR edition = 4;

are duplicate rows retained, and the command will result in 18 rows.are duplicate rows retained, and the command will result in 18 rows.

JAVA 6: JDBC AND DATABASE APPLICATIONS

174

Final examples

Instead of UNION you can write INTERSECT, and the result is the intersection. This
clause is not supported by MySQL. It is also possible to write EXCEPT that means set
difference, but this clause is not supported by MySQL.

SQL FUNCTIONS

As part of SQL are a number of functions that can be used in SQL commands. Above I have
already used the SUM() and COUNT(). The following is a listing of the most important
of those functions, and there are many, but they can be divided into groups:

1.	 general functions
2.	numeric functions
3.	 functions to strings
4.	 functions to date and time

and in addition there is a (sometimes large) number of functions, depending on the database
product.

GENERAL FUNCTIONS

This group of functions include:

-- COUNT
-- MAX
-- MIN
-- SUM
-- AVG

and are the classic functions, where I above has used COUNT and SUM. As an example
determines the following command the number of books, the total number of pages (total
number of pages of all the books), the average number of pages, the smallest number of
pages and the largest number of pages:

JAVA 6: JDBC AND DATABASE APPLICATIONS

174

FInal examples

Instead of UNION you can write INTERSECT, and the result is the intersection. This
clause is not supported by MySQL. It is also possible to write EXCEPT that means set
difference, but this clause is not supported by MySQL.

SQL FUNCTIONS

As part of SQL are a number of functions that can be used in SQL commands. Above I have
already used the SUM() and COUNT(). The following is a listing of the most important
of those functions, and there are many, but they can be divided into groups:

1. general functions
2. numeric functions
3. functions to strings
4. functions to date and time

and in addition there is a (sometimes large) number of functions, depending on the database
product.

GENERAL FUNCTIONS

This group of functions include:

 - COUNT
 - MAX
 - MIN
 - SUM
 - AVG

and are the classic functions, where I above has used COUNT and SUM. As an example
determines the following command the number of books, the total number of pages (total
number of pages of all the books), the average number of pages, the smallest number of
pages and the largest number of pages:

SELECT COUNT(*), SUM(pages), AVG(pages), MIN(pages), MAX(pages) FROM book;

JAVA 6: JDBC AND DATABASE APPLICATIONS

175

Final examples

175

NUMERIC FUNCTIONS

ABS	 ACOS	 ASIN	 ATAN	 ATAN2	 BIT_AND
BIT_COUNT	 BIT_OR	 CEIL	 CEILING	 CONV	 COS
COT	 DEGREES	 EXP	 FLOOR	 FORMAT	 GREATEST
INTERVAL	 LEAST	 LOG	 LOG10	 MOD	 OCT
PI	 POW	 POWER	 RADIANS	 RAND	 ROUND
SIN	 SQRT	 STD	 STDDEV	 TAN	 TRUNCATE

The meaning of most of the functions is indicated by the name, and you can not be
sure that all database systems implements all this functions. Consider as an example the
following statements:

JAVA 6: JDBC AND DATABASE APPLICATIONS

175

FInal examples

175

NUMERIC FUNCTIONS

ABS ACOS ASIN ATAN ATAN2 BIT_AND
BIT_COUNT BIT_OR CEIL CEILING CONV COS
COT DEGREES EXP FLOOR FORMAT GREATEST
INTERVAL LEAST LOG LOG10 MOD OCT
PI POW POWER RADIANS RAND ROUND
SIN SQRT STD STDDEV TAN TRUNCATE

The meaning of most of the functions is indicated by the name, and you can not be
sure that all database systems implements all this functions. Consider as an example the
following statements:

SET @my = 0;
SELECT @my := AVG(pages) FROM book;
SELECT RAND(), PI(), SQRT(2), STDDEV(pages),
SQRT(SUM((pages – @my) * (pages – @my)) / COUNT(*)) AS Sigma FROM book;

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 6: JDBC AND DATABASE APPLICATIONS

176

Final examples

Here are the results of the first three functions simple enough, while the fourth function
determines the standard-deviation of the books pages. The first statement defines a variable
and the next statement set this variable equal to the average (mean value) of the number of
pages. The value of this variable is used in the last formula, which calculates the standard
deviation of the number pages. It is of course no reason for that calculation, because there
is a function STDDEV that do the same, but the example should partly show how you
can use a variable and partly an example of a complex expression.

FUNCTIONS TO STRINGS

ASCII	 BIN	 BIN_LENGTH
CHAR_LENGTH	 CHARACTER_LENGTH	 CONCAT_WS
CONCAT	 CONV	 ELT
EXPORT_SET	 FIELD	 FIND_IN_SET
FORMAT	 HEX	 INSERT
INSTR	 LCASE	 LEFT
LENGTH	 LOAD_FILE	 LOCATE
LOWER	 LPAD	 LTRIM
MAKE_SET	 MID	 OCT
OCTET_LENGTH	 ORD	 POSITION
QUOTE	 REGEXP	 REPEAT
REPLACE	 REVERT	 RIGHT
RPAD	 RTRIM	 SOUNDEX
SOUNDEX_LIKE	 SPACE	 STRCMP
SUBSTR	 SUBSTRING	 SUBSTRING_INDEX
TRIM	 UCASE	 UNHEX
UPPER

Most of the functions are easy enough to understand, but not all, and there it is necessary
to look up the meaning for the function. As an example determines the following statement
the title’s length and the first 10 characters in the title of all books whose title contains
the word Java:

JAVA 6: JDBC AND DATABASE APPLICATIONS

176

FInal examples

Here are the results of the first three functions simple enough, while the fourth function
determines the standard-deviation of the books pages. The first statement defines a variable
and the next statement set this variable equal to the average (mean value) of the number of
pages. The value of this variable is used in the last formula, which calculates the standard
deviation of the number pages. It is of course no reason for that calculation, because there
is a function STDDEV that do the same, but the example should partly show how you
can use a variable and partly an example of a complex expression.

