

2

﻿

POUL KLAUSEN

JAVA 7: ABOUT SYSTEM
DEVELOPMENT
SOFTWARE DEVELOPMENT

3

Java 7: About system development: Software Development
1st edition
© 2017 Poul Klausen & bookboon.com
ISBN 978-87-403-1819-7
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 7: ABOUT SYSTEM DEVELOPMENT

4

Contents

4

CONTENTS

	 Foreword	 6

1	 Introduction	 8

2	 The waterfall model	 10

2.1	 The task formulation	 11

2.2	 Analysis	 13

2.3	 Design	 19

2.4	 Programming	 28

2.5	 Test	 29

2.6	 Delivery	 31

3	� A system development method	 32

4	 MVC	 35

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 7: ABOUT SYSTEM DEVELOPMENT

5

Contents

5	 Library	 38

5.1	 Task formulation	 38

5.2	 Analysis	 38

5.3	 Design	 46

5.4	 Programming	 61

5.5	 Test	 85

5.6	 Delivery	 86

	 Appendix A	 88

	 Domain model	 89

	 Use case diagram	 91

	 Class diagram	 95

	 Activity diagram	 104

	 Package diagram	 107

	 Sequence diagram	 109

	 State machines	 112

	 Appendix B	 115

	 The ER diagram	 115

	 Mapping to relational model	 119

	 Normalization	 125

	 Other database improvements	 128

	 The use of a class diagram	 130

	 Create the database	 133

JAVA 7: ABOUT SYSTEM DEVELOPMENT

6

Foreword

FOREWORD

This book is the seventh in a series of books on software development. The programming
language is Java, and the language and its syntax and semantic fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. In this book focuses is primarily on system development and method while
programming plays only a minor role, and the book does not address anything new with
respect to Java. The book does not focus directly on a specific system development method,
but addresses a number of principles which are general and can be applied in all system
development projects and which may be useful guidelines for developing applications in
practice. The aim is to set up a framework in which, that for at least development of small
programs, can be useful to provide both progress during the development and quality of
the finished product. In addition to principles of system development, the book has an
appendix that provides a short introduction to UML and an appendix that briefly treats
the design of databases. The book assumes knowledge of programming and Java and the
development of applications that uses databases corresponding to the content of the first
books in this series.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

7

Foreword

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the
following products:

-- NetBeans as IDE for application development
-- MySQL to the extent there is a need for a database server (from the book Java 6 onwards)
-- GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

8

Introduction

1	 INTRODUCTION

System development is the name of the process to develop a program from start to finish,
and thus from the idea or task is presented, to the program is written, tested and put into
operation at the future users. In practice, a system development is implemented as a project
that is characterized by a longer period, and the task is typically solved by a project group
that do all the work. Both the time schedule and the size of the project group is obviously
determined by the task’s scope so that the time horizont can be anything from a few days
to several years in extreme cases, while the project group can be anything from just a single
person to many, but to talk about a system development project, it will often be a project
that will be performed over several weeks and perhaps even months, and which involves
several people.

1Large system development projects is characterized by many uncertainties which also means
that one often hears about IT solutions, which do not end up with the desired result or
maybe even running completely wrong. There are several reasons, but in my opinion are
the two essential:

1.	That it is difficult (probably impossible) from the start to define all the requirements,
as you continuously during the development process gain greater insight and
understanding of the task to be solved, and along with it there are creating new
wishes and requirements for the finished system. It is thus impossible from start
to estimate the resources that the project requires.

2.	That you will not recognize the cost, and the development organization, to get
the job, deliberately underestimates. The result is that the resources used by that
task is not present, which in turn means that the finished product will be of poor
quality and, at worst, useless.

You hear sometimes argued that IT solutions are so complex that it is impossible to develop
programs that do not contain errors. However, it is not an acceptable explanation. It is
true that IT systems can be complex, but IT systems are not the only complex thing that
are developed in this world, and the demand for finished software solutions must be, that
they meet the customer’s requirements and works without error.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

9

Introduction

Now it is not always as bad as suggested above, and luckily it as such, the vast majority
of IT projects are carried out to the satisfaction of both users and developers, and here it
is important to remember, that it are the projects that derail, you hear about. Fortunately,
there are and will be developed many excellent programs, but effective system development
requires techniques and methods. It is important to work systematically to gets everything
to work. It is what the following book is about.

In addition that programs must work correctly, they must also be maintained – at least has
larger programs to be maintained for a long period. It requires many resources to develop
a large program, and the program must usually be used for many years. In that time, the
program must often be modified as new demands occur, or there is something you want to
work in a different way. For that to be possible, it is important that the program from the
start is written in a way so it later – and probably by someone else than the persons who
originally developed the program – can be modified and expanded without the changes
means, that large parts of the program has to be rewritten. Whether or not depends on
how the application is made and its quality. Therefore play program quality a major role
in system development, not only in the interests of future maintenance, but also because
the programs must be effective, and if a program works slowly, it almost always has to do
with how the program is a made, and finally may be mentioned that programs should be
robust, so they do not fail because of improper use, and also the robustness is part of the
program’s quality.

All that should emphasize that the development of any program – however small – it is
important to work systematically using proven techniques and methods. It is important to
use and exploit other people’s experience. The conclusion is that system develpment is much
more than clever ideas and programming.

This book is an introduction to system development, but unlike the previous books there
are no exercises. The book describes some guidelines for the development of a program and
ends with an example of the development of a program along these lines.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

10

The waterfall model

2	 THE WATERFALL MODEL

Over time we have developed a variety of system development methods, all of which have
had the object of providing guidelines on how, in practice, to develop a program from start to
finish. The methods practical importance to system development has been variable, probably
mainly because it is difficult to develop a method that is general enough to accommodate
the many different systems to be developed, but also a little because the methods have
often been static and easily becomes methods for the methods own sake. Therefore, it is
typical in practice, to use elements of several methods so as to give some guidelines to suit
the tasks you now works on, but for that, everything that is said and written concerning
system development methods, will not be worse. It says only that it is not so easy to find
the right method, and it is hardly, but there are a number of good principles that are worth
following, and that is what this book talks about.

However, there are some assets that are repeated in all system development methods:

-- Analysis, which examines and determines what it is for a task to be solved, and
thus formulate the requirements for the finished program.

-- Design, where you decides how the task should be solved.
-- Programming, where the product itself is written.
-- Test, which examines that the finished program works as it should.

Even for the development of small programs you must go through these activities, but the
content clearly varies depending on the size of the task. So far, I will therefore use a method,
which consists of six steps or phases:

1.	Task formulation
2.	Analysis
3.	Design
4.	Programming
5.	Test
6.	Delivery

JAVA 7: ABOUT SYSTEM DEVELOPMENT

11

The waterfall model

It is a very simple method, and for larger projects, the method is not comprehensive enough
or appropriate, but for smaller programs it works very well, and as mentioned, all the six
activities are parts of all system development methods. In the literature, the method is
known as the waterfall model, since the idea is that you start to define the requirements
(analysis), then outlines a solution (design), after which the solution is programmed. Finally
the finished program is tested (and errors are corrected if necessary) before you are ready
to take the program in use. In connection with the development of today’s complex IT
solutions, it is a narrow vision of system development, but more on this later.

In the rest of this book, I will describe the method’s activities and what you should do in
each of the six activities. I will not describe specific tools such as diagrams and the like,
and it’s actually something that I only to a limited extent use in practice. However, such
development tools also have their entitlements, and in the books Appendix A, I have given
a brief description of some tools.

2.1	 THE TASK FORMULATION

When writing a computer program, you have to start to describe what the task is, and
what it is for a program to write. There is a person, a company or an organization (in the
folowing called the customer) that has an idea for a program that they want developed. It
can be anything from a few scattered thoughts, the result of a meeting or perhaps the result
of a survey, but before the job can be transferred to a development team, the task must be
presented. It may be verbal or in a document or a report, but in any case the first thing is
to writte a document that describe the task short and concisely. The task formulation can
be prepared by the customer or the development department, but typically it will be done
in collaboration over a shorter period.

There are no particular requirements for neither the process or form. For big jobs, the
work can be comprehensive and take time as there must be kept several meetings, collected
information etc., and we often talk of a preliminary analysis. The result can be a report, where
the task is described in general terms, and how important success criteria are established.
For smaller tasks, it may suffice with a single meeting, and the task formulation is perhaps
no more than a single sheet of paper. In any case, the result of the task formulation is the
first step towards the goal.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

12

The waterfall model

12

In general, the task formulation should not be too detail, but it should only give a brief
description of the task to be solved. The detailed requirements are established first during
the analysis. The form is a document, but there may be attached other material to the
description. Firstly, when writing the description of the task you already here can encounter
other documentation that demonstrates important issues relating the program to be made,
and thus knowledge which is necessary for the system development. Where appropriate,
this documentation must also be stored. For larger projects, it may also be, that you has
to document the actual writing process, for example meeting notes, and the like, such that
on completion of the work you has a whole report for the task formulation. Finally, the
task formulation and especially the process of its creation is used for estimating the task
both in terms of time schedule and resources, and in practice will to the task formulation
be attached both a time schedule and a estimate of costs to complete the task.

The task formulation must therefore tell the developers what it is for a task that should be
addressed and tell the customer when the task can be done, and what it cost.

Seen from the developers, the result of the activity is a project directory with a subdirectory
for the task formulation, which partly includes the document with the project description
and all other documents gathered or prepared and concerning the task.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 7: ABOUT SYSTEM DEVELOPMENT

13

The waterfall model

2.2	 ANALYSIS

When the task formulation is in place, and you agree with the customer, that the task should
be solved in accordance with the agreed schedule and price, the actual system development
starts. The first step is to complete an analysis for the purpose

1.	 to clarify all ambiguities regarding the content of the task formulation
2.	 to determine if there are any risks and other significant uncertainties
3.	 to determine external references and partners
4.	 to draw up a final requirement specification
5.	 to update the schedule, including the requirements for resource consumption

2.2.1	 AMBIGUITIES

The task formulation describes the task overall, but not the details. This will be done as part
of the analysis. Therefore, there will typically be a number of questions and interpretation
back, and things that are not written in the task formulation. Everything must be covered
before we can address the development of the program. It can only be done in cooperation
with the customer, and the start of the analysis will typically include meetings involving the
customer, but also further along in the process it may be necessary to contact the customer
to clarify matters regarding the requirements for the task. The analysis is a process extending
over time when there is frequent contact between the customer and the developers.

The task of clarifying the ambiguities is the actual analysis work and it is here that the
developers inform themselves about the task to be solved. The developers are experts in software
development, but they do not necessarily have knowledge in the field where the program
should be used and the solution of many tasks require that developers gain understanding
and knowledge about how the program should be used, including the organization where
the program must be used. Finally, it may happen that the solution of the task requires
products and tools that the developers do not have knowledge of, and if so, it is also a
knowledge to be obtained. The analysis is thus also a phase for knowledge gathering.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

14

The waterfall model

In practice playing the analysis phase another important role that one should not underestimate.
Under a system development project – especially a project that extends over time – there
is regular contact between the developers and the customer, and as mentioned above in
order to clarify matters regarding the task. It is therefore important during the analysis to
get worked up a relationship of trust between the developers and the customer. First, it is
crucial that you as a customer can be sure of the developers privacy, as many tasks means
that a developer have access to confidential information, and secondly, it is important to
trust that the developers aim to do the job as well as possible, and timely reporting in with
adjustments and changes compared to the already established requirements to the extent that
further work reveals that something should be resolved differently than already agreed. Seen
from the developers can trust of the customer be important if, for example the schedule
progresses, and it may need to be adjusted.

2.2.2	 RISKS

It is also during the analysis, you have to identify specific risks associated with the project.
Many, especially smaller tasks is generally problem-free, but at other jobs, there may be
things that you simply do not know how to be resolved, and if one at all is able to solve
the problem. Contains the project such challenges, it is important that they come to light
as soon as possible. At worst, it may well mean that the project can not be implemented,
and if it is the case, the project should be terminated as soon as possible so as not to
sacrifice more useless resources than necessary. Risks can also mean that it is necessary to
include it in the contract, where certain parts of the project can not be priced and may
not be time estimated.

Now there may also be less challenges you instead can call uncertainties, challenges that
may not directly threaten the project, but things you should be aware of as something that
may take longer than expected. It can also be things that can be solved in several ways, and
where it may be necessary to carry out experiments to select the right solution. Here the
same applies to that kind of uncertainties, that must be recognized such you not further in
the process suddenly are surprised by the subtasks that drains the project for all resources.

In conclusion, regardless of the degree of uncertainty that may be attached to the project, so
it is extremely important that they are located as early as possible, and you make a decision
on how to handle them.

2.2.3	 REFERENCES

An IT solution and its development is not necessarily an isolated entity, but both the finished
program and its development may have references to other organizations and systems.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

15

The waterfall model

15

Often the current program should exchange data with other programs and, where applicable,
you must have clarified how it should be done. It can be something with the data formats
or something with services which the program has to use. In any case, the information
must be obtained, and is an exercise during the analysis. Perhaps it is not possible – may
be because the other part will not disclose the necessary information – and if it is the case,
at worst the project must be terminated. It may also be that it is something you have to
pay for, and maybe paid a license for a particular service.

Now do the opposite party not being an external organization, but it can, for example
be customer’s business. Then there is is not the same problems, but the same information
must be obtained and is therefore also something that must be done during the analysis.

There may also be other business partners, for example it may be, that the task only is a
part of a major IT system. If applicable, you must have formalized the cooperation, and
especially, it is important that the calendars are synchronized, so you do not suddenly have
to wait for a delivery from a partner – and vice versa.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 7: ABOUT SYSTEM DEVELOPMENT

16

The waterfall model

It may also be that you simply must have obtained information from other companies and
organizations, and as an example of public authorities. It is also information which must
be provided as part of the analysis phase, or at least that the provision of the corresponding
information has started.

The conclusion is that during analysis you must have obtained all the information necessary
to carry out the current project, or at least agreeing when such information is available,
so that the development not suddenly must be suspended because of lack of information.

2.2.4	 REQUIREMENTS SPECIFICATION

In a way, the requirements specification is the core of the analysis as a determination of the
total requirements for the finished program. If you have a good requirements specification,
both parties – the customer and the development department – agree on what it is for a task
to be solved. Many have had an opinion about the shape of the requirements specification
and a template has also the advantage that it is easier to remember to get it all, but in this
book the requirements specification will simply be a document without any formality, which
lists the requirements for the finished program.

The document is, however, important, for it is the agreement, and it is the document which
must be taken forward in the event of a disagreement between customer and development
department, on what the task is and what needs to be with and possibly not. You could
say that the more care taken with making the requirements specification, the greater the
chance that there will be no need for it, and that the finished program is delivered to
everyone’s satisfaction.

The requirement specification may also contain other than documents, and I would especially
point to prototypes. One of the tasks that must be clarified in connection with the development
of a program, is the requirements for the user interface, and for GUI applications, especially
web applications there are often large demands on the development of the user interface.
The best way to document these requirements is the development of a prototype that can
best be explained as a program that does not do anything but showing the design of the
program’s windows. It is far easier to the customer to relate to a prototype than descriptions
and drawings, and with modern development tools it is easy for the developers to develop
good prototypes. The work is also not wasted, as it often includes something that still need
to be developed at a later date.

The requirements specification is typically maked at the end of the analysis, and the foundation
is the task formulation and the results of the analysis work with clarification of doubts.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

17

The waterfall model

2.2.5	 THE SCHEDULE

I mentioned above under the task formulation that you also has to draw up a schedule and
an estimate of the resources that the task requires. It is actually something of a dilemma in
system development. During the drafting of the task formulation the development department
simply lacks the necessary knowledge to prepare an estimate of resources. Conversely, the
customer needs to know what the solution will cost.

The problem can be solved by letting the estimate from the task formulation be an overall
estimate. Does it seem reasonable, the customer and the development department can
agree to carry out an analysis, and only then, when you have gained sufficient knowledge
and uncovered all risk factors, you can conduct a detailed scheduling with its estimate of
resource consumption. Only then can you make the final price calculation and possible
sign a contract on the overall system development project.

The question is of course who then should pay if the result of the analysis is, that the project
should not be implemented – for example because it becomes too expensive. For large IT
projects, it is common that the customer pays for the implementation of an analysis –
probably just for a part of the overall system. Maybe the customer even has a third party
to carrie out the analysis, and in this way can the task based on a detailed specification of
the requirements put out to tender. In any case, it means that the final decision for the
development of the system can be postponed until after the analysis. This strategy keeps
in return not to smaller tasks. Here after the development of the task formulation and
after some general estimates – and of course a good deal of experience – the development
department has to come up with a price of the task. It sounds risky, and it is that too, but
nevertheless true. It’s a dilemma, and there is no doubt that the source of many unfortunate
IT projects must be applied here since the customer in his eagerness to get the job done
with the least cost, get a product of poor quality, and when the development department in
fear of not getting the job provides a low offer, so that in the end may be sacrificing quality.

Where the price is set at one time or another, then after the analysis, it is typically necessary
to adjust both the time schedule and resource consumption – perhaps only for internal
use – an adjustment that may result in the need to bring the project more resources as in
system development is the same as man hours.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

18

The waterfall model

18

2.2.6	 DOCUMENTATION OF THE ANALYSIS

Like the rest of the system development phases, the results of the analysis are documented
in the form of an analysis report. I have already mentioned the requirement specification
and the time schedule as key parts of this document, but the rest of the work must also
be documented, a documentation which often will mainly consist of meeting summaries
and documents collected during the analysis. There are two reasons for this documentation:

-- Firstly, the documantation should be used as basis for the rest of the system
development project.

-- Secondly, the documentation are used in future maintenance of the program.

