

2

POUL KLAUSEN

JAVA 9: SWING,
DOCUMENTS
AND PRINTING
SOFTWARE DEVELOPMENT

3

Java 9: Swing, Documents and printing: Software Development
1st edition
© 2017 Poul Klausen & bookboon.com
ISBN 978-87-403-1933-0
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 9: SWING, DOCUMENTS AND PRINTING

4

Contents

4

CONTENTS

 Foreword 7

1 Introduction 9

1.1 A comment about Swing 9

2 Swing details 11

 Exercise 1 16

2.2 Size and location 16

2.3 Event handling 25

2.4 Rendering of components 27

2.5 Focus and the keyboard 44

 Exercise 2 50

 Problem 1 53

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 9: SWING, DOCUMENTS AND PRINTING

5

Contents

3 Layout 54

3.1 Layout managers 58

 Problem 2 65

 Problem 3 69

4 Swing components 71

4.1 JProgressBar 72

4.2 JTree 81

5 User defined components 98

5.1 Look-and-feel 99

5.2 Knob 103

5.3 A better Knob 115

 Exercise 3 125

5.4 A DatePicker 126

6 The clipboard 131

6.1 MIME types 134

6.2 Serializing objects 138

 Exercise 4 143

6.3 Images on the clipboard 145

7 Drag and Drop 152

7.1 Drag images 162

 Problem 4 167

8 Edit text 168

8.1 JFormattedTextField 175

 Exercise 5 178

8.2 The caret 179

8.3 Highlighter 182

8.4 A JTextPane 184

 Exercise 6 196

8.4 Document 197

 Exercise 7 200

8.5 A JEditorPane 202

 Exercise 8 208

 Problem 5 214

JAVA 9: SWING, DOCUMENTS AND PRINTING

6

Contents

9 Internationalizing 216

9.1 Resource bundles 219

9.2 Formatting values 222

 Exercise 9 226

10 A slot machine 229

10.1 Task formulation 229

10.2 Analysis 230

10.3 Design 234

10.4 Programming 239

10.5 Test 252

JAVA 9: SWING, DOCUMENTS AND PRINTING

7

Foreword

FOREWORD

This book is the ninth in a series of books on software development. The programming
language is Java, and the language and its syntax and semantics fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. This book deals with Swing and how to use Swing to develop applications
with a graphical user interface. I have also looked at the development of programs with a
graphical user interface in the book Java 2, and this book is a continuation of Java 2, but
with greater emphasis on details and how Swing works internally. Several of the chapters
of the book include topics that are not used so often in practical programming, but on
the other hand, topics that it is necessary to know in part to solve specific problems, and
partly to develop user interfaces with focus on quality. After reading the book, the reader
should be able to develop and maintain complex user interfaces written using Swing. The
book requires knowledge of programming and Java throughout with special introductory
knowledge of Swing corresponding to the contents of the book Java 2. The book ends with
the development of an application, with primary focus on the graphical user interface.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

JAVA 9: SWING, DOCUMENTS AND PRINTING

8

Foreword

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

 - NetBeans as IDE for application development
 - MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
 - GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 9: SWING, DOCUMENTS AND PRINTING

9

IntroduCtIon

1 INTRODUCTION

In the book Java 2, I have considered the development of programs with a graphical
user interface and including Swing, which is the Java API for the development of GUI
applications, and I have also in subsequent books considered more examples of GUI
programs. Specifically, I have in Java 6 about databases treated JTable, which is the most
complex of the Swing components. All what previously are said regarding GUI programs
are good enough, but there’s a lot of more to tell, and including several technical concepts
of Swing. The following deals primarily with what not previously are said, but some will
also be repetitions and elaborations of what I already have touched on concerning the
development of GUI applications.

I will divide the book in the following chapters and the individual chapters are largely
independent of each other and can be read in any order:

1. Swing details
2. Layout
3. Swing components
4. User defined components
5. The clipboard
6. Drag and drop
7. Edit text
8. Internationalization
9. Final example

Part of the following are perhaps beyond the needs encountered in everyday life, but as
important issues, I would particularly highlight drag and drop as well as the clipboard, there
are issues that necessarily must be mastered to work as a software developer in practice.
Also I will mention the development of custom components.

1.1 A COMMENT ABOUT SWING

Before I address the subjects of this book I want to mentioning three classes, which I have
already used, but may not have been referred to profit, and at least, it is worth knowing
the classes, and I will use them as follows when needed.

JAVA 9: SWING, DOCUMENTS AND PRINTING

10

IntroduCtIon

First, I would like to mention SwingUtilities which is a class that contains many static
utility methods. I have used the methods invokeLater() and invokeAndWait() to ensure that
a method is performed in the event dispatcher thread. There are many other methods and
you should study the class and the methods it provides. Most of the methods you rarely
will ever need, but it is good to know their existence.

Another class is called SwingConstants, and as the name says, the class defines a number
of constants. You are encouraged to investigate which ones. Generally, the different Swing
components defines constants for example regarding alignment. That is, the same constants
are defined in several places, and the meaning by SwingConstants is instead of using the
constants defined in the individual components classes, then you should use the constants
in SwingConstants.

Finally, there is the class SwingWorker, which is an abstract class that is used to perform
time-consuming GUI operations in one or more background threads. The goal is that time-
consuming tasks should not be performed in the event dispatcher thread, as a program then
will be in a state where it is not responding. The goal of the class is to make it easier to
perform time-consuming tasks in their own threads rather than yourself has to write the
necessary code for threads.

Comparing what is said about Swing in this book and the book Java 2, you are familiar
with most of what Swing makes available to write programs with a graphical user interface.
Everything is not explained, and in practice it is necessary to constantly look up the online
documentation, partly because Swing is so extensive that it is impossible to learn everything,
and partly because Swing is also developing. Swing is a very successful API for developing
GUI programs, but is also criticized for the need to writing a lot. It’s also correct, but if
you develop your own class libraries that fit the tasks that you typically solve, Swing can
actually be done quite efficiently. However, there are alternatives and when the language is
Java, it is JavaFX, which is a newer API for developing graphical user interfaces, but it is
the subject for the book Java 16.

JAVA 9: SWING, DOCUMENTS AND PRINTING

11

swIng detaIls

2 SWING DETAILS

The programs user interface is developed by means of components which the user can do
something with, and examples are JButton and JTextField, and there are about 30 – or
slightly more, depending on how you count – so there is a lot to work with. The basic base
component is called JComponent and is an abstract class containing all that is common to
Swing components.

All the Swing components today support the Java Beans specification, and it means that
components consist of properties, where a property is an instance variable with accessor
methods. If, for example a variable has the name propertyName and describes a property
of the component, you can expect that the component has methods setPropertyName() and
getPropertyName() or isPropertyName(). The first only if it is a property whose value must
be changed, and the last only if its type is boolean.

Properties can be divided into

1. Simple properties, that are properties, not firing an event when the value is changed.
2. Bound properties, that are firing a PropertyChangeEvent when the value changes, and

where an object of the type PropertyChangeListener can be registered as a listener
for a PropertyChangeEvent with the method addPropertyChangeListener().

3. Constrained properties, which also fired a PropertyChangeEvent but before the value
is changed. An object of the type VetoableChangeListeners can be registered as a
listener for these events with the method addVetoableChangeListener() (only a few
components fires these events).

A PropertyChangeEvent has assigned three values: The name of the property, the old value
and the new value.

A component can also fire a ChangeEvent that is fired when a property change state. Objects
of the type ChangeListener can be registered as a listeners for a ChangeEvent. Such an event
is only associated with a single value, which is the component that raises the event.

Another kind of properties are called client properties and are key/value pairs that are stored
in a Hashtable attached to each Swing component. This means that, with the method
putClientProperty() you can add or remove a client property. For example you can add a
property in the following manner:

 component.putClientProperty("propertyName", propertyValue);

JAVA 9: SWING, DOCUMENTS AND PRINTING

12

swIng detaIls

12

and you can remove it with the statement

 component.putClientProperty("propertyName", null);

You can get the value with the statement:

 value = component.getClientProperty("propertyName");

Client properties allows you to add properties at runtime, and you can think of them as
an opportunity to associate additional data with a component. Client properties are bound
properties and fired a PropertyChangeEvent when the value is changed. For performance
reasons, you should only occasionally add client properties for a component, and if you
need new features of a component, you should consider writing a derived class.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 9: SWING, DOCUMENTS AND PRINTING

13

swIng detaIls

As an example, the program PropertiesProgram opens the following window:

If you click on one of the buttons, you get a message box that shows how many times the
button has been pressed:

and when you click OK you get another message box that shows that the number of clicks
is counted by one (here it is counted from 3 to 4):

Below is the completed program code:

 package propertiesprogram;

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import java.beans.*;
 import javax.swing.border.*;

JAVA 9: SWING, DOCUMENTS AND PRINTING

14

swIng detaIls

 public class MainView extends JFrame implements PropertyChangeListener
 {
 public MainView()
 {
 super("PropertiesProgram");
 setResizable(false);
 createView();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 pack();
 setLocationRelativeTo(null);
 setVisible(true);
 }

 public void propertyChange(PropertyChangeEvent e)
 {
 if (e.getOldValue() != null)
 {
 JButton cmd = (JButton)e.getSource();
 JOptionPane.showMessageDialog(this, String.format("%s: %d -> %d",
 cmd.getText(), e.getOldValue(), e.getNewValue()));
 }
 }

 private void createView()
 {
 JPanel panel = new JPanel(new GridLayout(3, 3, 5, 5));
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 panel.add(createButton("A"));
 panel.add(createButton("B"));
 panel.add(createButton("C"));
 panel.add(createButton("D"));
 panel.add(createButton("E"));
 panel.add(createButton("F"));
 panel.add(createButton("G"));
 panel.add(createButton("H"));
 panel.add(createButton("I"));
 add(panel);
 }

 private JButton createButton(String text)
 {
 JButton cmd = new JButton(text);
 cmd.setPreferredSize(new Dimension(50, 50));
 cmd.setMargin(new Insets(0, 0, 0, 0));
 cmd.putClientProperty("clickCounter", 0);
 cmd.addPropertyChangeListener(this);
 cmd.addActionListener(new ClickHandler());
 return cmd;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

15

swIng detaIls

15

 class ClickHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 JButton cmd = (JButton)e.getSource();
 Integer value = (Integer)cmd.getClientProperty("clickCounter");
 value += 1;
 JOptionPane.showMessageDialog(MainView.this, String.format(
 "%s has been clicked %d times", cmd.getText(), value));
 cmd.putClientProperty("clickCounter", value);
 }
 }
 }

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 9: SWING, DOCUMENTS AND PRINTING

16

swIng detaIls

Note that the MainView class implements the interface PropertyChangeListener and can thus
be registered as listener for PropertyChangeEvent’s. Otherwise, the most important method is
createButton(), which creates a button. Note how to define a client property for the button,
which means that a button has a counter that from the start has the value 0. The button’s
event handler has the the type ClickHandler (an inner class) and it displays the first of the
above message boxes. Here you should note how to refer to the client property clickCounter,
and also that the event handler counts this property with 1. When this happens, the button
fires an PropertyChangeEvent, which in this case means that the MainView’s propertyChange()
method is performed (MainView is registered as listener) that opens the second dialog box.

EXERCISE 1

Create a copy of the project PropertiesProgram. You must now change the program to perform
exactly the same, but instead of associating a client property with the buttons, you should
write a type CounterButton that extends JButton with a property counter, and the window
should then contain 9 CounterButton components. Note that this means that the method
setCounter() should fire a PropertyChangeEvent.

2.2 SIZE AND LOCATION

As described in the book Java 2, a component’s size is defined by three properties of the
type Dimension:

1. preferredSize
2. minimumSize
3. maximumSize

but to what extent these properties are used, is as explained in Java 2, completely determined
by the current layout manager. In fact, it is allowed to write a layout manager, that
completely ignores these properties. It is absolutely essential to mention that the exact size
and location of a component in a window is determined by the current layout manager. You
can also define the size and location of a component with setBounds(), but here you should
be aware that a layout manager suppresses the values set with setBounds() (or setSize() and
setLocation()). If you want to place the components in this way, remove the layout manager
by setting it to null.

JAVA 9: SWING, DOCUMENTS AND PRINTING

17

swIng detaIls

As regards the size and location of a component, note the following methods:

 - getWidth()
 - getHeight()
 - getSize()
 - getBounds()
 - getLocation()

which returns the component’s current size and location.

You can also define a component’s alignment within the container where it is located and
the basic methods are

 - setAlignmentX()
 - setAlignmentY()

and both methods have a float parameter, where 0 means left or top, 1 means right or
bottom, and a value between these extremes indicates the degree to which the component
is to be adjusted. For example means 0.5 centered. The only layout managers that use these
properties are a BoxLayout or an OverlayLayout.

As an example of all that, I will show a program that opens the following window:

JAVA 9: SWING, DOCUMENTS AND PRINTING

18

swIng detaIls

18

The window has 8 buttons and when you click on a button, you get a message box. The
window has a BorderLayout, which lay out five panels:

 - at the top a FlowLayout with a button
 - to the left a GridLayout with two buttons
 - at the bottom a FlowLayout with a button
 - to the right a BoxLayout with three buttons
 - center a FlowLayout with one button

The code for the top panel is:

 private JPanel top()
 {
 JPanel panel = new JPanel(new FlowLayout());
 JButton cmd = new JButton("Top");
 cmd.setPreferredSize(new Dimension(150, 50));
 cmd.addActionListener(e -> show(cmd));
 panel.add(cmd);
 panel.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) { show(panel); }});
 return panel;
 }

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 9: SWING, DOCUMENTS AND PRINTING

19

swIng detaIls

If you click on the top button, you get the result:

and that means that the current width and height of the button is determined by its preferred
size, and it corresponds to, that a FlowLayout layout components so that the sizes is their
preferred size. Clicking in the top panel outside the button you get the result:

The panel’s preferred size is 160 × 60, which is determined by the button’s preferred size, but
a FlowLayout inserts as default a margin of 5 (a space on 5 pixels between the components).
The panel’s current height is 60, which is determined by the outer BorderLayout, since the
height of NORTH is the height of the component, that is the panel. The width is, on
the other hand, the width of the window, which is 500, and the current width of the top
panel will therefore be 500.

The code for the left panel is:

 private JPanel left()
 {
 JPanel panel = new JPanel(new GridLayout(2, 1));
 JButton cmd1 = new JButton("A");
 JButton cmd2 = new JButton("B");
 cmd1.setPreferredSize(new Dimension(50, 50));
 cmd2.setPreferredSize(new Dimension(70, 50));
 cmd1.addActionListener(e -> show(cmd1));
 cmd2.addActionListener(e -> show(cmd2));
 panel.add(cmd1);
 panel.add(cmd2);
 return panel;
}

JAVA 9: SWING, DOCUMENTS AND PRINTING

20

swIng detaIls

If you click on the button A you get the message box:

The current width is 70, which is actually determined by the preferred size of the bottom
button, since the width of the WEST component in a BorderLayout is determined by the
component’s preferred size. Here it is a GridLayout component, and its width is determined
by the largest of the two components. When the current height is 84, it is because the
GridLayout component divides the total height into two equal parts. You should note that
the button’s preferred size is completely ignored. If you click on the B button, you get:

Then there is the code for the panel at the bottom:

 private JPanel bund()
 {
 JPanel panel = new JPanel(new FlowLayout());
 JButton cmd = new JButton("A button at the bottom");
 cmd.addActionListener(e -> show(cmd));
 panel.add(cmd);
 panel.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) { show(panel); }});
 return panel;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

21

swIng detaIls

21

In particular, note that the button this time has not defined any preferred size. Clicking
on the button gives you the result:

As in the first case, the current size of the button is determined by its preferred size, but
you should note that the button’s preferred size is determined by the text and the current
font. Clicking in the bottom panel, but outside the button you get:

http://s.bookboon.com/elearningforkids

JAVA 9: SWING, DOCUMENTS AND PRINTING

22

swIng detaIls

and the explanation is the same as with the top panel. The right panel has the following code:

 private JPanel right()
 {
 JPanel panel = new JPanel();
 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
 panel.add(createCmd("Button 1", 100, 30));
 panel.add(createCmd(" Button 2", 120, 40));
 panel.add(createCmd(" Button 3", 150, 50));
 panel.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) { show(panel); }});
 return panel;
 }

 private JButton createCmd(String text, int width, int height)
 {
 JButton cmd = new JButton(text);
 cmd.setPreferredSize(new Dimension(width, height));
 cmd.setMinimumSize(new Dimension(width, height));
 cmd.setMaximumSize(new Dimension(width, height));
 cmd.addActionListener(e -> show(cmd));
 cmd.setAlignmentX(Component.RIGHT_ALIGNMENT);
 return cmd;
 }

and here you should primarily notice the preferred size for the three buttons. If you click
on the buttons, you get:

JAVA 9: SWING, DOCUMENTS AND PRINTING

23

swIng detaIls

That is, in all three cases, the current size of the button is the same as its preferred size and
then a BoxLayout thus determines the size of components using their preferred sizes. If you
click at the bottom of the panel, you get

and thus the size of the right panel is the largest width of the components as well as the
height of the window. You should note that the panel’s preferred height is 120, which is
the sum of the heights of the three buttons, and a BorderLayout ignores this value (EAST
uses the window height).

Back there is the middle panel:

 private JPanel center()
 {
 JPanel panel = new JPanel(new FlowLayout());
 JButton cmd = new JButton("Center");
 cmd.setPreferredSize(new Dimension(100, 50));
 cmd.addActionListener(e -> show(cmd));
 panel.add(cmd);
 panel.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) { show(panel); }});
 return panel;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

24

swIng detaIls

24

If you click on the button, you get:

which shows that the current size of the button is its preferred size as it is in a FlowLayout.
Clicking outside the button, you get

and from this, you can see that CENTER in a BorderLayout ignores the preferred size of the panel.

The example thus shows that it is different how the preferred size is used.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 9: SWING, DOCUMENTS AND PRINTING

25

swIng detaIls

2.3 EVENT HANDLING

Events appear generally when a key is pressed on the keyboard or when something happens
to the mouse (clicking on a button or moving the mouse). Swing components can fire many
different kinds of events, which are types defined in java.awt.event or javax.swing.event, and
many of them are component specific. Each event type defines at least the object that has
fired the event in question but will also often contain other information about the state of
the object. However, there are also events that are not raised by a component.

In order for an object to receive notifications regarding an event, the object must be registered
as listening to that event. To make it possible, the class of the object must implement a
listener interface (for example ActionListener), and then the object can be registered (for
example, with addActionListener()).

The abstract class JComponent defines a protected field of the type EventListenerList, called
listenerList, which all components inherit. The type EventListenerList is an array of pairs
of the form XXEvent / XXListener, where XX is an event type. This array contains the
listeners of the component and which events is listened to, and the component can thus
send notifications to listeners when an event occurs. When an array is used instead of a
collection, it is to increase performance similar to a collection such as an ArrayList is a
relatively complex class. In fact, it means that a new array must be created (and copied)
every time a listener is added, but it is still cheaper than using a collection, because it is
limited how many listeners are registered for a given component.

All events are handled by event handlers by the registered listener objects, and as described
in the book Java 8, these handlers must be performed by the event dispatching thread, which
is the thread that carries out all about location and drawing of the individual components.
The thread is linked to a FIFO queue of events pending processing, and the individual
events are processed in the order in which they are inserted in the queue and the next
one will not be processed until the previous one is completed. Otherwise, one could risk
the state of a component being changed while it, for example, became redrawn. For this
reason, you must not perform an event handler outside the event-dispatching thread by,
for example, to call the method fireXX() directly from another thread. It is also important
that event handlers and code that draws the components are effective, as you may else risk
blocking the system from events in the event queue waiting for treatment.

JAVA 9: SWING, DOCUMENTS AND PRINTING

26

swIng detaIls

To ensure that all codes associated with event handlers are performed in the event dispatching
thread, I have in Java 8 shown how the SwingUtilities class has two methods invokeLater()
and invokeAndWait(), which adds a runnable object to the system event queue. A classic
pattern to ensure that a code is performed in the event dispatching thread is to execute
the code as follows:

 public void doThreadSafeWork()
 {
 if (SwingUtilities.isEventDispatchThread())
 {
 // do all work here…
 }
 else
 {
 Runnable callDoThreadSafeWork = new Runnable()
 {
 public void run()
 {
 doThreadSafeWork();
 }
 };
 SwingUtilities.invokeLater(callDoThreadSafeWork);
 }
 }

Here it is first tested whether the code is performed by the event dispatching thread and
if not, is defined a runnable object that performs the method and it is then sent to the
event dispatching thread.

When SwingUtilities receives a Runnable object by a call of invokeLater(), it is immediately
forwarded to a method postRunnable() in the SystemEventQueueUtilities class. If instead,
the object is received by calling invokeAndWait(), it is first tested that the current thread is
not the event dispatching the thread and, if necessary, an exception is raised. Otherwise,
an object is created that is used as a lock for a critical region that contains two statements,
where it first sends the object to postRunnable() while the other is a wait() on the lock. The
result is that the calling thread is waiting for a notify().

JAVA 9: SWING, DOCUMENTS AND PRINTING

27

swIng detaIls

27

2.4 RENDERING OF COMPONENTS

When the machine displays a component on the screen, it means that the component must
be drawn and it is said that Swing is rendering the component. If the component changes
at a later time – for example if a button is clicked – it must be drawn again. Generally
a component is drawn by performing the method paintComponent(), and is it a custom
component where it is the programmer that is in charge of drawing the component, you
must override this method and the override must always start with the statement super.
paintComponent(). In fact, it’s not simple as much can happen with a component, and for
example the component may be fully or partially covered by another component.

As an example, I will show a simple custom component. It should be immediately said
that a custom component often is written in a different way than the following example
shows, but I will return to it later. If you open the program BirdsProgram, it displays the
following window:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 9: SWING, DOCUMENTS AND PRINTING

28

swIng detaIls

Here the picture is a component as all the other components in the window. It’s a very
simple component that has a fixed size and shows an image with which has a frame been
drawn and has a text been drawn on top of the picture. The component has properties so
you can determine the width of the frame and change the text. You can also change the
font in which the text is drawn, and finally you can change the color of the frame and the
text. If you click on the image, the component raises an ActionEvent that registered listeners
can capture. The code af the component is as follows:

 package birdsprogram;

 import java.awt.*;
 import java.awt.event.*;
 import java.awt.geom.Rectangle2D;
 import javax.swing.*;

 public class TheBirds extends JComponent
 {
 private static ImageIcon birds =
 createImageIcon("/birdsprogram/birds.jpg", 320, 180);
	 private	float	borderWidth	=	5;
 private String text = "Birds in Thy";

 public TheBirds()
 {
 setBackground((Color.black));
 setFont(new Font("Liberation Serif", Font.BOLD, 36));
 addMouseListener(new ClickHandler());
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

29

swIng detaIls

 @Override
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D)g;
 g2d.drawImage(birds.getImage(), 0, 0, this);
	 float	width	=	borderWidth	/	2;
 Rectangle2D rect = new Rectangle2D.Double(width, width,
 320 – borderWidth, 180 – borderWidth);
 g2d.setPaint(getBackground());
 g2d.setStroke(new BasicStroke(borderWidth));
 g2d.draw(rect);
 FontMetrics fm = g2d.getFontMetrics();
 int w = fm.stringWidth(text);
 int h = fm.getAscent();
 g.drawString(text, 160 – (w / 2), 90 + (h / 4));
 }

	 public	float	getBorderWidth()
 {
 return borderWidth;
 }

	 public	void	setBorderWidth(float	borderWidth)
 {
 this.borderWidth = borderWidth;
 repaint();
 }

 public String getText()
 {
 return text;
 }

 public void setText(String text)
 {
 this.text = text;
 repaint();
 }

 @Override
 public void setFont(Font font)
 {
 super.setFont(font);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

30

swIng detaIls

30

 @Override
 public void setBackground(Color color)
 {
 super.setBackground(color);
 }

 @Override
 public Dimension getPreferredSize()
 {
 return new Dimension(320, 180);
 }

 @Override
 public Dimension getMinimumSize()
 {
 return getPreferredSize();
 }

 @Override
 public Dimension getMaximumSize()
 {
 return getPreferredSize();
 }

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 9: SWING, DOCUMENTS AND PRINTING

31

swIng detaIls

 @Override
 public void setPreferredSize(Dimension dimension)
 {
 throw new UnsupportedOperationException();
 }

 @Override
 public void setMinimumSize(Dimension dimension)
 {
 throw new UnsupportedOperationException();
 }

 @Override
 public void setMaximumSize(Dimension dimension)
 {
 throw new UnsupportedOperationException();
 }

 public void addActionListener(ActionListener listener)
 {
 listenerList.add(ActionListener.class, listener);
 }

 public void removeActionListener(ActionListener listener)
 {
 listenerList.remove(ActionListener.class, listener);
 }

 private class ClickHandler extends MouseAdapter
 {
 public void mouseClicked(MouseEvent e)
 {
 ActionListener[] listeners = listenerList.getListeners(ActionListener.class);
 for (ActionListener listener : listeners)
 listener.actionPerformed(
 new ActionEvent(TheBirds.this, ActionEvent.ACTION_PERFORMED, ""));
 }
 }

 public static ImageIcon createImageIcon(String path, int width, int height)
 {
 java.net.URL imgURL = MainView.class.getResource(path);
 if (imgURL != null) return new ImageIcon(new ImageIcon(imgURL, "").
 getImage().getScaledInstance(width, height, Image.SCALE_SMOOTH), "");
 return null;
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

32

swIng detaIls

Firstly, it should be noted that the class inherits JComponent and is therefore a component.
This means, among other things, that the component has all the functionality that a
JComponent provides. The class defines a static variable that refers to the image. You should
note that the class uses the method createImageIcon() to load the image and gives it the size
320 × 180, which is also the size of the component. The class also defines two instance
variables, where the first defines the width of the frame while the other is the text to be
drawn on the image.

The constructor defines the background color (to black). Note that it is possible because the
class TheBirds is a JComponent and therefore has a setBackground() method. The background
color is used to the frame and to the text. Similarly, the constructor defines the font, which
is the font used to draw the text. Finally, the constructor associates an event handler to the
component so that it catches click with the mouse.

Then there is the method paintComponent(), which is the method that must be performed
when it is necessary to draw the component, and that is when the window opens and the
component is displayed. You should note that the method is never called explicit, but is
called by the runtime system when it is necessary to draw the window. The method has a
parameter of the type Graphics, which is an abstract base class that defines how components
can be drawen on different devices such as a screen. One can think of a Graphics object
as a canvas where a component can draw and the class provides a variety of drawing tools
available. In addition, the class defines properties in the form of font and color, cutting area
and a coordinate system. The upper left corner is (0,0) and positive × values are oriented
to the right while positive y values are oriented downwards. The paintComponent() method
starts by calling the base class’ paintComponent(), and then performing a type of cast of the
parameter to a Graphics2D object. The Graphics2D class is derived from Graphics (and has
been introduced along with Swing after the introduction of Java 2). Improved drawing tools
are available, and therefore, in practice, you always performs this type of cast. An example
of a drawing tool is drawImage(), and the third statement uses this method to draw the
image. The next five statements defines and draw the frame. It involves telling what color
to draw with which pen (how thick a line) should be drawn with and finally defining the
rectangle that defines the frame. Drawing geometric figures are treats detailed in the next
book, but it requires some calculations to get the frame drawn within the component’s
physical boundary at the 320 × 180 pixels. The last statements in paintComponent() are used
to draw the text, and the challenge is to get the text drawn in the middle of the component.

JAVA 9: SWING, DOCUMENTS AND PRINTING

33

swIng detaIls

33

The rest of the code concerns primarily to define accessor methods for properties. First,
there are the two instance variables borderWidth and text. Here you should note the two set
methods end with repaint(). This statement forces the component to become redrawen. The
method fires an event that is inserted into the event queue, and the event dispatch thread
will then redraw the component when time is. There are also overrides of the two methods
setFont() and setBackground() which do nothing but call the corresponding method in the
base class. Note that no repaint() is required here, as the basic class takes care of it. Finally,
I also override the methods getPreferredSize(), getMinimumSize() and getMaximumSize(), so
they return a fixed size. It is for the sake of layout managers, as they often use these methods.
Since the size is fixed, it does not make sense to use the corresponding set methods (they
would not have any effect), and therefore they are overstyred so that they raise an exception.
Alternatively, one could instead overriding methods as empty methods.

Back there is the event management, which must necessarily implement the methods
addActionListener() and removeActionListener(). Here you should note that listenerList is
defined protected in the base class and can thus can be referred to from the derivative class
TheBirds. Also note how listenerList is used in the ClickHandler class to send notifications
to any listeners.

http://s.bookboon.com/EOT

JAVA 9: SWING, DOCUMENTS AND PRINTING

34

swIng detaIls

As for the main application that opens the window above, I will not mention it here as
it does not add anything new, but I can mention that it has a BorderLayout and shows
TheBirds component encapsulated in a FlowLayout.

The above component draws a text using a particular font, and in fact fonts are quite complex.
Considering the figure below, it should illustrate two lines drawn with a particular font.
The fully drawn lines are the baseline, and when drawString() draws a text, the y-coordinates
refer to the baseline. The part above the baseline is called ascent, while the part below the
baseline is called descent. Between lines there is a distance and height is the distance between
two baselines.

The above paintComponent() uses the class FontMetrics, which generally returns a number
of information about the current font. The class also has a method called stringWidth(),
which returns the length of a string measured relative to the current font. In the example
above, these values are used to draw the text centered in the component.

The key to validating and rendering components is performed by a service called RepaintManager.
It is responsible for sending events to the event dispatch queue, which is done using two
methods repaint() and revalidate() that encapsulate events in runnable objects and send them
to invokeLater(). The difference is that repaint() tells the component to be redrawn and thus
that the paintComponent() needs to be executed again, while the revalidate() tells the layout
manager that the components must be layout again, so that their location and size should
be recalculated. Swing components use as default double-buffering, which is a technique
in which, instead of drawing directly on the physical device, the drawing is performed in a
memory buffer. One can think of it as a memory representation of a drawing like a picture,
and after the image is drawen, it is sent to the physical device as a hole, which is very fast
and for us people it means that we get a stable image. Otherwise, in complicated screens,
one might find that the drawing process takes time.