FUNCTIONS TO STRINGS

ASCII BIN BIN_LENGTH
CHAR_LENGTH CHARACTER_LENGTH CONCAT_WS
CONCAT CONV ELT
EXPORT_SET FIELD FIND_IN_SET
FORMAT HEX INSERT
INSTR LCASE LEFT
LENGTH LOAD_FILE LOCATE
LOWER LPAD LTRIM
MAKE_SET MID OCT
OCTET_LENGTH ORD POSITION
QUOTE REGEXP REPEAT
REPLACE REVERT RIGHT
RPAD RTRIM SOUNDEX
SOUNDEX_LIKE SPACE STRCMP
SUBSTR SUBSTRING SUBSTRING_INDEX
TRIM UCASE UNHEX
UPPER

Most of the functions are easy enough to understand, but not all, and there it is necessary
to look up the meaning for the function. As an example determines the following statement
the title’s length and the first 10 characters in the title of all books whose title contains
the word Java:

SELECT LENGTH(title), SUBSTR(title, 1, 10) FROM book
WHERE title LIKE '%Java%';

JAVA 6: JDBC AND DATABASE APPLICATIONS

177

Final examples

FUNCTIONS TO DATE AND TIME

As discussed above, SQL types for dates clould be difficult to use correct, and there are a
number of functions that specifically are used for dates:

ADD_DATE	 ADD_TIME	 CONVERT_TZ
CURDATE	 CURRENT_DATE	 CURRENT_TIME
CURRENT_TIMESTAMP	 CURTIME	 DATE_ADD
DATE_FORMAT	 DATE_SUB	 DATE
DATE_DIFF	 DAY	 DAYNAME
DAYOFMONTH	 DAYOFWEEK	 DAYOFYEAR
EXTRACT	 FROM_DAYS	 FROM_UNIXTIME
HOUR	 LAST_DAY	 LOCALTIME
LOCALTIMESTAMP	 MAKEDATE	 MAKETIME
MICROSECOND	 MINUTE	 MONTH
MONTHNAME	 NOW	 PERIOD_ADD
PERIOD_DIFF	 QUATER	 SEC_TO_TIME
SECOND	 STR_TO_DATE	 SUBDATE
SUBTIME	 SYSDATE	 TIME_FORMAT
TIME_TO_SEC	 TIME	 TIMEDIFF
TIMESTAMP	 TIMESTAMPADD	 TIMESTAMPDIFF
TO_DAYS	 UNIX_TIMESTAMP	 UTC_DATE
UTC_TIME	 UTC_TIMESTAMP	 WEEK
WEEK_DAY	 WEEKOFYEAR	 YEAR
YEARWEEK

As the table shows, there are many functions and it is not so easy to figure out the meaning
of all of them, but the result is that there are many opportunities to manipulate date and
time in SQL. As a small example, the following statement use two of this functions:

JAVA 6: JDBC AND DATABASE APPLICATIONS

177

FInal examples

FUNCTIONS TO DATE AND TIME

As discussed above, SQL types for dates clould be difficult to use correct, and there are a
number of functions that specifically are used for dates:

ADD_DATE ADD_TIME CONVERT_TZ
CURDATE CURRENT_DATE CURRENT_TIME
CURRENT_TIMESTAMP CURTIME DATE_ADD
DATE_FORMAT DATE_SUB DATE
DATE_DIFF DAY DAYNAME
DAYOFMONTH DAYOFWEEK DAYOFYEAR
EXTRACT FROM_DAYS FROM_UNIXTIME
HOUR LAST_DAY LOCALTIME
LOCALTIMESTAMP MAKEDATE MAKETIME
MICROSECOND MINUTE MONTH
MONTHNAME NOW PERIOD_ADD
PERIOD_DIFF QUATER SEC_TO_TIME
SECOND STR_TO_DATE SUBDATE
SUBTIME SYSDATE TIME_FORMAT
TIME_TO_SEC TIME TIMEDIFF
TIMESTAMP TIMESTAMPADD TIMESTAMPDIFF
TO_DAYS UNIX_TIMESTAMP UTC_DATE
UTC_TIME UTC_TIMESTAMP WEEK
WEEK_DAY WEEKOFYEAR YEAR
YEARWEEK

As the table shows, there are many functions and it is not so easy to figure out the meaning
of all of them, but the result is that there are many opportunities to manipulate date and
time in SQL. As a small example, the following statement use two of this functions:

SET @d = CURDATE();
SET @t = CURTIME();
SELECT @d, @T;

JAVA 6: JDBC AND DATABASE APPLICATIONS

178

Final examples

178

VIEW’S

A view is basically nothing more than a SQL statement that is stored in the database, but
it can be seen as a form of virtual table, as you in principle can use it in the same way, as
you uses other tables. A view can be created on basis of one or more tables, but what you
can do with a view is determined by how it is created. The purpose of a view is

to structure the content of a database corresponding to the users’ use of the database

limiting access to the data that users can work with

allowing data from multiple tables to appear as a single table

In MySQL Workbench you can create a view by right-click on Views (the tab SCHEMA)
and choose Create View. You then gets the following skeleton:

JAVA 6: JDBC AND DATABASE APPLICATIONS

178

FInal examples

178

VIEW’S

A view is basically nothing more than a SQL statement that is stored in the database, but
it can be seen as a form of virtual table, as you in principle can use it in the same way, as
you uses other tables. A view can be created on basis of one or more tables, but what you
can do with a view is determined by how it is created. The purpose of a view is

to structure the content of a database corresponding to the users’ use of the database

limiting access to the data that users can work with

allowing data from multiple tables to appear as a single table

In MySQL Workbench you can create a view by right-click on Views (the tab SCHEMA)
and choose Create View. You then gets the following skeleton:

