
www.it-ebooks.info

http://www.it-ebooks.info/


Summary of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1. Falling In Love With AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Modules, Controllers & Data Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. AngularJS Scope & Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4. Multiple Views and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. AngularJS Services, Factories, and Providers . . . . . . . . . . . . . . . . . . . . . . . . . 99

6. Developing Single Page Blogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7. Understanding AngularJS Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8. Interacting with REST APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9. Using REST APIs in Single Page Blogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10. AngularJS Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11. Adding a Comment System to Single Page Blogger . . . . . . . . . . . . . . . . . 219

12. Dependency Injection In AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

13. AngularJS Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

14. AngularJS Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

15. Deployment and Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

16. Authentication and Authorization in AngularJS . . . . . . . . . . . . . . . . . . . . 271

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


ANGULARJS:
NOVICE TO

NINJA
BY SANDEEP PANDA

www.it-ebooks.info

http://www.it-ebooks.info/


AngularJS: Novice to Ninja
by Sandeep Panda

Copyright © 2014 SitePoint Pty. Ltd.

English Editor: Paul FitzpatrickProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Golo Roden

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9922794-5-5 (print)

ISBN 978-0-9924612-6-3 (ebook)

Printed and bound in the United States of America

iv

www.it-ebooks.info

http://www.it-ebooks.info/


About Sandeep Panda

Sandeep Panda is a web developer and writer with a passion for JavaScript and HTML5. He

has over four years' experience programming for the Web. He loves experimenting with new

technologies as they emerge and is a continuous learner. While not programming, Sandeep

can be found playing games and listening to music.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

www.it-ebooks.info

http://www.sitepoint.com/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


To my Mom and Dad who taught

me to love books. It's not possible

to thank you adequately for

everything you have done for me.

To my grandparents for their

strong support. To my brother

Preetish for being a constant

source of inspiration. And to my

awesome friends Ipseeta and

Fazle for always believing in me.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Who Should Read This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Conventions Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Code Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Tips, Notes, and Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Want to Take Your Learning Further? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Chapter 1 Falling In Love With AngularJS . . . . . 1

The Power Features of AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Download and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Installing via CDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Hosting on Your Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Required Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

AngularJS Batarang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The Angular Seed Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The Anatomy of an AngularJS app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

What is MVW? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Structuring Our Code With MVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Unit and End-to-End Testing in AngularJS . . . . . . . . . . . . . . . . . . . . . . . . 17

Where to Put Your Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

How to Run Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

When Not To Use AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 Modules, Controllers & Data
Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Creating Our First Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Modular Programming Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

The Role of a Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Attaching Properties and Functions to Scope . . . . . . . . . . . . . . . . . . 30

Adding Logic to the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Adding Instance Functions and Properties to Controllers . . . . . . . . 35

Dependency Injection in Controllers With Minification . . . . . . . . . 37

Overview of Two-Way Data Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

What Is Data Binding? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Two-Way Binding in AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Doing Something Cool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Introducing Our Demo Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

The Single Page Blogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Getting Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 3 AngularJS Scope & Events . . . . . . . . . . . . 45

Scope Demystified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Writing Access with Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Objects Can Extend Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Prototypal Inheritance in AngularJS Scopes . . . . . . . . . . . . . . . . . . . . . . . 49

Advanced Scope Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The Watchers in AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The $watchCollection() Function . . . . . . . . . . . . . . . . . . . . . . . 56

The $apply() Function and the $digest Loop . . . . . . . . . . . . . . 57

$apply and $digest in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x

www.it-ebooks.info

http://www.it-ebooks.info/


Broadcasting & Emitting Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

$scope.$emit(name,args) For Emitting Events . . . . . . . . . . . . 64

$scope.$broadcast(name,args) For Broadcasting

Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

$scope.$on(name,handlerFunction) For Registering

Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Events in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

The $destroy event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 4 Multiple Views and Routing . . . . . . . . . 71

Creating Multiple Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Using $routeParams in the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Using ng-template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

The resolve Property in the Route Config Object . . . . . . . . . . . . . . . . . 83

Exploring the $location Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

The API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Events in Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

$location related events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

$route related events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

The ng-include Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Introducing the Angular UI Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Getting Started With UI Routter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Defining States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 5 AngularJS Services, Factories, and
Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi

www.it-ebooks.info

http://www.it-ebooks.info/


Eager Loading of a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Using Decorators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 6 Developing Single Page Blogger . . . 113

Developing Our App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Defining Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Creating Our Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Creating the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Creating the Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

App Entry Point (index.html) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

How About Some Unit Tests? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Unit Testing postService . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Unit Testing Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Writing an End-to-End (e2e) Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 7 Understanding AngularJS
Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

AngularJS Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

<input> and <textarea> controls . . . . . . . . . . . . . . . . . . . . . . . 130

<select> control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Radio Button Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Checkbox Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

AngularJS Form Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xii

www.it-ebooks.info

http://www.it-ebooks.info/


Applying Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Updating Models With a Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Forms in Action : Single Page Blogger v1.1 . . . . . . . . . . . . . . . . . . . . . . . 143

Creating the admin Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Defining States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Creating Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Admin Panel Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Template For Adding a New Post . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 8 Interacting with REST APIs . . . . . . . . . 151

A Primer on Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

The Promise API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Example Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Promise Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Creating a Promise that Always Rejects . . . . . . . . . . . . . . . . . . . . . 159

Understanding the $http Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

The config Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A Weather Search Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Setting Request Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Request and Response Transformers . . . . . . . . . . . . . . . . . . . . . . . . 166

Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Interceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Understanding AngularJS $resource . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

How Does $resource Work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xiii

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 Using REST APIs in Single Page
Blogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Applying $resource to Our App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Defining Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Defining Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Including angular-resource.js and Adding the ngResource

Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Unit Testing Our Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 10 AngularJS Directives . . . . . . . . . . . . . . . . . . 193

What Are Directives, Really? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Directives From the jQuery Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Creating Custom Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

The Link Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

The Compile Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Compilation of Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Changing a Directive’s Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Binding Between Parent Scope and Isolated Scope Models . . . . . . . . . 207

Using @ For One-Way Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Using = For Two-Way Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Using & to Execute Functions in the Parent Scope . . . . . . . . . . . . 209

Parent Scope vs. Child Scope vs. Isolated Scope . . . . . . . . . . . . . . . . . . . 212

Transclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Differences Between transclude:'element' and

transclude:true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

The Controller Function and Require . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Cleaning Up Your Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

IE 8 Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

xiv

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11 Adding a Comment System to
Single Page Blogger . . . . . . . . . . . . . . . . . . . . 219

Unit Testing Our Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Chapter 12 Dependency Injection In
AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A Brief Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

The $provide Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

The $injector Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Dynamically Injecting a Dependency . . . . . . . . . . . . . . . . . . . . . . . . 230

Registration of Controllers, Filters, and Directives . . . . . . . . . . . . . 230

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Chapter 13 AngularJS Filters . . . . . . . . . . . . . . . . . . . . . . . 233

Filter Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Fun with Custom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Chaining Multiple Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Using Filters in Controllers, Services, and Directives . . . . . . . . . . . 236

Meet a Filter Called filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Meet the orderBy Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Meet the limitTo Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Using the $filter Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Using Filters in Single Page Blogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Permalink Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Wordcount Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

xv

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 14 AngularJS Animation . . . . . . . . . . . . . . . . . 245

Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Animation with CSS3 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Going Further . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Animation Using Keyframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Animation Using jQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Animation Using ngClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Animation with Custom Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Adding Simple Animation to Single Page Blogger . . . . . . . . . . . . . . . . . 257

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Chapter 15 Deployment and
Internationalization . . . . . . . . . . . . . . . . . . . 259

Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Chapter 16 Authentication and Authorization
in AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Adding Login Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Where To Go Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Things to Do Now . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Improving Our Demo App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Host it Yourself : Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

xvi

www.it-ebooks.info

http://www.it-ebooks.info/


Preface
AngularJS is an open source JavaScript framework that lets you create amazing

AJAX-based web apps. Generally, the complexity involved in building large-scale

and complex AJAX apps is tremendous. AngularJS aims to minimize this complexity

by offering a great environment for development, as well as the means to test your

apps.

As a client-side MVW (Model-View-Whatever) framework, one of the most powerful

features of AngularJS is its ability to bring structure to your web apps. Another nice

thing about AngularJS is that it extends the HTML vocabulary to make it suitable

for building web apps, enabling you to create them declaratively; the resulting code

is clean and very readable.

AngularJS ships with many great features out of the box, which you'll use in your

day-to-day programming. It supports two-way data binding, nice templating, easy

REST interaction, custom component creation, multiple views, routing, and much

more. AngularJS also plays well with other libraries and frameworks. For example,

you can combine jQuery and AngularJS together to create awesome web applications.

AngularJS also demands no commitment. You can include Angular in your web

page and use as many features as you like. If you need only the two-way data

binding, but no REST interaction, you can employ that feature alone.

AngularJS favors Test Driven Development very much, and features great support

for both unit and end-to-end testing. But it also takes debugging very seriously. In

2012, the AngularJS team released a Chrome plugin called Batarang which makes

the debugging process a breeze. As a result, the products you develop with AngularJS

are very robust and maintainable.

For these reasons (and many more that we'll discuss during the course of this book),

AngularJS is one of the top choices when it comes to Single Page App development.

You're going to enjoy working with AngularJS!

Who Should Read This Book
This book is suitable for intermediate level web designers and developers. Experience

of HTML, CSS, and JavaScript is assumed.

www.it-ebooks.info

http://www.it-ebooks.info/


Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds 
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
  background-color: #CCC;
  border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

  border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all it, a ⋮ will

be displayed:

xviii

www.it-ebooks.info

http://www.it-ebooks.info/


function animate() {
  ⋮
  return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and that should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.learnable.com/books/angularjs1/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/angularjs1/

The downloadable code archive for this book.

xix

www.it-ebooks.info

http://www.learnable.com/books/angularjs1/
https://github.com/spbooks/angularjs1/
http://www.it-ebooks.info/


http://community.sitepoint.com/category/javascript

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to Take Your Learning Further?
Thanks for buying this book. We appreciate your support. Do you want to continue

learning? You can now get unlimited access to courses and ALL SitePoint books at

Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

xx

www.it-ebooks.info

http://community.sitepoint.com/category/javascript
http://www.learnable.com
http://www.it-ebooks.info/


Chapter1
Falling In Love With AngularJS
So, you're a web developer. Let me ask you a question: What do you usually do

when you're asked to build a web application? If it's a client-side app, you most

likely set up a project structure quickly, and grab your favorite JavaScript library,

or just use plain vanilla JavaScript, to get started. If the application involves back-

end logic, your favorite server-side language helps you.

Well, things are changing. Let me share a little secret with you: Pure HTML can

now be used to build full-blown web applications! We all know HTML is great for

creating static documents, but for developing a dynamic web app, standalone HTML

is not really the best tool. This is where AngularJS comes in. AngularJS is what

HTML would have been had it been designed for building web applications.

AngularJS is a framework that extends HTML by teaching it new syntax, making it

suitable for developing really great web applications. With AngularJS you can intro-

duce new HTML elements and custom attributes that carry special meaning. For

example, you can create a new HTML element <date-picker/>, say, which adds a

date picker widget, or a <drop-zone/> element, which can support drag-and-drop

actions.

www.it-ebooks.info

http://www.it-ebooks.info/


In this chapter, I'll outline all the great features of AngularJS that'll make it your

new best friend. Then we'll briefly cover the download and installation process,

followed by a discussion of a typical AngularJS app's anatomy. We'll also examine

why Test Driven Development (TDD) is a must for any ninja developer. In fact, the

AngularJS framework has been designed from ground up with TDD in mind. So,

we'll see how to perform Unit and End-to-End testing during development, and also

set up a test environment.

Throughout this book, we'll be working through the creation of a real-world Angu-

larJS web app. Over the course of the book, we will develop the app and keep im-

proving it. So, your mission, should you choose to accept it, is to become an Angu-

larJS ninja by the end of the book and have a real-world app ready for deployment.

Let's start our journey!

The Power Features of AngularJS
In this section, we'll explore some of the most compelling features of AngularJS

which make it stand out from the crowd.

■ Magical two-way data binding: The two-way data binding is probably the coolest

and most useful feature in AngularJS. Put simply, data binding is automatic

synchronization of data between your view (HTML) and model (simple JavaScript

variables). In AngularJS we create templates and bind different components with

specific models. So, whenever the model value changes, the view is automatically

updated, and whenever the value of any view component changes (e.g the value

of input text) the bound model is also updated. In other words you can carry out

operations on the model, change their values, and AngularJS guarantees that the

view will be updated to reflect the changes. This frees you from writing tons of

boilerplate code and DOM manipulations just to get started. We'll explore two-

way data binding in full in Chapter 2.

■ Structure front end code: As web developers we don't care about any structure

or pattern while writing client-side code. It's just us and the browser refresh

button until we get things working. But this approach is bad in the long run, and

if you are doing this, no doubt you'll get yourself into trouble very soon. With

no structure your life will only get harder when the app becomes complex. Also

it leaves no scope for good testing. But if you use AngularJS you're going to build

solid, well-structured, and fully testable apps in no time. This not only saves

AngularJS: Novice to Ninja2

www.it-ebooks.info

http://www.it-ebooks.info/


you from maintenance nightmares, but makes your (and your Project Manager's)

life much easier.

Model View Whatever?

AngularJS is an MVW framework (Model-View-Whatever) where Whatever

means Whatever Works for You. The reason is that AngularJS can be used

both as Model-View-Controller (MVC) and Model-View-View-Model (MVVM)

framework. But what's important to us is that we can build solid web apps

with great structure and design with minimum effort. We'll discuss more about

this while examining some AngularJS code later in this chapter.

■ Routing Support: Single Page Apps (SPAs) are everywhere nowadays. With the

advent of HTML5 and its related APIs, we don't want to redirect our users to a

new page every time they click on something. Instead, we want to load the

content asynchronously on the same page and just change the URL in the browser

to reflect it. Lots of other popular websites are already doing this, such as Twitter

and the Chrome app store. It makes the user feel as if they are interacting with

a desktop app. With AngularJS we can implement a Single Page App very easily

with minimum effort. In fact, AngularJS was built with these things in mind;

you can basically create different views for different URLs. AngularJS will then

load the appropriate view in the main page when a specific URL is requested.