JAVA 9: SWING, DOCUMENTS AND PRINTING

35

swIng detaIls

I want to show another example of a custom component. If you open the program
LabelProgram, you get the following window:

In the top row there are a number of components consisting of buttons and radio buttons.
In the bottom row there is a label and an entry field, and it is a custom component called
InputField. The components in the upper row are used to define different properties for
the custom component:

 - the text to the component’s label
 - where the text should be shown (north, west, south or east)
 - the with of the text
 - the entry field’s preferred size
 - the font to text
 - the font to the entry field

The component is a JPanel with two components: A JPanel and a JTextField:

 package labelprogram;

 import javax.swing.*;
 import java.beans.*;
 import java.awt.*;

 public class InputField extends JPanel
 {
	 public	static	final	String	NORTH	=	BorderLayout.NORTH;
	 public	static	final	String	SOUTH	=	BorderLayout.SOUTH;
	 public	static	final	String	EAST	=	BorderLayout.EAST;
	 public	static	final	String	WEST	=	BorderLayout.WEST;
	 private	final	JTextField	field	=	new	JTextField();
	 private	final	JLabel	caption	=	new	JLabel();
 private String position;

JAVA 9: SWING, DOCUMENTS AND PRINTING

36

swIng detaIls

36

 public InputField(String text)
 {
 this(text, 100, WEST);
 }

 public InputField(String text, int width)
 {
 this(text, width, WEST);
 }

 public InputField(String text, int width, String position)
 {
 setLayout(new BorderLayout(5, 0));
 caption.setHorizontalAlignment(JLabel.RIGHT);
 caption.setText(text);
 add(caption, position);
	 add(field);
 this.position = position;
	 field.setPreferredSize(new	Dimension(width,	field.getPreferredSize().height));
 }

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 9: SWING, DOCUMENTS AND PRINTING

37

swIng detaIls

 public String getCaption()
 {
 return caption.getText();
 }

 public Font getCaptionFont()
 {
 return caption.getFont();
 }

 public Font getTextFont()
 {
	 return	field.getFont();
 }

 public int getCaptionWidth()
 {
 return caption.getPreferredSize().width;
 }

 public Dimension getFieldSize()
 {
	 return	field.getPreferredSize();
 }

 public String getText()
 {
	 return	field.getText();
 }

 public String getPosition()
 {
 return position;
 }

 public void setCaption(String text)
 {
 String oldValue = caption.getText();
 caption.setText(text);
	 firePropertyChange("Caption",	oldValue,	text);
 }

 public void setCaptionFont(Font font)
 {
 Font oldValue = caption.getFont();

JAVA 9: SWING, DOCUMENTS AND PRINTING

38

swIng detaIls

 caption.setFont(font);
 revalidate();
	 firePropertyChange("CaptionFont",	oldValue,	font);
 }

 public void setTextFont(Font font)
 {
 Font oldValue = caption.getFont();
	 field.setFont(font);
	 field.setPreferredSize(new	Dimension(field.getPreferredSize().width,
	 field.getGraphics().getFontMetrics().getHeight()	+	3));
 revalidate();
	 firePropertyChange("TextFont",	oldValue,	font);
 }

 public void setCaptionWidth(int width)
 {
 Integer oldValue = getCaptionWidth();
 caption.setPreferredSize(
 new Dimension(width, caption.getPreferredSize().height));
 revalidate();
	 firePropertyChange("CaptionWidth",	oldValue,	new	Integer(width));
 }

 public void setPosition(String position)
 {
 String oldValue = this.position;
 this.position = position;
 remove(caption);
 add(caption, position);
 if (position.equals(WEST)) caption.setHorizontalAlignment(JLabel.RIGHT);
 else caption.setHorizontalAlignment(JLabel.LEFT);
 revalidate();
	 firePropertyChange("Position",	oldValue,	position);
 }

 public void setFieldSize(Dimension size)
 {
	 Dimension	oldValue	=	field.getPreferredSize();
	 field.setPreferredSize(size);
 revalidate();
	 firePropertyChange("FieldSize",	oldValue,	size);
 }

 @Override
 public Dimension getPreferredSize()
 {

JAVA 9: SWING, DOCUMENTS AND PRINTING

39

swIng detaIls

39

 if (position.equals(EAST) || position.equals(WEST))
 {
 int height = Math.max(caption.getPreferredSize().height,
	 field.getPreferredSize().height);
 int width = caption.getPreferredSize().width +
	 field.getPreferredSize().width;
 return new Dimension(width, height);
 }
 else
 {
 int height = caption.getPreferredSize().height +
	 field.getPreferredSize().height;
 int width = Math.max(caption.getPreferredSize().width,
	 field.getPreferredSize().width);
 return new Dimension(width, height);
 }
 }

 @Override
 public Dimension getMinimumSize()
 {
 return getPreferredSize();
 }

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 9: SWING, DOCUMENTS AND PRINTING

40

swIng detaIls

 @Override
 public Dimension getMaximumSize()
 {
 return getPreferredSize();
 }

 @Override
 public void setPreferredSize(Dimension size)
 {
 throw new UnsupportedOperationException();
 }

 @Override
 public void setMinimumSize(Dimension size)
 {
 throw new UnsupportedOperationException();
 }

 @Override
 public void setMaximumSize(Dimension size)
 {
 throw new UnsupportedOperationException();
 }

 @Override
 public void addPropertyChangeListener(PropertyChangeListener listener)
 {
 listenerList.add(PropertyChangeListener.class, listener);
 }

 @Override
 public void removePropertyChangeListener(PropertyChangeListener listener)
 {
 listenerList.remove(PropertyChangeListener.class, listener);
 }

 @Override
	 protected	void	firePropertyChange(String	name,	Object	oldValue,	Object	newValue)
 {
 PropertyChangeEvent event =
 new PropertyChangeEvent(this, name, oldValue, newValue);
 for (PropertyChangeListener listener :
 listenerList.getListeners(PropertyChangeListener.class))
 listener.propertyChange(event);
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

41

swIng detaIls

The code is comprehensive, but in principle simple, and you should notice that it requires
some code to write a good custom component – and more than what this example shows.
The class inherits a JPanel with a BorderLayout, where there is a JLabel NORTH, WEST,
SOUTH, or EAST. CENTER is a JTextField. The component implements seven properties,
but only one is defined as a variable in the class InputField. The others are represented as
properties pertaining to the two components that the custom component consists of. You
should note that the methods of the component’s properties performs a revalidate() as changes
in component’s properties mean that the label or input field changes the size and possibly
also the location. Also note the setPosition() method, which means that the label component
must be placed elsewhere. It requires that it is first is removed from the container and then
placed the right place. Also note that the set methods fire a PropertyChangeEvent. The class
should therefore have methods so listeners can sign up for PropertyChange notifications and
possibly calculates new locations.

One of the challenges with custom components is the size where getPreferredSize() returns
a value, so layout managers treat the components properly. In this case, the size depends
of the two internal components, and you must note how the getPreferredSize() method
is implemented.

Below is the code of the window that uses the component:

 package labelprogram;

 import java.awt.*;
 import javax.swing.*;
 import java.awt.event.*;
 import javax.swing.border.*;
 import java.beans.*;

 public class MainView extends JFrame implements PropertyChangeListener
 {
 private InputField component = new InputField("Label");

 public MainView()
 {
 super("LabelProgram");
 setSize(700, 300);
 setLocationRelativeTo(null);
 createView();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 component.addPropertyChangeListener(this);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

42

swIng detaIls

42

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout(0, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 panel.add(top(), BorderLayout.NORTH);
 panel.add(wrap(component));
 add(panel);
 }

 private JPanel top()
 {
 JPanel panel = new JPanel(new FlowLayout(FlowLayout.LEFT));
 panel.add(createButton("Caption", e -> { String text =
 JOptionPane.showInputDialog(MainView.this, component.getCaption());
 if (text != null) component.setCaption(text); }));
 ButtonGroup group = new ButtonGroup();
 panel.add(createRadio("North", group, false,
 e -> component.setPosition(InputField.NORTH)));
 panel.add(createRadio("West", group, true,
 e -> component.setPosition(InputField.WEST)));
 panel.add(createRadio("South", group, false,
 e -> component.setPosition(InputField.SOUTH)));
 panel.add(createRadio("East", group, false,

http://s.bookboon.com/GTca

JAVA 9: SWING, DOCUMENTS AND PRINTING

43

swIng detaIls

 e -> component.setPosition(InputField.EAST)));
 panel.add(createButton("Width", e -> { String text =
 JOptionPane.showInputDialog(MainView.this, "Caption height");
 if (text != null) { int width = Integer.parseInt(text);
 component.setCaptionWidth(width); }}));
 panel.add(createButton("Text", e -> { String text1 =
 JOptionPane.showInputDialog(MainView.this, "Width"); String text2 =
 JOptionPane.showInputDialog(MainView.this, "Height");
 if (text1 != null && text2 != null) { int width = Integer.parseInt(text1);
 int height = Integer.parseInt(text2);
 component.setFieldSize(new Dimension(width, height)); }}));
 panel.add(createButton("Label", e -> { new FontView(new FontListener()
{
 public void fontChanged(FontEvent e) {
 component.setCaptionFont(e.getFont());} }); }));
 panel.add(createButton("Field", e -> { new FontView(new FontListener()
{
 public void fontChanged(FontEvent e)
 { component.setTextFont(e.getFont());} }); }));
 return panel;
 }

 private JRadioButton createRadio(String text, ButtonGroup group,
 boolean checked, ActionListener listener)
 {
 JRadioButton cmd = new JRadioButton(text);
 cmd.setSelected(checked);
 cmd.addActionListener(listener);
 group.add(cmd);
 return cmd;
 }

 private JButton createButton(String text, ActionListener listener)
 {
 JButton cmd = new JButton(text);
 cmd.addActionListener(listener);
 return cmd;
 }

 private JPanel wrap(JComponent component)
 {
 JPanel panel = new JPanel(new FlowLayout(FlowLayout.LEFT));
 panel.add(component);
 return panel;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

44

swIng detaIls

 @Override
 public void propertyChange(PropertyChangeEvent e)
 {
 JOptionPane.showMessageDialog(this, e.getPropertyName() + "\nFrom: " +
 e.getOldValue() + "\nTo: " + e.getNewValue());
 }
 }

Here’s also not much to explain, but you should note that the class implements the interface
PropertyChangeListener, as it should receive notifications regarding changes to properties on
the object component. This means that the class must implement the method propertyChange(),
which in this case opens a message box that shows the change. For practical purposes, of
course, it does not matter much, and the goal is also to show you how to capture changes
for a component’s properties.

The class (the program) uses a simple dialog box to define a font. It’s a very simple dialog
box (and I do not want to display the code here), but problem 1 below is about improving
the program at that point.

2.5 FOCUS AND THE KEYBOARD

Swing components are placed in a container and one of the components has focus, so that
events related to the keyboard are sent to this component. The general focus cycle is from
left to right and from top to bottom, and you switch focus with TAB and CTRL-TAB,
and if you want to change focus in the opposite direction, use SHIFT-TAB and CTRL-
SHIFT-TAB. Focus is controlled using an instance of the FocusManager class. Viewed from
the programmer, there are not so many challenges in it, but a component sends an event
when it gets focus and again when it loses focus:

1. focusGained(FocusEvent e) when the component gets focus
2. focusLost(FocusEvent e) when the component loses the focus

JAVA 9: SWING, DOCUMENTS AND PRINTING

45

swIng detaIls

45

When a component has foccus and a key is pressed on the keyboard, the component
(depending on the component in question) can send a KeyEvent. These events can be
captured by associating a KeyListener. Unlike other events, a KeyEvent is sent, possibly
before the corresponding operation is performed. When a key is pressed, three KeyEvents
are generally fired:

1. KEY_PRESSED that occurs when a key is pressed. The key is specified with a
keyCode property, and getKeyCode() can get a virtual code representing the key,
such as KeyEvent.VK_ENTER. You should be aware that combination keys such
as CTRL-C fires two KEY_PRESSED events, and the virtual codes are KeyEvent.
VK_CTRL and KeyEvent.VK_C. A KeyEvent also has a property keyChar, which
contains the unicode code.

2. KEY_RELEASED are identical to KEY_PRESSED events and firing when the key
is released, but they are not fired as often as KEY_PRESSED events.

3. KEY_TYPED are events that are firing between KEY_PRESSED and KEY_RELEASED,
but no keyCode is attached. These events are not fired for keys that do not have a
unicode representation such as PAGE UP and PRINT SCREEN.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 9: SWING, DOCUMENTS AND PRINTING

46

swIng detaIls

Holding a key down (for keys with a unicode representation) briefly generates sequences
of KEY_PRESSED and KEY_TYPED events.

Each KeyEvent has associated so-called modifiers, which indicate the state of SHIFT, CTRL,
ALT and META keys at the time of pressing a key. It is an int, which is a bitwise OR of
the following constants

 - InputEvent.SHIFT_MASK
 - InputEvent.CTRL_MASK
 - InputEvent.ALT_MASK
 - InputEvent.ALT_GRAPH_MASK
 - InputEvent.META_MASK
 - InputEvent.BUTTON1_MASK
 - InputEvent.BUTTON2_MASK
 - InputEvent.BUTTON3_MASK

The value can be determined by getModifiers() and you can test for the single keys with
isShiftDown(), isControlDown(), isAltDown() and isMetaDown().

It is thus possible to control components using of the keyboard by registering KeyListener
objects. Since it can be very extensive (much to be written), Swing has defined an alternative
way of using KeyStroke objects, as you also call keyboard accelerators. A KeyStroke encapsulates
a keyCode, a modifier value, and a boolean value, which indicates whether it is a key press (false)
or a key release (true). The KeyStroke class has 5 static methods that create KeyStroke objects:

 - getKeyStroke(char keyChar)
 - getKeyStroke(int keyCode, int modifiers)
 - getKeyStroke(int keyCode, int modifiers, boolean onKeyRelease)
 - getKeyStroke(String representation)
 - getKeyStroke(KeyEvent anEvent)

To register a listener for the keyboard for a JComponent is used:

registerKeyBoardAction(ActionListener action, KeyStroke stroke, int condition)

JAVA 9: SWING, DOCUMENTS AND PRINTING

47

swIng detaIls

The ActionListener parameter must define the method actionPerformed() to perform the
necessary operations corresponding to the KeyStroke parameter. The last parameter specifies
under what conditions that KeyStroke is valid:

1. JComponent.WHEN_FOCUSED, the ActionListener is called only if the component
to which the KeyStroke object relates has focus.

2. JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, the component’s
ActionListeners are called only if the component that the KeyStroke object concerns
is on a higher level (ancestor) than the component that has focus.

3. JComponent.WHEN_IN_FOCUSED_WINDOW, the ActionListener is only called if
the component to which the KeyStroke object relates is in a window that has focus
(JFrame, JDialog, JWindow).

For example, if you want to define an ActionListener for ALT-H, regardless of which
component in a JFrame with the name frame that has focus, you can write something like
the following:

 KeyStroke keyStroke =
 KeyStroke.getKeyStroke(KeyEvent.VK_H, InputEvent.ALT_MASK, false);
 frame.getRootPane().registerKeyBoardAction(listener, keyStroke,
 JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);

where listener is the name of the actual ActionListener.

Each JComponent maintains a Hashtable with all KeyStrokes as client properties. When a
KeyStroke is registered with registerKeyboardAction(), it is added to this data structure. Only
one ActionListener for each KeyStroke can be registered and if there is already an ActionListener
for a particular KeyStroke, a new one overwrites the previous one. You can determine the
current KeyStroke bindings using the getRegisteredKeyStrokes() method and remove all bindings
with resetKeyboardActions().

By an Action, you basically understand an instance of an ActionListener with Hashtable
bound properties, in fact, similarly to client properties in JComponent. Typically, you use
Action objects to record keyboard actions.

As a small example, the program KeyStrokeProgram opens the following window:

JAVA 9: SWING, DOCUMENTS AND PRINTING

48

swIng detaIls

48

The window has four buttons. For each of the two top buttons, two shortcuts are attached,
while each of the two lower ones has attached one shortcut. Clicking one of the buttons or
pressing a shortcut key opens a message box. The difference is that for the top two buttons,
shortcut keys are assigned as WHEN_FOCUSED, and the buttons must therefore have
focus for the keys to work. For the two bottom buttons, the shortcut keys are assigned as
WHEN_IN_FOCUSED_WINDOW, and they therefore work when only the window or
parent component has focus. In order to illustrate it, clicking the mouse gives the panel that
contains the buttons, focus, and if you do, the background of the panel the background
becomes red. The window’s code is as shown below:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 9: SWING, DOCUMENTS AND PRINTING

49

swIng detaIls

 package keystrokeprogram;

 import java.awt.*;
 import javax.swing.*;
 import java.awt.event.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 private Action actionListener = new AbstractAction() {
 public void actionPerformed(ActionEvent e) {
 JButton source = (JButton)e.getSource();
 JOptionPane.showMessageDialog(MainView.this, source.getText());
 }
 };

 public MainView()
 {
 setSize(600, 250);
 setLocationRelativeTo(null);
 createView();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new GridLayout(2, 2, 20, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20,20));
 panel.setBackground(Color.blue);
 JButton cmd1 = new JButton(
 "<html><h2> Buttom 1</h2><center>CTRL-ALT-C
SHIFT V</center></html>");
 JButton cmd2 = new JButton(
 "<html><h2> Buttom 2</h2><center>ENTER
SHIFT ESC</center></html>");
 JButton cmd3 =
 new JButton("<html><h2>Buttom 3</h2><center>F4</center></html>");
 JButton cmd4 = new JButton("<html><h2> Buttom 4</h2>
 <center>SHIFT-CTRL-ALTGR
space</center></html>");
 assignKey(cmd1, JComponent.WHEN_FOCUSED, "CRTL-ALT-C-KEY",
 KeyStroke.getKeyStroke("control alt C"));
 assignKey(cmd1, JComponent.WHEN_FOCUSED, "SHIFT-V-KEY",
 KeyStroke.getKeyStroke("shift V"));
 assignKey(cmd2, JComponent.WHEN_FOCUSED, "ENTER-KEY",
 KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0, true));
 assignKey(cmd2, JComponent.WHEN_FOCUSED, "SHIFT-ESC-KEY",
 KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE, InputEvent.SHIFT_MASK, false));

JAVA 9: SWING, DOCUMENTS AND PRINTING

50

swIng detaIls

 assignKey(cmd3, JComponent.WHEN_IN_FOCUSED_WINDOW, "F4-KEY",
 KeyStroke.getKeyStroke(KeyEvent.VK_F4, 0));
 assignKey(cmd4, JComponent.WHEN_IN_FOCUSED_WINDOW, "SPACE-KEY",
 KeyStroke.getKeyStroke(KeyEvent.VK_SPACE, InputEvent.SHIFT_MASK |
 InputEvent.CTRL_MASK | InputEvent.ALT_GRAPH_MASK, true));
 panel.add(cmd1);
 panel.add(cmd2);
 panel.add(cmd3);
 panel.add(cmd4);
 panel.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) { panel.requestFocus(); }
 });
 panel.addFocusListener(new FocusListener() {
 public void focusGained(FocusEvent e) { panel.setBackground(Color.red); }
 public void focusLost(FocusEvent e) { panel.setBackground(Color.blue); }
 });
 add(panel);
 }

 private void assignKey(JComponent component, int condition,
 String name, KeyStroke keyStroke)
 {
 component.getInputMap(condition).put(keyStroke, name);
 component.getActionMap().put(name, actionListener);
 }
 }

EXERCISE 2

You should write a program called FocusProgram that opens a Window as shown below.
The window has 25 input fields, and the field with focus is shown with a red background
and a white text. Fields without focus must have white background af black text. If must
de possible to move from field to field by the arrow keys, and if a field has focus and you
type Enter the program should opens a message box:

JAVA 9: SWING, DOCUMENTS AND PRINTING

51

swIng detaIls

51

that show indexes for the row and column and the value entered in the field.

http://s.bookboon.com/BI

JAVA 9: SWING, DOCUMENTS AND PRINTING

52

swIng detaIls

To solve the exercise the input fields shoud not be JTextField components, but a component
extended from JTextField:

 class InputField extends JTextField implements FocusListener, KeyListener
 {
 private int row;
 private int col;

 public InputField(int row, int col)
 {
 …
 }

 public void keyReleased(KeyEvent e)
 {
 }

 public void keyPressed(KeyEvent e)
 {
 switch (e.getKeyCode())
 {
 case KeyEvent.VK_LEFT:
 moveLeft();
 e.consume();
 break;
 }
 }

 public void keyTyped(KeyEvent e)
 {
 }

 private void moveLeft()
 {
 ….
 }
 }

that is an inner class.

JAVA 9: SWING, DOCUMENTS AND PRINTING

53

swIng detaIls

53

PROBLEM 1

Start by creating a copy of the program LabelProgram. The program has a dialog box
called FontView that can be used to select a font. It’s a very simple dialog box and should
be improved to increase user friendliness. You must write a component that you can call
FontChooser, which can be used to select the parameters of a font. For example, you can
write a class FontChooser, which has an openDialog() method, which opens a dialog box for
selecting a font, and the class can then have a method that returns the selected font if the
OK button is clicked.

Once you’ve written the class and tested it, delete the FontView class from the project and
instead use your new class.

When you think your FontChooser works properly, take a copy of the latest version of the
PaLib library (the version from the book Java 6) and move the FontChooser class to the
library. The project LabelProgram may have a reference to PaLib. If necessary, remove this
reference and reference the new version of PaLib. Remove the FontChooser class from the
project and try the program again, so it now uses the class in PaLib.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 9: SWING, DOCUMENTS AND PRINTING

54

layout

3 LAYOUT

A window consists of panels in which to place components. Viewed from the programmer,
a window is a JFrame, JDialog or a JWindow (a window without a title bar), all of which
have a single panel of components. There is a special panel called rootPane, which has the
type of JRootPane and which rarely needs to be referred to. It contains two panels, called
respectively layeredPane and glassPane. Here is the last a JPanel that general is invisible
(transparent), but can be used to place something in a window that is located above all.
The other has the type JLayeredPane and is also a panel that is not directly referenced, but
it has two panels, where the first one is special and is called JMenuBar and is used for the
window menu while the other is a JPanel and is called contentPane and is for the other
contents of the window (see below). It is therefore for in the window’s contentPane that
you want to add components, but generally you do not have to think about it, because if
you (for example, in the constructor of a JFrame or a method called from the constructor
write something like the following:

 setLayout(new FlowLayout);
 add(component);

it automatically refers to the window’s contentPane – at least today, but previously it was
necessary to write

 getContentPane().setLayout(new FlowLayout);
 getContentPane().add(component);

A panel has a layout manager that determines how components are placed in the panel.
By default, a JFrame and a JDialog have a BorderLayout, while a JPanel has a FlowLayout.

JAVA 9: SWING, DOCUMENTS AND PRINTING

55

layout

In addition to a layout manager, a JPanel may have attached a Border, which I have used
many times in the form of an EmtyBorder. Swing defines many options for borders. Opening
the program BorderProgram gives you a window with 12 JLabel components organized in
a GridLayout with 6 rows and 2 columns.

Each label has a border, and they differ according to the type and the parameters with which
the Border object is created. The code is shown below and there is not much to explain,
but you should observe how the different Border objects are created:

 package borderprogram;

 import java.awt.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 private static ImageIcon donnert =
 palib.gui.Tools.createImageIcon("/swing04/donnert.gif", 15, 15);

 public MainView()
 {
 setTitle("Borders");
 getContentPane().setBackground(Color.yellow);
 ((JPanel)getContentPane()).setBorder(new EmptyBorder(5, 5, 5, 5));
 setLayout(new GridLayout(6, 2, 5, 5));

JAVA 9: SWING, DOCUMENTS AND PRINTING

56

layout

56

 add(createPanel("RAISED BevelBorder", new BevelBorder(BevelBorder.RAISED)));
 add(createPanel("LOWERED BevelBorder", new BevelBorder(BevelBorder.LOWERED)));
 add(createPanel(
 "Black LineBorder, thickness = 5", new LineBorder(Color.black, 5)));
 add(createPanel("EmptyBorder with thickness of 10",
 new EmptyBorder(10,10,10,10)));
 add(createPanel("RAISED EtchedBorder", new EtchedBorder(EtchedBorder.RAISED)));
 add(createPanel("LOWERED EtchedBorder",
 new EtchedBorder(EtchedBorder.LOWERED)));
 add(createPanel("RAISED SoftBevelBorder",
 new SoftBevelBorder(SoftBevelBorder.RAISED)));
 add(createPanel("LOWERED SoftBevelBorder",
 new SoftBevelBorder(SoftBevelBorder.LOWERED)));
 add(createPanel("MatteBorder", new MatteBorder(donnert)));
 add(createPanel("TitledBorder using MatteBorder",
 new TitledBorder(new MatteBorder(donnert), "Title")));
 add(createPanel("TitledBorder using LineBorder",
 new TitledBorder(new LineBorder(Color.blue, 10), "Title")));
 add(createPanel("TitledBorder using EmptyBorder",
 new TitledBorder(new EmptyBorder(10,10, 10, 10), "Title")));
 pack();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 9: SWING, DOCUMENTS AND PRINTING

57

layout

 private JPanel createPanel(String text, Border border)
 {
 JPanel panel = new JPanel();
 panel.setBorder(border);
 panel.add(new JLabel(text));
 return panel;
 }
 }

You should note that when writing

 setLayout(new GridLayout(6, 2, 5, 5));

it refers to the window’s contentPane, and the same applies when writing

 add(createPanel("RAISED BevelBorder", new BevelBorder(BevelBorder.RAISED)));

On the other hand, it is in the statement (which sets the background color for the window’s
content pane):

 getContentPane().setBackground(Color.yellow);

necessary to refer to the window’s content pane, otherwise you set the background color
of the window’s rootpane, which has no effect. Something similar applies to the statement

 ((JPanel)getContentPane()).setBorder(new EmptyBorder(5, 5, 5, 5));

there define an empty border around the default layout manager in the window’s content pane.

Note that the window is not assigned any size with setSize(). Instead, the constructor calls
a method:

 pack();

This means that the size of the window is adjusted to the preferred size of the current
components, as determined by the 12 label components, and the GridLayout place the
components into cells of the same size.

JAVA 9: SWING, DOCUMENTS AND PRINTING

58

layout

3.1 LAYOUT MANAGERS

Layout managers are treated in the book Java 2, where I have shown how most managers
work, and while there are more, I will not associate additional comments with the classic
layout managers in this place. With the layout managers discussed in Java 2, you can actually
design any layout for a window – although it is not necessarily simple. For that reason or
maybe because you have special needs, you may be interested in writing your own layout
manager, and I will below show a two examples of how to do.

A layout manager is basically a class that implements the interface LayoutManager, or a
derived interface called LayoutManager2. The difference is whether it is a layout manager
where you call so-called constraints for the components’ location, what you do in, for
example, a BorderLayout and a GridBagLayout. The interface LayoutManager defines basically
two methods:

 - preferredLayoutSize(Container parent) that determines the preferred size for the
actual container

 - layoutContainer(Container parent) that layouts the components in the container

If you opens the program LayoutProgram, you get the following window:

JAVA 9: SWING, DOCUMENTS AND PRINTING

59

layout

59

This is an example of a typical dialog box where you can enter the name and address of a
person, and click OK, the person will be added to the list box. In the example, two people
have been created. The combo box contains the zip codes. If you double-click a name in
the list box, the person’s data is inserted into the fields where they can be edited and you
can also delete the person. The example should show something about layout, and the data
entered will not be saved. The goal is that the class should be simple. In addition to the
above window, the program has two classes where Person represents a person with a property
for each data item that can be entered. In addition, there is the class Zipcodes, which retrieve
the zip codes from the database.

The main window does not contain anything new to what has been said about Swing. Below
is the part of the code that creates the window:

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout(0, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 panel.add(createTop(), BorderLayout.NORTH);
 panel.add(createBottom(), BorderLayout.SOUTH);
 panel.add(createCenter());
 add(panel);
 }

http://s.bookboon.com/Subscrybe

JAVA 9: SWING, DOCUMENTS AND PRINTING

60

layout

 private JScrollPane createCenter()
 {
 JList list = new JList(model);
 list.addMouseListener(new ClickHandler());
 return new JScrollPane(list);
 }

 private JPanel createTop()
 {
 JPanel panel = new JPanel(new GridLayout(6, 1, 0, 10));
 panel.add(createLine("Fist name", txtFirstname));
 panel.add(createLine("Last name", txtLastname));
 panel.add(createLine("Address", txtAddress));
 panel.add(createLine("ZIP code", lstZipcode = createList()));
 panel.add(createLine("Phone.", txtPhone));
 panel.add(createLine("Email", txtEmail));
 return panel;
 }

 private JPanel createBottom()
 {
 JPanel panel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
 panel.add(createButton("Remove", new RemoveHandler()));
 panel.add(createButton("Ok", new OkHandler()));
 panel.add(createButton("Clear", new ClearHandler()));
 return panel;
 }

 private JButton createButton(String text, ActionListener listener)
 {
 JButton cmd = new JButton(text);
 cmd.addActionListener(listener);
 return cmd;
 }

 private JPanel createLine(String text, JComponent component)
 {
 JPanel panel = new JPanel(new BorderLayout());
 JLabel label = new JLabel(text);
 label.setPreferredSize(new Dimension(100, 22));
 panel.add(label, BorderLayout.WEST);
 panel.add(component);
 return panel;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

61

layout

You should note that the layout consists of a BorderLayout, that CENTER has a JScrollPane
with a list box while NORTH and SOUTH have a JPanel. SOUTH is a JPanel with a
FlowLayout, which lay out the three buttons, while NORTH is a JPanel with a GridLayout
with 6 rows. Each row contains a BorderLayout with a label and component that is either
a JTextField or a JComboBox.

If you look at the panel at the top, it’s a typical layout for a dialog box where the user has
to enter something. It is a layout that consists of lines that contain a JLabel and another
component. The situation seems so often that one might consider writing a special layout
manager, which could facilitate the design of such a dialog box. That is exactly the subject
of the example LayoutProgam1.

The example opens the same window, and the code is almost the same. In the main
window, the createLine() method is removed and the method createTop() has been changed
to the following:

 private JPanel createTop()
 {
 JPanel panel = new JPanel(new DialogLayout(10, 10));
 panel.add(new JLabel("Firstname"));
 panel.add(txtFirstname);
 panel.add(new JLabel("Lastname"));
 panel.add(txtLastname);
 panel.add(new JLabel("Address"));
 panel.add(txtAddress);
 panel.add(new JLabel("ZIP code"));
 panel.add(lstZipcode = createList());
 panel.add(new JLabel("Phone"));
 panel.add(txtPhone);
 panel.add(new JLabel("Email"));
 panel.add(txtEmail);
 return panel;
 }

Here, the 12 components are added directly to the panel that has a layout manager of the
type DialogLayout. This is an example of a custom layout manager. It can be used in a
container containing pairs of components of the form

label1, komponent1
label2, komponent2
…

JAVA 9: SWING, DOCUMENTS AND PRINTING

62

layout

62

and added to the container in that order, which is an essential condition for this layout
manager. The layout manager will then put the components into two columns, where the
first column (called the header column) contains all label components, while the other
column contains the other fields. The width of the first column is by default the largest
width of all label components, but you can specify a fixed size. The width of the second
column is the largest width of the fields. The code is as follows:

 public class DialogLayout implements LayoutManager
 {
 private int divider = -1; // indicats	a	possible	fixed	width	of	the	headers
 private int hGap = 10; // horizontal gap between components
 private int vGap = 5; // vertical gap between components

 public DialogLayout()
 {
 }
 public DialogLayout(int hGap, int vGap)
 {
 this.hGap = hGap;
 this.vGap = vGap;
 }

http://s.bookboon.com/volvo

JAVA 9: SWING, DOCUMENTS AND PRINTING

63

layout

 public void addLayoutComponent(String name, Component comp)
 {
 }

 public void removeLayoutComponent(Component comp)
 {
 }

 public Dimension preferredLayoutSize(Container parent)
 {
 int left = getDivider(parent);
 int w = 0;
 int h = 0;
 for (int k = 1 ; k < parent.getComponentCount(); k += 2)
 {
 Dimension d = parent.getComponent(k).getPreferredSize();
 w = Math.max(w, d.width);
 h += d.height + vGap;
 }
 h -= vGap;
 Insets insets = parent.getInsets();
 return new Dimension(
 left + w + insets.left + insets.right, h + insets.top + insets.bottom);
 }

 public Dimension minimumLayoutSize(Container parent)
 {
 return preferredLayoutSize(parent);
 }

 public void layoutContainer(Container parent)
 {
 int left = getDivider(parent);
 Insets insets = parent.getInsets();
 int w = parent.getWidth() – insets.left – insets.right – left;
 int x = insets.left;
 int y = insets.top;
 for (int k = 1 ; k < parent.getComponentCount(); k += 2)
 {
 Component component = parent.getComponent(k);
 Dimension d = component.getPreferredSize();
 parent.getComponent(k – 1).setBounds(x, y, left – hGap, d.height);
 component.setBounds(x + left, y, w, d.height);
 y += d.height + vGap;
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

64

layout

 public int getHGap()
 {
 return hGap;
 }

 public int getVGap()
 {
 return vGap;
 }

 public void setDivider(int divider)
 {
 if (divider > 0) this.divider = divider;
 }

 public int getDivider()
 {
 return divider;
 }

 private int getDivider(Container parent)
 {
 if (divider > 0) return divider;
 int left = 0;
 for (int k = 0; k < parent.getComponentCount(); k += 2)
 {
 Dimension d = parent.getComponent(k).getPreferredSize();
 left = Math.max(left, d.width);
 }
 left += hGap;
 return left;
 }

 public String toString()
 {
 return getClass().getName() + " [hgap=" + hGap + ", vgap=" +
 vGap + ", divider=" + divider + "]";
 }
 }

The important thing is to note the methods preferredLayoutSize() and layoutContainer(). Both
methods are simple enough, but it requires some calculations to determine the container’s
preferred size, and in fact, the same calculations are performed in layoutContainer() where
the components are placed in the container. You should also note how the individual
components are placed with setBounds(). Also note the helper method getDivider() used to
calculate the width of the header column.