CREATE VIEW 'new_view' AS

http://s.bookboon.com/BI

JAVA 6: JDBC AND DATABASE APPLICATIONS

179

Final examples

As an example, you can write the following view:

JAVA 6: JDBC AND DATABASE APPLICATIONS

179

FInal examples

As an example, you can write the following view:

CREATE VIEW Prentice_hall AS SELECT isbn, title, edition, year, pages
FROM book WHERE pubnr = 2;

which defines a view called Prentice_hall that for all books where pubnr are 2 extracts the
isbn, title, edition, year and pages. That is the view of columns in the table book of all books
published by Prentice Hall. When you then click Apply, MySQL Workbench creates the
following view:

CREATE
 ALGORITHM = UNDEFINED
 DEFINER = 'pa'@'%'
 SQL SECURITY DEFINER
VIEW 'books'.'Prentice_hall' AS
 SELECT
 'books'.'book'.'isbn' AS 'isbn',
 'books'.'book'.'title' AS 'title',
 'books'.'book'.'edition' AS 'edition',
 'books'.'book'.'year' AS 'year',
 'books'.'book'.'pages' AS 'pages'
 FROM
 'books'.'book'
 WHERE
 ('books'.'book'.'pubnr' = 2)

This view may then be used in the same way as the other tables, and for example you
can write:

SELECT * FROM Prentice_hall;

Indeed, one can also to some extent perform SQL INSERT, UPDATE and DELETE
statements in a view. Consider as an example the following view, which extracts first and
last names of all authors where the last name starts with a K:

CREATE VIEW knames AS SELECT DISTINCT firstname, lastname
FROM author WHERE lastname LIKE 'K%';

If you then performs the statement

SELECT * FROM knames;

which defines a view called Prentice_hall that for all books where pubnr are 2 extracts the
isbn, title, edition, year and pages. That is the view of columns in the table book of all books
published by Prentice Hall. When you then click Apply, MySQL Workbench creates the
following view:

JAVA 6: JDBC AND DATABASE APPLICATIONS

179

FInal examples

As an example, you can write the following view:

CREATE VIEW Prentice_hall AS SELECT isbn, title, edition, year, pages
FROM book WHERE pubnr = 2;

which defines a view called Prentice_hall that for all books where pubnr are 2 extracts the
isbn, title, edition, year and pages. That is the view of columns in the table book of all books
published by Prentice Hall. When you then click Apply, MySQL Workbench creates the
following view:

CREATE
 ALGORITHM = UNDEFINED
 DEFINER = 'pa'@'%'
 SQL SECURITY DEFINER
VIEW 'books'.'Prentice_hall' AS
 SELECT
 'books'.'book'.'isbn' AS 'isbn',
 'books'.'book'.'title' AS 'title',
 'books'.'book'.'edition' AS 'edition',
 'books'.'book'.'year' AS 'year',
 'books'.'book'.'pages' AS 'pages'
 FROM
 'books'.'book'
 WHERE
 ('books'.'book'.'pubnr' = 2)

This view may then be used in the same way as the other tables, and for example you
can write:

SELECT * FROM Prentice_hall;

Indeed, one can also to some extent perform SQL INSERT, UPDATE and DELETE
statements in a view. Consider as an example the following view, which extracts first and
last names of all authors where the last name starts with a K:

CREATE VIEW knames AS SELECT DISTINCT firstname, lastname
FROM author WHERE lastname LIKE 'K%';

If you then performs the statement

SELECT * FROM knames;

This view may then be used in the same way as the other tables, and for example you
can write:

JAVA 6: JDBC AND DATABASE APPLICATIONS

179

FInal examples

As an example, you can write the following view:

CREATE VIEW Prentice_hall AS SELECT isbn, title, edition, year, pages
FROM book WHERE pubnr = 2;

which defines a view called Prentice_hall that for all books where pubnr are 2 extracts the
isbn, title, edition, year and pages. That is the view of columns in the table book of all books
published by Prentice Hall. When you then click Apply, MySQL Workbench creates the
following view:

CREATE
 ALGORITHM = UNDEFINED
 DEFINER = 'pa'@'%'
 SQL SECURITY DEFINER
VIEW 'books'.'Prentice_hall' AS
 SELECT
 'books'.'book'.'isbn' AS 'isbn',
 'books'.'book'.'title' AS 'title',
 'books'.'book'.'edition' AS 'edition',
 'books'.'book'.'year' AS 'year',
 'books'.'book'.'pages' AS 'pages'
 FROM
 'books'.'book'
 WHERE
 ('books'.'book'.'pubnr' = 2)

This view may then be used in the same way as the other tables, and for example you
can write:

SELECT * FROM Prentice_hall;

Indeed, one can also to some extent perform SQL INSERT, UPDATE and DELETE
statements in a view. Consider as an example the following view, which extracts first and
last names of all authors where the last name starts with a K:

CREATE VIEW knames AS SELECT DISTINCT firstname, lastname
FROM author WHERE lastname LIKE 'K%';

If you then performs the statement

SELECT * FROM knames;

Indeed, one can also to some extent perform SQL INSERT, UPDATE and DELETE
statements in a view. Consider as an example the following view, which extracts first and
last names of all authors where the last name starts with a K:

JAVA 6: JDBC AND DATABASE APPLICATIONS

179

FInal examples

As an example, you can write the following view:

CREATE VIEW Prentice_hall AS SELECT isbn, title, edition, year, pages
FROM book WHERE pubnr = 2;

which defines a view called Prentice_hall that for all books where pubnr are 2 extracts the
isbn, title, edition, year and pages. That is the view of columns in the table book of all books
published by Prentice Hall. When you then click Apply, MySQL Workbench creates the
following view:

