

2

POUL KLAUSEN

JAVA 8: MULTITHREADED
PROGRAMS
SOFTWARE DEVELOPMENT

3

Java 8: Multithreaded programs: Software Development
1st edition
© 2017 Poul Klausen & bookboon.com
ISBN 978-87-403-1820-3
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 8:MULTITHREADED PROGRAMS

4

Contents

4

CONTENTS

1 Foreword 6

1 Introduction 8

1.1 Create a thread 8

1.2 Threads properties 12

 Exercise 1 16

2 join 17

 Exercise 2 19

3 Synchronization of threads 21

 Exercise 3 28

4 Deadlock 30

5 Stop a thread 32

6 wait() and notify() 34

 Exercise 4 37

 Exercise 5 38

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 8:MULTITHREADED PROGRAMS

5

Contents

7 Timers 39

 Problem 1 43

8 Concurrency Tools 47

8.1 Executors 47

 Exercise 6 51

8.2 CountDownLatch 52

 Exercise 7 56

8.3 CyclicBarrier 56

 Problem 2 61

8.4 Exchanger 62

8.5 Semaphore 65

 Exercise 8 70

8.6 Phaser 74

8.7 Locks 79

 Exercise 9 85

8.8 ReadWriteLock 85

 Exercise 10 88

8.9 Collections 88

 Exercise 11 92

8.10 Parallelism 95

 Exercise 12 102

8.11 CompletionService 103

9 Atomic variabler 105

10 Swing 107

10.1 SwingWorker 116

10.2 A Timer 119

11 Calendar 123

11.1 Task formulation 123

11.2 Analysis 123

11.3 Design 128

11.4 Programmering 138

11.5 Test 160

11.6 Delivery 160

 Appendix A 161

 JVM implementations 163

 The runtime system 163

JAVA 8:MULTITHREADED PROGRAMS

6

Foreword

1 FOREWORD

This book is the eighth in a series of books on software development. The programming
language is Java, and the language and its syntax and semantics fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. This book deals with threads, and how you in Java can synchronize threads
that share resources. The use of threads is an important issue in programming, but it is
also a technical area to which are attached many details. The book has therefore primarily
focus on programming and the language Java, and only in the final example, there is again
focusing on system development and thus the process. After reading the book the reader
should be able to use threads in practice and have an understanding of where threads can
be used in practical programming. The book requires knowledge of programming and Java
corresponding to the content of the first four books in this series and in the interests of the
final example is also assumed knowledge of the contents of the previous book, which deals
with system development. The book ends with an appendix that gives a general introduction
to the Java virtual machine JVM and what it is.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

JAVA 8:MULTITHREADED PROGRAMS

7

Foreword

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

 - NetBeans as IDE for application development
 - MySQL to the extent there is a need for a database server (from the book Java 6 onwards)
 - GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 8:MULTITHREADED PROGRAMS

8

IntroduCtIon

1 INTRODUCTION

When you start a program it creates a thread, as compared to the runtime system is responsible
for carrying out the program’s statements. You can think of a thread as a part of the program
code that has its own life and can be performed independent of the runtime system in
competition with threads from other applications or a thread from the same program. In
order for a thread to run and execute anything, it must have a processor to run on, and even
though computers today usually have multiple processors, there will always be many more
active threads than there are processors. A thread has only a processor in a very short time,
after which it is interrupted by the system and put in a queue while another thread get the
processor. Since all threads in this way with very short time intervals will have a processor
available, it seems to us users as if all threads are running in parallel next to each other.

When you start a program so is created, as mentioned a thread to execute the program’s
instructions. This thread is called the primary thread. An application can, however, create
multiple threads, and many programs do, and a GUI program will at least create two threads.
The idea of allowing a program to create multiple threads is to achieve parallelism, so it
for users seems as the program is doing several things simultaneously. For example a word
processor can perform a spell checking while the user continues entering text. The subject
of this book is to show how Java creates a thread and the challenges it leads to, but also
to show what you can use threads in practice. Indeed, viewed from the programmer some
challenges are attached to threads and the book contains many technical details.

1.1 CREATE A THREAD

I’ll start by showing how a program can create threads, and the following program creates
four threads beyond the primary thread:

JAVA 8:MULTITHREADED PROGRAMS

8

InTRODUCTIOn

1 INTRODUCTION

When you start a program it creates a thread, as compared to the runtime system is responsible
for carrying out the program’s statements. You can think of a thread as a part of the program
code that has its own life and can be performed independent of the runtime system in
competition with threads from other applications or a thread from the same program. In
order for a thread to run and execute anything, it must have a processor to run on, and even
though computers today usually have multiple processors, there will always be many more
active threads than there are processors. A thread has only a processor in a very short time,
after which it is interrupted by the system and put in a queue while another thread get the
processor. Since all threads in this way with very short time intervals will have a processor
available, it seems to us users as if all threads are running in parallel next to each other.

When you start a program so is created, as mentioned a thread to execute the program’s
instructions. This thread is called the primary thread. An application can, however, create
multiple threads, and many programs do, and a GUI program will at least create two threads.
The idea of allowing a program to create multiple threads is to achieve parallelism, so it
for users seems as the program is doing several things simultaneously. For example a word
processor can perform a spell checking while the user continues entering text. The subject
of this book is to show how Java creates a thread and the challenges it leads to, but also
to show what you can use threads in practice. Indeed, viewed from the programmer some
challenges are attached to threads and the book contains many technical details.

1.1 CREATE A THREAD

I’ll start by showing how a program can create threads, and the following program creates
four threads beyond the primary thread:

 package thread01;

 import java.util.*;

 public class Thread01
 {
 public static void main(String[] args)
 {
 (new Thread(new Worker1())).start();
 new Worker2();
 (new Thread(new Runnable() {
 public void run() { ToDo.work(2, 5); } })).start();
 (new Thread(() -> ToDo.work(2, 5))).start();

JAVA 8:MULTITHREADED PROGRAMS

9

IntroduCtIon
JAVA 8:MULTITHREADED PROGRAMS

9

InTRODUCTIOn

 ToDo.work(5, 10);
 }
 }

 class Worker1 implements Runnable
 {
 public void run()
 {
 ToDo.work(2, 5);
 }
 }

 class Worker2 extends Thread
 {
 public Worker2()
 {
 start();
 }

 public void run()
 {
 ToDo.work(2, 5);
 }
 }

 class ToDo
 {
 private static Random rand = new Random();

 public static void work(int a, int b)
 {
 print("started");
 for (int i = 0, n = rand.nextInt(b – a) + a; i < n; ++i)
 {
 print("working........");
 work();
 }
 print("terminated");
 }

 private static void print(String text)
 {
 long id = Thread.currentThread().getId();
 System.out.println("[" + id + "] " + text);
 }

JAVA 8:MULTITHREADED PROGRAMS

10

IntroduCtIonJAVA 8:MULTITHREADED PROGRAMS

10

InTRODUCTIOn

 private static void work()
 {
 double y;
 for (int i = 0; i < 1000000L; ++i) y = Math.cos(Math.sqrt(rand.nextDouble()));
 }
 }

I’ll start with the class ToDo, which in principle do not have anything with threads to do.
The class represents a work that the computer has to perform, and the important thing
is that it is a work that takes time, and then strains the machine’s processor. The private
method work() performs works not used for anything but the work consists of performing
one million calculation in which a calculation is to perform a mathematical function which
uses many CPU instructions. The second version of the method work() (the public version)
has two parameters, and call the private work() a number of times determined by these
parameters. The method first prints a message on the screen, and after the work is completed,
it prints another message. For the message you should note the statement

 long id = Thread.currentThread().getId();

A thread is identified by an ID, which is an integer and is assigned when the thread is
created. The primary thread has number 1, while custom threads are assigned a number
from 10 onwards. When the method work() prints a message (the method print()), it prints
also the current thread ID (the thread that performs the method print()).

In Java is a thread is represented by the class Thread. The class Worker2 inherits the class
Thread and represents as such a thread. The class Thread has a method called run() and it
is the method that executes when the thread is started, and in this case it happens in the
constructor of the class Worker2. It is the programmer of a Thread class that must override
the method run() and determine what the thread has to perform and the thread runs until
the method run() terminates. In this case, the thread performs the method work() in the
class ToDo.

The class Thread implements the interface Runnable, which alone defines the method run().
Another way to define a thread is to transfer a Runnable object as a parameter to the Thread
class’s constructor and in this way tells what kind of a run() method to be executed. The
class Worker1 is a simple class that implements Runnable and thus must implement the
method run(), and the class defines then Runnable objects. In this case, the method run()
performs the same as in the thread class Worker2.

I’ll start with the class ToDo, which in principle do not have anything with threads to do.
The class represents a work that the computer has to perform, and the important thing
is that it is a work that takes time, and then strains the machine’s processor. The private
method work() performs works not used for anything but the work consists of performing
one million calculation in which a calculation is to perform a mathematical function which
uses many CPU instructions. The second version of the method work() (the public version)
has two parameters, and call the private work() a number of times determined by these
parameters. The method first prints a message on the screen, and after the work is completed,
it prints another message. For the message you should note the statement

JAVA 8:MULTITHREADED PROGRAMS

10

InTRODUCTIOn

 private static void work()
 {
 double y;
 for (int i = 0; i < 1000000L; ++i) y = Math.cos(Math.sqrt(rand.nextDouble()));
 }
 }

I’ll start with the class ToDo, which in principle do not have anything with threads to do.
The class represents a work that the computer has to perform, and the important thing
is that it is a work that takes time, and then strains the machine’s processor. The private
method work() performs works not used for anything but the work consists of performing
one million calculation in which a calculation is to perform a mathematical function which
uses many CPU instructions. The second version of the method work() (the public version)
has two parameters, and call the private work() a number of times determined by these
parameters. The method first prints a message on the screen, and after the work is completed,
it prints another message. For the message you should note the statement

 long id = Thread.currentThread().getId();

A thread is identified by an ID, which is an integer and is assigned when the thread is
created. The primary thread has number 1, while custom threads are assigned a number
from 10 onwards. When the method work() prints a message (the method print()), it prints
also the current thread ID (the thread that performs the method print()).

In Java is a thread is represented by the class Thread. The class Worker2 inherits the class
Thread and represents as such a thread. The class Thread has a method called run() and it
is the method that executes when the thread is started, and in this case it happens in the
constructor of the class Worker2. It is the programmer of a Thread class that must override
the method run() and determine what the thread has to perform and the thread runs until
the method run() terminates. In this case, the thread performs the method work() in the
class ToDo.

The class Thread implements the interface Runnable, which alone defines the method run().
Another way to define a thread is to transfer a Runnable object as a parameter to the Thread
class’s constructor and in this way tells what kind of a run() method to be executed. The
class Worker1 is a simple class that implements Runnable and thus must implement the
method run(), and the class defines then Runnable objects. In this case, the method run()
performs the same as in the thread class Worker2.

A thread is identified by an ID, which is an integer and is assigned when the thread is
created. The primary thread has number 1, while custom threads are assigned a number
from 10 onwards. When the method work() prints a message (the method print()), it prints
also the current thread ID (the thread that performs the method print()).

In Java is a thread is represented by the class Thread. The class Worker2 inherits the class
Thread and represents as such a thread. The class Thread has a method called run() and it
is the method that executes when the thread is started, and in this case it happens in the
constructor of the class Worker2. It is the programmer of a Thread class that must override
the method run() and determine what the thread has to perform and the thread runs until
the method run() terminates. In this case, the thread performs the method work() in the
class ToDo.

The class Thread implements the interface Runnable, which alone defines the method run().
Another way to define a thread is to transfer a Runnable object as a parameter to the Thread
class’s constructor and in this way tells what kind of a run() method to be executed. The
class Worker1 is a simple class that implements Runnable and thus must implement the
method run(), and the class defines then Runnable objects. In this case, the method run()
performs the same as in the thread class Worker2.

JAVA 8:MULTITHREADED PROGRAMS

11

IntroduCtIon

Back’s is the main() method. The first statement creates a new Thread object and start a
thread. The parameter to the constructor is a Runnable object, and in this case it is an object
of the type Worker1. The next statement starts another thread, but this time by instantiating
an object of the type Worker2. Here it is the constructor of the class Worker2 that starts the
thread. Then there is the third statement that does the same as the first statement and thus
starts a thread that performs the method work(), but instead to create a Runnable object of
the type Worker1, the statement instantiates a Runnable object using an anonymous class.
The fourth statement does the same, but here it happens instead using a lambda expression.
Back there is the last statement, which simply calls the ToDo class’s work() method. That
is, it is the primary thread that performs this statement, and the meaning is that you have
to see that the primary thread is running in parallel with the other threads. If you executes
the program, the result could be the following:

JAVA 8:MULTITHREADED PROGRAMS

11

InTRODUCTIOn

Back’s is the main() method. The first statement creates a new Thread object and start a
thread. The parameter to the constructor is a Runnable object, and in this case it is an object
of the type Worker1. The next statement starts another thread, but this time by instantiating
an object of the type Worker2. Here it is the constructor of the class Worker2 that starts the
thread. Then there is the third statement that does the same as the first statement and thus
starts a thread that performs the method work(), but instead to create a Runnable object of
the type Worker1, the statement instantiates a Runnable object using an anonymous class.
The fourth statement does the same, but here it happens instead using a lambda expression.
Back there is the last statement, which simply calls the ToDo class’s work() method. That
is, it is the primary thread that performs this statement, and the meaning is that you have
to see that the primary thread is running in parallel with the other threads. If you executes
the program, the result could be the following:

 [11] started
 [10] started
 [10] works........
 [12] started
 [11] works........
 [12] works........
 [1] started
 [13] started
 [1] works........
 [13] works........
 [12] works........
 [13] works........
 [12] works........
 [12] works........
 [12] terminated
 [10] works........
 [11] works........
 [1] works........
 [11] terminated
 [1] works........
 [10] terminated
 [13] works........
 [1] works........
 [13] terminated
 [1] works........
 [1] works........
 [1] works........
 [1] works........
 [1] terminated

JAVA 8:MULTITHREADED PROGRAMS

12

IntroduCtIon

12

Here you should note that the 5 threads are running on shift. When the threads are carrying
out work that takes time, they are periodically interrupted, and a second pending thread is
running instead of. It is important to note that one can not assume anything about when a
thread is interrupted, and when the thread again is started. It is managed by the operating
system and is determined by the tasks to be performed on the machine.

1.2 THREADS PROPERTIES

I will then show an example that prints properties for a thread. The program starts two
threads and shows examples of information regarding the threads state. The program also
shows how to suspend a thread, which means that the thread does not have a CPU available
before it is again ready.

JAVA 8:MULTITHREADED PROGRAMS

12

InTRODUCTIOn

12

Here you should note that the 5 threads are running on shift. When the threads are carrying
out work that takes time, they are periodically interrupted, and a second pending thread is
running instead of. It is important to note that one can not assume anything about when a
thread is interrupted, and when the thread again is started. It is managed by the operating
system and is determined by the tasks to be performed on the machine.

1.2 THREADS PROPERTIES

I will then show an example that prints properties for a thread. The program starts two
threads and shows examples of information regarding the threads state. The program also
shows how to suspend a thread, which means that the thread does not have a CPU available
before it is again ready.

 package thread02;

 public class Thread02
 {
 public static void main(String[] args)
 {
 System.out.println(
 ("Number of processors: " + Runtime.getRuntime().availableProcessors()));

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 8:MULTITHREADED PROGRAMS

13

IntroduCtIonJAVA 8:MULTITHREADED PROGRAMS

13

InTRODUCTIOn

 Thread th1 = new Thread(new InfoThread(), "Thread number one");
 Thread th2 = new Thread(new InfoThread(), "Thread number two");
 System.out.println(th1.getState());
 // th1.setDaemon(true);
 th2.setDaemon(true);
 th1.start();
 th2.start();
 System.out.println(th1.isAlive());
 }

 }

 class InfoThread implements Runnable
 {
 public void run()
 {
 Thread th = Thread.currentThread();
 System.out.println("[" + th.getId() + "] " + th.getName() + " is started");
 System.out.println(
 "[" + th.getId() + "] " + (th.isDaemon() ? "Deamon" : "None deamon"));
 System.out.println("[" + th.getId() + "] " + th.getState());
 try
 {
 Thread.sleep(2000);
 }
 catch (Exception ex)
 {
 }
 System.out.println("[" + th.getId() + "] " + th.getName() + " is terminated");
 }
 }

The thread is defined by the class InfoThread that implements Runnable and thus the method
run(). The method first prints the thread’s id and its name. The class Thread has a method,
so you can assign a thread a name, but you can also provide a thread a name when it is
created. A thread may be a daemon thread or a none daemon thread (also referred to as a
worker thread). A daemon thread is intended as a helper thread to another thread, and
the difference is that a daemon thread is automatically terminated when the program’s last
none daemon thread terminates, and when the primary thread is a none-daemon thread,
the daemon threads automatically terminates when the program terminates. In contrast,
the primary thread (and therefore the program) does not terminate until all none daemon
threads is completed. The next print statement in the run() method prints whether the
current thread is a daemon thread. The third statement prints the thread’s state, which can be

The thread is defined by the class InfoThread that implements Runnable and thus the method
run(). The method first prints the thread’s id and its name. The class Thread has a method,
so you can assign a thread a name, but you can also provide a thread a name when it is
created. A thread may be a daemon thread or a none daemon thread (also referred to as a
worker thread). A daemon thread is intended as a helper thread to another thread, and
the difference is that a daemon thread is automatically terminated when the program’s last
none daemon thread terminates, and when the primary thread is a none-daemon thread,
the daemon threads automatically terminates when the program terminates. In contrast,
the primary thread (and therefore the program) does not terminate until all none daemon
threads is completed. The next print statement in the run() method prints whether the
current thread is a daemon thread. The third statement prints the thread’s state, which can be

JAVA 8:MULTITHREADED PROGRAMS

14

IntroduCtIon

 - NEW, a thread is created, but not yet started
 - RUNNING, the thread is performed on a processor
 - BLOCKED, a thread is blocked and is waiting on a lock
 - WAITING, a thread waits on a notification from another thread
 - TIMED_WAITING, a thread waits on a notification because of a timeout
 - TERMINATED, the thread is terminated

After these three print statements are executed, the run() method performs a sleep(), which
means that the thread is suspended for a certain period. The time is specified in milliseconds,
and in this case the thread is suspended in 2 seconds. That a thread is suspended means that
in the period in question it is not active and does not participate in the resource allocation.
Especially it uses no CPU time. When the thread again becomes active and is running, it
prints another message with its id and name, and then the thread exits.

The main() method starts by printing the number of processors that are available on the
current computer. Next, it creates two threads, both threads defined with a Runnable object
of type InfoThread as parameter. Note that the two threads at the same time are given a
name. Next is printed the state of the first thread, which at that time will be NEW. Then
is defined that the other thread should be a daemon thread. Finally the two threads are
started, and the main() method prints that the first thread is “live”. If you run the program,
the result could be the following:

JAVA 8:MULTITHREADED PROGRAMS

14

InTRODUCTIOn

 - NEW, a thread is created, but not yet started
 - RUNNING, the thread is performed on a processor
 - BLOCKED, a thread is blocked and is waiting on a lock
 - WAITING, a thread waits on a notification from another thread
 - TIMED_WAITING, a thread waits on a notification because of a timeout
 - TERMINATED, the thread is terminated

After these three print statements are executed, the run() method performs a sleep(), which
means that the thread is suspended for a certain period. The time is specified in milliseconds,
and in this case the thread is suspended in 2 seconds. That a thread is suspended means that
in the period in question it is not active and does not participate in the resource allocation.
Especially it uses no CPU time. When the thread again becomes active and is running, it
prints another message with its id and name, and then the thread exits.

The main() method starts by printing the number of processors that are available on the
current computer. Next, it creates two threads, both threads defined with a Runnable object
of type InfoThread as parameter. Note that the two threads at the same time are given a
name. Next is printed the state of the first thread, which at that time will be NEW. Then
is defined that the other thread should be a daemon thread. Finally the two threads are
started, and the main() method prints that the first thread is “live”. If you run the program,
the result could be the following:

 Number of processors: 8
 NEW
 true
 [10] Thread number one is started
 [11] Thread number two is started
 [10] None deamon
 [10] RUNNABLE
 [11] Deamon
 [11] RUNNABLE
 [10] Thread number one is terminated
 [11] Thread number two is terminated

Here you should specifically note that maybe the last thread not writes that it is completed.
The reason is that it is a daemon thread and as soon as the first thread terminates, also
the primary thread terminates and thus also the second thread. In the main() method is a
comment in front of the statement that defines the first thread as a daemon thread. If you
remove this comment, the primary thread does not wait for the two threads and finish with
the same – and the two threads are immediately terminated without completing their work.

Here you should specifically note that maybe the last thread not writes that it is completed.
The reason is that it is a daemon thread and as soon as the first thread terminates, also
the primary thread terminates and thus also the second thread. In the main() method is a
comment in front of the statement that defines the first thread as a daemon thread. If you
remove this comment, the primary thread does not wait for the two threads and finish with
the same – and the two threads are immediately terminated without completing their work.

JAVA 8:MULTITHREADED PROGRAMS

15

IntroduCtIon

15

The program here shows some of the properties a thread can have and the services that the
Thread class provides. There are other options such to change a thread’s priority. You must,
however, usually not do that, unless you have a good reason.

As another example of a program that starts multiple threads, you can consider the following
program that starts 100 threads:

JAVA 8:MULTITHREADED PROGRAMS

15

InTRODUCTIOn

15

The program here shows some of the properties a thread can have and the services that the
Thread class provides. There are other options such to change a thread’s priority. You must,
however, usually not do that, unless you have a good reason.

As another example of a program that starts multiple threads, you can consider the following
program that starts 100 threads:

 package thread03;

 public class Thread03
 {
 public static void main(String[] args)
 {
 for (int i = 0; i < 100; ++i) (new Thread(() -> work())).start();
 }

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 8:MULTITHREADED PROGRAMS

16

IntroduCtIon
JAVA 8:MULTITHREADED PROGRAMS

16

InTRODUCTIOn

 private static void work()
 {
 print("Startet");
 double y = 0;
 for (int i = 0; i < 10000000L; ++i) y = Math.cos(Math.sqrt(2));
 print(String.format("%1.4f", y));
 }

 private static void print(String text)
 {
 System.out.println("[" + Thread.currentThread().getId() + "] " + text);
 }
 }

Compared to the two first examples there are nothing new, but the program should show
what happens if you start many threads, all of which are CPU intensive. There are started
100 threads, but what matters is that there are started many more threads than there are
CPUs. If the program is performed, you must observe that all threads are started but prints
the start message in unpredictable order. In turn, the threads performs their work until
they quit, and again the order is unpredictable. It depends on when the operating system
interrupts the threads and decides which threads should be started again.

EXERCISE 1

Write a program that creates and starts two threads. The one thread must perform a loop
that iterates 10 times. For each iteration, the thread should print an integer between 0
and 99, after which it must be suspended for a random period less than one second. The
second thread should act in the same way, but instead print a random decimal number.
My solution is called StartThreads.

Compared to the two first examples there are nothing new, but the program should show
what happens if you start many threads, all of which are CPU intensive. There are started
100 threads, but what matters is that there are started many more threads than there are
CPUs. If the program is performed, you must observe that all threads are started but prints
the start message in unpredictable order. In turn, the threads performs their work until
they quit, and again the order is unpredictable. It depends on when the operating system
interrupts the threads and decides which threads should be started again.

EXERCISE 1

Write a program that creates and starts two threads. The one thread must perform a loop
that iterates 10 times. For each iteration, the thread should print an integer between 0
and 99, after which it must be suspended for a random period less than one second. The
second thread should act in the same way, but instead print a random decimal number.
My solution is called StartThreads.

JAVA 8:MULTITHREADED PROGRAMS

17

joIn

2 JOIN

Consider the following program:

JAVA 8:MULTITHREADED PROGRAMS

17

JOIn

2 JOIN

Consider the following program:

 package thread04;

 public class Thread04
 {
 private static long prime;

 public static void main(String[] args)
 {
 Thread th;
 (th = new Thread(() -> nextPrime(10000000))).start();
 System.out.println(prime);
 }

 private static void nextPrime(long t)
 {
 if (t < 2) prime = 2;
 else for (prime = t % 2 == 0 ? t + 1 : t; !isPrime(prime); prime += 2);
 }

 private static boolean isPrime(long t)
 {
 if (t == 2 || t == 3 || t == 5 || t == 7) return true;
 if (t < 11 || t % 2 == 0) return false;
 for (long k = 3, m = (long)Math.sqrt(t) + 1; k <= m; k += 2)
 if (t % k == 0) return false;
 return true;
 }
 }

The method nextPrime() determines the first prime number that is greater than or equal to
the parameter t. It is a method that I have shown before, and here it is interesting that if
the parameter t is large, it may take a long time to perform the method. In main() is created
a thread that performs the method, and then print the result as the value of the variable
prime. The program will print 0, which of course is wrong. The reason is that the primary
thread continues after the thread th is started and print the value of prime within the thread
has updated the variable. The primary thread does not wait for the thread th to terminate.

The method nextPrime() determines the first prime number that is greater than or equal to
the parameter t. It is a method that I have shown before, and here it is interesting that if
the parameter t is large, it may take a long time to perform the method. In main() is created
a thread that performs the method, and then print the result as the value of the variable
prime. The program will print 0, which of course is wrong. The reason is that the primary
thread continues after the thread th is started and print the value of prime within the thread
has updated the variable. The primary thread does not wait for the thread th to terminate.

JAVA 8:MULTITHREADED PROGRAMS

18

joIn

18

The problem can be solved by changing the main() method to the following:

JAVA 8:MULTITHREADED PROGRAMS

18

JOIn

18

The problem can be solved by changing the main() method to the following:

 public static void main(String[] args)
 {
 Thread th;
 (th = new Thread(() -> nextPrime(10000000))).start();
 try
 {
 th.join();
 }
 catch (Exception ex)
 {
 }
 System.out.println(prime);
 }

A thread has a method called join(). If another thread – and here is the primary thread –
is performing the method join() on a Thread object, it means that the second thread must
wait until the first thread terminates. In this case, this means that the last print statement
is not performed before the thread th has calculated the result and terminates.

A thread has a method called join(). If another thread – and here is the primary thread –
is performing the method join() on a Thread object, it means that the second thread must
wait until the first thread terminates. In this case, this means that the last print statement
is not performed before the thread th has calculated the result and terminates.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 8:MULTITHREADED PROGRAMS

19

joIn

EXERCISE 2

In this exercise, you should use the methods nextPrime() and isPrime() from the above
example, the first to be modified slightly.

Create a new project, you can call JoinThreads. Start by adding the following class, which
are nothing more than a simple encapsulation of a long :

JAVA 8:MULTITHREADED PROGRAMS

19

JOIn

EXERCISE 2

In this exercise, you should use the methods nextPrime() and isPrime() from the above
example, the first to be modified slightly.

Create a new project, you can call JoinThreads. Start by adding the following class, which
are nothing more than a simple encapsulation of a long :

 class Prime
 {
 private long value;

 public long getValue()
 {
 return value;
 }

 public void setValue(long value)
 {
 this.value = value;
 }
 }

You must then add the following class, which defines a Runnable object:

 class Creator implements Runnable
 {
 private long value;
 private Prime prime;

 public Creator(long value, Prime prime)
 {
 this.value = value;
 this.prime = prime;
 }

 public void run()
 {
 nextPrime(value, prime);
 }

 public static void nextPrime(long t, Prime prime)
 {
 }
 }

You must then add the following class, which defines a Runnable object:

JAVA 8:MULTITHREADED PROGRAMS

19

JOIn

EXERCISE 2

In this exercise, you should use the methods nextPrime() and isPrime() from the above
example, the first to be modified slightly.

Create a new project, you can call JoinThreads. Start by adding the following class, which
are nothing more than a simple encapsulation of a long :

 class Prime
 {
 private long value;

 public long getValue()
 {
 return value;
 }

 public void setValue(long value)
 {
 this.value = value;
 }
 }

You must then add the following class, which defines a Runnable object:

 class Creator implements Runnable
 {
 private long value;
 private Prime prime;

 public Creator(long value, Prime prime)
 {
 this.value = value;
 this.prime = prime;
 }

 public void run()
 {
 nextPrime(value, prime);
 }

 public static void nextPrime(long t, Prime prime)
 {
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

20

joIn

The method nextPrime() is, in principle, the same method as the method in the above
example, but it now has an additional parameter. The method must set the value of the
object to the first prime number that is greater than or equal to t. Note that it is still a static
method and it is placed in this class because of the method run() that refer to nextPrime().

Then write the following main() method, which determines 13 “large” primes and print
them on the screen:

JAVA 8:MULTITHREADED PROGRAMS

20

JOIn

The method nextPrime() is, in principle, the same method as the method in the above
example, but it now has an additional parameter. The method must set the value of the
object to the first prime number that is greater than or equal to t. Note that it is still a static
method and it is placed in this class because of the method run() that refer to nextPrime().

Then write the following main() method, which determines 13 “large” primes and print
them on the screen:

 public static void main(String[] args)
 {
 long[] values =
 { 1000000, 10000000, 100000000, 1000000000, 10000000000L, 100000000000L,
 1000000000000L, 10000000000000L, 100000000000000L, 1000000000000000L,
 10000000000000000L, 100000000000000000L, 1000000000000000000L };
 Prime[] primes = new Prime[values.length];
 for (int i = 0; i < primes.length; ++i) primes[i] = new Prime();
 for (int i = 0; i < values.length; ++i) Creator.nextPrime(values[i], primes[i]);
 for (int i = 0; i < primes.length; ++i) System.out.println(primes[i].getValue());
 }

The most important is the statement, which calls the method nextPrime() 13 times. You
must now change the main() method, so each call of the method nextPrime() is performed
in its own thread. You can of course use the class Creator to create Runnable objects.

After making this changes, try if you can observe a time differences in terms where the
prime numbers are generated sequentially or in separate threads.

The most important is the statement, which calls the method nextPrime() 13 times. You
must now change the main() method, so each call of the method nextPrime() is performed
in its own thread. You can of course use the class Creator to create Runnable objects.

After making this changes, try if you can observe a time differences in terms where the
prime numbers are generated sequentially or in separate threads.

JAVA 8:MULTITHREADED PROGRAMS

21

synChronIzatIon oF threads

21

3 SYNCHRONIZATION OF THREADS

As shown in the initial examples it is easy to create and use threads in a program, and so
long that the individual threads do not share resources, the use of threads are also without
major problems, but if threads share common resources, they can cause concurrency problems
that must be solved by the programmer, and it does absolutely not to be simple. The typical
problem is the so-called race conditions, where the result of a calculation depends on the
timing of the threads access to a shared resource, and the classic example is that two or more
threads use a common data element (a variable), and at least one of the threads change the
value of the variable, but without the threads coordinates their use of the data item. As an
example, consider the following method:

JAVA 8:MULTITHREADED PROGRAMS

21

SynCHROnIzATIOn OF THREADS

21

3 SYNCHRONIZATION OF THREADS

As shown in the initial examples it is easy to create and use threads in a program, and so
long that the individual threads do not share resources, the use of threads are also without
major problems, but if threads share common resources, they can cause concurrency problems
that must be solved by the programmer, and it does absolutely not to be simple. The typical
problem is the so-called race conditions, where the result of a calculation depends on the
timing of the threads access to a shared resource, and the classic example is that two or more
threads use a common data element (a variable), and at least one of the threads change the
value of the variable, but without the threads coordinates their use of the data item. As an
example, consider the following method:

 public int getId()
 {
 return counter++;
 }

http://s.bookboon.com/elearningforkids

JAVA 8:MULTITHREADED PROGRAMS

22

synChronIzatIon oF threads

where counter is an instance variable, and such a method is not thread safe. Apparently, the
method performs only one operation, but there are several

1. save a copy of the variable counter
2. add 1 to the value og the variable
3. save the result in counter
4. returns the value, that has been saved

If, you for example imagine that two threads that calls this method, and counter has the value
10, the following can happen: The first thread performs the first of the above instructions,
after which it is interrupted. Next comes the second thread and performs the first three
operations. Then, the counter has the value 11. If the second thread now is interrupted,
and the first thread comes back and finished its work, it will update counter so that it has
the value 11 (and thus overwrite the changes that the other thread has done). The result
is that both threads will return 11, which is an incorrect result, and the value of counter
is incorrect. The conclusion is the need for a mechanism that can control that the threads
are finished their work, or at least that another thread may not use the method before the
first is completed.

To increase performance using both the Java virtual machine (JVM) and the operating
system cache memories, where they keep copies of variables. This can also cause problems,
since each thread possible has their own copy of a variable. If a thread modifies a variable,
there is a risk that it is merely the copy that is updated, and without the other threads
being aware of it, and they updates their own copies. It is also an issue that multithreaded
applications must relate to.

The solution to these challenges is synchronization and locks, which ensures that the two
or more threads can not simultaneously execute a critical region, which is a number of
operations to be performed serially. Sometimes people talk about mutual exclusion as a
thread is prevented to perform a critical region, as another thread is performing. A critical
region is defined by the word synchronized, and in addition to ensure that other threads
can not access the critical region it also ensures that variables values are synchronized with
memory, when the region ends. Each Java object is associated with a so-called monitor,
which has a lock which only one thread may have, and if a thread has a lock, other threads
can not apply the critical region before the thread that has the lock is releasing it. There
is only one thread which can have the lock, and if a different thread attempts to get the
lock, it will be blocked until the first release the lock.

JAVA 8:MULTITHREADED PROGRAMS

23

synChronIzatIon oF threads

Consider the following program:

JAVA 8:MULTITHREADED PROGRAMS

23

SynCHROnIzATIOn OF THREADS

Consider the following program:

 package thread05;
 public class Thread05
 {
 private static ID id = new ID();

 public static void main(String[] args)
 {
 for (int i = 0; i < 2; ++i)
 (new Thread(() ->
 { while (id.getValue() < 10)
 System.out.println(String.format(
 "[%d] %d", Thread.currentThread().getId(), id.getId()));
 }
)).start();
 }
 }

 class ID
 {
 private int id = 1;

 public int getValue()
 {
 return id;
 }

 public int getId()
 {
 int t = id;
 for (int i = 0; i < 1000000L; ++i) Math.cos(Math.sqrt(2));
 ++id;
 return t;
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

24

synChronIzatIon oF threads

24

The program illustrates some of the problems that can occur when multiple threads are using
a shared resource, that here is an ID object. The problem is that the same ID is printed
several times and that some values are lost. The reason is that the operation getId() in the
class ID takes a long time, and thus is interrupted, so another thread can take over. The
method which returns the value of variable id, but also counted the variable up by 1. The
method also carries out a number of operations that takes time. It should illustrate that
the method performs work between the variable is read and counted, and thus the method
can be interrupted during that period. The main() method starts two threads, where each
thread iterates so long that the value of the object id is less than 10. Each iteration reads
the ID object (and hence counts the value of the variable up by 1) and also at the same
time prints the thread’s ID and the value of the object ID. If you executes the program,
the result could be the following:

JAVA 8:MULTITHREADED PROGRAMS

24

SynCHROnIzATIOn OF THREADS

24

The program illustrates some of the problems that can occur when multiple threads are using
a shared resource, that here is an ID object. The problem is that the same ID is printed
several times and that some values are lost. The reason is that the operation getId() in the
class ID takes a long time, and thus is interrupted, so another thread can take over. The
method which returns the value of variable id, but also counted the variable up by 1. The
method also carries out a number of operations that takes time. It should illustrate that
the method performs work between the variable is read and counted, and thus the method
can be interrupted during that period. The main() method starts two threads, where each
thread iterates so long that the value of the object id is less than 10. Each iteration reads
the ID object (and hence counts the value of the variable up by 1) and also at the same
time prints the thread’s ID and the value of the object ID. If you executes the program,
the result could be the following:

 [10] 1
 [11] 1
 [10] 3
 [11] 3
 [11] 5
 [10] 5
 [11] 6
 [10] 6

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 8:MULTITHREADED PROGRAMS

25

synChronIzatIon oF threadsJAVA 8:MULTITHREADED PROGRAMS

25

SynCHROnIzATIOn OF THREADS

 [11] 7
 [10] 7
 [11] 8
 [10] 8
 [11] 9
 [10] 9

where you can see that both threads prints the same value, while other values are ignored.
The reason is that the two threads are updating a shared resource id, but change it without
being synchronized. The problem can be solved by modify the class ID as follows, where
the method getId() is now defined synchronized:

 class ID
 {
 private int id = 1;

 public int value()
 {
 return id;
 }

 public synchronized int getId()
 {
 int t = id;
 for (int i = 0; i < 1000000L; ++i) Math.cos(Math.sqrt(2));
 ++id;
 return t;
 }
 }

When a method is synchronized, it means that the whole operation is indivisible and is
viewed as a critical region. If a thread calls the method and the method is not used by
another thread, the thread may get the lock, and if another thread then attempts to perform
the method, it is put in a queue and must wait until the first thread to completes the work
and releases the lock. If the method that is synchronized, is an instance method, the lock is
associated with the object on which the method is called. If the method on the other hand
is a static method the lock is associated to the java.lang.Class object for the class where the
method belongs.

where you can see that both threads prints the same value, while other values are ignored.
The reason is that the two threads are updating a shared resource id, but change it without
being synchronized. The problem can be solved by modify the class ID as follows, where
the method getId() is now defined synchronized:

JAVA 8:MULTITHREADED PROGRAMS

25

SynCHROnIzATIOn OF THREADS

 [11] 7
 [10] 7
 [11] 8
 [10] 8
 [11] 9
 [10] 9

where you can see that both threads prints the same value, while other values are ignored.
The reason is that the two threads are updating a shared resource id, but change it without
being synchronized. The problem can be solved by modify the class ID as follows, where
the method getId() is now defined synchronized:

 class ID
 {
 private int id = 1;

 public int value()
 {
 return id;
 }

 public synchronized int getId()
 {
 int t = id;
 for (int i = 0; i < 1000000L; ++i) Math.cos(Math.sqrt(2));
 ++id;
 return t;
 }
 }

When a method is synchronized, it means that the whole operation is indivisible and is
viewed as a critical region. If a thread calls the method and the method is not used by
another thread, the thread may get the lock, and if another thread then attempts to perform
the method, it is put in a queue and must wait until the first thread to completes the work
and releases the lock. If the method that is synchronized, is an instance method, the lock is
associated with the object on which the method is called. If the method on the other hand
is a static method the lock is associated to the java.lang.Class object for the class where the
method belongs.