JAVA 9: SWING, DOCUMENTS AND PRINTING

65

layout

65

PROBLEM 2

Create a copy of the project LayoutProgram1 as you can call LayoutProgram2. The program
should opens the window shown belov, which is almost identical to the previous windows
except for the lines on both sides of the list box. The task is to write an improved version
of the layout manager DialogLayout. The idea behind this layout manager is, that there
is a need for a dialog box (as shown below), and it can then be created by simply filling
components into the container in the correct order. The layout manager should not properly
support all components, but many dialogs actually consist only of components as shown in
the below example and then it is simple to design the dialog using a DialogLayout.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 9: SWING, DOCUMENTS AND PRINTING

66

layout

All components should be added to a panel with a DialogLayout in a sequence (as in the
above example), but the components are placed in groups in the order in which they are
added to the container based on the following rules, where there is three grouls:

1. COMP_LBL that includes pairs consisting of a JLabel and another component –
that is in the same way as with the previous version of DialogLayout

2. COMP_PAN that includes JPanel, JScrollPane and DialogSeparator (a custom
component that is the horizontal line shown in then window).

3. COMP_CMD that includes AbstractButton (JButton, JCheckBox, JRadioButton)

When added components, a group span until the group type is changed. The components
in the individual groups are laid out as follows:

1. COMP_LBL: The components are laid out in pairs in the samme way as the
previous DialogLayout

2. COMP_PAN: The components are laid out vertically underneath each other
3. COMP_CMD: The components are laid out horizontal and ajusted left, centered

or right

JAVA 9: SWING, DOCUMENTS AND PRINTING

67

layout

With respect to the size of the components, the following shall apply:

1. in COMP_LBL the with og the field is the rest of the container if the field’s
preferred width is less than 10, and else the preferred width is used

2. in COMP_PAN the width is the width of the container
3. in COMP_CMD the components preferred width is used

You must also write a simple custom component DialogSeparator, which draws a line
across the panel. The purpose is only to have a visual effect between components in a
COMP_BIG group.

Once the program is finished and works as expected, you can copy the layout manager to
the class library PaLib. It is recommended as the class has some practical interest. I have
called the class FlexLayout. Also remember to copy the component DialogSeparator.

VARIABLEGRIDLAYOUT

Before I leave this section on layout managers, I will mention a VariableGridLayout, that
is an older layout manager from Sun, who has been deprecated for many years. However,
I have had a lot of pleasure from this manager, so the following. A VariableGridLayout is
simply a layout manager who inherits GridLayout, and it is thus a GridLayout, but with
the extension that rows and columns do not necessarily have the same height/width. After
creating a VariableGridLayout, you can specify how much of the total height is to be applied
to a particular row, and in the same way you can specify how much of the total width to
be used for a particular column.

As mentioned, a VariableGridLayout is deprecated, and it’s no longer part of the Java API.
Fortunately, the code is publicly available and I have added it to my library under the name
of VarGridLayout. The program VarGridProgram defines a window with 12 buttons that is
laid out using a VarGridLayout (the buttons have no function):

 package vargridprogram;

 import javax.swing.*;
 import javax.swing.border.*;

 import palib.gui.*;

JAVA 9: SWING, DOCUMENTS AND PRINTING

68

layout

68

 public class MainView extends JFrame
 {
 public MainView()
 {
 super("VarGridLayout");
 setSize(600, 400);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 VarGridLayout layout = new VarGridLayout(3, 4, 10, 10);
 layout.setRowFraction(0, 0.3);
 layout.setRowFraction(1, 0.6);
 layout.setRowFraction(2, 0.1);
 layout.setColFraction(0, 0.4);
 layout.setColFraction(1, 0.3);
 layout.setColFraction(2, 0.2);
 layout.setColFraction(3, 0.1);
 JPanel panel = new JPanel(layout);

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 9: SWING, DOCUMENTS AND PRINTING

69

layout

 panel.setBorder(new EmptyBorder(10, 10, 10, 10));
 for (int i = 0; i < 12; ++i) panel.add(new JButton("" + (i + 1)));
 add(panel);
 }
 }

The only thing to note is how to specify how much a proportion is to be used for rows
and columns. If you run the program, you get the following window:

PROBLEM 3

You must write a classical program that simulates a mathematical calculator. The program
must open the window shown below. The machine must have 10 registers for intermediate
results and the left-hand fields must display the contents of these registers – if there is
otherwise a content. The content of the display are stored in a register with a sto button
and you can insert the content of a register into the display with a rcl button. The display is
the field above the buttons, while the top field is for a history. The meaning of the buttons
should be self explanatory, perhaps not the C and CL buttons, where the first deletes the
display while the other resets the entire machine.

JAVA 9: SWING, DOCUMENTS AND PRINTING

70

layout

The registers, display and history fields are all JTextField and JTextArea fields, but none of
the fields must be editable. That is, they should be defined as not editable. You can only
insert in the fields using the buttons of the machine. On the other hand, each button must
be assigned a shortkey (you decide which ones) so that the machine can be used solely
using the keyboard. Some of the buttons show icons, and these icons can be found in the
director icons.

In addition to the user interface, the biggest challenge is to be able to parse and evaluate
a mathematical expression. Here you should be aware that this problem has been solved in
the project Calc in the book Java 3. Therefore, you can reuse the classes from this project
to the actual problem.

JAVA 9: SWING, DOCUMENTS AND PRINTING

71

swIng Components

71

4 SWING COMPONENTS

Swing provides many components available, and below are the most mentioned:

JButton JPanel JCheckBox
JRadioButton ButtonGroup JComboBox
JComponent JLabel JList
JMenuBar JMenuItem JMenu
JRadioButtonMenuItem JCheckBoxMenuItem JPopupMenu
JScrollPane JScrollBar JTextArea
JTextField JPasswordField JTextPane
JEditorPane JSpinner JSlider
JToogleButton JProgressBar JFormattedTextField
JTable JTree JToolTip
JToolBar JSeparator JDesktopPanel
JInternalFrame JOptionPane JColorChooser
JSplitPane JTabbedPane

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 9: SWING, DOCUMENTS AND PRINTING

72

swIng Components

Many of these components have been used and discussed earlier and should not be
further processed here, and generally the individual components are used in the same way.
Specifically, I would like to remind JTable, which is dealt with in the book Java 6. Some
of the components are used specifically for text entry, where JTextField and JTextArea are
previously discussed, but others are treated in the chapter Edit text later in this book. In
this chapter, I would like to look at two of the components: JProgressBar and JTree.

4.1 JPROGRESSBAR

A progress bar is a component that visually shows progress in a process, for example to
download a file from a web server. A progress bar will show the user that something is
happening and the program is stopped and waiting. As an example, the following window
contains a progress bar

which sits at the top of the window to the right of the button. The window also contains
a list box and an input field. If you click the button, it should simulate starting a job that
takes time, and the progress bar will then show momentum with the job:

JAVA 9: SWING, DOCUMENTS AND PRINTING

73

swIng Components

In the lower entry field you can enter text – and nothing else – and the intention is to
show that you can work with the window while the job is performed. It is clear that the
process must start the job in its own thread, and the thread must then periodically update
both the progress bar and list box. In principle, it is simple enough, but when the job is
performed in a different thread than the Swing dispathcer thread it is necessary with a few
steps to ensure that the user interface is updated correctly.

 package progressprogram1;

 import java.util.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import java.beans.*;
 import javax.swing.border.*;
 public class MainView extends JFrame
 {
 private DefaultListModel model = new DefaultListModel();
 private JButton cmdStart;
 private JProgressBar progressBar;
 private JTextField txtField;

 public MainView()
 {
 super("Progress");
 setSize(400, 300);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout(0, 10));
 panel.setBorder(new EmptyBorder(10, 10, 10, 10));
 panel.add(createTop(), BorderLayout.NORTH);
 panel.add(txtField = new JTextField(), BorderLayout.SOUTH);
 panel.add(new JScrollPane(createList()));
 add(panel);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

74

swIng Components

74

 private JPanel createTop()
 {
 JPanel panel = new JPanel(new BorderLayout(10, 0));
 panel.add(cmdStart = createButton(), BorderLayout.WEST);
 panel.add(progressBar = createProgress());
 return panel;
 }

 private JButton createButton()
 {
 JButton cmd = new JButton("Start");
 cmd.addActionListener(new ActionHandler());
 return cmd;
 }

 private JProgressBar createProgress()
 {
 JProgressBar bar = new JProgressBar(0, 100);
 bar.setValue(0);
 bar.setStringPainted(true);
 return bar;
 }

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 9: SWING, DOCUMENTS AND PRINTING

75

swIng Components

 private JList createList()
 {
 JList list = new JList(model);
 return list;
 }

 class ActionHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 cmdStart.setEnabled(false);
 model.clear();
 txtField.setText("");
	 setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 Task task = new Task();
 task.addPropertyChangeListener(new PropertyChangeHandler());
 task.execute();
 txtField.requestFocus();
 }
 }

 class PropertyChangeHandler implements PropertyChangeListener
 {
 public void propertyChange(PropertyChangeEvent e)
 {
 if ("progress" == e.getPropertyName())
 {
 progressBar.setValue((Integer) e.getNewValue());
 model.addElement((String.format(
 "Completed %d%% of the task", ((Task)e.getSource()).getProgress())));
 }
 }
 }

 class Task extends SwingWorker<Void, Void>
 {
 public Void doInBackground()
 {
 Random random = new Random();
 int progress = 0;
 setProgress(0);
 while (progress < 100)
 {
 try
 {
 Thread.sleep(random.nextInt(1000));
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

76

swIng Components

 catch (Exception ex)
 {
 }
 progress += random.nextInt(10);
 setProgress(Math.min(progress, 100));
 }
 return null;
 }

 public void done()
 {
 cmdStart.setEnabled(true);
 setCursor(null);
 model.addElement("Done!");
 }
 }
 }

As for the window layout is nothing new, but the class creates a JProgressBar and adds
it to the window. You should notice how the component is created, where you specify a
minimum value and a maximum value, and the progress bar has all the time a value within
this range. Note especially the statement

 bar.setStringPainted(true);

which means that the progress bar will show the value (the text). The class has three inner
classes, two event handlers and the class Task representing the job. The class is derived from
SwingWorker. This class is described in the last chapter of the book, but the aim is that
the class must make it easy to update the user interface from another thread. SwingWorker
is an abstract class, and there are two abstract methods to be implemented. The method
doInBackground() starts a thread, and in this case the method simulates a work that takes
time. The class has a bound property called progress, and the class is therefore sending
PropertyChange notifications to listeners when this property is changed. The method done()
is another abstract method, which is performed when the thread terminates. You must
specifically note that the class Task not know the progress bar, and the class job is only
intermittently performing the event handler propertyChange().

If you look at the event handler actionPerformed(), that is executed when the user clicks
the button, so it disables the button, deletes the model (for the list box) and the input
field, set a cursor, and then instantiated a Task object. Next, the event handler register a
listener as a PropertyChangeHandler object, after which the job (the thread) is started with
the method execute().

JAVA 9: SWING, DOCUMENTS AND PRINTING

77

swIng Components

77

The result is that every time the object Task performs setProgress(), then the propertyChange()
event handler is performed, but in the dispatcher thread. The result is that the progress bar
and the model of the list box is updated.

The program ProgressProgram2 has the same user interface and works in principle in the
same way, but there are two differences. The progress bar is displayed in a different way, and
the job does something else. The progress bar shows this time not a text and a percentage
indication of how far the job is reached, but it shows an animation with a rectangle that
changes from left to right and back again. Sometimes it can be difficult (impossible) to
calculate the percentage of a job that is done, and so this progress bar may be preferable.
The job is this time is defined by the following class:

 class Task extends SwingWorker<Void, Void>
 {
	 private	static	final	int	N	=	5;

 public Void doInBackground()
 {
 setProgress(0);
 progressBar.setIndeterminate(true);
 long n = Long.MAX_VALUE;

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 9: SWING, DOCUMENTS AND PRINTING

78

swIng Components

 for (int i = 0; i < N; ++i, n -= 2)
 {
 while (n > 0 && !isPrime(n)) n -= 2;
 prime = n;
 setProgress(100 * (i + 1) / N);
 }
 return null;
 }

 public void done()
 {
 cmdStart.setEnabled(true);
 progressBar.setIndeterminate(false);
 model.addElement("Done!");
 }

 private boolean isPrime(long n)
 {
 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
 if (n < 11 || n % 2 == 0) return false;
 for (long t = 3, m = (long)Math.sqrt(n) + 1; t <= m; t += 2)
 if (n % t == 0) return false;
 return true;
 }
 }

Note first the statement

 progressBar.setIndeterminate(true);

which is the statement that starts the animation. The job is to determine 5 large prime
numbers, and the goal is merely to show a job that takes time – a real job that uses the
machine’s CPU. Otherwise, there is not so much new and the application works in principle
in exactly the same way as the first example.

Finally, the example ProgressProgram3 that performs exactly the same as ProgrssProgram2, but
the difference is that the Task class this time not inherit SwingWorker. Instead it implements
the interface Runnable and the thread must be able to ensure that the updates of the user
interface is done in the event dispatcher thread:

 class Task implements Runnable
 {
	 private	static	final	int	N	=	5;

JAVA 9: SWING, DOCUMENTS AND PRINTING

79

swIng Components

 public void run()
 {
 try
 {
 updateState(false);
 updateBar(0);
 progressBar.setIndeterminate(true);
 long n = Long.MAX_VALUE;
 for (int i = 0; i < N; ++i, n -= 2)
 {
 while (n > 0 && !isPrime(n)) n -= 2;
 updatePrime(n);
 updateBar(100 * (i + 1) / N);
 }
 updateState(true);
 }
 catch (Exception ex)
 {
 }
	 finally
 {
 progressBar.setIndeterminate(false);
 }
 }

 private void updateBar(int value)
 {
 try
 {
 SwingUtilities.invokeAndWait(() -> progressBar.setValue(value));
 }
 catch (Exception ex)
 {
 }
 }

 private void updatePrime(long prime)
 {
 try
 {
 SwingUtilities.invokeAndWait(() -> model.addElement(prime));
 }
 catch (Exception ex)
 {
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

80

swIng Components

80

	 private	void	updateState(boolean	onoff)
 {
 try
 {
	 SwingUtilities.invokeAndWait(()	->	cmdStart.setEnabled(onoff));
 }
 catch (Exception ex)
 {
 }
 }

 private boolean isPrime(long n)
 {
 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
 if (n < 11 || n % 2 == 0) return false;
 for (long t = 3, m = (long)Math.sqrt(n) + 1; t <= m; t += 2)
 if (n % t == 0) return false;
 return true;
 }
 }

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 9: SWING, DOCUMENTS AND PRINTING

81

swIng Components

In principle, this program works in the same way, but it gives the programmer a greater
freedom with regard to the use of a progress bar, but conversely, the example also means
that there is a lot, that the programmer must take care of.

4.2 JTREE

JTree is a component that can visually display hierarchical data, and you actually know the
component from a JFileChooser, where the component is used to browse the file system.
The actual Swing component must visualize a hierarchy, and the data to be visualized comes
from a data model, and similar to, for example, the component JTable, a JTree uses several
helper classes, as in this case are found in javax.swing.tree. JTree is a complex class with
many properties and settings, and in the following I will illustrate how the component can
be used.

I would like to start with an application that opens the following window:

The window shows a JTree in a JScrollPane, and the hierarchy (tree) that in this case consists
only of a list of names, but such that all names are child nodes under the root. If you click
on the root of the tree, you can collapse the tree:

JAVA 9: SWING, DOCUMENTS AND PRINTING

82

swIng Components

and of course you can expand the tree out again. The code is as shown below:

 package treeprogram1;

 import java.awt.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 private Object[] model = {
 "Gorn denGamle", "Harald Blåtand", "Svend Tveskæg", "Harald d. 2.",
 "Knud den Store", "Hardeknud", "Magnus den Gode", "Svend Estridsen",
 "Harald Hen", "Knud den Hellige", "Oluf Hunger", "Erik Ejegod", "Niels" };

 public MainView()
 {
 super("JTree 1");
 setSize(300, 200);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 JTree tree = new JTree(model);
 tree.setRootVisible(true);
 panel.add(new JScrollPane(tree));
 add(panel);
 }
 }

In createView(), a JTree component is created, which is initialized with a data model, which
is an array of objects. In fact, the constructor in JTree creates a data model, which is a very
flat data model, where all nodes are placed in a list below the root. Also note the statement
that tells the root to appear. That is, you do not have to show the root if you don’t wish.
By default, a JTree displays a hierarchy of objects, and for each object, the result of the
object’s toString() is displayed.

JAVA 9: SWING, DOCUMENTS AND PRINTING

83

swIng Components

83

In this case, the data model was defined as an array of Object objects, and the constructor
in the class JTree will automatically create a model, which is a tree consisting of TreeNode
objects. There are several constructors and, among other constructors that as parameters
have respectively a Hashtable and a Vector. I will show an example of how to create a JTree
based on a Vector. A Vector is basically the same as an ArrayList, but an older collection class
that has existed since the birth of the language. The class has since been modernized in a
generic version, but I will use the original version. It should be said that in general, it is not
recommended to use the class Vector, but instead to use ArrayList, but the constructor in JTree
only supports Vector, so therefore. The class Vector is thread safe, and ArrayList therefore has
a better performance. The example is called TreeProgram2 and opens the following window:

http://s.bookboon.com/elearningforkids

JAVA 9: SWING, DOCUMENTS AND PRINTING

84

swIng Components

This time is displayed a hierarchy where the individual branches can be closed and opened
by clicking the mouse. Note that the root is not displayed. The program is written as follows:

 package treeprogram2;

 import java.util.*;
 import java.awt.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 public MainView()
 {
 super("JTree 2");
 setSize(300, 200);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 JTree tree = new JTree(createVector("", "Gorm den Gamle", "Harald Blåtand",
 createVector("Svend Tveskæg", "Harald d. 2.",
 createVector("Knud den Store", "Hardeknud", "Magnus den Gode")),

JAVA 9: SWING, DOCUMENTS AND PRINTING

85

swIng Components

 createVector("Svend Estridsen", "Harald Hen", "Knud den Hellige",
 "Oluf Hunger", "Erik Ejegod", "Niels")));
 tree.setRootVisible(false);
 panel.add(new JScrollPane(tree));
 add(panel);
 }

 private Vector createVector(String name, Object … objects)
 {
 Vector v =
 new java.util.Vector() { public String toString() { return name; } };
 for (Object obj : objects) v.add(obj);
 return v;
 }
 }

The method createVector() creates a Vector, which is a collection of objects that a JTree can
use to create a data model. A Vector is itself an object and can therefore be an element
in another Vector, thus constructing a hierarchy. The method creates a Vector based on an
anonymous class (a class inheriting Vector) alone for the purpose of override toString(). The
constructor has the value that toString() must return and otherwise the objects that the class
should contain. The hierarchy is defined in the constructor of JTree, and the code is actually
not very readable, so maybe it would be better to write something like the following:

 Vector v1 = createVector("Knud den Store", "Hardeknud", "Magnus den
Gode");
 Vector v2 = createVector("Svend Tveskæg", "Harald d. 2.");
 v2.add(v1);
 Vector v3 = createVector("Svend Estridsen", "Harald Hen", "Knud den Hellige",
 "Oluf Hunger", "Erik Ejegod", "Niels");
 Vector v4 = createVector("", "Gorm den Gamle", "Harald Blåtand");
 v4.add(v2);
 v4.add(v3);
 JTree tree = new JTree(v4);

When the constructor in the JTree class builds a data model, it is an object of the type
TreeModel, which consists of a hierarchy of TreeNode objects. Both of these types are
interfaces, and of course, the intention is that you can write your own model, but in the
vast majority of cases, you can use default classes that are part of the Swing API. The model
is implemented by the class DefaultTreeModel, but seen from the programmer is the most
important class the class DefaultMutableTreeNode, which implements the TreeNode interface
(and its sub interface, called MutableTreeNode). A typical use of a JTree is to construct a
hierarchy consisting of DefaultMutableTreeNode objects, and then use this hierarchy as a
parameter for the constructor in the class JTree.

JAVA 9: SWING, DOCUMENTS AND PRINTING

86

swIng Components

86

The program TreeProgram3 opens the window shown below. The window has a JTree,
which showed an overview of the playing cards. Double-clicking a particular card (a leaf
node) will display the card in a JLabel component. So to write the program, there are two
problems to be solved:

1. to build a data model as a hierarchy showing the playing cards
2. to capture double click on an element in the tree

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 9: SWING, DOCUMENTS AND PRINTING

87

swIng Components

The project defines the following class, which represents a playing card with a name and
an image respectively:

 package treeprogram3;

 import javax.swing.*;

 public class Card
 {
 private String name;
 private ImageIcon img;

 public Card(String name, ImageIcon img)
 {
 this.name = name;
 this.img = img;
 }

 public ImageIcon getImage()
 {
 return img;
 }

 public String toString()
 {
 return name;
 }
 }

The name is the text that is returned by the class’s toString() and hence the text displayed in
the JTree component. With this class available, the data model can be structured as follows
(where I have only shown a small part of the method):

 private TreeModel createModel()
 {
 MutableTreeNode root = new DefaultMutableTreeNode("The cards");
 MutableTreeNode diam = new DefaultMutableTreeNode("Diamonds");
 MutableTreeNode hear = new DefaultMutableTreeNode("Hearts");
 MutableTreeNode spad = new DefaultMutableTreeNode("Spades");
 MutableTreeNode club = new DefaultMutableTreeNode("Clubs");
 diam.insert(createNode("Diamond two", "/swing14/images/ru2.GIF"), 0);
 diam.insert(createNode("Diamond three", "/swing14/images/ru3.GIF"), 1);
 diam.insert(createNode("Diamond four", "/swing14/images/ru4.GIF"), 2);
 …

JAVA 9: SWING, DOCUMENTS AND PRINTING

88

swIng Components

 root.insert(diam, 0);
 root.insert(hear, 1);
 root.insert(spad, 2);
 root.insert(club, 3);
 return new DefaultTreeModel(root);
 }

The class DefaultMutableTreeNode defines a node for the tree, and you can specify an object
to be associated with that node. It is the toString() value of this object that is displayed in
the tree. The method starts by creating 5 nodes, the first one being used for the root, while
the four others must be used for each of the four colors. The DefaultMutableTreeNode class
has a method insert(), and it is subsequently used to associate child nodes with the nodes
representing the colors. One example is

 diam.insert(createNode("Diamond two", "/treeprogram3/images/ru2.GIF"), 0);

which associates the card diamond 2 to the node of diamonds and the method thus has
additional 51 corresponding statements. The createNode() method creates and returns a
DefaultMutableTreeNode to which a Card object is attached. This means, among other things,
that the image for that card must be loaded from the program’s jar file, which occurs in
the same way as shown in previous examples.

Finally, the four nodes to colors are added in the root node, and the method returns the
model to a JTree.

Then there is the double click with the mouse, and for that purpose, a MouseListener is
attached to the JTree component:

 class MouseHandler extends MouseAdapter
 {
 public void mousePressed(MouseEvent e)
 {
 int row = tree.getRowForLocation(e.getX(), e.getY());
 if(row != -1 && e.getClickCount() == 2)
 {
 TreePath path = tree.getPathForLocation(e.getX(), e.getY());
 MutableTreeNode node = (MutableTreeNode)path.getLastPathComponent();
 if (node.isLeaf())
 {
 Card card = (Card)((DefaultMutableTreeNode)node).getUserObject();
 lblCard.setIcon(card.getImage());
 }
 }
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

89

swIng Components

89

The first statement in mousePressed() determines the index on the row that is selected.
If a row is selected and if it is a double click, the path (in the hierarchy of the tree) is
determined to the node that is clicked. Such a path is represented by a TreePath, which is
a list of nodes from root to the current node. For example, if the click is on spade seven,
the list – TreePath object – consists of the root, the node representing spades, and the node
represented spade seven. With the TreePath object available, the last node in the path is
determined, which is the double-clicked node. Since only something has to be done when
is clicked on a node for a specific card, it will be tested whether the node clicked on is a
leaf node. If that is the case, the Card object assigned to the node is determined, which is
used to update a JLabel with that card.

A JTree is born with a TreeCellRenderer, which determines how the component should
be drawn, and it will exactly say the icons used and the text. If you open the program
TreeProgram4, you get the following window:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 9: SWING, DOCUMENTS AND PRINTING

90

swIng Components

That is, the JTree component now displays a picture of that card and also shows that a node
is selected. Apart from that it is the same program as the TreeProgram3, but the program
defines its own TreeCellRenderer, which in this case is an inner class:

 public class LeafCellRenderer extends DefaultTreeCellRenderer
 {
 private JPanel panel = new JPanel(new FlowLayout(FlowLayout.LEFT));
 private JLabel lblIcon = new JLabel();
 private JLabel lblText = new JLabel();

 public LeafCellRenderer()
 {
 lblIcon.setPreferredSize(new Dimension(28, 36));
 lblText.setHorizontalAlignment(JLabel.LEFT);
 lblText.setFont(tree.getFont());
 panel.setBackground(Color.white);
 panel.add(lblIcon);
 panel.add(lblText);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

91

swIng Components

 @Override
 public Component getTreeCellRendererComponent(JTree tree, Object value,
 boolean selected, boolean expanded, boolean leaf, int row, boolean hasFocus)
 {
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)value;
 if (!node.isLeaf())
 return super.getTreeCellRendererComponent(tree, value, selected,
 expanded, leaf, row, hasFocus);
 prepareRenderer((Card)node.getUserObject(), selected);
 return panel;
 }

 private void prepareRenderer(Card card, boolean selected)
 {
 lblIcon.setIcon(scale(card.getImage()));
 lblText.setText(card.toString());
 lblText.setForeground(selected ? Color.red : Color.black);
 }

 private ImageIcon scale(ImageIcon icon)
 {
 return new ImageIcon(
 icon.getImage().getScaledInstance(24, 32, java.awt.Image.SCALE_SMOOTH));
 }
 }

Note that the class is derived from DefaultTreeCellRenderer, which is the default renderer
a JTree uses. The class defines a panel with two JLabel components, which are used for
an icon and a text, respectively. These components are initialized in the constructor. The
class must override the method getTreeCellRendererComponent(), which is the method that
renders an element in the tree. The method first tests whether it is a leaf node, and if not
it calls the base class’s method, and the tree is rendered as default. Otherwise, the method
calls prepareRenderer(), which initializes the two label components.

For everything to work, the tree must use the TreeCellRenderer:

 tree.setCellRenderer(new LeafCellRenderer());

and then the tree will apply the custom TreeCellRenderer.

You can also edit the individual nodes in a JTree, and you can do this by using the command

 tree.setEditable(true);

JAVA 9: SWING, DOCUMENTS AND PRINTING

92

swIng Components

92

The component uses a DefaultTreeCellEditor, and if you double-click on a node, opens a
JTextField component so that the text can be edited. It may not so often have interest, but
of course, there are examples, and you can define your own TreeCellEditor exactly as with
a TreeCellRender, and attach it to the tree.

DENMARK

The database padata has three tables region, municipality and zipcode containing information
about Danish regions and municipalities as well as the zip codes used by the municipalities.
The example DenmarkProgram shows these data in a JTree. In addition, the program has a
search function where you can search for a text, and all nodes in the tree where the text
contains the search string are selected. Below is an example of the application window
where searched for Skive:

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 9: SWING, DOCUMENTS AND PRINTING

93

swIng Components

The program has three simple model classes

1. Region
2. Municipality
3. Zipcode

where the first has a list of all municipalities in this region, while the other has a list of all
zip codes used by this municipality. I do not want to show these model classes here. There
is also a model class called Denmark, which contains only a list of all regions.

Finally, there is a class Model, which in the constructor reads the database tables and builds
a tree structure with an object of the type of Denmark as the root. The class contains Region
objets, and each Region object contains Municipality objects which in turn contains Zipcode
objects. Nor do I want to show the Model class here, and it consists solely of methods that
read the appropriate database tables.

Back there is the MainView of the program, where there are several concepts about the
JTree component that you should be aware of. The code is as follows:

JAVA 9: SWING, DOCUMENTS AND PRINTING

94

swIng Components

 package denmarkprogram;

 import java.util.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.tree.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 private Model model = new Model();
 private JTree tree;
 private JTextField txtText = new JTextField();

 public MainView()
 {
 super("Denmark");
 setSize(500, 500);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout(0, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 tree = new JTree(createTreeModel());
 tree.setRootVisible(true);
 panel.add(new JScrollPane(tree));
 panel.add(createBottom(), BorderLayout.SOUTH);
 add(panel);
 }

 private JPanel createBottom()
 {
 JButton cmd = new JButton("Search");
 cmd.addActionListener(this::select);
 JPanel panel = new JPanel(new BorderLayout(20, 0));
 panel.add(cmd, BorderLayout.EAST);
 panel.add(txtText);
 return panel;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

95

swIng Components

95

 private void select(ActionEvent e)
 {
 TreeNode root = (TreeNode)tree.getModel().getRoot();
 collapse(getPath(root));
 String text = txtText.getText().trim();
 tree.clearSelection();
 ArrayList<TreePath> paths = new ArrayList();
 for (int i = 0; i < root.getChildCount(); ++i)
 select(paths, (DefaultMutableTreeNode)root.getChildAt(i), text);
 TreePath[] array = new TreePath[paths.size()];
 tree.setSelectionPaths(paths.toArray(array));
 }

 private void select(ArrayList<TreePath> paths,
 DefaultMutableTreeNode node, String text)
 {
 if (node.getUserObject().toString().contains(text)) paths.add(getPath(node));
 for (int i = 0; i < node.getChildCount(); ++i)
 select(paths, (DefaultMutableTreeNode)node.getChildAt(i), text);
 }

http://s.bookboon.com/EOT

JAVA 9: SWING, DOCUMENTS AND PRINTING

96

swIng Components

 private void collapse(TreePath root)
 {
 TreeNode node = (TreeNode) root.getLastPathComponent();
 if (node.getChildCount() >= 0)
 {
 for (Enumeration e = node.children(); e.hasMoreElements();)
 {
 TreePath path = root.pathByAddingChild((TreeNode) e.nextElement());
 collapse(path);
 }
 }
 tree.collapsePath(root);
 }

 private TreePath getPath(TreeNode node)
 {
 ArrayList<Object> nodes = new ArrayList();
 nodes.add(node);
 for (node = node.getParent(); node != null; node = node.getParent())
 nodes.add(0, node);
 return new TreePath(nodes.toArray());
 }

 private TreeNode createTreeModel()
 {
 DefaultMutableTreeNode root = new DefaultMutableTreeNode(model.getDenmark());
 int n1 = 0;
 for (Region r : model.getDenmark().getRegions())
 {
 MutableTreeNode node1 = new DefaultMutableTreeNode(r);
 int n2 = 0;
 for (Municipality m : r.getMunicipalities())
 {
 MutableTreeNode node2 = new DefaultMutableTreeNode(m);
 int n3 = 0;
 for (Zipcode z : m.getZipcodes())
 node2.insert(new DefaultMutableTreeNode(z), n3++);
 node1.insert(node2, n2++);
 }
 root.insert(node1, n1++);
 }
 return root;
 }
 }

The program defines three variables, which is a Model object and thus data for the tree. In
addition, there is a variable for the JTree component and the search text input field. With regard
to the design of the window there is no new in it, so it should not be commented further here.

JAVA 9: SWING, DOCUMENTS AND PRINTING

97

swIng Components

The last method builds the data model of the tree based on the model object and thus the
data read in the database. The data model is constructed as a hierarchy consisting of nodes of
the type MutableTreeNode. The first node represents the root of the tree and thus a Denmark
object. To this node, is created a Region node for each region, and a node for the region’s
municipalities, and finally, foor each municipality nodes a node for each zip code used by
that municipality. The method is used in createView() to create a JTree object, and you should
note that the argument of the constructor thus is a TreeNode for the root of the tree.

The individual nodes in a JTree can be referenced in several ways, but the most important
is with a TreePath, which is the list of nodes leading from the root to the particular node.
Here you should note the method getPath(), which is a method that determines a TreePath
object for a specific node. Here, it is assumed that all nodes that is not the root has a parent
reference to the node from which that node is a child.

You must then note the method collapse() that collapses part of the tree. The method has
a TreePath parameter and collapses that part of the tree that has path’s node as root. You
should especially note how to refer to the node that that TreePath represents. Also note that
the method is recursive and how to collapse the node root with the statement

 tree.collapsePath(root);

If you instead replace this statement with

 tree.expandPath(root);

the method will expand the tree completely.