CREATE
 ALGORITHM = UNDEFINED
 DEFINER = 'pa'@'%'
 SQL SECURITY DEFINER
VIEW 'books'.'Prentice_hall' AS
 SELECT
 'books'.'book'.'isbn' AS 'isbn',
 'books'.'book'.'title' AS 'title',
 'books'.'book'.'edition' AS 'edition',
 'books'.'book'.'year' AS 'year',
 'books'.'book'.'pages' AS 'pages'
 FROM
 'books'.'book'
 WHERE
 ('books'.'book'.'pubnr' = 2)

This view may then be used in the same way as the other tables, and for example you
can write:

SELECT * FROM Prentice_hall;

Indeed, one can also to some extent perform SQL INSERT, UPDATE and DELETE
statements in a view. Consider as an example the following view, which extracts first and
last names of all authors where the last name starts with a K:

CREATE VIEW knames AS SELECT DISTINCT firstname, lastname
FROM author WHERE lastname LIKE 'K%';

If you then performs the statement

SELECT * FROM knames;

If you then performs the statement

JAVA 6: JDBC AND DATABASE APPLICATIONS

179

FInal examples

As an example, you can write the following view:

CREATE VIEW Prentice_hall AS SELECT isbn, title, edition, year, pages
FROM book WHERE pubnr = 2;

which defines a view called Prentice_hall that for all books where pubnr are 2 extracts the
isbn, title, edition, year and pages. That is the view of columns in the table book of all books
published by Prentice Hall. When you then click Apply, MySQL Workbench creates the
following view:

CREATE
 ALGORITHM = UNDEFINED
 DEFINER = 'pa'@'%'
 SQL SECURITY DEFINER
VIEW 'books'.'Prentice_hall' AS
 SELECT
 'books'.'book'.'isbn' AS 'isbn',
 'books'.'book'.'title' AS 'title',
 'books'.'book'.'edition' AS 'edition',
 'books'.'book'.'year' AS 'year',
 'books'.'book'.'pages' AS 'pages'
 FROM
 'books'.'book'
 WHERE
 ('books'.'book'.'pubnr' = 2)

This view may then be used in the same way as the other tables, and for example you
can write:

SELECT * FROM Prentice_hall;

Indeed, one can also to some extent perform SQL INSERT, UPDATE and DELETE
statements in a view. Consider as an example the following view, which extracts first and
last names of all authors where the last name starts with a K:

CREATE VIEW knames AS SELECT DISTINCT firstname, lastname
FROM author WHERE lastname LIKE 'K%';

If you then performs the statement

SELECT * FROM knames;

JAVA 6: JDBC AND DATABASE APPLICATIONS

180

Final examples

you will see that the view contains 8 rows. If you then performs the following statements:

JAVA 6: JDBC AND DATABASE APPLICATIONS

180

FInal examples

you will see that the view contains 8 rows. If you then performs the following statements:

INSERT INTO author VALUES (187, 'Poul', 'Klausen');
select * from knames;

you will see that the view knames now has 9 rows. This means that after the table author
is updated is also the view updated.

Next, if you try:

INSERT INTO knames VALUES ('Jens', 'Kristensen');

you get an error where you are told that the parent table can not be updated. Of course it
is not so strange, because there is not enough information (there is not an author number)
to create a row in the author table. Consider the following view:

CREATE VIEW lnames AS SELECT autnr, firatname, lastname
FROM author WHERE lastname LIKE 'L%';

that this time defines a column to all columns in the author table. Perform now the statement:

INSERT INTO lnames VALUES (1000, 'Knud', 'Larsen');

and you will see that both the view and the original table is updated. This means that an
update of the view also updates the parent table, but there are the following conditions:

 - the SELECT statement may not use DISTINCT
 - the SELECT statement may not contain functions
 - the SELECT statement may not contain operators
 - the SELECT statement may not use ORDER BY
 - the SELECT statement can only use one table
 - the SELECT statement’s WHERE part may not use a SELECT statement (se below)
 - the SELECT statement may not use GROUP BY or HAVING
 - the SELECT statement must include all columns from the parent table that is

defined NOT NULL

you will see that the view knames now has 9 rows. This means that after the table author
is updated is also the view updated.

Next, if you try:

JAVA 6: JDBC AND DATABASE APPLICATIONS

180

FInal examples

you will see that the view contains 8 rows. If you then performs the following statements:

INSERT INTO author VALUES (187, 'Poul', 'Klausen');
select * from knames;

you will see that the view knames now has 9 rows. This means that after the table author
is updated is also the view updated.

Next, if you try:

INSERT INTO knames VALUES ('Jens', 'Kristensen');

you get an error where you are told that the parent table can not be updated. Of course it
is not so strange, because there is not enough information (there is not an author number)
to create a row in the author table. Consider the following view:

CREATE VIEW lnames AS SELECT autnr, firatname, lastname
FROM author WHERE lastname LIKE 'L%';

that this time defines a column to all columns in the author table. Perform now the statement:

INSERT INTO lnames VALUES (1000, 'Knud', 'Larsen');

and you will see that both the view and the original table is updated. This means that an
update of the view also updates the parent table, but there are the following conditions:

 - the SELECT statement may not use DISTINCT
 - the SELECT statement may not contain functions
 - the SELECT statement may not contain operators
 - the SELECT statement may not use ORDER BY
 - the SELECT statement can only use one table
 - the SELECT statement’s WHERE part may not use a SELECT statement (se below)
 - the SELECT statement may not use GROUP BY or HAVING
 - the SELECT statement must include all columns from the parent table that is

defined NOT NULL

you get an error where you are told that the parent table can not be updated. Of course it
is not so strange, because there is not enough information (there is not an author number)
to create a row in the author table. Consider the following view:

JAVA 6: JDBC AND DATABASE APPLICATIONS

180

FInal examples

you will see that the view contains 8 rows. If you then performs the following statements:

INSERT INTO author VALUES (187, 'Poul', 'Klausen');
select * from knames;

you will see that the view knames now has 9 rows. This means that after the table author
is updated is also the view updated.