The routing feature also fosters maintainability. This is because we are logically

dividing our app into different parts and thereby making it more maintainable.

We will see how to implement Single Page apps with multiple views and routing

in Chapter 4.

■ Templating done right with HTML: AngularJS uses plain old HTML as the

templating language. The workflow becomes much simpler with plain HTML

as the templating language, as the designers and developers don't have to depend

on each other. Designers can create UIs in usual way and developers can use

declarative binding syntax to tie different UI components with data models very

easily. For example, you can use an expression like {{name}} to display a name

model in HTML. Chapter 4 provides extensive coverage of templating in Angu-

larJS.

■ Enhanced user experience with form validation: Forms are the most important

part of any CRUD (Create, Read, Update, Delete) app. Providing feedback to the

3Falling In Love With AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


user while the form is being filled provides a great user experience. With that

in mind AngularJS forms incorporate real-time form validations, custom valid-

ators, formatters and much more. It also offers several CSS classes that indicate

which state the form controls are in—most importantly valid or invalid. You

can quickly write CSS rules against these classes to customize the look and feel

of the form controls in different states. Chapter 7 is all about forms and data

validations.

■ Teach HTML new syntax with directives: A directive in AngularJS is what tricks

HTML into doing new things that are not supported natively. This is done by

introducing new elements/attributes and teaching the new syntax to HTML. For

example, an HTML page doesn't know how to create a date picker widget. With

directives you can create a new element called <date-picker/> and use it in

HTML. This makes the UI creation process simple and intuitive. The concept

of directives is unique to AngularJS and is great for developing declarative UI.

Chapter 10 provides an in-depth guide to learning and implementing directives.

■ Embeddable, testable, and injectable: One of the nice things about AngularJS is

that it's a good team player. You can easily embed an AngularJS app within an-

other app. AngularJS never requires full commitment. You can use it along with

other technologies very easily. I have already mentioned testing. When you're

unit testing your app during development, you are fixing bugs right away, which

you would have otherwise encountered unexpectedly further down the line.

Being a modern framework, AngularJS favors Test Driven Development and offers

out of the box support for unit and End-to-End testing. There is really no excuse

not to test your app. As the book progresses, we'll be developing a demo app

and unit testing isolated pieces of code. Each component in an app might not

be independent; to function properly it might need some other services or com-

ponents. Dependency Injection means that our code is not in charge of obtaining

its dependencies. Rather its dependencies are injected automatically by a de-

pendency injection container. With this approach each component of the app

is loosely coupled to the others and the developer can test each one in isolation.

AngularJS provides full support for Dependency Injection, and this makes our

app more testable and maintainable.

■ Powered by Google and an active community: Whenever we adopt a new tech-

nology we always look for a good community support. AngularJS is currently

being maintained by the awesome developers at Google. Being open source

AngularJS: Novice to Ninja4

www.it-ebooks.info

http://www.it-ebooks.info/


software the code is released under the MIT license and is available for download

at GitHub. You can download the source and see if you can improve something.

The documentation is also pretty good, and you can always ask questions on

StackOverflow or the SitePoint forums to clear any doubts. AngularJS is under

rapid development and keeps improving with each version. As a result, the

number of developers using it is also increasing and you can find great tutorials

on AngularJS all over the web. So, rest assured there is plenty of good information

available to help you through.

Did these features excite you? Are you all set and geared up to start developing

awesome AngularJS apps? Let's get started and see how to download and install

AngularJS.

Why is it Called AngularJS?

In case you are wondering why the name of the framework is AngularJS: Well,

HTML uses angle brackets. Hence, the name!

Download and Installation
Downloading and installing AngularJS is very simple. You just need to point your

<script> tag to the AngularJS script file and you are good to go! Either you can

download the script to your server and serve it from there, or you can use a CDN.

When you are in production mode I recommend you to use a CDN. Let's look at

both ways to install AngularJS.

Installing via CDN
Just put the following script in the <head> of your HTML to get started:

<script type="text/javascript" src=" http://ajax.googleapis.com/
➥ajax/libs/angularjs/1.2.16/angular.js"></script>

At the time of writing this book, AngularJS 1.2.16 was the latest stable release. So

that's the version we'll be using throughout this book.

5Falling In Love With AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


Angular Version Numbering

Even-numbered AngularJS versions are stable releases, while the odd-numbered

versions are for developers only. For example, versions 1.0.x, 1.2.x, etc. are stable

while the versions 1.1.x,1.3.x, etc. are unstable releases.

The above script points to the non-minified version of AngularJS. You should use

this version in the development phase as the script is human-readable, contains

comments and offers better error reporting.

As soon as you move into the production phase, you should use the minified version

of AngularJS. This greatly improves the loading speed of your application. It's also

compiled with the Closure compiler to make sure the script is optimized and

downloads faster. To get the minified AngularJS via CDN just use the following

<script>:

<script type="text/javascript" src=" http://ajax.googleapis.com/
➥ajax/libs/angularjs/1.2.16/angular.min.js"></script>

What's a Closure Compiler?

Wondering what the heck a Closure Compiler is? Read more about it here1.

Hosting on Your Server
If you don't want to use a CDN it's certainly possible to serve the AngularJS script

from your server. In fact it's not uncommon to host the libraries locally. Many

companies do it because the CDNs might be blocked in the users' network. So, if

you want to host the files yourself just head over to http://code.angu-

larjs.org/1.2.16/ and there you can find both angular.js and angular.min.js.

Just download those to your server (your local machine for now) and include it in

the HTML as usual.

Here is how you can include the files:

Non-minified:

1 https://developers.google.com/closure/compiler/

AngularJS: Novice to Ninja6

www.it-ebooks.info

https://developers.google.com/closure/compiler/
http://www.it-ebooks.info/


<script type="text/javascript" src="angular.js"/>

Minified:

<script type="text/javascript" src="angular.min.js"/>

In addition to the main files above, there are several extra Angular scripts we are

interested in:

■ angular-route.js: Adds routing support. As we will be building a real-world

single-page app in the book we will need this.

■ angular-animate.js: This is useful for creating nice CSS3 animations.

■ angular-mocks.js & angular-scenarios.js: This is useful for testing purposes.

■ angular-resource.js: Provides better support for interacting with REST APIs.

Fortunately, you don't need to download all these right now. The Angular Seed

project that we will download shortly offers these scripts out of the box.

Required Tools
To write better software we need to use the right tools, and there are some great

tools and editors available for AngularJS. But when learning a new technology it's

often better not to use any IDE. This way you will get to know the nitty-gritty of the

technology. Once you are well-versed, IDEs can be used to boost your productivity.

As you are just going to be working with plain JavaScript and HTML files, any text

editor will do just fine. Personally, I use TextMate, a simple editor for Mac.

Now, let's check out several other options.

1. Jetbrains WebStorm2: This is a great commercial IDE from Jetbrains. It also has

a nice AngularJS plugin and offers good support. Just note that WebStorm requires

you to purchase a commercial/personal license and is available for Windows,

Mac and Linux based systems. The commercial license costs $99 USD while the

personal license costs $49 USD. You can also opt for a 30-day evaluation copy.

2 http://www.jetbrains.com/webstorm/

7Falling In Love With AngularJS

www.it-ebooks.info

http://www.jetbrains.com/webstorm/
http://www.it-ebooks.info/


2. Sublime Text 2 & 33: Sublime Text is a pretty good editor with nice AngularJS

support via plugins. While Sublime Text is free to evaluate, a license is needed

for continued usage. The cost is $70 USD. Sublime is available for PC, Mac, and

Linux-based systems.

3. TextMate4 (For Mac users only): TextMate is a simple and elegant editor with

good AngularJS plugins. It's free to use, but it is only available for Mac users.

4. NetBeans5: Netbeans (available for PC, Mac, and Linux) is an open source editor

that is also a good option for AngularJS development.

Keep in mind that many AngularJS features like routing, REST interaction etc. won't

work if you access the files locally (via file://). For that, you'll need a development

server. But don't worry about that for now; in a moment, we'll discuss the Angular

Seed project, and will learn how to set up a complete AngularJS development (and

testing) environment with very little effort. This also includes a tiny development

server written in Node.js to access files with localhost.

AngularJS Batarang
But wait! What about debugging? Don't fret, the AngularJS team have got you covered.

They have released an awesome Chrome plugin called the Batarang to debug Angu-

larJS apps. It also addresses any performance bottlenecks there might be. It's a

beautiful tool and I recommend you install it.

You can download it directly from the Chrome App Store6. After installing, open

your browser's developer tools and you can find a new tab called AngularJS. It will

look something like Figure 1.1.

3 http://www.sublimetext.com/
4 http://macromates.com/
5 https://netbeans.org/
6 https://chrome.google.com/webstore/detail/angularjs-batarang/ighdmehidhipcmcojjgiloacoafjmpfk?hl=en

AngularJS: Novice to Ninja8

www.it-ebooks.info

http://www.sublimetext.com/
http://macromates.com/
https://netbeans.org/
https://chrome.google.com/webstore/detail/angularjs-batarang/ighdmehidhipcmcojjgiloacoafjmpfk?hl=en
http://www.it-ebooks.info/


Figure 1.1. The AngularJS Batarang

Don't forget to check the enable option. Later on, we'll explore all the features of

Angular Batarang.

The Angular Seed Project
Every project should have a structure to organize the files. The Angular Seed project

provides a good skeleton structure for AngularJS apps so that you can quickly

bootstrap the app and start developing. In addition to providing a fixed structure,

it also offers a pre-configured test environment, a set of useful scripts, and a ready-

to-use web server. The Angular Seed is not itself another framework. It just gives

you a great head start on AngularJS development, and offers a nice project structure

to easily organize the files. With Angular Seed you also get AngularJS itself, and

other related scripts. You can either serve these scripts from your server, or use a

CDN if required.

To download the version of Angular Seed used in this book, point your browser to:

https://github.com/angular/angular-

seed/tree/69c9416c8407fd5806aab3c63916dfcf0522ecbc. Once you are on the page,

just click on Download Zip and this should download the project files as a zip archive.

After extracting the zip you will get a folder called angular-seed-master. Place it

anywhere on your local machine. The app folder, present inside angular-seed-master,

is the folder that is going to be deployed. This means when moving to production

9Falling In Love With AngularJS

www.it-ebooks.info

https://github.com/angular/angular-seed/tree/69c9416c8407fd5806aab3c63916dfcf0522ecbc
https://github.com/angular/angular-seed/tree/69c9416c8407fd5806aab3c63916dfcf0522ecbc
http://www.it-ebooks.info/


we will just take this folder and nothing else. The rest of the folders are there for

various configurations and tests. But during development we are going to use the

entire contents of the angular-seed-master folder.

If you open up the app folder inside angular-seed-master you will find several folders

which have reasonably self-explanatory names. For example, all your CSS files go

inside the css folder, and all the images are placed inside img. Similarly, the lib

folder contains all the AngularJS scripts. We are mainly interested in angular.js

script and will be using only this initially.

There is also a js folder inside app which holds all the JavaScript files of your ap-

plication. Initially, there are five .js files which represent different modules of

your app. For instance, whenever you will create a controller it should go inside

controllers.js. The other components in the app directory are:

■ directives.js

■ filters.js

■ services.js

Okay, we've discussed the development aspect, but that is only half of the story.

The next step is setting up a test environment. But for the time being, let's just focus

on developing a simple AngularJS app. I will show how to set up a test environment

later on in this chapter.

The Anatomy of an AngularJS app
Before building your first AngularJS app, you should be aware of the different

components of AngularJS. Here I will outline some of the important components

that you should absolutely know before moving further.

1. Model: The data shown to the users. The model data are simple POJOs (Plain

Old JavaScript Objects).

2. View: This is what the users see when they visit your page, that is to say after

the raw HTML template involving directives and expressions is compiled and

linked with correct scope.

3. Controller: The business logic that drives your application.

AngularJS: Novice to Ninja10

www.it-ebooks.info

http://www.it-ebooks.info/


4. Scope: A context that holds data models and functions. A controller usually sets

these models and functions in the scope.

5. Directives: Something that teaches HTML new syntax. It extends HTML with

custom elements and attributes.

6. Expressions: Expressions are represented by {{}} in the HTML. They are useful

for accessing scope models and functions.

7. Template: HTML with additional markup in the form of directives (<drop-zone/>)

and expressions {{}}.

Well, enough talking! Let's create a short and simple app.

Objective: To create an HTML page that asks users their annual salary and the per-

centage of that they want to spend buying gadgets. There should be two input text

fields: one for salary and the other for percentage. There is also a <span> tag which

displays the result of calculation. As soon as the value of any field changes the

result is updated.

Implementation: Just imagine how you would implement this in plain JavaScript

or jQuery. First you would create the required input fields and result <span>. You'd

then register callbacks for keyup event on the input fields. Inside the callback, you'd

read the values from input fields, calculate the result and finally innerHTML the

value into the <span>.

But with AngularJS none of the above is required. In fact, you won't need to write

even a single line of JavaScript for this app! Have a look at the following snippet

which implements the same thing in AngularJS. You can create a file called test.html

inside the app directory of angular-seed-master and paste the following snippet.

<!doctype html>
<html lang="en" ng-app>

<head>
  <title>My First AngularJS App</title>
</head>

<body ng-init="salary=0;percentage=0">

  Your Salary?

11Falling In Love With AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


  <input type="text" ng-model="salary">
  <br/>How much should you invest in gadgets?
  <input type="text" ng-model="percentage">%
  <br/>The amount to be spent in shopping will be: 
➥<span>{{salary*percentage*0.01}}</span>
  <script src="lib/angular/angular.js"></script>
</body>

</html>

Now to access the page we need a web server. To run the web server that ships with

Angular Seed you'll need Node.js. Head over to http://nodejs.org/ and download

the latest release. At the time of writing the latest Node.js version was 0.10.26. Just

download and install it in your machine. Once you are done open up the terminal

(for Mac) or Command Prompt (for Windows), type node and hit enter. If the com-

mand is found, you know you have successfully installed node.