Back there is the event handler for the button. It starts by determining the tree’s root as a
node, and then collapses the whole tree. Next, an ArrayList is created for TreePath objects,
and a loop is performed over all child nodes to the root. Each iteration calls a method select()
that creates a TreePath object for all nodes that match the search string. This method is also
recursive, but the result is that the ArrayList contains all nodes that are to be represented
by a TreePath. The list is finally used to mark the individual nodes

 tree.setSelectionPaths(paths.toArray(array));

which means that the individual nodes are selected and that the tree is expanded so that
all selected nodes are visible.

JAVA 9: SWING, DOCUMENTS AND PRINTING

98

user deFIned Components

98

5 USER DEFINED COMPONENTS

In the first chapters of this book I have mentioned custom components and actually even
given two examples, and in this chapter I will attach additional remarks to how to create
good custom components. As described in the previous chapter, Swing is born with many
components that offer most of what may be needed to design a graphical user interface,
but on the other hand, there may be special needs where you want to develop your own
components, and, on the other hand, a window may contain panels that will be used in
multiple places, and therefore it may be worth developing your own custom components.
In any case, the motivation for writing a custom component will always be that there is
a need for a graphical element that may be used in multiple places and typically even in
completely different programs than the current one.

In principle, it’s easy to write custom components using Swing, but if you do it right, and
thus write components that behave like any other Swing component, it’s not quite simple
and there are several requirements that you need ensure that a custom component complies.
Therefore this chapter.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 9: SWING, DOCUMENTS AND PRINTING

99

user deFIned Components

Swing components are designed according to a modified MVC pattern, which can be described
as the view and controller being built into a common component called a UI delegate:

When I mentioned above that writing custom components is not simple, custom components
should follow the same pattern as Swing’s own components, so I’ll start a little about the
architecture of swing components and their design.

5.1 LOOK-AND-FEEL

An UI delegate is derived from the class ComponentUI, which is an abstract class that
basically describes how a UI delegate and a component should communicate, and without
giving any explanation, the class (defines) has the following methods:

 - static ComponentUI CreateUI(JComponent c)
 - installUI(JComponent c)
 - uninstallUI(JComponent c)
 - update(Graphics g, JComponent c)
 - paint(Graphics g, JComponent c)
 - getPreferredSize(JComponent c)
 - getMinimumSize(JComponent c)
 - getMaximumSize(JComponent c)

Most UI delegates are written to know a component’s model (or models as a component
may have multiple model objects) through a defined interface. Swing has multiple families
of UI delegates, and each family contains a class (which implements ComponentUI) for most
Swing components, and such a family is called a look-and-feel (or PLAF for pluggable look-
and-feel). javax.swing.plaf contains abstract classes all derived from ComponentUI and javax.
swing.plaf.basic consists of classes that expand the abstract classes from javax.swing.plaf with
specific classes. These UI delegate classes are used as the building blocks of all look-and-feel
families. There are the following families, called Windows, Motif and Metal, respectively:

JAVA 9: SWING, DOCUMENTS AND PRINTING

100

user deFIned Components

1. com.sun.java.swing.plaf.windows.WindowsLookAndFeel
2. com.sun.java.swing.plaf.motif.MotifLookAndFeel
3. javax.swing.plaf.metal.MetalLookAndFeel

where the latter is default (and there is also a MacLookAndFell, but has to be installed).
However, a given look-and-feel can only be used if it is on the right platform, and for
example the first of the above can not be used on a Linux machine. A look-and-feel and
its UI delegates define how Swing components are displayed on the screen and typically
with support from the current platform, and it is actually possible to change look-and-feel
at runtime. If you open the PLAFProgram program you get the following window:

that has 9 components arranged using a GridLayout. The window’s look-and-feel is Metal,
which is default, but if you click on the Motif button, the window changes to:

This is because the look-and-feel is changed from Metal to Motif. If I then click on the
Windows button, I get an exception, but it’s because my program is running on a Linux
machine. Instead, clicking the Dialog button the program opens a message box:

JAVA 9: SWING, DOCUMENTS AND PRINTING

101

user deFIned Components

101

where the appearance is due to that the look-and-feel is Motif. The example shows that how
a program’s windows and components are displayed is determined by the current look-and-
feel. The program code is as follows:

 package plafprogram;

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 public MainView()
 {
 super("PLAF Program");
 setSize(500, 220);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 9: SWING, DOCUMENTS AND PRINTING

102

user deFIned Components

 private void createView()
 {
 JPanel panel = new JPanel(new GridLayout(3, 3, 20, 20));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 JLabel lbl = new JLabel("Look & Feel");
 panel.add(lbl);
 panel.add(new JTextField());
 panel.add(new JCheckBox("Check box"));
 panel.add(new JRadioButton("Radio button"));
 panel.add(new JComboBox());
 panel.add(createButton("Dialog",
 e -> JOptionPane.showMessageDialog(this, "Hello World")));
 panel.add(createButton("Metal", this::metal));
 panel.add(createButton("Motif", this::motif));
 panel.add(createButton("Windows", this::windows));
 add(panel);
 }

 private JButton createButton(String text, ActionListener listener)
 {
 JButton cmd = new JButton(text);
 cmd.addActionListener(listener);
 return cmd;
 }

 private void metal(ActionEvent e)
 {
 try
 {
 UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");
 SwingUtilities.updateComponentTreeUI(this);
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }

 private void motif(ActionEvent e)
 {
 try
 {
 UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 SwingUtilities.updateComponentTreeUI(this);
 }
 catch (Exception ex)
 {

JAVA 9: SWING, DOCUMENTS AND PRINTING

103

user deFIned Components

 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }

 private void windows(ActionEvent e)
 {
 try
 {
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
 SwingUtilities.updateComponentTreeUI(this);
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }
 }

and here you should of course primarily notice how to change the look-and-feel, and
especially what the individual families of UI delegates are called.

The look-and-feel view is, of course, to ensure that programs with a graphical user interface
look like other programs on a particular platform (Windows, Mac), and it may be important
if you have to write your own custom components from scratch, because you may need to
write UI delegates to the individual look-and-feels. Finally, it means that you in principle
can write your own look-and-feel (which is not quite simple), thus determining how
components should behave.

5.2 KNOB

The KnobProgram example opens a window with eight components placed in a Window
using a FlowLayout :

JAVA 9: SWING, DOCUMENTS AND PRINTING

104

user deFIned Components

There are four JLabel components, and four Knob components. It is a custom component
that, like a JScrollBar and a JSlider, encapsulates a value within an interval. You can change
the value by dragging the small circle (the magenta circle). The four label components show
the value of the Knob component and are updated whenever the value is changed. The Knob
component also has a lower and an upper value between 0 and 1, indicating the blue (cold)
area, the red (the hot) area and the yellow (normal) area. If you change area by draging the
knob, the component fires an event.

In the following I will show how the component is developed. In this section I will start
with a simple version that is not fully compatible with Swing’s own components, but I will
improve that in the next section.

JAVA 9: SWING, DOCUMENTS AND PRINTING

105

user deFIned Components

105

The starting point for a custom component is a class that inherits JComponent – or another
component, and especially a container as a JPanel. Starting from the development of a
component derived from JComponent, you can say that you are starting from scratch.

A component can usually raises events and will thus have associated listeners for which
notifications can be sent. In this case, a notification must be sent when the component’s
properties (there are five) are changed, but since the class inherits JComponent, it already has
the required logic for PropertyChangeEvent so PropertyChangeListener objects can be registered
as listeners. The class must thus take care only of raising events for the new five properties.

As mentioned above, the class must also fire an event when the component’s value changes
between the boundaries of the three areas (cold, normal and hot) and for that I have defined
the following event:

http://s.bookboon.com/GTca

JAVA 9: SWING, DOCUMENTS AND PRINTING

106

user deFIned Components

 package knobprogram;

 import java.util.*;

 public class KnobEvent extends EventObject
 {
 private int value;
 private int from;
 private int to;

 public KnobEvent(Knob source, int value, int from, int to)
 {
 super(source);
 this.value = value;
 this.from = from;
 this.to = to;
 }

 public int getValue()
 {
 return value;
 }

 public int getFrom()
 {
 return from;
 }

 public int getTo()
 {
 return to;
 }
 }

where the parameters of the event is the current value of the component, the state that
changed from and the state that is changed to. You should note that the class is derived
from EventObject. It is the base class for all events, and its constructor requires a single
parameter of the type Object that represents the object (source object) that has fired the
event. The class is trivial and only has a get method for the source object, but it is part
of the Swing component convention that all event objects must be directly or indirectly
derived from EventObject.

Since the Knob class can fire events of the type KnobEvent, there must be other objects
that can be registered as listeners, and therefore, a simple listener interface is also defined:

JAVA 9: SWING, DOCUMENTS AND PRINTING

107

user deFIned Components

 package knobprogram;

 import java.util.*;

 public interface KnobListener extends EventListener
 {
 void knobChanged(KnobEvent e);
 }

Here you should also note that this interface extends EventListener, which is nothing but
a simple marker interface, and again it is a convention in Swing that all listeners should
implement this interface. The reason is that a listener object can thus be added to a collection
with listeners.

Then there is the component itself, which consists of five properties:

1. min, which is the smallest value of the component
2. max, which is the largest value of the component
3. value, that is the current value
4. lower, which is the proportion for the cold area and is a value between 0 and 1
5. upper, which is the proportion of the cold and normal area and is a value between

0 and 1 – it is thus the lower limit for the hot area.

The component’s code is shown below in full:

 package knobprogram;

 import java.awt.*;
 import java.awt.event.*;
 import java.awt.geom.*;
 import javax.swing.*;

 public class Knob extends JComponent
 {
	 public	static	final	int	HOT	=	3;
	 public	static	final	int	NORMAL	=	2;
	 public	static	final	int	COLD	=	1;
 private int min;
 private int max;
 private double upper;
 private double lower;
 private int value;
 private int state;

JAVA 9: SWING, DOCUMENTS AND PRINTING

108

user deFIned Components

108

 private boolean marked = false;
 private Ellipse2D knob = null;
 private double height;
 private double width;
 private double t;
 private double m;
 private double w;

 public Knob()
 {
 this(0, 100, 0);
 }

 public Knob(int min, int max, int value)
 {
 this(min, max, 0.25, 0.75, value);
 }

 public Knob(int min, int max, double lower, double upper, int value)
 {
 this.min = min;
 this.max = max;
 this.lower = lower;

 .

http://s.bookboon.com/AlcatelLucent

JAVA 9: SWING, DOCUMENTS AND PRINTING

109

user deFIned Components

 this.upper = upper;
 this.value = value;
 addMouseListener(new MouseHandler());
 addMouseMotionListener(new MouseMoveHandler());
 setState();
 }

 public void paintComponent(Graphics g)
 {
 double pos = calculatePosition();
 Graphics2D g2d = (Graphics2D)g;
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setPaint(Color.red);
	 g2d.fill(new	Ellipse2D.Double(w,	0,	w,	w));
	 g2d.fill(new	Rectangle2D.Double(w,	t,	w,	m	*	(1	–	upper)));
 g2d.setPaint(Color.orange);
	 g2d.fill(new	Rectangle2D.Double(w,	t	+	m	*	(1	–	upper),
 w, m * (upper – lower)));
 g2d.setPaint(Color.blue);
	 g2d.fill(new	Ellipse2D.Double(0,	height	–	width,	width,	width));
	 g2d.fill(new	Rectangle2D.Double(w,	t	+	m	*	(1	–	lower),
 w, m * lower + width / 2));
 g2d.setPaint(Color.magenta);
	 g2d.fill(knob	=	new	Ellipse2D.Double(width	*	2	/	3,	pos	–	t,	w,	w));
 }

 public void setValue(int value)
 {
 int old = this.value;
 this.value = value;
 repaint();
	 firePropertyChange("value",	old,	value);
 old = state;
 setState();
	 if	(old	!=	state)	fireEvent(old,	state);
 }

 public int getValue()
 {
 return value;
 }

 public int getMinimum()
 {
 return min;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

110

user deFIned Components

 public void setMinimum(int min)
 {
	 firePropertyChange("minnimum",	this.min,	min);
 this.min = min;
 repaint();
 }

 public void setMaximum(int max)
 {
	 firePropertyChange("maximum",	this.max,	max);
 this.max = max;
 repaint();
 }

 public int getMaximum()
 {
 return max;
 }

 public void setUpper(double upper)
 {
	 firePropertyChange("upper",	this.upper,	upper);
 this.upper = upper;
 repaint();
 }

 public double getUpper()
 {
 return upper;
 }

 public void setLower(double lower)
 {
	 firePropertyChange("lower",	this.lower,	lower);
 this.lower = lower;
 repaint();
 }

 public double getLower()
 {
 return lower;
 }

 public int getState()
 {
 return state;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

111

user deFIned Components

111

 public void addKnobListener(KnobListener listener)
 {
 listenerList.add(KnobListener.class, listener);
 }

 public void removeKnobListener(KnobListener listener)
 {
 listenerList.remove(KnobListener.class, listener);
 }

	 protected	void	fireEvent(int	from,	int	to)	
 {
 Object[] listeners = listenerList.getListenerList();
 for (int i = 0; i < listeners.length; i += 2)
 if (listeners[i] == KnobListener.class)
 ((KnobListener)listeners[i + 1]).knobChanged(
 new KnobEvent(this, value, from, to));
 }

 private void calculate()
 {
 Dimension dim = getSize();
 width = dim.getWidth();

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 9: SWING, DOCUMENTS AND PRINTING

112

user deFIned Components

 height = dim.getHeight();
 w = width / 3;
 t = w / 2;
 m = height – width – t;
 }

 private double calculatePosition()
 {
 calculate();
 return (m * value + t * min – t * max – m * max) / (min – max);
 }

 private int calculateValue(double y)
 {
 calculate();
 double z = ((y – t) * min + (t + m – y) * max) / m;
 return Math.min(Math.max((int)z, min), max);
 }

 private void setState()
 {
 int state;
 double minValue = (max – min) * lower + min;
 double maxValue = (max – min) * upper + min;
 if (value < minValue) state = COLD;
 else if (value > maxValue) state = HOT;
 else state = NORMAL;
 if (this.state != state) this.state = state;
 }

 class MouseHandler extends MouseAdapter
 {
 @Override
 public void mousePressed(MouseEvent e)
 {
 marked = knob.contains(e.getX(), e.getY());
 }

 @Override
 public void mouseReleased(MouseEvent e)
 {
 marked = false;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

113

user deFIned Components

 @Override
 public void mouseExited(MouseEvent e)
 {
 marked = false;
 }
 }

 class MouseMoveHandler extends MouseMotionAdapter
 {
 @Override
 public void mouseDragged(MouseEvent e)
 {
 if (marked)
 {
 setValue(calculateValue(e.getY()));
 }
 }
 }
 }

There are many details, but the class is derived from JComponent, which actually says that
it is a component. First, three constants are defined which indicates in which of the three
areas the current value is. There are six variables for properties, where the first five are the
five properties that can be changed with a set method, while the last state tells the current
of the three areas. There are additional seven instance variables, which are help variables
and are used for the following:

 - marked indicates that the mouse button is holding down, so that you can drag
the knob

 - knob is the figure (ellipse) that currently represents the knob
 - height is the component’s current height
 - width is the component’s current width
 - t is the height of a figure above the thermometer (a half circle)
 - m is the area of the three thermometer (cold, normal and warm)
 - w is one third of the current width of the component and indicates the width of

the thermometer areas

These variables are initialized each time the component is drawn and each time the knob
is moved.

JAVA 9: SWING, DOCUMENTS AND PRINTING

114

user deFIned Components

114

The class has three constructors that initializes the six properties. The constructors are
generally trivial, but you should note that they defines that the component is listening to
the mouse. The event handlers are defined as inner classes at the end of the code. The two
classes are trivial and there is not much to explain, but you should note what the classes
are doing, and especially how they assign values to the variable marked.

Then there are get and set methods for class’s properties. There are six get methods that, of
course, are all trivial, and there are five set methods in which setValue() is the most important.
The method can be called by the users, but is also called from the method of the event
handler MouseMoveHandler and hence each time the knob is moved. First, the current value
of the component is saved in a local variable, after which the component is updated. Next,
the component must be redrawn, which occurs by calling repaint(). Then the method fires
a PropertyChangeEvent for the property value. Next, it is tested whether there is a changed
state (if the value represents another area) and, if it is the case, a KnobEvent is firing, which
occurs in the method fireEvent(). The four other set methods work a bit the same, but are
simpler. First, a PropertyChangeEvent is firing for that property, which is then updated and
the component is redrawn. Note that the class has methods so KnobListener objects can
register themselves as listeners for KnobEvent’s and possibly again be unregistered.

http://s.bookboon.com/BI

JAVA 9: SWING, DOCUMENTS AND PRINTING

115

user deFIned Components

Back there is only drawing the component and how to do that is the subject in the next
book, but briefly the following happens. When the component has to be drawn, the method
paintComponent() is called. It is called when the runtime system sees that the component
is invalid (must be redrawn) and it happens for example when the window is created or
when the method repaint() is executed. Note that the set methods do so and ensure that the
window becomes redrawn when the component’s properties are changed. The paintComponent()
method has a Graphics object that represents the drawing area and provides some drawing
tools. In this case, the following happens:

1. the method calculatePosition() is called, that initialize the help variables and returns
the y positionen for the knob

2. the Graphics object is type casted to a Graphics2D object, that has better drawing tools
3. the drawing quality is defined
4. the color is defined as red
5. a circle is drawn
6. a rectangle is drawn for the hot area
7. the color is defined as orange
8. a rectangle is drawn for the normal area
9. the color is defined as blue
10. a circle is drawn – the lower circle with the mercury
11. a rectangle is drawn for the cold area
12. the color is defined as magenta
13. the knob is drawn

Then there is the test application that uses the Knob component and I do not want to
display the code here, but you should note that the component is used in the same way
as other components.

5.3 A BETTER KNOB

A custom component is often developed as described above, and as components as part of
one’s own applications, it is also an excellent method, but the method is not entirely in
line with the recommendations for how to develop a Swing component, partly because the
component should support look-and-feel. For practical programming, the biggest problem
with the Knob component, as described above, is that it does not separate user interface
and model, which makes it more difficult to maintain the code. In this section I will
look at another version of the Knob component, where the difference is that the code is
written differently.

JAVA 9: SWING, DOCUMENTS AND PRINTING

116

user deFIned Components

Basically, a Swing component consists of

1. The component’s class, which specifies how to create the component, how the
component can be changed and how to read the component’s state.

2. The component’s model that consists of a defining interface and a default
implementation. It is the model that implements the component’s logic and sends
notifications to listeners.

3. A so-called UI delegate, who stands for the component layout, event management
regarding mouse and keyboard, and finally, is the UI delegate who will draw
the component.

The project KnobProgram1 is the same program as the project KnobProgram, but the Knob
component is written in accordance with the above pattern. Basically, it is the same code,
but it is just organized in a different way.

The component can still raise a KnobEvent, and the two types of KnobEvent and KnobListener
are completely unchanged relative to the first version of the component.

I will then start with the model, which is defined by the following interface:

 package knobprogram;

 import java.beans.*;

 public interface KnobModel
 {
 public int getMinimum();
 public int getMaximum();
 public int getValue();
 public int getState();
 public double getLower();
 public double getUpper();
 public void setMinimum(int minimum);
 public void setMaximum(int maximum);
 public void setValue(int value);
 public void setLower(double lower);
 public void setUpper(double upper);
 public void addPropertyChangeListener(PropertyChangeListener listener);
 public void removePropertyChangeListener(PropertyChangeListener listener);
 public void addKnobListener(KnobListener listener);
 public void removeKnobListener(KnobListener listener);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

117

user deFIned Components

117

The interface thus defines the component’s properties and the extent to which there are get
and set methods for these properties. In addition, the interface defines which listeners can
register as recipients of notifications from the component. Here are the PropertyChangeListener
and KnobListener objects. The model is implemented by classes DefaultKnobModel. I do not
want to show the overall class here, but the start is as follows:

 public class DefaultKnobModel implements KnobModel
 {
	 public	static	final	double	epsilon	=	0.0000000001;
 private EventListenerList listenerList = new EventListenerList();
	 public	static	final	int	HOT	=	3;
	 public	static	final	int	NORMAL	=	2;
	 public	static	final	int	COLD	=	1;
 private int min;
 private int max;
 private double upper;
 private double lower;
 private int value;
 private int state;

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 9: SWING, DOCUMENTS AND PRINTING

118

user deFIned Components

Here you can see that the variables have been moved from the Knob class, but only those
variables that represents the component’s state, but not the variables used to draw the
component. Also note that the model has its own collection for listeners and note the type
that is EventListenerList. The class has appropriate constructors – this case three in the same
way as the original Knob class. The rest of the code consists in implementing the methods
that the interface defines and here it is especially the set methods that you need to be aware
of as they will fire the desired events.

Then there is the UI delegate, and according to the pattern for the development of a custom
component, it starts with the following class:

 package knobprogram;

 import javax.swing.plaf.*;

 public class KnobUI extends ComponentUI
 {
	 public	static	final	String	UI_CLASS_ID	=	"KnobID";
 }

The class inherits ComponentUI and does not contain much, and all it does is define a
constant so the class has a unique name in terms of look-and-feel. With this class in place,
you can write the UI delegate, which is the class that will draw the component and handle
the events for mouse and keyboard. Below I have shown the start of the class, but I have
not shown anything about drawing the component as well as inner classes that defines event
handlers for the mouse, as it is the same code as in the previous version.

 public class BasicKnobUI extends KnobUI
 {
 private MouseHandler mouseHandler = null;
 private MouseMoveHandler motionHandler = null;
 private KnobModel model = null;
 private boolean marked = false;
 private Ellipse2D knob = null;
 private double height;
 private double width;
 private double t;
 private double m;
 private double w;

 public BasicKnobUI(JComponent component)
 {
 model = ((Knob)component).getModel();
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

119

user deFIned Components

 public static ComponentUI createUI(JComponent c)
 {
 return new BasicKnobUI(c);
 }

 public void installUI(JComponent component)
 {
 Knob knob = (Knob)component;
 knob.addMouseListener(mouseHandler = new MouseHandler());
 knob.addMouseMotionListener(motionHandler = new MouseMoveHandler());
 }

 public void uninstallUI(JComponent component)
 {
 Knob knob = (Knob)component;
 if (mouseHandler != null) knob.removeMouseListener(mouseHandler);
 if (motionHandler != null) knob.removeMouseMotionListener(motionHandler);
 }

You should note that the variables used to draw the user interface have been moved to
this class. Otherwise, you should notice the methods that have been implemented and
without trying to explain what they esact is doing, these are methods that mean that the
component supports look-and-feel and is thus part of the pattern for developing a custom
component. Back there is the component itself and hence the class Knob, which has now
become a very thin class:

 package knobprogram;

 import javax.swing.*;
 import java.beans.*;

 public class Knob extends JComponent implements PropertyChangeListener
 {
 private KnobModel model;

 public Knob()
 {
 init(new DefaultKnobModel());
 }

 public Knob(KnobModel model)
 {
 init(model);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

120

user deFIned Components

120

 public Knob(int min, int max, int value)
 {
 init(new DefaultKnobModel(min, max, value));
 }

 public Knob(int min, int max, double lower, double upper, int value)
 {
 init(new DefaultKnobModel(min, max, lower, upper, value));
 }

 private void init(KnobModel model)
 {
 setModel(model);
 updateUI();
 }

 public String getUIClassID()
 {
 return KnobUI.UI_CLASS_ID;
 }

 public void setModel(KnobModel model)
 {

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 9: SWING, DOCUMENTS AND PRINTING

121

user deFIned Components

 KnobModel old = this.model;
 if (old != null) old.removePropertyChangeListener(this);
 if (model == null) this.model = new DefaultKnobModel();
 else this.model = model;
 this.model.addPropertyChangeListener(this);
	 firePropertyChange("model",	old,	this.model);
 }

 public KnobModel getModel()
 {
 return model;
 }

 public KnobUI getUI()
 {
 return (KnobUI) ui;
 }

 public void setUI(KnobUI ui)
 {
 super.setUI(ui);
 }

 public void updateUI()
 {
 if (UIManager.get(getUIClassID()) != null)
 setUI((KnobUI)UIManager.getUI(this));
 else setUI(new BasicKnobUI(this));
 }

 public void propertyChange(PropertyChangeEvent e)
 {
	 firePropertyChange(e.getPropertyName(),	e.getOldValue(),	e.getNewValue());
 repaint();
 }

 public int getMinimum()
 {
 return model.getMinimum();
 }

 public void setMinimum(int min)
 {
 int old = getMinimum();
 if (min != old)
 {

JAVA 9: SWING, DOCUMENTS AND PRINTING

122

user deFIned Components

 model.setMinimum(min);
	 firePropertyChange("minimum",	old,	min);
 }
 }

 public int getMaximum()
 {
 return model.getMaximum();
 }

 public void setMaximum(int max)
 {
 int old = getMaximum();
 if (max != old)
 {
 model.setMaximum(max);
	 firePropertyChange("maximum",	old,	max);
 }
 }

 public int getValue()
 {
 return model.getValue();
 }

 public void setValue(int val)
 {
 int old = getValue();
 if (val != old)
 {
 model.setValue(val);
	 firePropertyChange("value",	old,	val);
 }
 }

 public int getState()
 {
 return model.getState();
 }

 public double getLower()
 {
 return model.getLower();
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

123

user deFIned Components

123

 public void setLower(double lower)
 {
 double old = getLower();
 if (Math.abs(lower – old) > DefaultKnobModel.epsilon)
 {
 model.setLower(lower);
	 firePropertyChange("lower",	old,	lower);
 }
 }

 public double getUpper()
 {
 return model.getUpper();
 }

 public void setUpper(double upper)
 {
 double old = getUpper();
 if (Math.abs(upper – old) > DefaultKnobModel.epsilon)
 {
 model.setUpper(upper);
	 firePropertyChange("upper",	old,	upper);
 }
 }

http://s.bookboon.com/Subscrybe

JAVA 9: SWING, DOCUMENTS AND PRINTING

124

user deFIned Components

 public void addKnobListener(KnobListener listener)
 {
 model.addKnobListener(listener);
 }

 public void removeKnobListener(KnobListener listener)
 {
 model.removeKnobListener(listener);
 }
 }

In fact, there is not much to explain and the class is in many ways just a wrapper for the
model. Since it is the model that maintains the class’s properties, the class Knob (which is
the class known by the users) must delegate the maintenance to the model. The test program
has been modified so that it now has only one component of the type Knob, but some
buttons have been inserted so that you can modify the component’s properties:

If entering a value in the input field and clicking on a button the value changes for the
corresponding property. You should note that the program does not handle illegal values
and raises an execption if the value can not be converted correctly.

JAVA 9: SWING, DOCUMENTS AND PRINTING

125

user deFIned Components

EXERCISE 3

Create a copy of the project KnobProgram1. The Knob component has several shortcomings,
and you can assign random values to its properties, which is unfortunate. It should be a
requirement that

1. minimum is less than maximum
2. lower is less than or equal to upper
3. lower and upper must have a value between 0 and 1
4. value must be greater than or equal to minimum and less than or equal to maximum

You must change the component to validate changes to these properties. In the case of
illegal values, the component should not raise exceptions, but instead handle the errors by
automatically allocating properties a “reasonable” value. You must then expand the model
with a property:

 private boolean vertical = true;

If this property has the default value true, the component must be displayed as before, but if
the value is changed to false, the component should be displayed horizontally. For example,
you can change the test program to open the following window:

JAVA 9: SWING, DOCUMENTS AND PRINTING

126

user deFIned Components

126

5.4 A DATEPICKER

I want to finish this chapter with another example of a custom component. The component is
different this time, as it is a class that inherits JPanel, and instead of drawing the component’s
user interface, it is a container that contains other Swing components. The component is a
so-called DatePicker, which is an example of a component where the user can select a date.
There are many similar components on the Internet, and the following is another example.
If you open the test program, you get the following window:

http://s.bookboon.com/volvo

JAVA 9: SWING, DOCUMENTS AND PRINTING

127

user deFIned Components

which shows three components of the type DatePicker. That is, a DatePicker object shows
a readonly text box with a date and a button to the right. If you click on the button, you
get the following popup:

where you can navigate a calendar and select a date by clicking on it. If you click the red
icon in the toolbar, you close the popup without selecting a date.

To write the component, it is clear that a large part of the code is reused from the Calendar
project in the book Java 8. The basis for the calendar is also the Date class from this project,
and this class is not mentioned further. The component also has a model, which is largely
the same model as in the Calendar project. Nor should it be explained further and is a
very simple class.

Back there is the actual DatePicker component, which is an extensive class whose code I do
not want to display here, and where there are many reuses from the Calendar project. You
are encouraged to study the code and specifically examine which properties are defined.
Here you should note that there is a property date used to read the value of the component
and possibly change it as well as its type is Calendar.

Finally, there is the test program, which is shown below:

 package datecomponent;

 import java.util.*;
 import java.awt.*;
 import javax.swing.*;
 import javax.swing.border.*;
 import java.beans.*;

JAVA 9: SWING, DOCUMENTS AND PRINTING

128

user deFIned Components

 public class MainView extends JFrame implements PropertyChangeListener
 {
 private JLabel lblValue1 = new JLabel();
 private JLabel lblValue2 = new JLabel();

 public MainView()
 {
 super("DateComponent");
 setSize(600, 300);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new FlowLayout(FlowLayout.LEFT));
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 DatePicker dp1 = new DatePicker();
 dp1.setForeground(Color.red);
 dp1.addPropertyChangeListener(this);
 panel.add(dp1);
 DatePicker dp2 = new DatePicker();
 dp2.setPreferredSize(new Dimension(150, 50));
 dp2.setBackground(Color.blue);
 dp2.setForeground(Color.white);
 panel.add(dp2);
 DatePicker dp3 = new DatePicker();
 dp3.setFont(new Font("Arial", Font.BOLD, 24));
 dp3.setDate(new GregorianCalendar(2020, 11, 31));
 panel.add(dp3);
 add(panel);
 }

 @Override
 public void propertyChange(PropertyChangeEvent e)
 {
 if (e.getNewValue() instanceof Calendar)
 JOptionPane.showMessageDialog(this, getText((Calendar)e.getNewValue()));
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

129

user deFIned Components

129

 private String getText(Calendar date)
 {
 return String.format("%02d-%02d-%04d", date.get(Calendar.DATE),
 date.get(Calendar.MONTH) + 1, date.get(Calendar.YEAR));
 }
 }

Here you should especially note how to create DatePicker components and add them to
the window and that it is done in the same way as other components. Also note that
the program is registered as PropertyChangeListener for the first component and receives
notifications when that component changes date.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 9: SWING, DOCUMENTS AND PRINTING

130

user deFIned Components

The DatePicker component can be of practical interest, and I want to add it to my class
library PaLib. It takes the following steps:

1. I have created a package palib.gui.images and for this I have copied the icons that
the component uses (there are 7).

2. The class CalendarException is copied th the package palib.util.
3. The class Date has been copied to the package palib.util. It gives a naming problem

in the class Tools, as it refers to the class java.util.Date alone with the name Date.
This issue must be solved in the Tools class by changing all references to Date to
the full name java.util.Date.

4. I have created a package palib.gui.models and here I have created a class named
PickerModel. The content of this class is the component’s model (the class Model
in the DateComponent project).

5. The DatePicker class is copied to palib.gui. This again gives rise to problems with
names for Date and these issues must be solved by referencing Date with the full
name palib.util.Date.

6. In the class DatePicker all names of icons (references) must be changed to the icons
that are part of the library.

After these changes, the library is updated and the DateComponent project can be modified
(to DateComponent1), so all classes relating to the component are deleted, and then the
project instead uses PaLib.

As a last comment. When naming classes, one should generally try not to use names that
Java also uses. Not that it is allowed, but it easily leads to problems of the kind, as is the
case above.