Next, if you try:

INSERT INTO knames VALUES ('Jens', 'Kristensen');

you get an error where you are told that the parent table can not be updated. Of course it
is not so strange, because there is not enough information (there is not an author number)
to create a row in the author table. Consider the following view:

CREATE VIEW lnames AS SELECT autnr, firatname, lastname
FROM author WHERE lastname LIKE 'L%';

that this time defines a column to all columns in the author table. Perform now the statement:

INSERT INTO lnames VALUES (1000, 'Knud', 'Larsen');

and you will see that both the view and the original table is updated. This means that an
update of the view also updates the parent table, but there are the following conditions:

 - the SELECT statement may not use DISTINCT
 - the SELECT statement may not contain functions
 - the SELECT statement may not contain operators
 - the SELECT statement may not use ORDER BY
 - the SELECT statement can only use one table
 - the SELECT statement’s WHERE part may not use a SELECT statement (se below)
 - the SELECT statement may not use GROUP BY or HAVING
 - the SELECT statement must include all columns from the parent table that is

defined NOT NULL

that this time defines a column to all columns in the author table. Perform now the statement:

JAVA 6: JDBC AND DATABASE APPLICATIONS

180

FInal examples

you will see that the view contains 8 rows. If you then performs the following statements:

INSERT INTO author VALUES (187, 'Poul', 'Klausen');
select * from knames;

you will see that the view knames now has 9 rows. This means that after the table author
is updated is also the view updated.

Next, if you try:

INSERT INTO knames VALUES ('Jens', 'Kristensen');

you get an error where you are told that the parent table can not be updated. Of course it
is not so strange, because there is not enough information (there is not an author number)
to create a row in the author table. Consider the following view:

CREATE VIEW lnames AS SELECT autnr, firatname, lastname
FROM author WHERE lastname LIKE 'L%';

that this time defines a column to all columns in the author table. Perform now the statement:

INSERT INTO lnames VALUES (1000, 'Knud', 'Larsen');

and you will see that both the view and the original table is updated. This means that an
update of the view also updates the parent table, but there are the following conditions:

 - the SELECT statement may not use DISTINCT
 - the SELECT statement may not contain functions
 - the SELECT statement may not contain operators
 - the SELECT statement may not use ORDER BY
 - the SELECT statement can only use one table
 - the SELECT statement’s WHERE part may not use a SELECT statement (se below)
 - the SELECT statement may not use GROUP BY or HAVING
 - the SELECT statement must include all columns from the parent table that is

defined NOT NULL

and you will see that both the view and the original table is updated. This means that an
update of the view also updates the parent table, but there are the following conditions:

-- the SELECT statement may not use DISTINCT
-- the SELECT statement may not contain functions
-- the SELECT statement may not contain operators
-- the SELECT statement may not use ORDER BY
-- the SELECT statement can only use one table
-- the SELECT statement’s WHERE part may not use a SELECT statement (se below)
-- the SELECT statement may not use GROUP BY or HAVING
-- the SELECT statement must include all columns from the parent table that is

defined NOT NULL

JAVA 6: JDBC AND DATABASE APPLICATIONS

181

Final examples

181

INNER SELECT STATEMENTS

It is possible to use an inner SELECT statement in a WHERE clause where an inner
SELECT returns data that is used in the condition. An inner SELECT can be used both
in a SELECT, INSERT, UPDATE and DELETE – typically associated with operators. A
typical example is, using SELECT IN:

JAVA 6: JDBC AND DATABASE APPLICATIONS

181

FInal examples

181

INNER SELECT STATEMENTS

It is possible to use an inner SELECT statement in a WHERE clause where an inner
SELECT returns data that is used in the condition. An inner SELECT can be used both
in a SELECT, INSERT, UPDATE and DELETE – typically associated with operators. A
typical example is, using SELECT IN:

SELECT isbn, title FROM book WHERE pubnr IN
(SELECT pubnr FROM publisher WHERE
 name = 'Prentice Hall' OR name = 'Addison Wesley');

The result is isbn and title of all books published by either Prentice Hall or Addison Wesley.
Of course one can achieve the same otherwise, but SELECT IN is easy to understand.The result is isbn and title of all books published by either Prentice Hall or Addison Wesley.
Of course one can achieve the same otherwise, but SELECT IN is easy to understand.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 6: JDBC AND DATABASE APPLICATIONS

182

Final examples

As another example, creates the following script a new table with all the math books when
the table must contain the same columns as table book, but except column catnr:

JAVA 6: JDBC AND DATABASE APPLICATIONS

182

FInal examples

As another example, creates the following script a new table with all the math books when
the table must contain the same columns as table book, but except column catnr:

use books;

create table math (
isbn char(13) not null,
title varchar(100) not null,
edition int,
year char(4),
pages int,
pubnr int not null,
primary key (isbn),
foreign key (pubnr) references publisher (pubnr));

INSERT INTO math (isbn, title, edition, year, pages, pubnr)
SELECT isbn, title, edition, year, pages, pubnr FROM book WHERE catnr = 2;

What is interesting is the last INSERT INTO statement that inserts data from a SELECT.

STORED PROCEDURES

I will conclude this appendix with a very brief introduction to stored procedures, which is
actually a large area. A stored procedure is a routine consisting of SQL statements that are
stored on the database server together with the database tables, and the idea is of course
to save the SQL procedures which are often needed, but also that a stored procedure is
translated into an internal format and thus is effective.

Below I will show a few examples of simple procedures, and how they are created using
MySQL Workbench. In the database right-click on Stored Procdures and select Create Stored
Procedure and MySQL Workbench creates a skeleton:

CREATE PROCEDURE 'new_procedure' ()
BEGIN

END

You can then write a stored procedure named Hello as follows:

CREATE PROCEDURE Hello ()
BEGIN
 SELECT 'Hello World';
END

What is interesting is the last INSERT INTO statement that inserts data from a SELECT.