Using the Command Prompt

If you are unsure about how to handle the command prompt or terminal, please

check out the following links:

Windows Command Prompt: http://www.makeuseof.com/tag/a-beginners-guide-

to-the-windows-command-line/

Mac Terminal: http://guides.macrumors.com/Terminal

The next step is running the server. In your command prompt or terminal move to

angular-seed-master and run the following command: node scripts/web-server.js.

This will start the server at port 8000. So, to access the newly created test.html point

your browser to http://localhost:8000/app/test.html.

Surprised by the small amount of code required to pull this off? This is what makes

AngularJS best suited for rapid web app development. Let's examine what's happen-

ing here:

1. An AngularJS application bootstraps with the ng-app attribute (actually, it's a

directive).

2. ng-init initializes your data models: the data to be presented on the UI.

AngularJS: Novice to Ninja12

www.it-ebooks.info

http://nodejs.org/
http://www.makeuseof.com/tag/a-beginners-guide-to-the-windows-command-line/
http://www.makeuseof.com/tag/a-beginners-guide-to-the-windows-command-line/
http://guides.macrumors.com/Terminal
http://www.it-ebooks.info/


3. ng-model binds an input field with model data. This establishes a two-way

binding, which means the data model will be updated automatically whenever

the input field value changes and vice versa.

4. {{}} is called an expression, which is composed of one or more data models.

The main purpose of an expression is binding the model data to the view uni-

directionally; that is, syncing from model to view. You can also perform operations

like multiplication, division etc. on the models, as shown in the example above.

AngularJS evaluates this expression and replaces it with the calculated value.

The beautiful thing is that the expression is re-evaluated each time any of the

data models it depends on changes. In our case, whenever a user types anything

into input fields the data-models are updated. As a result the expression

{{salary*percentage*0.01}} is re-evaluated automatically which, in turn, up-

dates the DOM for us.

What is MVW?
It's 2014. Front end code is just as important as back end logic. To keep your app

maintainable and well-structured in the long run it's important to follow a pattern.

Fortunately, AngularJS can be used to develop apps based on both the MVC or

MVVM patterns. That's the reason it's been declared as an MVW (Model-View-

Whatever) framework. But before jumping into the details, let me give you a primer

on MVC and MVVM.

MVC
Model-View-Controller (MVC) is an architectural pattern that fosters improved code

organization by promoting separation of concerns. The UI (View) is separated from

business data (Model) of the app through a Controller which handles inputs, deleg-

ates the tasks to business logic and coordinates with the model and view.

You can read more about MVC here: http://alexatnet.com/articles/model-view-

controller-mvc-javascript

MVVM
Model-View-ViewModel (MVVM) is a design pattern to build declarative UIs. In

MVVM, a ViewModel exposes your application's business data (the Model) to the

View in a way the View can understand it. In other words the ViewModel is a pure

code representation of your business data. For instance, if you are creating a notes

13Falling In Love With AngularJS

www.it-ebooks.info

http://alexatnet.com/articles/model-view-controller-mvc-javascript
http://alexatnet.com/articles/model-view-controller-mvc-javascript
http://www.it-ebooks.info/


editor, your ViewModel should hold a list of notes and expose methods to

add/edit/delete them.

You can read more about MVVM here: http://addyosmani.com/blog/understanding-

mvvm-a-guide-for-javascript-developers/

It's your call to decide which way you want to use AngularJS. However, we'll follow

the MVC pattern through this book. So, let's take a look at how to use AngularJS to

introduce MVC to our app.

Structuring Our Code With MVC
In the world of MVC, everything has its own place. The major benefit is that the

business logic is decoupled from the UI (the view). The next benefit is that, if you

want to fix a bug in a component or modify its functionality, you know exactly

where the component goes, which makes maintenance much easier. It also helps

you structure your code into several loosely coupled modules which can be loaded

and tested independently.

Here's what each component does:

1. Controller: The Controller handles inputs, calls the code that performs business

rules and shares data with view via $scope. The business logic is what your app

is known to do. In case of a weather app the business logic is all about obtaining

the weather data (probably from a REST web service). In AngularJS we perform

this logic inside a service and inject it into the controller. Using the service our

controller obtains the data and sets it on a $scope object so that the view can

display it. In this way the controller is just aware of the $scope and not the view.

Tomorrow you can change the whole UI from a web view to mobile view and

the business logic will be the same because the controller is completely separated

from the view.

2. Model: The Model represents the business data that drives your UI. Your UI is a

projection of the model data at any given time through the view.

3. View: The view is only concerned with displaying the data and is decoupled

from the business logic. It should update itself whenever the underlying data

model changes. In AngularJS the view reads model data from the $scope which

AngularJS: Novice to Ninja14

www.it-ebooks.info

http://addyosmani.com/blog/understanding-mvvm-a-guide-for-javascript-developers/
http://addyosmani.com/blog/understanding-mvvm-a-guide-for-javascript-developers/
http://www.it-ebooks.info/


has already been set by our controller and displays it. This helps the front end

development to progress in parallel with the back end activity.

The Scope is the Glue

Think of the scope as a glue between Controller and View. This way our Controller

and View are not aware of each other, but still they can share data. This means if

tomorrow your manager asks you to change the current UI to something else you

can do that pretty easily without touching the business logic.

Now we've discussed the basics, let's modify the previous code accordingly. Again

we will use Angular Seed structure to bootstrap development.

JavaScript ― apps.js Paste this inside /app/js/apps.js.

angular.module('myApp', [
  'myApp.controllers'
]);

myApp is our main module that's loaded when the app bootstraps. This module de-

pends on the controllers module which has the FinanceController controller,

which will be created next.

JavaScript ― controllers.js

angular.module('myApp.controllers', []).
➥controller('FinanceController', function($scope) {
  $scope.salary = 0;
  $scope.percentage = 0;
  $scope.result = function() {
    return $scope.salary * $scope.percentage * 0.01;
  };
});

A $scope object is passed to the FinanceController constructor function. We set

different properties like salary and percentage on this scope, which are made

available to the view. We also set a function result() on this scope that calculates

the final result and returns it. This function is accessed in the view.

HTML ― This should go into /app/test.html of your Angular Seed project:

15Falling In Love With AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


<!doctype html>
<html lang="en" ng-app="myApp">

<head>
  <title>Finance Meter</title>
</head>

<body ng-controller="FinanceController">

  Your Salary?
  <input type="text" ng-model="salary">
  <br/>How much should you invest in shopping?
  <input type="text" ng-model="percentage">%
  <br/>The amount to be spent on gadgets will be: 
➥<span>{{result()}}</span>

  <script src="lib/angular/angular.js"></script>
  <script src="js/app.js"></script>
  <script src="js/controllers.js"></script>
</body>

</html>

In HTML ng-controller instantiates the FinanceController passing a $scope

object. In this case, the controller is applied to the entire <body> element. As a result

all the $scope properties set by our controller can be referred directly anywhere

inside <body> and </body>. If you look at the code you can see we're referring to

the model properties in ng-model. These models are updated every time the input

field value changes. We are also calling the $scope function result() inside expres-

sion {{}} which is re-called every time salary or percentage models change. As

a result the DOM is always updated with the correct result.

With a few additional steps we have structured our code in much better way.

Naming Your Controllers

Please note that whenever you register a controller in a module its name should

follow PascalCase; in other words, it should be camelCase with its first letter in

uppercase. According to JavaScript conventions every constructor function should

be named in PascalCase so that users know they need to use new on the function

to obtain an instance. Since, in AngularJS, the controllers are nothing but con-

AngularJS: Novice to Ninja16

www.it-ebooks.info

http://www.it-ebooks.info/


structor functions, we should follow PascalCase while naming them. On the other

hand, the module name should be in camelCase.

Playing with Filters

Want to try something cool? Replace {{result()}} in the previous HTML

snippet with {{result() | currency}} and see the result automatically

formatted as currency (with $ symbol and commas). This is called afilter, which

we'll be covering later in this book.

As we have finished developing the app let's have a look at the testing process

briefly. In the next section we'll discuss what unit and End-to-End tests really are.

Then we'll have a quick overview of testing with Karma & Jasmine, and set up a

testing environment in Angular-Seed project we downloaded.

Unit and End-to-End Testing in AngularJS
Unit testing is a technique that lets developers validate isolated pieces of code. The

unit is the smallest testable part of your code. So, while you're coding it's always a

good idea to validate and ensure that your code works as expected. For example,

when you write a controller it's smart to unit test it first before moving to next thing.

This way, if you need to add some more functionality to the controller, you can do

so and also validate that you haven't broken any of the previous functionalities in

this process.

End-to-End testing helps ascertain that a set of components, when integrated together,

work as expected. End-to-End tests should be carried out when user stories are being

generated. For instance, an End-to-End test can be done to ensure when a user enters

correct username, password and hits login button he is taken to the admin panel.

End-to-End tests differ from unit testing in that they take two or more pieces of unit-

tested code and ensure that they work as expected when integrated together.

We'll be unit testing our code as we start developing our demo app.

Setting up the test environment is simple, but requires the following of a series of

steps. Assuming you have already downloaded Angular Seed, let's outline the pre-

requisites to set up test environment.

17Falling In Love With AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


1. Firstly, we need Node.js and npm (Node Package Manager) to install various

tools.

2. We are going to download the Jasmine library as this is the test framework we

will use.

3. We will also need the Karma test runner (formerly Testacular) to run the tests.

That's all. Now that we are aware of the tools needed we are good to go. Just follow

the steps below and setting up the test environment for your app will be a breeze.

1. We have already installed Node.js. There is no need to install npm (Node Package

Manager) separately as it comes bundled with the Node.js release.

2. The next step is downloading the Karma test runner. To do that, navigate to the

angular-seed-master directory in terminal/command prompt. On a Windows

machine you can simply move to the directory in command prompt via the cd

command. On Mac, you can just drag the angular-seed-directory and drop it

onto the terminal icon in the dock. Now run npm install karma. This will install

the Karma test runner. As a result, a new directory called node_modules will get

created under angular-seed-master which holds Karma.

3. Now we need two plugins. The first one is the Jasmine library. The second one

is karma-chrome-launcher/karma-firefox-launcher/karma-safari-launch-

er/karma-opera-launcher (which one you need depends on the browser you

use). These launchers help us see the test results directly in the browser. You

can just change test specs and refresh the browser page to see the updated test

results. To install the plugins use the following commands: npm install jasmine

and then the command to install the appropriate plugin for your browser:

npm install karma-chrome-launcher
npm install karma-firefox-launcher
npm install karma-safari-launcher
npm install karma-opera-launcher

4. To perform End-to-End tests we will need Protractor. To install it, just run the

following command: npm install protractor.

AngularJS: Novice to Ninja18

www.it-ebooks.info

http://www.it-ebooks.info/


Running these commands will install the plugins into node_modules directory inside

angular-seed-master. Congratulations! You have successfully created a test envir-

onment for yourself. Now take a moment, grab a drink, and come back to explore

a couple of important points.

Where to Put Your Tests
All your unit tests go into angular-seed-master/test/unit and all the End-to-End tests

go inside angular-seed-master/test/e2e. If you open up the angular-seed-master/test/unit

directory you will find four different .js files: controllersSpecs.js, filtersSpecs.js,

directivesSpecs.js, servicesSpecs.js. You'll write the unit tests for your controllers inside

controllersSpecs.js. Similarly, the unit tests for other components will go into their

corresponding files.

Inside angular-seed-master/test/e2e directory you can find scenarios.js. All your

End-to-End tests will go here.

How to Run Tests
To run tests, first, move to angular-seed-master in the terminal/command prompt.

For Unit Tests
If you are on Mac, use the command: sh scripts/test.sh . On Windows, double-

click on test.bat inside the scripts directory. This will start the Karma server

and bring up your browser. Just click on the debug button in the browser, which

will take you to a different tab, as shown in Figure 1.2.

Figure 1.2. Running a unit test

19Falling In Love With AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


Then just open your browser's web developers tool and go to console. There you

can find the results of your test cases. Whenever you make any changes to the tests

or modify an existing one just hit refresh and the console shows you the updated

result, as shown in Figure 1.3.

Figure 1.3. Updated results

For End-to-End Tests
If you are on Mac use the command: sh scripts/e2e-test.sh . On Windows,

double-click on e2e-test.bat inside the scripts directory. Before running this, be sure

to start the test server as described above. This will bring up the browser, open up

your HTML page and perform the tests. The results are then displayed in the termin-

al.

When Not To Use AngularJS
AngularJS was designed with data-driven apps in mind. It's also an excellent choice

if your app interacts with a lot of RESTful web services. But if your app needs heavy

DOM manipulations where model data is not the focus, you might want to use a

library like jQuery instead, as that is better suited for this kind of task. If you want

to develop a web app which is basically a game or involves heavy graphics manip-

ulation, AngularJS is not the way to go. In short, AngularJS is best if your UI is data-

driven.

AngularJS: Novice to Ninja20

www.it-ebooks.info

http://www.it-ebooks.info/


Conclusion
As a ninja developer you are expected to complete any task assigned to you on the

fly in best possible way. This is exactly where AngularJS helps you. Looking at our

first app we can conclude that AngularJS helps us overcome three major obstacles

in web app development:

1. The plumbing ―Removes the need for a significant amount of coding just to get

started.

2. DOM manipulations ― The data model is the single source of truth. If you update

just the model the DOM is automatically updated. That's why most of the Angu-

larJS based apps don't need to programmatically manipulate the DOM. But you

are free to do so if needed.

3. JavaScript coding for simple tasks ― No more JavaScript for every simple or

small task. The data models and two-way data binding reduce the amount of

JavaScript code needed to achieve simple objectives.

On the other hand, Angular also brings us the following major benefits:

1. Greatly reduces the number of lines of code. Less code means fewer maintenance

nightmares, and makes your life so much easier.