JAVA 9: SWING, DOCUMENTS AND PRINTING

131

the ClIpboard

6 THE CLIPBOARD

Using the clipboard and thus copy and paste is an expected functionality in modern
programs, at least as long that it are programs that process text. Basically, it is possible to
select some object, such as some text, and save them to the clipboard, then retrieve it and
perhaps even into a completely different program. In most programs, it is something that
the programmer does not need to relate to, as many components (such as components for
editing text) have the functionality built-in. There are also situations where it is necessary
to program copy and paste (for example, if you write custom components), therefore, this
chapter. Moreover, in the book Java 2, I have shown a little about how to do.

In principle, it is quite simple, but if you are investigating how it is implemented, it is by
no means simple, and there are several reasons for that. The clipboard is of course some
memory where you can save something, but the clipboard is a concept outside the program
and something that is administered by the operating system and not by the virtual machine.
Another problem is that data is not just data, and even text is not just text. For example,
if writing text in a word processor contains the text many control characters and other
formatting information that must also be saved and later re-inserted for paste. It is therefore
necessary to also save information about what kind of data is stored on the clipboard. Finally,
if you have to copy and paste between two different programs, they may not know each
other’s data formats. In general, one can immediately conclude that copying and pasting
data between two different programs does not necessarily produce meaningful results.

I want to start with a simple program that opens the following window:

Clicking the Copy button some text are copied to the clipboard and clicking the button
Paste opens a message box that displays the text copied on the clipboard (the text is taken
from the clipboard). The program thus shows how to save data on the clipboard and retrieve
this data. The code is as follows:

JAVA 9: SWING, DOCUMENTS AND PRINTING

132

the ClIpboard

132

 package theclipboard;

 import java.util.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;
 import java.awt.datatransfer.*;

 public class MainView extends JFrame
 {
 private static Random rand = new Random();
 private String[] names = { "Gorm den Gamle", "Harald Blåtand", "Svend Tveskæg" };
 private Clipboard cb = Toolkit.getDefaultToolkit().getSystemClipboard();

 public MainView()
 {
 super("The clipboard");
 setSize(400, 200);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 9: SWING, DOCUMENTS AND PRINTING

133

the ClIpboard

 private void createView()
 {
 JPanel panel = new JPanel(new FlowLayout());
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 JButton cmdCopy = new JButton("Copy");
 JButton cmdPaste = new JButton("Paste");
 cmdCopy.addActionListener(this::copy);
 cmdPaste.addActionListener(this::paste);
 panel.add(cmdCopy);
 panel.add(cmdPaste);
 add(panel);
 }

 private void copy(ActionEvent e)
 {
 cb.setContents(new StringSelection(names[rand.nextInt(names.length)]), null);
 }

 private void paste(ActionEvent e)
 {
 try
 {
 JOptionPane.showMessageDialog(this,
 cb.getContents(DataFlavor.stringFlavor).
 getTransferData(DataFlavor.stringFlavor));
 for (DataFlavor df : cb.getAvailableDataFlavors())
 JOptionPane.showMessageDialog(this, df.getMimeType());
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }
 }

The class defines an array with three strings, and the meaning is that clicking on Copy
you saves a random one of these strings on the clipboard, and thus you can see that it is
not the same string that is saved each time. You should especially note how to define a
reference to the clipboard

 Clipboard cb = Toolkit.getDefaultToolkit().getSystemClipboard();

JAVA 9: SWING, DOCUMENTS AND PRINTING

134

the ClIpboard

as in Java is represented by a class Clipboard, but otherwise the most important of course
are the two event handlers. You save data using the setContents() method, which has two
parameters. The first is the data to be saved, while the other is the owner. It is not used so
often, but has the type ClipboardOwner (that is an interface) and the meaning is that the
owner can get a notification if the clipboard’s content are overwritten (for example, from
another application). In this example, the value of the parameter is null, which simply
means that no notifications about the content are sent.

In order for data to be saved on the clipboard – and read again – they must be encapsulated
in a data structure of the type Transferable. It is an interface and there are several concrete
classes that implements this interface, and StringSelection is an example of a Transferable
that is specially designed to transfer text. In this case, a string is encapsulated in a
StringSelection object.

Then there is the event handler paste(). One retrieves data from the clipboard using the
method getContents(), where the parameter is a DataFlavor, which tells what it is for a kind
of data to be retrieved. The DataFlavor class has some predefined flavors, and stringFlavor
is an example that tells that data is a StringSelection. It is a Transferable that has a method
getTranfereData(), which returns the specific data, and this method also has a DataFlavor
as parameter. In fact, the statement that retrieves data from the clipboard could be written
as follows:

 cb.getContents(null).getTransferData(DataFlavor.stringFlavor)

The class Clipboard has a method getAvailableDataFlavors() that returns an array of DataFlavor
objects that tells how the contents of the clipboard can be interpreted. Sometimes (for
example, if it is text), the content can be interpreted in several ways (styled text, html, plain
text) and therefore there may be more DataFlavor objects where the object that defines most
information will be first in the array. The last for loop in the event handler paste() iterates
over all DataFlavor objects, and there are two. In particular, if you to getContents() indicates
an incorrect DataFlavor or if the clipboard is empty, you get an exception.

6.1 MIME TYPES

When saving data on the clipboard, data will be defined by a class such as Java.lang.String,
and as long as there is only a need to transfer data between Java applications, it is sufficient
to tell a DataFlavor which type, but data should be transferred to other programs, which of
course do not know Java’s classes, and there is a need for another way to define what data
formats are. Thus, there is a need for platform independent and language-neutral term for
data formats. To this end, MIME is used, which is an Internet standard, which makes it
possible to attach various documents to electronic mail.

JAVA 9: SWING, DOCUMENTS AND PRINTING

135

the ClIpboard

135

A MIME type consists of a media type that can be considered as a parent category as well
as a subtype that defines a more specific type within the category. The types are separated
by the character / and an example could be

 text/plain

which indicates plain text without formatting information. There are many other MINE
types, for example

 image/gif
 image/jpg
 text/html
 …

You can also define your own MIME types, which must consist of a known media type as
well as a subset that starts with “x-”, which indicates that it is an unregistered type. Finally is

 application/octet-stream

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 9: SWING, DOCUMENTS AND PRINTING

136

the ClIpboard

a generic type that specifies binary data in an unknown format. In addition to type and
subtype, a MIME type may also have associated other information for example regarding
encoding of text. The syntax is as shown in the following examples

 - text/plain;charset=unicode

 - text/plain;charset=ascii

 - text/plain;charset=iso-8859-1

When creating a DataFlavor, you can specify the MIME type, for example:

 DataFlavor df = new DataFlavor("text/htm");

As another example of a program that uses the clipboard, the program ClipBytes copies a
byte array to the clipboard. The program has exactly the same user interface as the above
program, and it also works in the same way, just copying it an array of 10 random bytes to
the clipboard. Similarly, if you click the Paste button, the array is read from the clipboard
and displayed in a message box. The code is as shown below, where I have only shown that
part of the code, which is different:

 public class MainView extends JFrame implements ClipboardOwner
 {
 private static Random rand = new Random();
 private Clipboard cb = Toolkit.getDefaultToolkit().getSystemClipboard();

 public MainView()
 {
 …
 }

 private void createView()
 {
 …
 }

 @Override
 public void lostOwnership(Clipboard clipboard, Transferable contents)
 {
 JOptionPane.showMessageDialog(this, "The clipboard data is invalid");
 }

 private void copy(ActionEvent e)
 {
 cb.setContents(new DataHandler(create(10), "application/octet-stream"), this);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

137

the ClIpboard

 private void paste(ActionEvent e)
 {
 try
 {
 Transferable data = cb.getContents(null);
	 DataFlavor	flavor	=	data.getTransferDataFlavors()[0];
	 show((byte[])data.getTransferData(flavor));
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }

 private byte[] create(int n)
 {
 byte[] arr = new byte[n];
 rand.nextBytes(arr);
 return arr;
 }

 private void show(byte[] arr)
 {
 StringBuilder builder = new StringBuilder();
 for (byte b : arr)
 {
 builder.append(b);
 builder.append(' ');
 }
 JOptionPane.showMessageDialog(this, builder.toString());
 }
 }

First, note that the class now implements the interface ClipboardOwner. This interface
defines a single method called lostOwnership(), and this method is performed if you have
saved something on the clipboardy and another program overwrites it. In this case nothing
happens other than a message box appears. It is easy to test this feature by running the
program and saving something on the clipboard (press the Copy button). If you then open
another program and from here save something on the clipboard, you will notice that the
message box is displayed.

To the end of the program there are two auxiliary methods in which the first creates a
byte array with random byte values, while the other displays a message box containing the
content of such an array.

JAVA 9: SWING, DOCUMENTS AND PRINTING

138

the ClIpboard

138

Then there are the events handlers. The method copy() uses the type DataHandler that is a
Transferable. In addition to encapsulating data, such an object will also have a MIME type
and can therefore be used to transfer a variety of data types. In this case, the generic MIME
type has been used, which states that raw data is being transmitted, which is not to be
interpreted. Also note the last parameter for setContents(), where this is a ClipboardOwner.
The method paste() has to retrieve data with getContents(), but you must specify a DataFlavor,
and the result is a Transferable object. From this object, the first DataFlavor (there is only
one) is used to retrieve data from the Transferable object as a byte array.

6.2 SERIALIZING OBJECTS

It is also possible to save objects on the clipboard by serialization, and I show how to do
so in the next example. I want to save objects of the following type:

 class King implements Serializable
 {
 private String name;
 private int from;
 private int to;

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 9: SWING, DOCUMENTS AND PRINTING

139

the ClIpboard

 public King(String name, int from, int to)
 {
 this.name = name;
 this.from = from;
 this.to = to;
 }

 public String getName()
 {
 return name;
 }

 public int getFrom()
 {
 return from;
 }

 public int getTo()
 {
 return to;
 }

 public String toString()
 {
 return name + String.format(" [%d – %d]", from, to);
 }
 }

The class requires no explanation, but you should note that it is Serializable, as well as that
there are instance variables, both of the type String and simple types. To transfer data, you
must use a Transferable, and here are several options, but as an example, I will show you
how to implement your own Transferable type. Transferable is an interface that defines three
methods, and the task is therefore to write a class that implements this interface:

 class SerialTransferable implements Transferable
 {
 private Serializable obj;

 SerialTransferable(Serializable obj)
 {
 this.obj = obj;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

140

the ClIpboard

 @Override
 public DataFlavor[] getTransferDataFlavors()
 {
	 DataFlavor[]	flavors	=	new	DataFlavor[2];
 try
 {
	 flavors[0]	=	new	DataFlavor("application/x-java-serialized-object;
 class=" + obj.getClass().getName());
	 flavors[1]	=	DataFlavor.stringFlavor;
	 return	flavors;
 }
 catch (ClassNotFoundException e)
 {
 return new DataFlavor[0];
 }
 }

 @Override
	 public	boolean	isDataFlavorSupported(DataFlavor	flavor)
 {
	 return	DataFlavor.stringFlavor.equals(flavor)	||
	 "application".equals(flavor.getPrimaryType())	&&
	 "x-java-serialized-object".equals(flavor.getSubType())	&&
	 flavor.getRepresentationClass().isAssignableFrom(obj.getClass());
 }

 @Override
	 public	Object	getTransferData(DataFlavor	flavor)
 throws UnsupportedFlavorException
 {
	 if	(!isDataFlavorSupported(flavor))
	 throw	new	UnsupportedFlavorException(flavor);
	 if	(DataFlavor.stringFlavor.equals(flavor))	return	obj.toString();
 return obj;
 }
 }

The class has a reference to the object to be serialized, which is initialized in the constructor.
The first method must return the DataFlavor objects that may be used and defines two.
The first is defined as the MIME type for serializing an object:

 "application/x-java-serialized-object; class=" + obj.getClass().getName()

JAVA 9: SWING, DOCUMENTS AND PRINTING

141

the ClIpboard

141

where the type is application, while the subtype is x-java-serialized-object. Finally, a parameter,
which is the object type, is associated. The second DataFlavor is a DataFlavor.stringFlavor,
which means that the contents of the clipboard can be interpreted as a string. You must
note the sequence of the two DataFlavor objects, which means that the DataFlavor object
for serialization is the primary.

The next method should test if a given DataFlavor can be used to retrieve this object, and
it may be if it is a DataFlavor.stringFlavor or if the type and subtype are correct and that
is the correct class type. Finally, there is the last method, which from a DataFlavor returns
the encapsulated data object. If it is DataFlavor.stringFlavor, the result is returned as the
object’s toString() and if it is otherwise a legal DataFlavor it is the object itself.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 9: SWING, DOCUMENTS AND PRINTING

142

the ClIpboard

Then there is the program and it is in principle the same program as in the first two
examples of this chapter:

 public class MainView extends JFrame
 {
 private static Random rand = new Random();
 private King[] kings = {
 new King("Gorm den Gamle", 936, 958),
 new King("Harald Blåtand", 958, 987),
 new King("Svend Tveskæg", 987, 1014) };
 private Clipboard cb = Toolkit.getDefaultToolkit().getSystemClipboard();

 public MainView()
 {
 …
 }

 private void createView()
 {
 …
 }

 private void copy(ActionEvent e)
 {
 cb.setContents(
 new SerialTransferable(kings[rand.nextInt(kings.length)]), null);
 }

 private void paste(ActionEvent e)
 {
 try
 {
	 DataFlavor	flavor	=	new	DataFlavor("application/x-java-serialized-object;
 class=clipobject.King");
	 if	(cb.isDataFlavorAvailable(flavor))	show((King)cb.getData(flavor));
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }

 private void show(King king)
 {
 JOptionPane.showMessageDialog(this, String.format("%s\n%d – %d",
 king.getName(), king.getFrom(), king.getTo()));
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

143

the ClIpboard

When an object is saved on the clipboard, it is a random King object, and you must note
that it is encapsulated in a Transferable object of the type SerialTransferable. When the object
is retrieved in the method paste(), a DataFlavor of the correct type is defined. If the object
can be converted with this DataFlavor, it is retrieved from the clipboard using the method
getData(), which is a method that does not return the Transferable object on the clipboard,
but the data that the object encapsulates.

EXERCISE 4

You must write an application that opens the window as shown below. You can just make
a simple design. My window has a fixed size, and the components are laid out without the
use of a layout manager and hence in fixed positions.

In the first entry field, enter a number of units (an int), and in the second entry field an unit
price (a double). If you click the OK button, the program must calculate the total amount
as the number of units multiplied by the unit price and inserts the result in the bottom
field. Clicking the Clear button will clear all three fields. If you click the Copy button, the
contents of the two top fields must be used to instantiate an object of the following type:

 class Values implements Serializable
 {
 private int units;
 private double price;

 public Values(int units, double price)
 {
 this.units = units;
 this.price = price;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

144

the ClIpboard

144

 public int getUnits()
 {
 return units;
 }

 public double getPrice()
 {
 return price;
 }
 }

and the object must be saved on the clipboard. The Cut button should, in principle, work
in the same way, but it should also delete the two top fields. Finally, the Paste button must
initialize the two top fields with the values of a Values object was saved on the clipboard –
if there is such an object.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 9: SWING, DOCUMENTS AND PRINTING

145

the ClIpboard

6.3 IMAGES ON THE CLIPBOARD

I want to close this chapter about the clipboard with an application that saves a portion
of an image on the clipboard. It is a program where you can mark a rectangular area of a
picture that you can save on the clipboard and paste it into the picture again, but it requires
some knowledge about image processing that is dealt with in the next book so you may
ignore the details of the processing of images. The important thing here is how to copy
image data to and from the clipboard and not so much the program works. If you open
the program you get a window as shown below:

where the image is copied to the project and is part of the program’s jar file. If you point
somewhere in the picture, hold down and move the mouse are drawn a rectangle showing
what is marked:

JAVA 9: SWING, DOCUMENTS AND PRINTING

146

the ClIpboard

If you right-click a location on the image, you get a popup menu with three menu items
for copy, cut and paste. The following window shows the result where I have selected cut
and subsequently pasted the head of the eagle in three places:

JAVA 9: SWING, DOCUMENTS AND PRINTING

147

the ClIpboard

147

You should note that the image is not located in a JScrollPane, and the reason is that it
complicates the program a bit, as it becomes harder to calculate where the rectangle is to
be drawn.

The program looks a bit like the previous program corresponding to a data structure defined
for the pixels to be saved on the clipboard:

 class ImageData implements Serializable
 {
 private int width;
 private int height;
 private int[] pixels;

 public ImageData(int width, int height, int[] pixels)
 {
 this.width = width;
 this.height = height;
 this.pixels = pixels;
 }

http://s.bookboon.com/elearningforkids

JAVA 9: SWING, DOCUMENTS AND PRINTING

148

the ClIpboard

 public int getWidth()
 {
 return width;
 }

 public int getHeight()
 {
 return height;
 }

 public int[] getPixels()
 {
 return pixels;
 }
 }

The data structure consists of an array for the rectangle of pixels and the width and height
of the rectangle. In the same way as in the previous program I have to define a Transferable:

 class ImageTransferable implements Transferable
 {
	 public	final	static	DataFlavor	IMAGE_FLAVOR	=
 new DataFlavor (clipimage.ImageData.class, "Image Data");
	 private	final	static	DataFlavor	[]	flavors	=	{	IMAGE_FLAVOR	};
 private ImageData data;

 public ImageTransferable(ImageData data)
 {
 this.data = data;
 }

 public DataFlavor [] getTransferDataFlavors()
 {
	 return	flavors;
 }

	 public	boolean	isDataFlavorSupported(DataFlavor	flavor)	
 {
	 return	flavor.equals(IMAGE_FLAVOR);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

149

the ClIpboard

	 public	Object	getTransferData(DataFlavor	flavor)
 throws UnsupportedFlavorException
 {
	 if	(!flavor.equals(IMAGE_FLAVOR))	throw	new	UnsupportedFlavorException(flavor);
 return data;
 }
 }

First, a DataFlavor is defined, but this time it is not defined using a MIME type, but by
specifying the class of the type of objects that can be transferred to the clipboard as well as
a name. The Transferable object must this time only support this single DataFlavor, and the
array returned by getTransferDataFlavors() is defined as a static array. The implementation
of the class’ methods are trivial.

Then there is the program itself and the code fills a lot. A good part of the code involves
drawing the rectangle as well as creating an array of pixels that form a rectangular area
of the image and how to copy stored pixels into the image. The latter happens with two
methods called getPixels() and setPixels() respectively. I do not want to display the code for
these methods here, but shortly the program works as follows: The image is displayed in a
JLabel that is anchored in the upper left corner of the window. If you press the left mouse
button, the mouse’s coordinates are saved as the upper left corner of the rectangle, and when
you drag the mouse, the mouse’s coordinates are saved as the bottom right corner of the
rectangle, after which the rectangle is drawn. Right-clicking anywhere in the window will
opens a pop up menu with the three menu items. All that, requires some code, but I would
like only to show the three event handlers to the popup menu. Below is the method copy():

 private Rectangle copy()
 {
 Rectangle rect = getSelected();
 int[] pixels = getPixels(rect);
 ImageData data = new ImageData(rect.width, rect.height, pixels);
 Clipboard cb = getToolkit().getSystemClipboard();
 cb.setContents(new ImageTransferable(data), null);
 return rect;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

150

the ClIpboard

150

The method starts by determining the rectangle that is selected, which is done using a
getSelected() method. Next, the getPixels() method is used to form your array with all image
pixels within this rectangle, and then creates the object to be saved on the clipboard. The
object has the type ImageData, and it is now saved on the clipboard by embedding it in
an ImageTransferable object. When the method returns the rectangle, it is because it is also
used in the cut() method:

 private void cut()
 {
 Rectangle rect = copy();
 int[] pix = getPixels(rect);
 for (int i = 0; i < pix.length; ++i) pix[i] = 0;
 setPixels(pix, rect);
 }

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 9: SWING, DOCUMENTS AND PRINTING

151

the ClIpboard

cut() must start with a copy() and then the area saved must be blanked by setting all pixels
to 0. The actual image area is updated using the setPixels() method. Back there is the paste()
method:

 private void paste()
 {
 Clipboard cb = getToolkit().getSystemClipboard();
 try
 {
 Transferable tf = cb.getContents(null);
 if (tf.isDataFlavorSupported(ImageTransferable.IMAGE_FLAVOR))
 {
 ImageData data =
 (ImageData)(tf.getTransferData(ImageTransferable.IMAGE_FLAVOR));
 Rectangle area =
 new Rectangle(point.x, point.y, data.getWidth(), data.getHeight());
 int[] pixels = data.getPixels();
 setPixels(pixels, area);
 end = start;
 repaint();
 }
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(this, ex.toString());
 }
 }

The method starts by referring to the contents of the clipboard as a Transferable object. If
this object supports the correct DataFlavor, data is retrieved as an ImageData object and
based on it, a rectangle is created for the pixels to be updated. The actual update is done
with the method setPixels(). When the image is finally redrawn, the rectangle that is selected
must be removed.

JAVA 9: SWING, DOCUMENTS AND PRINTING

152

drag and drop

7 DRAG AND DROP

Drag and drop is an operation where data using the mouse are moved from one position to
another position. In fact, most Swing components come with built-in features for drag and
drop, and it is thus relatively simple to implement this feature in a program. The principle
is a bit like the clipboard that the data to be moved must be encapsulated in a Transferable
object, and in addition, three interfaces must be implemented, one of which defines the
component on which to perform a move, the other the component where you must be
able to drop and finally an object indicating the visual representation of the operation. It
sounds like a lot, but it’s because you have high degrees of liberty as to how the operation
is to be performed, and in practice it is actually limited what is needed.

Drag and drop operation includes three functions

1. copy (hold the left button down and move the mouse)
2. move (hold the left button down and move the mouse + CTRL)
3. link (hold the left button down and move the mouse + CTRL + SHIFT)

where the last means that an object is not copied, but only a reference to the original object
is defined. These operations are defined as constants in the class DnDConstants:

1. DnDConstants.ACTION_MOVE
2. DnDConstants.ACTION_COPY
3. DnDConstants.ACTION_REFERENCE
4. DnDConstants.ACTION_LINK
5. DnDConstants.ACTION_COPY_OR_MOVE

The principle of drag and drop is that, with the mouse, one can drag one component over
another component and then drop the first one. When Swing components supports drag
and drop, it means that all the necessary logic about the mouse is built-in, but what’s going
to happen when dropping, Swing can of course not know and that’s why something needs
to be programmed. I want to start with an application that opens the following window:

JAVA 9: SWING, DOCUMENTS AND PRINTING

153

drag and drop

153

The window contains three labels and the meaning is that using a drag-and-drop operation
you can change the background color of the top label. Below is an example where the
background color has been changed three times (the number 3 is displayed in a JLabel
and the meaning only is to show whar the interfaces are used for as part of the drag and
drop API):

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 9: SWING, DOCUMENTS AND PRINTING

154

drag and drop

The full code is shown below:

 package dropswing;

 import java.awt.*;
 import javax.swing.*;
 import javax.swing.border.*;
 import java.awt.datatransfer.*;
 import java.awt.dnd.*;
 import java.io.*;

 public class MainView extends JFrame
 {
	 public	final	static	DataFlavor	LABEL_FLAVOR	=
 new DataFlavor(JLabel.class, "Label Instances");
 private DragSourceListener dragSource;
 private JPanel panel = new JPanel(null);
 private JLabel dropLabel;
 private JLabel lblCount = new JLabel();
 private int count = 0;

 public MainView()
 {
 super("Drag and drop");
 setSize(260, 250);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

155

drag and drop

 private void createView()
 {
 addComponent(dropLabel = createLabel(), 20, 20, 220, 50);
 addComponent(createLabel(Color.red), 20, 100, 60, 30);
 addComponent(createLabel(Color.green), 100, 100, 60, 30);
 addComponent(createLabel(Color.blue), 180, 100, 60, 30);
 addComponent(lblCount, 100, 140, 60, 60);
 lblCount.setHorizontalAlignment(JLabel.CENTER);
 lblCount.setFont(new Font("Liberation Serif", Font.BOLD, 36));
 new DropTarget(dropLabel, DnDConstants.ACTION_COPY, new DnDDrop());
 dragSource = new DnDSource();
 add(panel);
 }

 private JLabel createLabel()
 {
 JLabel label = new JLabel("Drop things here");
 label.setOpaque(true);
 label.setHorizontalAlignment(JLabel.CENTER);
 label.setFont(new Font("Liberation Serif", Font.BOLD, 24));
 return label;
 }

 private JLabel createLabel(Color color)
 {
 JLabel label = new JLabel();
 label.setOpaque(true);
 label.setBackground(color);
 DragSource.getDefaultDragSource().createDefaultDragGestureRecognizer(label,
 DnDConstants.ACTION_COPY, new DnDGesture());
 return label;
 }

 private void addComponent(Component component, int xpos, int ypos,
 int width, int height)
 {
 component.setBounds(xpos, ypos, width, height);
 panel.add(component);
 }

 class DnDGesture implements DragGestureListener
 {
 public void dragGestureRecognized(DragGestureEvent e)
 {
 Cursor cursor = null;
 JLabel label = (JLabel)(e.getComponent());
 switch (e.getDragAction())
 {

JAVA 9: SWING, DOCUMENTS AND PRINTING

156

drag and drop

156

 case DnDConstants.ACTION_MOVE: cursor = DragSource.DefaultMoveDrop; break;
 case DnDConstants.ACTION_COPY: cursor = DragSource.DefaultCopyDrop; break;
 case DnDConstants.ACTION_LINK: cursor = DragSource.DefaultLinkDrop; break;
 }
 e.startDrag(cursor, new LabelTransferable(label), dragSource);
 }
 }

 class DnDSource implements DragSourceListener
 {
 public void dragEnter(DragSourceDragEvent e)
 {
 }

 public void dragExit(DragSourceEvent e)
 {
 }

 public void dragOver(DragSourceDragEvent e)
 {
 }

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 9: SWING, DOCUMENTS AND PRINTING

157

drag and drop

 public void dropActionChanged(DragSourceDragEvent e)
 {
 }

 public void dragDropEnd(DragSourceDropEvent e)
 {
 if (e.getDropSuccess()) lblCount.setText(String.format("%d", ++count));
 }
 }

 class DnDDrop implements DropTargetListener
 {
 public void dragEnter(DropTargetDragEvent e)
 {
 if (!e.isDataFlavorSupported(LABEL_FLAVOR)) e.rejectDrag();
 else dropLabel.setBorder(new LineBorder(Color.black));
 }

 public void dragExit(DropTargetEvent e)
 {
 dropLabel.setBorder(null);
 }

 public void dragOver(DropTargetDragEvent e)
 {
 }

 public void dropActionChanged(DropTargetDragEvent e)
 {
 }

 public void drop(DropTargetDropEvent e)
 {
 try
 {
 if (e.isDataFlavorSupported(LABEL_FLAVOR))
 {
 dropLabel.setBackground(((JLabel)e.getTransferable().getTransferData(
 LABEL_FLAVOR)).getBackground());
 dropLabel.setBorder(null);
 e.dropComplete(true);
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

158

drag and drop

 catch (Exception ex)
 {
 e.dropComplete(false);
 }
 }
 }

 class LabelTransferable implements Transferable
 {
	 private	DataFlavor[]	flavors	=	{	LABEL_FLAVOR	};
 private JLabel label;

 public LabelTransferable(JLabel label)
 {
 this.label = label;
 }

 public DataFlavor[] getTransferDataFlavors()
 {
	 return	flavors;
 }

	 public	boolean	isDataFlavorSupported(DataFlavor	flavor)	
 {
	 return	flavor.equals(LABEL_FLAVOR);
 }

	 public	Object	getTransferData(DataFlavor	flavor)
 throws UnsupportedFlavorException, IOException
 {
	 if	(flavor.equals(LABEL_FLAVOR))	return	label;
	 throw	new	UnsupportedFlavorException(flavor);
 }
 }
 }

If you start from the top, drag and drop require two packages:

 import java.awt.datatransfer.*;
 import java.awt.dnd.*;

JAVA 9: SWING, DOCUMENTS AND PRINTING

159

drag and drop

159

where the first is the same package as I mentioned in the previous chapter about the
clipboard. The other package contains types that are required to implement drag and drop in
an application. Regarding the program’s variables, a constant is first defined as a DataFlaver
for a JLabel. This corresponds to the objects that this program should be able to drag are
JLabel components. In addition, a variable of the type DragSourceListener defines where
an object representing the component to be dragged and which during the operation fires
multiple events. The top variables relate to user interface components and do not require
any particular explanation, but you should note that the panel has no layout manager and
that the components are therefore are placed in fixed positions in the window. It’s just to
get rid of the design of the user interface, as it’s not the primary in this example.

Drag and drop requires that you define four classes. They are explained below, but in this
example they are all defined as inner classes. Apart from these classes, the code includes
the design of the user interface, and here are three things that you should notice. In the
method createView(), the following method is performed:

 new DropTarget(dropLabel, DnDConstants.ACTION_COPY, new DnDDrop());

http://s.bookboon.com/EOT

JAVA 9: SWING, DOCUMENTS AND PRINTING

160

drag and drop

dropLabel is the JLabel that I want to drop on, and the statement tells me that it should
be possible by attaching a DropTargetListener to the component. DnDDrop is an inner class
that implements the DropTargetListener interface. createView() also performs the statement

 dragSource = new DnDSource();

that creates a DragSourceListener (dragSource is an instance variable) and DnDSource is an
inner class that implements the DragSourceListener interface. Finally, note the last createLabel()
method that creates the three JLabel components that show a color (the components that
must be draggable), which perform the following statement:

 DragSource.getDefaultDragSource().createDefaultDragGestureRecognizer(label,
 DnDConstants.ACTION_COPY, new DnDGesture());

The statement links a DragGestureListener to the component. DndGesture is an internal class
that implements the DragGestureListener interface, and the class initiates a drag operation.
The sum of the above is that to implement drag and drop in a program one must

1. assign a DropTargetListener to the components, where you must be able to drop
2. defines a DragSourceListener object
3. assign a DragGestureListener to the components that must be draggable

Back there is writing classes implementing the three interfaces and as mentioned above and
a class implementing Transferable.

I want to start with the last called LabelTransferable that implement the Transferable interface.
The class’s constructor has a JLabel as parameter and is the label included in a drag operation.
As shown in the previous chapter, the class must implement three methods, and since there
is only one DataFlavor, these methods are all trivial.

Then there is the DnDSource class that implements DragSourceListener. This interface
defines 5 event handlers that fire events associated with a drag operation. Often you do not
implements these methods (leave them blank), but I have implemented a single method
that is performed when the operation is completed. If the drop operation was completed
correctly, the method counts a counter by 1 and displays the value of the counter in the
bottom JLabel. The goal is to show an example of how these event handlers can be used,
and you are encouraged to check when other events occurs, but it appears mostly from
the name.

JAVA 9: SWING, DOCUMENTS AND PRINTING

161

drag and drop

The class DnDDrop implements DropTargetListener, which in the same way defines 5 event
traders, but this time, events are triggered by the drop component. I have implemented
three of them. The first means that a frame appears around the top label when the mouse
in a drag and drop operation is entered over the component. It shows the user that it is
a place where you can drop. The second event handler removes the frame again if the
mouse no longer points to the component. Then there is event the handler drop(), which
is performed when dropping – and that is, releasing the mouse. The method tests whether
the object to be dropped has the correct DataFlaver (is a JLabel component), and if so, the
following statement is performed:

 dropLabel.setBackground(((JLabel)e.getTransferable().
 getTransferData(LABEL_FLAVOR)).getBackground());

The method takes the object that was transferred and converted it to a JLabel. Next, the
background color of the component dropLabel is changed to the background color of the
transferred object. As the next step, the method removes the frame and finally the ollowing
statement is executed

 e.dropComplete(true);

which tells that the drop operation is performed correctly.

Finally, there is the class DnDGesture that implements the DragGestureListener interface. This
interface defines only a single method (event handler), which is a method performed when
the drag and drop operation starts. It is actually the method that binds it all together. The
method starts to determine a reference to the label the drag operation concerns. Then, the
method changes the cursor so there is a visual effect of the operation. Finally, the method
starts the operation by specifying the selected cursor as well as encapsulating the current
object in a Transferable object.

As shown above, drag and drop requires a part, but it is the same thing that should happen
every time.