When a method is synchronized, it means that the whole operation is indivisible and is
viewed as a critical region. If a thread calls the method and the method is not used by
another thread, the thread may get the lock, and if another thread then attempts to perform
the method, it is put in a queue and must wait until the first thread to completes the work
and releases the lock. If the method that is synchronized, is an instance method, the lock is
associated with the object on which the method is called. If the method on the other hand
is a static method the lock is associated to the java.lang.Class object for the class where the
method belongs.

JAVA 8:MULTITHREADED PROGRAMS

26

synChronIzatIon oF threads

Consider the following program which initializes a variable to the square root of 2, and
the print result:

JAVA 8:MULTITHREADED PROGRAMS

26

SynCHROnIzATIOn OF THREADS

Consider the following program which initializes a variable to the square root of 2, and
the print result:

 package thread07;

 public class Thread07
 {
 private static double root = 0;

 public static void main(String[] args)
 {
 (new Thread(() -> { root = sqrt2(); })).start();
 System.out.println(root);
 }

 private static double sqrt2()
 {
 double y = 0;
 for (int i = 0; i < 1000000000L; ++i) y = Math.sqrt(2);
 return y;
 }
 }

The method, which determines the square root of 2 is once again a loop whose sole purpose
is that the calculation must take time. The calculation is performed in its own thread, and
when the primary thread prints the result, the result will be 0, which of course is wrong. The
reason is that the primary thread does not wait for the thread that performs the calculation,
and the problem could of course be solved by a join(). However, you can also solve the
problem by synchronized and thus with a lock:

 package thread08;
 public class Thread08
 {
 private static double root = 0;
	 private	static	final	Object	lock	=	new	Object();

 public static void main(String[] args)
 {
 (new Thread(() -> { synchronized(lock) { root = sqrt2(); }})).start();
 try { Thread.sleep(10); } catch (Exception ex) {}
 synchronized(lock) { System.out.println(root); };
 }

The method, which determines the square root of 2 is once again a loop whose sole purpose
is that the calculation must take time. The calculation is performed in its own thread, and
when the primary thread prints the result, the result will be 0, which of course is wrong. The
reason is that the primary thread does not wait for the thread that performs the calculation,
and the problem could of course be solved by a join(). However, you can also solve the
problem by synchronized and thus with a lock:

JAVA 8:MULTITHREADED PROGRAMS

26

SynCHROnIzATIOn OF THREADS

Consider the following program which initializes a variable to the square root of 2, and
the print result:

 package thread07;

 public class Thread07
 {
 private static double root = 0;

 public static void main(String[] args)
 {
 (new Thread(() -> { root = sqrt2(); })).start();
 System.out.println(root);
 }

 private static double sqrt2()
 {
 double y = 0;
 for (int i = 0; i < 1000000000L; ++i) y = Math.sqrt(2);
 return y;
 }
 }

The method, which determines the square root of 2 is once again a loop whose sole purpose
is that the calculation must take time. The calculation is performed in its own thread, and
when the primary thread prints the result, the result will be 0, which of course is wrong. The
reason is that the primary thread does not wait for the thread that performs the calculation,
and the problem could of course be solved by a join(). However, you can also solve the
problem by synchronized and thus with a lock:

 package thread08;
 public class Thread08
 {
 private static double root = 0;
	 private	static	final	Object	lock	=	new	Object();

 public static void main(String[] args)
 {
 (new Thread(() -> { synchronized(lock) { root = sqrt2(); }})).start();
 try { Thread.sleep(10); } catch (Exception ex) {}
 synchronized(lock) { System.out.println(root); };
 }

JAVA 8:MULTITHREADED PROGRAMS

27

synChronIzatIon oF threads

27

JAVA 8:MULTITHREADED PROGRAMS

27

SynCHROnIzATIOn OF THREADS

27

 private static double sqrt2()
 {
 double y = 0;
 for (int i = 0; i < 1000000000L; ++i) y = Math.sqrt(2);
 return y;
 }
 }

The variable lock is used for a lock, and as mentioned, there is attached a lock to any object.
The first statement in main() creates a thread, and here is the block

 { root = sqrt2(); }

synchronized. The same applies to the block with the last print statement. When the thread
starts, the block of code that call sqrt2() is synchronized. When the primary thread then
attempts to perform the block with the print statement it will be blocked because the lock
associated with the object lock is taken and the primary threads must wait until the method,
which performs the calculation is complete and releases the lock.

The variable lock is used for a lock, and as mentioned, there is attached a lock to any object.
The first statement in main() creates a thread, and here is the block

JAVA 8:MULTITHREADED PROGRAMS

27

SynCHROnIzATIOn OF THREADS

27

 private static double sqrt2()
 {
 double y = 0;
 for (int i = 0; i < 1000000000L; ++i) y = Math.sqrt(2);
 return y;
 }
 }

The variable lock is used for a lock, and as mentioned, there is attached a lock to any object.
The first statement in main() creates a thread, and here is the block

 { root = sqrt2(); }

synchronized. The same applies to the block with the last print statement. When the thread
starts, the block of code that call sqrt2() is synchronized. When the primary thread then
attempts to perform the block with the print statement it will be blocked because the lock
associated with the object lock is taken and the primary threads must wait until the method,
which performs the calculation is complete and releases the lock.

synchronized. The same applies to the block with the last print statement. When the thread
starts, the block of code that call sqrt2() is synchronized. When the primary thread then
attempts to perform the block with the print statement it will be blocked because the lock
associated with the object lock is taken and the primary threads must wait until the method,
which performs the calculation is complete and releases the lock.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 8:MULTITHREADED PROGRAMS

28

synChronIzatIon oF threads

You should note that the object lock is defined final. This ensures that the object is not
cached and the threads thus always refers to the memory version. You should also note that
the main() method performs a sleep(). It should not be there, but is necessary, else you can
risks that the primary thread takes the lock before the calculating thread takes it.

EXERCISE 3

Create a project that you can call BufferProgram. In the book Java 4 there is a project called
Generic. The project has a class called Buffer. The class represents a generic circular buffer.
Copy this class to the current project. It is necessary with a few changes:

1. The class implements an interface. Remove the implements part, such the class
does not implement any interface.

2. The constructor calls a method createArray(). This method is not part of the class
buffer. Extend the class Buffer with a corresponding method.

Write the following main() program:

JAVA 8:MULTITHREADED PROGRAMS

28

SynCHROnIzATIOn OF THREADS

You should note that the object lock is defined final. This ensures that the object is not
cached and the threads thus always refers to the memory version. You should also note that
the main() method performs a sleep(). It should not be there, but is necessary, else you can
risks that the primary thread takes the lock before the calculating thread takes it.

EXERCISE 3

Create a project that you can call BufferProgram. In the book Java 4 there is a project called
Generic. The project has a class called Buffer. The class represents a generic circular buffer.
Copy this class to the current project. It is necessary with a few changes:

1. The class implements an interface. Remove the implements part, such the class
does not implement any interface.

2. The constructor calls a method createArray(). This method is not part of the class
buffer. Extend the class Buffer with a corresponding method.

Write the following main() program:

 package bufferprogram;

 public class BufferProgram
 {
 private static Buffer<Integer> buffer = new Buffer(10);

 public static void main(String[] args)
 {
 (new Thread(new Runnable()
 {
 public void run()
 {
 for (int n = 1; ;)
 if (!buffer.full()) try { buffer.insert(n++); } catch (Exception ex) {}
 }
 })).start();
 (new Thread(new Runnable()
 {
 public void run()
 {
 while (true)
 if (!buffer.empty())
 try { System.out.println(buffer.remove()); } catch (Exception ex) {}
 }
 })).start();
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

29

synChronIzatIon oF threads

29

That is, a program that starts two threads, where the one fills numbers in a buffer, while
the other removes the numbers from the buffer. Both threads will run indefinitely. Test the
program. You will find that the program starts fine, but after a short time it goes to a halt.
The reason is that the class buffer is not thread safe.

You now need to modify the class Buffer, so it is thread safe. You can do this by defining
all the public methods synchronized. Check if the problem persists.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 8:MULTITHREADED PROGRAMS

30

deadloCk

4 DEADLOCK

Synchronization and locks means that threads are blocked and put in a waiting position,
and it may lead to deadlock. It can happen if two threads must use two shared resources
A and B. If one thread puts a lock on A, while the other thread puts a lock on B, and if
the first thread then tries to get the lock on the B (what it can not), and the second thread
attempts to get the lock on A (what it can not), there is a deadlock. As an example is below
shown a program which provoke deadlock and the program “hangs”:

JAVA 8:MULTITHREADED PROGRAMS

30

DEADLOCk

4 DEADLOCK

Synchronization and locks means that threads are blocked and put in a waiting position,
and it may lead to deadlock. It can happen if two threads must use two shared resources
A and B. If one thread puts a lock on A, while the other thread puts a lock on B, and if
the first thread then tries to get the lock on the B (what it can not), and the second thread
attempts to get the lock on A (what it can not), there is a deadlock. As an example is below
shown a program which provoke deadlock and the program “hangs”:

 package thread09;

 public class Thread09
 {
	 private	final	Object	lock1	=	new	Object();
	 private	final	Object	lock2	=	new	Object();

 private static int count = 0;

 public static void main(String[] args)
 {
	 final	Thread09	instance	=	new	Thread09();
 (new Thread(() -> {
 while(true) { instance.work1(); instance.delay();} })).start();
 (new Thread(() -> {
 while(true) { instance.work2(); instance.delay();} })).start();
 }

 public void work1()
 {
 synchronized(lock1)
 {
 synchronized(lock2)
 {
 System.out.println(
 "[" + Thread.currentThread().getId() + "] " + (++count));
 }
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

31

deadloCk
JAVA 8:MULTITHREADED PROGRAMS

31

DEADLOCk

 public void work2()
 {
 synchronized(lock2)
 {
 synchronized(lock1)
 {
 System.out.println(
 "[" + Thread.currentThread().getId() + "] " + (++count));
 }
 }
 }

 private void delay()
 {
 try
 {
 Thread.sleep(50);
 }
 catch (Exception ex)
 {
 }
 }
 }

That threads can lead to deadlock does not mean that one should avoid to synchronize
threads (above is a direct provocation), but it means that you have to be aware if a thread
with a lock calls a method that indirectly also puts a lock.

That threads can lead to deadlock does not mean that one should avoid to synchronize
threads (above is a direct provocation), but it means that you have to be aware if a thread
with a lock calls a method that indirectly also puts a lock.

JAVA 8:MULTITHREADED PROGRAMS

32

stop a thread

5 STOP A THREAD

The Thread class has a method stop(), which is used to stop a running thread. This method
is not secure and is defined deprecated, and you should avoid using the method. Instead
you must yourself implement the necessary logic to stop the thread. There can be many
solutions, but the following program shows an option:

JAVA 8:MULTITHREADED PROGRAMS

32

STOP A THREAD

5 STOP A THREAD

The Thread class has a method stop(), which is used to stop a running thread. This method
is not secure and is defined deprecated, and you should avoid using the method. Instead
you must yourself implement the necessary logic to stop the thread. There can be many
solutions, but the following program shows an option:

 package thread10;

 import java.util.*;

 public class Thread10
 {
 public static void main(String[] args)
 {
 ArrayList<AThread> threads = new ArrayList();
 for (int i = 0; i < 5; ++i) threads.add(new AThread());
 for (AThread th : threads) th.start();
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException ie)
 {
 }
 for (AThread th : threads) th.stopThread();
 }
 }

 class AThread extends Thread
 {
 private volatile boolean stopped = false;

 public void run()
 {
 while(!stopped)
 System.out.println(Thread.currentThread().getId() + " is running");
 }

 public void stopThread()
 {
 stopped = true;
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

33

stop a thread

33

The principle is very simple, as the Thread class has a variable stopped and the thread is
running as long as this variable is false. The class also has a method stopThread(), which
makes the variable true and thus stops the thread. You should note that the variable stopped is
defined volatile, which means that there is no reference to a copy of the variable in a cache.

http://s.bookboon.com/EOT

JAVA 8:MULTITHREADED PROGRAMS

34

waIt() and notIFy()

6 WAIT() AND NOTIFY()

When a thread of one reason or another is blocked, it will lost the processor and is placed in
a queue of waiting threads. A thread is blocked because one or other condition occurs (for
example because it can not get a lock) and must then be notified again when the blocking
condition is no longer there (for example another thread releases a lock). An object has two
methods, so the thread that uses the object, can block itself, and so the thread can give
waiting threads a message that they must continue. The methods are called wait() and notify().

A wait() means that the current thread is blocked until another thread performs notify() or
notifyAll(). There are also versions of wait(), where you enter a time, telling how long the
thread maximum should waits and is thus a timeout. notify() reactivates (wakes) a waiting
thread (a thread waiting on that object’s lock). If there are multiple threads waiting on that
object, you can not assume anything about the thread that comes to life. It is determined
by the system. The method notifyAll() will in contrast awaken all threads waiting for the
current object.

As a classic example of the use of these methods I will look at the so-called producer-
consumer problem. The idea is that a thread (producer) update a resource while another
thread (consumer) reads the resource’s value. It must be such that the consumer reads all
values, but only read them once. This requires that the two threads are synchronized.

JAVA 8:MULTITHREADED PROGRAMS

34

wAIT() AnD nOTIFy()

6 WAIT() AND NOTIFY()

When a thread of one reason or another is blocked, it will lost the processor and is placed in
a queue of waiting threads. A thread is blocked because one or other condition occurs (for
example because it can not get a lock) and must then be notified again when the blocking
condition is no longer there (for example another thread releases a lock). An object has two
methods, so the thread that uses the object, can block itself, and so the thread can give
waiting threads a message that they must continue. The methods are called wait() and notify().

A wait() means that the current thread is blocked until another thread performs notify() or
notifyAll(). There are also versions of wait(), where you enter a time, telling how long the
thread maximum should waits and is thus a timeout. notify() reactivates (wakes) a waiting
thread (a thread waiting on that object’s lock). If there are multiple threads waiting on that
object, you can not assume anything about the thread that comes to life. It is determined
by the system. The method notifyAll() will in contrast awaken all threads waiting for the
current object.

As a classic example of the use of these methods I will look at the so-called producer-
consumer problem. The idea is that a thread (producer) update a resource while another
thread (consumer) reads the resource’s value. It must be such that the consumer reads all
values, but only read them once. This requires that the two threads are synchronized.

 package thread11;

 public class Thread11
 {
 public static void main(String[] args)
 {
 Shared shared = new Shared(); // the shared resource
 new Producer(shared).start();
 new Consumer(shared).start();
 }
 }

 // Represents a shared resource, as an encapsulation of a char.
 class Shared
 {
 private char value; // the resource
 // indicates where the resourcen must be updated
 private volatile boolean writeable = true;

JAVA 8:MULTITHREADED PROGRAMS

35

waIt() and notIFy()JAVA 8:MULTITHREADED PROGRAMS

35

wAIT() AnD nOTIFy()

 // Updates the resource
 public synchronized void setValue(char value)
 {
 // if the resource can not be updated the thread performs a wait()
 // on the current object, which means that the thread is suspended
 // and release the lock, such that other threads can use the object
 while (!writeable)
 try
 {
 wait();
 }
 catch (InterruptedException ex)
 {
 }

 // updates the resource and change status on writeable
 // remark that if a thread reach the next statement it has the lock
 // and other threads can not perform setValue() or getValue()
 // before this thread terminates
 this.value = value;
 writeable = false;

 // performs a notify() on the current object
 // this means, that if other threads are waiting on the lock
 // one of them come to life
 notify();
 }

 // Read the shared resource.
 synchronized char getValue()
 {
 // if the resource is writeable and it has to be updated the current
 // thread performs a wait()
 while (writeable)
 try
 {
 wait();
 }
 catch (InterruptedException ex)
 {
 }

JAVA 8:MULTITHREADED PROGRAMS

36

waIt() and notIFy()

36

JAVA 8:MULTITHREADED PROGRAMS

36

wAIT() AnD nOTIFy()

36

	 //	changes	status	on	writeable	and	send	a	notifikation	to	other	threads
 // that are waiting on this object, and one of them come to life
 writeable = true;
 notify();
 return value;
 }
 }

 // Represents the producer
 class Producer extends Thread
 {
	 private	final	Shared	shared;	//	reference	to	the	shared	resourc

 public Producer(Shared shared)
 {
 this.shared = shared;
 }

 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ++ch) shared.setValue(ch);
 }
 }

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 8:MULTITHREADED PROGRAMS

37

waIt() and notIFy()JAVA 8:MULTITHREADED PROGRAMS

37

wAIT() AnD nOTIFy()

 // Represents the consumer
 class Consumer extends Thread
 {
	 private	final	Shared	shared;	//	reference	to	the	shared	resourc

 public Consumer(Shared shared)
 {
 this.shared = shared;
 }

 public void run()
 {
 char ch;
 do
 {
 System.out.print(ch = shared.getValue());
 }
 while (ch != 'Z');
 System.out.println();
 }
 }

The program prints a line consisting of the letters from A to Z – in the right order! The
comments should explain how the program works, but you should notice a single thing.
The methods getValue() and setValue() in the class Shared performs a wait(). This method
is always performed depending on a condition and a call of the method must be done in
a loop, such the condition is tested before and after the wait() method. Otherwise there is
a risk that the wait() blocks a thread so that it never comes to life again. You should also
note that the wait() and notify() are always used in pairs.

EXERCISE 4

You must write a program that you can call ProducerConsumer1. The program has to illustrate
the same problem as above, but there must be two differences:

1. the producer must “produce” all characters with code from 33–127 (and not just
the characters from A to Z)

2. There must be five consumer threads, and the result could be as shown below:

		!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

The program prints a line consisting of the letters from A to Z – in the right order! The
comments should explain how the program works, but you should notice a single thing.
The methods getValue() and setValue() in the class Shared performs a wait(). This method
is always performed depending on a condition and a call of the method must be done in
a loop, such the condition is tested before and after the wait() method. Otherwise there is
a risk that the wait() blocks a thread so that it never comes to life again. You should also
note that the wait() and notify() are always used in pairs.

EXERCISE 4

You must write a program that you can call ProducerConsumer1. The program has to illustrate
the same problem as above, but there must be two differences:

1. the producer must “produce” all characters with code from 33–127 (and not just
the characters from A to Z)

2. There must be five consumer threads, and the result could be as shown below:

JAVA 8:MULTITHREADED PROGRAMS

37

wAIT() AnD nOTIFy()

 // Represents the consumer
 class Consumer extends Thread
 {
	 private	final	Shared	shared;	//	reference	to	the	shared	resourc

 public Consumer(Shared shared)
 {
 this.shared = shared;
 }

 public void run()
 {
 char ch;
 do
 {
 System.out.print(ch = shared.getValue());
 }
 while (ch != 'Z');
 System.out.println();
 }
 }

The program prints a line consisting of the letters from A to Z – in the right order! The
comments should explain how the program works, but you should notice a single thing.
The methods getValue() and setValue() in the class Shared performs a wait(). This method
is always performed depending on a condition and a call of the method must be done in
a loop, such the condition is tested before and after the wait() method. Otherwise there is
a risk that the wait() blocks a thread so that it never comes to life again. You should also
note that the wait() and notify() are always used in pairs.

EXERCISE 4

You must write a program that you can call ProducerConsumer1. The program has to illustrate
the same problem as above, but there must be two differences:

1. the producer must “produce” all characters with code from 33–127 (and not just
the characters from A to Z)

2. There must be five consumer threads, and the result could be as shown below:

		!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

JAVA 8:MULTITHREADED PROGRAMS

38

waIt() and notIFy()

EXERCISE 5

Write a program that you can call ProducerConsumer2, and the program must again illustrate
the producer-consumer problem, but this time the class Shared must have three fields:

1. an object of the type Buffer<Integer> – the class from exercise 3
2. a counter, that is an integer that counts from 1
3. a variable sum, that can accumulate a sum

In addition to get methods for the last two variables the class Shared must have two methods:

1. a method insert(), that in the case that the buffer is not full counts the counter up
by one, and inserts the value in the buffer

2. a method add(), that in the case where the buffer is not empty, remove a number
from the buffer and adds that number to the variable sum

The Producer class, should run in a loop, where it calls the method insert() and places the
numbers 1 to 1000000 (both incl.) in the buffer.

The Consumer class should run in a loop and call the method add() that accumulates the
sum, and it must run until there is no longer a producer.

Write the program so that there are 10 consumer objects and 5 producer objects, and when
the program must complete to print the accumulated sum. If the program is performed
correctly, the result shall be:

JAVA 8:MULTITHREADED PROGRAMS

38

wAIT() AnD nOTIFy()

EXERCISE 5

Write a program that you can call ProducerConsumer2, and the program must again illustrate
the producer-consumer problem, but this time the class Shared must have three fields:

1. an object of the type Buffer<Integer> – the class from exercise 3
2. a counter, that is an integer that counts from 1
3. a variable sum, that can accumulate a sum

In addition to get methods for the last two variables the class Shared must have two methods:

1. a method insert(), that in the case that the buffer is not full counts the counter up
by one, and inserts the value in the buffer

2. a method add(), that in the case where the buffer is not empty, remove a number
from the buffer and adds that number to the variable sum

The Producer class, should run in a loop, where it calls the method insert() and places the
numbers 1 to 1000000 (both incl.) in the buffer.

The Consumer class should run in a loop and call the method add() that accumulates the
sum, and it must run until there is no longer a producer.

Write the program so that there are 10 consumer objects and 5 producer objects, and when
the program must complete to print the accumulated sum. If the program is performed
correctly, the result shall be:

 500000500000

JAVA 8:MULTITHREADED PROGRAMS

39

tImers

39

7 TIMERS

A timer is an encapsulation of a thread, and a program can start a timer that calls a method
from a certain time and possibly let the timer call the method again after a certain interval.
Timers are represented by two classes. The first is the class TimerTask, which defines the
method that the timer will perform, and the other class is Timer that is the timer and has
methods to start and terminate the timer. The following program starts a timer, and then
the program prints a message on the screen every half second. The timer is ticking for 2
seconds and then it stops the program.

JAVA 8:MULTITHREADED PROGRAMS

39

TIMERS

39

7 TIMERS

A timer is an encapsulation of a thread, and a program can start a timer that calls a method
from a certain time and possibly let the timer call the method again after a certain interval.
Timers are represented by two classes. The first is the class TimerTask, which defines the
method that the timer will perform, and the other class is Timer that is the timer and has
methods to start and terminate the timer. The following program starts a timer, and then
the program prints a message on the screen every half second. The timer is ticking for 2
seconds and then it stops the program.

 package thread12;

 import java.util.*;

 public class Thread12
 {
 public static void main(String[] args)
 {
 TimerTask task = new TimerTask()
 {

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 8:MULTITHREADED PROGRAMS

40

tImersJAVA 8:MULTITHREADED PROGRAMS

40

TIMERS

 public void run()
 {
 System.out.println("Alarm: The machine boils...");
 System.exit(0);
 }
 };
 Timer timer = new Timer();
 timer.schedule(task, 2000);
 for (;;)
 {
 System.out.println("Hello world");
 delay(500);
 }
 }

 private static void delay(int time)
 {
 try
 {
 Thread.sleep(time);
 }
 catch (Exception ex)
 {
 }
 }
 }

The TimerTask object which defines the method to be performed, is instantiated based on
an anonymous class which inherits the class TimerTask. The class implements the method
run(), which is the method used by the timer thread. The Timer object has the type Timer,
and the object starts the timer with the statement

 timer.schedule(task, 2000);

which means that the task object’s run() method must be carried out after 2 seconds. If
you performs the program, the result could be:

 Hello world
 Hello world
 Hello world
 Hello world
 Alarm: The machine boils...

The TimerTask object which defines the method to be performed, is instantiated based on
an anonymous class which inherits the class TimerTask. The class implements the method
run(), which is the method used by the timer thread. The Timer object has the type Timer,
and the object starts the timer with the statement

JAVA 8:MULTITHREADED PROGRAMS

40

TIMERS

 public void run()
 {
 System.out.println("Alarm: The machine boils...");
 System.exit(0);
 }
 };
 Timer timer = new Timer();
 timer.schedule(task, 2000);
 for (;;)
 {
 System.out.println("Hello world");
 delay(500);
 }
 }

 private static void delay(int time)
 {
 try
 {
 Thread.sleep(time);
 }
 catch (Exception ex)
 {
 }
 }
 }

The TimerTask object which defines the method to be performed, is instantiated based on
an anonymous class which inherits the class TimerTask. The class implements the method
run(), which is the method used by the timer thread. The Timer object has the type Timer,
and the object starts the timer with the statement

 timer.schedule(task, 2000);

which means that the task object’s run() method must be carried out after 2 seconds. If
you performs the program, the result could be:

 Hello world
 Hello world
 Hello world
 Hello world
 Alarm: The machine boils...

which means that the task object’s run() method must be carried out after 2 seconds. If
you performs the program, the result could be:

JAVA 8:MULTITHREADED PROGRAMS

40

TIMERS

 public void run()
 {
 System.out.println("Alarm: The machine boils...");
 System.exit(0);
 }
 };
 Timer timer = new Timer();
 timer.schedule(task, 2000);
 for (;;)
 {
 System.out.println("Hello world");
 delay(500);
 }
 }

 private static void delay(int time)
 {
 try
 {
 Thread.sleep(time);
 }
 catch (Exception ex)
 {
 }
 }
 }

The TimerTask object which defines the method to be performed, is instantiated based on
an anonymous class which inherits the class TimerTask. The class implements the method
run(), which is the method used by the timer thread. The Timer object has the type Timer,
and the object starts the timer with the statement

 timer.schedule(task, 2000);

which means that the task object’s run() method must be carried out after 2 seconds. If
you performs the program, the result could be:

 Hello world
 Hello world
 Hello world
 Hello world
 Alarm: The machine boils...

JAVA 8:MULTITHREADED PROGRAMS

41

tImers

Below is another version of the program where the difference is that the timer is ticking
for the first time by half a second and then every second:

JAVA 8:MULTITHREADED PROGRAMS

41

TIMERS

Below is another version of the program where the difference is that the timer is ticking
for the first time by half a second and then every second:

 package thread13;

 import java.util.*;

 public class Thread13
 {
 public static void main(String[] args)
 {
 TimerTask task = new TimerTask()
 {
 public void run()
 {
 System.out.println("Alarm: The machine boils...");
 }
 };
 Timer timer = new Timer();
 timer.schedule(task, 500, 1000);
 for (int i = 0; i < 10; ++i)
 {
 System.out.println("Hello world");
 delay(300);
 }
 timer.cancel();
 }

 private static void delay(int time)
 {
 try
 {
 Thread.sleep(time);
 }
 catch (Exception ex)
 {
 }
 }
 }

Note how to start the timer, and how to specify the start time and the timer interval for
how often the timer should tick. A timer starts a thread which by default is a none-daemon
thread. The program terminates therefore, only when the timer is stopped what happens in
the last statement in main(). If you performs the program, the result could be:

Note how to start the timer, and how to specify the start time and the timer interval for
how often the timer should tick. A timer starts a thread which by default is a none-daemon
thread. The program terminates therefore, only when the timer is stopped what happens in
the last statement in main(). If you performs the program, the result could be:

JAVA 8:MULTITHREADED PROGRAMS

42

tImers

42

JAVA 8:MULTITHREADED PROGRAMS

42

TIMERS

42

 Hello world
 Hello world
 Alarm: The machine boils...
 Hello world
 Hello world
 Hello world
 Alarm: The machine boils...
 Hello world
 Hello world
 Hello world
 Hello world
 Alarm: The machine boils...
 Hello world

A timer can also be started as a daemon thread what the program Thread14 illustrates. The
only thing to do is to create the timer as follows:

 Timer timer = new Timer(true);

and if you do, the last cancel() statement is unnecessary.

A timer can also be started as a daemon thread what the program Thread14 illustrates. The
only thing to do is to create the timer as follows:

JAVA 8:MULTITHREADED PROGRAMS

42

TIMERS

42

 Hello world
 Hello world
 Alarm: The machine boils...
 Hello world
 Hello world
 Hello world
 Alarm: The machine boils...
 Hello world
 Hello world
 Hello world
 Hello world
 Alarm: The machine boils...
 Hello world

A timer can also be started as a daemon thread what the program Thread14 illustrates. The
only thing to do is to create the timer as follows:

 Timer timer = new Timer(true);

and if you do, the last cancel() statement is unnecessary.
and if you do, the last cancel() statement is unnecessary.

http://s.bookboon.com/GTca

JAVA 8:MULTITHREADED PROGRAMS

43

tImers

PROBLEM 1

In this problem, you must write some classes to simulate an alarm that senses one or more
thermometers and send messages to different display devices regarding the temperature to which
the thermometers shows. You should solve the exercise according to the following guidelines.

1) Start a new project that you can call Alarms. Add the following class to represent
a thermometer:

JAVA 8:MULTITHREADED PROGRAMS

43

TIMERS

PROBLEM 1

In this problem, you must write some classes to simulate an alarm that senses one or more
thermometers and send messages to different display devices regarding the temperature to which
the thermometers shows. You should solve the exercise according to the following guidelines.

1) Start a new project that you can call Alarms. Add the following class to represent
a thermometer:

 public class Thermometer
 {
	 private	static	final	Random	rand	=	new	Random();
 private int value = rand.nextInt(10) + 15;

 public Thermometer()
 {
 ...
 }

 public int getValue()
 {
 return value;
 }
 }

The class has an int variable which represents the temperature, and it is initialized with a
random value between 15 and 24 degrees.

You must write a constructor, so it starts a timer that ticks the first time by 1 second and
then ticking every second. Each time the timer is ticking, it should add a random value
between -5 and 10 to the variable value. That is, the timer changes the temperature –
randomly up or down, but mostly up.

2) Add the following interface to the project, which should define the communication
between an alarm and a display:

 package alarmer;

 public interface IDisplay
 {
 public Thermometer getThermometer();
 public void show(int temp);
 public void warning(int temp);
 public void error();
 }

The class has an int variable which represents the temperature, and it is initialized with a
random value between 15 and 24 degrees.

You must write a constructor, so it starts a timer that ticks the first time by 1 second and
then ticking every second. Each time the timer is ticking, it should add a random value
between -5 and 10 to the variable value. That is, the timer changes the temperature –
randomly up or down, but mostly up.

2) Add the following interface to the project, which should define the communication
between an alarm and a display:

JAVA 8:MULTITHREADED PROGRAMS

43

TIMERS

PROBLEM 1

In this problem, you must write some classes to simulate an alarm that senses one or more
thermometers and send messages to different display devices regarding the temperature to which
the thermometers shows. You should solve the exercise according to the following guidelines.

1) Start a new project that you can call Alarms. Add the following class to represent
a thermometer:

 public class Thermometer
 {
	 private	static	final	Random	rand	=	new	Random();
 private int value = rand.nextInt(10) + 15;

 public Thermometer()
 {
 ...
 }

 public int getValue()
 {
 return value;
 }
 }

The class has an int variable which represents the temperature, and it is initialized with a
random value between 15 and 24 degrees.

You must write a constructor, so it starts a timer that ticks the first time by 1 second and
then ticking every second. Each time the timer is ticking, it should add a random value
between -5 and 10 to the variable value. That is, the timer changes the temperature –
randomly up or down, but mostly up.

2) Add the following interface to the project, which should define the communication
between an alarm and a display:

 package alarmer;

 public interface IDisplay
 {
 public Thermometer getThermometer();
 public void show(int temp);
 public void warning(int temp);
 public void error();
 }

JAVA 8:MULTITHREADED PROGRAMS

44

tImers

3) As a next step you must to write a class that can represent a display that can show
the temperature:

JAVA 8:MULTITHREADED PROGRAMS

44

TIMERS

3) As a next step you must to write a class that can represent a display that can show
the temperature:

 public class Display extends Thread implements IDisplay
 {
 private Termometer therm;
 private String name;

 public Display(String name, Termometer therm)
 {
 ...
 }

 public void run()
 {
 ...
 }

 public Thermometer getThermometer()
 {
 return term;
 }

 public void show(int temp)
 {
 System.out.println(String.format("%d degrees in %s", temp, name));
 }

 public void warning(int temp)
 {
 System.out.println(String.format("Warning: %d degrees in %s", temp, name));
 }

 public void error()
 {
 System.out.println("Disaster in " + name + "");
 ...
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

45

tImers

45

A Display has a name, and shows the temperature of a particular thermometer, and both
the name and the thermometer is initialized in the constructor. The class will represent a
thread and therefore it inherits the class Thread, and the class’ constructor has to start the
thread. The run() method should in principle not do anything but just keep threads alive
in a so call busy wait (that is a loop, which performs a short sleep()). The class implements
the interface IDisplay and the show() method simply show the temperature, while the
method warning() must warn that the temperature is about to be critical (over 80 degrees),
and finally the method error() illustrate a disaster situation (when the temperature is 100
degrees). The method error() must also terminate the thread.

4) You must next add a class Alarm:

JAVA 8:MULTITHREADED PROGRAMS

45

TIMERS

45

A Display has a name, and shows the temperature of a particular thermometer, and both
the name and the thermometer is initialized in the constructor. The class will represent a
thread and therefore it inherits the class Thread, and the class’ constructor has to start the
thread. The run() method should in principle not do anything but just keep threads alive
in a so call busy wait (that is a loop, which performs a short sleep()). The class implements
the interface IDisplay and the show() method simply show the temperature, while the
method warning() must warn that the temperature is about to be critical (over 80 degrees),
and finally the method error() illustrate a disaster situation (when the temperature is 100
degrees). The method error() must also terminate the thread.

4) You must next add a class Alarm:

 public class Alarm
 {
 private ArrayList<IDisplay> observers = new ArrayList();
 private Thermometer[] therms;

 public Alarm(Thermometer ... therms)
 {
 ...
 }

 .

http://s.bookboon.com/AlcatelLucent

JAVA 8:MULTITHREADED PROGRAMS

46

tImersJAVA 8:MULTITHREADED PROGRAMS

46

TIMERS

	 public	void	addObserver(IDisplay	observer)
 {
 observers.add(observer);
 }
 }

The class should have two variables, the first is a collection of objects of the type IDisplay
that will receive messages regarding the thermometers state. The class must therefore have
a method addObserver(), which can add an observer to the list. The second variable is an
array with Thermometer objects, which are the thermometers that the alarm must monitor.
The constructor shall initialize the array and start a timer that is ticking the first time
after 500 milliseconds, and otherwise ticks every 800 milliseconds. Each time the timer
is ticking, it should for each thermometer send messages to the observers that concerning
the thermometer when to call error(), if the temperature is greater than or equal to 100
degrees and call warning() if the temperature is over 80 degrees and otherwise call show().