2. Great testability and maintainability come with well-structured code and separ-

ation of concerns.

3. Awesome testing support. Application testing is as important as application de-

velopment.

By now you should be well on your way to being an AngularJS disciple. In the next

chapter we will be exploring the two-way data binding feature of AngularJS.

21Falling In Love With AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter2
Modules, Controllers & Data Binding
Structuring your code is the key to writing maintainable software. The good news

is that with AngularJS you can easily divide your front-end source code into reusable

components, called modules. An AngularJS module is basically a container that

groups together different components of your application under a common name.

If you look at the Angular Seed project that we downloaded in Chapter 1, you can

see that there are different modules defined in the files controllers.js, directives.js,

filters.js , services.js, etc. In our main JavaScript file, app.js, we have a module myApp

which depends on the above modules (yes, modules can depend on other modules).

Finally, in the HTML we tell AngularJS to start bootstrapping our app using myApp

module as the starting point. This is done by writing ng-app='myApp'in the HTML.

Built-in Modules

AngularJS has several built-in modules. The ng module defines many directives,

filters, services for our use. We have already used some of the directives from this

module such as ng-model, ng-controller, etc. Similarly, you can also create

your own module and use it in your app.

www.it-ebooks.info

http://www.it-ebooks.info/


AngularJS needs to know about the different components of our app and how they

are wired together. To tell that story to AngularJS we divide our app into reusable

modules and declaratively specify their dependencies on each other. Let's see how

to create a simple module.

Creating Our First Module
To create a module, we call the angular.module() function. The first argument to

the function is the module name. The second argument is an array that specifies

the additional modules upon which this module depends. If there's no dependency

you just pass an empty array.

angular.module('firstModule',[]); 
➥//defines a module with no dependencies

angular.module('firstModule',['moduleA','moduleB']); 
➥//defines a module with 2 dependencies

Once you have a module, you can attach different components to it. Just think of

angular.module() as a global API for creating or retrieving modules and registering

components. The call to angular.module() returns a reference to the newly created

module. This is how we can attach a controller to the above module:

var firstModule=angular.module('firstModule',[]); //define a module

firstModule.controller('FirstController',function($scope){ 
➥// register a controller
    //your rocking controller
});

firstModule.directive('FirstDirective',function(){ // register a 
➥directive
    return {

    };
});

The above snippet has one big flaw. When we store the newly created module in a

variable it's added to the JavaScript global scope—and it's not good practice to pollute

the global scope unnecessarily.

AngularJS: Novice to Ninja24

www.it-ebooks.info

http://www.it-ebooks.info/


One way to overcome this is to wrap the above code in an IIFE1 as follows:

 (function() {
   var firstModule = angular.module('firstModule', []); 
➥//firstModule is not global here

   firstModule.controller('FirstController', function($scope) { 
➥// register a controller
     //your rocking controller
   });

   firstModule.directive('FirstDirective', function() { // register 
➥a directive
     return {

     };
   });
 })();

//firstModule undefined here

The function executes as soon as it's created. And inside, where you wrote var

firstModule = angular.module('firstModule', []);, the variable firstModule

is not added to the global scope, meaning we're no longer polluting the global scope.

Fortunately, to keep things simple AngularJS has another great mechanism, which

is superior to this approach. When you call angular.module() with two arguments

(the last argument for dependencies) AngularJS creates a new module. Subsequently

when you call angular.module() with a single argument (just the module name),

AngularJS retrieves the already created module and returns it. Isn't that great? With

this in mind, let's modify our above snippet:

angular.module('firstModule',[]); //specify dependency list here

angular.module('firstModule').controller('FirstController'
➥,function($scope){ //just use it
    //your rocking controller
});

angular.module('firstModule').directive('FirstDirective'

1 http://en.wikipedia.org/wiki/Immediately-invoked_function_expression

25Modules, Controllers & Data Binding

www.it-ebooks.info

http://en.wikipedia.org/wiki/Immediately-invoked_function_expression
http://www.it-ebooks.info/


➥,function(){ //just use it
    return {

    };
});

Alternatively, if you really want to be smart, you could use:

angular.module('firstModule',[]).controller('FirstController'
➥,function($scope){
        //your rocking controller
}).directive('FirstDirective',function(){ //your directive
    return {

    };
});

The above code works because each function you call on the angular.module()

(such as controller(), directive() etc.) returns a reference to the module itself.

So, the calls can be chained together, and you can keep attaching different compon-

ents in this way.

Be Careful When Calling angular.module() Multiple Times

Only the first call to angular.module() should specify the second argument.

All the subsequent calls to angular.module() should just pass a single argument

which retrieves an already created module. If you call angular.module() mul-

tiple times with two arguments you are just redefining the dependency list, not

retrieving an existing module.

Using angular.module()

You can also use angular.module('moduleName') in a different source file

to retrieve an existing module and attach components to it.

Modular Programming Best Practices
When you divide your source code into different modules you have two choices:

■ Modularization by layers

AngularJS: Novice to Ninja26

www.it-ebooks.info

http://www.it-ebooks.info/


■ Modularization by features

First, let's get into the app/js directory of the Angular Seed to find out which pattern

is used here. If you open up the directory you will see the following five source

files, each representing a module:

1. app.js

2. controllers.js

3. directives.js

4. filters.js

5. services.js

This is called modularization by layers.

Each type of component goes into a particular module. Finally, the main app module

is defined in app.js, which depends on the other four modules. This is specified by

passing a dependency list to angular.module() as the second argument. You just

refer to this main module in ng-app in HTML. This type of modularization can be

useful in many scenarios. For example, if you encounter a bug in a particular type

of component, say a service, you know where to look for it.

But when your app grows in terms of size and complexity it may not be good to

modularize by layer. Instead you can achieve this by feature. For example, your

website might have a login module, a comment module and a posts module. All

these modules exist independently and are loosely coupled. Usually, you'd create

a separate directory for each module and place all the relevant JavaScript files inside

the relevant folders. This fosters code re-usability because you can just take the

entire folder for a particular module and use it in a different project. Also separate

dev teams can work on different modules simultaneously as they are not tightly

coupled to each other. Furthermore, unit testing becomes a piece of cake since you

need to load only the required modules and can test each module in isolation easily.

We can tweak the Angular Seed Project a bit to use this pattern. For example, a

blogging system could use the following file structure:

27Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


/app
    /img -- application level images
    /css -- application level css
    /js
        app.js -- the main app module
    /modules
        /login
            /js
                controllers.js  --controllers for login module
                directives.js   --directives for login module
            /views -- views for login module
            /css
            /img
            loginModule.js -- Main login module definition
        /comment
            /js
                controllers.js  --controllers for login module
                directives.js   --directives for login module
            /views -- views for comment module
            /css
            /img
            commentModule.js -- Main comment module definition

        ...

        ...
    index.html

Inside each of these files, we define our modules. For the login module, the defini-

tions are as follows:

/app/modules/login/js/controllers.js

angular.module('mainApp.login.controllers',[]);

/app/modules/login/js/directives.js

angular.module('mainApp.login.directives',[]);

/app/modules/login/loginModule.js

AngularJS: Novice to Ninja28

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('loginModule',['mainApp.login.controllers',
➥'mainApp.login.directives']);

For the comment module, the definitions are as follows:

/app/modules/comment/js/controllers.js

angular.module('mainApp.comment.controllers',[]);

/app/modules/comment/js/directives.js

angular.module('mainApp.comment.directives',[]);

/app/modules/comment/loginModule.js

angular.module('commentModule',['mainApp.comment.controllers',
➥'mainApp.comment.directives']);

The main module is defined in /app/app.js like this:

angular.module('mainApp',['loginModule','commentModule']);

Finally, inside index.html we bootstrap the app by writing:

ng-app='mainApp'

As you can see, the modules loginModule and commentModule don't know about

each other, but they are brought together by the app's main module mainApp. In

HTML, when AngularJS encounters ng-app, it bootstraps the application by loading

the specified module. In this case, AngularJS bootstraps the app by loading the

module mainApp. But AngularJS sees that the module mainApp depends on two

other modules loginModule and commentModule. So, it starts loading those modules

as well. But these modules also have dependencies on other modules (controllers,

directives, etc.), which are also loaded by AngularJS. In this way, AngularJS starts

your app by loading all the necessary modules.

29Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


Using Dot Notation in Module Names

The dot notation used in the module names is there simply to mimic namespaces,

and doesn't hold any special meaning in AngularJS. You could just as easily use

a comma or a colon instead of a dot, but it seems most logical to namespace

module names with a dot.

Modularization by features clearly keeps your app maintainable and testable in the

long run. It also gives different teams the freedom to focus on different parts of your

project independently. So, we'll stick with this pattern while developing our demo

application in this book.

Controllers
The Role of a Controller
The task of a controller is to augment the scope by attaching models and functions

to it that are subsequently accessed in the view. A controller is nothing but a con-

structor function which is instantiated by AngularJS when it encounters ng-con-

troller directive in HTML. We'll explore AngularJS scopes in next chapter. As I

mentioned in Chapter 1, the scope is just the glue between the controller and the

view, so that your controller can add properties to the scope and the view can access

those.

Attaching Properties and Functions to Scope
As the next step, let's write a controller that passes the current date, time, and a

name to the view via a scope.

Controller:

angular.module('myApp',[]).controller('GreetingController'
➥,function($scope){
  $scope.now=new Date(); //set the model 'now' on scope
  $scope.greeting='Hello';    //set the name model on scope
});

You register a controller on a module by calling controller() on angular.module().

The controller() function takes two arguments: The first one is the name of the

AngularJS: Novice to Ninja30

www.it-ebooks.info

http://www.it-ebooks.info/


controller, and the second is the constructor function that'll be called when ng-

controller directive is encountered in HTML. Notice the argument $scope to the

constructor function? When you declare $scope as a parameter to the controller's

constructor function, you're saying that your controller is dependent on $scope

object. The parameter name $scope has a special meaning. AngularJS infers the

dependencies of your controller from the parameter names in the constructor

function. In this case, when AngularJS finds ng-controller='GreetingControl-

ler'in HTML, it creates a new scope for your controller and passes that as an argu-

ment to the constructor function while instantiating the controller. This is called

Dependency Injection, which is an important and core part of AngularJS. We'll

discuss Dependency Injection at length later in the book.

Multiple Dependencies

You can have multiple dependencies for your controller and can declare all those

as parameters to the controller's constructor function. In addition to $scope, each

AngularJS app has a $rootScope. Let's assume you have a custom service that

interacts with a back end via XHR. You can declare these two as dependencies

for your controller, like this:

angular.module('myApp',[]).controller(
➥'ControllerWithDependency',
➥function($rootScope,customService){
  //use the dependencies here
});

While instantiating your controller, AngularJS reads the parameter list, and from

these names it knows which services/objects to inject. Also, you should note that

AngularJS prefixes its own services and objects with $ as a naming convention.

So you should not prefix your custom services with $.

Now that we have our DateTimeController ready it's time to use it in the view.

HTML

<!DOCTYPE html>
<html ng-app="myApp">

<head>
  <script type='text/javascript' src="https://ajax.googleapis.com/

31Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


➥ajax/libs/angularjs/1.2.16/angular.js"></script>
  <script src="app.js"></script>
</head>

<body ng-controller="GreetingController">
  {{greeting}} User! The current date/time is <span>{{now | date: 
➥'medium'}}</span>.
</body>

</html>

Here, we have attached ng-controller directive to body. This means everything

in <body> and </body> is under this controller's scope. Each time ng-controller

is detected, AngularJS creates a new scope for this particular controller and instan-

tiates it. So, when ng-controller="GreetingController" is encountered the con-

structor function of GreetingController runs, which sets two models on scope

object: greeting and now. In the view we can access these models by using expres-

sions {{}}. When we write {{greeting}} AngularJS replaces it with the value of

the greeting property that has been set on the scope by the controller. The same

is true for the model now as well. Whatever you write inside {{}} resolves against

the controller's scope.

Using Built-in Filters

date: 'medium' is a built-in filter that formats a date object.

When you run the HTML in the browser you should see something like:

Hello, User! The current date/time is <current date & time here>.

Try Out Code Snippets Quickly

To try these small code snippets you don't always need to open up your editor

and start the server. Here's a simple trick. To try out the above code, open up ht-

tp://plnkr.co/edit/ in your browser. On the top select New->AngularJS->An-

gularJS 1.2.x. This will create an AngularJS project for you. Copy and paste our

controller definition to app.js in the left sidebar. Paste the HTML into index.html

in the left sidebar. To view the output click on the Live Preview (a tiny eye icon)

AngularJS: Novice to Ninja32

www.it-ebooks.info

http://www.it-ebooks.info/


on the right sidebar. Now whenever you make any changes to the source the output

will automatically refresh.

Adding Logic to the Controller
Apart from handling user inputs and setting scope models, a controller often sets

functions to the $scope. These functions perform some kind of logic and often in-

teract with services that encapsulate business data of the app.

To understand this, let's add a function to the $scope that returns the greeting text

hello in a random language. Here's how we modify our controller definition:

angular.module('myApp', []).controller('GreetingController'
➥, function($scope) {
  $scope.now = new Date();
  $scope.helloMessages = ['Hello', 'Bonjour', 'Hola', 'Ciao', 
➥'Hallo'];
  $scope.greeting = $scope.helloMessages[0];
  $scope.getRandomHelloMessage = function() {
    $scope.greeting = $scope.helloMessages[parseInt((Math.random() 
➥* $scope.helloMessages.length))];
  }
});

Here, we added a model helloMessages to $scope, which is an array of strings.

This represents the text hello in five different languages. We also set a function

getRandomHelloMessage() on the $scope that selects a message randomly and sets

the value to scope model greeting. As a result of data binding when

$scope.greeting is updated the expression {{greeting}} changes in the view.