JAVA 9: SWING, DOCUMENTS AND PRINTING

162

drag and drop

162

7.1 DRAG IMAGES

The above is not a typical drag and drop operation and therefore the following example,
which shows better how to use drag and drop in a program. In fact, the program does
not contain much new and drag and drop is in the same way as in the above example
implemented using 4 inner classes. If you open the program, you get a blank window:

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 9: SWING, DOCUMENTS AND PRINTING

163

drag and drop

If you opens Files, you can drag pictures (JPG, GIF and PNG files) into the window, then
they appear as 128×128 icons:

If the images are copied to the window, you can drag them with the mouse to another
location.

The program is similar to the above, but this time there are two drag and drop operations.
You can point to a file (an image) in Files and drag it over the application window. That
is, drag operations are initiated in another program (the program Files), while the drop
operation is performed in my program. The other operation, where you can move the images,
relates solely to the Java program, where the drag operation is started based on an object
in the program window, and the drop operation is performed on the same object as above.

The program’s window is design very simple and consists only of a JPanel without a layout
manger. The panel is called panel. In createView() this panel is defined as DropTarget so it
receives events from the DnDDrop class. Here is the important method

JAVA 9: SWING, DOCUMENTS AND PRINTING

164

drag and drop

 public void drop(DropTargetDropEvent e)
 {
 try
 {
 if (e.isDataFlavorSupported(DataFlavor.javaFileListFlavor))
 {
 e.acceptDrop(DnDConstants.ACTION_COPY);
 java.util.List list = (java.util.List)(e.getTransferable().
 getTransferData(DataFlavor.javaFileListFlavor));
 for (Object obj : list) addComponent(getImage((File)obj), e.getLocation());
 e.dropComplete(true);
 }
 }
 catch (Exception ex)
 {
 e.dropComplete(false);
 }
 }

If you drag a file from the outside (that is from the Files program), the object type is
defined by a DataFlavor named javaFileListFlavor. This means that the Transferable object
encapsulates an ArrayList, and the methods refer to this list. The list’s objects have the type
of File, and for each object, the method addComponent() is called, which adds a JLabel to
the panel where the mouse points. The method starts by calling a method getImage() with
a File object as parameter. This method loads the image using the filename and, and on
basis of this, creates an icon of 128×128 pixels. However, only if it is a jpg, png or gif file.
Otherwise, a default icon will be used. The program thus supports dragging random files
into the window.

	private	JLabel	getImage(File	file)	
 {
	 String	name	=	file.getAbsolutePath().toLowerCase();
 ImageIcon icon = name.endsWith("png") || name.endsWith("jpg") ||
	 name.endsWith("gif")	?	scaleImage(new	ImageIcon(file.getAbsolutePath()))	:
 defIcon;
 JLabel label = new JLabel(icon);
	 label.setText(cut(file.getName()));
 label.setHorizontalTextPosition(JLabel.CENTER);
 label.setVerticalTextPosition(JLabel.BOTTOM);
 return label;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

165

drag and drop

165

 private static ImageIcon scaleImage(ImageIcon icon)
 {
 double w = icon.getIconWidth();
 double h = icon.getIconHeight();
 double z = Math.min(128 / w, 128 / h);
 return new ImageIcon(icon.getImage().getScaledInstance(
 (int)(w * z), (int)(h * z), java.awt.Image.SCALE_SMOOTH));
 }

After the icon is determined (created), a JLabel is created for the icon and at the same time
the file name appears below the icon, and the icon is then added to the panel:

 private void addComponent(Component component, Point point)
 {
 component.setLocation(point);
 component.setSize(component.getPreferredSize());
 panel.add(component);
 repaint();
 }

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 9: SWING, DOCUMENTS AND PRINTING

166

drag and drop

Then you can actually drag files into the program and drop them in the window. That
is, as long that none of the class’s components should be draggable, it is not necessary to
implement the three interfaces DragSourceListener, DragGestureListener and Transferable.

If you also need to be able to drag the components in the window, the three interfaces
must be implemented. Since it must be possible to draw a JLabel, the Transferable object
can be implemented in exactly the same way as in the previous program. Then there is the
DnDSource class, which implements the DragSourceListener interface, where it is necessary
to implement the dragDropEnd() method:

 public void dragDropEnd(DragSourceDropEvent e)
 {
 if ((e.getDropSuccess()) && (e.getDropAction() == DnDConstants.ACTION_MOVE))
 {
 panel.remove(dndLabel);
 panel.repaint();
 }
 dndLabel = null;
 }

The reason is that once you have moved a component and dropped it, you have formed a
copy and the original component must be removed.

Finally, there is the class DnDGesture() which is unchanged from the previous program.

JAVA 9: SWING, DOCUMENTS AND PRINTING

167

drag and drop

PROBLEM 4

You should write a program, that you can call DropTable. The program must open the
following Window:

At the top there is a JTable in a JScrollPane, while at the bottom there is a JPanel without a
layout manager. Just like in the previous program, you can drag files that represent images
from the file system (the program Files) and drop them onto a JTable, and each file inserts
a row in the table. You can also take a row in the table and drag it down over the bottom
panel and drop it there, and the result will be a label with an icon. That is, the JTable
component supports both drag and drop. Below is a window in which there are droped
5 icons (images) in the JTable component, and three of these are by drag dropped in the
bottom panel:

JAVA 9: SWING, DOCUMENTS AND PRINTING

168

edIt text

168

8 EDIT TEXT

In practice programming, editing of texts plays an important role, and in most contexts it
is without the big challenges, as Swing provides more components that can be used for text
input. So far, I have looked at the components JTextField and JTextArea, which are used for
entering single text lines and entering multiple lines. As the previous examples have shown,
it is simple to use these components, but there are actually four additional components for
text input. One of them is JPasswordField, which I have already used once, and as the name
says is used for entering a password. Basically, it is a JTextField, but with the difference
that the characters entered do not appear, but the field only shows a dot for each entered
character (if you do not indicate that nothing should be displayed at all).

Another input field is a JFormattedTextField, which is also a JTextField, but where you
specify how to format the entered data. For example, you can enter an integer only. As
an alternative to a JTextArea, there is also a JTextPane where you can edit styled text and,
for example, decide which colors and fonts to use for parts of the text. Finally, there is a
JEditorPane, which uses a so-called EditorKit to define how text is displayed and edited.
These components represents a hierarchy as follows:

http://s.bookboon.com/GTca

JAVA 9: SWING, DOCUMENTS AND PRINTING

169

edIt text

Please note that JTextComponent is a common basic class for the 6 concrete components
for text input.

In this chapter I will look at the components JFomattedTextField, JTextPane and JEditorPane
as well as a number of classes used by these components. The components are by no means
simple, but on the other hand they provide the programmer with very great flexibility in
working with text. When editing text is complex, it is because components should handle
keyboard and mouse events, and that components should be able to show styled text.
However, before I start, I will show a program that opens a window, as shown below, where
the program illustrates a little about how the components work.

	package	textfields;

 import java.awt.*;
 import javax.swing.*;
 import javax.swing.text.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
	 public	static	final	String	text1	=	"Hello	world";
	 public	static	final	String	text2	=	
	 "The	first	three	Danish	kings	are

Gorm den Gamle,
 Harald Blåtand and
 Svend Tveskæg.";

 public MainView()
 {
	 super("Text	fields");
 setSize(700, 500);
 setLayout(new FlowLayout());

JAVA 9: SWING, DOCUMENTS AND PRINTING

170

edIt text

 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 setLayout(new GridLayout(2, 3, 5, 5));
 add(createTextFields());
 add(createTextAre1());
 add(createTextAre2());
 add(createTextPane());
 add(createEditorPane1());
 add(createEditorPane2());
 }

 private JScrollPane createEditorPane1()
 {
 JScrollPane scroll = new JScrollPane(new JEditorPane("text/plain", text2));
 scroll.setBorder(new TitledBorder("JEditorPane (text/plain)"));
 return scroll;
 }

 private JScrollPane createEditorPane2()
 {
 JScrollPane scroll = new JScrollPane(new JEditorPane("text/html", text2));
 scroll.setBorder(new TitledBorder("JEditorPane (text/html)"));
 return scroll;
 }

 private JScrollPane createTextPane()
 {
	 JTextPane	field	=	new	JTextPane();
	 field.setText(text2);
 SimpleAttributeSet attrs1 = new SimpleAttributeSet();
 StyleConstants.setForeground(attrs1, Color.red);
 StyleConstants.setFontSize(attrs1, 14);
 SimpleAttributeSet attrs2 = new SimpleAttributeSet();
 StyleConstants.setForeground(attrs2, Color.blue);
 StyleConstants.setFontSize(attrs2, 10);
	 StyledDocument	sdoc	=	field.getStyledDocument();
 sdoc.setCharacterAttributes(0, 16, attrs1, false);
 sdoc.setCharacterAttributes(17, 28, attrs2, false);
 sdoc.setCharacterAttributes(45, 12, attrs1, false);
 sdoc.setCharacterAttributes(57, 7, attrs2, false);

JAVA 9: SWING, DOCUMENTS AND PRINTING

171

edIt text

171

 sdoc.setCharacterAttributes(64, 4, attrs1, false);
 sdoc.setCharacterAttributes(68, 33, attrs2, false);
 sdoc.setCharacterAttributes(101, 14, attrs1, false);
 sdoc.setCharacterAttributes(115, 7, attrs2, false);
 sdoc.setCharacterAttributes(122, 2, attrs1, false);
 sdoc.setCharacterAttributes(124, 28, attrs2, false);
 sdoc.setCharacterAttributes(152, 14, attrs1, false);
 sdoc.setCharacterAttributes(166, 7, attrs2, false);
 sdoc.setCharacterAttributes(173, 5, attrs1, false);
 sdoc.setCharacterAttributes(178, 28, attrs2, false);
 sdoc.setCharacterAttributes(206, 14, attrs1, false);
 sdoc.setCharacterAttributes(219, 7, attrs2, false);
 sdoc.setCharacterAttributes(226, 1, attrs1, false);
	 JScrollPane	scroll	=	new	JScrollPane(field);
 scroll.setBorder(new TitledBorder("JTextPane"));
 return scroll;
 }

 private JScrollPane createTextAre1()
 {
 JScrollPane scroll = new JScrollPane(new JTextArea(text2));
	 scroll.setBorder(new	TitledBorder("JTextArea	(line	wrap	off)"));
 return scroll;
 }

 .

http://s.bookboon.com/AlcatelLucent

JAVA 9: SWING, DOCUMENTS AND PRINTING

172

edIt text

 private JScrollPane createTextAre2()
 {
	 JTextArea	field	=	new	JTextArea(text2);
	 field.setLineWrap(true);
	 field.setWrapStyleWord(true);
	 JScrollPane	scroll	=	new	JScrollPane(field);
 scroll.setBorder(new TitledBorder("JTextArea (line wrap on)"));
 return scroll;
 }

 private JPanel createTextFields()
 {
 JPanel panel = new JPanel(new FlowLayout(FlowLayout.LEFT));
 panel.add(createTextField());
 panel.add(createPasswordField());
 panel.add(createFormattedField());
 return panel;
 }

 private JPanel createTextField()
 {
 JPanel panel = new JPanel(new FlowLayout());
 panel.setBorder(new TitledBorder("JTextField"));
 panel.add(new JTextField(text1));
 return panel;
 }

 private JPanel createPasswordField()
 {
 JPanel panel = new JPanel(new FlowLayout());
 panel.setBorder(new TitledBorder("JPasswordField"));
 panel.add(new JPasswordField(text1));
 panel.setPreferredSize(new Dimension(130, 50));
 return panel;
 }

 private JPanel createFormattedField()
 {
	 JFormattedTextField	field	=	new	JFormattedTextField(createFormatter());
	 field.setValue(text1);
	 field.setPreferredSize(new	Dimension(80,	20));
 JPanel panel = new JPanel(new FlowLayout());
 panel.setBorder(new TitledBorder("JFormattedTextField"));
	 panel.add(field);
 panel.setPreferredSize(new Dimension(160, 50));
 return panel;
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

173

edIt text

 private MaskFormatter createFormatter()
 {
 try
 {
 return new MaskFormatter("UUUUU");
 }
 catch (Exception ex)
 {
 return null;
 }
 }
 }

The program divides the window into 6 areas using a GridLayout. In the upper left corner,
a JTextField, a JPasswordField and a JFormattedTextField are displayed. The first two, I should
not mention, but the third is created in the method createFormattedField(), and it is important
that it is initialized with a MaskFormatter object created in the method createFormatter().
MaskFormatter is a class that allows to define a particular pattern that the content of a
JFormattedTextField must adhere to. In this case, the pattern is “UUUUU”, which means 5
uppercase letters. The field is initialized with the text “Hello world”, and the result is that
the field shows “HELLO” and thus the first 5 letters converted to uppercase letters. You
should investigate what happens if you type in the field and note that only 5 characters
can be entered, that lowercase letters are automatically converted to uppercase letters and
all non-letter characters are ignored.

JAVA 9: SWING, DOCUMENTS AND PRINTING

174

edIt text

174

The MaskFormatter class has many options for formatting text, and you are encouraged to
read the help to get an idea of the possibilities. There are also other classes for formatting
text, and you should pay special attention to the class NumberFormat.

The window’s top line shows two additional fields, that both are JTextArea fields. The first
does not break the line and therefore the entire text is shown as one long line (unless you
directly insert line breaks). The other JTextArea will automatically break lines that are to
long. You should note that the text is defined as html, and since a JTextArea does not format
the text, all characters are displayed without interpretation.

The field in the lower left corner shows a JTextPane created by the method createTextPane().
A JTextPane shows styled text, which means that you can insert attributes into the text that
specify how the text is to be formatted. In this case, font size and color attributes are entered.
You should study the method createTextPane() and here specifically how to insert attributes.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 9: SWING, DOCUMENTS AND PRINTING

175

edIt text

Finally, each of the last two fields in the bottom line shows a JEditorPane. Here you can
specify how the text is to be rendered with a MIME type, and exactly that means which
EditorKit to use. The first indicates text / plain and therefore shows the text as plain text,
while the last uses text / html and thus interprets the html tags and renderes the text as an
HTML document.

In principle, the 6 text components work in the same way that can be briefly described
as: The component has a UI delegate, which, among other things, defines font and color
properties. It also defines the component’s caret and highlighter, as well as InputMap and
ActionMap that relate to the keyboard and commands such as cut / copy / paste, select-all,
caret-to-end-of-line, page-down, and so on. It is also the UI delegate that instantiates an
EditorKit. For a JTextArea, it is a DefaultEditorKit that defines most of the component’s
Actions. A text component works on a Document (such as a PlainDocument) either created
by the component or transferred to the constructor. The document object represents the
text by dividing it into one or more Elements. An Element object represents a portion of the
document’s content as well as style information. For example, a JTextArea creates an Element
object for each line, but ignores everything about styles. A text document registers itself
as listening to the events it needs to keep track of, and it registers, among other things, as
a DocumentListener so it can update itself if the Document object is changed. It is the UI
delegate that is responsible for drawing the component using the component’s EditorKit
and a ViewFactory. This class creates a hierarchy of one or more View objects based on the
Element objects of the document, and this hierarchy is drawn on the screen.

That story hardly tells much, but it mentions several classes, and it’s all these classes that
you can override and in that way get a text component to work as you like. These are the
classes that makes Java’s text API incredibly flexible and the subject of the rest of this chapter
is to give som examples of what you can do.

8.1 JFORMATTEDTEXTFIELD

As shown in the introductory example, a JFormattedTextField is a JTextField, where a formatter
is attached to the component and determines how to format the content of the field. In the
introductory example, I used a MaskFormatter, which can be used to ensure that you can
only enter certain characters, but there are many other options. The type of a formatter is
AbstractFormatter, and the specific formatter determines the format and when it happens.
Regarding the latter, it may happen during the entry, for example, for a MaskFormatter,
but other formatter objects the formatting first takes place after the field loses focus. With
an option for the component, you can specify what should be done if the input does not
conform to the format, but the default setting is that the component formats the content
as well as possible and ignores what that do not conforms the format.

JAVA 9: SWING, DOCUMENTS AND PRINTING

176

edIt text

The following example uses the default setting. The window shows 5 JFormattedTextField
components, and when you click OK, the formatted object appears in the field to the right.

A JFormattedTextField component can format any object, and the result is determined by
the formatter. Here are two options. If a formatter is not specified, the component will
select a format based on the type of the object. Otherwise, the formatter associated with
the component in the constructor is used. The code is shown below, and you are requested
to study the code, as well as test the program, and especially what format objects are used.

	package	formatterfields;

 import java.util.*;
 import java.text.*;
 import java.awt.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 public MainView()
 {
	 super("Formatted	text	fields");
 setSize(500, 380);
 setLayout(new FlowLayout());
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

177

edIt text

177

 private void createView()
 {
 JPanel panel = new JPanel();
 panel.setBorder(new EmptyBorder(20, 20, 20, 20));
 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
 panel.add(createField("Date", new Date()));
 panel.add(createField("Integer", new Integer(1234)));
 panel.add(createField("Double", NumberFormat.getInstance(),
 new Double(Math.PI)));
 panel.add(createField("Currency", NumberFormat.getCurrencyInstance(),
 new Double(1234.56)));
 panel.add(createField("Percent", NumberFormat.getPercentInstance(),
 new Double(0.155)));
 add(panel);
 }

 private JPanel createField(String text, Object value)
 {
	 JFormattedTextField	field	=	new	JFormattedTextField(value);
	 return	createField(text,	field);
 }

http://s.bookboon.com/BI

JAVA 9: SWING, DOCUMENTS AND PRINTING

178

edIt text

 private JPanel createField(String text, Format format, Object value)
 {
	 JFormattedTextField	field	=	new	JFormattedTextField(format);
	 field.setValue(value);
	 return	createField(text,	field);
 }

	 private	JPanel	createField(String	text,	JFormattedTextField	field)
 {
	 field.setPreferredSize(new	Dimension(120,	22));
 JTextField result = new JTextField();
 result.setEditable(false);
 result.setPreferredSize(new Dimension(220, 22));
 JButton cmd = new JButton("OK");
 cmd.setPreferredSize(new Dimension(60, 22));
	 cmd.addActionListener(e	->	result.setText(field.getValue().toString()));
 JPanel panel = new JPanel(new FlowLayout(FlowLayout.LEFT));
 panel.setBorder(new TitledBorder(text));
	 panel.add(field);
 panel.add(cmd);
 panel.add(result);
 return panel;
 }
 }

You are also encouraged to investigate the help and which other formatter types there are.

EXERCISE 5

Create a copy of the solution Calculations for exercise 4 and call the copy Calculations1.
Open it in NetBeans. Delete all that has to do with the clipboard so the program alone can
calculate the total amount. You must now change the three input fields to JFormattedTextField
components, where the number of units must use a NumberFomat to format an integer,
while the others must also use a NumberFormat to convert the value to a currency.

When the program works with these changes, change the format of the txtPrice field (to
enter the unit price) so that it instead uses a DecimalFormat.

You should study the DecimalFormat class thoroughly and investigate what opportunities
there are – and there are many.

JAVA 9: SWING, DOCUMENTS AND PRINTING

179

edIt text

8.2 THE CARET

For each JTextComponent, a caret is attached, which visually shows where the next operation
is to be performed (where a character must be inserted, where to delete a character and so
on). Typically, it’s a thin line that blinks, but it’s an object of the type DefaultCaret, and
basically it’s the task of the class to draw that particular caret in the right place. The JTextArea
class (and similar to the other text components) has an object of the type DefaultCaret, so
you can write a derived class that draws a caret differently and then associate an object of
this class with the component. It is not very difficult (even the opportunity has only limited
interest). As an example, below is shown a custom caret that draws a caret as follows:

and the class can be written as:

 class ACaret extends DefaultCaret
 {
 public ACaret()
 {
 setBlinkRate(500);
 }

 protected synchronized void damage(Rectangle rect)
 {
 if (rect == null) return;
 x = rect.x;
 y = rect.y;
 width = 6;
 height = rect.height + 1;
 repaint();
 }

 public void paint(Graphics g)
 {
 JTextComponent component = getComponent();
 if (component == null) return;
 Rectangle rect = null;
 try
 {
 rect = component.modelToView(getDot());
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

180

edIt text

180

 catch (BadLocationException e)
 {
 return;
 }
 if (rect == null) return;
 if (isVisible())
 {
 g.setColor(Color.red);
 g.drawLine(rect.x, rect.y, rect.x, rect.y + rect.height);
 g.drawLine(rect.x, rect.y, rect.x + 5, rect.y);
 g.drawLine(rect.x, rect.y + rect.height, rect.x + 5, rect.y + rect.height);
 }
 }
 }

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 9: SWING, DOCUMENTS AND PRINTING

181

edIt text

The constructor starts to define that the component’s caret should blink every half second.
Otherwise, most occurs in the paint() method, which is the method called by the runtime
system whenever it is necessary for it to be redrawn (and it is often if you move it using
the arrow keys, or if you enter a character). The method must draw the figure, which occurs
in the last if statement, but before it is necessary to calculate where to draw. Here the class
DefaultCaret has what is needed. The method getDot() returns the logical position in the text
for the caret, and this position can be converted to coordinates relative to the component
using method modelToView(). The result is a rectangle that encloses the components’ caret.
With this rectangle available, the figure can be drawn.

The class has another method called damage(), that is called by the rutime system when it is
necessary to redraw. The class DefaultCaret has protected variables, which are used to specify
the area that is required for redrawing, and these are initialized by the method damage().
After the variables are initialized, a repaint() will be performed, which ensures that paint()
is performed at some point.

Then there is the following class that uses the above custom caret:

 public class MainView extends JFrame
 {
 public MainView()
 {
	 super("Formatted	text	fields");
 setSize(500, 380);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 JTextArea txt = new JTextArea();
// txt.setFont(new Font("Serif", Font.PLAIN, 24));
 txt.setCaret(new ACaret());
 txt.setText("Gorm den Gamle\nHarald Blåtand\nSvend Tveskæg");
 panel.add(new JScrollPane(txt));
 add(panel);
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

182

edIt text

There is not much to explain, but you should notice how to define that the JTextArea
component must use another caret. The statement with the comment is to show that the
new caret also respects another font. Below is an example of a run of the program where
the comment has been removed and where the caret is moved:

8.3 HIGHLIGHTER

A text component also has a so-called highlighter, which is an object used to display text
that is selected. By default, it displays the highlighted text with a different background color
and is performed by a Highlighter object defined by the interface Highlighter.HighlightPainter
and thus an internal interface in the Highlighter interface. It is possible to implement this
interface yourself (although there are hardly any reasons for it), but the class below is an
example where text is highlighted with a red underline:

 class AHighlightPainter implements Highlighter.HighlightPainter
 {
 private void paintLine(Graphics g, Rectangle rect, int x)
 {
	 g.fillRect(rect.x,	rect.y	+	rect.height	–	3,	x	–	rect.x,	3);
 }

 public void paint(Graphics g, int p0, int p1, Shape shape,
 JTextComponent component)
 {
 Rectangle rect0 = null;
 Rectangle rect1 = null;
 try
 {
 rect0 = component.modelToView(p0);
 rect1 = component.modelToView(p1);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

183

edIt text

183

 catch (BadLocationException ex)
 {
 return;
 }
 if (rect0 == null || rect1 == null) return;
 Rectangle rect2 = shape.getBounds();
 int max = rect2.x + rect2.width;
 g.setColor(Color.red);
 if (rect0.y == rect1.y) paintLine(g, rect0, rect1.x);
 else
 {
 paintLine(g, rect0, max);
 rect0.y += rect0.height;
 rect0.x = rect2.x;
 while (rect0.y < rect1.y)
 {
 paintLine(g, rect0, max);
 rect0.y += rect0.height;
 }
 paintLine(g, rect0, rect1.x);
 }
 }
 }

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 9: SWING, DOCUMENTS AND PRINTING

184

edIt text

As it appears, it is only a matter of overriding a paint() method. The parameters are the
graphic object to be drawn with, start and end position of the text to be highlighted, a
rewriting rectangle for the text to be highlighted and then the text component. I do not
want to go through the method’s statements as it basically takes place in the same way as
in the previous example with a caret, and the code is something nerd and belongs to what
the next book describes, but in principle it’s simple enough to figure out what happens. You
should note that the method is complicated by the fact that the selected text can fill several
lines. You should also note that the above highlighter can only be used by a component
where all lines have the same height, that is, a JTextArea or a JTextField. The test program
is identical to the above, where the difference is that you associate another caret:

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 JTextArea txt = new JTextArea();
 txt.setLineWrap(true);
 txt.setWrapStyleWord(true);
 txt.setCaret(new DefaultCaret() {
 private Highlighter.HighlightPainter hl = new AHighlightPainter();
 protected Highlighter.HighlightPainter getSelectionPainter()
 { return hl; } });
 txt.setText("Gorm den Gamle\nHarald Blåtand\nSvend Tveskæg");
 panel.add(new JScrollPane(txt));
 add(panel);
 }

8.4 A JTEXTPANE

The subject of this section is the component JTextPane, which is an extremely advanced
component with many options for settings and many related types in the form of interfaces
and classes, and the following will also only be an introduction but sufficient to get an
impression of what a JTextPane can do and how you can use the component in practice.

JAVA 9: SWING, DOCUMENTS AND PRINTING

185

edIt text

Basically, you can think of a JTextPane as a JTextArea and thus a component where you can
enter and edit text lines, but with the big difference that the component supports styling
of the text. This means that individual text elements can have assigned style objects in the
form of, for example, font and color. The component can actually more than it, as it can
also display images and even other Swing components. Like the other Swing components, a
JTextPane is designed by MVC, and the model is defined (similar to the other text components)
of the Document interface, and a JTextPane uses the concrete class StyledDocument as model.
It is thus the model that keeps track of the individual style elements. The model is dealt
with first in the next section, and this section will primarily show how to use a JTextPane
in a program.

I want to start with an application that opens a window with three buttons. Over the three
buttons is a JTextPane in a JScrollPane. If you click on the Insert Test button, the text Hello
World is inserted at the cursor’s position. Clicking the button Insert icon instead adds an
icon at the cursor’s position, and clicking the Insert component button adds a button. Below
is the window after I have

1. clicked the button Insert text twice
2. clicked the button Insert icon
3. clicked the button Insert text four times
4. clicked the button Insert component twice

If you instead select some of the content and click on one of the buttons, then the selected
will be replaced by what are inserted. You should note that the buttons are real buttons
and clicking on one of them will give you a message box. In fact, you can insert any Swing
component and hence a JPanel, and then you can insert a form. The example here has nothing
to do with styling, but it still shows what data the component is capable of rendering.

JAVA 9: SWING, DOCUMENTS AND PRINTING

186

edIt text

186

The code is shown below and does not fill as much as you might expect:

 package atextpane;

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 private static ImageIcon icon = createImage();
 private int counter = 0;
 private JTextPane txtPane = new JTextPane();

 public MainView()
 {
 super("A JTextPane");
 setSize(500, 300);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

http://s.bookboon.com/Subscrybe

JAVA 9: SWING, DOCUMENTS AND PRINTING

187

edIt text

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 panel.add(new JScrollPane(txtPane));
 panel.add(createBottom(), BorderLayout.SOUTH);
 add(panel);
 }

 private JPanel createBottom()
 {
 JPanel panel = new JPanel(new FlowLayout());
 panel.add(createButton("Insert text", e ->
 { txtPane.replaceSelection("Hello world"); txtPane.requestFocus(); }));
 panel.add(createButton("Insert icon", e ->
 { txtPane.insertIcon(icon); txtPane.requestFocus(); }));
 panel.add(createButton("Insert component", e ->
 { txtPane.insertComponent(createButton("Click " + (++counter),
 a -> JOptionPane.showMessageDialog(this,
 "Button " + counter))); txtPane.requestFocus(); }));
 return panel;
 }

 private JButton createButton(String text, ActionListener listener)
 {
 JButton cmd = new JButton(text);
 cmd.addActionListener(listener);
 return cmd;
 }

 private static ImageIcon createImage()
 {
 java.net.URL imgURL =
 MainView.class.getResource("/atextpane/images/linux.png");
 return new ImageIcon(new ImageIcon(imgURL, "").
 getImage().getScaledInstance(128, 128, Image.SCALE_SMOOTH), "");
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

188

edIt text

There are defined three instance variables, where the first is the icon to be inserted, and the
last method is the same method that I have used many times that loads the image from the
program’s jar file and scales it. The variable counter is used for the text of the buttons that
may be inserted so that they can be known from each other. Finally, there is a reference to
the JTextPane component so it can be referenced from the three button’s event handlers. The
component is inserted into the window as other components, and there is something to note
in the three event handlers. There you should notice the following methods on a JTextPane:

 - replaceSelection()
 - insertIcon()
 - insertComponent()

which is used to insert a text, insert an icon, and insert a component, respectively. Regardless
of the names, they all work in the same way and replace the content marked with what to
insert – if something is selected and otherwise inserted at the caret’s position.

Then there is styling in the form of attributes and styles. You can attach attributes to the
individual characters, to paragraphs, and to the entire document. Character attributes relate
to font and text color. Attributes regarding paragraphs may also concern indentation and line
spacing. A style is a group of attributes that can be used in multiple places in the document,
and may be a named style known by a name. If you change an attribute by a style (attached
to the document), the attribute of all text in the document that uses that style changes. If
a style is assigned to a paragraph, its attributes can be overridden by attaching attributes to
a portion of the paragraph’s text. An attribute is a key/value pair, and families of attributes
are defined by three interfaces: AttributeSet, MutableAttributeSet and Style.

I will now show a program with a JTextPane, which uses styles. The program opens a window
with a JTextPane and a menu:

JAVA 9: SWING, DOCUMENTS AND PRINTING

189

edIt text

189

The menu has three menu items

 - Set style
 - Modify style
 - Create style

where the first two are two empty submenus, while the bottom one is a function used to
create a style for a paragraph. If you choose this menu item you will get a window as shown
below, where you can create a named style that defines a font. Here you should especially
note that you can specify how much air there should be outside the section.

http://s.bookboon.com/volvo

JAVA 9: SWING, DOCUMENTS AND PRINTING

190

edIt text

Once you have created a style, a menu item is added to each of the two submenus, and
then you can apply that style to the paragraph that the cursor is in and you can edit that
style that opens the same dialog as shown above. Below is a run of the program where 7
lines are entered:

Note that each line is a paragraph. There are then created 4 styles which are subsequently
applied to the 7 lines. The result is as follows:

JAVA 9: SWING, DOCUMENTS AND PRINTING

191

edIt text

Then there is the program code that fills some and I want to start with the dialog to
maintenance styles:

 class StylePanel extends JPanel
 {
	 private	static	final	String[]	fonts	=	
 { "Monospaced", "Serif", "Sans", "SansSerif" };
	 private	static	final	String[]	sizes	=
 { "8", "10", "12", "14", "18", "24", "36", "48", "72" };
 private JTextField txtName = new JTextField();
 private JComboBox lstFont = new JComboBox(fonts);
 private JComboBox lstSize = new JComboBox(sizes);
 private JTextField txtLeft = new JTextField();
 private JTextField txtRight = new JTextField();
 private JTextField txtTop = new JTextField();
 private JTextField txtBottom = new JTextField();
 private JCheckBox cmdBold = new JCheckBox("Bold");
 private JCheckBox cmdItalic = new JCheckBox("Italic");

 public StylePanel()
 {
 super(new BorderLayout(5, 5));
 JPanel left = new JPanel(new GridLayout(8, 1, 0, 5));
 JPanel right = new JPanel(new GridLayout(8, 1, 0, 5));
 add(left, BorderLayout.WEST);
 add(right);
 left.add(new JLabel("Style Name", JLabel.LEFT));
 right.add(txtName);
 left.add(new JLabel("Font", JLabel.LEFT));
 right.add(lstFont);
 left.add(new JLabel("Size", JLabel.LEFT));
 right.add(lstSize);

JAVA 9: SWING, DOCUMENTS AND PRINTING

192

edIt text

192

 left.add(new JLabel("Left margin", JLabel.LEFT));
 right.add(txtLeft);
 left.add(new JLabel("Right margin", JLabel.LEFT));
 right.add(txtRight);
 left.add(new JLabel("Top margin", JLabel.LEFT));
 right.add(txtTop);
 left.add(new JLabel("Bottom margin", JLabel.LEFT));
 right.add(txtBottom);
 left.add(new JLabel());
 JPanel panel = new JPanel(new GridLayout(1, 2));
 panel.add(cmdBold);
 panel.add(cmdItalic);
 right.add(panel);
 clear();
 }

 public void clear()
 {
 txtName.setText("");
 txtName.setEditable(true);
 lstFont.setSelectedIndex(0);
 lstSize.setSelectedIndex(2);
 txtLeft.setText("0.0");

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 9: SWING, DOCUMENTS AND PRINTING

193

edIt text

 txtRight.setText("0.0");
 txtTop.setText("0.0");
 txtBottom.setText("0.0");
 cmdBold.setSelected(false);
 cmdItalic.setSelected(false);
 }

 public String getStyleName()
 {
 String name = txtName.getText().trim();
 if (name.length() > 0) return name;
 return null;
 }

 public void initStyle(Style style)
 {
 StyleConstants.setFontFamily(style, (String)lstFont.getSelectedItem());
 StyleConstants.setFontSize(style,
 Integer.parseInt((String)lstSize.getSelectedItem()));
 StyleConstants.setLeftIndent(style,
	 Float.valueOf(txtLeft.getText()).floatValue());
 StyleConstants.setRightIndent(style,
	 Float.valueOf(txtRight.getText()).floatValue());
 StyleConstants.setSpaceAbove(style,
	 Float.valueOf(txtTop.getText()).floatValue());
 StyleConstants.setSpaceBelow(style,
	 Float.valueOf(txtBottom.getText()).floatValue());
 StyleConstants.setBold(style, cmdBold.isSelected());
 StyleConstants.setItalic(style, cmdItalic.isSelected());
 }

 public void initFields(Style style)
 {
 txtName.setText(style.getName());
 txtName.setEditable(false);
 lstFont.setSelectedItem(StyleConstants.getFontFamily(style));
 lstSize.setSelectedItem(Integer.toString(StyleConstants.getFontSize(style)));
 txtLeft.setText(Float.toString(StyleConstants.getLeftIndent(style)));
 txtRight.setText(Float.toString(StyleConstants.getRightIndent(style)));
 txtTop.setText(Float.toString(StyleConstants.getSpaceAbove(style)));
 txtBottom.setText(Float.toString(StyleConstants.getSpaceBelow(style)));
 cmdBold.setSelected(StyleConstants.isBold(style));
 cmdItalic.setSelected(StyleConstants.isItalic(style));
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

194

edIt text

There is not much to explain about the design, but you should note that the class inherits
JPanel and not JDialog. The explanation follows below. Otherwise, the two last methods
are the most interesting. The first initializes a Style object using the StyleConstants class.
The class has a number of constants for typical values for attributes and a number of static
methods that are used to initialize attributes in a style object. Similarly, the last method is
used to initialize the dialog box’s fields with values from a Style object, and note again the
use of the class StyleConstants that has static methods that returns the values.