5) Finally, you can test your classes with the following main() program:

 package alarms;

 public class Alarms
 {
 public static void main(String[] args)
 {
 Thermometer[] terms =
 { new Thermometer(), new Thermometer(), new Thermometer() };
 Alarm alarm = new Alarm(terms);
	 alarm.addObserver(new	Display("The	living	room",	terms[0]));
	 alarm.addObserver(new	Display("The	office",	terms[1]));
	 alarm.addObserver(new	Display("The	winter	garden",	terms[0]));
	 alarm.addObserver(new	Display("TThe	bedroom",	terms[2]));
 }
 }

The class should have two variables, the first is a collection of objects of the type IDisplay
that will receive messages regarding the thermometers state. The class must therefore have
a method addObserver(), which can add an observer to the list. The second variable is an
array with Thermometer objects, which are the thermometers that the alarm must monitor.
The constructor shall initialize the array and start a timer that is ticking the first time
after 500 milliseconds, and otherwise ticks every 800 milliseconds. Each time the timer
is ticking, it should for each thermometer send messages to the observers that concerning
the thermometer when to call error(), if the temperature is greater than or equal to 100
degrees and call warning() if the temperature is over 80 degrees and otherwise call show().

5) Finally, you can test your classes with the following main() program:

JAVA 8:MULTITHREADED PROGRAMS

46

TIMERS

	 public	void	addObserver(IDisplay	observer)
 {
 observers.add(observer);
 }
 }

The class should have two variables, the first is a collection of objects of the type IDisplay
that will receive messages regarding the thermometers state. The class must therefore have
a method addObserver(), which can add an observer to the list. The second variable is an
array with Thermometer objects, which are the thermometers that the alarm must monitor.
The constructor shall initialize the array and start a timer that is ticking the first time
after 500 milliseconds, and otherwise ticks every 800 milliseconds. Each time the timer
is ticking, it should for each thermometer send messages to the observers that concerning
the thermometer when to call error(), if the temperature is greater than or equal to 100
degrees and call warning() if the temperature is over 80 degrees and otherwise call show().

5) Finally, you can test your classes with the following main() program:

 package alarms;

 public class Alarms
 {
 public static void main(String[] args)
 {
 Thermometer[] terms =
 { new Thermometer(), new Thermometer(), new Thermometer() };
 Alarm alarm = new Alarm(terms);
	 alarm.addObserver(new	Display("The	living	room",	terms[0]));
	 alarm.addObserver(new	Display("The	office",	terms[1]));
	 alarm.addObserver(new	Display("The	winter	garden",	terms[0]));
	 alarm.addObserver(new	Display("TThe	bedroom",	terms[2]));
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

47

ConCurrenCy tools

8 CONCURRENCY TOOLS

Multithreaded applications can generally lead to concurrency issues when multiple threads
need access to the same resources, and where the order of the threads access to the resources
plays a role. This requires the threads to be synchronized, and this may in turn cause other
problems as deadlock and stavation in which a thread will not be running, since it all the
time is interrupted. As shown in the previous chapter, the basic solution is critical regions
defined with synchronized code, and the methods wait() and notify(). These operations are very
basic, and although in principle is simple enough, it’s not so easy to use the synchronization
operations and not to use them correctly. Therefore, Java has defined some classes, which
aims to make it easier to write multithreaded applications, and partly to make the programs
more effective. Note in this context that the use of synchronized on the one hand ensure
critical regions, but also easily lead to programs with poor performance, where threads are
too often interrupted and have to wait.

8.1 EXECUTORS

The concurrency tools include an executor as an alternative to starting a thread. It is an
object that directly or indirectly implements the interface Executor, and the purpose is
partly to decoupling start of a task from the execution, and also make it more efficient to
start a thread and make more facilities available for threads. Here is a task an object that
implements the interface Runnable or the interface Callable. The interface Executor does not
define all the desired properties regarding threads, and therefore there is defined an extended
interface, called ExecutorService. The principle is that you start a thread in the following way:

JAVA 8:MULTITHREADED PROGRAMS

47

COnCURREnCy TOOLS

8 CONCURRENCY TOOLS

Multithreaded applications can generally lead to concurrency issues when multiple threads
need access to the same resources, and where the order of the threads access to the resources
plays a role. This requires the threads to be synchronized, and this may in turn cause other
problems as deadlock and stavation in which a thread will not be running, since it all the
time is interrupted. As shown in the previous chapter, the basic solution is critical regions
defined with synchronized code, and the methods wait() and notify(). These operations are very
basic, and although in principle is simple enough, it’s not so easy to use the synchronization
operations and not to use them correctly. Therefore, Java has defined some classes, which
aims to make it easier to write multithreaded applications, and partly to make the programs
more effective. Note in this context that the use of synchronized on the one hand ensure
critical regions, but also easily lead to programs with poor performance, where threads are
too often interrupted and have to wait.

8.1 EXECUTORS

The concurrency tools include an executor as an alternative to starting a thread. It is an
object that directly or indirectly implements the interface Executor, and the purpose is
partly to decoupling start of a task from the execution, and also make it more efficient to
start a thread and make more facilities available for threads. Here is a task an object that
implements the interface Runnable or the interface Callable. The interface Executor does not
define all the desired properties regarding threads, and therefore there is defined an extended
interface, called ExecutorService. The principle is that you start a thread in the following way:

 Executor executor = ...;
 executor.execute(new RunnableTask());

The following program will partly show how to use an Executor, and partly what a Callable
object is:

 package thread15;

 import java.math.*;
 import java.util.concurrent.*;

 public class Thread15
 {
 public static void main(String[] args)
 {

The following program will partly show how to use an Executor, and partly what a Callable
object is:

JAVA 8:MULTITHREADED PROGRAMS

47

COnCURREnCy TOOLS

8 CONCURRENCY TOOLS

Multithreaded applications can generally lead to concurrency issues when multiple threads
need access to the same resources, and where the order of the threads access to the resources
plays a role. This requires the threads to be synchronized, and this may in turn cause other
problems as deadlock and stavation in which a thread will not be running, since it all the
time is interrupted. As shown in the previous chapter, the basic solution is critical regions
defined with synchronized code, and the methods wait() and notify(). These operations are very
basic, and although in principle is simple enough, it’s not so easy to use the synchronization
operations and not to use them correctly. Therefore, Java has defined some classes, which
aims to make it easier to write multithreaded applications, and partly to make the programs
more effective. Note in this context that the use of synchronized on the one hand ensure
critical regions, but also easily lead to programs with poor performance, where threads are
too often interrupted and have to wait.

8.1 EXECUTORS

The concurrency tools include an executor as an alternative to starting a thread. It is an
object that directly or indirectly implements the interface Executor, and the purpose is
partly to decoupling start of a task from the execution, and also make it more efficient to
start a thread and make more facilities available for threads. Here is a task an object that
implements the interface Runnable or the interface Callable. The interface Executor does not
define all the desired properties regarding threads, and therefore there is defined an extended
interface, called ExecutorService. The principle is that you start a thread in the following way:

 Executor executor = ...;
 executor.execute(new RunnableTask());

The following program will partly show how to use an Executor, and partly what a Callable
object is:

 package thread15;

 import java.math.*;
 import java.util.concurrent.*;

 public class Thread15
 {
 public static void main(String[] args)
 {

JAVA 8:MULTITHREADED PROGRAMS

48

ConCurrenCy tools

48

JAVA 8:MULTITHREADED PROGRAMS

48

COnCURREnCy TOOLS

48

 ExecutorService executor = Executors.newFixedThreadPool(2);
 Callable<BigDecimal> callE = new ECalculator(200);
 Callable<Long> callP = new PrimeCalculator(1000000000000000L);
 Future<BigDecimal> eTask = executor.submit(callE);
 Future<Long> pTask = executor.submit(callP);
 try
 {
 while (!eTask.isDone() || !pTask.isDone())
 {
 System.out.println("waiting");
 try
 {
 Thread.sleep(100);
 }
 catch (Exception ex)
 {
 }
 }
 System.out.println(eTask.get());
 System.out.println(pTask.get());
 }
 catch(Exception ex)
 {

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 8:MULTITHREADED PROGRAMS

49

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

49

COnCURREnCy TOOLS

 System.err.println(ex);
 }
 executor.shutdownNow();
 }
 }

 class ECalculator implements Callable<BigDecimal>
 {
 private int dec;

 public ECalculator(int dec)
 {
 this.dec = dec;
 }

 public BigDecimal call()
 {
 MathContext mc = new MathContext(dec, RoundingMode.HALF_UP);
	 BigDecimal	y	=	BigDecimal.ZERO;
 for (int i = 0; ; ++i)
 {
	 BigDecimal	fac	=	BigDecimal.ONE.divide(factorial(new	BigDecimal(i)),	mc);
 BigDecimal z = y.add(fac, mc);
 if (z.compareTo(y) == 0) break;
 y = z;
 }
 return y;
 }

 private BigDecimal factorial(BigDecimal n)
 {
	 return	n.equals(BigDecimal.ZERO)	?
	 BigDecimal.ONE	:	n.multiply(factorial(n.	subtract(BigDecimal.ONE)));
 }
 }

 class PrimeCalculator implements Callable<Long>
 {
 private long n;

 public PrimeCalculator(long n)
 {
 this.n = n;
 }

JAVA 8:MULTITHREADED PROGRAMS

50

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

50

COnCURREnCy TOOLS

 public Long call()
 {
 long t = n;
 if (t <= 2) return new Long(2);
 if (t % 2 == 0) ++t;
 while (!isPrime(t)) t += 2;
 return t;
 }

 private boolean isPrime(long n)
 {
 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
 if (n < 11 || n % 2 == 0) return false;
 for (long t = 3, m = (long)Math.sqrt(n) + 1; t <= m; t += 2)
 if (n % t == 0) return false;
 return true;
 }
 }

The program starts two tasks, performed in separate threads besacuse it is time-consuming
operations, where the two tasks respectively determines a large prime number, and the number
e. The class PrimeCalculator defines a task as a Callable object that determines the first
prime number greater than or equal to a parameter passed to the constructor. Immediately a
Callable class looks like a Runnable class, and both interfaces defines a method (respectively
call() and run()), which is the method that is performed when a corresponding object is
started as a thread, but Callable is a generic interface and the method call() returns a value
whose type is the parameter type. This value is returned when the thread terminates. The
class ECalculator are in principle identical. The interface also implements Callable (but
parameterized with another type). The constructor has a parameter dec, and the call() method
determines the number e with dec decimals.

Then there is the main() program, and the first thing that happens is the creation of a
ExecutorService object. This is done by calling a static method in the class Executors, which
creates an Executor object with a thread pool that can accommodate two threads. Such a
thread pool efficiency the creation of threads. Then on the basis of the above are instantiated
two Callable objects, that starts two threads, for example

 Future<BigDecimal> eTask = executor.submit(callE);

Here you should note the type Future that is a generic interface, and in this case an eTask
object that can be used to refer to the thread’s return value. In this case, the primary thread
performes a busy wait until both threads terminates, after which the results are printed.

The program starts two tasks, performed in separate threads besacuse it is time-consuming
operations, where the two tasks respectively determines a large prime number, and the number
e. The class PrimeCalculator defines a task as a Callable object that determines the first
prime number greater than or equal to a parameter passed to the constructor. Immediately a
Callable class looks like a Runnable class, and both interfaces defines a method (respectively
call() and run()), which is the method that is performed when a corresponding object is
started as a thread, but Callable is a generic interface and the method call() returns a value
whose type is the parameter type. This value is returned when the thread terminates. The
class ECalculator are in principle identical. The interface also implements Callable (but
parameterized with another type). The constructor has a parameter dec, and the call() method
determines the number e with dec decimals.

Then there is the main() program, and the first thing that happens is the creation of a
ExecutorService object. This is done by calling a static method in the class Executors, which
creates an Executor object with a thread pool that can accommodate two threads. Such a
thread pool efficiency the creation of threads. Then on the basis of the above are instantiated
two Callable objects, that starts two threads, for example

JAVA 8:MULTITHREADED PROGRAMS

50

COnCURREnCy TOOLS

 public Long call()
 {
 long t = n;
 if (t <= 2) return new Long(2);
 if (t % 2 == 0) ++t;
 while (!isPrime(t)) t += 2;
 return t;
 }

 private boolean isPrime(long n)
 {
 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
 if (n < 11 || n % 2 == 0) return false;
 for (long t = 3, m = (long)Math.sqrt(n) + 1; t <= m; t += 2)
 if (n % t == 0) return false;
 return true;
 }
 }

The program starts two tasks, performed in separate threads besacuse it is time-consuming
operations, where the two tasks respectively determines a large prime number, and the number
e. The class PrimeCalculator defines a task as a Callable object that determines the first
prime number greater than or equal to a parameter passed to the constructor. Immediately a
Callable class looks like a Runnable class, and both interfaces defines a method (respectively
call() and run()), which is the method that is performed when a corresponding object is
started as a thread, but Callable is a generic interface and the method call() returns a value
whose type is the parameter type. This value is returned when the thread terminates. The
class ECalculator are in principle identical. The interface also implements Callable (but
parameterized with another type). The constructor has a parameter dec, and the call() method
determines the number e with dec decimals.

Then there is the main() program, and the first thing that happens is the creation of a
ExecutorService object. This is done by calling a static method in the class Executors, which
creates an Executor object with a thread pool that can accommodate two threads. Such a
thread pool efficiency the creation of threads. Then on the basis of the above are instantiated
two Callable objects, that starts two threads, for example

 Future<BigDecimal> eTask = executor.submit(callE);

Here you should note the type Future that is a generic interface, and in this case an eTask
object that can be used to refer to the thread’s return value. In this case, the primary thread
performes a busy wait until both threads terminates, after which the results are printed.

Here you should note the type Future that is a generic interface, and in this case an eTask
object that can be used to refer to the thread’s return value. In this case, the primary thread
performes a busy wait until both threads terminates, after which the results are printed.

JAVA 8:MULTITHREADED PROGRAMS

51

ConCurrenCy tools

51

You should note the last statement in main(), which close the Executor. It is necessary, otherwise
there will be registered a none-daemon thread, and the program will then not terminate.

EXERCISE 6

Create a project that you can call Calculations. Copy the two classes ECalulator and
PrimeCalculator to the project. You must change the two classes so

1. instead of Callable they implements the interface Runnablede
2. they do not return a value, but instead prints the results on screen

You must then add a class:

JAVA 8:MULTITHREADED PROGRAMS

51

COnCURREnCy TOOLS

51

You should note the last statement in main(), which close the Executor. It is necessary, otherwise
there will be registered a none-daemon thread, and the program will then not terminate.

EXERCISE 6

Create a project that you can call Calculations. Copy the two classes ECalulator and
PrimeCalculator to the project. You must change the two classes so

1. instead of Callable they implements the interface Runnablede
2. they do not return a value, but instead prints the results on screen

You must then add a class:

 class SqrtCalculator implements Runnable
 {
 private BigDecimal x;
 private int dec;

http://s.bookboon.com/BI

JAVA 8:MULTITHREADED PROGRAMS

52

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

52

COnCURREnCy TOOLS

 public SqrtCalculator(BigDecimal x, int dec) throws IllegalArgumentException
 {
 if (x.signum() < 0) throw new IllegalArgumentException(
 "sqrt(): The argument must be none-negative");
 this.x = x;
 this.dec = dec;
 }

 public void run()
 {
 }
 }

where the run() method should print the square root of x.

Finally, write the following main() method:

 public static void main(String[] args)
 {
 // creates an ExecutorService object with room for 5 running threads

 // loop that submits 100 runnable objects to the executor object
 // when there for every iteration randomly are instantiated an
 // object of the classes ECalculator, PrimeCalculator and SqrtCalculator
 for (int i = 0; i < 100; ++i)
 {
 }

 // the primary thread has to wait so long that all threads are executed

 // termnates the executor object
 }

When you are done, you may experimenting in terms of how many threads that can
simultaneously run and how many tasks the loop submits.

8.2 COUNTDOWNLATCH

A CountDownLatch is a synchronization object, which allows one or more threads to wait
at a “gate” until another thread opens the gate, after which the waiting threads can proceed.
A CountDownLathch is primary a counter and has operations, where a thread waits until
the counter is counting down to the 0.

where the run() method should print the square root of x.

Finally, write the following main() method:

JAVA 8:MULTITHREADED PROGRAMS

52

COnCURREnCy TOOLS

 public SqrtCalculator(BigDecimal x, int dec) throws IllegalArgumentException
 {
 if (x.signum() < 0) throw new IllegalArgumentException(
 "sqrt(): The argument must be none-negative");
 this.x = x;
 this.dec = dec;
 }

 public void run()
 {
 }
 }

where the run() method should print the square root of x.

Finally, write the following main() method:

 public static void main(String[] args)
 {
 // creates an ExecutorService object with room for 5 running threads

 // loop that submits 100 runnable objects to the executor object
 // when there for every iteration randomly are instantiated an
 // object of the classes ECalculator, PrimeCalculator and SqrtCalculator
 for (int i = 0; i < 100; ++i)
 {
 }

 // the primary thread has to wait so long that all threads are executed

 // termnates the executor object
 }

When you are done, you may experimenting in terms of how many threads that can
simultaneously run and how many tasks the loop submits.

8.2 COUNTDOWNLATCH

A CountDownLatch is a synchronization object, which allows one or more threads to wait
at a “gate” until another thread opens the gate, after which the waiting threads can proceed.
A CountDownLathch is primary a counter and has operations, where a thread waits until
the counter is counting down to the 0.

When you are done, you may experimenting in terms of how many threads that can
simultaneously run and how many tasks the loop submits.

8.2 COUNTDOWNLATCH

A CountDownLatch is a synchronization object, which allows one or more threads to wait
at a “gate” until another thread opens the gate, after which the waiting threads can proceed.
A CountDownLathch is primary a counter and has operations, where a thread waits until
the counter is counting down to the 0.

JAVA 8:MULTITHREADED PROGRAMS

53

ConCurrenCy tools

The following program will show how to apply a CountDownLatch to synchronization of objects.
The program starts N worker threads, that are unable to continue until a CountDownLatch
is countdown. After the primary thread has done a work, it is blocked until each worker
thread has counted down the CountDownLatch. This means that the primary thread waits
for all worker threads to terminate.

JAVA 8:MULTITHREADED PROGRAMS

53

COnCURREnCy TOOLS

The following program will show how to apply a CountDownLatch to synchronization of objects.
The program starts N worker threads, that are unable to continue until a CountDownLatch
is countdown. After the primary thread has done a work, it is blocked until each worker
thread has counted down the CountDownLatch. This means that the primary thread waits
for all worker threads to terminate.

 package thread16;

 import java.util.*;
 import java.util.concurrent.*;

 public class Thread16
 {
	 private	final	static	int	N	=	5;

 public static void main(String[] args)
 {
	 final	CountDownLatch	startLatch	=	new	CountDownLatch(1);
	 final	CountDownLatch	doneLatch	=	new	CountDownLatch(N);
 Runnable worker = new Worker(startLatch, doneLatch);
 ExecutorService executor = Executors.newFixedThreadPool(N);
 for (int i = 0; i < N; ++i) executor.execute(worker);
 try
 {
 System.out.println("Main working");
 Thread.sleep(1000);
 startLatch.countDown();
 System.out.println("Main doing work");
 doneLatch.await();
 executor.shutdownNow();
 }
 catch (InterruptedException ex)
 {
 System.err.println(ex);
 }
 }
 }

 class Worker implements Runnable
 {
	 private	static	final	Random	rand	=	new	Random();
	 private	final	CountDownLatch	start;
	 private	final	CountDownLatch	done;

JAVA 8:MULTITHREADED PROGRAMS

54

ConCurrenCy tools

54

JAVA 8:MULTITHREADED PROGRAMS

54

COnCURREnCy TOOLS

54

 public Worker(CountDownLatch start, CountDownLatch done)
 {
 this.start = start;
 this.done = done;
 }

 public void run()
 {
 try
 {
 print("Entered run()");
 start.await();
 print("Working");
 Thread.sleep(rand.nextInt(1000));
 done.countDown();
 }
 catch (InterruptedException ex)
 {
 System.err.println(ex);
 }
 }

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 8:MULTITHREADED PROGRAMS

55

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

55

COnCURREnCy TOOLS

 void print(String text)
 {
 System.out.println("[" + Thread.currentThread().getId() + "] " + text);
 }
 }

The class Worker defines a runnable object (a task) to simulate that work is carried out on
the machine. An object is initialized with two CountDownLatch objects. The run() method
starts to print a message that the threads are started, but then block itself (at the gate):

 start.await();

and waiting for another thread to signal that it must continue. When that happens, the
thread prints again a text and performs a sleep() (to illustrate that the thread do something),
and when it is finished the second synchronization object is counting down so it knows
when all threads are finished.

main() defines two synchronization objects:

	final	CountDownLatch	startLatch	=	new	CountDownLatch(1);
	final	CountDownLatch	doneLatch	=	new	CountDownLatch(N);

where the first should be used to block the start of the N worker threads until the primary
thread opens up and allows the threads to continue. The second should be used to get the
primary thread to wait until all worker threads are completed. Next is created a runnable
object to a worker thread, and there is created an Executor object for N threads. The next
loop adds N threads to the executor object. Note that the threads are started on basis of
the same object. The threads start immediately, but when they blocks themself, and there
is no momentum prior to the primary thread opens up. It first performs a work and then
opens the gate (the synchronization object startLatch is counted down), and the worker
threads can proceed. The primary thread also continues and performs

 doneLatch.await();

This means that the primary thread is blocked waiting until the worker threads have counted
the synchronization object down to 0.

The class Worker defines a runnable object (a task) to simulate that work is carried out on
the machine. An object is initialized with two CountDownLatch objects. The run() method
starts to print a message that the threads are started, but then block itself (at the gate):

JAVA 8:MULTITHREADED PROGRAMS

55

COnCURREnCy TOOLS

 void print(String text)
 {
 System.out.println("[" + Thread.currentThread().getId() + "] " + text);
 }
 }

The class Worker defines a runnable object (a task) to simulate that work is carried out on
the machine. An object is initialized with two CountDownLatch objects. The run() method
starts to print a message that the threads are started, but then block itself (at the gate):

 start.await();

and waiting for another thread to signal that it must continue. When that happens, the
thread prints again a text and performs a sleep() (to illustrate that the thread do something),
and when it is finished the second synchronization object is counting down so it knows
when all threads are finished.

main() defines two synchronization objects:

	final	CountDownLatch	startLatch	=	new	CountDownLatch(1);
	final	CountDownLatch	doneLatch	=	new	CountDownLatch(N);

where the first should be used to block the start of the N worker threads until the primary
thread opens up and allows the threads to continue. The second should be used to get the
primary thread to wait until all worker threads are completed. Next is created a runnable
object to a worker thread, and there is created an Executor object for N threads. The next
loop adds N threads to the executor object. Note that the threads are started on basis of
the same object. The threads start immediately, but when they blocks themself, and there
is no momentum prior to the primary thread opens up. It first performs a work and then
opens the gate (the synchronization object startLatch is counted down), and the worker
threads can proceed. The primary thread also continues and performs

 doneLatch.await();

This means that the primary thread is blocked waiting until the worker threads have counted
the synchronization object down to 0.

and waiting for another thread to signal that it must continue. When that happens, the
thread prints again a text and performs a sleep() (to illustrate that the thread do something),
and when it is finished the second synchronization object is counting down so it knows
when all threads are finished.

main() defines two synchronization objects:

JAVA 8:MULTITHREADED PROGRAMS

55

COnCURREnCy TOOLS

 void print(String text)
 {
 System.out.println("[" + Thread.currentThread().getId() + "] " + text);
 }
 }

The class Worker defines a runnable object (a task) to simulate that work is carried out on
the machine. An object is initialized with two CountDownLatch objects. The run() method
starts to print a message that the threads are started, but then block itself (at the gate):

 start.await();

and waiting for another thread to signal that it must continue. When that happens, the
thread prints again a text and performs a sleep() (to illustrate that the thread do something),
and when it is finished the second synchronization object is counting down so it knows
when all threads are finished.

main() defines two synchronization objects:

	final	CountDownLatch	startLatch	=	new	CountDownLatch(1);
	final	CountDownLatch	doneLatch	=	new	CountDownLatch(N);

where the first should be used to block the start of the N worker threads until the primary
thread opens up and allows the threads to continue. The second should be used to get the
primary thread to wait until all worker threads are completed. Next is created a runnable
object to a worker thread, and there is created an Executor object for N threads. The next
loop adds N threads to the executor object. Note that the threads are started on basis of
the same object. The threads start immediately, but when they blocks themself, and there
is no momentum prior to the primary thread opens up. It first performs a work and then
opens the gate (the synchronization object startLatch is counted down), and the worker
threads can proceed. The primary thread also continues and performs

 doneLatch.await();

This means that the primary thread is blocked waiting until the worker threads have counted
the synchronization object down to 0.

where the first should be used to block the start of the N worker threads until the primary
thread opens up and allows the threads to continue. The second should be used to get the
primary thread to wait until all worker threads are completed. Next is created a runnable
object to a worker thread, and there is created an Executor object for N threads. The next
loop adds N threads to the executor object. Note that the threads are started on basis of
the same object. The threads start immediately, but when they blocks themself, and there
is no momentum prior to the primary thread opens up. It first performs a work and then
opens the gate (the synchronization object startLatch is counted down), and the worker
threads can proceed. The primary thread also continues and performs

JAVA 8:MULTITHREADED PROGRAMS

55

COnCURREnCy TOOLS

 void print(String text)
 {
 System.out.println("[" + Thread.currentThread().getId() + "] " + text);
 }
 }

The class Worker defines a runnable object (a task) to simulate that work is carried out on
the machine. An object is initialized with two CountDownLatch objects. The run() method
starts to print a message that the threads are started, but then block itself (at the gate):

 start.await();

and waiting for another thread to signal that it must continue. When that happens, the
thread prints again a text and performs a sleep() (to illustrate that the thread do something),
and when it is finished the second synchronization object is counting down so it knows
when all threads are finished.

main() defines two synchronization objects:

	final	CountDownLatch	startLatch	=	new	CountDownLatch(1);
	final	CountDownLatch	doneLatch	=	new	CountDownLatch(N);

where the first should be used to block the start of the N worker threads until the primary
thread opens up and allows the threads to continue. The second should be used to get the
primary thread to wait until all worker threads are completed. Next is created a runnable
object to a worker thread, and there is created an Executor object for N threads. The next
loop adds N threads to the executor object. Note that the threads are started on basis of
the same object. The threads start immediately, but when they blocks themself, and there
is no momentum prior to the primary thread opens up. It first performs a work and then
opens the gate (the synchronization object startLatch is counted down), and the worker
threads can proceed. The primary thread also continues and performs

 doneLatch.await();

This means that the primary thread is blocked waiting until the worker threads have counted
the synchronization object down to 0.
This means that the primary thread is blocked waiting until the worker threads have counted
the synchronization object down to 0.

JAVA 8:MULTITHREADED PROGRAMS

56

ConCurrenCy tools

EXERCISE 7

Start by creating a copy of the project Calculations (Exercise 6), and calls for example the
copy for Calculations1. Open the copy in NetBeans. The solution has a problem as the
primary thread waits to all the worker threads are finish by waiting long enough. Solve this
problem by using a CountDownLatch.

8.3 CYCLICBARRIER

A CyclicBarrier is a synchronization object which can be used to ensure that multiple threads
are waiting on each other at a certain barrier point. The object is cyclic, since it can be
recycled after having released waiting threads. The synchronization mechanism is useful if a
program that starts a certain number of threads which must wait for each other. Sometimes
you can think of it as multiple threads are performing work on a common problem, and
that the task is first solved when all the threads have completed their work.

The following program creates and initalizes a square matrix. Next, the application determine
the square root of each of the matrix’s items, but it must take place in that way, that starting
a thread for each row, wherein the thread is processing that row. The result is only available
when all threads have finished their work, after which the individual threads work in principle
are merges into a finished result. It obviously can not be made until the individual threads
are completed and it can be synchronized with a CyclicBarrier.

JAVA 8:MULTITHREADED PROGRAMS

56

COnCURREnCy TOOLS

EXERCISE 7

Start by creating a copy of the project Calculations (Exercise 6), and calls for example the
copy for Calculations1. Open the copy in NetBeans. The solution has a problem as the
primary thread waits to all the worker threads are finish by waiting long enough. Solve this
problem by using a CountDownLatch.

8.3 CYCLICBARRIER

A CyclicBarrier is a synchronization object which can be used to ensure that multiple threads
are waiting on each other at a certain barrier point. The object is cyclic, since it can be
recycled after having released waiting threads. The synchronization mechanism is useful if a
program that starts a certain number of threads which must wait for each other. Sometimes
you can think of it as multiple threads are performing work on a common problem, and
that the task is first solved when all the threads have completed their work.

The following program creates and initalizes a square matrix. Next, the application determine
the square root of each of the matrix’s items, but it must take place in that way, that starting
a thread for each row, wherein the thread is processing that row. The result is only available
when all threads have finished their work, after which the individual threads work in principle
are merges into a finished result. It obviously can not be made until the individual threads
are completed and it can be synchronized with a CyclicBarrier.

 package thread17;

 import java.util.concurrent.*;

 public class Thread17
 {
	 private	static	final	int	N	=	5;	//	the	size	of	the	matrix

 public static void main(String[] args)
 {
	 float[][]	matrix	=	create();
 print(matrix);
 System.out.println();
 Solver solver = new Solver(matrix);
 System.out.println();
 print(matrix);
 }

JAVA 8:MULTITHREADED PROGRAMS

57

ConCurrenCy tools

57

JAVA 8:MULTITHREADED PROGRAMS

57

COnCURREnCy TOOLS

57

	 private	static	float[][]	create()
 {
	 float[][]	matrix	=	new	float[N][N];
 for (int r = 0, n = 0; r < matrix.length; ++r)
 for (int c = 0; c < matrix[r].length; ++c) matrix[r][c] = ++n;
 return matrix;
 }

	 private	static	void	print(float[][]	matrix)
 {
 for (int r = 0; r < matrix.length; ++r)
 {
 for (int c = 0; c < matrix[r].length; ++c) System.

out.printf("%10.4f", matrix[r][c]);
 System.out.println();
 }
 }
 }

 class Solver
 {
	 private	final	float[][]	data;	//	matricen
	 private	final	CyclicBarrier	barrier;	//	synkroniserer	flere	trådes	arbejde

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 8:MULTITHREADED PROGRAMS

58

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

58

COnCURREnCy TOOLS

	 public	Solver(float[][]	matrix)
 {
 data = matrix;
 barrier =
 new CyclicBarrier(matrix.length, new Runnable()

{ public void run() { merge(); } });
 for (int r = 0; r < matrix.length; ++r) new Thread(new Worker(r)).start();
 synchronized("abc")
 {
 try
 {
 System.out.println("[" +Thread.currentThread().getId() + "] waiting");
 "abc".wait();
	 System.out.println("["	+Thread.currentThread().getId()	+	"]	notified");
 }
 catch (InterruptedException ie)
 {
 System.out.println("main thread interrupted");
 }
 }
 }

 void merge()
 {
 System.out.println("merging");
 synchronized("abc")
 {
 "abc".notify();
 }
 }

 class Worker implements Runnable
 {
	 private	final	int	row;	//	the	row	that	the	thread	works	on
 private boolean done = false; // when the thread has to stop

 public Worker(int row)
 {
 this.row = row;
 }

 public boolean done()
 {
 return done;
 }

JAVA 8:MULTITHREADED PROGRAMS

59

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

59

COnCURREnCy TOOLS

 private void work()
 {
 System.out.println("Behandler række: " + row);
 for (int i = 0; i < data[row].length; ++i)
	 data[row][i]	=	(float)Math.sqrt(data[row][i]);
 done = true;
 }

 public void run()
 {
 while (!done())
 {
 work();
 try
 {
 barrier.await();
 }
 catch (Exception ex)
 {
 return;
 }
 }
 }
 }
 }

The method create() creates the matrix and the method print() prints the matrix on the
screen. Both of these methods are trivial. After the matrix has been created, is instantiated
an object of the type Solver, and it is the object which solves the problem. The class Solver
creates a CyclicBarrier which is initialized with a number of worker threads, and a runnable
object to be performed when all worker threads have completed their work. In this case, the
object’s run() method calls the method merge(). After the worker threads are created – one
thread for each row – and the threads are created on basis of a runnable object of the type
Worker. The class is basically trivial, but it is an inner class (in the class Solver) and therefore
it knows the synchronization object barrier, and after it has done its job, it performs a

 barrier.await();

which means that the thread is waiting at the barrier. After the constructor in the class Solver
has started the worker threads, it performs wait() on a lock (which is simply a string), and
it means that the primary thread waits until it gets a notify from another thread.

The method create() creates the matrix and the method print() prints the matrix on the
screen. Both of these methods are trivial. After the matrix has been created, is instantiated
an object of the type Solver, and it is the object which solves the problem. The class Solver
creates a CyclicBarrier which is initialized with a number of worker threads, and a runnable
object to be performed when all worker threads have completed their work. In this case, the
object’s run() method calls the method merge(). After the worker threads are created – one
thread for each row – and the threads are created on basis of a runnable object of the type
Worker. The class is basically trivial, but it is an inner class (in the class Solver) and therefore
it knows the synchronization object barrier, and after it has done its job, it performs a

JAVA 8:MULTITHREADED PROGRAMS

59

COnCURREnCy TOOLS

 private void work()
 {
 System.out.println("Behandler række: " + row);
 for (int i = 0; i < data[row].length; ++i)
	 data[row][i]	=	(float)Math.sqrt(data[row][i]);
 done = true;
 }

 public void run()
 {
 while (!done())
 {
 work();
 try
 {
 barrier.await();
 }
 catch (Exception ex)
 {
 return;
 }
 }
 }
 }
 }

The method create() creates the matrix and the method print() prints the matrix on the
screen. Both of these methods are trivial. After the matrix has been created, is instantiated
an object of the type Solver, and it is the object which solves the problem. The class Solver
creates a CyclicBarrier which is initialized with a number of worker threads, and a runnable
object to be performed when all worker threads have completed their work. In this case, the
object’s run() method calls the method merge(). After the worker threads are created – one
thread for each row – and the threads are created on basis of a runnable object of the type
Worker. The class is basically trivial, but it is an inner class (in the class Solver) and therefore
it knows the synchronization object barrier, and after it has done its job, it performs a

 barrier.await();

which means that the thread is waiting at the barrier. After the constructor in the class Solver
has started the worker threads, it performs wait() on a lock (which is simply a string), and
it means that the primary thread waits until it gets a notify from another thread.

which means that the thread is waiting at the barrier. After the constructor in the class Solver
has started the worker threads, it performs wait() on a lock (which is simply a string), and
it means that the primary thread waits until it gets a notify from another thread.

JAVA 8:MULTITHREADED PROGRAMS

60

ConCurrenCy tools

60

After all worker threads are performed an await() on the barrier (all threads have reached
the barrier), the barrier object let the threads continue (which here simply means that
they stop) and carry out its own thread, which here calls the merge() method. It does not
much, but it sends a notify() on the lock set by the primary thread, and the result is that
the primary thread continues.

If you executes the program, you get the result:

JAVA 8:MULTITHREADED PROGRAMS

60

COnCURREnCy TOOLS

60

After all worker threads are performed an await() on the barrier (all threads have reached
the barrier), the barrier object let the threads continue (which here simply means that
they stop) and carry out its own thread, which here calls the merge() method. It does not
much, but it sends a notify() on the lock set by the primary thread, and the result is that
the primary thread continues.