Documentation does not occur by itself, and it can be extensive to get it all written
down. It is also something of what system development methods have been criticized and
where development departments failed to make documentation to save the work. There is,
however, just as many examples that the documentation has been missing. You must then
only write what is necessary, and never write documentation for the documentation’s oven
sake – it must have value. It is just one aim of the projects in this book only to prepare
the documentation, which I think is useful.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 7: ABOUT SYSTEM DEVELOPMENT

19

The waterfall model

There are special IT tools to help manage and maintain this documentation and in general
help manage the entire project. I will not mention such tools for now, but until then, I will
mention what I do in practice. If I have to write a program (implementing a system) I start
as mentioned in task formulation to create a folder for the entire project – hereafter called
the project folder. Here I create subfolders according to the magnitude of the task, but always
the documentation in the form of the task formulation, the requirements specification, other
project reports and more. There may also be a subfolder of meeting summaries, a subfolder
to other material, etc. The project folder will also contain NetBeans projects, and in practice
and by reference to other system development methods, there will be several. Already here
during the analysis there could be projects for example experiments or prototypes. In the
same way I typically documents the designed with a NetBeans project, a project which I
will continue to work on in the programming phase, but so that I will continue to work
on a copy (or more accurately initially create a copy of the project). As I work iteratively,
I will start each iteration with a copy of my project from the previous iteration, and the
project folder will thus contain many NetBeans projects.

The above approach to the administration of a project is extremely simple and not much
more than a simple procedure for managing a project’s documents and versions, but for
small projects and especially one-man projects the procedure is working well. It is important
to emphasize that for large projects with many team members you have to do it better.
Here it is necessary to use IT tools, including to manage different versions of documents
and also program code.

2.3	 DESIGN

The next activity is called design, and short, you can say that the analysis is concerned
with what the program should be able to do, while the design deals with how the program
should be written. This means that the design shift the focus in system development, where
the analysis work to determine the requirements and collect information while the design
tackles how to construct the product. It is not supposed to write the program in the design
phase, but the the gap between design and programming is not sharp, so that the design
also can include programming, and individual decisions that really are design decisions can
with benefit be deferred to the programming phase.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

20

The waterfall model

Design of IT systems is very similar to the design of other products or construction
projects. If you are building a house, then you also starts making drawings showing the
rooms location and size, where the windows and doors must be and so on. If not the result
would probably be a house that were somewhat random, and you would risk that doors
was placed so they could not be opened, or there was rooms without doors or whatever.
The quality of a house requires planning and models. It’s the same with IT systems. If you
do not implement a proper design when considering different solutions against each other,
you get perhaps a program that solves the task, but the program structure is random, and it
becomes impossible to maintain in the future. The goal of the design is precisely to ensure
decisions that meet program quality.

In contrast to the analysis the design activities varies highly dependent on what the task
is, and it is difficult in the same way to establish guidelines for the implementation of the
design phase, but the following are typical activities:

-- Design of the overall program architecture.
-- Design of the model layers classes.
-- Design of the program’s repository.
-- Design of algorithms.
-- Design of the user interface.

but it may also become necessary to carry out experiments for testing solutions and
technologies.

2.3.1	 ARCHITECTURE

Applications may consist of many classes and can easily be 100 or more. In this case, it
can be hard to keep track of the meanings of all classes, and often one choose therefore to
organize the classes as concerning the same concept in modules. One speaks in this context
about application architecture, and one should generally aim for a modular architecture.
There are no clear best architecture, but experience has shown that programs with a graphical
user interface with advantage can be based on a three-layer architecture

JAVA 7: ABOUT SYSTEM DEVELOPMENT

21

The waterfall model

21

or an architecture that is a variant thereof. Here you define the model as classes that models
the program’s data, so you have an object-oriented representation of the data that the program
should work with. The view layer contains everything regarding the user interface in the
form of windows. In between these two layers you have as a controller layer receiving input
and converts it into commands for the model.

T﻿here is nothing magical in this architecture, but experience has shown to be advantageous
to gather everything regarding the user interface in a separate layer, and everything that has
to do with the program’s data in a model layer. Between these two layers are classes that will
tie it all together. The architecture is often called the MVC for Model View Controller, and
it is an example of a design pattern. It comes in several flavors, and the reason is partly due
to the development tools and the types of applications as for example GUI applications, web
applications, apps for phones and more. The questions that a specific variant addresses is what
each layer should contain and especially how the communication between the layers should be.

T﻿he layers are a draw for a modular program architecture, but there may well be multiple
layers, and each layer can – and will often be – divided into modules across.

In the final example I will show how the pattern can be applied in practice.

http://s.bookboon.com/elearningforkids

JAVA 7: ABOUT SYSTEM DEVELOPMENT

22

The waterfall model

2.3.2	 CLASSES

Modern programs are built from classes. A running program consists of objects that work
together to perform the task which the program must solve. These objects are defined in
terms of state and behavior, and you do that with classes, where a class defines or describes
a particular kind of object. Perhaps the most important design activity is to find and define
these classes, so they have the right properties. An object can be seen as an element of a
program, a component that you can do anything with, and what you mainly doing during
programming is to write the classes used to create the program’s objects. A true and fortunate
choice of classes has great influence on the quality of the finished program.

A program consists of many classes, and the classes that you primarily work with at
design time, are the model classes, which are classes that defines the essential data that
the program should work with. This means that many classes first are defined later in the
programming phase.

A different question is how to find the classes that the program should consist of, and there
are several guidelines on what you can do, but no matter what, there are no instructions that
necessarily give a good result. The classes has to model the application’s problem area – and
that alone – and must reflect what the program should consist of and work on, but it is
important to remember that you are talking about model classes and thus classes describing
data. Design of classes is based largely on experience, and although through books about
system development there are many recommendations for selecting classes the best way is
to study other people’s examples as the examples in these books and thus get inspiration
from finished programs and the classes which they are composed.

I will mention a single recommendation that you sometimes can see used to determine
an application’s classes. Based on the task formulation and the requirements specification
you can highlight all nouns, and then make a list of these nouns. They are candidates for
classes. Subsequently, you can review the list and use it as inspiration for the classes that
the program should consist of. Not all nouns represent a class. First, several nouns can
describe the same concept, and secondly, some of the nouns instead describes the properties
(variables) of the program’s classes, and finally there will be names that do not relate to the
program’s problem area and therefore are not candidates for classes. It’s a simple process,
and it obviously can not stand alone and requires many considerations for the candidates
that have been found, but until you become practiced, the method is better than nothing.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

23

The waterfall model

A class consists (at design time) basically of two things:

1.	data definitions that define an object’s state, and thus what an object should represent
2.	methods which define the behavior of objects, and thus what you can do with objects

T﻿he classes you find must be documented. This can be done with diagrams (for example UML
diagrams – the book’s appendix give a short presentation), but I’ll usually do it directly in
the current programming languages. The reason is that it is difficult to draw diagrams and
cumbersome to maintain them (and the drawing rules can be so complex that it is in itself
a challenge to draw the diagrams correctly) and that modern programming languages and
development tools have such good documentation options that you in most contexts can
achieve the same documentation as you can with diagrams. However, I would not totally
reject the use of diagrams (and the examples come). The diagrams used correctly can provide
an overview, and so they do not require knowledge of specific programming languages.

2.3.3	 REPOSITORY

Most applications use persistent data and thus data to be saved between different runs of
the program. It is a design task to decide how it should happen. In most cases, a database
is used, and is it the case, the database must be designed with respect to tables, relationships
between tables, etc. The design of the databases are not necessarily simple, and there are
very well-proven and effective techniques for the design of databases. When the design of
databases requires many considerations, is due to an unfortunate designed database can have
very large impact on the application response times – negatively.

T﻿here are also other opportunities where data is stored in regular files. It may be text files
or binary files, and it may, for example also be XML documents. It is often a simpler way
and does not require that the program is connected to a database system, but if you have
transaction-intensive applications with many updates and queries are databases the only
sensible solution.

In addition to a program’s repository – especially if there is a database – there are also other
issues in the form authorization (login) and other security issues that must be clarified.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

24

The waterfall model

24

2.3.4	 ALGORITHMS

An algorithm is the procedure for solving a specific problem. It is a solution method that
addresses the solving of the problem through a finite number of steps and the development
of a program is to write algorithms. Above, I mentioned that a class basically consists of
data definitions and methods. Here are methods algorithms. Methods perform something,
and how the method should do its work must be defined in the form of an algorithm.

In a program and its classes are by far the most methods (and the corresponding algorithms)
simple, but some methods can be complex, where it is not clear how the algorithm should
be written, and there will even often be several options, each with their advantages and
disadvantage. The description of complex algorithms are an important part of the design,
and you has to select the correct algorithms, but also to describe how the algorithm works.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 7: ABOUT SYSTEM DEVELOPMENT

25

The waterfall model

Description of algorithms can be done in several ways. There is on the one hand formal
algorithm languages, where you can write algorithms accurately, and so they are independent
of a specific programming language. That means both that you should learn the algorithm
language, and secondly there is a tendency for language and its rules are just as difficult
to learn as a programming language, and many algorithm languages use a notation that is
not very intuitive. On the other hand you can describe algorithms using a conventional
structured language – often called pseudo code, and it certainly has its uses, but inversely
with the disadvantage that it can be difficult to be precise enough, without the algorithm
starts to get the character of an entire text document. A programming language is in itself
a algorithm language but were previously considered to be too detailed to be used to write
algorithms at the design level, but modern programming languages is far more flexible, and
by combining language and plain text in the form of comments, a programming language
like Java is actually a quite effective method for describing algorithms. This is the approach
that I everywhere will use the following as it provides a good opportunity structure, with
sufficient flexibility to, at you at design time can describe algorithms at an appropriate level.
I make no general requirements for the design of algorithms, and what to include, just the
design should be translated.

2.3.5	 THE USER INTERFACE

To the extent that is required significant decisions about an application’s user interface, it is
also a design activity. It is concerning typically, the program’s windows that may be outlined
by means of drawings or actual prototypes. In particular, is the last interesting, because in
NetBeans you easily can create windows components, and it is similar easy to add application
logic so the user can navigate between windows. Such a prototype can be presented to the
users and can be a great help to ensure that the developers has understood the task properly,
and that there are not things that are overlooked, or there are functions that are missing. I
have already mentioned that you can let prototypes be included as part of the requirements
specification. Especially for large projects, it pays to do a comprehensive prototype, although
it is only an empty shell, since it is a highly effective way to catch mistakes and shortcomings.
The work on development of the prototype can be extensive, but a large part of the user
interface can be used later during the programming, so it is by no means wasted.

2.3.6	 THE DOCUMENTATION OF THE DESIGN

T﻿he result of the design must be documented and it can take the form of a text document
in the same way as the result of the analysis. Especially if the design is documented using
diagrams or there are important arguments for the decisions taken, a design document may
be appropriate, but in general I would document the design using a NetBeans project and
often both. The NetBeans project that contains the project (possibly several projects), I will
continue working with during the programming phase.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

26

The waterfall model

2.3.7	 DESIGN PRINCIPLES

T﻿he design includes a program’s architecture and classes, and there is established many
principles of what in this context is a good design, and I will mention two, which is usually
called coupling and cohesion, addressing both the program’s architecture and classes.

One must strive that the program’s classes has low couplings. Two classes are coupled, if they
use the properties of each other. That is, if one of the classes calls a method on the other
class, wee say that the classes are coupled – the class that calls a method is coupled to the
other class, that is it knows the other class. In particular, be aware that if a class creates an
object of another class, there is a coupling through the constructor. When couplings are
bad, it is because it makes it more difficult to maintain the code. If a class has a method
that others use, you can not just change it, without it matters the other classes.

Now it is not such that you can avoid couplings. A program obviously can not consist of
isolated classes that have nothing to do with each other. The idea of a class is precisely that
the class offers services that others need, but you want as low couplings as possible. It is
difficult in general to say what it is, but you can be aware of the following:

-- Couplings must always be done via properties (get- and set-methods) or other
methods, but never via variables. This is achieved by always making a class’s variables
private, and so it is up to the class programmer to define the properties and methods
that are necessary for the class to make its services available.

-- All properties and methods that represents internal services and thus services that should
not be used by other classes, must be defined private – and exceptionally protected.

-- You should programs to an interface. Classes characteristics (services) should be
defined by interfaces that the classes can implement. An object that uses a class,
only has the knowledge of what are defined in the interface, but not how the
properties are implemented.

-- You must avoid couplings both ways. That is, where a class is using a service of a
second class and the second class uses a service of the first class. Where applicable, it
means that both classes must know each other, resulting in a very strong dependency
between an application’s classes.

-- One should be aware that inheritance is a strong coupling. If the base class has
protected properties they can not be changed without this influences the derived
classes. This does not mean that you should avoid inheritance, but simply to be
aware of what it means for coupling.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

27

The waterfall model

27

Just as one wishes that a program has weak couplings, one would like the program’s classes
and modules have high cohesion. A class has high cohesion if it concerns a specific thing
within the program’s problem area. A class should not be a collection of methods that have
nothing to do with each other. Sometimes one may think of it in that way, that a class
representing customers and products have low cohesion. It has overall characteristics of the
two things, and so it must be divided into two classes. Low cohesion leads to classes (or
modules) that are hard to understand, and that in turn means that it becomes more difficult
to maintain the code. You can note the following:

-- High cohesion leads to many classes, but it is generally not a problem.
-- If a class implements many interfaces, it points in the direction of low cohesion.
-- If a class is composed exclusively of static methods, it must be methods that relate

to the same subject.
-- A package must include classes that relate to the same subject. Otherwise the classes

must be divided into into multiple packages.

Both coupling and cohesion are general design principles that you must constantly keep in
mind when designing an application’s architecture and classes. Cohesion is rarely a major
problem, but you should focus on couplings and constantly strive so weak couplings as possible.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 7: ABOUT SYSTEM DEVELOPMENT

28

The waterfall model

2.4	 PROGRAMMING

With the design in place, you can write the program’s code. The programming starts with a
copy of the NetBeans project created during the design phase, and in principle it is about
to implement the classes that are defined at the design phase. If you have implemented a
good design the most of the important decisions concerning the program’s architecture and
core classes should be in place:

-- all model’s classes are defined
-- all important decisions about the program’s windows and look and feel are in place
-- the program’s repository is defined
-- all complex algorithms are located

However, there will still be many details that remain unresolved and are left to the programmer,
but it’s basic details, which are technical and geared towards the specific programming
language. The programming phase is extensive and it is typically the phase that takes the
longest time, but with a good design as a starting point, you have created the best basis to
ensure progress in the programming and that the quality of the code you writes is alright.

T﻿he next phase is called test, but the test also plays a crucial role during programming. It is
the programmer’s task to test the details, and ensure that the code does not fail. In simplified
terms, this means that the programmer should test individual classes for errors, so that you
in the following work can be sure that a class is a finished and tested component. This can
be done in several ways. One can draw up actual unit test where classes are tested with
a special tool attached to NetBeans. You can write small test programs to test each class,
and finally you can perform inspection of code using the debugger. Also the inspection
in connection with the documentation of the code, as you, while documenting the code,
automatically will consider why the code is written as is, and possibly sees inexpediencies
and errors.

It is actually difficult to test the program code, and whether it is done in one way or another
way, it is difficult to ensure that all cases are handled. It requires that you are careful, and
it requires that you estimate that it takes time. However, you can be sure that the time
spent during programming to test is well spent. It is much more difficult and more time
consuming to find a mistake that is recognized at a later time, for example in the subsequent
test phase, or even worse after the program was put into operation.

Above I mentioned documentation of the code and code inspection. Documentation is also
part of the programming phase. It is important for several reasons than inspection since it
is all the necessary information towards the people who later must maintain the program.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

29

The waterfall model

2.4.1	 MAINTENANCE OF THE DOCUMENTATION

The waterfall model is a progressive process from task formulation to the finished program,
but no matter how careful you are, you can not avoid that there are changes on the way.
For example it may happen that during the programming are recognized any further claims
or already found demands that must be changed. In the same way it may happen that you
have to realize that the already adopted design decisions need to be changed, and later again
during the test, the same can happen. The question is what to do with documentation
respectively from the analysis and the design, and whether it need to be updated.

In principle it should, but I’m a little shaky here. The documentation must document the
decisions about the development of the program and how the program is made. In case of
changes that are so big that what it says in the documentation, is totally wrong or misleading,
then it of course must be updated. Otherwise, the documentation is impossible useful. Now
it is far from always the case with such radical changes and have you made a good analysis
and design work, should it be the exception. Is there rather minor adjustments, and they will
certainly be there, you can document the changes in the code. You can write documentation
comments in front of each class, and in some cases you can even add text documents to
the project, documenting the changes. In most cases, I prefer to document changes in the
code, instead of to go back and modify the documentation from the analysis and design.

2.5	 TEST

As mentioned above play test an important role in programming, but the waterfall model
also has an actual test phase. The goal here is to test the finished program in an environment
that resembles the future operational situation and in this context, test whether the program
meets the requirement specification. It is a phase that usually will involve the customer and
the future users to find inconveniences and errors before using the program for the task it
is intended.

T﻿he extent of the phase is of course determined by the specific program, and in larger projects,
the extent being large and take time. You should be aware that simple testing, where you
let a few users try out the program, rarely finds many errors. It may be part of a larger test,
but the test requires planning where to exactly decide what to test and how. In particular,
it may be difficult to establish an environment simulating the daily operation conditions.
To the extent that the program is included in or using other systems, communications and
data exchange must of course be tested, and it is rarely possible to perform any tests before
the program is finished.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

30

The waterfall model

30

T﻿he result of the test phase will typically be a todo-list, which lists the errors and discrepancies
found. With this list available the programmers may correct the errors and omissions, and
then the program must be tested again to ensure that the corrections not have introduced
new errors. This process continues until the test results in an empty todo list, and then the
program is ready for use.

T﻿he test phase is a follow-up to the tests, as during the programming, and must the phase
make sense, it is crucial that the testing effort during programming is done carefully and
accurately. It is important that the program be transferred to the testing phase, is of such
a quality that it is worth testing on. Actually it is not unusual for a program to leaves
the programming phase with too many errors, and the result is that the test work has to
be stopped immediately, and the program is returned to the programming team called
unusable. If this happens, you have only succeeded in having the people who need to test
the program, have used their time to no avail, and the programmers can not do much
other than to address the errors without knowing much about what to look for. So there
is reason to once again emphasize the importance of the test, which takes place as part of
the program development.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 7: ABOUT SYSTEM DEVELOPMENT

31

The waterfall model

2.6	 DELIVERY

T﻿he final phase will really take the program in use and thus hand it to future users. It is
difficult to precisely mention the content of this phase, so instead I will give some examples
of tasks that the phase may include:

-- Development of an install program or script.
-- Upload a program to an App Store.
-- Hosting a program or service on a web server.
-- Create a database, that the program can connect to.
-- Create users, possibly with varying rights.
-- Customizing the configuration files to applicable safety policies.
-- Conversion of existing data to a new format.
-- Training of future users.
-- Evaluation of the project in order to gain experience.