STORED PROCEDURES

I will conclude this appendix with a very brief introduction to stored procedures, which is
actually a large area. A stored procedure is a routine consisting of SQL statements that are
stored on the database server together with the database tables, and the idea is of course
to save the SQL procedures which are often needed, but also that a stored procedure is
translated into an internal format and thus is effective.

Below I will show a few examples of simple procedures, and how they are created using
MySQL Workbench. In the database right-click on Stored Procdures and select Create Stored
Procedure and MySQL Workbench creates a skeleton:

JAVA 6: JDBC AND DATABASE APPLICATIONS

182

FInal examples

As another example, creates the following script a new table with all the math books when
the table must contain the same columns as table book, but except column catnr:

use books;

create table math (
isbn char(13) not null,
title varchar(100) not null,
edition int,
year char(4),
pages int,
pubnr int not null,
primary key (isbn),
foreign key (pubnr) references publisher (pubnr));

INSERT INTO math (isbn, title, edition, year, pages, pubnr)
SELECT isbn, title, edition, year, pages, pubnr FROM book WHERE catnr = 2;

What is interesting is the last INSERT INTO statement that inserts data from a SELECT.

STORED PROCEDURES

I will conclude this appendix with a very brief introduction to stored procedures, which is
actually a large area. A stored procedure is a routine consisting of SQL statements that are
stored on the database server together with the database tables, and the idea is of course
to save the SQL procedures which are often needed, but also that a stored procedure is
translated into an internal format and thus is effective.

Below I will show a few examples of simple procedures, and how they are created using
MySQL Workbench. In the database right-click on Stored Procdures and select Create Stored
Procedure and MySQL Workbench creates a skeleton:

CREATE PROCEDURE 'new_procedure' ()
BEGIN

END

You can then write a stored procedure named Hello as follows:

CREATE PROCEDURE Hello ()
BEGIN
 SELECT 'Hello World';
END

You can then write a stored procedure named Hello as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

182

FInal examples

As another example, creates the following script a new table with all the math books when
the table must contain the same columns as table book, but except column catnr:

use books;

create table math (
isbn char(13) not null,
title varchar(100) not null,
edition int,
year char(4),
pages int,
pubnr int not null,
primary key (isbn),
foreign key (pubnr) references publisher (pubnr));

INSERT INTO math (isbn, title, edition, year, pages, pubnr)
SELECT isbn, title, edition, year, pages, pubnr FROM book WHERE catnr = 2;

What is interesting is the last INSERT INTO statement that inserts data from a SELECT.

STORED PROCEDURES

I will conclude this appendix with a very brief introduction to stored procedures, which is
actually a large area. A stored procedure is a routine consisting of SQL statements that are
stored on the database server together with the database tables, and the idea is of course
to save the SQL procedures which are often needed, but also that a stored procedure is
translated into an internal format and thus is effective.

Below I will show a few examples of simple procedures, and how they are created using
MySQL Workbench. In the database right-click on Stored Procdures and select Create Stored
Procedure and MySQL Workbench creates a skeleton:

CREATE PROCEDURE 'new_procedure' ()
BEGIN

END

You can then write a stored procedure named Hello as follows:

CREATE PROCEDURE Hello ()
BEGIN
 SELECT 'Hello World';
END

JAVA 6: JDBC AND DATABASE APPLICATIONS

183

Final examples

and if you then click Apply the procedure is translated, and if there is no errors, it is stored
in the database and MySQL Workbench will show the finished code:

JAVA 6: JDBC AND DATABASE APPLICATIONS

183

FInal examples

and if you then click Apply the procedure is translated, and if there is no errors, it is stored
in the database and MySQL Workbench will show the finished code:

USE 'books';
DROP procedure IF EXISTS 'Hello';

DELIMITER $$
USE 'books'$$
CREATE PROCEDURE Hello ()
BEGIN
 SELECT 'Hello World';
END$$

DELIMITER ;

The first thing that happens is that the procedure is deleted if there is already a procedure
with the same name. Next, define a punctuation used to mark to MySQL that the procedure
ends. By default it is a dollar sign. After the procedure is translated and saved, it can be
performed as follows:

CALL Hello;

and the result is that the procedure prints Hello World on the screen.

It is obviously not a particularly interesting procedure, but it shows the principle and that
is simply the case that one or more SQL statements can be executed under a common
name. In addition to seeing some more examples, there are basically two things that must
be addressed, namely parameters and program logic.

As an example is below shown a procedure, that calculate the number og books, where the
number of pages is greater than or equal to a and less than or equal to b, and where a and
b are input parameters. The result is saved in an output parameter c:

CREATE PROCEDURE 'counter' (IN a int, IN b int, OUT c int)
BEGIN
 SELECT count(isbn) FROM book WHERE a <= pages AND pages <= b INTO c;
END

You should notice how the procedure stores the result in c with the operatator INTO. The
folowing shows how the procedure can be used to calculates the number of books, where
the number of pages is greater than or equal to 200 and less than or equal to 500:

The first thing that happens is that the procedure is deleted if there is already a procedure
with the same name. Next, define a punctuation used to mark to MySQL that the procedure
ends. By default it is a dollar sign. After the procedure is translated and saved, it can be
performed as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

183

FInal examples

and if you then click Apply the procedure is translated, and if there is no errors, it is stored
in the database and MySQL Workbench will show the finished code:

USE 'books';
DROP procedure IF EXISTS 'Hello';

DELIMITER $$
USE 'books'$$
CREATE PROCEDURE Hello ()
BEGIN
 SELECT 'Hello World';
END$$

DELIMITER ;

The first thing that happens is that the procedure is deleted if there is already a procedure
with the same name. Next, define a punctuation used to mark to MySQL that the procedure
ends. By default it is a dollar sign. After the procedure is translated and saved, it can be
performed as follows:

CALL Hello;

and the result is that the procedure prints Hello World on the screen.