If you executes the program, you get the result:

 1,0000 2,0000 3,0000 4,0000 5,0000
 6,0000 7,0000 8,0000 9,0000 10,0000
 11,0000 12,0000 13,0000 14,0000 15,0000
 16,0000 17,0000 18,0000 19,0000 20,0000
 21,0000 22,0000 23,0000 24,0000 25,0000

 Behandler række: 0
 Behandler række: 1
 Behandler række: 2
 Behandler række: 3
 [1] waiting
 Behandler række: 4
 merging
	[1]	notified

http://s.bookboon.com/Subscrybe

JAVA 8:MULTITHREADED PROGRAMS

61

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

61

COnCURREnCy TOOLS

 1,0000 1,4142 1,7321 2,0000 2,2361
 2,4495 2,6458 2,8284 3,0000 3,1623
 3,3166 3,4641 3,6056 3,7417 3,8730
 4,0000 4,1231 4,2426 4,3589 4,4721
 4,5826 4,6904 4,7958 4,8990 5,0000

PROBLEM 2

Create a new project, that you can call Calculations2. Add the following class which has a
static method that creates a random BigDecimal with 100 digits before and after the decimal
point, as well as a static method, which determines the square root of a BigDecimal:

 abstract class Calc
 {
	 private	static	final	int	N	=	100;
	 public	static	final	Random	rand	=	new	Random();
	 public	static	final	MathContext	context	=
 new MathContext(N, RoundingMode.HALF_UP);

 public static BigDecimal random()
 {
 StringBuilder builder = new StringBuilder();
 builder.append((char)('1' + rand.nextInt(9)));
 for (int i = 0; i < N; ++i) builder.append((char)('0' + rand.nextInt(10)));
 builder.append('.');
 for (int i = 0; i < N; ++i) builder.append((char)('0' + rand.nextInt(10)));
 return new BigDecimal(builder.toString());
 }

 public static BigDecimal sqrt(BigDecimal x)
 {
	 BigDecimal	value	=	BigDecimal.ZERO;
 if (x.signum() != 0)
 {
 BigInteger t = x.movePointRight(N << 1).toBigInteger();
 BigInteger y = t.shiftRight((t.bitLength() + 1) >> 1);
 for (BigInteger z = y;; z = y)
 {
 y = y.add(t.divide(y)).shiftRight(1);
 if (y.compareTo(z) == 0) break;
 }
 value = new BigDecimal(y, N);
 }
 return value;
 }
 }

PROBLEM 2

Create a new project, that you can call Calculations2. Add the following class which has a
static method that creates a random BigDecimal with 100 digits before and after the decimal
point, as well as a static method, which determines the square root of a BigDecimal:

JAVA 8:MULTITHREADED PROGRAMS

61

COnCURREnCy TOOLS

 1,0000 1,4142 1,7321 2,0000 2,2361
 2,4495 2,6458 2,8284 3,0000 3,1623
 3,3166 3,4641 3,6056 3,7417 3,8730
 4,0000 4,1231 4,2426 4,3589 4,4721
 4,5826 4,6904 4,7958 4,8990 5,0000

PROBLEM 2

Create a new project, that you can call Calculations2. Add the following class which has a
static method that creates a random BigDecimal with 100 digits before and after the decimal
point, as well as a static method, which determines the square root of a BigDecimal:

 abstract class Calc
 {
	 private	static	final	int	N	=	100;
	 public	static	final	Random	rand	=	new	Random();
	 public	static	final	MathContext	context	=
 new MathContext(N, RoundingMode.HALF_UP);

 public static BigDecimal random()
 {
 StringBuilder builder = new StringBuilder();
 builder.append((char)('1' + rand.nextInt(9)));
 for (int i = 0; i < N; ++i) builder.append((char)('0' + rand.nextInt(10)));
 builder.append('.');
 for (int i = 0; i < N; ++i) builder.append((char)('0' + rand.nextInt(10)));
 return new BigDecimal(builder.toString());
 }

 public static BigDecimal sqrt(BigDecimal x)
 {
	 BigDecimal	value	=	BigDecimal.ZERO;
 if (x.signum() != 0)
 {
 BigInteger t = x.movePointRight(N << 1).toBigInteger();
 BigInteger y = t.shiftRight((t.bitLength() + 1) >> 1);
 for (BigInteger z = y;; z = y)
 {
 y = y.add(t.divide(y)).shiftRight(1);
 if (y.compareTo(z) == 0) break;
 }
 value = new BigDecimal(y, N);
 }
 return value;
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

62

ConCurrenCy tools

You do not have to study the code when the only goal is that the method sqrt() that takes
a long time.

Add a method to the main class, which creates an array of n objects of type BigDecimal
when the objects must be created with the method Calc.random():

JAVA 8:MULTITHREADED PROGRAMS

62

COnCURREnCy TOOLS

You do not have to study the code when the only goal is that the method sqrt() that takes
a long time.

Add a method to the main class, which creates an array of n objects of type BigDecimal
when the objects must be created with the method Calc.random():

 private static BigDecimal[] create(int n)
 {
 }

The program should now use this method to create an array of the type BigDecimal with
10 numbers, and then the program must print the result of method

 private static BigDecimal sum1(BigDecimal[] tal)
 {
 }

when the method must return the sum of the square roots of the numbers in the array.
The method must also print the time of the calculation measured in nanoseconds. You can
read the hardware clock with:

 System.nanoTime()

When the method sum1() works, write a similar method sum2(), but it must instead works
that way, that it starts a worker thread to calculate each square root. It can only calculate
the sum, and after all threads have calculated the square roots, you need to synchronize the
threads using a CyclicBarrier.

Examine which of the two methods that have the best performance. Also explore what
happens if you change the number of digits in the class Calc (the constant N). Also check
what happens if you change the number of threads and thus the size of the array.

8.4 EXCHANGER

An Exchanger provides a synchronization point at which threads can exchange objects.
That is, that a thread can call an exchange() methode and wait for another thread to do
the same, and then the threads can switch two objects. Maybe it’s not the most commonly
used synchronization object, but it has its uses in connection with the implementation
of specific algorithms. The following program shows how to use an Exchanger, where two
threads swap two objects of the type Buffer. The class Buffer is the same class that is used
in some of the above exercises.

The program should now use this method to create an array of the type BigDecimal with
10 numbers, and then the program must print the result of method

JAVA 8:MULTITHREADED PROGRAMS

62

COnCURREnCy TOOLS

You do not have to study the code when the only goal is that the method sqrt() that takes
a long time.

Add a method to the main class, which creates an array of n objects of type BigDecimal
when the objects must be created with the method Calc.random():

 private static BigDecimal[] create(int n)
 {
 }

The program should now use this method to create an array of the type BigDecimal with
10 numbers, and then the program must print the result of method

 private static BigDecimal sum1(BigDecimal[] tal)
 {
 }

when the method must return the sum of the square roots of the numbers in the array.
The method must also print the time of the calculation measured in nanoseconds. You can
read the hardware clock with:

 System.nanoTime()

When the method sum1() works, write a similar method sum2(), but it must instead works
that way, that it starts a worker thread to calculate each square root. It can only calculate
the sum, and after all threads have calculated the square roots, you need to synchronize the
threads using a CyclicBarrier.

Examine which of the two methods that have the best performance. Also explore what
happens if you change the number of digits in the class Calc (the constant N). Also check
what happens if you change the number of threads and thus the size of the array.

8.4 EXCHANGER

An Exchanger provides a synchronization point at which threads can exchange objects.
That is, that a thread can call an exchange() methode and wait for another thread to do
the same, and then the threads can switch two objects. Maybe it’s not the most commonly
used synchronization object, but it has its uses in connection with the implementation
of specific algorithms. The following program shows how to use an Exchanger, where two
threads swap two objects of the type Buffer. The class Buffer is the same class that is used
in some of the above exercises.

when the method must return the sum of the square roots of the numbers in the array.
The method must also print the time of the calculation measured in nanoseconds. You can
read the hardware clock with:

JAVA 8:MULTITHREADED PROGRAMS

62

COnCURREnCy TOOLS

You do not have to study the code when the only goal is that the method sqrt() that takes
a long time.

Add a method to the main class, which creates an array of n objects of type BigDecimal
when the objects must be created with the method Calc.random():

 private static BigDecimal[] create(int n)
 {
 }

The program should now use this method to create an array of the type BigDecimal with
10 numbers, and then the program must print the result of method

 private static BigDecimal sum1(BigDecimal[] tal)
 {
 }

when the method must return the sum of the square roots of the numbers in the array.
The method must also print the time of the calculation measured in nanoseconds. You can
read the hardware clock with:

 System.nanoTime()

When the method sum1() works, write a similar method sum2(), but it must instead works
that way, that it starts a worker thread to calculate each square root. It can only calculate
the sum, and after all threads have calculated the square roots, you need to synchronize the
threads using a CyclicBarrier.

Examine which of the two methods that have the best performance. Also explore what
happens if you change the number of digits in the class Calc (the constant N). Also check
what happens if you change the number of threads and thus the size of the array.

8.4 EXCHANGER

An Exchanger provides a synchronization point at which threads can exchange objects.
That is, that a thread can call an exchange() methode and wait for another thread to do
the same, and then the threads can switch two objects. Maybe it’s not the most commonly
used synchronization object, but it has its uses in connection with the implementation
of specific algorithms. The following program shows how to use an Exchanger, where two
threads swap two objects of the type Buffer. The class Buffer is the same class that is used
in some of the above exercises.

When the method sum1() works, write a similar method sum2(), but it must instead works
that way, that it starts a worker thread to calculate each square root. It can only calculate
the sum, and after all threads have calculated the square roots, you need to synchronize the
threads using a CyclicBarrier.

Examine which of the two methods that have the best performance. Also explore what
happens if you change the number of digits in the class Calc (the constant N). Also check
what happens if you change the number of threads and thus the size of the array.

8.4 EXCHANGER

An Exchanger provides a synchronization point at which threads can exchange objects.
That is, that a thread can call an exchange() methode and wait for another thread to do
the same, and then the threads can switch two objects. Maybe it’s not the most commonly
used synchronization object, but it has its uses in connection with the implementation
of specific algorithms. The following program shows how to use an Exchanger, where two
threads swap two objects of the type Buffer. The class Buffer is the same class that is used
in some of the above exercises.

JAVA 8:MULTITHREADED PROGRAMS

63

ConCurrenCy tools

63

JAVA 8:MULTITHREADED PROGRAMS

63

COnCURREnCy TOOLS

63

 package thread18;

 import java.util.*;
 import java.util.concurrent.*;

 public class Thread18
 {
	 private	static	final	Random	rand	=	new	Random();
	 private	final	static	Exchanger<Buffer<Character>>	exchanger	=	new	Exchanger();
	 private	final	static	Buffer<Character>	buffer1	=	new	Buffer(15);
	 private	final	static	Buffer<Character>	buffer2	=	new	Buffer(10);
 private static char ch = 'Z';

 public static void main(String[] args)
 {
 class Producer implements Runnable
 {
 public void run()
 {
 Buffer<Character> buffer = buffer1;
 try
 {
 while (true)
 {

http://s.bookboon.com/volvo

JAVA 8:MULTITHREADED PROGRAMS

64

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

64

COnCURREnCy TOOLS

 buffer.insert(next());
 Thread.sleep(rand.nextInt(500));
 if (buffer.full()) buffer = exchanger.exchange(buffer);
 }
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }
 }

 class Consumer implements Runnable
 {
 public void run()
 {
 Buffer<Character> buffer = buffer2;
 try
 {
 while (true)
 {
 Thread.sleep(rand.nextInt(500));
 if (buffer.empty())
 {
 buffer = exchanger.exchange(buffer);
 System.out.println();
 }
 System.out.print(buffer.remove());
 }
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }
 }
 new Thread(new Producer()).start();
 new Thread(new Consumer()).start();
 }

 private static char next()
 {
 if (ch == 'Z') ch = 'A'; else ++ch;
 return ch;
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

65

ConCurrenCy tools

8.5 SEMAPHORE

A semaphore manages a number of permits in relation to a number of threads that want to
access a shared resource. A thread that is trying to obtain permission for the resource, while
all licenses are used, is blocked until another thread releases the license. A semaphore’s value
is an integer whose value is not negative and can be counted up or down. If the semaphore
can take only the values 0 and 1, we speak of a binary semaphore, and may the value be
greater than 1, it is called a counting semaphore. This means that is the access to a resource
controlled with a counting semaphore, there are several threads at a time (determined by
semaphoren) that can access the resource. The following program will show how to use
a semaphore:

JAVA 8:MULTITHREADED PROGRAMS

65

COnCURREnCy TOOLS

8.5 SEMAPHORE

A semaphore manages a number of permits in relation to a number of threads that want to
access a shared resource. A thread that is trying to obtain permission for the resource, while
all licenses are used, is blocked until another thread releases the license. A semaphore’s value
is an integer whose value is not negative and can be counted up or down. If the semaphore
can take only the values 0 and 1, we speak of a binary semaphore, and may the value be
greater than 1, it is called a counting semaphore. This means that is the access to a resource
controlled with a counting semaphore, there are several threads at a time (determined by
semaphoren) that can access the resource. The following program will show how to use
a semaphore:

 package thread19;

 import java.util.*;
 import java.util.concurrent.*;

 public class Thread19
 {
 public static void main(String[] args)
 {
	 final	Resources	resources	=	new	Resources();
 Worker worker = new Worker(resources);
 int N = 2 * Resources.N;
 ExecutorService executor = Executors.newFixedThreadPool(N);
 for (int i = 0; i < N; ++i) executor.execute(worker);
 try
 {
	 executor.awaitTermination(20,	TimeUnit.SECONDS);
 }
 catch (Exception ex)
 {
 }
 executor.shutdownNow();
 }
 }

 class Worker implements Runnable
 {
	 private	static	final	Random	rand	=	new	Random();
 private Resources resources;
 private long counter = 0;

JAVA 8:MULTITHREADED PROGRAMS

66

ConCurrenCy tools

66

JAVA 8:MULTITHREADED PROGRAMS

66

COnCURREnCy TOOLS

66

 public Worker(Resources resources)
 {
 this.resources = resources;
 }

 public void run()
 {
 try
 {
 while (counter < 100)
 {
 Resource res = resources.getResouce();
 System.out.printf("[%d] anvender %s: %3d\n",
 Thread.currentThread().getId(), res.toString(), res.getValue());
 Thread.sleep(500 + rand.nextInt(500));
 res.updateValue(++counter);
 resources.putResource(res);
 System.out.printf("[%d] opdateret %s: %3d\n",
 Thread.currentThread().getId(), res.toString(), res.getValue());
 Thread.sleep(500 + rand.nextInt(500));
 }
 }
 catch (InterruptedException ex)
 {

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 8:MULTITHREADED PROGRAMS

67

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

67

COnCURREnCy TOOLS

 System.out.println(ex);
 }
 }
 }

 class Resources
 {
	 public	static	final	int	N	=	10;	 //	number	of	Resource	objects
	 private	final	Resource[]	resources	=	new	Resource[N];
	 private	final	Semaphore	sema	=	new	Semaphore(N,	true);
	 private	final	boolean[]	used	=	new	boolean[N];

 public Resources()
 {
 for (int i = 0; i < resources.length; ++i) resources[i] = new Resource();
 }

 public Resource getResouce() throws InterruptedException
 {
 sema.acquire();
 return get();
 }

 public void putResource(Resource res)
 {
 if (unused(res)) sema.release();
 }

 private synchronized Resource get()
 {
 for (int i = 0; i < N; ++i)
 {
 if (!used[i])
 {
 used[i] = true;
 return resources[i];
 }
 }
 return null;
 }

 private synchronized boolean unused(Resource res)
 {
 for (int i = 0; i < N; ++i)
 {
 if (res.equals(resources[i]))
 {

JAVA 8:MULTITHREADED PROGRAMS

68

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

68

COnCURREnCy TOOLS

 if (used[i])
 {
 used[i] = false;
 return true;
 }
 else return false;
 }
 }
 return false;
 }
 }

 class Resource
 {
 private static int ID = 0;
 private int id; // the ressource's id
 private long value; // the ressource's value

 public Resource()
 {
 id = ++ID;
 }

 public long getValue()
 {
 return value;
 }

 public void updateValue(long value)
 {
 this.value += value;
 }

	 public	boolean	equals(Object	obj)
 {
 if (obj == null) return false;
 if (getClass() == obj.getClass()) return ((Resource)obj).id == id;
 return false;
 }

 public String toString()
 {
 return String.format("Resource: [%d]", id);
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

69

ConCurrenCy tools

69

The class Resource is a simple encapsulation of a long and has basically two methods:

1. getValue() that returns the object’s value
2. updateValue(), that adds a value to the object’s value

Each object is assigned also a consecutively number when it is created, and it is only to
have an identification of the object and to give the object a name in toString().

The most importannt class is the class Resources, which is an encapsulation of an array of
Resource objects. The idea is that a thread may wish to get a Resource object and update it.
While this happens, the object is locked and is released again after it is updated. The class
creates a Semaphore to check the threads access to an object:

JAVA 8:MULTITHREADED PROGRAMS

69

COnCURREnCy TOOLS

69

The class Resource is a simple encapsulation of a long and has basically two methods:

1. getValue() that returns the object’s value
2. updateValue(), that adds a value to the object’s value

Each object is assigned also a consecutively number when it is created, and it is only to
have an identification of the object and to give the object a name in toString().

The most importannt class is the class Resources, which is an encapsulation of an array of
Resource objects. The idea is that a thread may wish to get a Resource object and update it.
While this happens, the object is locked and is released again after it is updated. The class
creates a Semaphore to check the threads access to an object:

	private	final	Semaphore	sema	=	new	Semaphore(N,	true);

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 8:MULTITHREADED PROGRAMS

70

ConCurrenCy tools

It is a counting semaphore, and the first parameter indicates the number of threads which
can simultaneously use an object of the type Resources. This corresponds to the array length,
since it is the number of Resource objects that are available. The last parameter ensures that
threads are blocked on this semaphore, not being starved and never get running again.
When creating a Resources object is the semaphore’s value N, and thus there are N threads
that can use the object. The class also has an array of type boolean, and it is used to control
which Resource objects that are in use.

The class has two public methods: getResource() and putResource(). The first returns an
available Resource object, and it starts to count down with semaphoren with 1:

JAVA 8:MULTITHREADED PROGRAMS

70

COnCURREnCy TOOLS

It is a counting semaphore, and the first parameter indicates the number of threads which
can simultaneously use an object of the type Resources. This corresponds to the array length,
since it is the number of Resource objects that are available. The last parameter ensures that
threads are blocked on this semaphore, not being starved and never get running again.
When creating a Resources object is the semaphore’s value N, and thus there are N threads
that can use the object. The class also has an array of type boolean, and it is used to control
which Resource objects that are in use.

The class has two public methods: getResource() and putResource(). The first returns an
available Resource object, and it starts to count down with semaphoren with 1:

 sema.acquire();

If the semaphore is 0, the current thread blocked and must wait until another thread counts
the semaphoren up. Otherwise the semaphore is counted down by 1 and the method
continues. In this case, it means that the method getResource() call a synchronized method
get(), there must find and returns a Resource object. The method get() must at the same
time set the actual object as used. The method putResource() has as a parameter a Resource
object, and the method has to release this object. To this the method calls a synchronized
method unused(), and if the object is used, it is marked as unused, and the method returns
true. If so, then the method putResource() performs

 sema.release();

which means that the semaphore is counted up by 1, and at the same time it indicates that
a blocked thread can now use the Resources object.

The class Worker is a class which defines a thread that performs work by asking for a Resource
object. There is not much to explain, but you must note that it is essential that the run()
method executes putResouce() since the semaphore otherwise not is counted up.

Back is the main() method, which starts a number of worker threads. Here you must
notice that it starts more threads than can simultaneously use the Resources object (twice
as many). It is to illustrate that some of the threads is blocked by the semaphore, and in
turn becomes unblocked again.

EXERCISE 8

Create a project that you can call SemaphoreProgram. The program is an example of using
both a binary semaphore and a counting semaphore.

If the semaphore is 0, the current thread blocked and must wait until another thread counts
the semaphoren up. Otherwise the semaphore is counted down by 1 and the method
continues. In this case, it means that the method getResource() call a synchronized method
get(), there must find and returns a Resource object. The method get() must at the same
time set the actual object as used. The method putResource() has as a parameter a Resource
object, and the method has to release this object. To this the method calls a synchronized
method unused(), and if the object is used, it is marked as unused, and the method returns
true. If so, then the method putResource() performs

JAVA 8:MULTITHREADED PROGRAMS

70

COnCURREnCy TOOLS

It is a counting semaphore, and the first parameter indicates the number of threads which
can simultaneously use an object of the type Resources. This corresponds to the array length,
since it is the number of Resource objects that are available. The last parameter ensures that
threads are blocked on this semaphore, not being starved and never get running again.
When creating a Resources object is the semaphore’s value N, and thus there are N threads
that can use the object. The class also has an array of type boolean, and it is used to control
which Resource objects that are in use.

The class has two public methods: getResource() and putResource(). The first returns an
available Resource object, and it starts to count down with semaphoren with 1:

 sema.acquire();

If the semaphore is 0, the current thread blocked and must wait until another thread counts
the semaphoren up. Otherwise the semaphore is counted down by 1 and the method
continues. In this case, it means that the method getResource() call a synchronized method
get(), there must find and returns a Resource object. The method get() must at the same
time set the actual object as used. The method putResource() has as a parameter a Resource
object, and the method has to release this object. To this the method calls a synchronized
method unused(), and if the object is used, it is marked as unused, and the method returns
true. If so, then the method putResource() performs

 sema.release();

which means that the semaphore is counted up by 1, and at the same time it indicates that
a blocked thread can now use the Resources object.

The class Worker is a class which defines a thread that performs work by asking for a Resource
object. There is not much to explain, but you must note that it is essential that the run()
method executes putResouce() since the semaphore otherwise not is counted up.

Back is the main() method, which starts a number of worker threads. Here you must
notice that it starts more threads than can simultaneously use the Resources object (twice
as many). It is to illustrate that some of the threads is blocked by the semaphore, and in
turn becomes unblocked again.

EXERCISE 8

Create a project that you can call SemaphoreProgram. The program is an example of using
both a binary semaphore and a counting semaphore.

which means that the semaphore is counted up by 1, and at the same time it indicates that
a blocked thread can now use the Resources object.

The class Worker is a class which defines a thread that performs work by asking for a Resource
object. There is not much to explain, but you must note that it is essential that the run()
method executes putResouce() since the semaphore otherwise not is counted up.

Back is the main() method, which starts a number of worker threads. Here you must
notice that it starts more threads than can simultaneously use the Resources object (twice
as many). It is to illustrate that some of the threads is blocked by the semaphore, and in
turn becomes unblocked again.

EXERCISE 8

Create a project that you can call SemaphoreProgram. The program is an example of using
both a binary semaphore and a counting semaphore.

JAVA 8:MULTITHREADED PROGRAMS

71

ConCurrenCy tools

Start by typing the following class, which is an encapsulating of a Map<Integer, String>,
when it is a requirement that the class must be written as a singleton:

JAVA 8:MULTITHREADED PROGRAMS

71

COnCURREnCy TOOLS

Start by typing the following class, which is an encapsulating of a Map<Integer, String>,
when it is a requirement that the class must be written as a singleton:

 class Storage
 {
 private static int ID = 0; // the consecutive numbering of objects
 private Map<Integer, String> cache = new HashMap();

 public int insert(String name)
 {
	 //	add	a	new	name	to	the	data	structure	identified	by	the	next	id
 }

 public String getName(int id)
 {
 // returns a name with an id or null, the id is not found
 }

 public int length()
 {
 // Returns the number of names
 }
 }

The class should illustrate a data structure consisting of names, identified by a sequential
number.

The goal of the exercise is to create threads that reads names (performing getName()) as well
as threads that adds names (performing insert()). It should be such that up to 5 threads
simultaneously read, while only a single thread can add names. It must be controlled by
two semaphores. To make things a little easier, you should encapsulate the two semaphores
in the below class when it is a requirement that the class must be written as a singleton:

 class StorageLock
 {
	 private	final	Semaphore	writeLock	=	new	Semaphore(1);
	 private	final	Semaphore	readLock	=	new	Semaphore(5);

 public void getWriteLock() throws InterruptedException
 {
 writeLock.acquire();
 }

The class should illustrate a data structure consisting of names, identified by a sequential
number.

The goal of the exercise is to create threads that reads names (performing getName()) as well
as threads that adds names (performing insert()). It should be such that up to 5 threads
simultaneously read, while only a single thread can add names. It must be controlled by
two semaphores. To make things a little easier, you should encapsulate the two semaphores
in the below class when it is a requirement that the class must be written as a singleton:

JAVA 8:MULTITHREADED PROGRAMS

71

COnCURREnCy TOOLS

Start by typing the following class, which is an encapsulating of a Map<Integer, String>,
when it is a requirement that the class must be written as a singleton:

 class Storage
 {
 private static int ID = 0; // the consecutive numbering of objects
 private Map<Integer, String> cache = new HashMap();

 public int insert(String name)
 {
	 //	add	a	new	name	to	the	data	structure	identified	by	the	next	id
 }

 public String getName(int id)
 {
 // returns a name with an id or null, the id is not found
 }

 public int length()
 {
 // Returns the number of names
 }
 }

The class should illustrate a data structure consisting of names, identified by a sequential
number.

The goal of the exercise is to create threads that reads names (performing getName()) as well
as threads that adds names (performing insert()). It should be such that up to 5 threads
simultaneously read, while only a single thread can add names. It must be controlled by
two semaphores. To make things a little easier, you should encapsulate the two semaphores
in the below class when it is a requirement that the class must be written as a singleton:

 class StorageLock
 {
	 private	final	Semaphore	writeLock	=	new	Semaphore(1);
	 private	final	Semaphore	readLock	=	new	Semaphore(5);

 public void getWriteLock() throws InterruptedException
 {
 writeLock.acquire();
 }

JAVA 8:MULTITHREADED PROGRAMS

72

ConCurrenCy tools

72

JAVA 8:MULTITHREADED PROGRAMS

72

COnCURREnCy TOOLS

72

 public void releaseWriteLock()
 {
 writeLock.release();
 }

 public void getReadLock() throws InterruptedException
 {
 readLock.acquire();
 }

 public void releaseReadLock()
 {
 readLock.release();
 }
 }

As a next step you must write a Writer class that defines a Runnable type that can add
names to the data structure Storage:

 class Writer implements Runnable
 {
 private String[] names;

As a next step you must write a Writer class that defines a Runnable type that can add
names to the data structure Storage:

JAVA 8:MULTITHREADED PROGRAMS

72

COnCURREnCy TOOLS

72

 public void releaseWriteLock()
 {
 writeLock.release();
 }

 public void getReadLock() throws InterruptedException
 {
 readLock.acquire();
 }

 public void releaseReadLock()
 {
 readLock.release();
 }
 }

As a next step you must write a Writer class that defines a Runnable type that can add
names to the data structure Storage:

 class Writer implements Runnable
 {
 private String[] names;

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 8:MULTITHREADED PROGRAMS

73

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

73

COnCURREnCy TOOLS

 public Writer(String[] names)
 {
 this.names = names;
 }

 public void run()
 {
 for (String name : names)
 {
 // set a write lock
 // add name
 // release the lock
 // sleep a random time less than 2 seconds
 }
 }
 }

You must corresponding write a class Reader that defines a Runnable type that can read the
names in the data structure Storage:

 class Reader implements Runnable
 {
 public void run()
 {
 while (true)
 {
 // set a read lock
 // read a name with a random id
 // release the lock
 // prints the name, if it is not null
 // sleep a random time less than a ½ second
 }
 }
 }

Then there is the only main program:

 public class SemaphoreProgram
 {
	 private	static	final	String[]	boys	=	...	//	array	with	10	boy	names
	 private	static	final	String[]	girls	=	...	//	array	with	10	girl	names

You must corresponding write a class Reader that defines a Runnable type that can read the
names in the data structure Storage:

JAVA 8:MULTITHREADED PROGRAMS

73

COnCURREnCy TOOLS

 public Writer(String[] names)
 {
 this.names = names;
 }

 public void run()
 {
 for (String name : names)
 {
 // set a write lock
 // add name
 // release the lock
 // sleep a random time less than 2 seconds
 }
 }
 }

You must corresponding write a class Reader that defines a Runnable type that can read the
names in the data structure Storage:

 class Reader implements Runnable
 {
 public void run()
 {
 while (true)
 {
 // set a read lock
 // read a name with a random id
 // release the lock
 // prints the name, if it is not null
 // sleep a random time less than a ½ second
 }
 }
 }

Then there is the only main program:

 public class SemaphoreProgram
 {
	 private	static	final	String[]	boys	=	...	//	array	with	10	boy	names
	 private	static	final	String[]	girls	=	...	//	array	with	10	girl	names

Then there is the only main program:

JAVA 8:MULTITHREADED PROGRAMS

73

COnCURREnCy TOOLS

 public Writer(String[] names)
 {
 this.names = names;
 }

 public void run()
 {
 for (String name : names)
 {
 // set a write lock
 // add name
 // release the lock
 // sleep a random time less than 2 seconds
 }
 }
 }

You must corresponding write a class Reader that defines a Runnable type that can read the
names in the data structure Storage:

 class Reader implements Runnable
 {
 public void run()
 {
 while (true)
 {
 // set a read lock
 // read a name with a random id
 // release the lock
 // prints the name, if it is not null
 // sleep a random time less than a ½ second
 }
 }
 }

Then there is the only main program:

 public class SemaphoreProgram
 {
	 private	static	final	String[]	boys	=	...	//	array	with	10	boy	names
	 private	static	final	String[]	girls	=	...	//	array	with	10	girl	names

JAVA 8:MULTITHREADED PROGRAMS

74

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

74

COnCURREnCy TOOLS

 public static void main(String[] args)
 {
 // creates a thread to a Writer object which adds boy names
 // creates a thread to a Writer object which adds girl names
 // Creates 10 Reader threads, when it should be daemon threads
 // start all the threads
 // the primary thread should join the two writer threds
 }
 }

Test the program and check that everything works as intended.

8.6 PHASER

A Phaser looks like a CyclicBarrier, but is more flexible. In the same way as with a CyclicBarrier
you can be achieve that a number of threads are waiting at the barrier, until the last thread
is arriving, but in contrast to a CyclicBarrier, that waits for a fixed number of threads, a
Phaser act as a barrier for a variable number threads, and there may be several phases –
barriers. The following program starts 5 threads in addition to the primary thread, and the
execution of the 6 threads are synchronized by a Phaser object with 4 phases:

 package thread20;

 import java.util.*;
 import java.util.concurrent.*;

 public class Thread20
 {
 public static void main(String[] args)
 {
 Phaser phaser = new Phaser(1);
 Thread thread1 = new Thread(new Worker(phaser), "Thread-1");
 Thread thread2 = new Thread(new Worker(phaser), "Thread-2");
 Thread thread3 = new Thread(new Worker(phaser), "Thread-3");
 Thread thread4 = new Thread(new Worker(phaser), "Thread-4");
 Thread thread5 = new Thread(new Worker(phaser), "Thread-5");
 System.out.println("\n-------- Start Phaser ---------------");
 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();
 work(phaser);
 work(phaser);
 work(phaser);
 work(phaser);

Test the program and check that everything works as intended.

8.6 PHASER

A Phaser looks like a CyclicBarrier, but is more flexible. In the same way as with a CyclicBarrier
you can be achieve that a number of threads are waiting at the barrier, until the last thread
is arriving, but in contrast to a CyclicBarrier, that waits for a fixed number of threads, a
Phaser act as a barrier for a variable number threads, and there may be several phases –
barriers. The following program starts 5 threads in addition to the primary thread, and the
execution of the 6 threads are synchronized by a Phaser object with 4 phases:

JAVA 8:MULTITHREADED PROGRAMS

74

COnCURREnCy TOOLS

 public static void main(String[] args)
 {
 // creates a thread to a Writer object which adds boy names
 // creates a thread to a Writer object which adds girl names
 // Creates 10 Reader threads, when it should be daemon threads
 // start all the threads
 // the primary thread should join the two writer threds
 }
 }

Test the program and check that everything works as intended.