Now, the corresponding view would be:

<!DOCTYPE html>
<html ng-app="myApp">

<head>
  <script type='text/javascript' src="https://ajax.googleapis.com/
➥ajax/libs/angularjs/1.2.16/angular.js"></script>
  <script src="app.js"></script>
</head>

<body ng-controller="GreetingController">

33Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


  {{greeting}} User! The current date/time is <span>{{now | date: 
➥'medium'}}</span>.
  <br/>
  <button ng-click="getRandomHelloMessage()">Random Hello Message
➥</button>

</body>

</html>

Here, we added an HTML button which responds to the click event by calling the

function getRandomHelloMessage() on the controller's scope. This method, in turn,

changes the value of the greeting model and, consequently, the change is reflected

in the view.

Admittedly, this example is very simple. But we've learned the basics of a controller

and how it should be used. Now let's discuss what a controller should not do:

■ No DOM manipulation. This should be done in directives.

■ Don't format model values in controllers. Filters exist for this purpose. We have

already seen filters in action with the built-in date filter.

■ Don't write repeatable code in controllers. Rather encapsulate them in services.

For example, you might need to fetch some data from server at multiple places.

So, instead of repeating that code in the controllers, you should wrap the code

in a service and inject it to the controllers when required. After all the controller's

task is handling user inputs, setting properties/functions to $scope and interact

with services to perform the business logic.

Controllers should be used to:

■ Set the initial state of a scope by attaching models to it.

■ Set functions on the scope that perform some tasks.

Naming Controllers

In many online resources you might encounter controller names that end with

Ctrl. I recommend that use a full name, like DemoController and not DemoCtrl.

This makes your code more readable.

AngularJS: Novice to Ninja34

www.it-ebooks.info

http://www.it-ebooks.info/


Adding Instance Functions and Properties to
Controllers
Although controllers usually set functions and properties to the scope, you can also

create instance functions and properties of the controller. Remember, AngularJS

instantiates your controller by calling the constructor function that you provide.

This means you have the freedom to create instance variables and functions. Let's

modify our previous controller to use instance variables instead of scope models.

Controller

angular.module('myApp', []).controller('GreetingController', 
➥function($scope) {
  this.now = new Date();
  this.helloMessages = ['Hello', 'Bonjour', 'Ola', 'Ciao', 'Hallo'];
  this.greeting = this.helloMessages[0];
  this.getRandomHelloMessage = function() {
    this.greeting = this.helloMessages[parseInt((Math.random() * 
➥this.helloMessages.length))];
  }
});

There's a small tweak in the view:

<!DOCTYPE html>
<html ng-app="myApp">

<head>
  <script type='text/javascript' src="https://ajax.googleapis.com/
➥ajax/libs/angularjs/1.2.16/angular.min.js"></script>
  <script src="app.js"></script>
</head>

<body ng-controller="GreetingController as greetingController">
  {{greetingController.greeting}} User! The current date/time is 
➥<span>{{greetingController.now | date: 'medium'}}</span>.
  <br/>
  <button ng-click="greetingController.getRandomHelloMessage()">
➥Random Hello Message</button>

35Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


</body>

</html>

The code GreetingController as greetingController does the trick. Here, the

as keyword sets the instance of GreetingController on the scope under the name

greetingController. So, the as keyword exposes our controller instance to the

view and, as a result, we can access its instance variables and methods through the

reference greetingController.

Not all developers favor this approach. Let's see what's good and what's bad about

the as keyword.

Cons:

■ Exposing the whole controller instance isn't a good idea in many cases. The

scope object exists for clear separation of concern between controller and view.

■ The approach is not mainstream and also leads to more typing.

Pros:

■ When controllers are nested and both inner and outer controller scopes have

models with the same names, the as keyword can really come in handy:

<div ng-controller='OuterController as outer'>
            <div ng-controller='InnerController as inner'<

          Outer={{outer.someModel}} and inner={{inner.someModel}}

Nesting Controllers

Controllers can be nested and in such cases the inner controller scope inherits

the outer controller scope (prototypal inheritance in effect). We'll discuss this in

more detail in the next chapter.

AngularJS: Novice to Ninja36

www.it-ebooks.info

http://www.it-ebooks.info/


Dependency Injection in Controllers With Minification
We have seen how to inject dependencies into controllers. AngularJS infers the

controller's dependencies from the names of the arguments to its constructor func-

tion. But if you minify the JavaScript while deploying, the argument names will be

shortened and as a result AngularJS will no longer be able to identify the depend-

encies. In that case you have two options to declare dependencies while still allowing

for minification. Let's examine each of them.

Firstly, you can set a property called $inject on the controller, which is an array

of dependencies:

function DemoController($rootScope,$scope,$http){

}

DemoController.$inject=['$rootScope','$scope','$http'];

angular.module('myApp',[]).controller('DemoController',
➥DemoController);

The $inject property declares dependencies of the controller in the order of argu-

ments to the constructor function.

This second option is more popular among developers. Instead of passing the con-

structor function as the second argument to the angular.controller() you can

pass an array. The array holds the names of dependencies, and the last item in the

array is the controller's constructor function. Here is how we do it:

angular.module('myApp',[]).controller('DemoController',['$rootScope'
➥,'$scope','$http',function($rootScope,$scope,$http){

 }]);

As you'll appreciate, the above code is pretty straightforward. The dependencies

are injected into the constructor function in the order they are declared in the array.

Both these methods achieve same thing. The first approach is a little longer while

the second is inline and shorter. Also in case of the second approach, the parameters

lists are close to each other. As a result, if you need to change something, you have

37Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


a single place to edit. You can even align both of the parameter lists into two sub-

sequent lines so that you can see whether they match each other or not.

Overview of Two-Way Data Binding
Now that you are aware of modules and controllers, it's time to move forward a bit

and explore one of the most important and fundamental features of AngularJS—the

two-way data binding. Although this section just gives an overview of data binding,

it's vital you nail this in order to understand the more advanced stuff coming in

Chapter 3.

What Is Data Binding?
Data binding is the automatic synchronization of data between view and the model.

When we say two-way, we mean the synchronization process works both ways. In

AngularJS, we create models and set them on the scope object. Then we tie our UI

components with these models. This establishes a two-way binding between our

view (HTML) components and the model data. Whenever the model data changes,

the view updates itself to reflect the change. On the other hand, when the value of

the view component changes the model is also updated.

If you are from a Flex/ActionScript background you have probably used this kind

of data binding almost every day. But this kind of feature is new in HTML. It lets

you treat the model data as the single source of truth, which, in turn, frees you from

programmatically manipulating the DOM. AngularJS guarantees that your view is

always stays updated with the latest model data. So, you just change the data and

your view is updated automatically without any extra effort. In other words, there's

no need for innerHTML. But you can also certainly update the DOM manually in

AngularJS if you wish to.

Two-Way Binding in AngularJS
The following example shows basic two-way data binding in action. For the sake

of simplicity, I am bypassing the controller. Let's just focus on the data binding.

<!doctype html>
<html lang="en" ng-app>
<head>

AngularJS: Novice to Ninja38

www.it-ebooks.info

http://www.it-ebooks.info/


  <meta charset="utf-8">
  <title>Two way data binding</title>
</head>
<body ng-init="name='AngularJS'">

  <input type="text" ng-model="name"/>

  <div><h2>Hello, {{name}}</div>

  <script src="lib/angular/angular.js"></script>
</body>
</html>

What's the ng- Prefix?

The ng- prefixed attributes carry special meaning in AngularJS apps. Technically

we call them directives. For the time being just treat them as attributes (and ele-

ments) that trick HTML into doing amazing stuff.

If you run the above code, you'll see that whenever the value in the input field

changes the <div> is updated automatically. Well, let's see what happens step by

step:

1. First the ng-app directive bootstraps the application. We don't have a module,

so we just write ng-app without specifying any values. One thing to note is that

whenever AngularJS encounters ng-app it creates a root scope for your HTML

page. Again, the scope is a place where we store our model data so that they are

accessible by the view.

2. Next, ng-init directive creates a model called name and keeps it in the root scope.

The model is initialized with the value AngularJS.

3. We have attached the ng-model directive to our input element. This is the basis

of two-way binding. Whenever you type something into the input field, the scope

model name gets updated automatically. So, you don't have to manually write a

keyup handler for the input field and update the model.

4. {{name}} is known as an expression which binds model data to view unidirec-

tionally. This is the second part of two-way data binding. Expressions watch for

the scope model value and update the DOM whenever the value changes.

39Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


5. So, whenever we type into input field the scope model name changes. As we

also have an expression {{name}} in our view, it updates itself whenever the

name property changes.

Be Careful Where You Put Your Models

The above example code is placing the namemodel in the root scope, which would

certainly not be desirable in most real world apps. Ideally you would want to put

these models in a controller scope.

Doing Something Cool
The power of data binding becomes obvious when things get a little complex. So,

let's do something cool! Let's say you have been given the following task:

1. Provide an input field for the users to type their Facebook ID.

2. As soon as the user is done typing, display the corresponding Facebook profile

picture.

The only constraint is wanting to minimize the number of lines of code. The first

option is to use plain JavaScript (or you could use jQuery for this). So, fire up your

editor, write down some JavaScript for this functionality and then get back here.

But let me give you a clue ― the following URL returns the profile picture for a

particular Facebook ID: https://graph.facebook.com/[id here]/pic-

ture?type=normal.

The plain JavaScript way:

<!doctype html>
<html lang="en">
<head>
  <meta charset="utf-8">
  <title>The Plain JS Way</title>
  <script type="text/javascript">
    document.addEventListener('DOMContentLoaded', function(e) {
      document.getElementById('fbID').addEventListener('keyup', 
➥function(event) {
        var fbID = document.getElementById('fbID').value;
        var pictureURL = 'https://graph.facebook.com/' + fbID 
➥+ '/picture?type=normal';

AngularJS: Novice to Ninja40

www.it-ebooks.info

http://www.it-ebooks.info/


        document.getElementById('profilePic').src = pictureURL;
      });
    });
  </script>
</head>

<body>
  <input type="text" id="fbID" />
  <br/>
  <span><img src="" title="fb image" id="profilePic"/></span>
</body>
</html>

With two-way data binding in AngularJS:

<!doctype html>
<html lang="en" ng-app>

<head>
  <meta charset="utf-8">
  <title>Two way data binding</title>
</head>

<body ng-init="fbID='sandeep.panda92'">
  <input type="text" ng-model="fbID" />
  <br/>
  <span><img ng-src="https://graph.facebook.com/{{fbID}}
➥/picture?type=normal"/></span>
  <script src="lib/angular/angular.js"></script>
</body>
</html>

As you can see the Angular version is quite a lot more compact. So how did that

happen? The two-way data binding has just started showing its power. Let's under-

stand what's happening behind the scenes:

1. When we type into the input field, the model fbID gets updated, thanks to ng-

model.

2. As we are using expression {{fbID}} in our view, whenever the model fbID is

updated the expression updates itself, which results in a new image.

41Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


The most important thing about the AngularJS approach is that our code size de-

creased drastically. We even coded the feature with no JavaScript. This is the power

of Declarative Binding. You can describe a particular scenario in your view by

binding different UI components with different scope models. If some part of your

view needs to be updated you just need to change the model. Also it enables you

to express what data is loaded for a particular component and not how. If other

developers just look at your code they can easily infer the flow of the application.

So, rather than relying on JavaScript to control the program flow we are utilizing

HTML's great declarative nature to express our app.

Using ng-src

You may have noticed that we used a directive called ng-src instead of src.

We're doing that because if we just use src, the browser will start fetching the

URL in raw format before AngularJS replaces the expression {{fbID}} with its

actual value. This is obviously going to result in a 404. ng-src is used to prevent

this.

UI Updates

Two-way data binding is definitely a big deal in AngularJS. We have seen just

basic two-way data binding so far. But beware—there are pitfalls. Sometimes just

changing a model's value doesn't update the UI. We need to use some special

tricks in those cases which will be explored in next chapter.

To summarize, here is what the two-way data binding feature has to offer:

1. Keeps the view and model data in sync in both directions.

2. Provides a great declarative binding syntax to express what our app does.

3. Frees us from the tedious DOM manipulation, which is hard to test and debug.

4. Saves time by reducing the code size significantly.

Introducing Our Demo Application
Learning a technology without practice is not the ninja way! I want to make sure

whatever you learn in each chapter you implement right away. Practice will give

AngularJS: Novice to Ninja42

www.it-ebooks.info

http://www.it-ebooks.info/


you confidence to work with large scale AngularJS apps in real world. So, we'll

start building a demo app and keep adding features to it as we progress. Let's take

a look at our sample app.

The Single Page Blogger
We are going to develop a simple blogging solution for all Single Page App (SPA)

lovers. Imagine you have a powerful blogging system where a single page is in charge

of loading various types of content into it. Here is an overview of the app:

■ The home page displays all the blog posts. This includes the post title, author

name and publication date.

■ When a single blog entry is clicked the actual post content is loaded into the

page asynchronously. This won't trigger a full page reload.

■ There is an Admin Panel where the admin can perform CRUD operations.

So, these are the absolute basic features of the app. As we move forward in the book

we will add more exciting features to it such as a comment system, authentication

and authorization, Facebook/Twitter login etc.

Getting Ready
To start, let's modularize our code in terms of features—something we discussed

earlier in this chapter. We have already seen how to tweak the Angular Seed project

to introduce this pattern. So, what we need to do is separate this new project from

Angular Seed and create a slightly different project structure. Only the directory

structure under app needs to change. Everything else is untouched. I have shared

the new directory structure, which you can download and get started on right away.

Have a look at the screenshot shown in Figure 2.1 to see what's changed.

43Modules, Controllers & Data Binding

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 2.1. The file structure of our app

I have added a single module called posts to this app, which is empty right now.

After you download the zip, you can explore the directory structure and check out

the module. We'll resume developing this app in Chapter 05.

Conclusion
Every ninja developer loves super powers. Now you've got not just one but three:

Modules, Controllers and Data Binding. I'm sure they'll help you tremendously

throughout your AngularJS journey. The next chapter will take you a little further

towards something new and exciting. But in the meantime you can try out some

really cool tricks with data binding and impress your friends!