Then there is the code for the window, where I have only shown that part of the code that
relates to the JTextPane component and styles:

 public class MainView extends JFrame
 {
 private JTextPane txtPane = new JTextPane();
 private StylePanel stylePanel = new StylePanel();
 private JMenu setMenu;
 private JMenu modMenu;

 public MainView()
 {
 …
 }

 private void createView()
 {
 createMenuBar();
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 panel.add(new JScrollPane(txtPane));
 add(panel);
 }

 private void createMenuBar()
 {
 …
 }

 private void createMenuItem(JMenu menu, String text, ActionListener listener)
 {
 JMenuItem item = new JMenuItem(text);
 item.addActionListener(listener);
 menu.add(item);
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

195

edIt text

195

 public void create(ActionEvent e)
 {
 stylePanel.clear();
	 if	(JOptionPane.showConfirmDialog(this,	stylePanel,	"Style	Editor",
 JOptionPane.OK_CANCEL_OPTION, JOptionPane.PLAIN_MESSAGE) ==
 JOptionPane.OK_OPTION && stylePanel.getStyleName().length() > 0)
 {
 Style style = txtPane.addStyle(stylePanel.getStyleName(), null);
 stylePanel.initStyle(style);
 createMenuItem(setMenu, stylePanel.getStyleName(), this::setStyle);
 createMenuItem(modMenu, stylePanel.getStyleName(), this::modStyle);
 }
 }

 public void setStyle(ActionEvent e)
 {
 String styleName = ((JMenuItem)e.getSource()).getActionCommand();
 txtPane.setLogicalStyle(txtPane.getStyle(styleName));
 }

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 9: SWING, DOCUMENTS AND PRINTING

196

edIt text

 public void modStyle(ActionEvent e)
 {
 String styleName = ((JMenuItem)e.getSource()).getActionCommand();
 Style style = txtPane.getStyle(styleName);
 stylePanel.initFields(style);
	 if	(JOptionPane.showConfirmDialog(this,	stylePanel,	"Style	Editor",
 JOptionPane.OK_CANCEL_OPTION, JOptionPane.PLAIN_MESSAGE) ==
 JOptionPane.OK_OPTION) stylePanel.initStyle(style);
 }
 }

Note that there is an instance variable whose type is the above dialog box (a JPanel). If you
look at the event handler regarding creating a style, it starts by performing the dialog’s clear()
method, thus deleting all fields. The Swing class JOptionPane has several methods that open
a message box, and I have earlier used showConfirmDialog() that has two buttons as an OK
button and a Cancel button. The method has at least two parameters, where the second has
the type Object and general it is the text that appears in the message box. A function that I
have not mentioned previously is that if this parameter may be a Swing component, and in
this case it is a JPanel, and the result is therefore a dialog box with an OK button and an
Cancel button. This approach is actually an easy option if there is a need to open a simple
dialog box. You should note how the event handlers adds two menu items if OK is clicked.

The event handler to modify a style works in principle the same way (opens the same dialog
box) but does not add menu items to the menu. You should also note the event handler to
apply a style for a paragraph and here how to assign a style to a paragraph.

EXERCISE 6

You must create a copy of the above project (StyledText). You must add a menu named
Select color, which must have a menu item for the colors:

 - red, green, blue, yellow, orange, gray lightGray, magenta, pink and black

If you select one of these menu items, the text in the paragraph where the caret is displayed
must be shown with the selected color.

When it works, change the program so that you can mark a text, and if you then in the
menu selects a font or color then the highlighted text must be displayed with the chosen
style. An example could be as shown below, where there are 7 paragraphs:

JAVA 9: SWING, DOCUMENTS AND PRINTING

197

edIt text

You need to examine the help for JTextPane to find out how to determine the area selected
and in the first program in this chapter, you can see how to assign attributes to individual
characters instead of a paragraph.

8.4 DOCUMENT

As mentioned, all text components use a model, as defined above by the Document Interface.
The model represents the text that the user edits, and if it is a styled document, it is also
the model that represents the attributes. The Document interface does not define anything
about styles, but instead, it takes place in a sub-interface StyledDocument. The concrete
models can thus be illustrated by the following figure, where AbstractDocument as evidenced
by the name is an abstract class, while PlainDocument and DefaultStyledDocument are
concrete classes. PlainDocument is the model for a JTextField and a JTextArea component,
while DefaultStyledDocument is the model of a JTextPane and a JEditorPane.

JAVA 9: SWING, DOCUMENTS AND PRINTING

198

edIt text

198

A Document object divides the document into a hierarchy of objects where each node has
the type Element and consists of an offset and an end position in the document. In addition,
an Element may have associated an AttributeSet and thus a style is not used by, for example,
by a JTextField and a JTextArea. An Element object thus describes a part of the document
and seen from a JTextPane it is interesting that an Element may have its own style.

An important task for AbstractDocument is to implement a locking mechanism that ensures
that at one point only a single writer can use the document, but no or more can read
the document.

As a simple example of how to attach your own document to a text component, the program
EnterProgram opens the following window:

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 9: SWING, DOCUMENTS AND PRINTING

199

edIt text

where the user can enter a text, but only 20 characters can be entered. The input field
is a JTextField component and the challenge is solved by associating the component with
another model. The model is defined as a derived class of the class PlainDocument that only
overrides the method insertString():

 class MaxDocument extends PlainDocument
 {
 private int max;

 public MaxDocument(int max)
 {
 this.max = max;
 }

	 public	void	insertString(int	offset,	String	str,	AttributeSet	attr)
 throws BadLocationException
 {
 if (getLength() + str.length() > max) Toolkit.getDefaultToolkit().beep();
	 else	super.insertString(offset,	str,	attr);
 }
 }

With this class available, the program can be written as follows:

 public class MainView extends JFrame
 {
 private JTextField txtField = new JTextField();

 public MainView()
 {
 super("Enter text");
 setSize(600, 150);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 txtField.setDocument(new MaxDocument(20));
 txtField.setPreferredSize(new Dimension(200, 20));
 JButton cmd = new JButton("OK");
 cmd.addActionListener(
 e -> JOptionPane.showMessageDialog(this, txtField.getText()));

JAVA 9: SWING, DOCUMENTS AND PRINTING

200

edIt text

 JPanel panel = new JPanel(new FlowLayout(FlowLayout.LEFT));
 panel.setBorder(new EmptyBorder(25, 25, 25, 25));
 panel.add(new JLabel("Enter text (max 20 characters)"));
 panel.add(txtField);
 panel.add(cmd);
 add(panel);
 }
 }

It is a simple program, but the options for blocking the number of characters that can be
entered are interestingly, as in practice it is a frequently encountered issue. However, keep
in mind that the same problem could be solved simpler with a JFormattedTextField and
appropriate format such as:

 JFormattedTextField(new MaskFormatter("********************"))

EXERCISE 7

Write a program that you can call ElementTree when the program opens the following window:

JAVA 9: SWING, DOCUMENTS AND PRINTING

201

edIt text

201

where the upper component is a JTextPane, while at the bottom is a JTextArea. The upper
component is initialized with the following string:

 "Gorm den Gamle\nHarald Blåtand\nSvend Tveskæg\nHarald d. 2.\nKnud den Store"

Before the string is displayed, each of the five names must be assigned attributes that indicate
the color and size of the font respectively.

If you click on the button, you must get a list in the lower component where each line
represents an Element and for each are displayed offset for both the beginning and end of
the characters spanning the element and any attributes. Note that as the elements constitute
a hierarchy, the method that fills text in the lower component must be written recursively.

Try to interpret the results in the bottom JTextArea.

You can try entering more text in the upper JTextPane and then clicking OK to see if you
get the expected result.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 9: SWING, DOCUMENTS AND PRINTING

202

edIt text

8.5 A JEDITORPANE

As the last of Swing’s text components, a JEditorPane should be mentioned. It’s a component
that rarely has any interest in itself, but it can be perceived as the base class of styled text
components, and a JTextPane is an example of a text component derived from JEditorPane.
As can be seen from the above, a JTextPane is a component that can be used to edit a
document to which style information is assigned. The actual text and style information is
represented by a StyledDocument, but some logic is required to control how text and styles
can be edited (what actions can be performed) and it is all encapsulated in an EditorKit
object. The simple text components such as JTextField and JTextArea uses a DefaultEditorKit
while a JTextPane uses is derived class called StyledEditorKit. The goal of a JEditorPane is
that you can define its own text component derived from JEditorPane by defining its own
EditorKit and its Document type, thus defining text components that exactly support the
tasks you need. In fact, Swing comes with two examples that can be used to edit html and
rtf documents.

In this section I will very overall illustrate how you can write your own html editor. The
goal is not to reach a finished html editor (which is comprehensive), but to show a little
more about text components and a little about what an EditorKit is. I want to start with an
example called AEditorPane. If you run the program, you first get the following message box:

and when you click OK, you get the following window:

JAVA 9: SWING, DOCUMENTS AND PRINTING

203

edIt text

The window shows the following html document that are saved with the project:

 <html>
 <head>
 <meta charset="UTF-8">
 <title>Simple html page</title>
 </head>
 <body>
 <h1>Danish Kings</h1>
 <h2>The wee know about</h2>
 <p>Gorm den Gamle</p>
 <p>Harald Blåtand</p>
 <p>Svend Tveskæg</p>
 <h3>But we have heard of others before them</h3>
 <p>The danish history</p>
 </body>
 </html>

That is, the document is interpreted as the component knows the individual html elements
and thus knows how to interpret them. In particular, note the last line, which is a link to
the page

 http://danmarkshistorien.dk/forside

and clicking this link will actually show that page in the window. The result is not too
good, but it is because the page contains many things (modern websites are very complex
in terms of content) that the component can not interpret, but the example illustrates that
you can load any webpage and with more or less good results display the page’s content
in a text component. The example is thus a step towards a simple browser. The program’s
code is as follows:

 package aeditorpane;

 import java.net.*;
 import java.awt.*;
 import javax.swing.*;
 import javax.swing.event.*;
 import javax.swing.border.*;

 public class MainView extends JFrame
 {
 private JEditorPane txtPane = null;

JAVA 9: SWING, DOCUMENTS AND PRINTING

204

edIt text

204

 public MainView()
 {
 super("A JEditorPane");
 setSize(500, 300);
 createView();
 setLocationRelativeTo(null);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 private void createView()
 {
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 try
 {
 txtPane = new JEditorPane(loadPage());
 txtPane.addHyperlinkListener(new LinkHandler());
 JOptionPane.showMessageDialog(this,
 txtPane.getEditorKit().getClass().getName());
 }
 catch (Exception ex)
 {

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 9: SWING, DOCUMENTS AND PRINTING

205

edIt text

 JOptionPane.showMessageDialog(this, ex.toString());
 System.exit(1);
 }
 txtPane.setEditable(false);
 panel.add(new JScrollPane(txtPane));
 add(panel);
 }

 private static URL loadPage()
 {
 return MainView.class.getResource("/aeditorpane/kings.html");
 }

 class LinkHandler implements HyperlinkListener
 {
 public void hyperlinkUpdate(HyperlinkEvent e)
 {
 try
 {
 if (e.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
 txtPane.setPage(e.getURL());
 }
 catch (Exception ex)
 {
 JOptionPane.showMessageDialog(MainView.this, ex.toString());
 }
 }
 }
 }

The program defines a single instance variable, whose type is JEditorPane. It is created in the
method createView(), where the above html document is transferred to the class’ constructor
as an URL. The html document is packaged with the program in the jar file, and it is loaded
from the jar file in the method loadPage(). After the JEditorPane component is created there
is associated an event handler for click on a link. It is a class that implements the interface
HyperlinkListener, which defines a single method called hyperlinkUpdate(), and the method
is executed when a link is clicked in the window. The result is that the content of the
component is overwritten with the content of the website that is linked to.

JAVA 9: SWING, DOCUMENTS AND PRINTING

206

edIt text

After this event handler is associated with the component, the first message box opens.
Viewed from the program, it makes no sense, but it shows which EditorKit is being used.
In this case, it is an HTMLEditorKit. It was created by the constructor in JEditorPane,
since the argument is an HTML document. HTMLEditorKit is a finished EditorKit that is
part of Swing, but it meets far from all that one needs to demand from a modern browser
and when the result of clicking the link in the window not is as desired, it is because the
HTMLEditorKit class is not sufficiently comprehensive, but you can write your own – if
you have the need.

An EditorKit is an abstract class, but DefaultEditorKit is a concrete class, as used by the
simple text components, and by a derived class StyledEditorKit, used by a JTextPane, and
the HTMLEditorKit class is again derived from StyledEditorKit. An EditorKit defines how
to create the document, and also defines methods that can be read the document from a
stream and write it to a stream.

ACTIONS

There are many events associated with text components and especially keyboard and mouse
events, and you can also make many settings regarding fonts and colors, and more. All
these options are represented as actions. An Action is an interface that inherits two other
interfaces: ActionListener and EventListener, and one should think of an Action as an object
representing an ActionEvent. The goal is that the same functionality should be made available
to several components. An Action may have associated several key / value pairs that you
have access to with the methods:

Object getValue(String key)
void putValue(String key, Object value)

Particular attention should be paid to the last method as it changes the value if the key
already exists.

The interface is implemented by the class AbstractAction, but the class obviously does not
implement actionPerformed(), and if you write your own Action types, it is equivalent to
writing a class that inherits AbstractAction and then implementing actionPerformed(). The
advantage of actions is that classes like JButton, JMenuItem, etc. have constructors that have
an Action as parameter, and it makes it easy to assign functionality to those kinds of objects,
and finally is the reason that Actions are mentioned here, while the text components uses
a lot of Actions.

JAVA 9: SWING, DOCUMENTS AND PRINTING

207

edIt text

207

If you run the program ActionProgram, it opens a window with a JTextArea component as
well as a menu:

If you open the menu, there are two submenus and each of these submenus shows an
overview of the actions that a JTextArea knows. When you see the names, it’s easy enough to
figure out what the individual actions means. The program is simple, and only the method
that creates the menu is shown below:

 private void createMenu()
 {
 Action[] actions = txtArea.getActions();
 int n = actions.length / 2;
 JMenu menu1 = new JMenu("Some actions");
 for (int i = 0; i < n; ++i) menu1.add(actions[i]);

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 9: SWING, DOCUMENTS AND PRINTING

208

edIt text

 JMenu menu2 = new JMenu("More actions");
 for (int i = n; i < actions.length; ++i) menu2.add(actions[i]);
 JMenu menu = new JMenu("Actions");
 menu.add(menu1);
 menu.add(menu2);
 JMenuBar bar = new JMenuBar();
 bar.add(menu);
 setJMenuBar(bar);
 }

EXERCISE 8

Create a copy of the above program. You need to change the program so that the component
instead of a JTextArea is a JTextPane, and so the menu shows all actions distributed on
three submenus.

Try to investigate the differences between the actions that this program shows and the
above program.

A SIMPLEEDITOR

I want to show a program that is a simple text editor and the program looks like the
corresponding program that I have shown in the book Java 2, but the program is simpler
and partly because there are some features that are not implemented in this solution and
partly because I here, to a greater extent, utilizes that many of the necessary features are
built into the class JTextArea, and then I do not have to implement them.

The program opens a window with a JTextArea:

JAVA 9: SWING, DOCUMENTS AND PRINTING

209

edIt text

The window also has a toolbar with features to open and save a document, and there are
icons for cut, copy and paste. The same functions are found as menu items. The completed
code is as follows:

 public class MainView extends JFrame
 {
 private JTextComponent txtComp = new JTextArea();
 private Action openAction = new OpenAction();
 private Action saveAction = new SaveAction();

 public MainView()
 {
 …
 }

 private void createView()
 {
 ((JTextArea)txtComp).setLineWrap(true);
 JPanel panel = new JPanel(new BorderLayout());
 panel.setBorder(new EmptyBorder(5, 5, 5, 5));
 panel.add(new JScrollPane(txtComp));
	 defineActions();
 panel.add(createToolbar(), BorderLayout.NORTH);
 createMenu();
 add(panel);
 }

	 protected	void	defineActions()	
 {
	 defineAction(txtComp.getActionMap().get(DefaultEditorKit.cutAction),	"Cut",
 "/simpleeditor/images/cut.png");
	 defineAction(txtComp.getActionMap().get(DefaultEditorKit.copyAction),	"Copy",
 "/simpleeditor/images/copy.png");
	 defineAction(txtComp.getActionMap().get(DefaultEditorKit.pasteAction),	"Paste",
 "/simpleeditor/images/paste.png");
 }

	 private	void	defineAction(Action	action,	String	name,	String	icon)
 {
 action.putValue(Action.NAME, name);
 if (icon != null) action.putValue(Action.SMALL_ICON, createImage(icon));
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

210

edIt text

210

 private JToolBar createToolbar()
 {
 JToolBar toolBar = new JToolBar();
 toolBar.add(openAction).setText("");
 toolBar.add(saveAction).setText("");
 toolBar.addSeparator();
 toolBar.add(
 txtComp.getActionMap().get(DefaultEditorKit.cutAction)).setText("");
 toolBar.add(
 txtComp.getActionMap().get(DefaultEditorKit.copyAction)).setText("");
 toolBar.add(
 txtComp.getActionMap().get(DefaultEditorKit.pasteAction)).setText("");
 return toolBar;
 }

 private void createMenu()
 {
	 JMenu	file	=	new	JMenu("File");
	 file.add(openAction);
	 file.add(saveAction);
	 file.add(new	ExitAction());
 JMenu edit = new JMenu("Edit");
 edit.add(txtComp.getActionMap().get(DefaultEditorKit.cutAction));

http://s.bookboon.com/elearningforkids

JAVA 9: SWING, DOCUMENTS AND PRINTING

211

edIt text

 edit.add(txtComp.getActionMap().get(DefaultEditorKit.copyAction));
 edit.add(txtComp.getActionMap().get(DefaultEditorKit.pasteAction));
 JMenuBar bar = new JMenuBar();
	 bar.add(file);
 bar.add(edit);
 setJMenuBar(bar);
 }

 class ExitAction extends AbstractAction
 {
 public ExitAction()
 {
 super("Exit");
 }

 public void actionPerformed(ActionEvent e)
 {
 System.exit(0);
 }
 }

 class OpenAction extends AbstractAction
 {
 public OpenAction()
 {
 super("Open", createImage("/simpleeditor/images/open.png"));
 }

 public void actionPerformed(ActionEvent e)
 {
 JFileChooser chooser = new JFileChooser();
 if (chooser.showOpenDialog(MainView.this) != JFileChooser.APPROVE_OPTION)
 return;
	 File	file	=	chooser.getSelectedFile();
	 if	(file	==	null)	return;
	 try	(BufferedReader	reader	=	new	BufferedReader(new	FileReader(file)))	
 {
 txtComp.read(reader, null);
 }
 catch (IOException ex)
 {
 JOptionPane.showMessageDialog(MainView.this, "File Not found: " +
 ex.getMessage(), "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

212

edIt text

 class SaveAction extends AbstractAction
 {
 public SaveAction()
 {
 super("Save", createImage("/simpleeditor/images/save.png"));
 }

 public void actionPerformed(ActionEvent e)
 {
 JFileChooser chooser = new JFileChooser();
 if (chooser.showSaveDialog(MainView.this) != JFileChooser.APPROVE_OPTION)
 return;
	 File	file	=	chooser.getSelectedFile();
	 if	(file	==	null)	return;
	 try	(BufferedWriter	writer	=	new	BufferedWriter(new	FileWriter(file)))	
 {
 txtComp.write(writer);
 }
 catch (IOException ex)
 {
 JOptionPane.showMessageDialog(MainView.this, "File not Saved: " +
 ex.getMessage(), "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }

 private static ImageIcon createImage(String path)
 {
 java.net.URL imgURL = MainView.class.getResource(path);
 return new ImageIcon(new ImageIcon(imgURL, "").getImage().
 getScaledInstance(24, 24, Image.SCALE_SMOOTH), "");
 }
 }

The program defines three instance variables, the first being the JTextArea component, while
the other are Action objects that are used to open and save a file, respectively. When the
two objects are created as instance variables, it is because it is the same Action objects to
be used both from the menu and from the toolbar. The objects type is defined by an inner
class in the program.

JAVA 9: SWING, DOCUMENTS AND PRINTING

213

edIt text

213

The method defineActions() is used to customize three actions. A JTextArea has actions for
copy, paste or cut, but typically you want to give them another name and possibly attach
an icon to them. That’s what happens in the method defineActions(). This happens by setting
the key / value pair, which is performed by the method defineAction(). For example, you
reference to the action for cut as:

 txtComp.getActionMap().get(DefaultEditorKit.cutAction)

Here, DefaultEditorKit.cutAction is a constant that identifies this action, and the Action
object is then sent to the method defineAction() along with the text to be displayed in the
menu as well as the name of the icon to be used. The method defineActions() is called from
createView() so the three actions are initialized as desired.

Then there is the method createToolbar() that creates a toolbar with 5 icons or actions. You
should note that the first two are the two actions defined as instance variables at the start
of the program, while the other three are referenced in the same way as shown above. Also
note that for all 5 Action objects, the setText() method is performed, which puts the text to
blank. The reason is that the toolbar should not display the object’s text property.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 9: SWING, DOCUMENTS AND PRINTING

214

edIt text

The method createMenu() is in principle identical. Instead, it is JMenuItem objects that are
associated with an Action. Also note that the File menu has an ExitAction action, which is
also an inner class that represents an action.

Back there are the three inner classes that defines the Action objects. I will not go through
the three classes in detail, but you will notice how they all inherit AbstractAction. Also note
how the two last associate an icon and then note that a JTextComponent has methods that
can directly initialize the component by reading from a stream and write the content of
the component to a stream.

PROBLEM 5

You must write a program that you can call StyledEditor, which will open the following
window:

The program should in principle work as the previous program, where the first two menus
are the same (and correspondingly the first 5 icons in the toolbar), but instead of using a
JTextArea, the program must use a JTextPane. The Font menu should be as follows:

 Font
 Style
 Bold
 Underline
 Italic
 Family
 SansSerif
 Serif
 Monospaced

JAVA 9: SWING, DOCUMENTS AND PRINTING

215

edIt text

215

 Size
 8
 10
 12
 14
 18
 24
 36
 48
 144

In principle, the program can be written as in the previous example, but it is more extensive
to create the toolbar and the menu. However, there is a small problem as a JTextPane uses
the read() and write() methods, which is defined in JTextComponent and these methods can
only read and write common plan text. Although it is not a suitable solution, you can solve
the problem by serialization.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 9: SWING, DOCUMENTS AND PRINTING

216

InternatIonalIzIng

9 INTERNATIONALIZING

Sometimes programs must be used in several countries and thus in multiple languages, and
it demands the application’s user interface and how data are displayed. One option would
be to write several versions of the same program (an English version, a Danish version and
so on), but for maintenance reasons it is not an optimal solution. However, Java supports
internationalization, so the program itself determines how data should be displayed depending
on where it is used. It is the subject of this chapter, and it is by no means simple, and the
following is just an introduction to what it’s all about.

Basically, it relates to the language used by the program to display text, as well as the formats
for dates, times and numbers. In reality, there are two things, and internationalization
means that the program supports multiple languages and formats, while by localization
is understand as the process that the program determines which language and formats to
use. It is all complicated by the fact that more countries use the same language, and some
countries even use more languages, and in the same way there is no clear distinction between
language and formatting rules. Seen from Java, the starting point is the class Locale, which
basically consists of three properties:

1. a language code (ISO-639)
2. a country code (ISO-3166)
3. a variant code that is not required

The language code is two or three characters and as examples can be mentioned

English en eng
French fr fra
Germande deu
Danish da dan

Similarly, the country codes are two or three characters, and as examples can be mentioned

English gb gbr
French fr fra
German de deu
Denmark dk dnk

JAVA 9: SWING, DOCUMENTS AND PRINTING

217

InternatIonalIzIng

The class Locale uses 2-character codes (however, 3-character language codes are allowed if
there is no 2-character code). The class generally does not offer much, but many methods
have a Locale parameter, which is the primary purpose of the class. The following program
shows examples of using the Locale class:

 package localeprogram;

 import java.util.*;

 public class LocaleProgram
 {
 public static void main(String[] args)
 {
 test1();
 test2();
 test3();
 }

 private static void test1()
 {
 Locale loc = Locale.getDefault();
 print(loc);
 }

 private static void test2()
 {
 Locale.setDefault(Locale.US);
 test1();
 }

 private static void test3()
 {
 Locale[] locales = Locale.getAvailableLocales();
 System.out.println(locales.length);
 for (Locale loc : locales) System.out.println(String.format("%s: %s, %s: %s",
 loc.getDisplayCountry(), loc.getCountry(),
 loc.getDisplayLanguage(), loc.getLanguage()));
 }

 private static void print(Locale loc)
 {
 System.out.println(String.format("%s, %s",
 loc.getDisplayCountry(), loc.getCountry()));
 System.out.println(String.format("%s, %s",
 loc.getDisplayLanguage(), loc.getLanguage()));

JAVA 9: SWING, DOCUMENTS AND PRINTING

218

InternatIonalIzIng

218

 System.out.println(String.format(loc, "%1.2f", 1234.56));
 System.out.println(String.format(loc, "%tD", Calendar.getInstance()));
 }
 }

The method test1() determines the program’s default Locale as determined by the machine’s
language settings. Then the program prints information about the language and the country.
In addition, a number is formatted with String.format() and here you should note that the
first parameter is a local object. This ensures that the result is displayed with the correct
decimal point. The last statement in the method print() works the same way, but this
time for a Calendar object. You should note that the String class’s format() method has
incredible options for formating the result – especially regarding dates and time – and you
are encouraged to investigate the help for the options available.

The method test2() shows that you have the option to define which default locale to use.
You can create a Local object yourself by specifying the language and country, but it is rarely
necessary since the Locale class has defined objects for most languages. The method test3()
shows an overview of which Locale objects are defined.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 9: SWING, DOCUMENTS AND PRINTING

219

InternatIonalIzIng

9.1 RESOURCE BUNDLES

If a program is to be internationalized, it means that the text should be available in several
languages, and although Java supports internationalization, it is of course the task of the
development department to translate the text. The translated text must be saved somewhere,
and it happens in resource bundles, which allows to save text, images and other resources
outside of the program and not as part of the code. Resource bundles are represented by
the class ResourceBundle, which encapsulates key/value pairs, where the key is a string, while
value can be any arbitrary object.

ResourceBundle is an abstract class, and although you can define your own specific class,
you usually use

 - PropertyResourceBundle to text
 - ListResourceBundle to images and other resources

I will as an example show how to use a resource bundle of the first kind, as it is the most
commonly used in internationalization, primarily to achieve a program that is independent
of the language.

The starting point is a poperties file, which is simply a text file where the filename has the
extension .properties. An example might be the following:

 di=Ruder
 he=Hjerte
 sp=Spar
 cl=Kl\u00f8r

which contains four texts with keys. The content can be interpreted as the colors for playing
cards. Note that the ‘ø’ in the last value is encoded with the code for the unicode of the
character. The file name is

 Cards.properties

that is important. There is also a different version of the file with English names written as:

 di=Diamond
 he=Heart
 sp=Spade
 cl=Club

JAVA 9: SWING, DOCUMENTS AND PRINTING

220

InternatIonalIzIng

and here the filename is

 Cards_en_US.properties

and again the name is absolutely crucial. Then consider the following program:

 package resourceprogram;

 import java.util.*;

 public class ResourceProgram
 {
 public static void main(String[] args)
 {
 ResourceBundle bundle1 = ResourceBundle.getBundle("Cards");
 System.out.println(bundle1.getString("di"));
 System.out.println(bundle1.getString("he"));
 System.out.println(bundle1.getString("sp"));
 System.out.println(bundle1.getString("cl"));
 ResourceBundle bundle2 = ResourceBundle.getBundle("Cards", Locale.US);
 for (Enumeration<String> keys = bundle2.getKeys(); keys.hasMoreElements();)
 System.out.println(bundle2.getString(keys.nextElement()));
 ResourceBundle bundle3 = ResourceBundle.getBundle("Cards", Locale.GERMAN);
 System.out.println(bundle1.getString("di"));
 }
 }

Running the program is the result:

 Ruder
 Hjerte
 Spar
 Klør
 Club
 Diamond
 Spade
 Heart
 Ruder

JAVA 9: SWING, DOCUMENTS AND PRINTING

221

InternatIonalIzIng

221

The program starts by creating a ResourceBundle named bundle1, and it will when not
specify any Locale read the file Cards.properties, which is called the base properties file. Next,
the values for the four keys are printed, and the result is the first four lines. Next, another
ResourceBundle is created with the name bundle2, but this time a Locale is added. The result
is that the file for this Locale is read and that is Cards_en_US.properties. The next statement
is iterating over all the keys and printing the English names. Finally, a third ResourceBundle
is created and called bundle3, but with a local for German. It will then look for the file
Cards_de.properties, but such a file does not exist and it will then read the file Cards.properties
which is the base properties file. Therefore, the last statement writes the text

 Ruder

ResourceBundles based on properties provide the great advantage that they can be maintained
outside of the program and thus make it flexible to language versions of programs. However,
it should be noted that the keys can not be changed as they are referenced from the program.
Another question is where the properties files should be and they should simply be placed
in the project directory in the src directory (se below). Should the program be installed
elsewhere (as is the case in practice), the properties must be copied together with the jar
file and placed in the same location.

http://s.bookboon.com/EOT

JAVA 9: SWING, DOCUMENTS AND PRINTING

222

InternatIonalIzIng

9.2 FORMATTING VALUES

In the context of internationalization of programs, formatting of numbers plays an important
role, and even more important is the formatting of date and time. It is partly about how
these values are displayed, but also how to parse a string in connection with data entry.