8.6 PHASER

A Phaser looks like a CyclicBarrier, but is more flexible. In the same way as with a CyclicBarrier
you can be achieve that a number of threads are waiting at the barrier, until the last thread
is arriving, but in contrast to a CyclicBarrier, that waits for a fixed number of threads, a
Phaser act as a barrier for a variable number threads, and there may be several phases –
barriers. The following program starts 5 threads in addition to the primary thread, and the
execution of the 6 threads are synchronized by a Phaser object with 4 phases:

 package thread20;

 import java.util.*;
 import java.util.concurrent.*;

 public class Thread20
 {
 public static void main(String[] args)
 {
 Phaser phaser = new Phaser(1);
 Thread thread1 = new Thread(new Worker(phaser), "Thread-1");
 Thread thread2 = new Thread(new Worker(phaser), "Thread-2");
 Thread thread3 = new Thread(new Worker(phaser), "Thread-3");
 Thread thread4 = new Thread(new Worker(phaser), "Thread-4");
 Thread thread5 = new Thread(new Worker(phaser), "Thread-5");
 System.out.println("\n-------- Start Phaser ---------------");
 thread1.start();
 thread2.start();
 thread3.start();
 thread4.start();
 thread5.start();
 work(phaser);
 work(phaser);
 work(phaser);
 work(phaser);

JAVA 8:MULTITHREADED PROGRAMS

75

ConCurrenCy tools

75

JAVA 8:MULTITHREADED PROGRAMS

75

COnCURREnCy TOOLS

75

 phaser.arriveAndDeregister();
 if(phaser.isTerminated()) System.out.println("\nThe Phaser object terminated");
 }

 private static void work(Phaser phaser)
 {
 int phase = phaser.getPhase();
 phaser.arriveAndAwaitAdvance();
 System.out.println("------ Phase – " + phase + " is terminated ----------");
 }
 }

 class Worker implements Runnable
 {
	 private	static	final	Random	rand	=	new	Random();
 private Phaser phaser;
 private double value = 0;

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 8:MULTITHREADED PROGRAMS

76

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

76

COnCURREnCy TOOLS

 public Worker(Phaser phaser)
 {
 this.phaser = phaser;
 this.phaser.register();
 System.out.println("New thred registered: " +
 Thread.currentThread().getName());
 }

 public void run()
 {
 todo(2);
 todo(3);
 todo(5);
 result();
 phaser.arriveAndDeregister();
 }

 private void todo(int t)
 {
 System.out.println(Thread.currentThread().getName() +
 " – has reached the barrier and works in phase " +
 phaser.getPhase() + ", Value = " + value);
 phaser.arriveAndAwaitAdvance();
 work(rand.nextInt(Integer.MAX_VALUE), t);
 }

 private void result()
 {
 System.out.println(Thread.currentThread().getName() +
 " – has reached the barrier and works in phase " +
 phaser.getPhase() + ", Value = " + value);
 phaser.arriveAndAwaitAdvance();
 }

 private void delay(int time)
 {
 try
 {
 Thread.sleep(time);
 }
 catch (InterruptedException e)
 {
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

77

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

77

COnCURREnCy TOOLS

 private void work(long n, int t)
 {
 for (int i = 0; i < n; ++i) value = Math.sqrt(t);
 }
 }

The class Worker defines the secondary threads. The constructor has a Phaser object as a
parameter, and the constructor sign up to the Phaser object as one of the threads which
the object has to wait for:

 this.phaser.register();

The run() method executes four methods (calls the method todo() three times and the
method result() once). Each of these methods carry out some work in a phase. That is that
the first todo() is first performed when all threads have reached the first barrier, the next
todo() when all threads have reached the next barrier and so on. If you look at each phase’s
methods, it is not so important, what they do, but they perform the method

 phaser.arriveAndAwaitAdvance();

which means that the thread must wait at the barrier until all threads have reached. The
Phaser object is created in the main() method:

 Phaser phaser = new Phaser(1);

where there is registered a single thread, which is the primary thread. The primary thread
creates then 5 other threads and start them and then perform the method work(). The
important thing here is the statement

 phaser.arriveAndAwaitAdvance();

which means that all threads incl. the primary thread will have to wait at a barrier until all
the other threads arrives. If the program is performed the result is:

 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main

The class Worker defines the secondary threads. The constructor has a Phaser object as a
parameter, and the constructor sign up to the Phaser object as one of the threads which
the object has to wait for:

JAVA 8:MULTITHREADED PROGRAMS

77

COnCURREnCy TOOLS

 private void work(long n, int t)
 {
 for (int i = 0; i < n; ++i) value = Math.sqrt(t);
 }
 }

The class Worker defines the secondary threads. The constructor has a Phaser object as a
parameter, and the constructor sign up to the Phaser object as one of the threads which
the object has to wait for:

 this.phaser.register();

The run() method executes four methods (calls the method todo() three times and the
method result() once). Each of these methods carry out some work in a phase. That is that
the first todo() is first performed when all threads have reached the first barrier, the next
todo() when all threads have reached the next barrier and so on. If you look at each phase’s
methods, it is not so important, what they do, but they perform the method

 phaser.arriveAndAwaitAdvance();

which means that the thread must wait at the barrier until all threads have reached. The
Phaser object is created in the main() method:

 Phaser phaser = new Phaser(1);

where there is registered a single thread, which is the primary thread. The primary thread
creates then 5 other threads and start them and then perform the method work(). The
important thing here is the statement

 phaser.arriveAndAwaitAdvance();

which means that all threads incl. the primary thread will have to wait at a barrier until all
the other threads arrives. If the program is performed the result is:

 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main

The run() method executes four methods (calls the method todo() three times and the
method result() once). Each of these methods carry out some work in a phase. That is that
the first todo() is first performed when all threads have reached the first barrier, the next
todo() when all threads have reached the next barrier and so on. If you look at each phase’s
methods, it is not so important, what they do, but they perform the method

JAVA 8:MULTITHREADED PROGRAMS

77

COnCURREnCy TOOLS

 private void work(long n, int t)
 {
 for (int i = 0; i < n; ++i) value = Math.sqrt(t);
 }
 }

The class Worker defines the secondary threads. The constructor has a Phaser object as a
parameter, and the constructor sign up to the Phaser object as one of the threads which
the object has to wait for:

 this.phaser.register();

The run() method executes four methods (calls the method todo() three times and the
method result() once). Each of these methods carry out some work in a phase. That is that
the first todo() is first performed when all threads have reached the first barrier, the next
todo() when all threads have reached the next barrier and so on. If you look at each phase’s
methods, it is not so important, what they do, but they perform the method

 phaser.arriveAndAwaitAdvance();

which means that the thread must wait at the barrier until all threads have reached. The
Phaser object is created in the main() method:

 Phaser phaser = new Phaser(1);

where there is registered a single thread, which is the primary thread. The primary thread
creates then 5 other threads and start them and then perform the method work(). The
important thing here is the statement

 phaser.arriveAndAwaitAdvance();

which means that all threads incl. the primary thread will have to wait at a barrier until all
the other threads arrives. If the program is performed the result is:

 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main

which means that the thread must wait at the barrier until all threads have reached. The
Phaser object is created in the main() method:

JAVA 8:MULTITHREADED PROGRAMS

77

COnCURREnCy TOOLS

 private void work(long n, int t)
 {
 for (int i = 0; i < n; ++i) value = Math.sqrt(t);
 }
 }

The class Worker defines the secondary threads. The constructor has a Phaser object as a
parameter, and the constructor sign up to the Phaser object as one of the threads which
the object has to wait for:

 this.phaser.register();

The run() method executes four methods (calls the method todo() three times and the
method result() once). Each of these methods carry out some work in a phase. That is that
the first todo() is first performed when all threads have reached the first barrier, the next
todo() when all threads have reached the next barrier and so on. If you look at each phase’s
methods, it is not so important, what they do, but they perform the method

 phaser.arriveAndAwaitAdvance();

which means that the thread must wait at the barrier until all threads have reached. The
Phaser object is created in the main() method:

 Phaser phaser = new Phaser(1);

where there is registered a single thread, which is the primary thread. The primary thread
creates then 5 other threads and start them and then perform the method work(). The
important thing here is the statement

 phaser.arriveAndAwaitAdvance();

which means that all threads incl. the primary thread will have to wait at a barrier until all
the other threads arrives. If the program is performed the result is:

 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main

where there is registered a single thread, which is the primary thread. The primary thread
creates then 5 other threads and start them and then perform the method work(). The
important thing here is the statement

JAVA 8:MULTITHREADED PROGRAMS

77

COnCURREnCy TOOLS

 private void work(long n, int t)
 {
 for (int i = 0; i < n; ++i) value = Math.sqrt(t);
 }
 }

The class Worker defines the secondary threads. The constructor has a Phaser object as a
parameter, and the constructor sign up to the Phaser object as one of the threads which
the object has to wait for:

 this.phaser.register();

The run() method executes four methods (calls the method todo() three times and the
method result() once). Each of these methods carry out some work in a phase. That is that
the first todo() is first performed when all threads have reached the first barrier, the next
todo() when all threads have reached the next barrier and so on. If you look at each phase’s
methods, it is not so important, what they do, but they perform the method

 phaser.arriveAndAwaitAdvance();

which means that the thread must wait at the barrier until all threads have reached. The
Phaser object is created in the main() method:

 Phaser phaser = new Phaser(1);

where there is registered a single thread, which is the primary thread. The primary thread
creates then 5 other threads and start them and then perform the method work(). The
important thing here is the statement

 phaser.arriveAndAwaitAdvance();

which means that all threads incl. the primary thread will have to wait at a barrier until all
the other threads arrives. If the program is performed the result is:

 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main

which means that all threads incl. the primary thread will have to wait at a barrier until all
the other threads arrives. If the program is performed the result is:

JAVA 8:MULTITHREADED PROGRAMS

77

COnCURREnCy TOOLS

 private void work(long n, int t)
 {
 for (int i = 0; i < n; ++i) value = Math.sqrt(t);
 }
 }

The class Worker defines the secondary threads. The constructor has a Phaser object as a
parameter, and the constructor sign up to the Phaser object as one of the threads which
the object has to wait for:

 this.phaser.register();

The run() method executes four methods (calls the method todo() three times and the
method result() once). Each of these methods carry out some work in a phase. That is that
the first todo() is first performed when all threads have reached the first barrier, the next
todo() when all threads have reached the next barrier and so on. If you look at each phase’s
methods, it is not so important, what they do, but they perform the method

 phaser.arriveAndAwaitAdvance();

which means that the thread must wait at the barrier until all threads have reached. The
Phaser object is created in the main() method:

 Phaser phaser = new Phaser(1);

where there is registered a single thread, which is the primary thread. The primary thread
creates then 5 other threads and start them and then perform the method work(). The
important thing here is the statement

 phaser.arriveAndAwaitAdvance();

which means that all threads incl. the primary thread will have to wait at a barrier until all
the other threads arrives. If the program is performed the result is:

 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main
 New thred registered: main

JAVA 8:MULTITHREADED PROGRAMS

78

ConCurrenCy tools

78

JAVA 8:MULTITHREADED PROGRAMS

78

COnCURREnCy TOOLS

78

 -------- Start Phaser ---------------

 Thread-2 – has reached the barrier and works in phase 0, Value = 0.0

 Thread-1 – has reached the barrier and works in phase 0, Value = 0.0

 Thread-4 – has reached the barrier and works in phase 0, Value = 0.0

 Thread-3 – has reached the barrier and works in phase 0, Value = 0.0

 Thread-5 – has reached the barrier and works in phase 0, Value = 0.0

 ------ Phase – 0 is terminated ----------

 Thread-2 – has reached the barrier and works in phase 1, Value = 1.4142135623730951

 Thread-5 – has reached the barrier and works in phase 1, Value = 1.4142135623730951

 Thread-4 – has reached the barrier and works in phase 1, Value = 1.4142135623730951

 Thread-3 – has reached the barrier and works in phase 1, Value = 1.4142135623730951

 Thread-1 – has reached the barrier and works in phase 1, Value = 1.4142135623730951

 ------ Phase – 1 is terminated ----------

 Thread-4 – has reached the barrier and works in phase 2, Value = 1.7320508075688772

 Thread-1 – has reached the barrier and works in phase 2, Value = 1.7320508075688772

 Thread-5 – has reached the barrier and works in phase 2, Value = 1.7320508075688772

 Thread-3 – has reached the barrier and works in phase 2, Value = 1.7320508075688772

 Thread-2 – has reached the barrier and works in phase 2, Value = 1.7320508075688772

 ------ Phase – 2 is terminated ----------

 Thread-2 – has reached the barrier and works in phase 3, Value = 2.23606797749979

 Thread-1 – has reached the barrier and works in phase 3, Value = 2.23606797749979

 Thread-3 – has reached the barrier and works in phase 3, Value = 2.23606797749979

 Thread-5 – has reached the barrier and works in phase 3, Value = 2.23606797749979

 Thread-4 – has reached the barrier and works in phase 3, Value = 2.23606797749979

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 8:MULTITHREADED PROGRAMS

79

ConCurrenCy tools

8.7 LOCKS

As seen in the previous chapter, Java allows to synchronize threads so that threads can safely
updating shared objects, and so that a thread’s updating of an object is visible to all other
threads. This is done by placing code in a critical region where you can ensure mutual
exclusion by using locks. Each object is associated with a lock in the form of a monitor,
which ensures that only one thread at a time, can performs the statements in a critical
region. A thread can only enter a critical region and obtain the lock if the lock is not used
by another thread, and if it is the current thread is blocked until another thread exits the
critical region and releases the lock. This mechanism will also ensure that when a thread
locks a critical region, that values of shared variables stored in memory also if necessary
updates copies in a cache. The opposite happens when a thread exits the critical region and
releases the lock, the cached values are written back to memory.

To facilitate the work synchronization tools defines more interfaces and classes that will
make it easier to work with locks, and as an example uses the following program a lock:

JAVA 8:MULTITHREADED PROGRAMS

79

COnCURREnCy TOOLS

8.7 LOCKS

As seen in the previous chapter, Java allows to synchronize threads so that threads can safely
updating shared objects, and so that a thread’s updating of an object is visible to all other
threads. This is done by placing code in a critical region where you can ensure mutual
exclusion by using locks. Each object is associated with a lock in the form of a monitor,
which ensures that only one thread at a time, can performs the statements in a critical
region. A thread can only enter a critical region and obtain the lock if the lock is not used
by another thread, and if it is the current thread is blocked until another thread exits the
critical region and releases the lock. This mechanism will also ensure that when a thread
locks a critical region, that values of shared variables stored in memory also if necessary
updates copies in a cache. The opposite happens when a thread exits the critical region and
releases the lock, the cached values are written back to memory.

To facilitate the work synchronization tools defines more interfaces and classes that will
make it easier to work with locks, and as an example uses the following program a lock:

 package thread21;

 import java.util.concurrent.*;
 import java.util.concurrent.locks.*;

 public class Thread21
 {
 public static void main(String[] args)
 {
 ExecutorService executor = Executors.newFixedThreadPool(3);
	 final	ReentrantLock	lock	=	new	ReentrantLock();
 executor.execute(new Worker("A", lock));
 executor.execute(new Worker("B", lock));
 executor.execute(new Worker("C", lock));
 try
 {
	 executor.awaitTermination(10,	TimeUnit.SECONDS);
 }
 catch (Exception ex)
 {
 }
 executor.shutdownNow();
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

80

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

80

COnCURREnCy TOOLS

 class Worker implements Runnable
 {
	 private	final	Lock	lock;
	 private	final	String	name;

 Worker(String name, Lock lock)
 {
 this.name = name;
 this.lock = lock;
 }

 public void run()
 {
 System.out.println(name + " startet");
 lock.lock();
 try
 {
 System.out.printf("%s Critical region.\n",name);
 System.out.printf("%s: Works.\n", name);
 Thread.sleep(2000);
 System.out.printf("%s Terminates.\n", name);
 }
 catch (Exception ex)
 {
 }
	 finally
 {
 lock.unlock();
 }
 }
 }

A lock is represented by the class ReentrantLock that implements the interface Lock, and
the program creates such a lock:

 ReentrantLock lock = new ReentrantLock();

Next the program start three threads, and each thread carry out work in a critical region
that is defined with the lock. There is not much to explain, and it is in principle simple
to work with a lock, but it is important to ensure that the lock is always released again,
and a good place is to lock up is in a finally block. If the above program is performed, the
result could be the following:

A lock is represented by the class ReentrantLock that implements the interface Lock, and
the program creates such a lock:

JAVA 8:MULTITHREADED PROGRAMS

80

COnCURREnCy TOOLS

 class Worker implements Runnable
 {
	 private	final	Lock	lock;
	 private	final	String	name;

 Worker(String name, Lock lock)
 {
 this.name = name;
 this.lock = lock;
 }

 public void run()
 {
 System.out.println(name + " startet");
 lock.lock();
 try
 {
 System.out.printf("%s Critical region.\n",name);
 System.out.printf("%s: Works.\n", name);
 Thread.sleep(2000);
 System.out.printf("%s Terminates.\n", name);
 }
 catch (Exception ex)
 {
 }
	 finally
 {
 lock.unlock();
 }
 }
 }

A lock is represented by the class ReentrantLock that implements the interface Lock, and
the program creates such a lock:

 ReentrantLock lock = new ReentrantLock();

Next the program start three threads, and each thread carry out work in a critical region
that is defined with the lock. There is not much to explain, and it is in principle simple
to work with a lock, but it is important to ensure that the lock is always released again,
and a good place is to lock up is in a finally block. If the above program is performed, the
result could be the following:

Next the program start three threads, and each thread carry out work in a critical region
that is defined with the lock. There is not much to explain, and it is in principle simple
to work with a lock, but it is important to ensure that the lock is always released again,
and a good place is to lock up is in a finally block. If the above program is performed, the
result could be the following:

JAVA 8:MULTITHREADED PROGRAMS

81

ConCurrenCy tools

81

JAVA 8:MULTITHREADED PROGRAMS

81

COnCURREnCy TOOLS

81

 A startet
 C startet
 B startet
 A Critical region.
 A: Works.
 A Terminates.
 C Critical region.
 C: Works.
 C Terminates.
 B Critical region.
 B: Works.
 B Terminates.

Basic is synchronization based on critical regions on the use of synchronized and wait() and
notify(), and you can say that a Lock replaces the use of synchronized. Similarly, an object of
the type Condition is an object that replaces the use of wait() and notify(). Below is shown
a program that solves the producer-consumer problem in which there are two threads,
respectively updating and reading a shared resource, but this time the problem is solved by
a ReentrantLock and a Condition object:

Basic is synchronization based on critical regions on the use of synchronized and wait() and
notify(), and you can say that a Lock replaces the use of synchronized. Similarly, an object of
the type Condition is an object that replaces the use of wait() and notify(). Below is shown
a program that solves the producer-consumer problem in which there are two threads,
respectively updating and reading a shared resource, but this time the problem is solved by
a ReentrantLock and a Condition object:

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 8:MULTITHREADED PROGRAMS

82

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

82

COnCURREnCy TOOLS

 package thread22;

 import java.util.concurrent.locks.*;

 public class Thread22
 {
 public static void main(String[] args)
 {
 Shared shared = new Shared();
 new Producer(shared).start();
 new Consumer(shared).start();
 }
 }

 class Shared
 {
 private char value; // the shared resource
 private volatile boolean ok = false;
	 private	final	Lock	lock	=	new	ReentrantLock();
	 private	final	Condition	condition	=	lock.newCondition();

 public Lock getLock()
 {
 return lock;
 }

 public char getValue() throws InterruptedException
 {
 lock.lock();
 try
 {
 while (!ok) condition.await();
 ok = false;
 return value;
 }
	 finally
 {
 condition.signal();
 lock.unlock();
 }
 }

 public void setValue(char value) throws InterruptedException
 {
 lock.lock();
 try
 {

JAVA 8:MULTITHREADED PROGRAMS

83

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

83

COnCURREnCy TOOLS

 while (ok) condition.await();
 this.value = value;
 ok = true;
 }
	 finally
 {
 condition.signal();
 lock.unlock();
 }
 }
 }

 class Producer extends Thread
 {
	 private	final	Shared	shared;

 Producer(Shared shared)
 {
 this.shared = shared;
 }

 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ++ch)
 {
 try
 {
 shared.setValue(ch);
 }
 catch (InterruptedException ex)
 {
 }
 }
 }
 }

 class Consumer extends Thread
 {
	 private	final	Lock	lock;
	 private	final	Shared	shared;

 Consumer(Shared shared)
 {
 this.shared = shared;
 lock = shared.getLock();
 }

JAVA 8:MULTITHREADED PROGRAMS

84

ConCurrenCy tools

84

JAVA 8:MULTITHREADED PROGRAMS

84

COnCURREnCy TOOLS

84

 public void run()
 {
 char ch = ' ';
 do
 {
 try
 {
 lock.lock();
 System.out.print(ch = shared.getValue());
 }
 catch (InterruptedException ex)
 {
 }
	 finally
 {
 lock.unlock();
 }
 }
 while (ch != 'Z');
 System.out.println();
 }
 }

http://s.bookboon.com/elearningforkids

JAVA 8:MULTITHREADED PROGRAMS

85

ConCurrenCy tools

The program is similar to the previous solution, but you should notice how the class Shared
creates a Condition object using the Lock object. This object is used in both getValue() and
setValue() to perform await(), and within the critical region the method performs a signal()
corresponding to the notify().

EXERCISE 9

In this exercise you have to solve the same task as in exercise 5, but this time instead of
using synchronized, wait() and notify() you must use the types Lock and Condition.

8.8 READWRITELOCK

Many times, a data structure is read more often than it needs to be adjusted, and you
can have multiple threads that simultaneously read the data structure, while only one or
a few threads need to update it. Accordingly, there is a lock, called a ReadWriteLock that
ensures that multiple threads can simultaneously read a data structure, while only a single
can update. The following program creates a thread and initializes a Map<String, String>
with the Danish zip codes where the code is the key. In addition, the program creates three
methods that read the data structure and print an item on the screen. To synchronize the
threads access to the data structure is used a ReadWriteLock:

JAVA 8:MULTITHREADED PROGRAMS

85

COnCURREnCy TOOLS

The program is similar to the previous solution, but you should notice how the class Shared
creates a Condition object using the Lock object. This object is used in both getValue() and
setValue() to perform await(), and within the critical region the method performs a signal()
corresponding to the notify().

EXERCISE 9

In this exercise you have to solve the same task as in exercise 5, but this time instead of
using synchronized, wait() and notify() you must use the types Lock and Condition.

8.8 READWRITELOCK

Many times, a data structure is read more often than it needs to be adjusted, and you
can have multiple threads that simultaneously read the data structure, while only one or
a few threads need to update it. Accordingly, there is a lock, called a ReadWriteLock that
ensures that multiple threads can simultaneously read a data structure, while only a single
can update. The following program creates a thread and initializes a Map<String, String>
with the Danish zip codes where the code is the key. In addition, the program creates three
methods that read the data structure and print an item on the screen. To synchronize the
threads access to the data structure is used a ReadWriteLock:

 package thread23;

 import java.util.*;
 import java.util.concurrent.*;
 import java.util.concurrent.locks.*;

 public class Thread23
 {
	 private	static	final	ReadWriteLock	lock	=	new	ReentrantReadWriteLock(true);
	 private	static	final	Map<String,	String>	dictionary	=	new	HashMap();
	 private	static	final	List<String>	keys	=	new	ArrayList();
	 private	static	final	Random	rand	=	new	Random();

 public static void main(String[] args)
 {
 new Thread23().doWork();
 }

 private void doWork()
 {
 ExecutorService executor = Executors.newFixedThreadPool(4);
 executor.submit(new Writer());
 executor.submit(new Reader());

JAVA 8:MULTITHREADED PROGRAMS

86

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

86

COnCURREnCy TOOLS

 executor.submit(new Reader());
 executor.submit(new Reader());
 }

 class Reader implements Runnable
 {
 public void run()
 {
 while (true)
 {
 lock.readLock().lock();
 try
 {
 System.out.println("[" + Thread.currentThread().getId() + "] " +
 dictionary.get(keys.get(rand.nextInt(keys.size()))));
 }
	 finally
 {
 lock.readLock().unlock();
 }
 try
 {
 Thread.sleep(100);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 }

 class Writer implements Runnable
 {
 public void run()
 {
 for (int i = 0; i < data.length; ++i)
 {
 lock.writeLock().lock();
 try
 {
 String[] elems = data[i].split(";");
 dictionary.put(elems[0], elems[0] + " " + elems[1]);
 keys.add(elems[0]);
 }
	 finally
 {
 lock.writeLock().unlock();
 }

JAVA 8:MULTITHREADED PROGRAMS

87

ConCurrenCy tools

87

JAVA 8:MULTITHREADED PROGRAMS

87

COnCURREnCy TOOLS

87

 try
 {
 Thread.sleep(200);
 }
 catch (InterruptedException ie)
 {
 }
 }
 System.out.println("Dictionary initialiseret.............................");
 }
 }

 private static String[] data =
 {
 "0800;Høje Taastrup",
 "0900;København C",
 "0999;København C",
 "1000;København K",
 "1050;København K",
 ...
 "9990;Skagen"
 };
 }

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 8:MULTITHREADED PROGRAMS

88

ConCurrenCy tools

The zip codes are laid out in an array at the end of the program. At the start of the main
class is defined a ReadWriteLock:

JAVA 8:MULTITHREADED PROGRAMS

88

COnCURREnCy TOOLS

The zip codes are laid out in an array at the end of the program. At the start of the main
class is defined a ReadWriteLock:

 ReadWriteLock lock = new ReentrantReadWriteLock(true);

and also a HashMap called dictionary, and an ArrayList, that should be used for keys. The
class Writer defines the thread to initialize the dictionary and you should notice, that it
defines a critical region using the write lock. This ensures that only one thread can use the
code that updates the data structure. The class Reader similarly defines a thread to read
the data structure, which reads a data item with a random key. Here you should note that
the critical region is defined by means of the read lock and thus more readers can use the
critical region.

EXERCISE 10

In this exercise you have to solve the same problem as in exercise 8, but locking must be
done with a ReadWriteLock instead of the class StorageLock. Start by creating a copy of
the program SemaphoreProgram and call the new project for ReadWriteProgram. Create a
ReadWriteLock:

 ReadWriteLock lock = new ReentrantReadWriteLock(true);

and delete the class StorageLock. Adjust then the code to instead use the new lock.

8.9 COLLECTIONS

Java was from the start equipped with collection classes for the most commonly used data
structures, and they were all thread safe, so they could be used safely in multithreaded
applications. At the time, it was really thought, for the goal of Java was to develop an
object-oriented programming language that was easy to use, and which resulted in robust
programs. However, the language quickly became so popular that it was used also for the
development of large-scale distributed solutions, and then performance was an issue, and
it was a problem that the Java’s collection classes were thread safe, especially because in
most cases you do not have the need. The result was, that some new collection classes was
developed (those that are discussed in this books), and they are not thread safe. Occasionally
you has, however, the needs that collections are thread safe, and to solve these problems is
defined some wrapper classes, which ensures that the classes can be used with multithreaded
applications. These wrapper classes are simple to use and the following example shows a
program, that use a thread safe ArrayList:

and also a HashMap called dictionary, and an ArrayList, that should be used for keys. The
class Writer defines the thread to initialize the dictionary and you should notice, that it
defines a critical region using the write lock. This ensures that only one thread can use the
code that updates the data structure. The class Reader similarly defines a thread to read
the data structure, which reads a data item with a random key. Here you should note that
the critical region is defined by means of the read lock and thus more readers can use the
critical region.

EXERCISE 10

In this exercise you have to solve the same problem as in exercise 8, but locking must be
done with a ReadWriteLock instead of the class StorageLock. Start by creating a copy of
the program SemaphoreProgram and call the new project for ReadWriteProgram. Create a
ReadWriteLock:

JAVA 8:MULTITHREADED PROGRAMS

88

COnCURREnCy TOOLS

The zip codes are laid out in an array at the end of the program. At the start of the main
class is defined a ReadWriteLock:

 ReadWriteLock lock = new ReentrantReadWriteLock(true);

and also a HashMap called dictionary, and an ArrayList, that should be used for keys. The
class Writer defines the thread to initialize the dictionary and you should notice, that it
defines a critical region using the write lock. This ensures that only one thread can use the
code that updates the data structure. The class Reader similarly defines a thread to read
the data structure, which reads a data item with a random key. Here you should note that
the critical region is defined by means of the read lock and thus more readers can use the
critical region.

EXERCISE 10

In this exercise you have to solve the same problem as in exercise 8, but locking must be
done with a ReadWriteLock instead of the class StorageLock. Start by creating a copy of
the program SemaphoreProgram and call the new project for ReadWriteProgram. Create a
ReadWriteLock:

 ReadWriteLock lock = new ReentrantReadWriteLock(true);

and delete the class StorageLock. Adjust then the code to instead use the new lock.

8.9 COLLECTIONS

Java was from the start equipped with collection classes for the most commonly used data
structures, and they were all thread safe, so they could be used safely in multithreaded
applications. At the time, it was really thought, for the goal of Java was to develop an
object-oriented programming language that was easy to use, and which resulted in robust
programs. However, the language quickly became so popular that it was used also for the
development of large-scale distributed solutions, and then performance was an issue, and
it was a problem that the Java’s collection classes were thread safe, especially because in
most cases you do not have the need. The result was, that some new collection classes was
developed (those that are discussed in this books), and they are not thread safe. Occasionally
you has, however, the needs that collections are thread safe, and to solve these problems is
defined some wrapper classes, which ensures that the classes can be used with multithreaded
applications. These wrapper classes are simple to use and the following example shows a
program, that use a thread safe ArrayList:

and delete the class StorageLock. Adjust then the code to instead use the new lock.

8.9 COLLECTIONS

Java was from the start equipped with collection classes for the most commonly used data
structures, and they were all thread safe, so they could be used safely in multithreaded
applications. At the time, it was really thought, for the goal of Java was to develop an
object-oriented programming language that was easy to use, and which resulted in robust
programs. However, the language quickly became so popular that it was used also for the
development of large-scale distributed solutions, and then performance was an issue, and
it was a problem that the Java’s collection classes were thread safe, especially because in
most cases you do not have the need. The result was, that some new collection classes was
developed (those that are discussed in this books), and they are not thread safe. Occasionally
you has, however, the needs that collections are thread safe, and to solve these problems is
defined some wrapper classes, which ensures that the classes can be used with multithreaded
applications. These wrapper classes are simple to use and the following example shows a
program, that use a thread safe ArrayList:

JAVA 8:MULTITHREADED PROGRAMS

89

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

89

COnCURREnCy TOOLS

 package thread24;

 import java.util.*;
 public class Thread24
 {
 public static void main(String[] args)
 {
 List<Integer> list = java.util.Collections.synchronizedList(new ArrayList());
 for (int i = 1; i <= 100; ++i) list.add(i);
 int sum = 0;
 for (Integer t : list) sum += t;
 System.out.println(sum);
 }
 }

and there are similar wrapper classes to the other collection classes. However, this solution
also has its drawbacks, and in particular it can cause problems if you iterate over a collection
while another thread updates. This will result in an exception, and it is therefore necessary
putting a lock by yourself. Therefore – and also for other reasons – there are defined some
special thread safe collection classes:

1. BlockingQueue is a subinterface to java.util.Queue that implements blocking
operations that wait for the queue is not empty before they return an item and
do not add an item before the queue has room. The interface is implemented
by the following classes: ArrayBlockingQueue, LinkedBlockingQueue, DelayQueue,
PriorityBlockingQueue and SynchronousQueue and indirectly by LinkedBlockingDeque
and LinkedTransferQueue.

2. ConcurrentMap is a subinterface to java.util.Map defining thread safe putIfAbsent(),
Remove() and replace() methods. The interface is implemented by ConcurrentHashMap,
ConcurrentNavigableMap and ConcurrentSkipListMap.

As an example is shown a program which solves the producer-consumer problem by means
of a BlockingQueue:

 package thread25;

 import java.util.concurrent.*;

 public class Thread25
 {
 public static void main(String[] args)
 {

and there are similar wrapper classes to the other collection classes. However, this solution
also has its drawbacks, and in particular it can cause problems if you iterate over a collection
while another thread updates. This will result in an exception, and it is therefore necessary
putting a lock by yourself. Therefore – and also for other reasons – there are defined some
special thread safe collection classes:

1. BlockingQueue is a subinterface to java.util.Queue that implements blocking
operations that wait for the queue is not empty before they return an item and
do not add an item before the queue has room. The interface is implemented
by the following classes: ArrayBlockingQueue, LinkedBlockingQueue, DelayQueue,
PriorityBlockingQueue and SynchronousQueue and indirectly by LinkedBlockingDeque
and LinkedTransferQueue.

2. ConcurrentMap is a subinterface to java.util.Map defining thread safe putIfAbsent(),
Remove() and replace() methods. The interface is implemented by ConcurrentHashMap,
ConcurrentNavigableMap and ConcurrentSkipListMap.

As an example is shown a program which solves the producer-consumer problem by means
of a BlockingQueue:

JAVA 8:MULTITHREADED PROGRAMS

89

COnCURREnCy TOOLS

 package thread24;

 import java.util.*;
 public class Thread24
 {
 public static void main(String[] args)
 {
 List<Integer> list = java.util.Collections.synchronizedList(new ArrayList());
 for (int i = 1; i <= 100; ++i) list.add(i);
 int sum = 0;
 for (Integer t : list) sum += t;
 System.out.println(sum);
 }
 }

and there are similar wrapper classes to the other collection classes. However, this solution
also has its drawbacks, and in particular it can cause problems if you iterate over a collection
while another thread updates. This will result in an exception, and it is therefore necessary
putting a lock by yourself. Therefore – and also for other reasons – there are defined some
special thread safe collection classes:

1. BlockingQueue is a subinterface to java.util.Queue that implements blocking
operations that wait for the queue is not empty before they return an item and
do not add an item before the queue has room. The interface is implemented
by the following classes: ArrayBlockingQueue, LinkedBlockingQueue, DelayQueue,
PriorityBlockingQueue and SynchronousQueue and indirectly by LinkedBlockingDeque
and LinkedTransferQueue.

2. ConcurrentMap is a subinterface to java.util.Map defining thread safe putIfAbsent(),
Remove() and replace() methods. The interface is implemented by ConcurrentHashMap,
ConcurrentNavigableMap and ConcurrentSkipListMap.

As an example is shown a program which solves the producer-consumer problem by means
of a BlockingQueue:

 package thread25;

 import java.util.concurrent.*;

 public class Thread25
 {
 public static void main(String[] args)
 {

JAVA 8:MULTITHREADED PROGRAMS

90

ConCurrenCy tools

90

JAVA 8:MULTITHREADED PROGRAMS

90

COnCURREnCy TOOLS

90

	 final	BlockingQueue<Character>	queue	=	new	ArrayBlockingQueue(26);
	 final	ExecutorService	executor	=	Executors.newFixedThreadPool(2);
	 final	CountDownLatch	done	=	new	CountDownLatch(2);
 executor.execute(new Producer(queue, done));
 executor.execute(new Consumer(queue, done));
 try
 {
 done.await();
 }
 catch (InterruptedException ex)
 {
 }
 executor.shutdownNow();
 }
 }

 class Consumer implements Runnable
 {
	 private	BlockingQueue<Character>	queue;
 private CountDownLatch done;

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 8:MULTITHREADED PROGRAMS

91

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

91

COnCURREnCy TOOLS

	 public	Consumer(BlockingQueue<Character>	queue,	CountDownLatch	done)
 {
 this.queue = queue;
 this.done = done;
 }

 public void run()
 {
 char ch = '\0';
 do
 {
 try
 {
 System.out.print(ch = queue.take());
 }
 catch (InterruptedException ie)
 {
 }
 }
 while (ch != 'Z');
 System.out.println();
 done.countDown();
 }
 }

 class Producer implements Runnable
 {
	 private	BlockingQueue<Character>	queue;
 private CountDownLatch done;

	 public	Producer(BlockingQueue<Character>	queue,	CountDownLatch	done)
 {
 this.queue = queue;
 this.done = done;
 }

 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ++ch)
 {
 try
 {
 queue.put(ch);
 }

JAVA 8:MULTITHREADED PROGRAMS

92

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

92

COnCURREnCy TOOLS

 catch (InterruptedException ie)
 {
 }
 }
 done.countDown();
 }
 }

The code is self-explanatory, but you need to note how to create a BlockingQueue as an
object of the type ArrayBlockingQueue with space for 26 elements. Also note that the
program uses a CountDownLatch to control when the executor object can be shut down,
so the program terminates.

The class ConcurrentHashMap is used basically in the same way as a HashMap, but it is
extended with new thread safe methods, but without locking the entire data structure. One
of these methods is putIfAbsent(), which adds a new key/value pairs, if there is not already a
value with the same key. It is thus an alternative to the first performing containsKey(), and
then put(), but such that the operation is indivisible. The method remove() works in much
the same way, and there is also added a replace() method. In fact, the class expanded by
more than 30 methods, including to provide support fort lambda expressions and aggregate
operations. All these changes mean that a ConcurrentHashMap is suitable as a data structure
into a cache memory.

EXERCISE 11

The subject of this exercise is to test the class ConcurrentHashMap. Create a new project,
that you can call MapProgram. You must add the following class:

 class Worker implements Runnable
 {
	 public	static	enum	OPERATION	{	ADD,	REP,	REM	}
	 private	final	ConcurrentMap<String,	BigInteger>	map;	//	ConcurrentHashMap
	 private	final	CountDownLatch	done;		 //	when	the	thread	is	finish
 private String key; // key value, two upper case letters
	 private	OPERATION	opr;		 	 	 //	the	operation,	to	be	performed

 public Worker(ConcurrentMap<String, BigInteger> map, CountDownLatch done,
	 String	key,	OPERATION	opr)
 {
 this.map = map;
 this.done = done;
 this.key = key;
 this.opr = opr;
 }

The code is self-explanatory, but you need to note how to create a BlockingQueue as an
object of the type ArrayBlockingQueue with space for 26 elements. Also note that the
program uses a CountDownLatch to control when the executor object can be shut down,
so the program terminates.

The class ConcurrentHashMap is used basically in the same way as a HashMap, but it is
extended with new thread safe methods, but without locking the entire data structure. One
of these methods is putIfAbsent(), which adds a new key/value pairs, if there is not already a
value with the same key. It is thus an alternative to the first performing containsKey(), and
then put(), but such that the operation is indivisible. The method remove() works in much
the same way, and there is also added a replace() method. In fact, the class expanded by
more than 30 methods, including to provide support fort lambda expressions and aggregate
operations. All these changes mean that a ConcurrentHashMap is suitable as a data structure
into a cache memory.

EXERCISE 11

The subject of this exercise is to test the class ConcurrentHashMap. Create a new project,
that you can call MapProgram. You must add the following class:

JAVA 8:MULTITHREADED PROGRAMS

92

COnCURREnCy TOOLS

 catch (InterruptedException ie)
 {
 }
 }
 done.countDown();
 }
 }

The code is self-explanatory, but you need to note how to create a BlockingQueue as an
object of the type ArrayBlockingQueue with space for 26 elements. Also note that the
program uses a CountDownLatch to control when the executor object can be shut down,
so the program terminates.

The class ConcurrentHashMap is used basically in the same way as a HashMap, but it is
extended with new thread safe methods, but without locking the entire data structure. One
of these methods is putIfAbsent(), which adds a new key/value pairs, if there is not already a
value with the same key. It is thus an alternative to the first performing containsKey(), and
then put(), but such that the operation is indivisible. The method remove() works in much
the same way, and there is also added a replace() method. In fact, the class expanded by
more than 30 methods, including to provide support fort lambda expressions and aggregate
operations. All these changes mean that a ConcurrentHashMap is suitable as a data structure
into a cache memory.