AngularJS: Novice to Ninja44

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter3
AngularJS Scope & Events

Scope Demystified
You have been listening me talk about scopes from the beginning of the book. But

now (drum roll, please!) we're going to demystify the AngularJS scope.

Essentially, a scope is nothing but a plain old JavaScript object, and that is just a

container for key/value pairs, as follows:

var myObject={name:'AngularJS', creator:'Misko'}

A scope—like other objects—can have properties and functions attached to it. The

only difference is that we don't usually construct a scope object manually. Rather,

AngularJS automatically creates and injects one for us.

In the Angular world, a scope object is useful for holding model values, which are

presented by the view. In our previous example, we attached properties to the scope

inside the controller: ($scope.greeting='Hello'). We did that so that the attached

properties could be presented in the view through an expression: ({{greeting}}).

www.it-ebooks.info

http://www.it-ebooks.info/


Every AngularJS application has at least one scope called $rootScope. This is created

as a result of attaching the ng-app directive to any HTML element. In other words,

when your AngularJS app bootstraps your app it creates a $rootScope for you. Next,

when you attach ng-controller to any element, it creates a new child scope, which

prototypally inherits from the $rootScope. Further, you can nest scopes by using

an ng-controller directive inside another ng-controller. Have a look at the fol-

lowing snippet:

<div ng-app> <!-- creates a $rootScope -->
    <div ng-controller="OuterController"> <!--creates a scope 
➥(call it scope 1) that inherits from $rootScope-->
        <div ng-controller="InnerController"> <!-- Creates a child 
➥scope (call it scope 2) that inherits from scope 1
        </div>
    </div>
</div>

$rootScope is the parent of all scopes (except for isolated scopes, which we'll see

later on). As a result, all the properties attached to $rootScope are implicitly

available to scope 1. Similarly, scope 2 has access to all the properties attached

to scope 1.

If you examine the above code closely, you'll find that scopes are nested in a manner

that resembles the nesting of the DOM elements with which these scopes are asso-

ciated. The most important thing about AngularJS scope inheritance is that scopes

inherit each other prototypally. JavaScript, unlike many other programming lan-

guages such as Java, C++, C# etc., does not support traditional inheritance. It takes

a different approach to keep things simple and make it easy to use. Every JavaScript

constructor function has a property called prototype which points to an object.

When you access a property on an object (someObject.someProperty) JavaScript

searches for the property in that object. If it's found, it is returned. If not, then

JavaScript starts searching for the property in the object's prototype. The prototype

property is nothing but another object. Again, if the searched property is found in

the prototype it's returned. If it's not found, then the search continues upwards in

the prototype chain until the property is found or Object.prototype is reached.

The following example will give an idea about prototypal inheritance.

AngularJS: Novice to Ninja46

www.it-ebooks.info

http://www.it-ebooks.info/


function Car(color,steering){
  this.color=color;
  this.steering=steering;
}

Car.prototype.year=2012; // Car is a functional object, so it has 
➥the `prototype` property

var car=new Car('red','left');

console.log(car.color); // prints color from car

console.log(car.year); //prints year from Car.prototype

console.log(car.hasOwnProperty('year')); //returns false

As you can see, the property color was found on the car object and thus it was re-

turned. But there is no property called year in car. So, JavaScript searches for the

property in Car.prototype, which is found and returned. So, whatever property

you set to the constructor's prototype will be shared across all the instances of it.

The __proto__ Internal Property

The prototype property is only present in constructor functions. For example,

Car has a prototype property while the object constructed from Car (that is to

say, car) has an internal property called __proto__ which holds its prototype.

var car=new Car('red','left'); // 
➥sets car.__proto__=Car.prototype

But beware, IE doesn't use __proto__ as the name of this internal property.

ECMA5cript introduced a function Object.getPrototypeOf(objectName),

which can be treated as a standard way to retrieve the internal __proto__.

Writing Access with Prototypes
Things get a little bit more interesting when we discuss writing values to objects.

Let's take a look at two example cases.

47AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


Writing a Primitive to an Object
Our object car does not have a property year, but Car.prototype does. When you

try to read car.year you get the value from Car.prototype. But you can also attach

the property year to car, like this:

car.year=2000 //sets property 'year' on car
console.log(car.year); // returns 'year' property from car and NOT 
➥from Car.prototype
console.log(car.hasOwnProperty('year')); //returns true as car has 
➥'year' propery

When you attach a new property to an object the property is attached to it and not

the prototype. Subsequently when you access the property, JavaScript no longer

consults the prototype because the property is found right there in the object itself.

Writing a Reference Type to an Object
Let's attach an object called data to Car.prototype:

Car.prototype.data={}; //set it to empty object

Now have a look at the following code:

car.data.engine='rear'; //This does not create a new property 
➥called 'data' on car object
console.log(car.data.engine); //returns 'rear' and it comes from 
➥Car.prototype
console.log(car.hasOwnProperty('data')); // false, as car 
➥doesn't have own property 'data'
Car.prototype.hasOwnProperty('data'); // 'data' property is 
➥created in prototype.

So, when you write a reference type to an object such as data.engine, JavaScript

goes to the prototype, which is Car.prototype in this case, and checks if there's a

property called data. If so, then it creates a new property in Car.prototype.data.

Objects Can Extend Objects
Objects can extend other objects in JavaScript, and this is the key to understanding

AngularJS scope inheritance. Have a look at the following snippet:

AngularJS: Novice to Ninja48

www.it-ebooks.info

http://www.it-ebooks.info/


var ferrari=Object.create(car);
console.log(Object.getPrototypeOf(ferrari)); //Car {}

Object.create() creates a new object whose internal __proto__ property points

to the object specified as the first argument to the function. As a result the ferrari

object's __proto__ now points to car object. So, ferrari has all the properties

defined in the car instance.

That was just a quick overview of prototypal inheritance. Now let's see how Angu-

larJS utilizes this in scope inheritance.

Prototypal Inheritance in AngularJS Scopes
The $rootScope object has a function called $new() that's used to create child

scopes. Let's consider the previous example where we nested two controllers and

had one $rootScope. The code is repeated below:

<div ng-app> <!-- creates a $rootScope -->
        <div ng-controller="OuterController"> <!--creates a scope 
➥(call it scope 1) that inherits from $rootScope-->
            <div ng-controller="InnerController"> <!-- Creates a 
➥child scope (call it scope 2) that inherits from scope 1
            </div>
        </div>
</div>

Here is how AngularJS handles scope hierarchies:

1. AngularJS finds ng-app and therefore creates a $rootScope object.

2. It encounters ng-controller and finds that it points to OuterController. So, it

calls $rootScope.$new(), which creates a child scope(let's call it $scope1) that

prototypally inherits from $rootScope. At this point the prototype (__proto__)

of child scope $scope1 points to $rootScope. So anything attached to $rootScope

is available in $child1. If the OuterController declares a dependency by adding

a parameter $scope to the declaration of the constructor function, AngularJS calls

it with the newly created scope $child1 as an argument.

3. Next, while traversing the DOM, AngularJS encounters another ng-controller

directive which points to InnerController. Now, it creates another child scope

49AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


that prototypally inherits from $scope2. As before, calling $new() on $scope1

creates this child scope $scope2. The result of this inheritance is that $scope2

has access to all the properties defined by $scope1.

The figure in Figure 3.1, taken from the AngularJS GitHub page, depicts how scopes

inherit each other.

Figure 3.1. Inheritance in scopes

The inner scope always has access to the properties defined by the outer example.

Apart from controllers, directives may also create child scopes. Some directives

simply use the parent scope without creating a child. And some other directives

create isolated scopes that don't inherit from any parent scope and exist on their

own. We will discuss isolated scopes in the directives chapter.

To reinforce the above concepts let's create a sample app. We'll create an app that

lists three books published by SitePoint. Using the Angular Seed project, follow

these steps to create the app:

1. Create the module myApp. This will go into app/js/app.js.

'use strict';

angular.module('myApp', [

AngularJS: Novice to Ninja50

www.it-ebooks.info

http://www.it-ebooks.info/


  'myApp.controllers'
]);

angular.module('myApp').run(function($rootScope){
    $rootScope.title='Famous Books';
    $rootScope.name="Root Scope";
});

2. Create the required controllers in app/js/controllers.js.

angular.module('myApp.controllers',[]).controller('SiteController'
➥, function($scope){
  $scope.publisher='SitePoint';
  $scope.type="Web Development";
  $scope.name="Scope for SiteController";
});

angular.module('myApp.controllers').controller('BookController'
➥, function($scope){
  $scope.books = ['Jump Start HTML5','Jump Start CSS','Jump Start 
➥Responsive Web Design'];
  $scope.name="Scope for BookController";
});

3. Create the view. Name it scopes.html and this will be directly under app.

<!DOCTYPE html>
<html ng-app="myApp">
<head>
  <meta charset="utf-8" />
  <title ng-bind="title"></title>
</head>

<body ng-controller="SiteController">
  <span>{{publisher}} excels in {{type}} books</span>
  <div ng-controller="BookController">
    <h3>Some of the popular books from {{publisher}}</h3>
    <ul>
      <li ng-repeat="book in books">
        {{book}}
      </li>
    </ul>

51AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


  </div>
</body>
  <script src="lib/angular/angular.js"></script>
  <script src="js/app.js"></script>
  <script src="js/controllers.js"></script>
</html>

In the above code, the callback passed to angular.module('myApp').run() gets

called when all the modules are loaded. Inside this we are setting a model title

on $rootScope. This is our page's title. The second one name is just used to identify

the scope. We also have two controllers: SiteController and BookController and

the latter is nested inside the former within the HTML.

Now let's visualize the scope hierarchy. Have you installed Angular Batarang yet?

You'll need it to visualize the scope hierarchy, so if you've yet to install it, now's

the time.

Now run the server by the command: node scripts/web-server.js. Once the

server is up open the browser and go to http://localhost:8000/app/scopes.html.

Bring up the Developer Tools and in the last tab you'll find AngularJS. Just enable it

and refresh the page. Now you should see something like Figure 3.2, which depicts

the scope hierarchies!

Figure 3.2. A depiction of scope hierarchies

AngularJS: Novice to Ninja52

www.it-ebooks.info

http://www.it-ebooks.info/


As you can see Scope (002) is the root scope ($rootScope). Scope (003) is the

scope for controller SiteController which prototypally inherits the $rootScope.

Scope (004) is the scope for BookController which prototypally inherits from its

parent Scope (003).

ng-repeat is a directive and, as the name suggests, it repeats an element multiple

times. Here, for each book in model books the <li> is repeated and each <li> is

linked with a different scope. Here, we have three such scopes named Scope (005),

Scope (006), Scope (007). All these are siblings and prototypally inherit from

Scope (004) Although the scopes are different the model name remains same i.e.

book. The expression {{book}} in the HTML is repeated three times and, each time

it's evaluated against three different scopes. That's why the result is different. So,

an AngularJS scope is a context against which expressions are evaluated.

A model without an execution context is useless. Have a look at the view. We simply

write model names in expressions like {{book}} and {{publisher}}. But AngularJS

evaluates them against the correct context. When AngularJS sees {{publisher}} it

evaluates this against the scope created for SiteController. You can also see that

there's one more {{publisher}} expression in the markup under BookController

scope. Still, we can see the value because this scope inherits from the SiteControl-

ler scope and the models set on this scope are available in the child scopes.

Using ng-blind

What's the ng-bind directive doing here? Writing <title ng-

bind="title"></title> is same as writing <title>{{title}}</title>

with one small difference. If you use the later one, by the time AngularJS replaces

the expression {{title}} with the actual model value, the browser will have

displayed the raw text {{title}} for a fraction of second already. To prevent

that we can use ng-bind. In this case you pass a model name and the value is

'innerHTMLed' into the element on which the ng-bind directive is attached (in

this case <title>). There's also another AngularJS directive called ngCloak1,

which can be used to prevent the browser from temporarily displaying the raw

non-compiled HTML. Let's save its details for our directives chapter.

1 https://docs.angularjs.org/api/ng/directive/ngCloak

53AngularJS Scope & Events

www.it-ebooks.info

https://docs.angularjs.org/api/ng/directive/ngCloak
http://www.it-ebooks.info/


Advanced Scope Concepts
While we've discussed the basics of scopes, there are several advanced concepts

that'll give you superhero powers in the world of AngularJS. Let's explore those one

by one.

The Watchers in AngularJS
A watcher monitors model changes and takes action in response.

The $scope object has a function $watch() that's used to register a watcher. Let's

modify our previous snippet. We want to give users the ability to add a book to their

wish list. But once they add two books to their wish list we want to show a congrat-

ulatory message. So, we can keep a counter and, each time the user clicks on Add

to wishlist link, we will increment this counter by one. But how do we know

when the counter reaches two? This is where watchers help us. We can set up a

watcher on the counter model to notify us when the value changes. So, if its value

is two then we fire an alert. The modified HTML for this is shown below:

<body ng-controller="SiteController">
  <span>{{publisher}} excels in {{type}} books</span>
  <div ng-controller="BookController">
    <h3>Some of the popular books from {{publisher}}</h3>
    My Wish List Count: {{wishListCount}}
    <ul>
      <li ng-repeat="book in books">
         {{book}}. <a href="#" ng-click="addToWishList(book)">Add to 
➥Wish List</a>
      </li>
    </ul>
  </div>
</body>

Note that I'm only showing <body> for the sake of brevity. Then our controller

BookController can be modified as following:

angular.module('myApp.controllers').controller('BookController'
➥, function($scope) {
  $scope.books = ['Jump Start HTML5','Jump Start CSS','Jump Start 
➥Responsive Web Design'];
  $scope.name="Scope for BookController";

AngularJS: Novice to Ninja54

www.it-ebooks.info

http://www.it-ebooks.info/


  $scope.addToWishList=function(book){
      $scope.wishListCount++;
  };
  $scope.wishListCount=0;
  $scope.$watch('wishListCount',function(newValue,oldValue){
      console.log('called '+newValue+' times');
      if(newValue==2){
          alert('Great! You have 2 items in your wish list. Time to 
➥buy what you love. ');
      }
  });
});

We added a new model wishListCounter to the BookController scope. Each time

user clicks Add to wishlist link $scope.hide() gets called, incrementing the

model by one. Now let's get to the interesting part—setting up a watcher.