T﻿here may be mentioned more tasks, but the above should suffice to suggest that much can
be back after the program is written and tested.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

32

A system development method

3	� A SYSTEM DEVELOPMENT
METHOD

In this book, I have mentioned the so-called waterfall model, which is a method to system
development, and I will in chapter 5 with an example shows how the method can be used
to develop a small program. I have described the waterfall model as a system development
method consisting of 6 phases, and there are other descriptions of the method, some of
which are simpler and others more extensive, but common to them is that they describe
the system development as a course

analysis – design – programming – test

T﻿hese are four key activities in any system development method, but in many contexts,
particularly in the development of larger IT solutions, it is a simplistic view on system
development. Firstly, experience shows that it is unrealistic from the start to establish the
final requirements specification and then develop a design for the program. It is necessary
to work iteratively and develop a part of the program that can be tested by the future users
before proceding with other parts towards the finished program. This means that you work
with analysis, design, programming and test as to return and continue with additional analysis
activities and so on. Second, the system often – at least for larger solutions – include many
other activities and, finally, the programs to be developed are so different that a method
like the waterfall method is too limited to accommodate the development of all kinds of
programs. Thus, it is too simple to carry out a system development using a number of
phases carried out in a particular order. There is a need for more flexible methods that
can be adapted to the given task and situation – something that I will look at later in the
other books.

T﻿he waterfall model, however, has its uses and benefits, and here I would mention:

-- The model is simple – there is not much to learn.
-- T﻿he method describes and applies the basic activities in the system development.
-- T﻿he method is better than nothing.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

33

A system development method

33

T﻿he conclusion is that the waterfall model is very applicable for the development of small
programs which have not many uncertainties and the model is used in the next books, but
with the important addition that it is adapted by my way to the development of a program.

As mentioned, I later will look at other system development methods, and I also mentioned
that these methods practical success is somewhat variable and ranges from developing
programs without at all using a method, to developing the delepment department’s own
system development method based on experience and current tasks and inspired by specific
theoretical methods. Although the system theory and method has been established as part
of IT education for many years, the methods are not always applied in practice, and it is
in my opinion for two reasons:

1.	T﻿he methods have been perceived as a waste of resources.
2.	T﻿he methods have required too much documentation.

http://s.bookboon.com/EOT

JAVA 7: ABOUT SYSTEM DEVELOPMENT

34

A system development method

Are these the reasons for not to use alternative procedures in practice, they are both wrong,
but has the reliability that one should seek methods that limits the documentation.

The above is not really a system development method, but rather some guidelines that you
can follow to develop a program. It is not a system development method, because there is
no precise guidelines on what to do, but the goal is that it can become so if you compares
the contents of this book with the following examples and thus work out best practices for
application development. T﻿he result is that I shall want to consider a system development
project as a process consisting of six activities:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

35

MVC

4	 MVC

Above at the design I have talked about Model View Controller as a pattern for the architecture
of a GUI program. It is a three-layer architecture, and in the following I will briefly elaborate
the architecture, as I will use it in the following example.

Model View Controller – short MVC – is one of the most talked about design patterns as a
pattern that recommends how to design a program with a graphical user interface. MVC is
a very interesting pattern, because the pattern is concerned with a very frequently occurring
problem, and it is a pattern that is available in several forms, in particular because different
types of applications require variations of the pattern, but also because the development
tools often introduce their own variations.

There are three elements in MVC:

1.	Model representing the program’s data and thus the program’s state, and it is also
the model, which implements the essential parts of the program logic. What the
model do is hidden from both the controller and view, but the model defines
(often via an interface) methods such that the controller and the view can read
and modify the model’s state, and the model can send notfications to observers
concerning changes in the state. Typically, the view layer may be observer, but also
the controller layer may be observer for the model.

2.	View representing the model and displays the model’s state by means of components
in a graphical user interface. The program’s view will often use many different
components (for example panels, buttons, input fields, etc.), and it’s the view layer’s
responsibility to ensure that these components reflects the model’s state.

3.	The controller processes the user’s input and determine what impact it should have
for either program’s view or model.

In my use of MVC the main program will typically create the view object, which then has
the responsibility to establish the controller and the model and possible send the model
as a reference to the controller (possibly also a reference to the view itself). The result is
that the controller knows the model (and possibly also the wiew, but, when appropriate,
typically through an interface), while the view knows both the controller and the model.
To get loose couplings between the elements both the view, controller and model are often
defined by an interface and MVC can be outlined as shown below.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

36

MVC

36

In the figure, are both the model, view and controller defined by an interface. It is not
certain that it will be the case in practice, but the objective is that in this way you can
better replace a layer (for example the program’s view) without affect the other layers. The
dotted lines illustrates that the model can send notifications to the other layers. Listeners
are typically the program’s view, but it can also be the controller.

The idea is the following:

-- When there are an occurrence of an event in the application’s view, because the
user is doing something, the view will delegate the treatment to the controller (call
a method on the controller), which then decides what to do.

-- The view can always read the model’s state using the methods defined by an interface
that the model implements.

-- The controller knows the view so it can be notified to update the user interface.
-- The controller also knows the model so that the controller can update the model.
-- The model knows neither the controller or the view, but it implements the observer

pattern such the view (and possibly also the controller) may be registered as observers
and receive notifications when the model’s state is changed.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 7: ABOUT SYSTEM DEVELOPMENT

37

MVC

The above is a common sight on MVC, which seeks decoupling of the elements using
interfaces. Another question is, in turn, where and how the individual parts/components
are created. That is, how the individual objects are instantiated and that is to a large extent
determined by the current development tools. It will be illustrated with the following
example of a GUI program.

Another question is what the individual layers concretely should contains in the form of
classes and other types. In general, the view layer may contain a class for each window, and
there will, in principle, also be a corresponding controller. Moreover, in all three layers there
will also be other classes and defining interfaces. There may also be several layers, and often
there will be a layer below the model layer, which has the task to map the object-oriented
model to for example a database. This layer is often called a data access layer. For large
applications, it may also be a possibility to create an overview to subdivide the individual
layers, so they consist of several packages.

MVC exists as mentioned in several variants and is a highly used design pattern, because
it is sufficiently flexible. This may mean that some of the types and maybe even layers are
not found in a concrete solution. There is nothing wrong with that, and you should not,
of course complicate a solution needless because a pattern prescribes it.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

38

Library

5	 LIBRARY

As a final example, I will write a program that can maintain a simple library of books, for
example on an educational institution. In addition to being able to manage the library’s content
the program must also be able to manage borrows for example to students and staff. It is,
therefore, a typical database application. The aim is to test the waterfall method and the MVC
pattern with an example that is a typical office application with a graphical user interface.

5.1	 TASK FORMULATION

The task is to develop a program for managing a library of books at an educational institution,
when books can be borrowed to the institution’s staff and students. The program should
partly be able to manage the library’s holdings of books, including the registration of new
books, and also manage borrowed books and especially recall. Since the books are typically
textbooks used for teaching/research, and where you often only need small lookups, the
application must offer search facilities, where you can also see who, where appropriate, have
borrowed a specific book.

The maintenance of the library’s contents is performed by an employee who has responsibility
for registering new books and delete discontinued titles. Moreover, it is also the librarian’s
responsible to send reminders to borrowers who have not returned borrowed books.

All on the institution can, in principle, borrow a book, and book borrowing is a self-service,
where a person when borrows books may register himself as a borrower of the borrowed
books. The library operation is thus based largely on trust.

5.1.1	 REMARK TO THE TASK FORMULATION

The task formulation is nothing but a short description of the task. There are many details
to be clarified, but it is part of the analysis.

The results of the phase is alone this document, and a project folder named library. Preliminary
the folder contains only a subdirectory doc for this document.

5.2	 ANALYSIS

The program is an ordinary PC application running on a machine located in the library
such that borrowers can registering information about a borrow and return books. All who
are created as a user, can borrow books, and the principle is that if a book leaves the library,
it must be registered as borrowed and to whom, and when the book later is brought back
to the library, the borrower must record the book as returned.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

39

Library

39

The analysis includes:

1.	The system’s data
2.	User access
3.	The programs functions

5.2.1	 THE SYSTEM’S DATA

An institution may in principle have many titles, where a title is an ordinary paper book.
Basically, the library contains books with academic content, divided into categories, but
the library can in principle also contains non technical books. It is understood that a book
should be recorded with the following information:

-- ISBN
-- Title
-- Edition
-- Publisher year
-- Category
-- Publisher
-- Authors

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 7: ABOUT SYSTEM DEVELOPMENT

40

Library

-- Number of pages
-- Number of copies
-- A description

ISBN is not used as key as the library includes books that do not have an ISBN. Since
there are two formats of the ISBN, one should be able to register both numbers. The rules
for ISBN are indicated by:

http://www.isbn.dk/

Both the categories and the publishers are just recorded as a name, and there must not be
two categories or publishers with the same name.

Authors are registered with a first name and a last name. It provides a problem as there
may well be several authors with the same name. It has therefore been decided to register
an author with the following information:

-- First name
-- Last name
-- A description

where the description can be used to register additional information – for example if two
authors have the same name.

To borrow books, a person must be registered as a borrower/user. A user is registered with
the following information:

-- Name
-- Address
-- Zip code
-- Phone number
-- Position (for example student)
-- Email address

The email address is perceived as key.

When a user borrows a book, the book is recorded together with who the borrower is and
the date.

http://www.isbn.dk/

JAVA 7: ABOUT SYSTEM DEVELOPMENT

41

Library

5.2.2	 USER ACCESS

For a user to borrow a book, the user must log in by entering the email address and a
password. If you as a user comes to the library machine, you can immediately see a list of
the library’s books, but otherwise you should be able to do anything else than log in. After
log in, there must be three levels for the use of the program:

1.	Ordinary users (students), which alone can search the books and read all the
information about a particular book and including who might have borrowed the
book. An ordinary user can also borrow the book (if not all copies of the book are
borrowed) and returns the book back.

2.	Librarians (stafs) as beyond what an ordinary user can, in addition, can maintain the
library. That is create books, publishers, categories, authors and modify these data.
Librarians should not be able to delete books (publishers, categories and authors).

3.	Administrators that can perform all functions that in addition to the above primarily
includes maintenance of users, including sending emails to users regarding recall
of borrowed books.

There may well be several administrators, but when running the program the first time the
program must automatically create an administrator.

5.2.3	 THE PROGRAM’S FUNCTIONS

At programstart: An overview of all the books in the library with the possibility of filtering.

Ordinary users:

-- search the library
-- see details
-- borrow books
-- return borrowed books
-- see information about the other borrowers of a book
-- change password

Librarians:

-- create and maintain books
-- create and maintain publishers
-- create and maintain categories
-- create and maintain authors

JAVA 7: ABOUT SYSTEM DEVELOPMENT

42

Library

42

Administrators:

-- delete books, authors, categories, publishers
-- create and maintain users
-- sending mails regarding recall of books

The result of the above analysis appears from the following requirements specification.

5.2.4	 REQUIREMENTS SPECIFICATION

When the program opens, it should display a list of all the library’s books, where for each
book appears

-- title
-- publisher year
-- publisher
-- category

If you are not logged in, you can not do anything other than browsing in the book list.

http://s.bookboon.com/GTca

JAVA 7: ABOUT SYSTEM DEVELOPMENT

43

Library

Functions

The program has the following features, which are organized into four menus:

General

-- Log in

Users

-- Search
-- Change password
-- Log out
-- View details (opened by double clicking on a book)

Librarians

-- Maintenance of publishers (create, modify)
-- Maintenance of categoris (create, modify)
-- Maintenance of authors (create, modify)
-- Create books
-- Maintenance a book (opened by double clicking on a book)

Adminitrators

-- Delete publishers
-- Delete categories
-- Delete authors
-- Delete books
-- Recall of books
-- Maintenance of users (create, modify, delete)

The most important feature is Maintenance a book, which opens a window that shows all
the details about a book. The window is also used to

-- Borrow the book (if not all copies are borrowed)
-- Return a borrowed book
-- See who has borrowed the book, if it is borrowed

JAVA 7: ABOUT SYSTEM DEVELOPMENT

44

Library

Depending on the user role, you can also from this window

-- Change all information about the book
-- Delete the book

When searching you must be able to search for

-- ISBN13, matches the start of the string
-- ISBN10, matches the start of the string
-- Title, matches the content of the string
-- A particular edition
-- A particular publisher year
-- A particular publisher
-- A particular category
-- Author, two strings separated by spaces where the last part matches the start of the

last name and the first part matches the content of the first name
-- Text, matches the content of the description

Maintenance of users must display a list of all users, and you should be able to creates new
users and modify information about a particular user. In this context, it must be possible
to see what books the user has borrowed.

At recall of books you must be able to select a time interval (between two dates), and you
should then get a list of all the books that are borrowed in that period. You have to select
the books to be recalled, and then it should be possible to send an email to the borrower.

Users

There are three user roles corresponding to the above three categories. After login, the
features available are determined by the user role:

1.	ordinary users
2.	 librarians
3.	 administrators

JAVA 7: ABOUT SYSTEM DEVELOPMENT

45

Library

45

Datadictionay

Name Data type Description

Book

Isbn13 String on 17 characters Not required

Isbn10 String on 13 characters Not required

Title String on max 255 characters

Edition Integer
Not required, 1–9

both inclusive

Year Integer Not required, 4 digets

Pages Integer Not required, positive integer

Copies Integer Not required, positive integer

Publisher String on max 50 characters

Cattegory String on max 50 characters Not required

Text Any text Not required

 .

http://s.bookboon.com/AlcatelLucent

JAVA 7: ABOUT SYSTEM DEVELOPMENT

46

Library

Name Data type Description

Author

Firstname String on max 50 characters Not required

Lastname String on max 30 characters

Text String on max 200 characters Not required

User

Email String on max 100 characters

Password String on max 30 characters

Firstname String on max 50 characters

Lastname String on max 30 characters

Address String on max 50 characters

Zipcode String on 4 characters

Telefon Streng på max. 20 tegn Not required

Title String on max 50 characters Not required

Role Integer
1 = admin, 2 = staf

or 3 = student

Deployment

The program uses a database and there must be written a script that can create the database.

There should be written script, which can install the program on the users machine.

5.3	 DESIGN

The program has low complexity, and basically the program must maintain a database and
execute queries on the database. The design is performed in the following steps:

1.	database design
2.	 layout of the user interface
3.	design of the architecture
4.	design of the model layer
5.	design of the dal layer
6.	design of the controller layer

JAVA 7: ABOUT SYSTEM DEVELOPMENT

47

Library

5.3.1	 DATABASE DESIGN

The database can be illustrated by means of the following class diagram in which the book
and the user are the two main entities. For all entities are chosen a surrogate key. Regarding
category, titles and author there are no other obvious keys, and even if a publisher has an
official publisher identifier in combination with the country code, it is not suitable as a key,
as many publishers consists of several publishers (or series) with the same name. For book
is selected a surrogate key because not all books has an ISBN. Finally, there is the user,
wherein the email address could be used as a key, but since it is a relatively long string,
there is also selected a surrogate key.

For the relationship between user and book is associated an attribute called date that indicates
the date a book is borrowed. From the general mapping rules to a relational model you get
the follwing diagram, where there are defined an entity to a user’s title:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

48

Library

48

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 7: ABOUT SYSTEM DEVELOPMENT

49

Library

The model is fully normalized to third normal form. The script that creates the database is
called Library.sql and are prepared in accordance with the above design and data dictionary
from the analysis. Some names have been changed (primarily foreign keys). The script is
shown below as the specific data definitions is important in the programming phase:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

49

lIbrary

The model is fully normalized to third normal form. The script that creates the database is
called Library.sql and are prepared in accordance with the above design and data dictionary
from the analysis. Some names have been changed (primarily foreign keys). The script is
shown below as the specific data definitions is important in the programming phase:

 use sys;

 drop database if exists library;
 create database library;

 use library;

 create table title (
 id int auto_increment not null,
 name varchar(50) not null,
 primary key (id)
);

 create table publisher (
 id int auto_increment not null,
 name varchar(50) not null,
 primary key (id)
);

 create table category (
 id int auto_increment not null,
 name varchar(50) not null,
 primary key (id)
);

 create table author (
 id int auto_increment not null,
	 firstname	varchar(50),
 lastname varchar(30) not null,
 text varchar(200),
 primary key (id)
);

 create table book (
 id int auto_increment not null,
 isbn13 char(17),
 isbn10 char(13),
 title varchar(255) not null,
 edition int,
 year int,

JAVA 7: ABOUT SYSTEM DEVELOPMENT

50

LibraryJAVA 7: ABOUT SYSTEM DEVELOPMENT

50

lIbrary

 pages int,
 copies int,
 catid int,
 pubid int,
 text text,
 foreign key (catid) references category (id),
 foreign key (pubid) references publisher(id),
 primary key (id)
);

 create table written (
 bookid int not null,
 autid int not null,
 foreign key (bookid) references book (id) on delete cascade,
 foreign key (autid) references author (id) on delete cascade,
 primary key (bookid, autid)
);

 create table zipcode (
 code char(4) not null,
 city varchar(30) not null,
 primary key (code)
);

 create table user (
 id int auto_increment not null,
 email varchar(100) not null,
 passwd varchar(150) not null,
	 firstname	varchar(50)	not	null,
 lastname varchar(30) not null,
 address varchar(50) not null,
 code char(4) not null,
 phone varchar(20),
 titid int not null,
 role int default 3,
 foreign key (code) references zipcode (code),
 foreign key (titid) references title (id),
 primary key (id)
);

 create table borrow (
 bookid int not null,
 userid int not null,
 date date not null,
 foreign key (bookid) references book (id) on delete cascade,
 foreign key (userid) references user (id) on delete cascade,
 primary key (bookid, userid)
);

JAVA 7: ABOUT SYSTEM DEVELOPMENT

51

Library

51

JAVA 7: ABOUT SYSTEM DEVELOPMENT

51

lIbrary

51

	load	data	infile	'/var/lib/mysql-files/data/zipcodes'	into	table	zipcode

		character	set	UTF8	fields	terminated	by	';'	lines	terminated	by	'\n'	(code,	
city);

The table zipcode must be initialized with information about Danish zip codes, which is
done in the last command by reading data from a text file. The file is called zipcodes. For
safety reasons, MySQL generally do not accept the command

LOAD DATA INFILE

unless the file is placed in a sub directory with read access for all in the directory

	/var/lib/mysql-files

After this the script can be executed and the database is created.