EXERCISE 11

The subject of this exercise is to test the class ConcurrentHashMap. Create a new project,
that you can call MapProgram. You must add the following class:

 class Worker implements Runnable
 {
	 public	static	enum	OPERATION	{	ADD,	REP,	REM	}
	 private	final	ConcurrentMap<String,	BigInteger>	map;	//	ConcurrentHashMap
	 private	final	CountDownLatch	done;		 //	when	the	thread	is	finish
 private String key; // key value, two upper case letters
	 private	OPERATION	opr;		 	 	 //	the	operation,	to	be	performed

 public Worker(ConcurrentMap<String, BigInteger> map, CountDownLatch done,
	 String	key,	OPERATION	opr)
 {
 this.map = map;
 this.done = done;
 this.key = key;
 this.opr = opr;
 }

JAVA 8:MULTITHREADED PROGRAMS

93

ConCurrenCy tools

93

JAVA 8:MULTITHREADED PROGRAMS

93

COnCURREnCy TOOLS

93

 public void run()
 {
 // The method should using the method sum

() determine a BigInteger for a
 // large random n
 // The method should then decided of opr add, change, or delete an item in
 // the map
	 //	finally,	the	method	must	print	the	result	of	the	operation	and
 // counting done down
 }

 private BigInteger sum(int n)
 {
 // determines and returns the sum of the numbers from 1 through n when the
 // sum is to be determined by add the numbers of the type BigInteger
 // meaning is that the operation must take time
 }
 }

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 8:MULTITHREADED PROGRAMS

94

ConCurrenCy tools

The program must then be written as follows:

JAVA 8:MULTITHREADED PROGRAMS

94

COnCURREnCy TOOLS

The program must then be written as follows:

 public class MapProgram
 {
	 public	static	final	Random	rand	=	new	Random();
	 private	static	final	int	N	=	2;	//	number	of	threads
	 private	static	final	int	M	=	5;	//	number	of	operations

 public static void main(String[] args)
 {
 CountDownLatch done = new CountDownLatch(M);
 ConcurrentMap<String, BigInteger> map = new ConcurrentHashMap();
 ExecutorService executor = Executors.newFixedThreadPool(N);
 for (int i = 0; i < M; ++i)
 executor.submit(new Worker(map, done, createKey(), operation()));
 // wait for done to be count down
 executor.shutdown();
 }

	 private	static	Worker.OPERATION	operation()
 {
 // returns a random operation
 }

 private static String createKey()
 {
 // creates a random key that is two upper case letters
 }

 }

When you are finished you can experiment and explore what happens if you change the
number of operations (the constant M), and if you change the number of concurrent
threads (constant N). An example of running the program, which has 5 threads and 15
operations could be:

 REM: TF is not found
 REP: XN is not found
 REP: NV is not found
 REM: JG is not found
 REP: GS is not found
 REM: EM is not found
 REP: BC is not found
	ADD:	DO	sum(13340927)	=	88990173280128
 ADD: MA sum(12188689) = 74282075863705

When you are finished you can experiment and explore what happens if you change the
number of operations (the constant M), and if you change the number of concurrent
threads (constant N). An example of running the program, which has 5 threads and 15
operations could be:

JAVA 8:MULTITHREADED PROGRAMS

94

COnCURREnCy TOOLS

The program must then be written as follows:

 public class MapProgram
 {
	 public	static	final	Random	rand	=	new	Random();
	 private	static	final	int	N	=	2;	//	number	of	threads
	 private	static	final	int	M	=	5;	//	number	of	operations

 public static void main(String[] args)
 {
 CountDownLatch done = new CountDownLatch(M);
 ConcurrentMap<String, BigInteger> map = new ConcurrentHashMap();
 ExecutorService executor = Executors.newFixedThreadPool(N);
 for (int i = 0; i < M; ++i)
 executor.submit(new Worker(map, done, createKey(), operation()));
 // wait for done to be count down
 executor.shutdown();
 }

	 private	static	Worker.OPERATION	operation()
 {
 // returns a random operation
 }

 private static String createKey()
 {
 // creates a random key that is two upper case letters
 }

 }

When you are finished you can experiment and explore what happens if you change the
number of operations (the constant M), and if you change the number of concurrent
threads (constant N). An example of running the program, which has 5 threads and 15
operations could be:

 REM: TF is not found
 REP: XN is not found
 REP: NV is not found
 REM: JG is not found
 REP: GS is not found
 REM: EM is not found
 REP: BC is not found
	ADD:	DO	sum(13340927)	=	88990173280128
 ADD: MA sum(12188689) = 74282075863705

JAVA 8:MULTITHREADED PROGRAMS

95

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

95

COnCURREnCy TOOLS

 REP: MC is not found
 REP: LZ is not found
 ADD: HW sum(11880594) = 70574262836715
 REP: JP is not found
 ADD: HK sum(14162771) = 100292048280606
 REP: UJ is not found

8.10 PARALLELISM

The goal of multithreaded applications is parallelism, where several methods are performed
at the same time on the machine, or at least it seems for us users as if it was the case when
the individual threads in turn is running on the CPU in a very short period of time. That
is the way, at least if the machine only has a single processor, but today most machines
have more processors in the form of CPUs with multiple cores. Therefore such machines
has the opportunity for true parallelism, where multiple threads run at the same time, each
on their core. The basic primitives for threads, and also the concurrency tools discussed
above, however, are not very effective to use multiple cores or processors. For it really to
be possible, the task must be parallels and thus could be divided into smaller tasks that
can be performed independent of each other and to finish be assembling to the finished
result. This is far from everything, but there are also tasks that can be easily parallels. To
support that Java has a framework, called the Fork/Join that exactly supports the resolution
of these kinds of tasks.

Fork/Join consists of a special executor service and a thread pool, and each task is of the
framework split into smaller pieces that are forked to a thread from the thread pool. A task
waits until the subtasks are completed and result of each sub-task can be merged (joined)
for the final result. This process is also recursive, where subtasks in turn can be divided into
subtasks. The framework basically consists of the following classes:

1. ForkJoinPool
2. ForkJoinTask
3. ForkJoinWorkerThread
4. RecursiveAction
5. RecursiveTask
6. CountedCompleter.

8.10 PARALLELISM

The goal of multithreaded applications is parallelism, where several methods are performed
at the same time on the machine, or at least it seems for us users as if it was the case when
the individual threads in turn is running on the CPU in a very short period of time. That
is the way, at least if the machine only has a single processor, but today most machines
have more processors in the form of CPUs with multiple cores. Therefore such machines
has the opportunity for true parallelism, where multiple threads run at the same time, each
on their core. The basic primitives for threads, and also the concurrency tools discussed
above, however, are not very effective to use multiple cores or processors. For it really to
be possible, the task must be parallels and thus could be divided into smaller tasks that
can be performed independent of each other and to finish be assembling to the finished
result. This is far from everything, but there are also tasks that can be easily parallels. To
support that Java has a framework, called the Fork/Join that exactly supports the resolution
of these kinds of tasks.

Fork/Join consists of a special executor service and a thread pool, and each task is of the
framework split into smaller pieces that are forked to a thread from the thread pool. A task
waits until the subtasks are completed and result of each sub-task can be merged (joined)
for the final result. This process is also recursive, where subtasks in turn can be divided into
subtasks. The framework basically consists of the following classes:

1. ForkJoinPool
2. ForkJoinTask
3. ForkJoinWorkerThread
4. RecursiveAction
5. RecursiveTask
6. CountedCompleter.

JAVA 8:MULTITHREADED PROGRAMS

96

ConCurrenCy tools

96

Consider as an example the following program:

JAVA 8:MULTITHREADED PROGRAMS

96

COnCURREnCy TOOLS

96

Consider as an example the following program:

 package thread26;

 public class Thread26
 {
 private static int[][] A1 = { { 1, 2, 3 }, { 4, 5, 6} };
 private static int[][] A2 = { { 1, 2, 3 }, { 4, 5, 6}, { 7, 8, 9 } };

 public static void main(String[] args)
 {
 Matrix A = new Matrix(A1);
 print(A);
 Matrix B = new Matrix(A2);
 print(B);
 print(mul(A, B));
 }

 public static Matrix mul(Matrix A, Matrix B)
 {
 if (A.getCols() != B.getRows())
 throw new IllegalArgumentException("Ulovlig matrixmultiplikation");
 Matrix C = new Matrix(A.getRows(), B.getCols());

http://s.bookboon.com/EOT

JAVA 8:MULTITHREADED PROGRAMS

97

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

97

COnCURREnCy TOOLS

 for (int i = 0; i < A.getRows(); ++i)
 for (int j = 0; j < B.getCols(); ++j)
 for (int k = 0; k < A.getCols(); ++k)
 C.setValue(i, j, C.getValue(i, j) + A.getValue(i, k) * B.getValue(k, j));
 return C;
 }

 public static void print(Matrix M)
 {
 for (int i = 0; i < M.getRows(); ++i)
 {
 for (int j = 0; j < M.getCols(); j++)
 System.out.printf("%5d", M.getValue(i, j));
 System.out.println();
 }
 System.out.println();
 }
 }

 class Matrix
 {
	 private	final	int[][]	matrix;

 public Matrix(int rows, int cols)
 {
 matrix = new int[rows][cols];
 }

 public Matrix(int[][] array)
 {
 matrix = array;
 }

 public int getCols()
 {
 return matrix[0].length;
 }

 public int getRows()
 {
 return matrix.length;
 }

 public int getValue(int row, int col)
 {
 return matrix[row][col];
 }

JAVA 8:MULTITHREADED PROGRAMS

98

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

98

COnCURREnCy TOOLS

 public void setValue(int row, int col, int value)
 {
 matrix[row][col] = value;
 }
 }

Here is the class Matrix a simple matrix class (with int coordinates), and it is not much
more than a thin encapsulation of a 2 dimensional array. The program creates two matrices
and prints them. One is a 2×3 matrix, and the second is a 3×3 matrix. Therefore, you can
compute the two matrices product (the first matrix has the same number of columns as
the second matrix has rows), and that’s exactly what method mul() does. If you executes
the program, you get the following result:

 1 2 3
 4 5 6

 1 2 3
 4 5 6
 7 8 9

 30 36 42
 66 81 96

The program is carried out in a single thread (the primay thread), but if you consider the
method mul(), then you can also write it as follows:

 public static Matrix mul(Matrix A, Matrix B)
 {
 if (A.getCols() != B.getRows())
 throw new IllegalArgumentException("Ulovlig matrixmultiplikation");
 Matrix C = new Matrix(A.getRows(), B.getCols());
 for (int i = 0; i < A.getRows(); ++i) mul(A, B, C, i);
 return C;
 }
 public static void mul(Matrix A, Matrix B, Matrix C, int r)
 {
 for (int j = 0; j < B.getCols(); ++j)
 for (int k = 0; k < A.getCols(); ++k)
 C.setValue(r, j, C.getValue(r, j) + A.getValue(r, k) * B.getValue(k, j));
 }

Here is the class Matrix a simple matrix class (with int coordinates), and it is not much
more than a thin encapsulation of a 2 dimensional array. The program creates two matrices
and prints them. One is a 2×3 matrix, and the second is a 3×3 matrix. Therefore, you can
compute the two matrices product (the first matrix has the same number of columns as
the second matrix has rows), and that’s exactly what method mul() does. If you executes
the program, you get the following result:

JAVA 8:MULTITHREADED PROGRAMS

98

COnCURREnCy TOOLS

 public void setValue(int row, int col, int value)
 {
 matrix[row][col] = value;
 }
 }

Here is the class Matrix a simple matrix class (with int coordinates), and it is not much
more than a thin encapsulation of a 2 dimensional array. The program creates two matrices
and prints them. One is a 2×3 matrix, and the second is a 3×3 matrix. Therefore, you can
compute the two matrices product (the first matrix has the same number of columns as
the second matrix has rows), and that’s exactly what method mul() does. If you executes
the program, you get the following result:

 1 2 3
 4 5 6

 1 2 3
 4 5 6
 7 8 9

 30 36 42
 66 81 96

The program is carried out in a single thread (the primay thread), but if you consider the
method mul(), then you can also write it as follows:

 public static Matrix mul(Matrix A, Matrix B)
 {
 if (A.getCols() != B.getRows())
 throw new IllegalArgumentException("Ulovlig matrixmultiplikation");
 Matrix C = new Matrix(A.getRows(), B.getCols());
 for (int i = 0; i < A.getRows(); ++i) mul(A, B, C, i);
 return C;
 }
 public static void mul(Matrix A, Matrix B, Matrix C, int r)
 {
 for (int j = 0; j < B.getCols(); ++j)
 for (int k = 0; k < A.getCols(); ++k)
 C.setValue(r, j, C.getValue(r, j) + A.getValue(r, k) * B.getValue(k, j));
 }

The program is carried out in a single thread (the primay thread), but if you consider the
method mul(), then you can also write it as follows:

JAVA 8:MULTITHREADED PROGRAMS

98

COnCURREnCy TOOLS

 public void setValue(int row, int col, int value)
 {
 matrix[row][col] = value;
 }
 }

Here is the class Matrix a simple matrix class (with int coordinates), and it is not much
more than a thin encapsulation of a 2 dimensional array. The program creates two matrices
and prints them. One is a 2×3 matrix, and the second is a 3×3 matrix. Therefore, you can
compute the two matrices product (the first matrix has the same number of columns as
the second matrix has rows), and that’s exactly what method mul() does. If you executes
the program, you get the following result:

 1 2 3
 4 5 6

 1 2 3
 4 5 6
 7 8 9

 30 36 42
 66 81 96

The program is carried out in a single thread (the primay thread), but if you consider the
method mul(), then you can also write it as follows:

 public static Matrix mul(Matrix A, Matrix B)
 {
 if (A.getCols() != B.getRows())
 throw new IllegalArgumentException("Ulovlig matrixmultiplikation");
 Matrix C = new Matrix(A.getRows(), B.getCols());
 for (int i = 0; i < A.getRows(); ++i) mul(A, B, C, i);
 return C;
 }
 public static void mul(Matrix A, Matrix B, Matrix C, int r)
 {
 for (int j = 0; j < B.getCols(); ++j)
 for (int k = 0; k < A.getCols(); ++k)
 C.setValue(r, j, C.getValue(r, j) + A.getValue(r, k) * B.getValue(k, j));
 }

JAVA 8:MULTITHREADED PROGRAMS

99

ConCurrenCy tools

99

This means that the matrix multiplication is divided into sub-tasks, where there is a subtask
for each row in the first matrix. Each of these sub-tasks are actually independent of each
other and can therefore be performed in separate thread, and if you can maintain that the
threads are executed on their own processor, one would expect an improved efficiency.
Not in this case, where there are few rows and columns, but for large matrices, the matrix
multiplication is actually an extensive operation with a bad time complexity.

The task is thus an example of a job where you can experiment with Fork/Join what the
following program does (I have not shown the class Matrix, as it is the same as above):

JAVA 8:MULTITHREADED PROGRAMS

99

COnCURREnCy TOOLS

99

This means that the matrix multiplication is divided into sub-tasks, where there is a subtask
for each row in the first matrix. Each of these sub-tasks are actually independent of each
other and can therefore be performed in separate thread, and if you can maintain that the
threads are executed on their own processor, one would expect an improved efficiency.
Not in this case, where there are few rows and columns, but for large matrices, the matrix
multiplication is actually an extensive operation with a bad time complexity.

The task is thus an example of a job where you can experiment with Fork/Join what the
following program does (I have not shown the class Matrix, as it is the same as above):

 package thread27;

 import java.util.*;
 import java.util.concurrent.*;

 public class Thread27 extends RecursiveAction
 {
 private static int[][] A1 = { { 1, 2, 3 }, { 4, 5, 6} };
 private static int[][] A2 = { { 1, 2, 3 }, { 4, 5, 6}, { 7, 8, 9 } };

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 8:MULTITHREADED PROGRAMS

100

ConCurrenCy toolsJAVA 8:MULTITHREADED PROGRAMS

100

COnCURREnCy TOOLS

 public static void main(String[] args)
 {
 Matrix A = new Matrix(A1);
 print(A);
 Matrix B = new Matrix(A2);
 print(B);
 Matrix C = new Matrix(A.getRows(), B.getCols());
 ForkJoinPool pool = new ForkJoinPool();
 pool.invoke(new Thread27(A, B, C));
 print(C);
 }

	 private	final	Matrix	A,	B,	C;
	 private	final	int	row;

 public Thread27(Matrix A, Matrix B, Matrix C)
 {
 this(A, B, C, -1);
 }

 public Thread27(Matrix A, Matrix B, Matrix C, int row)
 {
 if (A.getCols() != B.getRows())
 throw new IllegalArgumentException("Ulovlig matrixmultiplikation");
 this.A = A;
 this.B = B;
 this.C = C;
 this.row = row;
 }

 public void compute()
 {
 if (row == -1)
 {
 List<Thread27> tasks = new ArrayList();
 for (int r = 0; r < A.getRows(); ++r) tasks.add(new Thread27(A, B, C, r));
 invokeAll(tasks);
 }
 else mul(A, B, C, row);
 }

 public static void mul(Matrix A, Matrix B, Matrix C, int r)
 {
 for (int j = 0; j < B.getCols(); ++j)
 for (int k = 0; k < A.getCols(); ++k)
 C.setValue(r, j, C.getValue(r, j) + A.getValue(r, k) * B.getValue(k, j));
 }

JAVA 8:MULTITHREADED PROGRAMS

101

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

101

COnCURREnCy TOOLS

 public static void print(Matrix M)
 {
 for (int i = 0; i < M.getRows(); ++i)
 {
 for (int j = 0; j < M.getCols(); j++)
 System.out.printf("%5d", M.getValue(i, j));
 System.out.println();
 }
 System.out.println();
 }
 }

The program is technical, and the following points only at the most central. If a task – a
class – must be parallels, it must inherits the class RecursiveAction, which is the class that
contains the whole secret. The class is abstract and has an abstract method compute(),
and it is there that the interesting thing is, seen from the programmer. The class has two
constructors, that is used, respectively by three matrices, and three matrices and a row
number. The constructors do nothing but initialize the corresponding instance variables. If
you look at the main() method, it starts to create the matrices, but then it creates a thread
pool to the Fork/Join:

 ForkJoinPool pool = new ForkJoinPool();

It is subsequently used to create a RecursiveAction object (the task) and assign it to the
pool object:

 pool.invoke(new Thread27(A, B, C));

The result of this is that the method compute() is performed. If the instance variable row
has the value -1 (and it has the first time), then the task is split into a list of tasks, which
parallels with the statement

 invokeAll(tasks);

If the row not is -1, then instead the method mul() is called, which performs the matrix
multiplication for a specific row. If the program is performed, you get the same result as above.

The program is technical, and the following points only at the most central. If a task – a
class – must be parallels, it must inherits the class RecursiveAction, which is the class that
contains the whole secret. The class is abstract and has an abstract method compute(),
and it is there that the interesting thing is, seen from the programmer. The class has two
constructors, that is used, respectively by three matrices, and three matrices and a row
number. The constructors do nothing but initialize the corresponding instance variables. If
you look at the main() method, it starts to create the matrices, but then it creates a thread
pool to the Fork/Join:

JAVA 8:MULTITHREADED PROGRAMS

101

COnCURREnCy TOOLS

 public static void print(Matrix M)
 {
 for (int i = 0; i < M.getRows(); ++i)
 {
 for (int j = 0; j < M.getCols(); j++)
 System.out.printf("%5d", M.getValue(i, j));
 System.out.println();
 }
 System.out.println();
 }
 }

The program is technical, and the following points only at the most central. If a task – a
class – must be parallels, it must inherits the class RecursiveAction, which is the class that
contains the whole secret. The class is abstract and has an abstract method compute(),
and it is there that the interesting thing is, seen from the programmer. The class has two
constructors, that is used, respectively by three matrices, and three matrices and a row
number. The constructors do nothing but initialize the corresponding instance variables. If
you look at the main() method, it starts to create the matrices, but then it creates a thread
pool to the Fork/Join:

 ForkJoinPool pool = new ForkJoinPool();

It is subsequently used to create a RecursiveAction object (the task) and assign it to the
pool object:

 pool.invoke(new Thread27(A, B, C));

The result of this is that the method compute() is performed. If the instance variable row
has the value -1 (and it has the first time), then the task is split into a list of tasks, which
parallels with the statement

 invokeAll(tasks);

If the row not is -1, then instead the method mul() is called, which performs the matrix
multiplication for a specific row. If the program is performed, you get the same result as above.

It is subsequently used to create a RecursiveAction object (the task) and assign it to the
pool object:

JAVA 8:MULTITHREADED PROGRAMS

101

COnCURREnCy TOOLS

 public static void print(Matrix M)
 {
 for (int i = 0; i < M.getRows(); ++i)
 {
 for (int j = 0; j < M.getCols(); j++)
 System.out.printf("%5d", M.getValue(i, j));
 System.out.println();
 }
 System.out.println();
 }
 }

The program is technical, and the following points only at the most central. If a task – a
class – must be parallels, it must inherits the class RecursiveAction, which is the class that
contains the whole secret. The class is abstract and has an abstract method compute(),
and it is there that the interesting thing is, seen from the programmer. The class has two
constructors, that is used, respectively by three matrices, and three matrices and a row
number. The constructors do nothing but initialize the corresponding instance variables. If
you look at the main() method, it starts to create the matrices, but then it creates a thread
pool to the Fork/Join:

 ForkJoinPool pool = new ForkJoinPool();

It is subsequently used to create a RecursiveAction object (the task) and assign it to the
pool object:

 pool.invoke(new Thread27(A, B, C));

The result of this is that the method compute() is performed. If the instance variable row
has the value -1 (and it has the first time), then the task is split into a list of tasks, which
parallels with the statement

 invokeAll(tasks);

If the row not is -1, then instead the method mul() is called, which performs the matrix
multiplication for a specific row. If the program is performed, you get the same result as above.

The result of this is that the method compute() is performed. If the instance variable row
has the value -1 (and it has the first time), then the task is split into a list of tasks, which
parallels with the statement

JAVA 8:MULTITHREADED PROGRAMS

101

COnCURREnCy TOOLS

 public static void print(Matrix M)
 {
 for (int i = 0; i < M.getRows(); ++i)
 {
 for (int j = 0; j < M.getCols(); j++)
 System.out.printf("%5d", M.getValue(i, j));
 System.out.println();
 }
 System.out.println();
 }
 }

The program is technical, and the following points only at the most central. If a task – a
class – must be parallels, it must inherits the class RecursiveAction, which is the class that
contains the whole secret. The class is abstract and has an abstract method compute(),
and it is there that the interesting thing is, seen from the programmer. The class has two
constructors, that is used, respectively by three matrices, and three matrices and a row
number. The constructors do nothing but initialize the corresponding instance variables. If
you look at the main() method, it starts to create the matrices, but then it creates a thread
pool to the Fork/Join:

 ForkJoinPool pool = new ForkJoinPool();

It is subsequently used to create a RecursiveAction object (the task) and assign it to the
pool object:

 pool.invoke(new Thread27(A, B, C));

The result of this is that the method compute() is performed. If the instance variable row
has the value -1 (and it has the first time), then the task is split into a list of tasks, which
parallels with the statement

 invokeAll(tasks);

If the row not is -1, then instead the method mul() is called, which performs the matrix
multiplication for a specific row. If the program is performed, you get the same result as above.
If the row not is -1, then instead the method mul() is called, which performs the matrix
multiplication for a specific row. If the program is performed, you get the same result as above.

JAVA 8:MULTITHREADED PROGRAMS

102

ConCurrenCy tools

102

EXERCISE 12

Create a new project, that you can call Matrices1. The project should be substantially a
copy of the project Thread26, and thus a program that can calculate the product of two
matrices, but it should this time be larger matrices. Start by adding a method that can create
a matrix with a given number of rows and columns and initialize the matrix with random
one-digit integers. You can then test the program with 1000×2000 and 2000×1000 matrices.
You can not print the matrices (that do not really make sense with such large matrices),
but you should instead measure and print how long time the matrix multiplication takes.
Remember only to measure the time for the matrix multiplication.

You must then create a similar project that you can call Matrices2, but this time the program
should work in the same way as the program Thread27 where the matrix multiplication
should be parallels. Try to observe a time difference between the two programs. That should
be able, if your machine has a multicore processor.

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 8:MULTITHREADED PROGRAMS

103

ConCurrenCy tools

8.11 COMPLETIONSERVICE

As the last synchronization tool I’ll mention a CompletionService, which is an interface that
defines a service that detaches the creation of an asynchronous tasks from the handling of
the result. The idea is that a producer uses submit() to start callable objects in a thread, and
a consumer can call a blocking take() method that is waiting for the result.

JAVA 8:MULTITHREADED PROGRAMS

103

COnCURREnCy TOOLS

8.11 COMPLETIONSERVICE

As the last synchronization tool I’ll mention a CompletionService, which is an interface that
defines a service that detaches the creation of an asynchronous tasks from the handling of
the result. The idea is that a producer uses submit() to start callable objects in a thread, and
a consumer can call a blocking take() method that is waiting for the result.

 package thread28;

 import java.math.*;
 import java.util.concurrent.*;

 public class Thread28
 {
	 private	static	final	int	N	=	10;

 public static void main(String[] args) throws Exception
 {
 ExecutorService executor = Executors.newFixedThreadPool(N);
 CompletionService<BigDecimal> completion =
 new ExecutorCompletionService<BigDecimal>(executor);
 Future<BigDecimal>[] res = new Future[N];
 for (int i = 0, n = 100; i < N; ++i, n += 100)
 {
 res[i] = completion.submit(new ECalculator(n));
 completion.take();
 }
 for (int i = 0; i < res.length; ++i) System.out.println(res[i].get());
 executor.shutdown();
 }
 }

 class ECalculator implements Callable<BigDecimal>
 {
	 private	final	int	dec;

 public ECalculator(int dec)
 {
 this.dec = dec;
 }

 public BigDecimal call()
 {
 MathContext mc = new MathContext(dec, RoundingMode.HALF_UP);
	 BigDecimal	y	=	BigDecimal.ZERO;

JAVA 8:MULTITHREADED PROGRAMS

104

ConCurrenCy tools
JAVA 8:MULTITHREADED PROGRAMS

104

COnCURREnCy TOOLS

 for (int i = 0; ; ++i)
 {
	 BigDecimal	fac	=	BigDecimal.ONE.divide(factorial(new	BigDecimal(i)),	mc);
 BigDecimal z = y.add(fac, mc);
 if (z.compareTo(y) == 0) break;
 y = z;
 }
 System.out.println("Finish");
 return y;
 }

 private BigDecimal factorial(BigDecimal n)
 {
	 return	n.equals(BigDecimal.ZERO)	?
	 BigDecimal.ONE	:	n.multiply(factorial(n.	subtract(BigDecimal.ONE)));
 }
 }

In the above program, the class ECalculator is the same as I have used before – with only
one difference that the method call() prints a text before it returns the result. The goal is
to show that all threads are performed before the result is printed. In main() is created as
usual an ExecutorService object, but it is encapsulated in a CompletionService object. Then are
started 10 threads on basis of a Callable object so that each thread determines the number
e with a number of decimal places (a time-consuming operation), and for each thread is
performed the statement:

 completion.take();

This means that the primary thread waits until the 10 worker threads are completed.

In the above program, the class ECalculator is the same as I have used before – with only
one difference that the method call() prints a text before it returns the result. The goal is
to show that all threads are performed before the result is printed. In main() is created as
usual an ExecutorService object, but it is encapsulated in a CompletionService object. Then are
started 10 threads on basis of a Callable object so that each thread determines the number
e with a number of decimal places (a time-consuming operation), and for each thread is
performed the statement:

JAVA 8:MULTITHREADED PROGRAMS

104

COnCURREnCy TOOLS

 for (int i = 0; ; ++i)
 {
	 BigDecimal	fac	=	BigDecimal.ONE.divide(factorial(new	BigDecimal(i)),	mc);
 BigDecimal z = y.add(fac, mc);
 if (z.compareTo(y) == 0) break;
 y = z;
 }
 System.out.println("Finish");
 return y;
 }

 private BigDecimal factorial(BigDecimal n)
 {
	 return	n.equals(BigDecimal.ZERO)	?
	 BigDecimal.ONE	:	n.multiply(factorial(n.	subtract(BigDecimal.ONE)));
 }
 }

In the above program, the class ECalculator is the same as I have used before – with only
one difference that the method call() prints a text before it returns the result. The goal is
to show that all threads are performed before the result is printed. In main() is created as
usual an ExecutorService object, but it is encapsulated in a CompletionService object. Then are
started 10 threads on basis of a Callable object so that each thread determines the number
e with a number of decimal places (a time-consuming operation), and for each thread is
performed the statement:

 completion.take();

This means that the primary thread waits until the 10 worker threads are completed.This means that the primary thread waits until the 10 worker threads are completed.

JAVA 8:MULTITHREADED PROGRAMS

105

atomIC varIabler

105

9 ATOMIC VARIABLER

Finally, I will mention some classes that can be used to ensure mutual exclusion of operations
on simple variables, but without the need to ensure the code using locks which generally
cost performance. In fact, several simple operations on variables of primitive types is not
thread safe, but consist of more operations and thus can be interrupted. The classes are in

java.util.concurrent.atomic

and the main classes are

 - AtomicBoolean
 - AtomicInteger
 - AtomicIntegerArray
 - AtomicLong
 - AtomicLongArray
 - AtomicReference
 - AtomicReferenceArray
 - DoubleAccumulator

http://s.bookboon.com/GTca

JAVA 8:MULTITHREADED PROGRAMS

106

atomIC varIabler

 - DoubleAdder
 - LongAccumulator
 - LongAdder

If, for example you need to implement a class that generates a continuous id, you will
typically write something like the following:

JAVA 8:MULTITHREADED PROGRAMS

106

ATOMIC VARIAbLER

 - DoubleAdder
 - LongAccumulator
 - LongAdder

If, for example you need to implement a class that generates a continuous id, you will
typically write something like the following:

 class ID
 {
 private static volatile long ID = 1;

 public static synchronized long getID()
 {
 return ID++;
 }
 }

where the method getID() is synchronized, since the ++ operation is not thread safe. Such
a solution works and will also in most contexts be fine enough, but every time you need
a new id, you set a lock and that is not free. However, you can write the class as follows:

 import java.util.concurrent.atomic.*;

 class ID
 {
 private static AtomicLong ID = new AtomicLong(1);

 static long getID()
 {
 return ID.getAndIncrement();
 }
 }

Here are getID() also thread safe, but the method is significantly more efficient, as there is
not set a lock. AtomicLong is a class that encapsulates a long and has a number of methods
that perform the usual operations on a long, but such they are thread safe.

where the method getID() is synchronized, since the ++ operation is not thread safe. Such
a solution works and will also in most contexts be fine enough, but every time you need
a new id, you set a lock and that is not free. However, you can write the class as follows:

JAVA 8:MULTITHREADED PROGRAMS

106

ATOMIC VARIAbLER

 - DoubleAdder
 - LongAccumulator
 - LongAdder

If, for example you need to implement a class that generates a continuous id, you will
typically write something like the following:

 class ID
 {
 private static volatile long ID = 1;

 public static synchronized long getID()
 {
 return ID++;
 }
 }

where the method getID() is synchronized, since the ++ operation is not thread safe. Such
a solution works and will also in most contexts be fine enough, but every time you need
a new id, you set a lock and that is not free. However, you can write the class as follows:

 import java.util.concurrent.atomic.*;

 class ID
 {
 private static AtomicLong ID = new AtomicLong(1);

 static long getID()
 {
 return ID.getAndIncrement();
 }
 }

Here are getID() also thread safe, but the method is significantly more efficient, as there is
not set a lock. AtomicLong is a class that encapsulates a long and has a number of methods
that perform the usual operations on a long, but such they are thread safe.

Here are getID() also thread safe, but the method is significantly more efficient, as there is
not set a lock. AtomicLong is a class that encapsulates a long and has a number of methods
that perform the usual operations on a long, but such they are thread safe.

JAVA 8:MULTITHREADED PROGRAMS

107

swIng

10 SWING

If you have a GUI application, threads generally can create problems, where the user interface
is not updated correctly, and maybe you even get an exception. In this section I will show
how to use threads within an application written using swing.

Swing is single-threaded, and if you do nothing else, what is the case in all the GUI
programs in this book until this place, where it happens all in a single thread. The thread
that renders the graphics (windows and components), that also deal with events, is called
the event dispatcher thread and is commonly referred to as EDT. This thread processes
all events that come from the underlying event queue and calls the component’s event
handlers, so they are performed by EDT. This means that everything regarding drawing in
the window must takes place in this thread. This also means that to be sure that a Swing
program works correctly, you have to be careful how the program’s code interacts with the
EDT, and especially pay attention to

1. that it is always EDT, that creates GUI components
2. that you not must perform code that slows EDT

Since Swing is single-threaded, should a Swing program always create the GUI part in the
EDT thread and never create components in another thread, nor in the primary thread. Most
Swing components and including JFrame is not thread safe, and use these components from
a different thread than EDT, there is a risk that the user interface is not updated correctly.

To explain a little of all that, I will show a program that will open the following window,
which has a list box and a button:

JAVA 8:MULTITHREADED PROGRAMS

108

swIng

108

If you click the button, you get a dialog box where you have to select the file with zip
codes (which I have used several times):

 .

http://s.bookboon.com/AlcatelLucent

JAVA 8:MULTITHREADED PROGRAMS

109

swIng

and opens this file the zip codes appears in the main window’s list box. The code for the
main window are as follows:

JAVA 8:MULTITHREADED PROGRAMS

109

SwInG

and opens this file the zip codes appears in the main window’s list box. The code for the
main window are as follows:

 package thread29;

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;
 import java.io.*;

 public class MainView extends JFrame
 {
 private DefaultListModel model = new DefaultListModel();
	 private	JButton	cmd	=	new	JButton("Opdater");

 public MainView()
 {
 super("Thread29");
 setSize(300, 300);
 setLocationRelativeTo(null);
	 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createView();
 setVisible(true);
 }

 private void createView()
 {
 JPanel bottom = new JPanel(new FlowLayout(FlowLayout.RIGHT));
 cmd.addActionListener(this::update);
 bottom.add(cmd);
 JPanel panel = new JPanel(new BorderLayout(0, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 panel.add(new JScrollPane(new JList(model)));
	 panel.add(bottom,	BorderLayout.SOUTH);
 add(panel);
	 JOptionPane.showMessageDialog(this,	Thread.currentThread().getId());
 }

 public void update(ActionEvent e)
 {
	 JOptionPane.showMessageDialog(this,	Thread.currentThread().getId());
	 final	JFileChooser	chooser	=	new	JFileChooser();
	 if	(chooser.showOpenDialog(this)	==	JFileChooser.APPROVE_OPTION)
 {

JAVA 8:MULTITHREADED PROGRAMS

110

swIngJAVA 8:MULTITHREADED PROGRAMS

110

SwInG

 update(chooser.getSelectedFile());
 cmd.setEnabled(false);
 }
 }

	 private	void	update(File	file)
 {
 try
 {
	 BufferedReader	reader	=	new	BufferedReader(new	FileReader(file));
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 {
 String[] elem = line.split(";");
 if (elem.length == 2) model.addElement(elem[0] + " " + elem[1]);
 busy();
 }
 reader.close();
 }
 catch (Exception ex)
 {
 model.addElement(ex.toString());
 }
 }

 private void busy()
 {
 for (int i = 0; i < 500000; ++i) Math.cos(Math.sqrt(Math.PI));
 }
 }

and it contains nothing new, but a couple of the statements require an explanation. The
last method busy() is a dummy method and is a method that requires some time. It is used
in the method update(), which is the method that reads the file with zip codes where it is
carried out every time there is read a line in the file. The consequence is that it takes a long
time to update the list box. The method update(), which is called from the event handler for
the button, that start by displaying a message box that shows the id of the current thread.
Similarly, the last statement in the method createView() displays a message box that shows
the current thread id.

and it contains nothing new, but a couple of the statements require an explanation. The
last method busy() is a dummy method and is a method that requires some time. It is used
in the method update(), which is the method that reads the file with zip codes where it is
carried out every time there is read a line in the file. The consequence is that it takes a long
time to update the list box. The method update(), which is called from the event handler for
the button, that start by displaying a message box that shows the id of the current thread.
Similarly, the last statement in the method createView() displays a message box that shows
the current thread id.

JAVA 8:MULTITHREADED PROGRAMS

111

swIng

111

The main() method is the following:

JAVA 8:MULTITHREADED PROGRAMS

111

SwInG

111

The main() method is the following:

 package thread29;

 public class Thread29
 {
 public static void main(String[] args)
 {
	 javax.swing.JOptionPane.showMessageDialog(null,
 Thread.currentThread().getId());
 new MainView();
 }
 }

and here is nothing new beyond that it also starts to show a message box with the id of
the current thread. If you now run the program, you first get a message box:
and here is nothing new beyond that it also starts to show a message box with the id of
the current thread. If you now run the program, you first get a message box:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 8:MULTITHREADED PROGRAMS

112

swIng

which opens in the main() method. It tells that the message box is opened in the primary
thread (which was also to be expected). If you here click OK, you get the message box again:

but this time the message box is opened in the method createView() in the class MainView,
and it is still happened from the primary thread. That is that the window is created in the
primary thread. When you here click OK, the main window opens. Clicking on the button,
you get the following message box:

which is opened in the button’s event handler, and you can see that it happens in a different
thread. This is the event dispatcher thread, and if you click OK, you get chance to browse
the file, after which the list box is updated:

JAVA 8:MULTITHREADED PROGRAMS

113

swIng

After you’ve accepted the file, it takes a relatively long time before the list box is updated, and
in that time the program does not respond. You can change the window size, but you will
find that the window is not redrawn. It happens only when the event handler is completed.
The program has – at least – two problems. First, it is carried out the code that creates the
window and its components, and the event handler in the two different threads. As long as
the program does not use other threads, it will probably not cause problems, but it is not
consistent with how a Swing program should be written. Second, the program has a time
when it does not respond to user actions (here obviously unnecessarily long because of the
method busy()), but overall it is a requirement that a GUI application must react sensibly
to the user’s interaction with the program.