$scope.watcher() is what you need to do this. The first parameter is watchExpres-

sion.This can be the model under watch or a function. The second parameter is a

callback function that's called whenever AngularJS detects a change in the model

value or the return value of the passed function. This callback takes two parameters.

The first is the new value of the model, while the second is the old value. If you're

interested only in the new value you can skip the second parameter.

Now inside the watch callback (also called listener function) we check to see if the

newValue is two. If it is we show an alert. We also have a console.log() so we

can see how many times the listener function gets called.

The Listener is Called Immediately

When you load the page you'll find that the listener function is called immediately.

This may seem a little odd, but AngularJS executes the listener function as soon

as the watcher is registered. If you don't want this to happen, you can insert an

additional check to see if the newValue and oldValue are same. If that's the case,

then this will be the first time the listener is called as a part of initialization. You

can write something like this:

55AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


$scope.$watch('someModel',function(newValue,oldValue){
    if(newValue!=oldValue){
        //do something
    }
});

However, the second parameter to $watch() is optional. But, why would anyone

want to have a watcher without a listener? We'll discuss that in the next section.

The $watch() function also accepts an optional third parameter objectEquality.

In this case we're watching a simple String. But sometimes you may need to watch

an object for change. We want to be notified whenever any of the object's properties

changes. In that case the above code won't work because AngularJS will compare

the objects by reference. To make this work we can pass true as the third argument

to $watch() function. This will compare individual properties of the object under

watch and call our listener in case of mutation.

Unbinding a Watcher

The return value of $scope.$watch() is a function which can be used to unbind

the watcher when needed. This is important because it clears the memory alloted

to the watcher. So, after showing the alert if you want to unbind the watcher

you can utilize this return value. The corresponding code is:

var unbindWatcher=$scope.$watch('wishListCount',function
➥(newValue,oldValue){
          console.log('called '+newValue+' times');
          if(newValue==2){
              alert('Great! You have 2 items in your 
➥wish list. Time to buy what you love. ');
              unbindWatcher();
          }
});

The $watchCollection() Function
In many cases, instead of watching a simple value you may want to watch a collec-

tion of items, such as an array or an object. For that you need to use $watchCollec-

tion(). In case you are watching an array, your listener function will be called

AngularJS: Novice to Ninja56

www.it-ebooks.info

http://www.it-ebooks.info/


whenever a new item is added to the array or an existing one is removed, updated,

or reordered. In case of objects, the listener will be triggered if a new property is

added or an existing one is removed, updated, or reordered. Here is how you can

watch a collection:

$scope.$watchCollection('myCollection',function(newCollection,
➥oldCollection){
    //handle the change
    console.log(newCollection); //print new collection
});

This is not the end of watchers. To understand watchers fully you need to understand

two key AngularJS concepts: $digest() and $apply(). This is because these things

are interrelated, and to understand one fully you need to know about the others.

The $apply() Function and the $digest Loop
Let's take a look at a very simple AngularJS snippet where you start typing your

name into an input field. There is also a div that shows what you typed, in real

time:

<input id="input" type="text" ng-model="name"/>
<div id="output">{{name}}</div>

You already know what expressions like {{name}} do—they provide a unidirectional

binding from model to view. Whenever the name model changes the expression

automatically updates itself. Is some kind of magic behind this? No. It's done just

by setting up a watcher on the name model. The expressions are a special type of

directive that set up a watcher on models or functions—something we did in the

last section. But their purpose is to get notified when the value of the model changes

and update the DOM accordingly.

This is only half of the story, however. How does Angular know when a model

changes and calls its corresponding watcher? Does it run a function in an interval

to check if the model value has changed? If I make an AJAX call and update my

model with the response will Angular know about it?

An AngularJS $scope has a function called $apply() which takes a function as an

argument. AngularJS says that it'll know about model mutations only if that mutation

57AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


is done inside $apply(). So, you simply need to put the code that changes models

inside a function and call $scope.$apply(), passing that function as an argument.

After the $apply() function call ends, AngularJS knows that some model changes

might have occurred. It then starts a digest cycle by calling another function—$root-

Scope.$digest()―which propagates to all child scopes. In the digest cycle all the

watchers are called to check if the model value has changed. If a value has changed,

the corresponding listener function then gets called. Now it's up to the listener how

it handles the model changes. The watcher set up by an expression ({{}}) updates

the DOM with the new value of the model. In our previous example, we showed

an alert when the model reached a value of 2.

But what if the listener function of the watcher itself changes any model? How does

AngularJS account for that change? Actually, the digest cycle doesn't run only once

after the $apply() call. After calling the listener functions, the digest cycle starts

all over again and fires each watcher to check if any of the models have been mutated

in the last loop. If any change is found, the corresponding listener is called as usual

and, if none of the models have changed, the digest cycle ends. Otherwise, the digest

cycle continues to loop until no model changes have been detected or it hits the

maximum loop count of 10 (whichever comes first). The digest cycle will not run

more than 10 times. So, it's good to refrain from making model mutations in the

listener functions.

The $digest() cycle Always Runs at Least Twice

At a minimum the $digest() cycle runs twice even if there are no model mutation

in the listener functions. The cycle runs once more to make sure the models are

stable and no change has been made in last loop. This is called dirty checking.

If you want to get notified whenever $digest() is called, you can set up a watcher

without any listener function. The first and only argument to $scope.$watch()

should be the function whose return value you want to monitor. This function gets

called in every digest cycle. That is why the second argument to $watch() is option-

al.What you need to do is pass a simple function as the first argument to

$scope.$watch(), as shown below:

AngularJS: Novice to Ninja58

www.it-ebooks.info

http://www.it-ebooks.info/


$scope.$watch(function(){
  //do something here
  console.log('called in a digest cycle');
  return;
});

The function passed to $watch() gets called in each digest cycle. As you know digest

cycle continues to run (a maximum of 10 times, of course) until the scope models

stabilize. So, your function might get called multiple times in a digest cycle.

If the $apply() call is required to fire a digest cycle, how do directives like ng-

model and ng-click tell Angular about the model mutations? The answer is that,

internally, ng-click and ng-model wrap the code that changes the models inside

an $apply() call. As a result digest cycle runs and watchers are called as usual. So,

here's what happens when you write <input type="text" ng-model="name"/>:

1. The directive ng-model registers a keydown listener with the input field. When

the input field text changes a keydown event is fired and the corresponding

listener is called to handle it.

2. Inside the keydown listener the directive assigns the new value of input field to

the scope model specified in ng-model. In our case the model name is updated

with the new value. This code is wrapped inside $apply() call.

3. After $apply() ends the digest cycle starts in which the watchers are called. If

you have an expression {{name}} in the view it has already set up a watcher on

scope model name. So, in digest cycle this watcher gets called and the listener

function executes with the newValue and oldValue as arguments. The job of this

listener is to update the DOM with the newValue probably using innerHTML.

4. The overall result is that you see the {{name}} updated with whatever you type

into the input field instantly.

Using $apply()

Use $apply() when you want to make the transition from the non-AngularJS

world to the Angular world and need a way to say "Hey, Angular, I am mutating

some models, and now it's your job to fire the watchers!"

59AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


What about an AJAX call? If you make XHRs through Angular's built-in service

$http (which you will do 99% of the time) the model mutation code is implicitly

wrapped within the $apply() call, so you don't need any additional steps. But if,

for some reason, you're writing XHRs manually with plain JavaScript, you need to

mutate the models inside $apply().

$digest Gets Triggered Automatically

In most scenarios you don't need to call $digest() yourself. Calling $apply()

will automatically trigger a $digest on $rootScope which subsequently visits

all the child scopes calling the watchers.

It's Preferable to Call $apply with a Function as an Argument

You can call $scope.$apply() either with no arguments or a function as an ar-

gument. If a function (which changes models) is passed as an argument to $ap-

ply() it is evaluated and then $rootScope.$digest() is fired.

You can also change the models as usual and in the end just call $apply() to

trigger a $digest cycle. But the former method ($apply() with argument) is the

preferred approach and should always be used. This is because when you pass a

function to $apply() the code will be wrapped in try/catch and any exceptions

that occur will be passed to $exceptionHandler service.

You should also note that if you skip $apply() after changing some models, the

changes won't reflect in the view. The changes will be reflected only if $apply()

is called and $digest() runs.

$apply and $digest in Action
To see how $apply() is used in real world, let's create a very simple app that

schedules a function to run after three seconds. This function simply updates a

scope model and the view updates itself with the new model value. To do this we'll

make use of setTimeout(). Here's the code:

View

AngularJS: Novice to Ninja60

www.it-ebooks.info

http://www.it-ebooks.info/


<body ng-controller="TimeoutController">
  <button ng-click="scheduleTask()">Get Message after 3 seconds
➥</button>
  <br/>Message fetched: {{message}}
</body>

Controller

angular.module('myApp',[]).controller('TimeoutController', 
➥function($scope) {

  $scope.scheduleTask = function() {
    setTimeout(function() {
      $scope.message = 'Fetched after 3 seconds';
      console.log('message='+$scope.message); //log this to console
    }, 3000);
  }

});

So, when you click on the button in the view, $scope.scheduleTask() runs which,

in turn, uses setTimeout to run a function after a three-second delay. This function,

when executed, updates our $scope.messgae model.

But if you run the above snippet and click on the button you won't see the view

update itself after three seconds. However, in the console you can find the logged

message. So, we're sure that the function was called and updated our model. But

the view didn't update itself. The reason is that—and here's the 'aha moment'— we

didn't wrap our code inside $apply(). So, you need to make the following modific-

ation in the code to get it working:

$scope.scheduleTask = function() {
  setTimeout(function() {
    $scope.$apply(function() { // wrapped the code in $apply()
      $scope.message = 'Fetched after 3 seconds'; 
➥//will reflect in view
      console.log('message=' + $scope.message);

61AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


    });
  }, 3000);
}

As you can see we have wrapped our code inside $apply() so that a $digest()

cycle starts, the watchers are fired and our view is updated. Now if you click the

button the delayed function runs and view displays the message as expected.

Introducing the $timeout Service
It's interesting to note that AngularJS supplies a built-in service called $timeout

which delays the execution of a function by a given interval and automatically

wraps your code inside $apply() so that you don't have to do it manually. Here's

the example modified to take advantage of $timeout:

angular.module('myApp',[]).controller('TimeoutController'
➥, function($scope, $timeout){

  $scope.fetchMessage = function() {
    $timeout(function() {
      $scope.message = 'Fetched after 3 seconds'; //just update. 
➥No need for $apply
      console.log('message=' + $scope.message);
    }, 3000);
  }

});

A few points to notice here:

■ Your controller should declare a dependency on $timeout service.

■ $timeout() takes a function as argument and delays its execution by specified

interval.

■ The function call is automatically wrapped inside $apply().

Now if you see this in browser and click the button, you will get the expected result.

AngularJS: Novice to Ninja62

www.it-ebooks.info

http://www.it-ebooks.info/


$scope.$$phase

There is an internal variable called $$phase set on the scope object whenever a

digest cycle is going on. It's worth you knowing that there is such a flag available

in the scope object. While it's good to know, however, in real-world apps and

following AngularJS best practices (and doing things the right way) you won't

need this variable. Don't use it in your code as it's an internal implementation

and isn't future safe. $$ prefixed variables are regarded as internal variables and

shouldn't be used in code.

Broadcasting & Emitting Events
One of the beautiful aspects of AngularJS scopes is the ability to broadcast events

and its handling of them. Some of your controllers might be waiting for some event

to occur such as waiting for particular data to be available from an AJAX request.

So, the controller that's responsible for obtaining the data can notify other controllers

that it's arrived and send the actual data, too. This is done by emitting or broadcast-

ing events. By doing this controllers up in the scope hierarchy or down in the scope

hierarchy can handle the event and do something meaningful.

AngularJS supports two types of event propagation:

1. Emitting the event upwards in the scope hierarchy.

2. Broadcasting the event downwards in the scope hierarchy.

Figure 3.3 depicts the propagation of events.

63AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 3.3. Propagation of events

Let's understand each of these.

$scope.$emit(name,args) For Emitting Events
The $scope has a function called $emit() that's used to emit an event upwards in

the scope hierarchy. The event life cycle starts with the scope on which $emit()

was called and is dispatched upwards in the scope hierarchy to all the registered

listeners. Also it's interesting that the $scope which emits the event receives a noti-

fication (via $on) when it's emitted.

The first parameter to the $emit() function is the name of the event that is being

emitted. The scopes that want to get notified when the event occurs should register

listeners for this event name. After the first parameter you can pass multiple para-

AngularJS: Novice to Ninja64

www.it-ebooks.info

http://www.it-ebooks.info/


meters to $emit(), which will be passed to the event listeners. Typically you pass

the data which should be shared with the listeners here.

$scope.$broadcast(name,args) For Broadcasting
Events
The $broadcast() function is the same as $emit() except the event propagates

downwards in the scope hierarchy to all the child scopes. The parameters list is

also same as that of $emit(). Like $emit, the $scope which broadcasts the event

also receives a notification (via $on) when it's broadcast.

$scope.$on(name,handlerFunction) For
Registering Listeners
The $on function registers event listeners that should be called when the event oc-

curs. The first parameter is the name of the event you are interested in. The second

parameter is a callback function which gets called when the event occurs. The

callback takes two parameters:

1. event: This is an event object which has several useful properties and functions

that give more information about the event. These are as follows:

■ name: The name of the event that's broadcasted or emitted.

■ targetScope: The scope that emitted/broadcasted the event.

■ currentScope: The scope that's handling the event.