There is also written a script called Books.sql that creates three books in the database. This
script is intended solely as part of the development, such that the database has a content,
and the script is executed after the database is created.

The table zipcode must be initialized with information about Danish zip codes, which is
done in the last command by reading data from a text file. The file is called zipcodes. For
safety reasons, MySQL generally do not accept the command

LOAD DATA INFILE

unless the file is placed in a sub directory with read access for all in the directory

JAVA 7: ABOUT SYSTEM DEVELOPMENT

51

lIbrary

51

	load	data	infile	'/var/lib/mysql-files/data/zipcodes'	into	table	zipcode

		character	set	UTF8	fields	terminated	by	';'	lines	terminated	by	'\n'	(code,	
city);

The table zipcode must be initialized with information about Danish zip codes, which is
done in the last command by reading data from a text file. The file is called zipcodes. For
safety reasons, MySQL generally do not accept the command

LOAD DATA INFILE

unless the file is placed in a sub directory with read access for all in the directory

	/var/lib/mysql-files

After this the script can be executed and the database is created.

There is also written a script called Books.sql that creates three books in the database. This
script is intended solely as part of the development, such that the database has a content,
and the script is executed after the database is created.

After this the script can be executed and the database is created.

There is also written a script called Books.sql that creates three books in the database. This
script is intended solely as part of the development, such that the database has a content,
and the script is executed after the database is created.

http://s.bookboon.com/BI

JAVA 7: ABOUT SYSTEM DEVELOPMENT

52

Library

The table user has a column called passwd, which are intended for the user’s password. It
has the type VARCHAR and the values are therefore saved as text, but in encrypted form.
The password is a calculated message digest, which in principle is an integer, that is stored
in the database. In such the type should be BINARY, but I want to convert the number
to a hexadecimal string, and then the type must be VARCHAR.

5.3.2	 LAYOUT

The program should have a very classic layout where it opens a main window with a list
of all books in the library. In addition, the program consists of a menu and several dialog
boxes that either are opened from the menu, by clicking of a button or by double-clicking
on an item in a JTable. The program’s main windows are:

-- MainView, which is the main window with the menu and shows an overview of
all books.

-- LogonView, there is a login dialog box (for entering the user name and password).
-- DetailsView, that is a dialog box to display the details about a book as well as show

who have borrowed the book.
-- BookView, there is a dialog box to edit a book. The dialog box should also be used

both to create and edit books and can only be accessed if you have staf privileges.
It is the program’s most complex dialog.

-- BorrowView is a simple dialog box that shows which users have borrowed a particular book.
-- TitleView, there is a dialog box for maintenance of titles.
-- CategoryView, which is a dialog box for maintenance of categories.
-- PublisherView, which is a dialog box for maintenance of publishers.
-- AuthorView, which is a dialog box for maintenance of authors.
-- PasswordView to change the user’s password.
-- SearchView, that is a dialog box for advanced search.
-- UserView, there is a dialog box for maintenance of users. It is also a complex dialog box.
-- RecallView, which is a dialog box for recall of books. It is an average complex dialog.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

53

Library

The relationship between the windows can be illustrated as follows:

As regards the advanced search, you can search for the following criteria:

1.	 ISBN-13
2.	 ISBN-10
3.	Title
4.	Edition
5.	Publisher year
6.	Publisher
7.	Category
8.	Author
9.	Description

JAVA 7: ABOUT SYSTEM DEVELOPMENT

54

Library

54

-- When searching the ISBN, the number needs to start with the search text.
-- When searching the title and description, the text must contain the search text.
-- When searching the author, you enter any string, and if there is a space, the last

space is separating the first and last name. The first name must contain the search
text while last name must start with the search text.

-- For the other fields the search value must be equals to the fields value.

With regard to the dialog box RecallView it should for a selected period show a list of all
the books that are borrowed. Here the administrator can select which books to send an
recall notice, and what borrows that has to be removed. The latter corresponds to books that
are lost, and the number of copies has to be reduced by 1. If the administrator checked a
book for a recall notice the program must sent an email to the borrower.

As the above dialog boxes are all relatively simple, there are not developed prototypes.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 7: ABOUT SYSTEM DEVELOPMENT

55

Library

5.3.3	 ARCHITECTURE

The program is written starting from MVC, and uses basically a 4-tier architecture:

The main() method creates MainView, which then directly or indirectly instantiates other
program objects. A window creates essentially a controller, but for very simple windows
where there is no particular data processing the windows directly calls methods in the model
layer. A controller must perform an essential task to be included. As a start, I have created
a NetBeans project called Library, where preliminary are defined the following packages

The model layer (see below), defines an object oriented abstraction over the database. The
database operations are not implemented in the model layer, but are implemented in a layer
under the model layer (Data Access Layer), which only the model layer knows. The aim
is to keep everything regarding the database hidden from the rest of the program and to
create an overview, and in order to facilitate maintenance. The disadvantage is that as the
model layer must include very thin classes that act as adapters for the dal classes.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

56

Library

5.3.4	 DESIGN OF THE MODEL LAYER

The model layer consists primarily of classes that represent the objects, the program must
manipulate. The classes can be illustrated in the following diagram:

The classes are all simple and consists primarily of instance variables and get-and set methods.
The implementation of the classes methods is deferred to the programming phase. As an
example is shown the class Book:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

56

lIbrary

5.3.4 DESIGN OF THE MODEL LAYER

The model layer consists primarily of classes that represent the objects, the program must
manipulate. The classes can be illustrated in the following diagram:

The classes are all simple and consists primarily of instance variables and get-and set methods.
The implementation of the classes methods is deferred to the programming phase. As an
example is shown the class Book:

 package library.models;

 import java.util.*;

	//	Represents	a	book

 public class Book

 {

	 public	static	final	int	ISBN13	=	17;

	 public	static	final	int	ISBN10	=	13;

	 public	static	final	int	TITLE	=	255;

	 private	int	id;	//	the	book’s	id

	 private	String	isbn13;	 	 	 	 	 //	the	book's	ISBN-13
	 private	String	isbn10;	 	 	 	 	 //	the	book's	ISBN-10
	 private	String	title;	 	 	 	 	 //	the	book's title
	 private	Integer	edition;		 	 	 	 //	the	book's edition
	 private	Integer	year;	 	 	 	 	 //	the	book's publisher year
	 private	Integer	pages;	 	 	 	 	 //	the	book's number og pages
	 private	Integer	copies;	 	 	 	 	 //	number	of	copies	og	this	book

	 private	String	text;	 	 	 	 	 //	a	description	of	the	book

	 private	Category	category;	 	 	 	 //	the	book's category
	 private	Publisher	publisher;	 	 	 	 //	the	book's publisher
	 	private	List<Author>	authors	=	new	ArrayList();	 //	the	book's authors
 }

JAVA 7: ABOUT SYSTEM DEVELOPMENT

57

Library

57

The class User has af reference to the class Book, where there is a reference for the books
that the user has borrowed. When a user borrows a book, the reference should indicate
which book and when the book is borrowed, and for that is added the following class to
the model layer:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

57

lIbrary

57

The class User has af reference to the class Book, where there is a reference for the books
that the user has borrowed. When a user borrows a book, the reference should indicate
which book and when the book is borrowed, and for that is added the following class to
the model layer:

 package library.models;

 import java.util.*;

	//	Represents	a	borrow	of	a	book
 public class Borrow
 {
	 private	Calendar	date;	//	the	date	for	the	borrow
	 private	Book	book;	//	the	book	that	has	been	borrowed
 }

The result is, that there are added 7 model classes to the model layer.

The model layer delegates all database operations to the DAL layer, such that everything
regarding the database and SQL are located there. Therefore, the model layer defines an
adapter class for each of the 6 model classes, and an example is:

The result is, that there are added 7 model classes to the model layer.

The model layer delegates all database operations to the DAL layer, such that everything
regarding the database and SQL are located there. Therefore, the model layer defines an
adapter class for each of the 6 model classes, and an example is:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 7: ABOUT SYSTEM DEVELOPMENT

58

LibraryJAVA 7: ABOUT SYSTEM DEVELOPMENT

58

lIbrary

 package library.models;

 import java.util.*;

	//	Adapter	class	for	User
 public class Users
 {
	 /**
	 *	Returns	all	users.
	 *	@return	All	users
	 */
	 public	List<User>	getAll()
 {
	 throw	new	UnsupportedOperationException();
 }

	 /**
	 *		Returns	a	user	with	a	particular	email	address	and	password.
	 *	@param	email	The	user's	email	address
	 *	@param	passwd	Message	digest	of	the	user's	password
	 *		@return	A	User	object	if	the	user	is	found	or	else	null
	 */
	 public	static	User	getUser(String	email,	String	passwd)
 {
	 throw	new	UnsupportedOperationException();
 }

	 /**
	 *	Returns	a	user	with	a	particular	key.
	 *	@param	id	The	user's	primary	key
	 *		@return	A	User	object,	if	the	user	is	found	and	else	null
	 */
 public User getUser(int id)
 {
	 throw	new	UnsupportedOperationException();
 }

	 /**
 * Creates a new user.
	 *	It	is	assumed	that	the	user	object	previously	is	validated.
 * @param user The user to be added to the database
	 *	@param	passwd	Message	digest	of	the	user's	password
 * @return true, if user is added
	 */
	 public	boolean	insert(User	user,	String	passwd)
 {
	 throw	new	UnsupportedOperationException();
 }

JAVA 7: ABOUT SYSTEM DEVELOPMENT

59

Library
JAVA 7: ABOUT SYSTEM DEVELOPMENT

59

lIbrary

	 /**
	 *		Updates	a	user.	It	is	assumed	that	the	user	object	previously	is	validated.
 * @param user The user that should be updated
 * @return true, if user is updated
	 */
 public boolean update(User user)
 {
	 throw	new	UnsupportedOperationException();
 }

	 /**
 * Method that is used by a user to change the password
	 *	(the	user's	own	password).
 * @param user The user
 * @param passwd Message digest of the new password
	 *	@return	true,	if	the	user's	password	is	changed
	 */
	 public	boolean	update(User	user,	String	passwd)
 {
	 throw	new	UnsupportedOperationException();
 }

	 /**
 * Delete an user with a particular key.
	 *	@param	id	The	user's	primary	key
 * @return true, if the user is deleted
	 */
 public boolean delete(int id)
 {
	 throw	new	UnsupportedOperationException();
 }

	 /**
 * Tests if there is an user with a particular email.
 * @param email The mail address to search for
 * @return true, if the user is found
	 */
	 public	boolean	exists(String	email)
 {
	 throw	new	UnsupportedOperationException();
 }

	 /**
	 *		Method	used	by	an	adminstrator	to	change	an	user's	password.
	 *	@param	email	The	user's	email	address
 * @param passwd Message digest of the new password

JAVA 7: ABOUT SYSTEM DEVELOPMENT

60

Library

60

JAVA 7: ABOUT SYSTEM DEVELOPMENT

60

lIbrary

60

	 *	@return	true,	if	the	user's	password	is	changed
	 */
	 public	boolean	changePassword(String	email,	String	passwd)
 {
	 throw	new	UnsupportedOperationException();
 }
 }

As seen in this class, the encryption of the users password happens in the model layer. The
principle is as follows. When creating a new user, you choose a password, which of course
is just a string. For this password is calculated a message digest, which is just a bit pattern
calculated using a hash algorithm. This bit patttern is converted to a hexadecimal string
and is stored in the database along with the other user data. When you again want to read
the user’s data (for example at logon), you must re-entering the password, calculate a new
message digest and check if it matches the one stored in the database. The principle is to
use a calculation algorithm that is strong enough so that no one is capable on the basis
of the encrypted value in the database to determine or guess the user’s password. Java has
built-in classes for that sort of calculation which is considered to be sufficiently strong.

As seen in this class, the encryption of the users password happens in the model layer. The
principle is as follows. When creating a new user, you choose a password, which of course
is just a string. For this password is calculated a message digest, which is just a bit pattern
calculated using a hash algorithm. This bit patttern is converted to a hexadecimal string
and is stored in the database along with the other user data. When you again want to read
the user’s data (for example at logon), you must re-entering the password, calculate a new
message digest and check if it matches the one stored in the database. The principle is to
use a calculation algorithm that is strong enough so that no one is capable on the basis
of the encrypted value in the database to determine or guess the user’s password. Java has
built-in classes for that sort of calculation which is considered to be sufficiently strong.

http://s.bookboon.com/Subscrybe

JAVA 7: ABOUT SYSTEM DEVELOPMENT

61

Library

5.3.5	 DESIGN OF THE DAL LAYER

The DAL layer must define classes to database operations. There must be a class for each
adapter in the model layer, and basically the classes will consist of static methods. Since the
program is database heavy, a significant portion of the code would be placed in this layer.

A problem to be solved is where to store the username and password to the database server,
when these values can not be hard coded. The values should be stored in a configuration
file that administrators can configured.

5.3.6	 DESIGN OF THE CONTROLLER LAYER

In general, there will be a controller class for each dialog box. Although controller classes in
principle is simple, they will contain some code as they need to validate the user input. It is
typical controller classes that sends data to the model, if they can validate the data correctly.

It is also the controller layer that sends mail to users when an administrator has to recall
books. Java has the necessary classes to send mails.

5.3.7	 REMARK TO THE DESIGN

The result of the design is

1.	 the above report
2.	 a CSV file containing Danish zip codes
3.	 a SQL script Library.sql that creates the database
4.	 a SQL script Books.sql that creates three books in the database
5.	 a NetBeans project with the result of the design

5.4	 PROGRAMMING

The phase requires that the database is created, and the script that creates the three books
is performed.

I will divide the programming in four steps (iterations):

1.	The book list
2.	Maintenance of books
3.	User administration
4.	Borrowing and search

The first iteration is relating to the MainView which should shows a list of all books in the
database. The iteration also defines the overall look and feel.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

62

Library

The second iteration includes the maintenance of books, authors, publishers and categories,
that is create, modify and delete.

The third iteration includes the maintenance of users, including logon and implementation
of the users’ access rights to the program.

Finally, the last iteration implements the users borrow of books and return of books and
including the administrator’s recall of books with the issue to send mails with recalls
to borrowers.

In the following I will, for each iteration briefly explain what is done. The result of each
iteration is documented with a NetBeans project.

5.4.1	 THE BOOK LIST

As the first is created a copy named Library1 of the NetBeans project from the design.

Then I have written the model classes Publisher, Category, Author and Book finished. They
are all simple classes, and the work is mainly to implement the get- and set methods and
override equals(), such that comparing of objects have value semantics.

The next step is to write four classes in the dal layer:

1.	BookData, that should have a static method, that returns alle books in the database
2.	PublisherData, that should have a static method, that returns a publisher with a

particular key
3.	CategoryData, that should have a static method, that returns a category with a

particular key
4.	AuthorData, that should have static a method, that returns all authors for a

particular book

All classes are simple and will be expanded continuously through the project’s iterations.
Here are the last three methods defined with friendly visibility, because they should not
be used outside their package. There is also defined a simple class Db that only has one
simple metode, that returns a connection to the database. All parameters to the database
are hard coded within this class, something to be changed later. The class will also later be
expanded with other methods.

After implementing the above classes I have implemented the method getBooks() in the
model class Books.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

63

Library

63

Then the model can provide the necessary data to the book list and I can address to write
the program’s MainView.

To separate classes in the view layer I have created a sub package:

-- library.views.tables to helper classes for JTable components

The MainView must contains a JTable, and I have added the folowing classes to the
above package:

-- IntegerRenderer that is a CellRenderer that assign a font and defines that numbers
should be right aligned. It also defines that 0 must be shown as blank.

-- StringRenderer that is a CellRenderer that assign a font and a margin.
-- FilterListerner that is a simple interface that defines a single method used to define

a row filter for a JTable
-- Filter that is a simple class that implements DocumentListener, and is used to simplify

the definition of a row filter for a JTable
-- BooksTable that is a model for the JTable

http://s.bookboon.com/volvo

JAVA 7: ABOUT SYSTEM DEVELOPMENT

64

Library

To the package library.views are added the following classes:

-- Options, that is a simple class that defines the fonts, that the program should use
-- GUI, that is a class with statical help methods to build the user interface
-- MainView, that is the program’s main view

After these classes the main() metod can open the MainView, and the result is:

The menu is created with the necessary menu items, but none of the menu items has
a function.

You will notice that instead of the class GUI I could have used class library PaLib, and in
fact there is no particular reason that I have not done it.

After this the first iteration is completed and the program can be shown to the future users
as a verification that the task is understood.

5.4.2	 MAINTENANCE OF BOOKS

As the first is created a copy named Library2 of the NetBeans project from the previous iteration.

In this iteration I should implement the functions under the menu Librarians, and the
function to edit a book when the user double click a book in the JTable, and that is the
following functions

1.	Maintenance of publishers
2.	Maintenance of categories
3.	Maintenance of authors
4.	Create book
5.	Edit book

JAVA 7: ABOUT SYSTEM DEVELOPMENT

65

Library

I’ll start with maintenance of publishers that is selected from the menu and opens the
following dialog:

that in a list box displays a list of all the publishers. If you double-click a publisher in the
list box, you have chosen the publisher and the name is inserted in the input field. The
meaning of the buttons are as follows:

-- Close close the window.
-- Clear clear the input field and sets the selection of a publisher to null.
-- OK creates or updates a publisher. If there is not already selected a publisher a

new publisher is created and otherwise the selected publisher’s name is updated.
-- Delete deletes the selected publisher. Preliminary the button is active, but after the

next iteration it will only be active if the user is administrator.