It is obviously not a particularly interesting procedure, but it shows the principle and that
is simply the case that one or more SQL statements can be executed under a common
name. In addition to seeing some more examples, there are basically two things that must
be addressed, namely parameters and program logic.

As an example is below shown a procedure, that calculate the number og books, where the
number of pages is greater than or equal to a and less than or equal to b, and where a and
b are input parameters. The result is saved in an output parameter c:

CREATE PROCEDURE 'counter' (IN a int, IN b int, OUT c int)
BEGIN
 SELECT count(isbn) FROM book WHERE a <= pages AND pages <= b INTO c;
END

You should notice how the procedure stores the result in c with the operatator INTO. The
folowing shows how the procedure can be used to calculates the number of books, where
the number of pages is greater than or equal to 200 and less than or equal to 500:

and the result is that the procedure prints Hello World on the screen.

It is obviously not a particularly interesting procedure, but it shows the principle and that
is simply the case that one or more SQL statements can be executed under a common
name. In addition to seeing some more examples, there are basically two things that must
be addressed, namely parameters and program logic.

As an example is below shown a procedure, that calculate the number og books, where the
number of pages is greater than or equal to a and less than or equal to b, and where a and
b are input parameters. The result is saved in an output parameter c:

JAVA 6: JDBC AND DATABASE APPLICATIONS

183

FInal examples

and if you then click Apply the procedure is translated, and if there is no errors, it is stored
in the database and MySQL Workbench will show the finished code:

USE 'books';
DROP procedure IF EXISTS 'Hello';

DELIMITER $$
USE 'books'$$
CREATE PROCEDURE Hello ()
BEGIN
 SELECT 'Hello World';
END$$

DELIMITER ;

The first thing that happens is that the procedure is deleted if there is already a procedure
with the same name. Next, define a punctuation used to mark to MySQL that the procedure
ends. By default it is a dollar sign. After the procedure is translated and saved, it can be
performed as follows:

CALL Hello;

and the result is that the procedure prints Hello World on the screen.

It is obviously not a particularly interesting procedure, but it shows the principle and that
is simply the case that one or more SQL statements can be executed under a common
name. In addition to seeing some more examples, there are basically two things that must
be addressed, namely parameters and program logic.

As an example is below shown a procedure, that calculate the number og books, where the
number of pages is greater than or equal to a and less than or equal to b, and where a and
b are input parameters. The result is saved in an output parameter c:

CREATE PROCEDURE 'counter' (IN a int, IN b int, OUT c int)
BEGIN
 SELECT count(isbn) FROM book WHERE a <= pages AND pages <= b INTO c;
END

You should notice how the procedure stores the result in c with the operatator INTO. The
folowing shows how the procedure can be used to calculates the number of books, where
the number of pages is greater than or equal to 200 and less than or equal to 500:

You should notice how the procedure stores the result in c with the operatator INTO. The
folowing shows how the procedure can be used to calculates the number of books, where
the number of pages is greater than or equal to 200 and less than or equal to 500:

JAVA 6: JDBC AND DATABASE APPLICATIONS

184

Final examples

184

JAVA 6: JDBC AND DATABASE APPLICATIONS

184

FInal examples

184

use books;
set @num = 0;
call counter(200, 500, @num);
select @num;

It is also possible to define a parameter as INOUT. The following procedure determines
the average of number of pages in books where the page number is less than or equal to
the value of the parameter t:

CREATE DEFINER='pa'@'%' PROCEDURE 'average'(INOUT t INT)
BEGIN
 DECLARE s int;
 DECLARE n int;
 SELECT SUM(pages), COUNT(*) FROM book WHERE pages <= t INTO s, n;
 SET t = s / n;
END

and the procedure can be used as follows:

use books;
set @num = 500;
call average(@num);
select @num;

It is also possible to define a parameter as INOUT. The following procedure determines
the average of number of pages in books where the page number is less than or equal to
the value of the parameter t:

JAVA 6: JDBC AND DATABASE APPLICATIONS

184

FInal examples

184

use books;
set @num = 0;
call counter(200, 500, @num);
select @num;

It is also possible to define a parameter as INOUT. The following procedure determines
the average of number of pages in books where the page number is less than or equal to
the value of the parameter t:

CREATE DEFINER='pa'@'%' PROCEDURE 'average'(INOUT t INT)
BEGIN
 DECLARE s int;
 DECLARE n int;
 SELECT SUM(pages), COUNT(*) FROM book WHERE pages <= t INTO s, n;
 SET t = s / n;
END

and the procedure can be used as follows:

use books;
set @num = 500;
call average(@num);
select @num;

and the procedure can be used as follows:

JAVA 6: JDBC AND DATABASE APPLICATIONS

184

FInal examples

184

use books;
set @num = 0;
call counter(200, 500, @num);
select @num;

It is also possible to define a parameter as INOUT. The following procedure determines
the average of number of pages in books where the page number is less than or equal to
the value of the parameter t:

CREATE DEFINER='pa'@'%' PROCEDURE 'average'(INOUT t INT)
BEGIN
 DECLARE s int;
 DECLARE n int;
 SELECT SUM(pages), COUNT(*) FROM book WHERE pages <= t INTO s, n;
 SET t = s / n;
END

and the procedure can be used as follows:

use books;
set @num = 500;
call average(@num);
select @num;

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 6: JDBC AND DATABASE APPLICATIONS

185

Final examples

The following script creates a database with one table, that has only one column:

JAVA 6: JDBC AND DATABASE APPLICATIONS

185

FInal examples

The following script creates a database with one table, that has only one column:

use sys;
create database numbers;
use numbers;
create table primes (prime int primary key);

To this database I have added a stored procedure that adds the value of a parameter n to
the table, if n is a prime and not already is in the table. The result of the procedure is
stored in the parameter r.