Date and time have long been represented by the Calendar interface, implemented by the
class GregorianCalendar, but now is added a package java.time containing new types for
dates and time. I do not want to treat these types here but just point out their existence
and there are actually some types and you are encouraged to examine the API. To indicate
what it is, the DateTimeProgram application is a simple console application that shows how
to format and enter dates and times. As an example, the following method shows how to
create an Instant object, which is the new type of time:

 private static void test1()
 {
 Instant dt = Instant.now();
 System.out.println(dt);
 System.out.println(String.format("%d %d", dt.getEpochSecond(), dt.getNano()));
 }

Here you should note the method getEpochSecond() that returns the number of seconds after
1970-01-01T00:00:00, while the method getNano() returns the number of nano seconds
within the current second.

The method test2() shows how to convert between the new representation of times and
Calender objects:

JAVA 9: SWING, DOCUMENTS AND PRINTING

223

InternatIonalIzIng

 private static void test2()
 {
 Calendar dt1 = Calendar.getInstance();
 Instant dt2 = Instant.ofEpochMilli(dt1.getTimeInMillis());
 Calendar dt3 =
 GregorianCalendar.from(ZonedDateTime.ofInstant(dt2, ZoneId.systemDefault()));
 System.out.println(dt1);
 System.out.println(dt2);
 System.out.println(dt3);
 }

The next method shows how to convert dates and times corresponding to a given Locale:

 private static void test3()
 {
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.SHORT),
 DateFormat.getTimeInstance(DateFormat.SHORT));
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.SHORT,
 Locale.US), DateFormat.getTimeInstance(DateFormat.SHORT, Locale.US));
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.MEDIUM),
 DateFormat.getTimeInstance(DateFormat.MEDIUM));
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.MEDIUM,
 Locale.US), DateFormat.getTimeInstance(DateFormat.MEDIUM, Locale.US));
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.LONG),
 DateFormat.getTimeInstance(DateFormat.LONG));
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.LONG,
 Locale.US), DateFormat.getTimeInstance(DateFormat.LONG, Locale.US));
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.FULL),
 DateFormat.getTimeInstance(DateFormat.FULL));
 print(Calendar.getInstance(), DateFormat.getDateInstance(DateFormat.FULL,
 Locale.US), DateFormat.getTimeInstance(DateFormat.FULL, Locale.US));
 }

 private static void print(Calendar dt,
 DateFormat dFormatter, DateFormat tFormatter)
 {
 System.out.println(dFormatter.format(dt.getTime()));
 System.out.println(tFormatter.format(dt.getTime()));
 }

Performing the method gives you the result:

 27-04-17
 11:49
 4/27/17
 11:49 AM
 27-04-2017

JAVA 9: SWING, DOCUMENTS AND PRINTING

224

InternatIonalIzIng

224

 11:49:27
 Apr 27, 2017
 11:49:27 AM
 27. april 2017
 11:49:27 CEST
 April 27, 2017
 11:49:27 AM CEST
 27. april 2017
 11:49:27 CEST
 Thursday, April 27, 2017
 11:49:27 AM CEST

Finally, the last test method shows how to use a formatter to parse a string representing a
date and a time, but where I only have shown one of the two input methods:

 private static void test4()
 {
 System.out.println(enterDate(DateFormat.getDateInstance(DateFormat.MEDIUM)));
 System.out.println(enterDate(DateFormat.getDateInstance(DateFormat.MEDIUM,
 Locale.US)));
 System.out.println(enterTime(DateFormat.getTimeInstance(DateFormat.SHORT)));
 System.out.println(enterTime(DateFormat.getTimeInstance(DateFormat.SHORT,
 Locale.US)));
 }

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 9: SWING, DOCUMENTS AND PRINTING

225

InternatIonalIzIng

 private static Date enterDate(DateFormat formatter)
 {
 Scanner kb = new Scanner(System.in);
 while (true)
 {
 System.out.print("Enter date: ");
 try
 {
 return formatter.parse(kb.nextLine());
 }
 catch (Exception ex)
 {
 System.out.println("Illegal date…");
 }
 }
 }

To format numbers, you have the NumberFormat class and in this context it is important that
the class supports the use of a Locale object. The class is illustrated with the following program:

 package numberprogram;

 import java.text.*;
 import java.util.*;

 public class NumberProgram
 {
 public static void main(String[] args)
 {
 test1();
 test2();
 }

 private static void test1()
 {
 System.out.println(NumberFormat.getNumberInstance().format(123456.789));
 System.out.println(NumberFormat.getNumberInstance(Locale.US).
 format(123456.789));
 System.out.println(NumberFormat.getCurrencyInstance().format(123456.789));
 System.out.println(NumberFormat.getCurrencyInstance(Locale.US).
 format(123456.789));
 System.out.println(NumberFormat.getPercentInstance().format(123456.789));
 System.out.println(NumberFormat.getPercentInstance(Locale.US).
 format(123456.789));
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

226

InternatIonalIzIng

 private static void test2()
 {
 System.out.println(enterNumber(NumberFormat.getNumberInstance()));
 System.out.println(enterNumber(NumberFormat.getNumberInstance(Locale.US)));
 }

 private static Number enterNumber(NumberFormat formatter)
 {
 Scanner kb = new Scanner(System.in);
 while (true)
 {
 System.out.print("Enter number: ");
 try
 {
 return formatter.parse(kb.nextLine());
 }
 catch (Exception ex)
 {
 System.out.println("Illegal number…");
 }
 }
 }
 }

If the program is executed, the result could be:

 123.456,789
 123,456.789
 kr 123.456,79
 $123,456.79
 12.345.679%
 12,345,679%
 Enter number: 123456,789
 123456.789
 Enter number: 123456.789
 123456.789

EXERCISE 9

Create a copy of the program PersonProgram. If you run the program, the window below opens.

It is a simple program where you can create a person with a date of birth and a balance.
The persons are saved in an ArrayList that is serialized whenever a person is created, a person
is changed or a person is deleted. You can browse the list using the two top buttons. Test
the program and study the code so you are sure you know how the code works.

JAVA 9: SWING, DOCUMENTS AND PRINTING

227

InternatIonalIzIng

227

The program is not internationalized and it is your task to language versioning the program.
Start by creating a base properties file with English texts there must be a key / value pair
for all texts that the program uses. Replace all texts in the program with texts from a
ResourceBundle for your properties file.

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 9: SWING, DOCUMENTS AND PRINTING

228

InternatIonalIzIng

Then write another properties file but with texts in another language (according to your
choice). In the class’s constructor, you can set default Locale to this language, and check if
the program then uses your chosen language. Below is a version of the program where the
language is Danish:

And what about the formatting of the date of birth and the balance – does it work as
expected?

JAVA 9: SWING, DOCUMENTS AND PRINTING

229

a slot maChIne

10 A SLOT MACHINE

As the final example of this book, I will show the development of a program that will
simulate a slot machine. The aim is, of course, to show the use of some of the concepts
introduced in this book, but where the focus is also on the process. A slot machine consists
of (typical) three wheels on which some figures are placed. When you play the machine,
the wheels rotate and the figure combination displayed when the wheels stops, determines
whether there is a win and, if so, how much the winnings are. To write a program that
can simulate such a machine and thus with wheels that rotates, I need concepts that are
dealt with first in the next book, and the code can therefore first be written after you have
read the next book (or equivalent about Java). The following version of the program will
therefore not simulate rotating wheels, but just show the figures.

As mentioned, I want to focus on the process. At least on analysis and design, but the
program is relatively large and during the programming I will primarily describe what is
made and what you should especially notice when you read the code, but not much about
how it was made since the number of pages else will be very extensive. For the same reasons,
I will not describe how to write an installation script, but you can do it in the same way
as shown for other programs.

10.1 TASK FORMULATION

A program must be written to simulate a slot machine on a regular PC. There must be some
form of user administration, and in order to play the machine, you must be created as a
user with an account and have deposited money on the account. It must also be possible
to receive an amount from the account if there is money on it which in practice will mean
you have won.

You should not be able to play with “real” money, but the program must be able to simulate
that the player puts in money and that the player gets paid money.

JAVA 9: SWING, DOCUMENTS AND PRINTING

230

a slot maChIne

230

The machine must be configurable and you should be able to choose whether to play with
3 or 4 wheels. In terms of configuring the machine, one must be able to choose which and
how many figures there should be on each wheel, which combinations should give a win
and what the winnings should be, and finally it should also be possible to choose which
images to use. It must be possible for the player to choose from several configurations.
When setting up a configuration, ensure that in the long-term configuration provides profits
to the owner of the machine (the house), but at the same time, the machine must often
make a gain to be sure that the machine gives so much back that there is someone who
want to play on the machine.

There should also be an opportunity for some kind of statistics, where you can see when
the machine gives a win and how big the winnings are.

10.2 ANALYSIS

The following requirement specification has been prepared on the basis of an analysis of
the task formulation as well as contact with the customer for clarification of wishes and
requirements. In addition, a prototype has been developed for the application’s user interface.

http://s.bookboon.com/GTca

JAVA 9: SWING, DOCUMENTS AND PRINTING

231

a slot maChIne

REQUIREMENTS SPECIFICATION

The machine can be in one of two modes

1. User mode
2. Admin mode

where in the last mode besides playing, you can configure the machine and administrator
users. The requirement specification is divided according to these two use patterns.

User mode

In user mode, this is a simple program with few features. When a user (a player) meets the
program, the player must do one of the following:

1. Log in with username (email address) and password
2. Register yourself as a user (if the player is not already a user)

If the player has forgotten his password, the player must contact the administrator, who
may change the password. If the player is logged in, the player can change the password
at any time.

In the latter case (where a new player has to be created) the user must inform

 - email address
 - password
 - name
 - phone number
 - debit card (number, expiry date, control number – should simulate a real card)

After that, the user can play the machine if there is money on the account. In addition to
play, the user can perform the following functions:

1. Log out
2. Deposit money on the account
3. Display account information and change these (but not the email address), and at

the same time be able to get paid money if there is money on the account
4. View a summary of winning combinations for the current configuration and what

the winnings are
5. View an account summary that shows transactions and winnings
6. Select another configuration

JAVA 9: SWING, DOCUMENTS AND PRINTING

232

a slot maChIne

In terms of payment, the program must simulates that money is raised on the player’s
account, and if you put money on the account, the program must simulate the deposit of
the player’s account. All transactions must be recorded so that a player can always see how
much has been inserted and raised.

Of course, the most important feature is to play, which is performed by clicking on a button
or equivalent. It must be possible to hold the individual wheels similar to the following:

1. You may not hold all wheels
2. You should not be able to hold a wheel if it was held in the previous game
3. You can not hold a wheel if there was a win in the previous game

When playing the machine, the result of a game must be registered, where the following
information should be registered:

1. the user who has played
2. the time for the play
3. the configuration for play
4. the result as the wheels combination
5. the win (0, if there is no gain)

Admin mode

If you log in as administrator, besides playing the machine, you can configure it and manage
user accounts.

Regarding the configuration of the machine, you must be able to maintain specific
configurations where a configuration indicates:

1. A name so the configuration can be chosen by the players
2. Number of wheels (3 or 4)
3. Which figures are to be used on the wheels (typically in the neighborhood of 10)
4. The position of the figures (order) on the wheels – the same figure may appear

several times
5. Which combinations should give a win and the amounts of the winnings
6. What the cost is to play on the machine
7. If configuration is active and can be selected by players

Regarding the administration of player accounts, you should be able to:

1. Change player’s password (for example, if forgotten)
2. Delete a player where the player’s balance is transferred to the player’s account

JAVA 9: SWING, DOCUMENTS AND PRINTING

233

a slot maChIne

Finally, the administrator should be able to print a statistic that can show how each
configuration behaves. Here you can see, among other things

1. Whether a configuration gives positive returns or not
2. The distribution of the single winnings over time

THE PROPTOTYPE

A prototype has been developed to illustrate the user interface and how it will be playing
on the machine. If you click on the game button, the prototype selects random figures
(there are 15 figures available), but the figures are changed for a period of time to simulate
that the wheels rotates. The toolbar at the top of the window is the features available to the
player, where the icon on the right is intended as login to the administrator. The prototype
is called SlotMashine0.

JAVA 9: SWING, DOCUMENTS AND PRINTING

234

a slot maChIne

234

10.3 DESIGN

Information about players and configurations must be saved somewhere, and I will use a
database. I will start with the design of this database, and the design is outlined in the
following ER diagram, where there are the following entities:

1. Config that represents a concrete configuration of the machine
2. Wheel which represents a wheel for a configuration
3. Figure, that is a figure on a wheel
4. Winning har represents a gain with an amount for a given combination of figures
5. Player which represents a player
6. Game that rrepresents a game on the machine for a player
7. Transaction that is an amount that the player has inserted or raised on the account

The attribute between Config and Wheel indicates the position of the wheel, and in the same
way, the attribute between Wheel and Figure indicate the position of a figure on a wheel.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 9: SWING, DOCUMENTS AND PRINTING

235

a slot maChIne

If you add attributes to the diagram, the conceptual database design can be illustrated
as follows:

JAVA 9: SWING, DOCUMENTS AND PRINTING

236

a slot maChIne

Datadictionary:

Player

id INT autonumber primary key

emal VARCHAR(100) must be unique

password VARCHAR(200) encrypted password

name VARCHAR(50) players name, NOT NULL

phone VARCHAR(20) players phone number

card VARCHAR(20) players cardnumber, NOT NULL

date DATE expiration date for card, NOT NULL

code INT card control code, NOT NULL

balance DECIMAL

Transaction

id INT autonumer primary key

amount INT the amount of the transaction, NOT NULL

type BOOLEAN true = deposited, false = paid amount from

Config

id INT autonumner primary key

name VARCHAR(50) the configurations name, NOT NULL

amount INT price to play with this configuration, NOT NULL

size INT number of wheels, must be 3 or 4

Figure

id INT autonumber primary key

name VARCHAR(50) the name of the figure, NOT NULL

image BINARY the figure, NOT NULL

Wheel

id INT autonumber primary key

JAVA 9: SWING, DOCUMENTS AND PRINTING

237

a slot maChIne

237

Winning

id INT autonumber primary key

amount INT the winning, may be 0

Game

id INT autonumber primary key

time DATETIME date and time for the winning

The above ER model can be mapped to a relational model as shown below. In addition to
names, there are only a few changes.

Regarding transactions, the type has been removed and it has been decided that a positive
transaction means that it has been inserted into the account while a negative transaction
means that the account has been raised.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 9: SWING, DOCUMENTS AND PRINTING

238

a slot maChIne

The Wheel entity has been changed so that it is a relation between Config and Figure, and the
two positions are attributes in this relation, indicating the wheel number and the position
of a figure, respectively.

All relationships are simple and are in third normal form, and with reference to the above
data dictionary, I can immediately write a script and create the database. The script is not
shown here.

As part of the design, a NetBean project has been created as a copy of the project from the
analysis that defines a design of the model layer.

There is also a program (the project CreateDefault) that creates a default configuration. The
goal of this program is to have a configuration in place before the programming starts.

With regard to figures (images) for the wheels it has been decided that the machine must
use square images in a small resolution so they does not fill too much.

JAVA 9: SWING, DOCUMENTS AND PRINTING

239

a slot maChIne

Following these steps, two additional changes have been added to the database:

1. The table figure is expanded with a column series. The column contains a short
text, and is used to categorizing the figures. The above program has uploaded 16
figures to the database, which is located in the category Default.

2. The database is expanded with a simple table admin with two columns. The table
must contain the password and email address of the administrator.

10.4 PROGRAMMING

If you have done a good and careful analysis and possibly combined with one or more
prototypes, you should have all the requirements in place at the start of the programming
phase. It is at least the theory and, with practice, it will also work for smaller projects.
However, one must also acknowledge that no matter how careful you has been, then there
during the programming can happen changes to the specification, including wishes for
something that should work in a different way or maybe even new wishes. In fact, it is not
strange, and during the development of a program, the understanding of the application’s
use and also the possibility of recognizing new features that the program should also have
or something that is agreed in the specification that can be advantageously modified all may
cause changes. Obviously, the larger a program, the greater the chances are that during the
programming there will be a desire to change the requirement specification.

Should it happen – or when it happens – you must contact the customer and present the
changes, including what the changes will mean in terms of resource usage and the time
horizon for when the program can be completed. Then there must be an agreement as to
whether the new wishes are included in the project or not, or they may have to be postponed
to later. In practice, it is important that such wishes come true, but it is also important
that, as a developer, you not just implements things that are not part of the requirement
specification, since ultimately it is the customer who decides (and pays for) what should
be part of the finished program.

The conclusion is that even after a thorough in-depth analysis, there is an opportunity for
during the programming there will be wishes to change the requirement specification, wishes
that may be clarified with the customer.

The same applies to the design, and here is more the rule than the exception. This is due
to several factors, among other things, that the boundary between design and programming
is not sharp. Thus, there will almost always be changes in the design, and usually changes
that must be made by the developer without the customer’s approval.

JAVA 9: SWING, DOCUMENTS AND PRINTING

240

a slot maChIne

240

A typical design activity is database design, and changes will almost always occur during the
programming phase. This does not mean that the database design is not important during
the design phase, as programming typically just involves minor adjustments, but they will,
almost certainly, also be there. This is also the case with the current program, where some
columns have been added to some of the tables, as well as changes to the foreign keys. It is
worth paying attention to the design of the database during the design phase to avoid this
kind of changes during programming, but vice versa, with just a small size database, it is
difficult to avoid any adjustments during programming. When such changes are problematic,
it is because they sometimes means that the database data content needs to be recreated,
which may be time consuming. In this case, some changes have meant that it has also been
necessary to change the initialization program CreateDefault and it has been necessary to
run the program again.

Another design activity is the design of the model layer and including the most important
model classes. It is rarely associated with the major challenges, but you must be prepared to
make changes to these model classes and to create new ones. It is not a problem and just
states that during the design you are not at the same level of details as during programming,
and that is not the idea, as the design should have focus on the overall concepts alone.

http://s.bookboon.com/BI

JAVA 9: SWING, DOCUMENTS AND PRINTING

241

a slot maChIne

As mentioned, the boundary between design and programming is not sharp, which can result
in significant decisions are postponed to the programming phase. In general, you should
be careful and there is a tendency or the risk under the design not to find challenges and
problems that should be solved. This indicates that during the design, sufficient time is not
used, thus neglecting or underestimating problems that may occur during the programming.
It’s hard to put the right distinction between design and programming, but conversely, just
under the design work with the big lines and not writing the program, but the result is,
that if significant decisions are postponed for programming, there is a great risk that parts of
the code that is written must be changed or, at worst, rewritten. Therefore, it is important
that all major challenges are dealt with before you write the program.

In connection with the development of this program, there are actually examples of tasks
that should have been treated better during the design and, for example, I would like to
mention two.

It is part of the requirements that the administrator must be able to test the individual
configurations as to how they earns and how much the house earns on the configuration.
How it will happen is not treated in either the analysis or the design. That it has not been
processed during the analysis is an indication that it allows developers to come up with a
solution, which is not unusual, and therefore there should be a sketch of a solution under
the design. For example, it should have been considered whether the database has the data
needed to make a reasonable analysis of a given configuration.

Another issue is what should happen if you change or delete a configuration. Doing so,
the data recorded for games with the configuration is not necessarily longer valid, meaning
that information about the individual player’s use of the machine is no longer valid. The
data in question can not only be deleted, as it also deletes how much a player has won or
lost. It is also an example of a problem that should have been solved during the design.

THE CURRENT PROGRAM

With a slightly larger program, the programming phase should be divided into multiple
iterations, where an iteration is a defined as a part of the program that can be developed
and tested independently, something that I have previously illustrated. This also applies to
the current program, but I do not want to review the individual iterations this time, but
only focus on the final result, pointing out what has been made and where the biggest
challenges have been.

JAVA 9: SWING, DOCUMENTS AND PRINTING

242

a slot maChIne

I want to use the library PaLib, and to the extent that it does not contains the required
library methods it should be updated. The result of the task is thus both the current program
and an updated library.

The program has a classic MVC architecture:

The dal layer has only one class called DB. The class is written as a singleton and has all
methods that maintains the database. The class is extensive, but does not contain anything new.

The model layer has the classes from the design. They are all modified where the methods
are implemented, and some new classes have also been added, but in general there are few
and simple extensions. Specifically, there is the class Repository, which is a fairly thin adapter
class to the dal layer. In principle, the class is meaningless as it does nothing but delegate
call of methods to the class DB, and its sole purpose is that the dal layer should not be
known in the view and controller layers.

A very large part of the code is in the view layer, which defines no less than 33 types
(classes and interfaces). The number exaggerates as several classes are model classes for JTable
components as well as CellRenderer classes, and many of the other classes relate to simple
dialogs. This corresponds to that there are almost two windows, that are not simple dialog
boxes, and the control layer has only 7 classes.

JAVA 9: SWING, DOCUMENTS AND PRINTING

243

a slot maChIne

When you opens the program, you will meet the following window:

If you click on Close in the Logon dialog box or click on the cross in the upper right corner,
the program ends so you can not play before there is a player. If you are not a player, you
can click on New player, and you will get a dialog box where you can be created as a player:

JAVA 9: SWING, DOCUMENTS AND PRINTING

244

a slot maChIne

244

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 9: SWING, DOCUMENTS AND PRINTING

245

a slot maChIne

With regard to payment cards, it is pseudo, but the card number must be 16 digits, where a
space may have been inserted between 4 digits groups. The check code must be 3 characters,
but in the same way as the card number, nothing is used. Finally, there is the expiration
date that the program checks against the current date when playing on the machine. The
email address must have a legitimate format for an email address and must be unique as it
is used as user identification. The password must be at least 10 characters.

If you create a user with legitimate data, the dialog closes and the dialog for the login
window also closes and you are ready to play. The two dialogs for logon and creation of a
user, both have a controller attached, but are otherwise simple. As for the dialog to create
a player, it is the same dialog box that opens from the main toolbar if the player wishes to
maintain the account.

To implement the game itself (and thus the MainView class, which is one of the two
complex windows in the program), a class WheelComponent has been written, which is a view
class representing a wheel, and MainView uses three instances or four of this component.
It is this component that starts a thread that will simulate the wheels rotating. The game
function resembles the prototype, and only minor changes have been made that primarily
concerns rotation of the wheels. The game feature must also ensure that the logic of the
hold buttons are properly implemented, to test whether there is a win and that the player’s
balance is updated. In addition, the feature must ensure that you can not play if the player’s
account is empty. These features are implemented in the class MainModel, and the database
is updated for each game as it is a requirement that all games are written to a log (the
table run). Compared to the database design, this table is expanded with two columns: The
amount of the result of the game, and the id of the configuration played with. This is to
simplify some of the other features.

Then there are the features in the toolbar. The first feature is logout, and if you click on it,
you will get the login window again. The next function is used to deposit amounts into the
account and clicking on the button will give you a simple dialog box where you enter the
amount and password. The last is to ensure that others do not suddenly deposit money into
the account and thus raise on the registered payment card. The third feature of the toolbar
is used by the player to maintain user data and, as mentioned, opens a dialog box similar
to the above to create a user. A player can not change his email address as it is perceived as
a key. The fields for password are empty, and you should not enter the old password. These
fields must only be filled in if you want to change the password. The fourth features open
a simple dialog box that shows an overview of which combinations give a win:

JAVA 9: SWING, DOCUMENTS AND PRINTING

246

a slot maChIne

and the content is nothing but a JTable that shows the winning opportunities. The next
last tool in the toolbar is used to display an overview of the current player’s results. It is
a dialog box with a JTable, where you can see the player’s transactions in the account and
which games have been. In principle, it is also a simple dialog box, but complicates a bit
because of of filters for which transactions to display. Finally, there are the last tool in the
toolbar, where you can choose a different configuration. Programmatically, it’s only a JTable
with an overview of active configurations. You select a configuration by double click the
name of the configuration.

The above describes how the machine works for a player and, purely programmatically, the
work is in the class DB to implement the database functions, the class MainModel, which
will keep track of all the logic about playing the machine and finally the class MainView
that contains all the visual. This class is complicated by the choice of 3 and 4 wheels, which
means that the components in and layout of the window depends on this choice, and the
same applies to the above-mentioned dialog with the win combinations.

JAVA 9: SWING, DOCUMENTS AND PRINTING

247

a slot maChIne

247

Then there is the administration part. If you click the icon to the right of the toolbar, you
get the following dialog box:

There can only be one administrator. You must enter the administrator password (which
must also be at least 10 characters), and if the administrator is not created, the administrator
will be created, and then you can log in as administrator with the appropriate password
(as the administrator may change). You should note that this maintenance of administrator
information for practical use is too simple and the solution might be that a particular user
could be registered with administrator privileges – a problem that I will return to in the
next book. After logging in as an administrator, the toolbar is expanded with 4 new icons:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 9: SWING, DOCUMENTS AND PRINTING

248

a slot maChIne

which is used to upload images to the database, to maintain users, to maintain configurations,
and to change the administrator’s password. The last feature is simple and should not be
mentioned further here. The user maintenance feature opens a dialog box with a JTabel that
shows all users. If you double-click a user in the table, you get the following dialog box:

where the administrator can change the user’s password (and thus assign the user a new
password) and possibly delete the user.

Then there is the function to upload images to the database. If you select the function you
get the following dialog box:

JAVA 9: SWING, DOCUMENTS AND PRINTING

249

a slot maChIne

The dialog box shows all figures in the database, but you can set a filter on the series. When
you upload a figure you most first enter then series name, and then you browse the file
system for the image. The program use the filename as name for the figure, but you can
edit the table and change both the name and the series. If you want to remove a figure,
you can double-click on the image.

If you in the toolbar click the icon to maintain configurations you get the following dialog box:

that shows a table with all configurations. Here you can activate og deactivate configurations.
If you click on Result you opens a window that shows the result of using this configuration
and how much the configurations has returned. I vill not show the window here. If you
click Create, you can create a new configuration:

JAVA 9: SWING, DOCUMENTS AND PRINTING

250

a slot maChIne

where you must enter the name for the configuration, the series og images to use, and
the number og wheels. These data can not later be change. When you click OK you get
the following window, that is the most complex dialog in the program (you get the same
window when you double-click on a configuration in the dialog box Configurations):

To the left is a JTable with all shapes in the current series. In the center there is a JTable
for each wheel, and to the right there is a JTable with all winning combinations. You add
figures to the wheels and the winning table by dragging them with the mouse from the left
table. If you want to remove a figure, just double-click it. To add a new row in the winning
table you just drop a figure in the table, and to add a new figure to a row you drop the
figure at the row header. In the winning table, the column with the value is editable so
you can enter the amount. At the bottom there is an entry field for what it costs to play
on the machine, and there are also the following buttons:

JAVA 9: SWING, DOCUMENTS AND PRINTING

251

a slot maChIne

251

1. Cancel undo the changes.
2. Save that save the changes. Doing so will delete all historical data for this configuration,

that is all rows in the table run regarding this configuration. The amounts are
counted for each player and added as a transaction to the player’s account.

3. Remove deletes the configuration, and here the same goes as above where the current
rows in the table run are deleted and counted together and inserted as transactions
on players accounts.

4. Sort sorts the gain table.
5. Shuffle blends the figures on the reels such they get a random location.
6. Test simulates a number of games with the configuration. The number of games

is entered in the Tests field, and the result is a window with the test results. The
goal of the function is to validate the frequencies for profit, and how much the
machine returns before saving the configuration.

There are many details related to that feature, including implementing drag and drop, and
among other things, the database functions are in the class DB.

http://s.bookboon.com/Subscrybe

JAVA 9: SWING, DOCUMENTS AND PRINTING

252

a slot maChIne

10.5 TEST

After the program is finished, it must be tested and it is not easy to test an application like
this, with the primary emphasis on the user interface. When you (as part of the programming)
have found that the program seems to work as expected, there is not much more to do
than simply to play on the machine and in the following I will outline what I have done.

Before the test I have cleaned the database (executed the script slot.sql and executed the
program CreateDefault). The result is a database without players and with a single default
configuration.

Then I have performed a test for how to play at the machine:

1. Create a player and inserts 100 on the players account
2. Play at least 100 games with the player
3. Log out and create a second player and inserts 1000 on the players account
4. Play at least 50 games with that player
5. Close the program
6. Start the program again and create a third player
7. Log out and then log in as the first player and plays at least 50 games
8. Check the players gains by clicking the button in the toolbar
9. Check the overview of winnings by clicking the button in the toolbar
10. Close the program

To test the aministrator functions I have change the last statement in the constructor for
MainView as:

 // new LoginView(this, model);
 try
 {
 model.setPlayer(Repository.getPlayer("poul.klausen@mail.dk",
 palib.util.Tools.encrypt("1234567890".toCharArray())));
 model.setAdminMode(true);
 }
 catch (Exception ex)
 {
 }

JAVA 9: SWING, DOCUMENTS AND PRINTING

253

a slot maChIne

where the player is hardcoded (as the first of the above three players) and the machine is
in admin mode (I do not the have to login all the time). Then I

1. Opens the program
2. Log out as administrator (click the right button in the toolbar)
3. Log in as administrator by entering a password (if it is the first time it means that

you creates an adminstrator password)
4. Change the administrator’s password
5. Log out as administrator
6. Log in as administrator again (with the new password)

Next I have created a configurationen called Big game, that uses de same figures as the
default configuration. The new configuration has fewer but bigger winnings, and the price
to play is 2. After sawing the configuration, I opens it again and try to test it with 1000
and 10000 runs.

Then I in the same way creates another configuration called Advanced, but a configuration
with 4 wheels.

Now I have three configurations, but only one is active and can be used by the players.

The folder for this project has a subfolder called Figures2, that have some gif images for a
slot machine. Next I have uploadet this figures to the database as a series with the name
Old figures.

As the next step I have created a configuration with the series Old figures. The configuration
has 3 wheels and is called Old. The configuration looks like the default configuration.

Then I have done the following:

1. From the administrator icon for users I opens the table with the users (there are three)
2. I changed the password for the user that above was created last
3. Click the icon for select a configuration as a player – only the default configuration

is active
4. In the window for configurations the three new configurations are defined as active
5. Click the icon to select configuration again now there should be four configurations
6. Close the program

JAVA 9: SWING, DOCUMENTS AND PRINTING

254

a slot maChIne

Next I have changed the MainView again, such I have to login. Then I opens the program
and performs the following:

1. Log in as the first of the above three users
2. Play 20 games with the default configurationen
3. Select the configuration Big game
4. Play at least 50 games with that configuration
5. Select the default configuration again
6. Play 20 games with the default configuration
7. Log out
8. Log in as the second player
9. Select the configuration Advanced
10. Play 100 games with that configurationen
11. Log in as administrator
12. Open the configuration Advanced
13. Shuffle the wheels and save the configuration
14. Log out as administrator
15. Check the transactions for the current user.
16. Log out
17. Log in as the last user
18. Play 100 games with the Old configuration
19. Log out
20. Log in as the first user
21. Log in as administrator
22. Delete the Old configuration
23. Delete the two last users

If all goes as expected, I will consider the program to be completed – at least to be able to
be used by house-selected test users.

	Foreword
	1	Introduction
	1.1	A comment about Swing

	2	Swing details
	Exercise 1
	2.2	Size and location
	2.3	Event handling
	2.4	Rendering of components
	2.5	Focus and the keyboard
	Exercise 2
	Problem 1

	3	Layout
	3.1	Layout managers
	Problem 2
	Problem 3

	4	Swing components
	4.1	JProgressBar
	4.2	JTree

	5	User defined components
	5.1	Look-and-feel
	5.2	Knob
	5.3	A better Knob
	Exercise 3
	5.4	A DatePicker

	6	The clipboard
	6.1	MIME types
	6.2	Serializing objects
	Exercise 4
	6.3	Images on the clipboard

	7	Drag and Drop
	7.1	Drag images
	Problem 4

	8	Edit text
	8.1	JFormattedTextField
	Exercise 5
	8.2	The caret
	8.3	Highlighter
	8.4	A JTextPane
	Exercise 6
	8.4	Document
	Exercise 7
	8.5	A JEditorPane
	Exercise 8
	Problem 5

	9	Internationalizing
	9.1	Resource bundles
	9.2	Formatting values
	Exercise 9

	10	A slot machine
	10.1	Task formulation
	10.2	Analysis
	10.3	Design
	10.4	Programming
	10.5	Test