To implement the function I have written the following code:

1.	The class PublisherData is expanded with the necessary methods (5 methods) to
maintain the publisher table in the database. To simplify the class, the class Db is
expanded with some helper methods, that will be used in other DAL classes.

2.	The methods in the adapter class Publishers are implemented, such they call the
corresponding methods in the class PublisherData.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

66

Library

66

3.	To the package library.ctrls is added a class PublisherController, which is a controller
for the above dialog. If a method in the controller can not be executed properly,
the method returns false, and the view can then read an error message.

4.	There is added a new package library.views.listeners, and to this package is added
an interface BookListener, which defines two methods that can be used to send
notifications if the contents of the database is changed.

5.	The class GUI is modified and updated with two new methods.
6.	The dialog box is defined by the class PublisherView in the package library.views.

The dialog box’s constructor has a parameter of the type BookListener so that it can
send notifications to the main window on the changes of publishers.

7.	The class BooksTable, which is the data model for the main window’s JTable, is
updated with two methods, which can fire an event if the model is updated.

8.	The MainView is modified so it implements the interface BookListener, and the
menu opens the dialog box PublisherView.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 7: ABOUT SYSTEM DEVELOPMENT

67

Library

After the function is implemented, the following test is performed:

1.	 create two publishers
2.	 close the dialog box
3.	modify one of the new publishers
4.	delete the other publisher
5.	 close the dialog box
6.	delete the last test publisher

As the next step I will implement maintenance of categories. The result is a dialog box, which
in principle is identical to the above, but it is only necessary to write the following code:

1.	The class CategoryData must be expanded with the necessary methods.
2.	The methods in the adapter class Categories should be implemented.
3.	To the package library.ctrls is added a class CategoryController, which is a controller

for the dialog.
4.	The dialog box is defined by a class CategoryView in the package library.views.
5.	The MainView is modified so the menu opens the dialog box CategoryView.

The dialog is tested in the same manner as above.

Next step is to implement the function Maintenance of authors. The function is similar
to the above, but as there may be many authors, the authors are this time presented by a
JTable (see below), and at the top are fields for a filter. The code is similar to the above,
but this time must be added a class to library.views.tables that defines a data model for the
JTable component.

The function is tested as follows:

1.	 create an author alone with a last name
2.	 create an author with a first name and a last name
3.	 create an author with a first name, a last name and a description
4.	 close the window
5.	open the window again and test the filters
6.	modify all the three fields for two of the new authors
7.	delete one of the new authors
8.	 close the window
9.	open the window again
10.	delete the last two new authors

JAVA 7: ABOUT SYSTEM DEVELOPMENT

68

Library

As the last function should I implement the function Create book, which is the most complex
of all dialog boxes (see below). This is the same dialog box that is used to both create a
book and edit a book where the last function is performed by double-clicking on a book
in the book list.

The dialog box can be explained as follows. On the left side are the fields for a book, while
the right side shows a list of all authors. The fields on the left side should be self-explanatory
except the field for authors, that is a list box. If you want to associate an author of a book,
you should double-click on the author in the table on the right. If you wish to remove an
author from the book, you should double-click on the author in the list box.

The meaning of the buttons on the left side are (from left):

-- Allows you to create a publisher if the publisher has not been created and is available
in the combo box.

-- Allows you to create a category if the category has not been created and is available
in the combo box.

-- Delete the book (the button will subsequently only be active if the user has the
right to delete the book, and if it is not the function Create book).

-- Return a book – is first implemented in iteration 4.
-- Borrow a book – is first implemented in iteration 4.
-- Show who has borrowed a book – is first implemented in iteration 4.
-- Save the book.
-- Close the dialog.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

69

Library

As regards the right side the two input fields are for a filter, while the buttons respectively
remove the filter and allows you to create a new author.

To write the code, I have done the following:

-- The class BookData has been extended with the necessary methods (4 methods)
that can maintain the database with respect to books. Since most of these methods
must maintain multiple tables, they are written as transactions.

-- The adapter class Books is correspondingly updated.
-- There is added a package library.util, which currently only has a single class called

Tools. The class contains only static methods that are used to validate ISBN, email
addresses and more.

-- There is added a controller class BookController, whose primary task is to validate
user entries/choices.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

70

Library

70

-- Since it must be possible to create both categories, publishers and authors from the
above dialog there are added three simple dialog boxes to library.views:

-- CreateCategory that is a simple dialog box used to create a catagory.
-- CreatePublisher that is a simple dialog box used to create a publisher.
-- CreateAuthor that is a simple dialog box used to create an author.

Since these are very simple dialog boxes, there is not defined any controller for these
windows.

-- There is added more interfaces for the project. The package bibliotek.views.listeners
is expanded with the following interfaces:
-- CategoryListener, defining one single method. The class BookView implements

this interface and the class CreateCategory uses the method to send a notification
when there is created a new category.

-- PublisherListener, defining one single method. The class BookView implements
this interface and the class CreatePublisher uses the method to send a notification
when there is created a new publisher.

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 7: ABOUT SYSTEM DEVELOPMENT

71

Library

-- AuthorListener, defining one single method. The class BookView implements this
interface and the class CreateAuthor uses the method to send a notification when
there is created a new author.

-- EditListener also defines a single method, and is implemented by BookView. The
method is called when another dialog box modifies the contents of a book, so
BookView can keeps track that the content is changed.

-- EditTextListener is a class that implements the DocumentListener and works the
same way as above and set the content of a window of the type BookView as
changed, when one of the window’s input fields are changed.

-- EditListListener is a class that implements ItemListener and works the same way
as above and set the content of a window of the type BookView as changed,
when one of the window’s combo boxes change selection.

-- EditDataListener is a class that implements ListDataListener and works the same
way as above and set the content of a window of the type BookView as changed,
when the content of the window’s list box with authors is changed.

-- Then there is the dialog box, BookView, which is a very comprehensive dialog. It
will be modified in the next two iterations.

-- Finally, MainView is updated and attached an event handler for double-click in the
table. Double-clicking on a row in the table (a book) MainView opens BookView,
but with data for that book inserted. You then have the option to edit the book
and possible delete it.

The function is tested in the following manner:

1.	 create a book (ISBN 10, title)
2.	 create a book (title)
3.	 close the window
4.	 create a book (ISBN 13, title, edition, year, existing publisher, non existting category,

3 non existing authors)
5.	 close the window
6.	 edit the first of the above books (edition, year, pages, non existing publisher, non

existing category, one non existing author)
7.	 edit the second of above books (edition, pages, copies must be 2, non existing

publisher, existing category, one non existing author, description)
8.	 edit the third book (pages, description)
9.	 create a book (title, description, authors)
10.	close the window
11.	double-click on the book last created
12.	test filter for authors
13.	delete the book
14.	create 10 random books

JAVA 7: ABOUT SYSTEM DEVELOPMENT

72

Library

72

5.4.3	 USER ADMINISTRATION

In this iteration are implemented the maintenance of user administration, such that each
function can only be performed under the four user roles

1.	 all
2.	 students
3.	 librarians
4.	 administrators

The iteration also includes changing the password.

As a first step, I have created a copy of the project from the previous iteration, and the
copy is called Library3.

Next I have expanded the model layer and the dal layer:

1.	The classes Title and User in the package library.models are implemented.
2.	There are added two classes to the dal layer: TitleData and UserData. The first is

similar to the other classes in this package, but the latter has some more methods.

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 7: ABOUT SYSTEM DEVELOPMENT

73

Library

3.	Two adapter classes Titles and Users are added to the package library.models.
4.	There is added a class Zipcodes to library.dal representing the zip codes. The class

is written as a singleton, where the private constructor initializes a list with the
zip codes.

5.	There is added a method to the class Users that tests whether a zip code exists. This
method should not be in this class (due to low cohesion, but in its own class), but
for reasons of simplicity, it is located in Users.

Regarding the database, it was decided that a title named Administrator must denote a super
user that should not be deleted or edited. The class TitleData tests for that.

To maintain the title’s is added a new menu item in the menu Administrator in MainView.
The function is basically identical with the functions Maintenance Categories and Maintenance
Publishers and opens a dialog box identical to those functions. There is has added two
new classes:

-- TitleController (in library.ctrls)
-- TitleView (in library.vievs)

The function is tested in the following manner:

1.	 create a title
2.	 create another title
3.	 create a third title
4.	 close the window
5.	open the window again
6.	modify the three titles
7.	 close the window
8.	open the window again
9.	delete the three titles
10.	close the window
11.	open the window again
12.	create two titles with the names Teacher og Student

JAVA 7: ABOUT SYSTEM DEVELOPMENT

74

Library

The next step is to implement the function Maintenance of users, which is a relatively complex
function. The function must open the following window:

that in a JTable shows an overview of all users in the database. In addition to the JTable is
at the bottom filter fields, and the Clear button removes a possible filter. The Create button
opens a dialog box where you can create a user:

If you have created a user and double-click a line in the table with all users, you opens the
same dialog (see below), but this time there is shown a table on the right. The table is not
used yet, but it should show an overview of the books that this user has borrowed. The
table is a JTable and it gets only a content in the last iteration.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

75

Library

75

When you create a user, you select a user role

1.	Admin
2.	Staf
3.	Student

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 7: ABOUT SYSTEM DEVELOPMENT

76

Library

These roles are used for user access rights that are implemented below.

The implementation of Maintenance of users adds several new types. The package library.
views.tables is expanded with two classes:

-- UserTable which is a data model for the JTable showing the overview of all users.
-- BorrowTable, that in the same way is a data model for the JTable shown above and

are applied to the books, a user has borrowed. This class is not finished and the
objects that table should show is not yet defined.

There is added an interface named UserListener to library.views.listeners that defines two
methods, indicating that a user is created, modified or deleted. The interface is implemented
by UsersView.

There is added a controller class for UserView to library.ctrls. The class is called UserController.

Finally is added two view classes:

-- UsersView, that shows the overview over all users.
-- UserView, that is used to edit a user.

The following is done to test the function:

1.	 create three users
2.	 close the window
3.	open the window again
4.	modify each of the three users
5.	 close the window
6.	open the window again
7.	delete the three users
8.	 create a user as Admin
9.	 create a user as Staf
10.	create a user as Student

When the program is opened the first time, there is in principle no users and no titles.
It has been decided that there must always exsists a super user who is known by the user
role 0, and entitled Administrator. When the program starts, it tests whether this user and
title are available, and if not, the program will automatically open a dialog box so you can
create this super user, and the title Administrator. Both this title and the super user must
not be deleted or changed.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

77

Library

There have been updates to the classes UserData, Users and UserController. Furthermore, to
the package library.views are added the following classes

-- AdminView which is almost the same dialog as UserView but so you can not select
a title and a role.

-- SuperView, which is a simple dialog box for entering the super user’s password.

Furthermore, there is added an interface named LogonListner as MainView implements. It
defines a single method that is called from SuperView when you have entered a correct password.

Back in this iteration is the implementation of the user access rights. It includes the following:

1.	There is added a class CurrentUser to library.models. The class is implemented as a
singleton and it represents the current user. After the program is started, there is
no user – no user is loged in.

2.	There is added a new controller, called LogonController that is controller for the
dialog box below.

3.	There is added a dialog LogonView to logon. The class can be found in library.views.
4.	An additional controller called PasswordController is added as controller for the

following dialog box.
5.	There are added yet a view to library.views. The dialog box is called PasswordView

and is used by the current user to change password.
6.	Finally is added a dialog box DetailsView to library.views, which opens if a Student

double click on a book in the overview. The reason is that a user with Student access
only should be able to se the book’s details, but not to change data. A student can
borrow the book, but this is first implemented in the next iteration.

I have also changed the class MainView, so more menu items are active, but so that there is
only access to the individual menu items depending on the user access rights. In the same
way that are changed some dialog boxes, so some of the buttons are inactive, depending
on the current user.

The result of the above is tested as follows:

1.	when the program opens, there should only be access to MainView with the overview
over all books (the user should be able to apply the filters) and the menu General

2.	 log in as student – there should now further be access to the menu Users
3.	double-click on a book to test the dialog box DetailsView
4.	 change the password for the current user

JAVA 7: ABOUT SYSTEM DEVELOPMENT

78

Library

78

5.	 log out
6.	 test that there is only access to the menu General and you not can open the dialog

box DetailsView
7.	 log in as the same user again (with the new password)
8.	 log in (without first logging out) as staf – there should now further be access to

the menu Librarians
9.	 test all functions under the menu Librarians are working as they should and the

Delete buttons are inactive
10.	log out and test that there is only access to the menu General
11.	log in as admin – there should now further be access to the menu Administrator
12.	test that the functions under the menu Administrator (except the first) works as

they should
13.	test all functions under the menu Librarians works as they should and the Delete

buttons are active (all buttons used to borrow books should not work)
14.	log out
15.	log in as the super user
16.	log out

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 7: ABOUT SYSTEM DEVELOPMENT

79

Library

5.4.4	 BORROWING AND SEARCH

In the last iteration I lack to implement the borrowing of books and advanced search.
Furthermore, the problem with the database parameters must resolved so that they are
move into to a configuration file.

As in the other iterations, I have created a copy of the project from the previous iteration,
and the copy is called Library4.

I will start implementing borrowing of books, so users can borrow and return books. In
principle, it is simple enough, as there is to some extent made preparations, but the classes
must be corrected in several places.

1.	The class Borrow is changed, and there is added a field user, representing the user,
that borrows a book, and the class’s methods are implemented.

2.	There is also defined a class BorrowData in the data access layer that encapsulates
the database table borrow and also a corresponding adapter class in the model layer,
called Borrows.

3.	To show all borrows of af book there is added a view class BorrowedView showing
which users have borrowed a particular book. Because this class applies a JTable,
there is also added a data model to library.views.tables called BorrowedTable.

4.	The class DetailsView is changed so that the three buttons relating to borrowing
books now are active, and such a student can borrow and return books.

5.	The class BookView is changed accordingly so that the three buttons for borrowing
books are active.

6.	The class UserView is changed so that the table that shows the books that a user has
borrowed, now has a content. The class BorrowTable has been changed accordingly.
If you double-click on a book in the JTable for borrowed books, you get the
opportunity to cancel the borrow (the user is adminstrator).

The following test requires that there is a book with at least 2 copies.

1.	 log in as a student
2.	open DetailsView for a book and borrow the book
3.	 close DetailsView and open it again – it should not be possible to borrow the book

again
4.	 close DetailsView
5.	 log in as staf
6.	open BookView (for the same book)

JAVA 7: ABOUT SYSTEM DEVELOPMENT

80

Library

7.	 check who has borrowed the book – BorrowedView
8.	borrow the book
9.	 close BookView
10.	log in as adminstrator
11.	open Maintaining users
12.	open UserView for the staf user
13.	cancel the borrow of the book
14.	log in as student again
15.	check who has borrowed the book – there should be one that is the current user
16.	returns the book

The next step is to implement recall of books from the menu Administrator.

For an application can send mails, there must on the machine be installed an extension to
Java, an API called JavaMail. You can download a jar file (there is only one) from Oracle
and place it in the right place. That is all.

To the package library.util is adding a class called Mail, that uses the above API to send
mails. After that all the technical stuff is in place with respect to send mails. So far, all the
parameters related to mail are hard coded, but it must of course be changed later.

There is added a simple dialog box called MailView, where you with two dates can enter
the period of recall notices. This is the dialog box that opens from the menu. There is also
added a corresponding controller, called MailController.

The dialog box MailsView consists of a JTable showing all borrows within the selected period
(see below). Basically, the window is a JTable with an associated filter. If you double-click
on the title for a borrow you opens the book’s DetailsView, and if you double-click on one
of the other columns you opens a similar dialog box with information about the user. The
dialog box is called BorrowerView. For MailsView is thus added the following classes:

-- MailsTabel, that is the data model for the JTable component
-- BorrowerView, that is the dialog box with user information
-- MailsController, that is controller for the class MailsView. It is this class that sends

mails by using the class Mail in library.util.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

81

Library

81

The table has rightmost two columns, where to put check marks. In the first column you
can marks the borrows that simply must be canceled, while in the other column, are used
select the borrows to be called home.

To test the functionality I have done the following:

1.	 create a user with a mail address that I can use (have access to)
2.	 create another user with a mail address that I can use (have access to)
3.	borrow a book to the first user

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 7: ABOUT SYSTEM DEVELOPMENT

82

Library

4.	borrow a book to the second user
5.	borrow a book to a third user
6.	 log in as adminstrator
7.	 select the function Recall
8.	do not enter anything for period – all borrows are selected
9.	double click om the last name for one of the users to se information about the

borrower
10.	double click on a title to se the details about the book
11.	mark recal for the two first users and delete for the third user
12.	click Recall and test that the functions are performed correct

What remains is to implement the search function. The function displays a window as shown
below, where you can enter/select the search criteria. When you click Search, the books that
match are displayed in the table to the right, and if you double-click on a line in the table
either DetailView or the BookView opens depending on which user you are.

In principle, it is simple to implement the function, and the only complex is writing the
SQL expression to be applied to a concrete search. This is based on the search criteria in
the class BookData and the criteria are prepared in class Books. The dialog is implemented
by means of two classes: SearchView (in library.views) and SearchTable (in library.views.
tables). To test the function, you can not do other than to perform multiple searches. It is
difficult to test the function adequately in this place, because the data may be too small.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

83

Library

Finally, there is added another feature to the menu Administrator for maintenance of the
super user.

Parameters for both the database and the mail server is hard coded, what obviously does
not hold. These values should be moved to a configuration file. It’s called library.config and
is preliminary in my home directory and have the following form:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

83

lIbrary

Finally, there is added another feature to the menu Administrator for maintenance of the
super user.