I would start by solving the first problem, and in the project Thread30 the main program
is the following:

JAVA 8:MULTITHREADED PROGRAMS

113

SwInG

After you’ve accepted the file, it takes a relatively long time before the list box is updated, and
in that time the program does not respond. You can change the window size, but you will
find that the window is not redrawn. It happens only when the event handler is completed.
The program has – at least – two problems. First, it is carried out the code that creates the
window and its components, and the event handler in the two different threads. As long as
the program does not use other threads, it will probably not cause problems, but it is not
consistent with how a Swing program should be written. Second, the program has a time
when it does not respond to user actions (here obviously unnecessarily long because of the
method busy()), but overall it is a requirement that a GUI application must react sensibly
to the user’s interaction with the program.

I would start by solving the first problem, and in the project Thread30 the main program
is the following:

 package thread30;

 public class Thread30
 {
 public static void main(String[] args)
 {
 javax.swing.SwingUtilities.invokeLater(() -> new MainView());
 }
 }

This means that the window is now created by the event dispatcher thread – the EDT
thread. The class MainView is unchanged (except another text in the title bar), and if you
run the program, you will see that the window is created in the same thread that performs
the event handler.

The class SwingUtilities has a number of static methods that are used in a variety of contexts
in Swing. For threads these are basically of three methods:

1. invokeAndWait() that has a Runnable objet as a parameter and executes the current
run() method in the thread EDT. The method is carried out synchronism with
EDT, and invokeAndWait() blocks the current thread until the EDT has processed
all pending events. invokeAndWait() is used when the program must update the UI
from a different thread than EDT. This method should never be called from EDT.

This means that the window is now created by the event dispatcher thread – the EDT
thread. The class MainView is unchanged (except another text in the title bar), and if you
run the program, you will see that the window is created in the same thread that performs
the event handler.

The class SwingUtilities has a number of static methods that are used in a variety of contexts
in Swing. For threads these are basically of three methods:

1. invokeAndWait() that has a Runnable objet as a parameter and executes the current
run() method in the thread EDT. The method is carried out synchronism with
EDT, and invokeAndWait() blocks the current thread until the EDT has processed
all pending events. invokeAndWait() is used when the program must update the UI
from a different thread than EDT. This method should never be called from EDT.

JAVA 8:MULTITHREADED PROGRAMS

114

swIng

114

2. invokeLater() also has a Runnable object as a parameter, and performs the run()
method in EDT, but it happens asynchronously this time, and the run() method
is performed only after the EDT has processed pending events. invokeLater() is
used when an application wants to update the user interface, and the method can
be called from any thread.

3. isEventDispatchThread() is a method that returns true, if it is performed in EDT.

Looking at the above, the main() method defines (by means of a lambda expression) a Runnable
object to instantiate the main window. The object is used as a parameter to invokeLater(),
and the result is that it is the event dispatcher thread, which creates the window. Similar
to the above, it means that all the GUI programs that I so far have shown are not written
correctly, and although the programs have hardly any significance, I will continue writing
GUI applications as shown in the main() method above.

Then there’s the other problem with the program is not responding while it loads the zip
codes. It is clear that the problem must be solved by loading the zip codes in a worker
thread, but there is a little more, because you can be sure that the user interface is updated
correctly. The problem is solved in the project Thread31, and the only thing that has changed
are the following two methods:

http://s.bookboon.com/BI

JAVA 8:MULTITHREADED PROGRAMS

115

swIngJAVA 8:MULTITHREADED PROGRAMS

115

SwInG

 public void opdater(ActionEvent e)
 {
	 final	JFileChooser	chooser	=	new	JFileChooser();
	 if	(chooser.showOpenDialog(this)	==	JFileChooser.APPROVE_OPTION)
 {
 new Thread(() -> update(chooser.getSelectedFile())).start();
 cmd.setEnabled(false);
 }
 }

	private	void	update(File	file)
 {
 try
 {
	 BufferedReader	reader	=	new	BufferedReader(new	FileReader(file));
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 {
 String[] elem = line.split(";");
 if (elem.length == 2) SwingUtilities.invokeAndWait(
 () -> model.addElement(elem[0] + " " + elem[1]));
 busy();
 }
 reader.close();
 }
 catch (Exception ex)
 {
 model.addElement(ex.toString());
 }
 }

In the event handler is now started a thread which performs the method update(). This method
is largely unchanged, but when the list box need to be updated, it must according to the
above be in EDT, and when the update was carried out in a runnable object it is performed
by invokeAndWait() and thus in the thread EDT. In this case it used invokeAndWait() instead
of invokeLater(), but it has hardly any meaning, but invokeAndWait() ensures that no events
concerning something else are hanging.

If you try out the program Thread31 you will find that the program now “is in live” while
the list box is updated.

In the event handler is now started a thread which performs the method update(). This method
is largely unchanged, but when the list box need to be updated, it must according to the
above be in EDT, and when the update was carried out in a runnable object it is performed
by invokeAndWait() and thus in the thread EDT. In this case it used invokeAndWait() instead
of invokeLater(), but it has hardly any meaning, but invokeAndWait() ensures that no events
concerning something else are hanging.

If you try out the program Thread31 you will find that the program now “is in live” while
the list box is updated.

JAVA 8:MULTITHREADED PROGRAMS

116

swIng

10.1 SWINGWORKER

Sometimes there is a need to start a task that takes time (for example to load the zip codes
from a file), and to reduce the number of updates to the user interface, and only update the
user interface at once, after the job is done. You can then use a class called SwingWorker.
It is a generic class, as is parameterized with two parameters SwingWorker<T, V>. It is an
abstract class, and there is at least one method to be overridden. The first is

protected abstract T doInBackground()

which is the method that performs the task for a worker thread, which returns a value of
the first parameter type (if there is no return, specify the parameter type as Void). When
this method terminates, the following method is performed:

protected void done()

but such that it is performed in EDT, where you can safely update the user interface. The
default implemntation performs nothing, and you will often override the method. While
the task is performed, you can, if desired periodically update the user interface by overriding
and call the method

protected void process(List<V> chunks)

The class SwingWorker have additional two methods that you need to know:

1. execute() starts a worker thread
2. T get() waits to doInBackground() is terminated and returns the result

Below is how the program with the zip code must be changed if the list box should be
updated with a SwingWorker:

JAVA 8:MULTITHREADED PROGRAMS

116

SwInG

10.1 SWINGWORKER

Sometimes there is a need to start a task that takes time (for example to load the zip codes
from a file), and to reduce the number of updates to the user interface, and only update the
user interface at once, after the job is done. You can then use a class called SwingWorker.
It is a generic class, as is parameterized with two parameters SwingWorker<T, V>. It is an
abstract class, and there is at least one method to be overridden. The first is

protected abstract T doInBackground()

which is the method that performs the task for a worker thread, which returns a value of
the first parameter type (if there is no return, specify the parameter type as Void). When
this method terminates, the following method is performed:

protected void done()

but such that it is performed in EDT, where you can safely update the user interface. The
default implemntation performs nothing, and you will often override the method. While
the task is performed, you can, if desired periodically update the user interface by overriding
and call the method

protected void process(List<V> chunks)

The class SwingWorker have additional two methods that you need to know:

1. execute() starts a worker thread
2. T get() waits to doInBackground() is terminated and returns the result

Below is how the program with the zip code must be changed if the list box should be
updated with a SwingWorker:

 package thread32;

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;
 import java.io.*;
 import java.util.*;

JAVA 8:MULTITHREADED PROGRAMS

117

swIng

117

JAVA 8:MULTITHREADED PROGRAMS

117

SwInG

117

 public class MainView extends JFrame
 {
 private DefaultListModel model = new DefaultListModel();
 private JButton cmd = new JButton("Update");

 public MainView()
 {
 super("Thread32");
 setSize(300, 300);
 setLocationRelativeTo(null);
	 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createView();
 setVisible(true);
 }

 private void createView()
 {
 JPanel bottom = new JPanel(new FlowLayout(FlowLayout.RIGHT));
 cmd.addActionListener(this::update);
 bottom.add(cmd);
 JPanel panel = new JPanel(new BorderLayout(0, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 panel.add(new JScrollPane(new JList(model)));

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 8:MULTITHREADED PROGRAMS

118

swIngJAVA 8:MULTITHREADED PROGRAMS

118

SwInG

	 panel.add(bottom,	BorderLayout.SOUTH);
 add(panel);
 }

 public void update(ActionEvent e)
 {
	 final	JFileChooser	chooser	=	new	JFileChooser();
	 if	(chooser.showOpenDialog(this)	==	JFileChooser.APPROVE_OPTION)
 {
 new Zipcodes(chooser.getSelectedFile()).execute();
 cmd.setEnabled(false);
 }
 }

 class Zipcodes extends SwingWorker<ArrayList<String>, Void>
 {
	 private	final	File	file;

	 public	Zipcodes(File	file)
 {
	 this.file	=	file;
 }

 public ArrayList<String> doInBackground()
 {
 ArrayList<String> list = new ArrayList();
 try
 {
	 BufferedReader	reader	=	new	BufferedReader(new	FileReader(file));
 for (String line = reader.readLine(); line != null;
 line = reader.readLine())
 {
 String[] elem = line.split(";");
 if (elem.length == 2) list.add(elem[0] + " " + elem[1]);
 }
 reader.close();
 }
 catch (Exception ex)
 {
 list.clear();
 }
 return list;
 }

JAVA 8:MULTITHREADED PROGRAMS

119

swIngJAVA 8:MULTITHREADED PROGRAMS

119

SwInG

 public void done()
 {
 try
 {
 ArrayList<String> list = get();
 for (String line : list) model.addElement(line);
 }
 catch (Exception ex)
 {
 model.clear();
 }
 }
 }
 }

The important thing is the class Zipcodes, that is an inner class. It inherits the class

 SwingWorker<ArrayList<String>, Void>

parameterized by a single parameter (the last should not to be used), and the class must
therefore implement the method doInBackground(), which is the code that performs the
worker thread (a different thread than EDT). The method reads the contents of the file and
saves it as lines in a ArrayList<String>, which then is the value that the method returns.
Note that I have removed the method busy() – it is no longer necessary to illustrate that
it takes time to read the zip codes. The class overrides also the method done(), and it is
performed by EDT after doInBackground() is executed. Note how to get the return value
with the method get(), and how the value is used to update the list box.

Finally, there is to note how the worker thread starts in the event handler:

 new Zipcodes(chooser.getSelectedFile()).execute();

10.2 A TIMER

I have previously shown how to use a Timer, but Swing also defines a Timer class that in
the same manner as previously performs a particular method at certain times, but the main
difference and its justification is that it is performed in EDT. It works as, after an initial
period it at a certain time interval fires an ActionEvent, which registered listeners can catch.

The important thing is the class Zipcodes, that is an inner class. It inherits the class

JAVA 8:MULTITHREADED PROGRAMS

119

SwInG

 public void done()
 {
 try
 {
 ArrayList<String> list = get();
 for (String line : list) model.addElement(line);
 }
 catch (Exception ex)
 {
 model.clear();
 }
 }
 }
 }

The important thing is the class Zipcodes, that is an inner class. It inherits the class

 SwingWorker<ArrayList<String>, Void>

parameterized by a single parameter (the last should not to be used), and the class must
therefore implement the method doInBackground(), which is the code that performs the
worker thread (a different thread than EDT). The method reads the contents of the file and
saves it as lines in a ArrayList<String>, which then is the value that the method returns.
Note that I have removed the method busy() – it is no longer necessary to illustrate that
it takes time to read the zip codes. The class overrides also the method done(), and it is
performed by EDT after doInBackground() is executed. Note how to get the return value
with the method get(), and how the value is used to update the list box.

Finally, there is to note how the worker thread starts in the event handler:

 new Zipcodes(chooser.getSelectedFile()).execute();

10.2 A TIMER

I have previously shown how to use a Timer, but Swing also defines a Timer class that in
the same manner as previously performs a particular method at certain times, but the main
difference and its justification is that it is performed in EDT. It works as, after an initial
period it at a certain time interval fires an ActionEvent, which registered listeners can catch.

parameterized by a single parameter (the last should not to be used), and the class must
therefore implement the method doInBackground(), which is the code that performs the
worker thread (a different thread than EDT). The method reads the contents of the file and
saves it as lines in a ArrayList<String>, which then is the value that the method returns.
Note that I have removed the method busy() – it is no longer necessary to illustrate that
it takes time to read the zip codes. The class overrides also the method done(), and it is
performed by EDT after doInBackground() is executed. Note how to get the return value
with the method get(), and how the value is used to update the list box.

Finally, there is to note how the worker thread starts in the event handler:

JAVA 8:MULTITHREADED PROGRAMS

119

SwInG

 public void done()
 {
 try
 {
 ArrayList<String> list = get();
 for (String line : list) model.addElement(line);
 }
 catch (Exception ex)
 {
 model.clear();
 }
 }
 }
 }

The important thing is the class Zipcodes, that is an inner class. It inherits the class

 SwingWorker<ArrayList<String>, Void>

parameterized by a single parameter (the last should not to be used), and the class must
therefore implement the method doInBackground(), which is the code that performs the
worker thread (a different thread than EDT). The method reads the contents of the file and
saves it as lines in a ArrayList<String>, which then is the value that the method returns.
Note that I have removed the method busy() – it is no longer necessary to illustrate that
it takes time to read the zip codes. The class overrides also the method done(), and it is
performed by EDT after doInBackground() is executed. Note how to get the return value
with the method get(), and how the value is used to update the list box.

Finally, there is to note how the worker thread starts in the event handler:

 new Zipcodes(chooser.getSelectedFile()).execute();

10.2 A TIMER

I have previously shown how to use a Timer, but Swing also defines a Timer class that in
the same manner as previously performs a particular method at certain times, but the main
difference and its justification is that it is performed in EDT. It works as, after an initial
period it at a certain time interval fires an ActionEvent, which registered listeners can catch.

10.2 A TIMER

I have previously shown how to use a Timer, but Swing also defines a Timer class that in
the same manner as previously performs a particular method at certain times, but the main
difference and its justification is that it is performed in EDT. It works as, after an initial
period it at a certain time interval fires an ActionEvent, which registered listeners can catch.

JAVA 8:MULTITHREADED PROGRAMS

120

swIng

120

The program Thread33 opens a window as shown below, where there are two buttons.
Between the two buttons is a JLabel, which from the start is blank. If you click on the
Start button, the program starts a timer that ticks every second where a counter variable is
increased by 1 and the value is shown in the label component. If you click the Stop button
the timer stops, and you can start it again by clicking Start.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 8:MULTITHREADED PROGRAMS

121

swIng

The code is the following:

JAVA 8:MULTITHREADED PROGRAMS

121

SwInG

The code is the following:

 package thread33;

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 private DefaultListModel model = new DefaultListModel();
 private JButton cmd1 = new JButton("Start");
 private JButton cmd2 = new JButton("Stop");
 private JLabel lbl = new JLabel();
 private Timer timer = null;
 private int counter = 0;

 public MainView()
 {
 super("Thread33");
 setSize(300, 150);
 setLocationRelativeTo(null);
	 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createView();
 setVisible(true);
 }

 private void createView()
 {
 JPanel top = new JPanel(new BorderLayout(20, 0));
 cmd1.addActionListener(this::start);
 cmd2.addActionListener(this::stop);
 cmd2.setEnabled(false);
 top.add(cmd1, BorderLayout.WEST);
 top.add(cmd2, BorderLayout.EAST);
 top.add(lbl);
 JPanel panel = new JPanel(new BorderLayout(0, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
	 panel.add(top,	BorderLayout.NORTH);
 add(panel);
 timer = new Timer(1000, this::tick);
 lbl.setHorizontalAlignment(JLabel.CENTER);
 }

JAVA 8:MULTITHREADED PROGRAMS

122

swIng

122

JAVA 8:MULTITHREADED PROGRAMS

122

SwInG

122

 public void tick(ActionEvent e)
 {
 lbl.setText("" + (++counter));
 }

 public void start(ActionEvent e)
 {
 timer.start();
 cmd1.setEnabled(false);
 cmd2.setEnabled(true);
 }

 public void stop(ActionEvent e)
 {
 timer.stop();
 cmd1.setEnabled(true);
 cmd2.setEnabled(false);
 }
 }

There is not much to explain, but you should note how to create a timer and assigns an
event handler.
There is not much to explain, but you should note how to create a timer and assigns an
event handler.

http://s.bookboon.com/Subscrybe

JAVA 8:MULTITHREADED PROGRAMS

123

Calendar

11 CALENDAR

As a final example, I will show the development of a program that can display a calendar
on the screen, but in addition, the program should keep track of appointments and the like.
There are many such programs for any platform, and the goal of the following is primarily
to write a program that uses multiple threads. When you study the finished program code
or test the program should also notice that the application uses more details on Swing, not
mentioned in the previous books.

11.1 TASK FORMULATION

The task is to write a program that in a window can display a calendar. The window should
show the calendar for a month and it should be possible to navigate in the calendar, for
example next month, next year and so on. It should also be possible to enter a specific
year and a month and then go directly to that month. The program shall cover the period
from year 0 to year 9999, and the program must take account of the shift from the Julian
calendar to the Gregorian calendar. The program should also be able to save a calendar for
a selected period to a text file.

The program should be used as a daily calendar program, and one should therefore also
be able to enter notes and appointments, set alarms and set special (custom) anniversaries
beyond the days that the calendar was born with (holidays). The calendar must give a
warning, when the time for an appointments occurs.

Remark

The result of this first phase is a project library, as preliminary only have a subdirectory
with this task formulation.

11.2 ANALYSIS

The analysis will consist of

1. a requirement specification
2. a prototype for the user interface

JAVA 8:MULTITHREADED PROGRAMS

124

Calendar

11.2.1 REQUIREMENT SPECIFICATION

The main application window should primarily show a calendar for a specific month.

The calendar will cover the period from year 0 to year 9999 and should take account of
the shift from the Julian to the Gregorian calendar. It is decided that the switch from the
Julian to the Gregorian calendar is set to 1582, and then the 4 October is followed by the
15 October.

For each date, the calendar must display the following information:

 - the day’s number in the month
 - the week day’s name
 - the week’s number in the year, if it is a monday
 - an indication if it is a public holiday or anniversary
 - a mark when created notes
 - a mark when created appointments
 - a mark when created anniversaries

For the holidays, the program must be pre-programmed to (know) the following days:

 - New Year’s Day
 - Palm Sunday
 - Maundy Thursday
 - Good Friday
 - Easter Sunday
 - Easter Monday
 - Prayer Day
 - Christ’s Ascension
 - Pentecost
 - Whit Monday
 - Christmas Eve
 - Christmas Day
 - Second Christmas Day

and also the program must be able to show custom anniversaries (for example the wife’s
birthday). An anniversary falls on a specific date and every year after 1582 (with the option
to specify a start and end year). If an anniversary specifies d. 29/2, and it is not a leap year
the date 1/3 should be used.

JAVA 8:MULTITHREADED PROGRAMS

125

Calendar

The program distinguishes between notes and appointments. A note is any text entered for
a specific date, and there can be more notes for the same date. An appointment is a short
message relating to a specific time (clock) and the program must be able to automatically
notifies the user when the time for an appointment occurs. Notes will be saved until the
user manult delete them. Appointments should be automatically deleted when the time is
exceeded, but maybe there should be an option that an appointment should be stored after
the time is exceeded.

Regarding appointments it must be able to make an appointment for a specific date and for
a specific time. There may then be several appointments the same day, and an appointment
is in principle only plain text. An appointment can span multiple days. An appointment
can also have a start time, an end time, or both, and if so, the program should come with
a warning if the timing conflicts. When the time of an appointment occurs, the program
must come with a warning that must appear in the user interface. It is adopted

1. the warning should appear at the day’s start (when the computer is turned on)
2. 1 hour before the appointment occurs
3. 15 minutes before the appointment occurs
4. 5 minutes before the appointment occurs
5. when the appointment occurs, and the appointment should be deleted

Functions:

Navigate the calendar:

 - Shift to previous year
 - Shift to previous month
 - Shift to next month
 - Shift to next year
 - Enter year and month and the calendar must shift to that month

The program must be able to save a calendar as a comma delimited text file with the
following format:

JAVA 8:MULTITHREADED PROGRAMS

125

CALEnDAR

The program distinguishes between notes and appointments. A note is any text entered for
a specific date, and there can be more notes for the same date. An appointment is a short
message relating to a specific time (clock) and the program must be able to automatically
notifies the user when the time for an appointment occurs. Notes will be saved until the
user manult delete them. Appointments should be automatically deleted when the time is
exceeded, but maybe there should be an option that an appointment should be stored after
the time is exceeded.

Regarding appointments it must be able to make an appointment for a specific date and for
a specific time. There may then be several appointments the same day, and an appointment
is in principle only plain text. An appointment can span multiple days. An appointment
can also have a start time, an end time, or both, and if so, the program should come with
a warning if the timing conflicts. When the time of an appointment occurs, the program
must come with a warning that must appear in the user interface. It is adopted

1. the warning should appear at the day’s start (when the computer is turned on)
2. 1 hour before the appointment occurs
3. 15 minutes before the appointment occurs
4. 5 minutes before the appointment occurs
5. when the appointment occurs, and the appointment should be deleted

Functions:

Navigate the calendar:

 - Shift to previous year
 - Shift to previous month
 - Shift to next month
 - Shift to next year
 - Enter year and month and the calendar must shift to that month

The program must be able to save a calendar as a comma delimited text file with the
following format:

 year; month number; month name; day in month; day name; week number [; holiday]

and an example could be

 2012;4;April;1;Sunday;14;Palm Sunday
 2012;4;April;2;Monday;14;
 2012;4;April;3;Tuesday;14;

and an example could be

JAVA 8:MULTITHREADED PROGRAMS

125

CALEnDAR

The program distinguishes between notes and appointments. A note is any text entered for
a specific date, and there can be more notes for the same date. An appointment is a short
message relating to a specific time (clock) and the program must be able to automatically
notifies the user when the time for an appointment occurs. Notes will be saved until the
user manult delete them. Appointments should be automatically deleted when the time is
exceeded, but maybe there should be an option that an appointment should be stored after
the time is exceeded.

Regarding appointments it must be able to make an appointment for a specific date and for
a specific time. There may then be several appointments the same day, and an appointment
is in principle only plain text. An appointment can span multiple days. An appointment
can also have a start time, an end time, or both, and if so, the program should come with
a warning if the timing conflicts. When the time of an appointment occurs, the program
must come with a warning that must appear in the user interface. It is adopted

1. the warning should appear at the day’s start (when the computer is turned on)
2. 1 hour before the appointment occurs
3. 15 minutes before the appointment occurs
4. 5 minutes before the appointment occurs
5. when the appointment occurs, and the appointment should be deleted

Functions:

Navigate the calendar:

 - Shift to previous year
 - Shift to previous month
 - Shift to next month
 - Shift to next year
 - Enter year and month and the calendar must shift to that month

The program must be able to save a calendar as a comma delimited text file with the
following format:

 year; month number; month name; day in month; day name; week number [; holiday]

and an example could be

 2012;4;April;1;Sunday;14;Palm Sunday
 2012;4;April;2;Monday;14;
 2012;4;April;3;Tuesday;14;

JAVA 8:MULTITHREADED PROGRAMS

126

Calendar

126

The program must also have the following features:

 - Maintenance of anniversaries
 - Maintenance of notes
 - Maintenance of appointments
 - Watch
 - Alarm (that comes with a warning a certain time)
 - Timer (that comes with a warning when a timer reach 0)
 - Stopwatch

11.2.2 THE PROTOTYPE

The prototype is a NetBeans project called Calendar. The result is a program that only
opens the window below. All the program’s functions are placed in a toolbar at the top of
the window. At the bottom is a status bar showing

 - the current month
 - the current day (today)
 - an icon that shows whether there is set an alarm (if not, no icon appears)
 - an icon that shows whether there is set a timer (if not, no icon appears)

http://s.bookboon.com/volvo

JAVA 8:MULTITHREADED PROGRAMS

127

Calendar

For each date is shown the day’s number in the month (and later the week number), and
the color indicates whether it is a public holiday. In addition, there are three icons, which
means that there are

1. notes for that date
2. appointments for that date
3. anniversaries of that date

If you click on an icon, you get a simple dialog box with information, and for appointments
it should also be possible to cancel the appointment.

If you right click on a specific date you get a menu where you can

1. create a note
2. create an appointment
3. create an anniversary

As for the icons in the toolbar, the following applies:

1. The first four icons (arrows) are used to navigate the calendar.
2. The next opens a dialog box so you can navigate to a specific month.
3. The sixth icon opens a dialog to maintenance notes.

JAVA 8:MULTITHREADED PROGRAMS

128

Calendar

4. The seventh icon opens a dialog to maintenance appointments.
5. The next shows the clock (how the clock should look like is not yet determined).
6. The next again is for the stopwatch. Opens a dialog box to start or stop the stopwatch.
7. The tenth icon opens a dialog box to maintenance of alarms.
8. The eleventh icon opens a dialog box to maintaining timers.
9. The next icon is to export of a calendar to a textfile and opens a dialog box for

selecting the period.
10. The second last icon opens a dialog box to maintenance of anniversaries.
11. The last icon is the settings for the program, but it has not yet determined which

settings should be talking about, but possibly colors.

11.3 DESIGN

The design phase are performed in five steps:

1. Design of the architecture
2. Design of the model layer
3. Design of the DAL layer
4. Design of the user interface
5. Design of the controller layer

The design starts to create a copy of NetBeans project from the analysis (the prototype).
The copy is called Calendar1.

11.3.1 DESIGN OF THE ARCHITECTURE

The program’s architecture has a classic MVC architecture:

The emphasis of the project is the model layer that has relatively complex algorithms.

JAVA 8:MULTITHREADED PROGRAMS

129

Calendar

129

11.3.2 DESIGN OF THE MODEL LAYER

Java has classes that represent a date, but since it is a requirement that the calendar must
support the change from the Julian calendar to the Gregorian calendar, it is decided to
implement a custom date type. The class must represent a date as an int in the format
YYYYMMDD:

The class must have a number of methods, and the following design shows only the most
important, but there will be many more:

JAVA 8:MULTITHREADED PROGRAMS

129

CALEnDAR

129

11.3.2 DESIGN OF THE MODEL LAYER

Java has classes that represent a date, but since it is a requirement that the calendar must
support the change from the Julian calendar to the Gregorian calendar, it is decided to
implement a custom date type. The class must represent a date as an int in the format
YYYYMMDD:

The class must have a number of methods, and the following design shows only the most
important, but there will be many more:

 package calendar.models;

 /**
 * Represents a date between year 0 and year 9999. The class takes into
 * account the shift from the Julian to the Gregorian calendar.
 */

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 8:MULTITHREADED PROGRAMS

130

CalendarJAVA 8:MULTITHREADED PROGRAMS

130

CALEnDAR

 public class Date implements Comparable<Date>
 {
 private int value; // represents a date as YYYYMMDD

 /**
 * Returns the days number int the week :
 * 1 = monday
 * 2 = tuesday
 * 3 = wednesday
 * 4 = thursday
 * 5 = friday
 * 6 = saturday
 * 7 = sunday
 * @return The days number int the week
 */
 public int getWeekDay()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * Moves the current date, a day ahead.
 */
 public void nextDay()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * Moves the current date back a day.
 */
 public void prevDay()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * Moves the current date, a month ahead.
 */
 public void nextMonth()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * Moves the current date back a month.
 */

JAVA 8:MULTITHREADED PROGRAMS

131

CalendarJAVA 8:MULTITHREADED PROGRAMS

131

CALEnDAR

 public void prevMonth()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * Moves the current date, a year ahead.
 */
 public void nextYear()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * Moves the current date back a year.
 */
 public void prevYear()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * Calculate the number of the week in the year, where week number 1
	 *	is	the	first	week	in	the	year	that	contains	a	thursday.
 * @return the number of the week in the year
 */
 public int getWeekNumber()
 {
	 throw	new	UnsupportedOperationException();
 }

 /**
 * If this date is a holiday the method returns the name, and else the
 * method returns null.
 * The method can return the following names:
 * New Year's Day
 * Palm Sunday
 * Maundy Thursday
 * Good Friday
 * Easter Sunday
 * Easter Monday
 * Prayer Day
 * Christ's Ascension
 * Pentecost
 * Whit Monday
 * Christmas Eve

JAVA 8:MULTITHREADED PROGRAMS

132

Calendar

132

JAVA 8:MULTITHREADED PROGRAMS

132

CALEnDAR

132

 * Christmas Day
 * Second Christmas Day
 * @return the name of a holiday or null
 */
 public String getHoliday()
 {
	 throw	new	UnsupportedOperationException();
 }

 public int compareTo(Date date)
 {
	 throw	new	UnsupportedOperationException();
 }
 }

The method getWeekDay() is complex because it must return the correct day for the entire
range of dates, that the calendar span. The approach is to implement an algorithm that
determines the number of days from d. 1/1 year 0 and up to a given date. If you determines
the week day for a known date, then the day of the week can be calculated.

The method getWeekDay() is complex because it must return the correct day for the entire
range of dates, that the calendar span. The approach is to implement an algorithm that
determines the number of days from d. 1/1 year 0 and up to a given date. If you determines
the week day for a known date, then the day of the week can be calculated.

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 8:MULTITHREADED PROGRAMS

133

Calendar

The calculation methods for moving the calendar one day, month or year forward or backward
are also all relatively complex because they must take into account leap years and the shift
between the Julian and Gregorian calendar.

The method getWeekNumber() is implemented using a method which determines the number
of days from the beginning of the year to the current date.

Finally, there is the method getHoliday() which is a complex algorithm. Some of the public
holidays fall on fixed dates and are unproblematic, while the other can be determined from
the date of Easter Sunday. There are algorithms that can determine Easter Sunday, and
the method can therefore be implemented by implement such an algorithm. I will use an
algorithm called Gaus’s algorithm.

Based in the class Date, the program’s data model is outlined as follows:

The other classes in the data model are defined as follows:

JAVA 8:MULTITHREADED PROGRAMS

133

CALEnDAR

The calculation methods for moving the calendar one day, month or year forward or backward
are also all relatively complex because they must take into account leap years and the shift
between the Julian and Gregorian calendar.

The method getWeekNumber() is implemented using a method which determines the number
of days from the beginning of the year to the current date.

Finally, there is the method getHoliday() which is a complex algorithm. Some of the public
holidays fall on fixed dates and are unproblematic, while the other can be determined from
the date of Easter Sunday. There are algorithms that can determine Easter Sunday, and
the method can therefore be implemented by implement such an algorithm. I will use an
algorithm called Gaus’s algorithm.

Based in the class Date, the program’s data model is outlined as follows:

The other classes in the data model are defined as follows:

 package calendar.models;

 /**
 * Represents a time.
 */

JAVA 8:MULTITHREADED PROGRAMS

134

CalendarJAVA 8:MULTITHREADED PROGRAMS

134

CALEnDAR

 public class Time implements Comparable<Time>
 {
 private int value; // represents a time as HHMMSS

 public int compareTo(Time time)
 {
	 throw	new	UnsupportedOperationException();
 }
 }

 package calendar.models;

 public class Appointment
 {
	 private	int	id;	//	indentifier	for	this	Appointment
 private Date date1; // start date for this Appointment
 private Time time1; // start time for this Appointment
 private Date date2; // end date for this Appointment (may be null)
 private Time time2; // end time for this Appointment (may be null)
 private String text; // the text for this Appointment
 private boolean save; // where this Appointment shoul be deleted (false)
 }

 package calendar.models;

 public class Note
 {
	 private	int	id;	//	indentifier	for	this	Note
 private Date date; // the date for this Note
 private String title; // the title of this Note
 private String text; // the text for this Note
 }

 package calendar.models;

 public class Anniversary
 {
	 private	int	id;	//	indentifier	for	this	Anniversary
 private int month; // month for this Anniversary
 private int day; // day for this Anniversary
 private int year1 = 1583; // start year for this Anniversary
 private int year2; // end year for this Anniversary (may be null)
 private String name; // name for this Appointment
 }

 package calendar.models;

 import java.util.*;

JAVA 8:MULTITHREADED PROGRAMS

135

Calendar

135

JAVA 8:MULTITHREADED PROGRAMS

135

CALEnDAR

135

 /**
 * Represents information for a date in the calenndar.
 */
 public class MainDate
 {
 private Date date;
 private List<Anniversary> anniversaries = new ArrayList();
 private List<Appointment> appointments = new ArrayList();
 private List<Note> notes = new ArrayList();
 }

 package calendar.models;

 /**
 * Represents a calendar for a month.
 */
 public class MainModel
 {
 private Date date; // the current date
 private MainDate[][] table = new MainDate[6][7];
 }

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 8:MULTITHREADED PROGRAMS

136

Calendar

11.3.3 DESIGN OF THE DAL LAYER

Data for notes, appointments and anniversaries should be saved persistent, and it is decided
to do that by object serialization. Since the program is intended as a personal tool it can
be cumbersome to install the program, if you first must create a database that the program
has to connect to. If there are relatively few notes and appointments, it is also unnecessary
to use a database and it is simpler to serialize the data to a file.

The basis is the following interface, and the methods names should explain what they are
used for:

JAVA 8:MULTITHREADED PROGRAMS

136

CALEnDAR

11.3.3 DESIGN OF THE DAL LAYER

Data for notes, appointments and anniversaries should be saved persistent, and it is decided
to do that by object serialization. Since the program is intended as a personal tool it can
be cumbersome to install the program, if you first must create a database that the program
has to connect to. If there are relatively few notes and appointments, it is also unnecessary
to use a database and it is simpler to serialize the data to a file.

The basis is the following interface, and the methods names should explain what they are
used for:

 package calendar.dal;

 import java.util.List;

 import calendar.models.*;

 public interface Repository
 {
 public List<Note> getNotes();
 public List<Note> getNotes(Date date);
 public List<Note> getNotes(Date from, Date to);
 public boolean addNote(Note note);
 public boolean updateNote(Note note);
 public boolean deleteNote(int id);
 public boolean deleteNotes(Date date);
 public boolean deleteNotes(Date from, Date to);
 public List<Anniversary> getAnniversaries();
 public List<Anniversary> getAnniversaries(Date date);
 public boolean addAnniversary(Anniversary anniversary);
 public boolean updateAnniversary(Anniversary anniversary);
 public boolean deleteAnniversary(int id);
 public boolean deleteAnniversaries(Date date);
 public boolean deleteAnniversaries(Date from, Date to);
 public List<Appointment> getAppointments();
 public List<Appointment> getAppointments(Date date);
 public List<Appointment> getAppointments(Date from, Date to);
 public boolean addAppointment(Appointment appointment);
 public boolean updateAppointment(Appointment appointment);
 public boolean deleteAppointment(int id);
 public boolean deleteAppointments(Date date);
 public boolean deleteAppointments(Date from, Date to);
 }

The program must then instantiate a concrete repository class, what I will call IORepository.
The program must then instantiate a concrete repository class, what I will call IORepository.

JAVA 8:MULTITHREADED PROGRAMS

137

Calendar

11.3.4 DESIGN OF THE USER INTERFACE

The main window is defined by the prototype. In addition, the user interface includes a
series of dialog boxes corresponding to the functions of the program, as defined in the
analysis. The following diagram shows an overview.

If, for example looking at NotesView it is a dialog box that shows a list of all notes within a
selected period. NoteView is an associated dialog box that is used to maintain a single note.

In addition to the dialog boxes, as shown in the diagram, there will also be a dialog box
for maintenance settings. It is still not decided which settings it should be, but the choice
to select where to store data, will be one of them.

11.3.5 DESIGN OF THE CONTROL LAYER

Control layer will be thin, and there will be only controller classes the most complex dialog
boxes, and for the most part, these are as simple dialog boxes. However, all that is necessary
to trigger warnings for appointments and alarms, and thus everything concerning threads
are implemented in the controller layer.