CREATE DEFINER='pa'@'%' PROCEDURE 'isprime'(IN n int, OUT r boolean)
BEGIN
 DECLARE c int;
 SELECT count(*) FROM primes WHERE prime = n INTO c;
 IF c > 0 THEN SET r = false;
 ELSEIF n = 2 OR n = 3 OR n = 5 OR n = 7 THEN SET r = true;
 ELSEIF n < 11 OR mod(n, 2) = 0 THEN SET r = false;
 ELSE
 BEGIN
 DECLARE t int DEFAULT 3;
 DECLARE m double DEFAULT sqrt(n) + 1;
 SET r = true;
 WHILE t <= m AND r = true DO
 IF mod(n, t) = 0 THEN SET r = false;
 ELSE SET t = t + 2;
 END IF;
 END WHILE;
 END;
 END IF;
 IF r = true THEN INSERT INTO primes VALUES (n);
 END IF;
END

and below an example of an application of the procedure:

use numbers;
set @res = false;
call isprime(31, @res);
select @res;

The above procedure does not have great practical interest, and the goal is alone show that
in a stored procedure you can use program logic in the same way as in for example Java.

As a final comment should be added that there is much more to say about stored procedures,
and you may also have stored functions, but the above should suffice to illustrate what a
stored procedure is.

To this database I have added a stored procedure that adds the value of a parameter n to
the table, if n is a prime and not already is in the table. The result of the procedure is
stored in the parameter r.

JAVA 6: JDBC AND DATABASE APPLICATIONS

185

FInal examples

The following script creates a database with one table, that has only one column:

use sys;
create database numbers;
use numbers;
create table primes (prime int primary key);

To this database I have added a stored procedure that adds the value of a parameter n to
the table, if n is a prime and not already is in the table. The result of the procedure is
stored in the parameter r.

CREATE DEFINER='pa'@'%' PROCEDURE 'isprime'(IN n int, OUT r boolean)
BEGIN
 DECLARE c int;
 SELECT count(*) FROM primes WHERE prime = n INTO c;
 IF c > 0 THEN SET r = false;
 ELSEIF n = 2 OR n = 3 OR n = 5 OR n = 7 THEN SET r = true;
 ELSEIF n < 11 OR mod(n, 2) = 0 THEN SET r = false;
 ELSE
 BEGIN
 DECLARE t int DEFAULT 3;
 DECLARE m double DEFAULT sqrt(n) + 1;
 SET r = true;
 WHILE t <= m AND r = true DO
 IF mod(n, t) = 0 THEN SET r = false;
 ELSE SET t = t + 2;
 END IF;
 END WHILE;
 END;
 END IF;
 IF r = true THEN INSERT INTO primes VALUES (n);
 END IF;
END

and below an example of an application of the procedure:

use numbers;
set @res = false;
call isprime(31, @res);
select @res;

The above procedure does not have great practical interest, and the goal is alone show that
in a stored procedure you can use program logic in the same way as in for example Java.

As a final comment should be added that there is much more to say about stored procedures,
and you may also have stored functions, but the above should suffice to illustrate what a
stored procedure is.

and below an example of an application of the procedure:

JAVA 6: JDBC AND DATABASE APPLICATIONS

185

FInal examples

The following script creates a database with one table, that has only one column:

use sys;
create database numbers;
use numbers;
create table primes (prime int primary key);

To this database I have added a stored procedure that adds the value of a parameter n to
the table, if n is a prime and not already is in the table. The result of the procedure is
stored in the parameter r.

CREATE DEFINER='pa'@'%' PROCEDURE 'isprime'(IN n int, OUT r boolean)
BEGIN
 DECLARE c int;
 SELECT count(*) FROM primes WHERE prime = n INTO c;
 IF c > 0 THEN SET r = false;
 ELSEIF n = 2 OR n = 3 OR n = 5 OR n = 7 THEN SET r = true;
 ELSEIF n < 11 OR mod(n, 2) = 0 THEN SET r = false;
 ELSE
 BEGIN
 DECLARE t int DEFAULT 3;
 DECLARE m double DEFAULT sqrt(n) + 1;
 SET r = true;
 WHILE t <= m AND r = true DO
 IF mod(n, t) = 0 THEN SET r = false;
 ELSE SET t = t + 2;
 END IF;
 END WHILE;
 END;
 END IF;
 IF r = true THEN INSERT INTO primes VALUES (n);
 END IF;
END

and below an example of an application of the procedure:

use numbers;
set @res = false;
call isprime(31, @res);
select @res;

The above procedure does not have great practical interest, and the goal is alone show that
in a stored procedure you can use program logic in the same way as in for example Java.

As a final comment should be added that there is much more to say about stored procedures,
and you may also have stored functions, but the above should suffice to illustrate what a
stored procedure is.

The above procedure does not have great practical interest, and the goal is alone show that
in a stored procedure you can use program logic in the same way as in for example Java.

As a final comment should be added that there is much more to say about stored procedures,
and you may also have stored functions, but the above should suffice to illustrate what a
stored procedure is.

	Foreword
	1	Introduction
	About surrogate keys

	2	JDBC
	2.1	HelloJDBC
	Exercise 1

	3	Database operations
	3.1	SQL statements
	Exercise 2

	4	ResultSet
	4.1	Update a ResultSet
	4.2	Municipalities and zipcodes
	Exercise 3
	Problem 1
	4.3	Stored procedures

	5	Data types
	6	Transactions
	6.1	Bach updates
	Exercise 4

	7	The component JTable
	7.1	The demo program
	Problem 2

	8	Files in databases
	Exercise 5

	9	DDL commands
	10	Final examples
	10.1	World
	10.2	MyWines

	Appendix A: Install MySQL
	Appendix B