Parameters for both the database and the mail server is hard coded, what obviously does
not hold. These values should be moved to a configuration file. It’s called library.config and
is preliminary in my home directory and have the following form:

 dbhost:***
 dbport:***
 dbdata:***
 dbuser:***
 dbcode:***
 mlhost:***
 mlport:***
 mluser:***
 mlcode:***

where *** should be replaced of current values. The meaning is as follows:

 - dbhost is the name of the database server
 - dbport is the port, that the database server use
 - dbdata is the name of database
 - dbuser is the name of database user
 - dbcode is the password for the database server
 - mlhost is the name of the mail server (smtp server)
 - mlport is the port, that the mail server use
 - mluser is the mail server’s email address
 - mlcode is the password for the mail server

The project has been expanded with a class Servers in the package library.util. The class is
programmed as a singleton, where the private constructor reads the above configuration file,
and the class has methods that returns a connection to each of the two servers. Next, the
two classes Db and Mail are modified where the specific server information is gone and so
they instead use the class Servers.

When the configuraion file not necessarily should be located in my home directory (but
for example in /etc/opt), is added the following statement to main():

	if	(args	!=	null	&&	args.length	>	0)	library.util.Servers.setPath(args[0]);

This means that you by a parameter can specify where the configuration file can be found.

where *** should be replaced of current values. The meaning is as follows:

-- dbhost is the name of the database server
-- dbport is the port, that the database server use
-- dbdata is the name of database
-- dbuser is the name of database user
-- dbcode is the password for the database server
-- mlhost is the name of the mail server (smtp server)
-- mlport is the port, that the mail server use
-- mluser is the mail server’s email address
-- mlcode is the password for the mail server

The project has been expanded with a class Servers in the package library.util. The class is
programmed as a singleton, where the private constructor reads the above configuration file,
and the class has methods that returns a connection to each of the two servers. Next, the
two classes Db and Mail are modified where the specific server information is gone and so
they instead use the class Servers.

When the configuraion file not necessarily should be located in my home directory (but
for example in /etc/opt), is added the following statement to main():

JAVA 7: ABOUT SYSTEM DEVELOPMENT

83

lIbrary

Finally, there is added another feature to the menu Administrator for maintenance of the
super user.

Parameters for both the database and the mail server is hard coded, what obviously does
not hold. These values should be moved to a configuration file. It’s called library.config and
is preliminary in my home directory and have the following form:

 dbhost:***
 dbport:***
 dbdata:***
 dbuser:***
 dbcode:***
 mlhost:***
 mlport:***
 mluser:***
 mlcode:***

where *** should be replaced of current values. The meaning is as follows:

 - dbhost is the name of the database server
 - dbport is the port, that the database server use
 - dbdata is the name of database
 - dbuser is the name of database user
 - dbcode is the password for the database server
 - mlhost is the name of the mail server (smtp server)
 - mlport is the port, that the mail server use
 - mluser is the mail server’s email address
 - mlcode is the password for the mail server

The project has been expanded with a class Servers in the package library.util. The class is
programmed as a singleton, where the private constructor reads the above configuration file,
and the class has methods that returns a connection to each of the two servers. Next, the
two classes Db and Mail are modified where the specific server information is gone and so
they instead use the class Servers.

When the configuraion file not necessarily should be located in my home directory (but
for example in /etc/opt), is added the following statement to main():

	if	(args	!=	null	&&	args.length	>	0)	library.util.Servers.setPath(args[0]);

This means that you by a parameter can specify where the configuration file can be found.This means that you by a parameter can specify where the configuration file can be found.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

84

Library

84

Test of this change is simple:

1.	 create a configuration file and place it in your home directory
2.	 test if the program can run
3.	move the configuration file to another directory
4.	 start the program from a terminal and specify the configuration file as a parameter

and test if the program still can run
5.	 test where appropriate to send a mail for a recall

5.4.5	 A LAST ITERATION

Now, the program is finished in principle. Although there still is not talking about a large
program, it consists nevertheless of 84 types in the form of interfaces and classes. No matter
how careful you have been in the program development, there is a large chanche that some
of the code is improper, that there is code repetitions and something that could be written
in a better way. It is therefore worthwhile to complete the development of a program with
a code review, where you also should comment the code (to the extent it is not already
done) and remove inconveniences (and of course direct errors). It is a big work, not the
world’s most interesting work, but the work is certainly well spent. Especially should you
pay attention to variables or methods that are not used, and that kind should be removed.

http://s.bookboon.com/elearningforkids

JAVA 7: ABOUT SYSTEM DEVELOPMENT

85

Library

With regard to the code repetition, they should be within reasonable limits removed because
it may be important for the maintenance going forward, but you have to balance the benefit
and one should not remove code repetitions, if the price is that you end up with a code,
which no other can figure out. A code that is robust and easy to understand is one of the
most important quality parameters, and you must be very careful, that code optimization
is not at the expense of safe and readable code.

The code review starts, like the other iterations to create a copy of the project, and I created
a copy named Library5.

As a result of the code review, I have among other things, changed the class BookData. I
have improved the class by optimizing the SQL SELECT statements, such they JOIN more
tables. The result is that a part of the work in this way is been moved to the database server
that is inherently more efficient. Moreover, I have reviewed all classes for the user interface
again, where I have made typical cleanup and controlled that texts are correct.

When developing a program as the program Library, there will be many classes with common
features and for example dialog boxes that are very similar. Here it is natural to copy the
code already written and then modify it (and also common copy and paste). It is of course
nothing wrong with that, but you should be aware that it is one of the very major sources
of errors, simply because you do not get corrected in all places. Therefore, a warning: Be
careful when you copy code.

5.5	 TEST

The program has been tested as follows:

1.	 all borrows are deleted (the function Recall )
2.	 all books which makes no sense are deleted
3.	 all authors that are not relevant are deleted
4.	 all categories that are not relevant are deleted
5.	 all publishers that are not relevant are deleted
6.	 all users (but not the super user) are deleted
7.	 all titles (but not Administrator) are deleted

Then I closed the program and manually used MySQL Workbench to delete the super user
and the title Administrator and ensure that the tables title, user, and borrow are all empty.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

86

Library

The I have:

1.	 started the program and created the super user
2.	 loged in as super user
3.	 created three users (with real mail adsresses) that has different user roles (Admin,

Staf, Student) and related appropriate titles.
4.	 loged in as Staf
5.	 created 20 (real) books such that more books are created party for latter to be

updated, and so that the function is performed in multiple sessions
6.	 loged in as Student and borrowed 5 books
7.	 loged in as Staf and borrowed 5 books, where 2 books are the same books borrowed

to the Student user (some books must have several copies)
8.	 loged in as Admin and borrowed 5 books, where one book is the same book also

borrowed to the Student, and one book is the same book borrowed both to the
Student and the Staf user.

9.	 tested that everything regarding borrowing look right
10.	performed recall of all the borrowed books

When this test is performed properly is back to test the program with many books and many
users. This test can only be performed with the customer and in the right environment. This
means that the customer must provide correct data, both books and users. This data may,
for example, take the form of a CSV file, and you can then write a small program, which
from this file can update the database. Then you can perform the above test again, so you
are sure that the test is performed satisfactorily when the database has a large data volume.

5.6	 DELIVERY

The last phase is to prepare the program for delivery. It takes an icon and the development of
an installation script. The necessary files are assembled in a directory with the following content:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

87

Library

87

I will not show the installation script here. To install the program you must:

1.	 copy the file zicodes to /var/lib/mysql-files/data
2.	open MySql Workbench and perform the script library.sql
3.	update the configuration file library.config with the correct parameters
4.	open a terminal and change currrent directory to the setup folder
5.	perform the command: sudo ./library.sh

The result should be, that you get an icon on the desktop, ad you can start the program.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 7: ABOUT SYSTEM DEVELOPMENT

88

Appendix A

APPENDIX A

I have repeatedly mentioned UML as diagrams that can be used in system development. I
am not a great supporter of UML, but must also admits that the diagrams also has there
uses. Therefore, this appendix provides an overview of the main rules and diagram syntax.

As described above, you in the analysis and primarily in design has to build a model of a
program. This means that you must decide how the program should be written and including,
for example, which classes the program should consist of. To that you can use diagrams
that can illustrate the program’s architecture and key components, and the advantage is
partly that you can work visually with the program’s structure, where you with a diagram
can draw a model that would otherwise have to be explained with many words, and the
model not dependents on the programming language’s many details.

My earlier suggested that I am not so great a supporter of the diagrams, is because they are
difficult to draw (it takes a long time), and they are time-consuming to maintain, if the
design changes during the development process. Another problem is that the diagrams must
have value, and they must be understood by everyone and it is therefore necessary to know
the rules, and these rules tend to be complex and difficult to learn and remember. The first
problem can be solved by using specific case tools that support the development of such
UML diagrams, while the second problem is merely a matter of learning the diagram’s syntax.

UML stands for Unified Modeling Language and is the diagramming intended to models
software in system development. UML defines various types of diagrams, which are aimed
at both analysis and design, and in the following I will briefly describe the most important
of these diagrams and including the most basic drawing rules. The idea is that by means
of diagrams you can draw a model of a program including the most important algorithms,
and whatever I have said above, there is certainly good uses. If you are participating in a
project to develop a software solution, then UML is excellent to support the process where
you jointly by example on a blackboard are modeling a system using UML diagrams.
Here I find modeling diagrams much more important than as documentation of the final
solution. However, one must also not here underestimate the value – especially for creating
an overview, but very detailed diagrams, I find rarely valuable and I do not feel that the
value is commensurate with the resources it takes to produce them.

In short, I find diagrams useful as part of the system development process and as a
documentation to provide an overview of a large and complex system.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

89

Appendix A

In this appendix, I will as mentioned introduce UML. There are many rules and not all are
mentioned, but the emphasis is on the rules – and diagrams – which I find most useful.
The diagrams are all drawn using LibreOffice Draw, and most examples are taken from the
project in this book and the development of a library program and will partly illustrate the
basically drawing rules, and also where and how diagrams can be used.

DOMAIN MODEL

I will start with a domain model, which is a diagram that during the analysis can be used
to illustrate the main concepts that are part of a software solution. The diagram consists of
conceptual classes that are drawn as rectangles, as well as associations between these classes.
Below is a domain model for the library program:

The diagram shows the key concepts for this program. It’s a simple diagram, but it can
be useful at a preliminary stage in the analysis to provide an overview of the key concepts
in the upcoming program’s problem area. In this case there is shown 6 key concepts, but
it is by no means clear which concepts to be there, and in this case there could well be
more. However, you should avoid making the diagram to detailed and keep focused on
the main concepts. It is important to note that the classes in the domain model is not the
same as software classes. The domain model will be an inspiration for the classes that the
program should consist of, and many classes from a domain model will subsequently also
at the design could be recovered as software classes, but not necessarily all. When you draw
a domain model you must stay focused on the conceptual concepts and not thinking in
software engineering.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

90

Appendix A

90

Between the domain model classes, there may be associations that are drawn as straight lines
and possible also with a name, as shown above. An association expressing one or another
connection or relationship between the model’s classes. For example there is an association
between Book and Publisher corresponding to that a book is published by a publishing house.
For associations may be attached multiplicities, and as such indicates the association Published
that a publisher may be associated with 0 or more books, while a book is associated with
exactly one publisher. You can use the following multiplicities:

-- *		 0 or more
-- 1..*		 1 or more
-- 1..n		 1 to n
-- n		 exactly n
-- k,m,n		 exactly k, m or n

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 7: ABOUT SYSTEM DEVELOPMENT

91

Appendix A

A domain model will consist of at least conceptual classes and associations between these
classes but not necessarily multiplicities, and often you do not give the associations names.
If you like, you can also choose to assign attributes to classes such as shown below, which
may help to explain what a conceptual class means, but often it will just complicate the
diagram without adding extra documentation. However, there is no sharp distinction between
what are classes and what are the attributes, and applying classes with attributes, you also
get the chance to show that you found all the main concepts.

USE CASE DIAGRAM

A use case diagram is used to model the environments interaction with the program and is
also an example of a diagram which is used during the analysis. Here, it is used typically for
illustrating user interaction with the system. There are two concepts in the diagram. One is
an actor that indicates an entity that program interacts with. It will often be a person, but
it may also be a hardware device or another system. The second element is a use case that
is the name of a job that the program must perform. The following is a use case diagram
for the library system.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

92

Appendix A

Use cases are drawn as ellipses with a short text telling what the use case is about. A use
case is an operation (a user’s interaction) with the program within a short period of time
that can be perceived as a single session. For example an actor can perform a search in the
library and have as a result a number of titles that matches the search criteria. Similarly, a
user can view details about a book and possibly borrow it.

Actors are drawn with a symbol to illustere a user and with a name below. In this case,
there are four actors, which are all persons, but the actors do not have to be a person, but
may, for example also be a harware device or another program. If so, you sometimes draw
an actor as follows:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

93

Appendix A

93

The interaction between an actor and a use case is shown with an arrow (sometimes just a
non-oriented line). In this case, the arrows each time goes from the actor to the use case,
but it need not be the case and such it may be the application that sends a message to a
hardware device.

In particular, it is allowed that an actor inherits another actor, and it simply means that the
actor who inherits does everything (use the same use cases) that the actor who is inherited
can plus any other use cases. In the diagram above it is illustrated by the fact that the
actor Staf inherits Student. An important consequence of inheritance is that it can make
the diagram simpler (fewer arrows) and thus more useful to read.

Sometimes you also choose (see above) to draw a rectangle around all use cases, where
everything inside the rectangle is perceived as the system, while the actors are outside and
are external.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 7: ABOUT SYSTEM DEVELOPMENT

94

Appendix A

One of the challenges with a use case diagram is what actually are use cases, and as mentioned
above, it should be an action that is limited in time and has the nature of a session with
the system. Looking at the above diagram more of the listed use cases are not really use
cases, but a collection of use cases. Consider as an example Maintains books. It actually
consists of several use cases:

-- Create book
-- Modify book
-- Remove book
-- Borrow book
-- Return book

and the same applies in several places. The problem is that the number of use cases easily
become very large and the diagram corresponding confusing. Do you have to be absolutely
correct, it would typically be required to draw more use case diagrams. Sometimes includes
a use case using another use case, and it can in the diagram be show as:

Similarly, a use case be an extension of another use case, which you can show as follows:

Use case diagrams can not stand alone – at least not as shown in the above example. It is
necessary to have a description of the use case:

1.	The name and a brief description in the form of a text.
2.	The formal requirements and including the result of performing the use case, and

it can be seen as a contract where the use case guarantees a certain result in the
case that it is carried under certain conditions.

3.	Pre conditions are conditions that must be met for the specified use case may be
performed and these pre conditions can be seen as part of the contract.

4.	Scenarios, as a formal description of the sequence of actions or events that occur
between the actor and the system when the use case is performed.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

95

Appendix A

An example of a formal documentation of a use case could be:

Use case: 		 Seek the libray
Name: 		 SeekLibray
Description:		 The user enter or selects search criteria
				 Isbn13, that must start with the search text
				 Isbn10, that must start with the search text
				 Title, that must contains the search text
				 Edition
				 Year
				 Publisher
				 Category
				 Author as first name and last name separated by a space
				 Text, that must contains the search text
			 If a search criteria is blank or missing it should be ignored.
			 The result is a list of the books that match the search criteria.
			 Are there no books that match, the list is empty.
Operations:		 Enter search criteria
			 Select a criteria for Edition, Year, Publisher, Category
			 Click Search
Preconditions:		 If there are selected a Publisher or a Category they must exists.
Postconditions:	� There is created a list with the Book objects, that matches the search

criteria.
			 The content of the database is not changed.

As perhaps clear from the foregoing it may be comprehensive to draw use case diagrams
with corresponding description of the specific use cases, but to make a complete use case
documentation you have also made most of the requirements specification, and you can
perceive the use cases as a formalized method to preparation of the requirement specification.

CLASS DIAGRAM

The most commonly used UML diagram is undoubtedly the class diagram, which is a
diagram used in the design, and which shows many of the program’s classes. It is also the
most complex diagram with many drawing rules. The diagram is usually used in the model
layer and the controller layer. A class is modeled as follows:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

96

Appendix A

96

and represents the class Publisher. The figure consists of three rectangles, where the top is
the name of the class, the middle is the class’s variables, while the last is the class’s methods.
Members (both variables and methods) preceded by a + are public, while members preceded
by a – (minus) are private. A figure as above therefore shows what a class consisting of and
including the members’ visibility. Note especially the syntax of a constructor. Formally you
should also specify the name, as for example

JAVA 7: ABOUT SYSTEM DEVELOPMENT

96

appendIx a

96

and represents the class Publisher. The figure consists of three rectangles, where the top is
the name of the class, the middle is the class’s variables, while the last is the class’s methods.
Members (both variables and methods) preceded by a + are public, while members preceded
by a – (minus) are private. A figure as above therefore shows what a class consisting of and
including the members’ visibility. Note especially the syntax of a constructor. Formally you
should also specify the name, as for example

+	<<constructor>>	Publisher(int,	String)

http://s.bookboon.com/EOT

JAVA 7: ABOUT SYSTEM DEVELOPMENT

97

Appendix A

but the problem is that the line easily becomes long and the class corresponding will fill a
lot, and as a constructor in Java has the same name as the class, I allows to omit the name.
Also note that I have defined types for both variables and methods. It is not always I do
that, and if you feel to achieve the same without these types, it’s okay. It is important to
remember that the meaning of the diagrams is to give an overview.

There is some more drawing rules, and below shows a class that defines a variable that has
package visibility, as well as a method that is protected:

As another example, the following class models the class Publishers:

This class has no variables and the methods names are underlined. The later says that it’s
static methods, and UML uses the same syntax for static variables. As a final example the
figure below shows a model of the class Book:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

98

Appendix A

It is a very large class, and is not very readable (and actually the class Book is not particularly
large, and programs will often contain classes that are much larger), so a little about how
you appropriately can model classes. It has also something to do with what class models
should be used for: Shall they be used to document how the program should be written,
or should they be used to document how the program is written, and in my opinion they
should definitely be used for the first.