JAVA 8:MULTITHREADED PROGRAMS

138

Calendar

138

11.4 PROGRAMMERING

The programming is carried out in the following steps (iterations):

1. Navigate the calendar and including the implementation of the class Date
2. Implentation maintenance of notes and of IORepository
3. Implementation of appointments and anniversaries
4. Implementation of all functions relating to the clock and including alarm and timer
5. Implementation of export of a calendar
6. A last iteration and code review

11.4.1 ITERATION 1

The iteration starts with creating a copy of the NetBeans project from the design. The copy
is called Calendar2.

As the first I have implemented the class Date. It is the program’s most important and certainly
most comprehensive class. Many of the algorithms are complex, and are documented in the
code. In addition to the class Date the model layer is extended with a class CalenderException.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 8:MULTITHREADED PROGRAMS

139

Calendar

Main class MainDate is extended with a constructor, which has as a parameter that is a
Date object, and the class has a corresponding get method.

The class MainModel is implemented so that it represents 42 dates, which is the number
of dates needed to represent a whole month with 6 rows by 7 columns.

There is created a dialog box where you can select a month and enter a year. Since it is a
very simple dialog box there is no controller, but to the package calendar.views are added
three classes:

1. GotoEvent which defines an event for selecting a month
2. GotoListener defining a single event handler for an event of the type GotoEvent
3. GotoView as the dialog box

The class MainView from the prototype is modified, which primarily consist of attaching
event handlers for the first five buttons in the toolbar.

Then the first iteration in principle is finished, so you can navigate the calendar, but it is
important that the result be thoroughly tested, and it will specifically say the class Date.
The best way to test the result is by using and navigating the calendar:

1. Open the program and validate that the current month is displayed correctly:
 - the right dates
 - the right week days
 - the right week numbers
 - the right selections for Sundays and holidays

2. Navigate a month forward and test similar the result. Repeat it a month at a time
for five years.

3. Navigate five years back, or until you reaches the current month. Test the result
for each month.

4. Navigate one month back and check the corresponding result. Repeat it a month
at a time for five years.

5. Navigate five years forward, or until you have the current month. Check for each
year the result.

6. Select the date 1/1 1582 and navigate the calendar forward one month at a time
until 1/1 1583. Check that October is correct.

7. Navigate the calendar back a month at a time until 1/1 in 1582 and controls of
October is correct.

8. Select the date 1/2 1500 and check that there are 29 days in February.

JAVA 8:MULTITHREADED PROGRAMS

140

Calendar

9. Select the date 1/2 1700 and check that there are 28 days in February.
10. Navigate four years back and make sure that there are 29 days in February.
11. Navigate eight years forward and check that there are 29 days in February.
12. Use the Internet to determine the date of Easter Day for the next 10 years from

the current year. Check that the program shows the same dates for Easter Day.
13. Select the date 1/12 9999. Navigate five months back. Navigate the calendar forward

as far as possible.
14. Select the date 1/1 0. Navigate five months ahead. Navigate the calendar as far

back as possible.

11.4.2 ITERATION 2

The iteration starts with creating a copy of the NetBeans project from the iteration 1. The
copy is called Calendar3.

I start to implement the class IORepository. First I moved the interface Repository to the
package calendar.models and thus it defines which services the DAL layer provides. The
interface has been extended with a single method:

JAVA 8:MULTITHREADED PROGRAMS

140

CALEnDAR

9. Select the date 1/2 1700 and check that there are 28 days in February.
10. Navigate four years back and make sure that there are 29 days in February.
11. Navigate eight years forward and check that there are 29 days in February.
12. Use the Internet to determine the date of Easter Day for the next 10 years from

the current year. Check that the program shows the same dates for Easter Day.
13. Select the date 1/12 9999. Navigate five months back. Navigate the calendar forward

as far as possible.
14. Select the date 1/1 0. Navigate five months ahead. Navigate the calendar as far

back as possible.

11.4.2 ITERATION 2

The iteration starts with creating a copy of the NetBeans project from the iteration 1. The
copy is called Calendar3.

I start to implement the class IORepository. First I moved the interface Repository to the
package calendar.models and thus it defines which services the DAL layer provides. The
interface has been extended with a single method:

 getNote(int id)

which returns a note with a specific id. That must be defined corresponding methods
respectively for anniversaries and appointments, but I will first do that in the next iteration.

Next, the class IORepository is implemented as follows:

	public	class	IORepository	implements	Repository,	Serializable
 {
	 private	static	final	String	filename	=	"calendar.dat";
 private List<Anniversary> anniversaries;
 private List<Appointment> appointments;
 private List<Note> notes;
 private int lastAnniversary = 0;
 private int lastAppointment = 0;
 private int lastNote = 0;

	 public	IORepository()
 {
 deSerialize();
 }

which returns a note with a specific id. That must be defined corresponding methods
respectively for anniversaries and appointments, but I will first do that in the next iteration.

Next, the class IORepository is implemented as follows:

JAVA 8:MULTITHREADED PROGRAMS

140

CALEnDAR

9. Select the date 1/2 1700 and check that there are 28 days in February.
10. Navigate four years back and make sure that there are 29 days in February.
11. Navigate eight years forward and check that there are 29 days in February.
12. Use the Internet to determine the date of Easter Day for the next 10 years from

the current year. Check that the program shows the same dates for Easter Day.
13. Select the date 1/12 9999. Navigate five months back. Navigate the calendar forward

as far as possible.
14. Select the date 1/1 0. Navigate five months ahead. Navigate the calendar as far

back as possible.

11.4.2 ITERATION 2

The iteration starts with creating a copy of the NetBeans project from the iteration 1. The
copy is called Calendar3.

I start to implement the class IORepository. First I moved the interface Repository to the
package calendar.models and thus it defines which services the DAL layer provides. The
interface has been extended with a single method:

 getNote(int id)

which returns a note with a specific id. That must be defined corresponding methods
respectively for anniversaries and appointments, but I will first do that in the next iteration.

Next, the class IORepository is implemented as follows:

	public	class	IORepository	implements	Repository,	Serializable
 {
	 private	static	final	String	filename	=	"calendar.dat";
 private List<Anniversary> anniversaries;
 private List<Appointment> appointments;
 private List<Note> notes;
 private int lastAnniversary = 0;
 private int lastAppointment = 0;
 private int lastNote = 0;

	 public	IORepository()
 {
 deSerialize();
 }

JAVA 8:MULTITHREADED PROGRAMS

141

Calendar

141

So far, it is decided that the program’s data should be serialized in a file in the user’s home
directory. The class must implement the interface Repository, and to facilitates the work you
can take advantage of that NetBeans can automatically generate a stub for all methods defined
in the interface. If you right-click on the class name and here choose Insert Code you provides
an opportunity to choose Implement Method… and then NetBeans automatically create a
stub for all methods defined in the interface (if you choose them all), and an example is :

JAVA 8:MULTITHREADED PROGRAMS

141

CALEnDAR

141

So far, it is decided that the program’s data should be serialized in a file in the user’s home
directory. The class must implement the interface Repository, and to facilitates the work you
can take advantage of that NetBeans can automatically generate a stub for all methods defined
in the interface. If you right-click on the class name and here choose Insert Code you provides
an opportunity to choose Implement Method… and then NetBeans automatically create a
stub for all methods defined in the interface (if you choose them all), and an example is :

	@Override
 public List<Anniversary> getAnniversaries() {
	 throw	new	UnsupportedOperationException("Not	supported	yet.");
 }

The methods must then be implemented, and in this iteration, I have only implemented
the methods related notes.

The methods must then be implemented, and in this iteration, I have only implemented
the methods related notes.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 8:MULTITHREADED PROGRAMS

142

Calendar

As a next step, I have defined the three model classes Anniversary, Appointment and Note
(the first two should only be used in the next iteration). All three classes must be defined
serializable, and when the individual objects also should be sorted, they must be defined
comparable. It is quite simple to implement the three classes, as they mainly consist of get
and set methods and an override of equals() and compareTo(), but here you can facilitate the
work by the same manner as described above to let NetBeans create stubs for each method.

I add a class DataAdapter that is used to instantiate an object of the type Repository. The
class is written as a singleton:

JAVA 8:MULTITHREADED PROGRAMS

142

CALEnDAR

As a next step, I have defined the three model classes Anniversary, Appointment and Note
(the first two should only be used in the next iteration). All three classes must be defined
serializable, and when the individual objects also should be sorted, they must be defined
comparable. It is quite simple to implement the three classes, as they mainly consist of get
and set methods and an override of equals() and compareTo(), but here you can facilitate the
work by the same manner as described above to let NetBeans create stubs for each method.

I add a class DataAdapter that is used to instantiate an object of the type Repository. The
class is written as a singleton:

 package calendar.models;

 import calendar.dal.*;

 public class DataAdapter
 {
 private static DataAdapter instance = null;

 private Repository data;

 private DataAdapter()
 {
	 data	=	new	IORepository();
 }

 public static DataAdapter getInstance()
 {
 if (instance == null)
 {
 synchronized (DataAdapter.class)
 {
 if (instance == null) instance = new DataAdapter();
 }
 }
 return instance;
 }

 public Repository getData()
 {
 return data;
 }
 }

JAVA 8:MULTITHREADED PROGRAMS

143

Calendar

With these classes in place, I can write the code for maintenance of notes. First there is
changes in the class MainView, so it opens a popup menu if you right-click on a day in
the calendar. The menu has three options:

1. Create note
2. Create appointment
3. Create anniversary

A popup menu has the type JPopupMenu and the definition of the menu is simple and is
done by a call of a method in the class’s constructor. For each of the panels that define a day
in the calendar is assigned an event handler for the mouse, and the popup menu opens if
you right-click a day in the calendar. To maintain notes, I have added the following classes:

 - NoteController, which is controller for a dialog box for maintenance of a note.
 - NoteEvent defining an event that the above controller can fire if adding a note, if

a note is changed or if a note is deleted.
 - NoteListener defining a listener for events of type NoteEvent.
 - NoteView as the dialog box for the controller NoteController and is used both to

create a note and to edit a note.
 - Filter that defines a filter for a JTable.
 - FilterListener that defines a listener to a filter.
 - NotesTable, which defines a data model to a JTable.
 - DateRenderer defining a CellRenderer to a JTable.
 - NotesView which opens a dialog box with a JTable that shows an overview of all notes.

Finally is added a class GUI with helper methods for design of the graphical user interface.

If you right-click a day in the calendar and in the popup menu, select Create note, you get
a window as shown below (the dialog box NoteView):

JAVA 8:MULTITHREADED PROGRAMS

144

Calendar

144

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 8:MULTITHREADED PROGRAMS

145

Calendar

If you click on the icon for notes in the toolbar, you get the following window (dialog box
NotesView):

If you double-click on the line for the note, the same dialog as above opens, and you can
edit the note and possible. delete it.

The result of the iteration has been tested as follows:

1. Open the program.
2. Right-click on a day the current month. Select Create note and create a new note.
3. Navigate the calendar 5 months forward.
4. Right-click on a day the current month. Select Create note and create a new note.
5. Navigate the calendar 2 months back.
6. Right-click onn a day the current month. Select Create note and create a new note.
7. Navigate the calendar 3 months back.
8. Right-click on the same day as for the first note. Select Create note and create a

new note.
9. Close the program.
10. Open the program again.

JAVA 8:MULTITHREADED PROGRAMS

146

Calendar

11. Select Maintenance of notes in the and test where all notes are shown and in the
right order.

12. Double-click on one of the notes and change the text.
13. Double-click on the same note and change the title. Check that the JTable is updated.
14. Close the program.
15. Open the program again.
16. Select Maintenance of notes.
17. Test the filter.
18. Double-click at the same note as before annd check the changes are preserved.
19. Delete the note.
20. Close the program.
21. Open the program again.
22. Select Maintenance of notes.
23. Check that the note is deleted.

11.4.3 ITERATION 3

As before the iteration starts with creating a copy of the NetBeans project from the previous
iteration. The copy is called Calendar4.

In this iteration, the task is to implement the two functions maintenance of appointments
and maintenance of anniversaries. In addition, the iteration include that the calendar should
displays icons for the days when registered appointments, anniversaries and also notes.
Implementing maintenance of appointments is the most comprehensive, so I will start there.

Before that, I have to adjust the model:

 - The class Time is implemented, but there has been a change so that a time alone
consists of hours and minutes. In this case, the class is used to record times on
appintments, and here it makes no sense to register seconds.

 - The two classes Appointment and Anniversary must implement the interface Comparable,
such that objects can be sorted.

 - The interface Repository is expanded with two new methods that return either an
Appointment and an Anniversary for a given id.

 - The class IORepository is updated. First, the two new methods are implemented, and
also the code to all other method stubs are written. The code fills, but is basically
identical to the corresponding code for notes.

JAVA 8:MULTITHREADED PROGRAMS

147

Calendar

147

If you right-click a day in the calendar and in the popup menu chooses Create appointment,
you get the following dialog box:

On the left side you can enter an appointment for the current day. On the right side is a
JTable showing an overview of appointments for the same day. Here you can edit the individual
cells. The purpose is that you can correct times if there are appointments that conflicts.

http://s.bookboon.com/elearningforkids

JAVA 8:MULTITHREADED PROGRAMS

148

Calendar

If you in the toolbar chooses Maintains of appointments you get the following window:

which shows an overview of the appointments that are created. Basically it is a JTable with
a filter. If you double click on a line opens the same dialog as above, so you can modify
the appointment and alose delete it.

For the first dialog box is added the following classes and interfaces:

 - AppointmentEvent defining an event object which is fired when creating a new
appointment, when an appointment is changed and when an appointment is deleted.

 - AppointmentListener which is an interface, which defines the listeners for the events
of the type AppointmentEvent.

 - AppointmentController as a controller for the dialog box. It is a relatively extensive
class since it must validate where there are conflicting appointments. If you try to
save an appointment that conflicts, you get a warning. Two appointments conflicts
if they defines overlapping time intervals.

 - AppointmentTable as a data model for the JTable that dialog box contains. The data
model must support editing of cells.

JAVA 8:MULTITHREADED PROGRAMS

149

Calendar

 - TimeCellEditor, which defines a CellEditor to edit a time.
 - DateCellEditor, which defines a CellEditor to edit a date.
 - TimeRenderer, which defines a CellRenderer for a column of the type Time.
 - AppointmentView which is the dialog box.

For the second dialog box is added the following classes:

 - AppointmentsTable that is a data model for dialog’s JTable.
 - AppointmentsView, that is the dialog box.

To test the function I have deleted everything that is created by manually delete the file
calendar.dat. Next, I have completed the following test:

1. Created an appointment for the 8th in the current month from 10:00 to 11:00.
2. Created an appointment for the same day that starts at 12:00 (no end).
3. Created an appointment for the same day from 8:30 to 9:30.
4. Created an appointment for the same day, but without time indication. It results

in a conflict, and I have agreed to create the appointment anyway.
5. Closed the program.
6. Open the program again.
7. Open maintenance appointments from the toolbar.
8. Checked that the appointments are sorted correctly.
9. Double-click on the second of the above appointments (that without end time)

and entered 14:00 as the end time. When you save you gets a warning about
conflicting appointments when the appointment conflicts with the appointment
without time indication.

10. Double-click on the appointment without indication of time and set the time
interval from 15:00 to 16:00. When saving, there will be no warining – there is
no longer conflicting appointments.

11. Created an appointment starting d. 8th and start at 17:00 and ends the next day
at 9:00.

12. Opened the list of appointments. Double-click on above appointment and deleted it.
13. Close the program.
14. Open the program again and opened the list with appointments and found that

everything looks correct.
15. Created an appointment the 15th, the 22th and the 29th in the same month – all

without time indications.

JAVA 8:MULTITHREADED PROGRAMS

150

Calendar

150

16. Edited the appointment for the 15th with a start and a end time, where the last
one should be smaller than the first. It should give an error. Fixed the end time,
so it is larger than the start time and saved the appointment.

17. Edited same appointment again and changed the end date to the day before. It
should give an error. The click Cancel to cancel the change.

Then there is maintenance of anniversaries. This feature is similar to the maintenance of
notes, and when then model classes are implemented, the function is implemented by added
the following types:

 - AnniversaryEvent that define an event, when added, modified or deleted an anniversary.
 - AnniverversaryListener defining listeners for events of the type AnniversaryEvent.
 - AnniversaryController which is controller class for the dialog box AnniversayView.
 - AnniversaryView which is the dialog box for maintenance of anniversaries.
 - AnniversariesTable defining a data model to a JTable with an overview of all

anniversaries.
 - IntegerRenderer, which is used to render cells of the type Integer.
 - AnniversariesView, there is the dialog box, which shows an overview of all anniversaries.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 8:MULTITHREADED PROGRAMS

151

Calendar

The function is tested by the same pattern as above, and I will not mention the individual
test cases here.

The calendar should similar to the prototype display icons for the days when created notes,
appointments or anniversaries. If you click on an icon, the application should open the
above dialog boxes, respectively for notes, appointments and anniversaries, but they should
only show an overview of the items (notes, appointments, anniversaries) for the current
day. Furthermore, it is decided that the calendar also must displays an icon for the days
that are holidays (the holidays that the class Date knows). If you here click on the icon,
you should get a simple popup that shows the holy day’s name:

In principle, it is easy to implement these changes, but there are changed in many places:

 - The interface Repository has been extended with three new methods used to test
whether a given day have respectively a note, an appointment or an anniversary.

 - The class IORepository is changed to implement the three new methods.
 - The class MainData is changed so that it no longer has collections of notes,

appointments and anniversaries. Indeed, one can consider completely remove the
class when it no longer adds much, but it is provisionally preserved for later changes.

 - The classes NoteView, AppointmentView and AnniversaryView are all updated as
the default constructor is changed to a constructor with two parameters which are
respectively a Date and a listener. The aim is that the calendar may be updated if
you click on one of the three icons for Note, Appointment or Anniversary.

 - The three classes NotesTable, AppointmentsTable and AnniversariesTable is changed
where added a default constructor and a constructor that from a Date creates a
model for that day.

 - The three classes NotesView, AppointmentsView and AnniversariesView is changed such
that the default constructor now has a listener as a parameter. Again, the reason
is that changes in the three collections may be reflected in the calendar (where an
icon if necessary must be removed).

 - Finally, the class MainView is updated to show the icons, and there are changes
for the event handling.

JAVA 8:MULTITHREADED PROGRAMS

152

Calendar

I will not show the individual test cases here, but to test the latest addition and thus the
entire iteration you needs to create more notes, appointments and anniversaries spread over
several days and months thereafter to check that the right icons appear and act as they
should. In addition, you must test that the calendar is updated properly if you delete items.

11.4.4 ITERATION 4

The iteration starts with creating a copy of the NetBeans project from the previous iteration.
The copy is called Calendar5. In this iteration the following functions must be implemented
and tested:

1. Watch, that show a watch in the window.
2. Stopwatch, that implements a stopwatch.
3. Alarm, where the user can set an alarm that shows a waring after a given time.
4. Timer, where the user can enter a time, and the function shows a warning, when

the timer is 0.
5. Appointments, where en appointment for the current day must result in a warning,

when it’s time.

Watch

This is a simple function and should be an on/off function. If you clicks on the icon in
the toolbar, the function is turned on, and if you clicks again the function is turned off.

The calendar has a status bar, which shows the current date. It is agreed that the clock
should appear immediately afterwards, and the clock will tick every second. It’s simple to
add the necessary to the MainView. To control the clock is added a class MainController
that has a function that either starts or stops a timer and every time the timer is ticking,
is sent an event to the MainView (WatchEvent and WatchListener).

Stopwatch

Then there is the stopwatch. It has been decided that it should only be possible to start
one stopwatch. If you click on the button in the toolbar (and the stopwatch not already is
started), you get the following window:

JAVA 8:MULTITHREADED PROGRAMS

153

Calendar

153

where you can start the stopwatch. If you do that, an icon appears in the lower right corner,
which indicates that the stopwatch is running and if you click this icon, opens the above
dialog boxes again, and you can see what the stopwatch displays and possible stop the clock.

To implement this feature, the model is extended by a class Stopwatch representing a stopwatch.
There is also added an event object StopEvent and an interface StopListener (both in the
model layer) as the class Stopwatch fire an event every time the clock has counted a second
forward. It means, when the clock starts it starts a timer that ticks every second. The event
is used to update the above dialog box, when the stopwatch ticks. The class ModelMain is
extended with an object of the type Stopwatch.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 8:MULTITHREADED PROGRAMS

154

Calendar

The above dialog box is called StopView and is a simple dialog box without a controller.
The dialog box is listening to the Stopwatch object.

Alarm and Timer

These two features are basically the same function, so I will mention them in the same place.

It has been decided that it should only be possible to start one alarm and one timer, and
that the two functions should not be persistent. That is, if there is set an alarm or started
a timer and the program is closed, the two functions state should not be saved and not
restarted if the application is opened again.

The timer is in principle a countdown, and it is decided to call this function a countdown.

If you in the toolbar click the alarm, you get the following window showing the current
time. You can then adjust the clock. If you click on start, the window closes and displays
an icon in the calendar’s lower right corner, indicating that there is set an alarm. When the
time of the alarm is triggered, you gets a warning as shown below, and the alarm function
is completed.

JAVA 8:MULTITHREADED PROGRAMS

155

Calendar

If you click on the icon in the lower right corner opens the above dialog again:

where one can see the the amount of time to the alarm will occur and also can stop it.

If you choose the countdown you gets the same dialog boxes as above, and the difference
is only that the clock start is at 00:00:00 and you then set how long to wait before the
function gives a warning. In addition, a second icon in the lower right corner is shown.

To implement the two functions I have added an abstract class Watch to the model layer
used as a model for both an alarm and an countdown. The difference between an alarm
and a countdown is basically how to reset() the watch, and that something must be done
differently when the clock is started. When this occurs, a timer is started, that ticks every
second, and this timer is using a different timer function (TimerTask object), depending on
whether it is an alarm or a countdown, and the timer function must be implemented in
the concrete classes, called respectively Alarm and Counter. A Watch can fire events of type
TimeEvent which occurs when the clock is started, when the clock is stopped, when the
clock is updated, and when there is a timeout (the occurrence of an alarm or countdown
is timed out). In the latter case, it also means that the clock must stop. Listeners for these
events are defined by the TimeListener interface.

The class MainModel has objects of the types Alarm and Counter.

The same dialog box is used for both an alarm and a countdown, and the dialog box is
called WatchView.

JAVA 8:MULTITHREADED PROGRAMS

156

Calendar

156

Appointments

The last feature in this iteration relating to appointments, and how to display a warning
when an appointment on the current day occurs. Compared to the requirements specification
is decided a change for when to display a warning. The reason is that the formulation in
the requirements specification can easily lead to too many warnings.

In order to display a warning, the appointment should be defined with a start time. A
warning should be displayed when:

1. 1 minute before the appointment starts
2. 5 minutes before the appointment starts
3. 15 minutes before the appointments starts
4. 1 hour before the appointment starts

A warning opens a popup that looks like the above, but there is a Cancel button. If you
click it, the warning does not appear again.

The logic regarding warnings for appointments is implemented in the class MainController.
Here the constructor starts a thread running in an infinite loop and every half minute
examines whether there are appointments for the current day, for which to display a reminder.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 8:MULTITHREADED PROGRAMS

157

Calendar

11.4.5 ITERATION 5

The iteration starts as the other iterations and creates a copy of the NetBeans project from
the previous iteration. The copy is called Calendar6. It is a short iteration with only one
new dialog box, where the user must select a period for the calendar to be exported. The
calendar is exported in the controller for this dialog box. The iteration only adds to classes
to the project: ExportController that creates the file, and ExportView that is the dialog box.

11.4.6 ITERATION 6

Again the iteration starts to make a copy of the NetBeans project from the previous iteration.
The copy is called Calendar7. After this iteration the programming is finshed, and what is
back is the following:

1. A review of the overall look and feel.
2. Implementing of the function options (the last icon in the toolbar).
3. A code review and code documentation.

Look and feel

The goal of it is to get the individual dialogs to look the same, so they use the same colors
and fonts, and that the application of colors and fonts are consistent. Fonts and colors are
defined as constants in the class Options. The work is to go all dialog boxes through and
ensure consistent use of fonts and colors. Moreover, the colors are changed, so they are a
bit more neutral. Finally, some of the icons are replaced, and the result is a main window
as shown below:

JAVA 8:MULTITHREADED PROGRAMS

158

Calendar

Options

If you click on the last icon in the toolbar you will get a popup menu with four menu items:

1. Data location
2. Delete notes
3. Delete appointments
4. Delete anniversaries

If the program is used over a longer period, the data file could be very large, especially if
there is stored many notes. There should be an option for deleting old data. The three delete
functions work in principle the same way, where you get a dialog box for entering two
dates, and so deleting all (notes, appointments or anniversaries) between these two dates.
The three dialog boxes are the same and are in principle the same dialog box as ExportView.
There is therefore written an abstract base class which all four dialogs inherit.

The file calendar.dat that contains the program’s data is created in the user’s home directory.
The goal of the first of the above functions is that the user must be able to choose the
directory where the file should be saved, and the same user can then use multiple calendars.
The path to the file must be stored somewhere, and it has been decided that it should be
in a hidden file (.pa_calendar) in the user’s home directory. The necessary programming to
change the directory is placed in the class DataAdapter. At the same time two of methods
are defined synchronized since there is a concurrency problem due to the thread, which tests
for appointments.

Code review

After the program is written and finished, I performs a code review. This work can take a
long time. Besides updating the comments and review the code the work also to address
directly errors and change inconveniences. In this case, I have changed the following.

The class MainDate is a wrapper class for a Date, and the class is not much more than a
very thin encapsulation of a Date. Originally the class was intended more functionality, but
since it is no longer the case, I have deleted the class. It means:

1. The class has three methods that tests whether a date is attached a note an
appointment or an anniversary. These three methods are moved to the class
MainModel as static methods.

2. All references in the class MainModel to MainDate are changed to Date.
3. All references in the class MainView to MainDate are changed to Date.

JAVA 8:MULTITHREADED PROGRAMS

159

Calendar

159

Then the class MainDate is deleted. It is always dangerous to delete a class at the risk of
being overlooked something, but in this case it is simple since the class only is used in
MainModel and MainView and then the compiler wil find all the places where you has
to change.

The class MainView has a number of very simple inner classes that define event handlers
for click on an icon in the toolbar. Most of these classes are removed and replaced by
anonymous classes.

The class MainController is changed so that the thread that displays messages regarding
appointments start with deleting all appointments (those that must be deleted) that are
older than the current date. The reason is that if the program has not been used for several
days, there may otherwise be appointments that just remains and where time has passed.

http://s.bookboon.com/EOT

JAVA 8:MULTITHREADED PROGRAMS

160

Calendar

11.5 TEST

Now the program is finished and should be tested, and it is in this case a quite extensive
work to test the program. The following procedure can be used:

1. The date file is deleted manually.
2. All test cases from all the iterations from the programming are used as test cases

for the final test and are performed.
3. The first function in the options menu is used to changing the location of the

data file.
4. Create two notes for the current month, an anniversary for the current month, an

appointment occurring within 3 minutes and an appointment occurring within
½ hour.

5. Close the program.
6. Open the program again.
7. Test it looks right, especially on the occurrence of warnings for the two appointments.
8. The data file is changed back to the first data file.
9. Examines whether everything looks right.
10. The three delete functions from the options menu are tested.

11.6 DELIVERY

This time it is simple to deliver the program and put it into operation. There should only
be used the jar file and an icon. The installation script is similar to scripts as I have shown,
and will not be shown here, but the folder setup contains the following three files:

1. Calendar.jar
2. calendar.png
3. calendar.sh

where the last one is the installation script. The program can then be installed and put into
operation to executes the foolowing command from a terminal:

JAVA 8:MULTITHREADED PROGRAMS

160

CALEnDAR

11.5 TEST

Now the program is finished and should be tested, and it is in this case a quite extensive
work to test the program. The following procedure can be used:

1. The date file is deleted manually.
2. All test cases from all the iterations from the programming are used as test cases

for the final test and are performed.
3. The first function in the options menu is used to changing the location of the

data file.
4. Create two notes for the current month, an anniversary for the current month, an

appointment occurring within 3 minutes and an appointment occurring within
½ hour.

5. Close the program.
6. Open the program again.
7. Test it looks right, especially on the occurrence of warnings for the two appointments.
8. The data file is changed back to the first data file.
9. Examines whether everything looks right.
10. The three delete functions from the options menu are tested.

11.6 DELIVERY

This time it is simple to deliver the program and put it into operation. There should only
be used the jar file and an icon. The installation script is similar to scripts as I have shown,
and will not be shown here, but the folder setup contains the following three files:

1. Calendar.jar
2. calendar.png
3. calendar.sh

where the last one is the installation script. The program can then be installed and put into
operation to executes the foolowing command from a terminal:

 ./calendar.sh

JAVA 8:MULTITHREADED PROGRAMS

161

appendIx a

APPENDIX A

A virtual machine is a program that simulates a physical machine in software and the Java
runtime system is such a virtual machine. I will in this appendix provide a brief introduction
to what the Java virtual machine is and how it works.

Java’s virtual machine is called JVM for Java Virtual Machine, and you can think about it
as the engine that makes it possible to execute Java programs. It is a program (a machine)
that interprets and executes compiled Java programs. Other programming languages such
as C and C++ compiles directly to the specific platform, that is to a specific processor’s
instruction set and to a particular operating system, and the result is called executable code
that immediately can be carried out on the concrete machine without the assistance of a
virtual machine. This means other things being equal, tthat one gets more effective programs,
but there are also significant drawbacks. The main one is lack of portability, where the
translated program depends on the machine’s processor and operating system, and for the
program to run on a different platform, it must be translated again to the new environments.

All this talks of developing a platform independent programming language and it was one of
the main ideas that led to the development of Java. The principle is that the Java compiler
generates an optimized set of instructions, called bytecode. This code can not be directly
executed, since it consists of instructions to a machine that does not exist – instructions for
a virtual machine. For a program translated into bytecode to run, there must be running
a program on the machine, that simulates a machine whose instruction set is bytecode,
and such a program is exactly what JVM is. Platform independence consists in, that any
translated Java program can run on any machine that has a JVM running, and the translated
bytecode knows nothing about the physical machine’s processor or operating system.

As mentioned, the price of this platform independence and program execution by
interpretation of a virtual machine is performance. So it was, at least initially, but Java is
no longer a purely interpreted language, and most implementations of the JVM is today a
mixture of interpretation and execution of compiled code. This means that Java programs
today in practice has the same performance as programs whose code is translated into a
specific physical platform, also because the runtime system can perform a series of checks
and optimization, while the program runs.

JAVA 8:MULTITHREADED PROGRAMS

162

appendIx a

162

It is also worth noting that Java includes an API called JNI, so you can use software modules
written in other languages like C and C++. The most important thing with JNI is that you
can use the system calls, which possibly not are directly accessible through Java. Finally, it
should be mentioned that JNI allows using routines written in C or C++ to situations where
the performance requirements are particularly critical. You should be aware that using JNI
means sacrificing the platform independence and the program becomes dependent on the
platform that the routines are translated to.

In order to achieve this platform independence JVM must be precise and well-defined,
which is done with a JVM specification which dictates the format of the bytecode and
defines the features and functionality that JVM must have. The specification is public and
can be found on Oracle’s website, and all can in principle write a JVM.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 8:MULTITHREADED PROGRAMS

163

appendIx a

JVM IMPLEMENTATIONS

There are several different implementations of JVM, and the most important is probably the
JVM from Sun Microsystems, and is often regarded as the reference implementation. After
Oracle acquired Sun, it is now their JVM, which is regarded as the reference implementation,
but there are certainly others who have implemented the JVM and including IBM, Apple
and Hewlett-Packard. However, does the specification of JVM, that Java programs will
behave the same regardless of which virtual machine they run on.

In 2006 changed Sun strategy from to control the standard and reference implementation
themself to instead to public an open model. This meant several things, including:

 - The full source code was made available to the public, or at least as much of it, as
Sun legally could publish because of licenses.

 - Changes and extensions of Java has subsequently been handled through the Java
Community Process (JCP) instead of inside Sun. JCP is an association which is
responsible for making decisions about how the language forward should be
developed, a development that Oracle has continued and now plays a key role in
the decision-making processes.

 - Today, is the reference implementation of Java an open source model, called Open
Java Development Kit and is designated OpenJDK.

THE RUNTIME SYSTEM

Every time you perform a Java application the program executes in fact an instance of JVM,
and each program has its own JVM instance. A Java program is translated into bytecode,
which as stated are instructions for a virtual machine, but these instructions must necessarily
somewhere be translated into instructions that the current platform (CPU and operating
system) can perform. The translated Java program consists of class files, which mainly
contains bytecode, and when the program is executed, these class files are loaded of JVM,
which then translates (interprets) the bytecode into instructions for the current machine.
JVM can be broadly summarized as follows:

JAVA 8:MULTITHREADED PROGRAMS

164

appendIx a

In addition JVM must use memory for the code and temporary data as local variables and
so on. The data are stored within the virtual machine’s address space:

The heap is an area of available memory and is used to allocate memory at runtime, and
it is for objects and arrays. When the program creates an object or an array, it allocates
the required memory on the heap, and it is created when the JVM starts. The space that
an object or an array uses exist as long as there is a reference to the object, and when it is
no longer the case, the space is automatically deallocated by the garbage collector. The JVM
specification does not tell how the heap will be implemented, and it is also depends on
the implementation where the amount of heap is fixed or may change accordance with the
demand, but is there not enough heap for a program, you get an OutOfMemoryError exception.

JAVA 8:MULTITHREADED PROGRAMS

165

appendIx a

165

The stack is used to maintain information on the methods being performed, and every time
you call a method the runtime system creates an activation block on the stack, that contains
local variables, parameters and return value and the operand stack used by the runtime
system. An activation block is created when a method is called and removed again when
the method terminates for one reason or another. Each thread has its own stack, and for
each stack there is only one activation block which is active at a time, and it is the block
for the method the thread is currently performing. Just as for the heap tells the specification
nothing about how the stack must be implemented, and it can be both of fixed size or
expand dynamically, but requires a thread more stack than is available, the program will
stop with a StackOverflowError exception.

The method area is shared by all threads and are used for information on methods and
their bytecode, data fields and constructors.

JVM has registers in the same way as a physical machine. They reflect the virtual machine’s
current state and are constantly updated, as the code is executed. The main register is
perhaps the program counter which contains the address of the next JVM instruction to
be performed. Other data is a pointer to the method currently performed, a pointer to the
first local variable for the current method, and a pointer to the top of the operand stack.

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 8:MULTITHREADED PROGRAMS

166

appendIx a

The last are constant pool and is used for constants.

Then there is the garbage collector. As mentioned allocates Java automatic memory to an object
when it is created with new, and the allocated memory is again deallocated automatically
when there are no longer references to the object. Everything is handled by the garbage
collector, which is a program that constantly runs and will manages the heap. This is done
using a table of pointers that point to the individual objects on the heap. We call these
pointers for soft pointers, because instead of pointing directly at the concrete objects they
points to the object’s references. The garbage collector runs in the background in its own
thread and performs periodically checking the object’s state, and when there are no longer
references to an object, the space which the object has used on the heap is released, and
the pointer is removed from the table. When the runtime system continuously allocates
objects and deallocates them again, the heap may be fragmented, and if it happens the
garbage collector defragments the heap (which means that the objects are move) and thus
gather all the available space on the heap in a large contiguous area. It is from there that
garbage the collector takes its name.

	1	Foreword
	1	Introduction
	1.1	Create a thread
	1.2	Threads properties
	Exercise 1

	2	join
	Exercise 2

	3	Synchronization of threads
	Exercise 3

	4	Deadlock
	5	Stop a thread
	6	wait() and notify()
	Exercise 4
	Exercise 5

	7	Timers
	Problem 1

	8	Concurrency Tools
	8.1	Executors
	Exercise 6
	8.2	CountDownLatch
	Exercise 7
	8.3	CyclicBarrier
	Problem 2
	8.4	Exchanger
	8.5	Semaphore
	Exercise 8
	8.6	Phaser
	8.7	Locks
	Exercise 9
	8.8	ReadWriteLock
	Exercise 10
	8.9	Collections
	Exercise 11
	8.10	Parallelism
	Exercise 12
	8.11	CompletionService

	9	Atomic variabler
	10	Swing
	10.1	SwingWorker
	10.2	A Timer

	11	Calendar
	11.1	Task formulation
	11.2	Analysis
	11.3	Design
	11.4	Programmering
	11.5	Test
	11.6	Delivery

	Appendix A
	JVM implementations
	The runtime system