With regard to variables you should specify only the essential, and therefore the variables
that are necessary to understand what it is for a kind of objects the class models. In this
case it is in fact also the case, perhaps except for the variable id, which is used to identify
a specific object with a number. This variable is alone used to solve a technical problem,
because the library may have books that do not have an ISBN.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

99

Appendix A

99

With regard to methods apply roughly the same, that you only need to include methods
that describe something essential, and as such it may be appropriate not to write get and set
methods and leave it up to the programmer to decide which of these methods is necessary.
In the same way I will only show the class has a constructor, but if there are more, I show
only one.

Correspondingly, the class can be conveniently modeled as follows:

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 7: ABOUT SYSTEM DEVELOPMENT

100

Appendix A

If we again consider the first version of the class model, you can see that there are get and
set methods for Publisher, Category and Author, and thus as if the class is missing some
variables. It is, however, not the case (not here at design time) as they corresponds to the
relationships between classes.

If you considers the above class models, they will usually require additional documentation,
where it as minimum is necessary to document the methods, and UML also has syntax on
how to do that. I prefer, however, to document the methods with plain text that briefly
explain the meaning of each method – and possible also variables.

If there are multiple classes, there will be relationships between these classes and, in general
it can be

1.	 association
2.	 aggregation
3.	 composition
4.	 inheritance

These relationships are illustrated by a class diagram, and below shows a class diagram for the
model layer in the library program. Let me immediately say that the diagram is not drawn
correctly, since the types of relationships are chosen to show the syntax. If you look at the
classes User and Book, there is shown a relationship between the classes. It was drawn as an
arrow from User to Book, and lists a multiplicity indicating that a User may be related to
more Book objects. It is an example of an association which indicate a loose relationship,
such that it does not necessarily exist in all the program’s lifetime. In this case, indicate the
relationship, that a User has borrowed a book, and when the user at a time handing the
book back the relationship disappears. Therefore, it is shown as an association. That the
multiplicity is shown as * means that a user can borrow more books. This means that the
relationship must be implemented as a list of objects of the type Book in the class User.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

101

Appendix A

There is also a relationship between the class Book and the class Publisher, which, because
of the multiplicity tells that there is associated exactly one Publisher object to a Book object.
The relationship is implemented as an instance variable of type Publisher in the class Book.
The relationship is shown as an Aggregation, meaning a fixed connection between the two
objects. A book does not change publisher, and one can perceive an aggregation in the way
that it refers to something that the book consist of. The aggregated object can, however,
have its own life and can exist even if the aggregation disappears and the object can be
aggregated to multiple Book objects. An aggregation thus reflects a stronger relationship
than an association.

Similarly, the class Category is aggregated with the class Book, but this may indicated with
the multiplicity that a book does not necessarily have a category, but if it has, the category
does not change.

The diagram also shows a relationship between Book and Author, and when the multiplicity
is *, it must be implemented as a list with Author objects in the class Book. The relationship is
also designed as an aggregation, but it is a stronger aggregation, which is called a composition.
The difference is that the authors are again seen as part of the book, but with a stronger
connection, such that if a Book object is deleted then also the Author objects that are part
of it must be deleted. That is, the author objects can not have their own lives, which is not
quite correct (the implementation of the program are different). An author can in principle
have written several books and thus be associated with multiple Book objects. When I above
have shown the relationship as a composition, it is only to show the syntax.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

102

Appendix A

102

Then there is inheritance, and to illustrate this I consider classes from the program Puzzles.
The class HighScore is modulated as other classes, but you should note that the name is shown
in italics. This means that the class is abstract. It is because it implements the interfacse
Comparable<HighScore>, and when the class does not implement the method compareTo(),
it must be abstract. You should note how you in a class diagram shows an interface and
how a dotted arrow shows that a class implements this interface. Also note that the arrow
is shown as an open triangle that generally means inheritance.

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 7: ABOUT SYSTEM DEVELOPMENT

103

Appendix A

The class PuzzleScore is a concrete class that generalizes the class HighScore, and in the case
of a derived class rather than implementation of an interface it is shown with a solid arrow.

The above is the most important of the class diagram, but there is more. However, above, wil
in most examples be sufficient, and it is as mentioned the most widely used UML diagram.

Above is mentioned three diagrams. The first two

-- domain model
-- use case diagram

are aimed at the analysis phase, and the class diagram is used in the design phase. I will
show another four diagrams, all diagrams to be used in the design phase.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

104

Appendix A

ACTIVITY DIAGRAM

An activity diagram is used to show a sequence of operations, and thus a particular workflow
from start to finish, which illustrates the different paths that are followed on basis of various
resolutions. Activity diagrams are typically used in the controller layer to describe business
processes. An example of an activity diagram for the activity that a user wants to borrow
a book might be:

An activity is shown as a rectangle with rounded corners, where the top has a short
descriptive text:

and the activity contains a number of actions that are illustrated by rectangles with
rounded corners:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

105

Appendix A

105

The flow between actions and conditions are displayed with arrows that along with the
diagram’s symbols show roads that can be followed from a start symbol to a final symbol.
The start element is a filled circle, whereas the final element is a circle with a black dot
inside. There are also an alternative finish symbol with a cross inside, and the difference
is that the first ends the entire activity, while the latter just finishing a road within the
activity. It is also possible to assign both pre conditions and post conditions for an action:

that partly describes when the operation can be performed, and what the results are (but
not how the operation is performed):

http://s.bookboon.com/GTca

JAVA 7: ABOUT SYSTEM DEVELOPMENT

106

Appendix A

A diamod represents a branch or a merge that gathers roads. That is that the same symbol
is applied and you can add a name. In the case of a branch, a condition in square brackets
is applied to a path. As an example, the above diagram both has a branch and a merge:

A diagram may also contain fork and join nodes that are drawn as a black bar (vertical or
horizontal), and again are used the same symbol for both. They indicate the start and end of
simultaneous threads (in the example above, the symbols are actually used incorrectly, since
there is no case of multiple threads, and the example should also only show the syntax).
A join is thus different from a merge, as a join synchronizes the two incoming paths and
provide a single result which is first available after both the input paths is closed.

There is some more drawing rules associated with an activity diagram. For example it can
be shown that an action will send data for processing by an object in the following manner:

An alternative notation for the same are:

It is also possible to illustere an exception handling:

Below is shown the syntax for a loop:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

107

Appendix A

The figure is called an expansion region and is a structureret activity carried out several
times. Input and output are displayed as a group of three squares and a label may indicate
iteration, parallel or stream.

PACKAGE DIAGRAM

Next, I will mention a package diagram, which as the name says, is used to provide a top
view of an application’s packages and how the program’s classes are organized into packages,
and one sometimes says that package diagrams are visualizing an application’s namespaces. A
package diagram is useful to show the program’s architecture. A package is drawing as follows:

showing a package called Dal which includes two public classes. As another example below
shows a package from the the program Library:

Actually, it’s not always you are interested in showing which classes a package contains, but
only that the architecture including the particular packages. You then uses the notation:

A package diagram is an overview of a program’s packages, and as an example the following
package diagram shows a package diagram for the program library. The diagram shows the
program’s architecture and what packages are in the individual layers.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

108

Appendix A

108

 .

http://s.bookboon.com/AlcatelLucent

JAVA 7: ABOUT SYSTEM DEVELOPMENT

109

Appendix A

As shown, a package diagram is a very simple diagram that may be used to model the
architecture of a design, but there are in fact a lot of more syntax. For example you can
assign comments:

and there is also a syntax to indicate that a package imports a second package and is merged
of other packages.

SEQUENCE DIAGRAM

A sequence diagram is an interaction diagram, which shows how the objects interact with
each other. The diagram shows several objects drawn horizontally next to each other, and
for each object are drawing a line, showing the object’s lifeline. Sequence diagrams are
suitable to show how the objects are sending messages to communicate with other objects,
but they are not suitable for the logic of complex procedures. As an example the sequence
diagram below shows which objects have been included in the function to borrow a book.
There are four objects:

-- view is an object that represents the dialog box to a user’s borrow of a specific book
-- ctrl is the controller for this dialog box
-- book is a model class, that represents the book, to be borrowed
-- BookData is the repository that represents the table Book and the object which

stores information about a borrow in the database

JAVA 7: ABOUT SYSTEM DEVELOPMENT

110

Appendix A

The diagram does not describe exactly how the program works, but is changed a bit to
illustrate more about the diagram. The dotted lines represent the objects’ life-lines, and the
vertical boxes on the lifelines illustrates that the object performs something. When the user
wants to borrow a book, the view object turn to the dialog’s controller to provide a reference
to the book to be borrowed. It is drawn as a solid arrow and illustrates a synchronous call of
a method in which the calling object waits until a value is returned. When the view object
get this reference, it calls the book object to borrow the book, and it happens again with
a synchronous call. The book object then calls the BookData object to register the borrow,
but this time it’s with an asynchronous call, as indicated by an open arrow. The BookData
object can then at some point send a return value back (thar is an event). During the book
object is drawn a cross. It should illustrate that this object is removed after the function
is performed. It does not happen in the program but is included here to show the syntax.

The sequence diagram is relatively complex, and there are actually a number of other options.
Below is shown how an object can call a method on itself:

As another example, is below shown how an object may send messages to objects which are
not part of the diagram, and the like how to receive messages from other objects:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

111

Appendix A

111

One talks in this context about lost and found messages. You can also use conditions in a
sequence diagram where one or more operations are performed only if a condition is met:

and if you draw a dotted line through the box, you are modeling an else part. By replacing
the word alt with the word loop, you has similarly have modeled an iteration.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 7: ABOUT SYSTEM DEVELOPMENT

112

Appendix A

Sequence diagrams can be excellent to show operations in the control layer, but they also
have their limitations. First, you need a good drawing program, otherwise they are difficult
to draw. Secondly, the diagram – even with a good drawing program – my be uncluttered
if there are many objects, and the diagram tends to grow in both width and height. There
is an alternative called a communication diagram where the objects need not be drawn on
a horizontal line. The syntax is somewhat the same, but the diagram is easier to draw.
However, it is not easier to read and quickly becomes unmanageable.

STATE MACHINES

A state diagram or a state machine is a diagram that models an object, which may be in
different states, and wherein the object can change state due to various events that may
occur. A classic example is a process for a running program. When you start a program,
the operating system will create a process that represents the running application, and the
process starts its life in a new state. After this the process’ life can be modeled in a diagram,
as shown below, where the ellipses represents states and the arrows represents state transitions.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

113

Appendix A

When a process is in the state new it can switch to one of two other states: ready, which
means that the process is ready to run on the CPU (when it has time) or ready-suspended,
which means that the process is ready but not yet can be performed (for example because
it is started as a service or batch job that should run at a later time). If a process is ready
suspended it can switch to ready mode (when the operating system sees the time for it to be
ready occurs). A process which is ready (is in the ready queue), can again be ready suspended,
but it can also switch to running, which means that the operating system select (dispatches)
the process for the CPU. A running process can switch state caused by 4 events. Firstly, there
may be a timeout if it has used CPU in the maximum permitted period. The process then
becomes ready again. It can also be ready suspended (if the process for instance executes a
sleep()) or also i can switch to blocked, which means that it is waiting for a resource (typically
an IO operation such as read a block on the disk). Finally, it may be, that the process is
completed (the program is finished), and the process will then change to a terminated state
where all allocated resources are released before it is removed. When a blocked process
waiting for a resource is ready to proceed (for example because the disk controller signals
of that disk operation is performed), then the process can goes back to ready. A blocked
process can also switch to blocked suspended (for example because of a swap), and from here
it can either switch back to blocked or ready suspended.

A state machine is particularly suited to modeling the life cycle of objects in the same
way as above that periodically changes state, and there are actually many of that kinds of
situations in practice. Therefore, it is a useful diagram, and the diagram is typically drawn as
shown above, but there are extensions. For example you can for a state specific actions to be
performed when the object switches to that state, or when the object changes from the state,
and you can even specify actions to perform if the state change is due to a specific event:

Of course an object can change state from a certain state to the same state:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

114

Appendix A

114

Finally, I mention that a state diagram can be composed of several state diagrams. If you
have a large state diagram, it becomes unmanageable and you can then display an inner
state machine as follows:

The above is by no means a complete description of UML, but it would show a little
about what UML is and can be used for, and some of the diagrams that exists and the
main drawing rules. There are a number of tools that can be used to draw different UML
diagrams, and applying UML, one should take an interest in these tools and take the time
to learn how they works, because the work to draw diagrams otherwise may be too extensive.
As an example I can mention the program Dia.

http://s.bookboon.com/BI

JAVA 7: ABOUT SYSTEM DEVELOPMENT

115

Appendix B

APPENDIX B

In this appendix, I will see a little on database design. When designing a program, you
determines which data has to be stored in the database, and the question is how the
database should be designed and including which tables there needs to be. There is not a
clear answer, but there are some pretty precise recommendations, which could be followed,
and it is the subject of this appendix.

THE ER DIAGRAM

The first step is to draw an ER diagram. Indeed, one could instead use a class diagram,
which offers the same opportunities, but the ER diagram is directly developed for the design
of relational databases, and it is also a diagram that I and other use a lot in practice. The
diagram uses three symbols

where an entity describes a element that is a candidate for a table. An entity plays a bit
the same role, as a class do in a class diagram. An attribute is a property of an entity and
corresponds thus to a variable in a class, and an attribute is a candidate for a column in a
database table. Finally, a relation is a relationship between entities and corresponds thus to
relations in a class diagram. As an example, is shown an ER diagram for the libray database:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

116

Appendix B

There are four entities which are respectively Book, Author, Publisher and User. You can find
these entities in the same way that you find classes to the model layer, and of course there
is no clear solution. It might also not be so important, for if you have found the right
attributes, then the following rules results in almost the same tables. The best thing is to think
about what data is needed to save, and then organize this data in the appropriate entities.

If you considers the entity Book it has 9 attributes, and here is the a Category an example of a
complex attribute, which is composed of Categoryid and Categoryname indicating respectively
an identification of a category and the category name. In addition, all the other attributes
also should be documented so that it is unambiguous what they are used for. That there
exactly should be those attributes are a result of the analysis that has taken place, where
you have identified the data elements to be stored in the database.

The entity Author has two attributes, one of which is a complex attribute. The entity defines
information about an author, and again the analysis has justifying that the entity should
have these attributes.

Between the two entities Book and Author is a relationship that is a many-many relation
that appears with an * on both sides. The relation indicates that a book may be related
to several authors, corresponding to that a book may have multiple authors. Similarly, an
author may be related to several books as an author may have written several books.

The entity Publisher represents publishers and has only one attribute, which is the publisher’s
name. Here too there is a relationship between Book and Publisher, but it is a one-many
relation. There is a * against the entity Book, indicating that a publisher may have published
several books while multiplicity against Publisher is 1. It says that a book must have exactly
one publisher.

Finally, there is the entity User having 7 attributes, wherein the two are composed. The
Email attribute is underlined, which means that it can be used as a primary key. That is,
it is assumed that all users have different email addresses. The other three entities have no
obvious key, and specifically the Book has no key when a book does not necessarily have
an ISBN. In Publisher you could use the Name as key, as there are not two publishers that
has the same name, but it is not an appropriate key, as it is a string that can fill much.

Between User and Book is also a many-many relationship, which indicates that a user has
borrowed a book. Since a user may borrow more books, there is a * on the book side.
When there is a * on the other side, it is because you can have multiple copies of the same
book, and therefore it can be borrowed to more users. The relation is also an example of a
relation with an attribute that here indicates when the book is borrowed.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

117

Appendix B

117

The above is a typical ER diagram, but there are actually several drawing rules. Overall,
you can use the same multiplicities as described during the domain model. Specifically, you
can have one-one relation:

This figure indicates that an entity A must correspond to exactly one entity B, and conversely
that an entity B should correspond to exactly one entity A. The relation could also be

indicating that an enitet B must corespond to exactly one entity A, while an A should
correspond to only one or no B. In this case we say that there is total dependence on the
A side, while there is partial dependence on B side.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 7: ABOUT SYSTEM DEVELOPMENT

118

Appendix B

One can also have relations between more than two entities, for example is shown a relation
between three entities:

In particular, you should note that an entity can have a relation to itself:

An example would be “son of ”.

Finally, there is something called a weak entity, and it are entities, which can not exist unless
they are related to another entity. A weak entity is shown as follows:

A non-weak entity is called a strong entity and is characterized in that it has a key. The
above diagram is not drawn correctly when three of the entities do not have keys. It is
however nor weak entities, as they all cover concepts that can exist without being related
to another entity. When you have an entity in which none of the attributes are candidates
for keys, you has to use a surrogate key, which is an attribute that has no other purpose
than to ensure uniqueness of entities. With three surrogate keys, the diagram can be drawn
in the following manner, where all entities now have keys:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

119

Appendix B

The diagram has no weak entities, but a waek entity is typically an entity that has a partial
key, and thus an attribute which, together with the key from the entity that the weak entity
is attached to are a composite key for the weak entity.

An entity that is not a weak entity is sometimes referred to as a regular entity.

MAPPING TO RELATIONAL MODEL

When he ER diagram is finished, it must be mapped to a relational model, as you do in 7
steps. In this context denotes a relation, what that turns into a table in the database, and
it consists of fields that later become columns. The seven steps of imaging an ER diagram
to a relational model is quite precise and are as follows:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

120

Appendix B

120

Step 1

For each regular entity you creates a relation with a field for each simple attribute, and a
field for each simple attribute in a composite attribute. In this case, there are four relations,
where the relation for Book gets 11 fields, the relation for Author 4 fields and the relation for
Publisher 2 fields. Finally, there is the relation User, which in principle should have 9 fields,
but I’ve added a surrogate key, so it will get 10 fields. The reason is, that even if can assume
that the mail address is unique and thus can be used as a key it is not suitable, because in
database contexts the value of a key in principle can not be changed, and when students
often change email addresses, it is not suitable for the key, and also email adresses are long
strings, that are not especially suitable as keys. The result of the first step is as shown below:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 7: ABOUT SYSTEM DEVELOPMENT

121

Appendix B

Step 2

Then all weak entities are mapped in the same way, and the only difference is that each
relation, this time will have an additional field which is the primary key from the regular
entity that the weak entity is associated with (additional fields if the primary key is composed).
The key in the relation for the weak entity is then the key from the regular entity and the
partial key.

In this case, this step results in no changes, as there is no weak entities.

Step 3

All one-one relations between two entities are mapped. In this case there is none, but the
rules are the following.

If the relation is of the form

the relation for B (the side with partial dependence) is extended with a field that is the
primary key of A, as well as fields for any attributes associated with the relation. The new
field in B is thus a foreign key that refers to A. Is there instead is talk about following relation

JAVA 7: ABOUT SYSTEM DEVELOPMENT

122

Appendix B

you must choose one of the sides and place the foreign key there (and possibly attributes).
Alternatively, you could create an entirely new relation that then must contains the primary
keys from both entities that then are a composite primary key in the new relation, and
they will also each be foreign keys respectively to A and B. The new relationship must also
contains necessary attributes associated with the relation between A and B. Are there many
attributes, it can talks for this alternative solution.

In the particular case of a one-one relation for the relation itself, one will typically implement
the relation as a foreign key.

Step 4

In the case of a one-many relation, it is always implemented as a foreign key at the many
side. In this case there is a single one-many relation, and the relation for Book must be
expanded with an additional field, which is the primary key in the relation Publisher, and
Book therefore has a foreign key to Publisher:

Step 5

Many-many relations between two entities are always mapped as a new relation that includes
the two primary keys from the two entities and possible attributes associated with the relation.
The two primary keys is a composite primary key in the new relationship, and they are each
foreign keys to the two entities. The mapping is thus quite in the same manner as described
above as an alternative for mapping of a one-one relation. In this example there are two
many-many relationships, and the diagram below shows the result after step 5 is performed;

JAVA 7: ABOUT SYSTEM DEVELOPMENT

123

Appendix B

123

Note that there are two new relations that I have called, respectively Written and Borrow.
The arrows indicate foreign keys. Note that I also renamed some of the attributes.

http://s.bookboon.com/Subscrybe

JAVA 7: ABOUT SYSTEM DEVELOPMENT

124

Appendix B

Step 6

The next step concerns the multivalued attributes that are attributes that can have multiple
values. In this case, there is no multivalued attribute, but a multivalued attribute is drawing
in the following manner:

to illustrate that a book could have several categories. If need be, the multivalued attribute
must be moved into a new relation, that in addition to the two attributes consists of the
primary key from the original relation (Book). The new relationship will have a composite
primary key, and Bookid is foreign key to Book.

Step 7

The final rule addresses relations between more than two entities, for example a relationship
of the form:

This creates a new relation which contains the primary keys of the three entities and possible
attributes associated with the relation, and thus the mapping is done in principle in the
same way as with many-many relations:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

125

Appendix B

After this the mapping the design is in principle finished, and the outcome was in this
case 6 relations, all of which have a primary key and contains no multivaled attributes.
You could then create a similar database, which would then have 6 tables. However, there
is a quality assessment of the results that have been reached, and wee talk about that the
design should be normalized. This is done by ensuring that the design meets several normal
forms, and usually that database must be on the third normal form. There are more, but
in practice you usually stops with the third normal form.

NORMALIZATION

Wee say that a relational model is on first normal form if it consists of relations which has
no multivalued attributes, and if all relations have a primary key. If you have completed
the above mapping, it will automatically be satisfied, and the above model is then on first
normal form. You can also think of it in that way, that you can create a database from a
relational model that is on first normal form.

A relational model is on second normal form if it is on first normal form and, if it for any
relation applies that it does not contain attributes, which is determined by a part of a composite
primary key. The fact that a relation is not on second normal form says that it contains
information on more concepts, and therefore should be divided into two relations where the
attributes that are determined by a part of the primary key, are moved into a new relation
together with the controlling part of the primary key, and it is as a primary key in the new
relation. In the original relation, the controlling part of the primary key is a foreign key to
the new relation. If a relationship does not have a composite primary key, it is per defintion
on second normal form. In the current example, there are only two relations which have a
composite primary key, namely, Written and Borrow. Here, the first, has only the primary
key and is therefore on second normal form, and the latter has only one additional attribute,
which is determined by all of the primary key and is therefore also on the second normal form.

To illustrate the principle, the following relation is perceived as part of a model for a sales
system, that for customers shows what products they have bought:

This means that a certain product sales is identified by the customer’s phone number
and the part number (it is a composite primary key). For each sale is stored the date, the
customer name and email address and the customer balance, product name, unit price and
number of units. This relation is not on second normal form, since some of the attributes
is determined by the field phone, while others are determined by the field itemnr, and the
relationship must be divided into two relations as follows:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

126

Appendix B

126

The goal of the second normal form is to ensure that the database tables do not contain data
concerning more things, since it can make it more difficult to understand database content.

A relational model is on third normal form, if it is on second normal form and, if for any
relationship applies that it does not contain attributes, which is determined by other fields
than the key. It expresses that there for a piece of information is not stored more than
necessary, and if so must be divided into two relations where the attributes are determined
by something other than the key, is moved into a new relation together with the determining
attributit that it is as a primary key in the new relationship. The determining attribute
remains in the original relation where it then is a foreign key to the new relation.

http://s.bookboon.com/volvo

JAVA 7: ABOUT SYSTEM DEVELOPMENT

127

Appendix B

If a relation is not on third normal form wee say that there is a transitive dependency.
Looking at the current example, it is clear that relations Publisher, Author, Written and Borrow
all is on the third normal form. However, looking at the relation User it has a transitive
dependency because the city name is determined by the zip code. There must be created a
new relation that includes the zip code and the city name, and where the zip code is the
primary key. At the same time the city name is removed from the relation User and the
attribute zipcode is a foreign key to the new relation. If you considers the relation Book,
it corresponding has a transitive dependency because the category name is determined by
category id. There must therefore be created a new relation with the attributes catId and
CategoryName and catId is the primary key. The name attribute is removed from Book, while
catId being foreign key to the new relation.

After normalization is the relational model of the database as follows:

and it consists therefore of 8 relations.

JAVA 7: ABOUT SYSTEM DEVELOPMENT

128

Appendix B

The aim of third normal form is to eliminate redundancy, which means that the same
information is recorded at multiple places. For exammple category name must not be
stored for any books, but to save it in its own table, a book must then have a reference (a
foreign key) to the name. When redundancy is unfortunate it is because that stored the
same information in several places, it can means unnecessary space consumption, but the
main reason is that it becomes more difficult to maintain the database, as it may means
that an information has to be changed in several places. If, for example, imagine that you
want to change the name of a category (perhaps because it’s spelled wrong), then it would
means if the name was not in its own table that it would be necessary to change all books
for that category while with the database on the third normal form you only needs to
change at one place.

OTHER DATABASE IMPROVEMENTS

If you look at the normalization process, it will typically entails more tables in the database,
and it is in principle nothing wrong with that but it may mean that in requests to databases
are required with many JOIN operations that are actually complex to perform by the database
management system. One can say that a fully normalized database meets maintaining the
database, and thus its integrity, but not necessarily satisfy queries. Therefore, we speak also
about denormalisation where one goes the other way and turn tables together, even if it
means that the database then contains redundancy. The reason for denormalization can be
databases, which is rarely updated and you want to optimize for the sake of queries.

If you have a database normalized to third normal form you have in principle a good
database design, but there are other considerations to make. For example are NULL values
a problem – especially for JOIN operations. If you have an attribute that is typically NULL,
you should consider moving it to his own table. If you, as an example, take the relation
Author it has an attribute Text, which is a description of an author. One must assume that
this attribute will typically be NULL, because you’ll rarely describe an author. You can
then move it out to it’s own relation with the primary key of the table Author as key. The
new relation thus has two attributes, where Autid is both primary key and foreign key to
the table Author:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

129

Appendix B

129

Now, you should not generally move all attributes that can be NULL to their own table,
because it can get the number of tables to explode and thus complicate the database
unnecessary, but if you have an attribute as Text, that very rarely has a value, you should
consider to do it.

As another example, one can have an attribute, where the value is a text, and where there
will be many rows have the same value for that attribute. Where necessary, we can consider
moving the attribute to its own table. The reason is that a text takes up a lot and there is a
risk that the same value is spelled differently. As an example, you may consider the relation
User that has a Title attribute that indicates a user’s title. It could, for instance be Student,
Teacher etc. Here you could then consider the following design, where that attribute is
moved to its own table with a surrogate key. The attribute is in the original relation replaced
by this key. The relational model will then be extended accordingly.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 7: ABOUT SYSTEM DEVELOPMENT

130

Appendix B

THE USE OF A CLASS DIAGRAM

The basis of the above approach to database modeling is an ER diagram, but you might as
well start with a class diagram:

The difference is indeed just that the Entities are drawn as classes with attributes and the
relations are shown as associations. With a diagram like the above, it is clear that the 7
mapping rules above can be used directly, and to end up with exactly the same result.
Whether you uses an ER diagram or a class diagram has something to do with attitudes. I
find the ER diagram particularly suitable, especially in collaboration with others and have
to model a database, and especially I think it’s a great tool if you are more and have a
blackboard available. Conversely, the class diagram is easier to draw, and a large ER diagram
can quickly become confusing. Therefore, I often use in the initial modeling an ER diagram
without attributes that alone shows the entities and relations. The attributes comes first in
action in step 1 in the mapping.

The construction of the database is a design activity, and the starting point will typically be
a design of the model layer, and then you perhaps already has a class diagram that can be
adjusted as a basis for the database, but what do you do if this model contains inheritance?
The relational model does not support inheritance, and therefore there is a need for a method
that can map a class hierarchy of relationships in a relational model.

In fact, there is a so-called EER diagram (for enhanced ER diagram) which supports
modeling specializations. The diagram has very complex drawing rules and hard to read,
and I never use this tool, but if you are a big supporter of the ER diagram it can be forces
worth learning the diagram to know – also because the mapping of specializations can be
done in several ways, what the EER diagram has syntax for. Assume as an example that
you have the following classes:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

131

Appendix B

where there of course does not need to be three derived classes, and where each class can
have both fewer and more attributes. I will show 4 options for mapping this structure of
a relational model.

One possibility is to create a relation for each of the four classes (entities):

That is to create a relation with the base class attributes and its primary key. There also
are created a relation for each of the derived classes, wherein each relation contains the
derived class attributes and the key from the base class. The primary key of the relations
for the derived classes is the primary key from the base class, and it is also a foreign key
to the base class relation. You can say that it is a general method that can always be used
regardless of how the specialization may be.

As an alternative, you can create a relation for each derived class, which then must contains all
attributes from the base class, including the primary key and attributes from the derived class:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

132

Appendix B

132

This solution is only interesting if an object is always either an X, Y or Z, but can not be a
base object. The solution is thus of interest in the situation where the base is an abstract class.

As another example, is a mapping where all the attributes together are in a single relation:

This solution requires an additional attribute – referred to herein as t for type – which
indicates the type of object in question. It is a design that has the disadvantage that it leads
to many NULL values (where, for example it is a X object, then all the y and z attributes
must be NULL) and the solution therefore has greatest interest, if the derived classes have
few attributes.

When designing databases it can actually happens that an object can be several things, as for
example both an X, Y and Z. If you have such a design, consider the following mapping,
which is a variant of the above:

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 7: ABOUT SYSTEM DEVELOPMENT

133

Appendix B

Here are the final three attributes are booleans indicating whether an object can be thought
of as an X, Y and Z.

CREATE THE DATABASE

After you have modeled a database by the above procedure and has drawn up a normalized
relational model, the model should be converted into a database. The model shows which
tables must be, the attributes that are primary keys and the foreign keys, and I would assume
that the finished model is the following:

Back there are a few things that need to be addressed, primarily concerning each attribute.

First, there is the data types, where for each attribute you must selected a data type. It requires
knowledge of the problem area and which values the individual fields should contain. In
particular, you must consider the attributes for text fields, where you must specify a size.
Moreover, you must consider what constrains to be defined for the individual data fields,
and this is particularly

1.	 surrogat keys
2.	where the fields may contain NULL
3.	possible default values
4.	 cascading for foreign keys

JAVA 7: ABOUT SYSTEM DEVELOPMENT

134

Appendix B

Finally, there is the naming of both the tables and attributes. In principle, it is clear from
the mapping, but often I will in the model for technical reasons, choose short names, but
for the sake of SQL it can often be sensible with a little more attention to names. Some
recommends the following practices

1.	 select relatively short but telling names to tables
2.	use as name for a relational table (many-many) the names of the two tables referenced

separated by an underscore
3.	use the table name (in singular) followed by an underscore as a prefix for all attributes
4.	use as name for a foreign key the name of the primary key of the table referenced

It can lead to quite long names, but it ensures the uniqueness of the names in the SQL
expression, and thus expression that is easier to read, so the principle can be quite reasonable.

Finally is shown a script that creates the database to the library from the above design and
naming conventions:

JAVA 7: ABOUT SYSTEM DEVELOPMENT

134

appendIx b

Finally, there is the naming of both the tables and attributes. In principle, it is clear from
the mapping, but often I will in the model for technical reasons, choose short names, but
for the sake of SQL it can often be sensible with a little more attention to names. Some
recommends the following practices

1. select relatively short but telling names to tables
2. use as name for a relational table (many-many) the names of the two tables referenced

separated by an underscore
3. use the table name (in singular) followed by an underscore as a prefix for all attributes
4. use as name for a foreign key the name of the primary key of the table referenced

It can lead to quite long names, but it ensures the uniqueness of the names in the SQL
expression, and thus expression that is easier to read, so the principle can be quite reasonable.

Finally is shown a script that creates the database to the library from the above design and
naming conventions:

 use palibrary;

 drop table if exists books_authors;
 drop table if exists books_users;
 drop table if exists books;
 drop table if exists publishers;
 drop table if exists categories;
 drop table if exists authors;
 drop table if exists users;
 drop table if exists titles;
 drop table if exists zipcodes;

 create table publishers (
 publisher_id int auto_increment not null, # surrogate key for a publisher
	publisher_name	varchar(50)	not	null,	 #	the	publisher's	name
 primary key (publisher_id)
);

 create table categories (
 category_id int auto_increment not null, # surrogate key for a category
		category_name	varchar(50)	not	null,	 #	the	category's	name
 primary key (category_id)
);

JAVA 7: ABOUT SYSTEM DEVELOPMENT

135

Appendix B

135

JAVA 7: ABOUT SYSTEM DEVELOPMENT

135

appendIx b

135

 create table authors (
 author_id int auto_increment not null, # surrogat key for an author
	 author_firstname	varchar(50),	 	 #	the	author's	first	name
	 author_lastname	varchar(30)	not	null,	 #	the	author's	last	name
 author_text varchar(200), # additional documentation
 primary key (author_id)
);

 create table books (
 book_id int auto_increment not null, # surrogat key for a book
	 book_isbn13	char(17),		 	 	 #	ISBN	with	13	digits
	 book_isbn10	char(13),		 	 	 #	ISBN	with	10	digits
	 book_title	varchar(255)	not	null,		 #	the	book's	titel
	 book_edition	int,	 	 	 	 #	the	book's	edition
	 book_year	int,	 	 	 	 	 #	the	book's	release	year
 book_pages int, # number of pages in the book
 book_copies int, # number of copies of this book
 category_id int, # foreign key to categories
 publisher_id int, # foreign key to publishers
 book_text text, # description of this book
 foreign key (category_id) references categories (category_id),
 foreign key (publisher_id) references publishers (publisher_id),
 primary key (book_id)
);

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 7: ABOUT SYSTEM DEVELOPMENT

136

Appendix BJAVA 7: ABOUT SYSTEM DEVELOPMENT

136

appendIx b

create table books_authors (
 book_id int not null, # foreign key to books
 author_id int not null, # foreign key to authors
 foreign key (book_id) references books (book_id) on delete cascade,
 foreign key (author_id) references authors (author_id) on delete cascade,
 primary key (book_id, author_id)
);

create table zipcodes (
 zipcodes_code char(4) not null, # zipcode
 ipcodes_name varchar(30) not null, # name of the town
 primary key (post_code)
);

create table titles (
 title_id int auto_increment not null, # surrogate key for a title
	 title_name	varchar(50)	not	null,	 	 #	the	title's	name
 primary key (title_id)
);

create table users (
 user_id int auto_increment not null, # surrogate key to user
	 user_email	varchar(100)	not	null,		 #	the	user's	email	address
	 user_passwd	varchar(150)	not	null,		 #	the	user's	password	(encrypted)
	 user_firstname	varchar(50)	not	null,		 #	the	user's	first	name
	 user_lastname	varchar(30)	not	null,		 #	the	user's	last	name
	 user_address	varchar(50)	not	null,		 #	ths	user's	address
	 zipcodes_code	char(4)	not	null,		 	 #		the	user's	zipcode	(foreign	key)
	 user_phone	varchar(20),		 	 	 #	the	user's	phone	number
 title_id int, # foreign key to titles
 user_role int default 3, # the users role (user authority)
 foreign key (post_code) references post (zipcodes_code),
 foreign key (title_id) references titles (title_id),
 primary key (user_id)
);

create table books_users (
 book_id int not null, # foreign key to books
 user_id int not null, # foreign key to users
 books_users_date date not null, # when the book is lent
 foreign key (book_id) references books (book_id) on delete cascade,
 foreign key (user_id) references users (user_id) on delete cascade,
 primary key (book_id, user_id)
);

	Foreword
	1	Introduction
	2	The waterfall model
	2.1	The task formulation
	2.2	Analysis
	2.3	Design
	2.4	Programming
	2.5	Test
	2.6	Delivery

	3	�A system development method
	4	MVC
	5	Library
	5.1	Task formulation
	5.2	Analysis
	5.3	Design
	5.4	Programming
	5.5	Test
	5.6	Delivery

	Appendix A
	Domain model
	Use case diagram
	Class diagram
	Activity diagram
	Package diagram
	Sequence diagram
	State machines

	Appendix B
	The ER diagram
	Mapping to relational model
	Normalization
	Other database improvements
	The use of a class diagram
	Create the database