■ stopPropagation: This is a function, which when called, stops further

propagation of the event. But keep in mind this is available only in the events

that were emitted. After an event is emitted, if a particular scope calls this

function the event propagation stops. However, once an event is broadcast it

can't be stopped. It's like this because the broadcast events can span across

multiple branches as a parent scope may have multiple child scopes. So, if

a scope in a particular branch stops the event it will still keep propagating in

other branches. But in case of $emit the event propagates from child to parent

and if it's stopped somewhere in between, it stops propagating further right

there.

65AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


2. args: One or more arguments that represent the data that was emitted/broadcast

as a part of the event.

Events in Action
Let's create a small app to demonstrate the usage of events. Suppose we have an

app that generates a random message every three seconds. The app is divided into

two sections: Messages and Stats. The messages section shows all the retrieved

messages while the stats section shows the number of messages retrieved and con-

nection status. If for some reason our app is unable to fetch a message we should

notify the stats section about this. The stats section will then update the status to

Not Connected. Let's create two controllers: MessageController and StatsControl-

ler. The two controllers are nested in HTML so that the MessageController scope

is the parent of StatsController scope. Note that I'm using the Angular Seed

structure here, so be sure to put each file in its proper place.

app.js (app/js/app.js):

angular.module('myApp', [
  'myApp.controllers'
]);

controllers.js (app/js/controllers.js):

angular.module('myApp.controllers', []);

angular.module('myApp.controllers').controller('MessageController'
➥, function($scope, $timeout) {
  $scope.messages = [{
    sender: 'user1',
    text: 'Message1'
  }];
  var timer;
  var count=0;
  $scope.loadMessages = function() {
    count++;
    $scope.messages.push({
      sender: 'user1',
      text: 'Random message'+count
    });
    timer=$timeout($scope.loadMessages, 2000);

AngularJS: Novice to Ninja66

www.it-ebooks.info

http://www.it-ebooks.info/


    if(count==3){
        $scope.$broadcast('EVENT_NO_DATA', 'Not Connected');
        $timeout.cancel(timer);
    }
  };
  timer=$timeout($scope.loadMessages, 2000);
  $scope.$on('EVENT_RECEIVED',function(){
    console.log('Received emitted event');
  });
});

angular.module('myApp.controllers').controller('StatsController'
➥, function($scope) {
  $scope.name = 'World';
  $scope.status = 'Connected';
  $scope.statusColor='green';
  $scope.$on('EVENT_NO_DATA', function(event, data) {
    console.log('received broadcasted event');
    $scope.status = data;
    $scope.statusColor='red';
    $scope.$emit('EVENT_RECEIVED');
  });
});

events.html (put it under app):

<!DOCTYPE html>
<html ng-app="myApp">

<head>
  <meta charset="utf-8" />
  <title>AngularJS Events</title>
</head>

<body>
  <div ng-controller="MessageController">
    <h4>Messages:</h4>
    <ul>
      <li ng-repeat="message in messages">
        {{message.text}}
      </li>
    </ul>
    <div ng-controller="StatsController">
      <h4>Stats:</h4>

67AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


      <div>{{messages.length}} Message(s)</div>
      <div>Status: <span style="color:{{statusColor}}">{{status}}
➥</span>
      </div>
    </div>
  </div>
</body>
<script src="lib/angular/angular.js"></script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
</html>

Now if you start the server and run http://localhost:8000/app/events.html you

can see that a message is generated every three seconds. Just after the third message

is fetched we simulate a connection failure.

Here's how we designed it:

1. First we create MessageController which sets an array of messages on its scope.

It declares a dependency on Angular's built in $timeout service. This service

delays the execution of code. So, to simulate message fetching every three seconds

we use $timeout here.

2. The var count is used to track how many times we have fetched messages. After

the third message, we simulate a connection failure and need to signal this to

StatsController.

3. The StatsController scope is the child of MessageController scope. So, we

need to broadcast an event from the parent MessageController (broadcast=parent-

to-child). We use $scope.$broadcast() for this.

4. In StatsController we handle the event by registering a listener through

$scope.$on(). In the handler we update the connection status from connected

to Not Connected and the color from green to red.

5. Also in the event handler we emit an event to signify that we received the con-

nection failure event. We do this by calling $scope.$emit() (emit=child-to-par-

ent). In the MessageController we are listening for this event by calling

$scope.$on().

Check your browser's console to see the log messages.

AngularJS: Novice to Ninja68

www.it-ebooks.info

http://www.it-ebooks.info/


Using $rootScope

What if StatsController scope were not the child of MessageController

scope? What if both of the controllers were siblings? How would you design this

app? In this case, we'd need to use the help of $rootScope. Inject $rootScope

in both the controllers and when you want to send an event use $root-

Scope.$broadcast(). Since both the controller scopes are the children of

$rootScope, if you broadcast an event from $rootScope both of the child scopes

can listen to it by registering listeners (employing the usual $scope.$on() way)

$rootScope Can Be Treated As a Central Message Bus

The $rootScope can be treated as a central message bus that can be used to notify

all the child scopes. So, if there is an event that affects all the child scopes, you

can broadcast the event on $rootScope and then let the children handle the

event.

The $destroy event
When a scope is being destroyed a $destroy event is broadcast on the scope. You

can listen for this event and perform any necessary cleanups. For example, if you

have a timer (just as in above example) from the $timeout service you can cancel

it so that it won't consume CPU cycles unnecessarily. You can also use this to cancel

the watchers and any custom event listeners you set up earlier. When a scope is

getting destroyed it also means that any digest cycle won't touch this and its child

scopes anymore. As a result, the scope becomes eligible for garbage collection and

the memory can be reclaimed.

The following snippet shows how to do this:

$scope.$on('$destroy',function(){
    //clean up code
});

Conclusion
So, we've reached the end of AngularJS scope and events. This was an important

chapter and covered some of the core concepts of AngularJS. Here are some bullet

points that summarize what we've learned so far.

69AngularJS Scope & Events

www.it-ebooks.info

http://www.it-ebooks.info/


■ AngularJS scopes are plain old JavaScript objects where you can attach properties

and functions.

■ Scopes can be nested and prototypally inherit each other.

■ Every app has one $rootScope which is at the root of scope hierarchy.

■ You can get notified when a scope model changes by setting up a watcher on it.

■ All the watchers that have been setup will be fired in each digest cycle.

■ A digest cycle will continue to run until there are no model changes or it hits

max loop count of 10.

■ A call to $apply() automatically triggers a $digest cycle.

■ When you change a model outside AngularJS context and want that change to

reflect in your views wrap your code inside $apply().

■ Events can be used to notify different parts of your app when something happens.

■ $scope.$emit() is used to propagate an event from child scope to parent scope

upwards in the scope hierarchy.

■ $scope.$broadcast() is used to propagate an event from parent scope to child

scope downwards in the scope hierarchy.

■ $scope.$on() is used to register an event listener that will be notified when the

event occurs.

■ $destroy event is fired when a scope is being destroyed and allows you to per-

form any final clean ups like clearing timeouts, de-registering watchers and event

listeners etc.

AngularJS: Novice to Ninja70

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter4
Multiple Views and Routing
By now you're about a quarter of the way to becoming an AngularJS ninja! You've

mastered the basic AngularJS concepts (you probably see data binding in your

dreams). But now is the time to take your skills to a whole new level with AngularJS

routing. Every web app you'll build in future will have different views associated

with it. For example, our blogging app has a view to display all the blog posts, and

another view to display individual blog posts. Similarly, there can be separate views

for different CRUD operations. As we're developing Single Page Apps, it's important

to map each route to a particular view. This logically divides your app into manage-

able parts and keeps it maintainable. Fortunately, AngularJS provides excellent

support for multiple views and routing via its routing API. Let's dive into it!

AngularJS's routing API enables us to map URLs within our application with spe-

cific functionalities. This is typically done by associating a template and controller

with a particular URL. So, we can say that each AngularJS route is composed of a

URL, a template, and a controller. When someone first lands on our web page, it's

a full-page load. Subsequently, when the user clicks a link and navigates to a different

URL, the route changes and content of the route are dynamically loaded into the

page via an AJAX call.

www.it-ebooks.info

http://www.it-ebooks.info/


The benefit of this approach is that it results in much less network traffic. In a typ-

ical web app, we'd load each page fully with each request, serving loads of repetitive

content such as headers and footers multiple times in the process. But when you

use multiple views and routing there's no repetitive content since the headers,

footers, sidebars etc. are only served as a part of the first request. All subsequent

requests simply update specific elements of your page. As you might expect, this

leads to faster rendering of the views.

Creating Multiple Views
Views in your app are regular HTML files. As a result, we need to create a separate

HTML file for each view. The next step is to tell AngularJS which view to use for

which route. Assuming we have two views: partials/view1.html and partials/view2.html,

the syntax to configure the routes is as follows:

angular.module('myApp').config(function($routeProvider) {
  $routeProvider.when('/view1', {
    controller: 'Controller1',
    templateUrl: 'partials/view1.html',
  }).when('/view2', {
    controller: 'Controller2',
    templateUrl: 'partials/view2.html',
  });
});

These Views are Just Partials

Please note that the views view1.html and view2.html are not complete HTML

files—they're just partials.

angular.module() has a function config(), which lets us configure a module. We

inject $routeProvider as an argument to the function. This is, in fact, a built-in

AngularJS object. When you declare a function with the parameter $routeProvider,

AngularJS automatically injects a $routeProvider object while calling it—this is

another example of Dependency Injection in action.

Now, the when() function of $routeProvider can be used to configure your routes.

This particular function takes two parameters: The first parameter is the route name,

and is a string representing the route; the second parameter is the route definition

AngularJS: Novice to Ninja72

www.it-ebooks.info

http://www.it-ebooks.info/


object. This is an object representing various details for a route. As a beginner you'll

most commonly use the following two properties:

■ controller: The controller which will be associated with the view. After all,

we need a scope against which the template will be compiled.

■ templateUrl: The HTML template to be used.

Here, you should note that the controller parameter is actually optional. You can

either define the controller at route level as we are already doing or just use it in

the template through ng-controller.

Also you should note that $routeProvider.when() adds a new mapping and returns

the same $routeProvider instance. So, you can chain these function calls to add

multiple mappings just as we did above.

ngRoute is Not Included by Default

The $routeProvider is defined in a module called ngRoutewhich is not present

in the angular.js script you have included in your page. To use the ngRoute

module you need to include angular-route.js as a script, which is present in the

angular-seed-master/app/lib/angular directory.

In versions prior to AngularJS 1.1.6, the ngRoute module was used to be shipped

out of the box. But all the subsequent versions don't include ngRoute by default.

That's why we need to include additional angular-route.jswhich defines ngRoute

module.

Let's get practical and create a simple app using two views: One for showing a

"Hello. World!" message and another for showing current date. For this simple test,

I recommend you use the Angular Seed project. You should use sp-blogger, which

you have downloaded, only for developing the demo app.

The main app module (app/js/app.js):

'use strict';

angular.module('myApp', [
  'myApp.controllers',
  'ngRoute'
]);

73Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').config(function($routeProvider){
    $routeProvider.when('/view1',{
        controller:'Controller1',
        templateUrl:'partials/view1.html'
    }).when('/view2',{
        controller: 'Controller2',
        templateUrl: 'partials/view2.html'
    });
});

Here, we've declared our main app module, which depends on myApp.controllers

and ngRoute. We also used the $routeProvider to map view1 to partials/view1.html

and view2 to partials/view2.html.

The controllers (app/js/controllers.js):

'use strict';

angular.module('myApp.controllers', []).controller('Controller1'
➥,function($scope){
    $scope.message="Hello, world";
}).controller('Controller2',function($scope){
    $scope.now=new Date();
});

We have two controllers: Controller1 associated with route /view1 and Controller2

associated with route /view2. The first controller should show a Hello World

message. So, we have set a scope model message for this. The second controller sets

a scope model now which stores the current date/time. Both of the controllers obtain

their respective scopes by declaring dependency on $scope.

Main view (app/index.html):

<!doctype html>
<html lang="en" ng-app="myApp">
<head>
  <meta charset="utf-8">
  <title>AngularJS Routing</title>
  <link rel="stylesheet" href="css/app.css"/>
</head>
<body>

AngularJS: Novice to Ninja74

www.it-ebooks.info

http://www.it-ebooks.info/


  <ul class="menu">
    <li><a href="#/view1">view1</a></li>
    <li><a href="#/view2">view2</a></li>
  </ul>

  <ng-view></ng-view>

  <script src="lib/angular/angular.js"></script>
  <script src="lib/angular/angular-route.js"></script>
  <script src="js/app.js"></script>
  <script src="js/controllers.js"></script>
</body>
</html>

The most important point to note here is that our main view, index.html, has an

element <ng-view>. This acts as a container for the different views (in our case

view1.html and view2.html). When the user clicks on a link (for example #/view1),

the route changes to index.html#/view1 and AngularJS searches for the template

mapped with the current route. Once the template is found the content is fetched

and included in <ng-view> and compiled against the $scope so that the expressions

({{}}) are evaluated. The same $scope is passed as an argument to the controller

associated with the particular route. So, you can set required models on the $scope

and access those in the template. Note that there should be only one <ng-view> in

your page, which will be used to show content for different routes.

You can also use ng-view as an attribute or class. So, the above code can use ng-

view as:

<div class="ng-view"></div>

and:

<div ng-view></div>

Don't Use the Element Version of ng-view if You Want to Support

IE
Do not use the element version if you really want to be compatible with Internet

Explorer. Instead, use the attribute version.

75Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


Also note that ng-view creates a new scope that prototypally inherits from the parent

scope. This $scope is passed as an argument to the controller's constructor function

associated with a particular route.

Template1 (app/partials/view1.html):

<p>From View 1: {{message}}</p>

Template2 (app/partials/view2.html):

<p>From View 2: {{now | date:'medium'}}</p>

The app Directory Should Be the Root Directory

The app directory of Angular Seed should be the root directory of our server. So,

instead of starting the server from angular-seed-master go to angular-seed-

master/app and start the server from there.

node ../scripts/web-server.js

This will make the directory app the root of our web server. Now you can access

index.html by typing http://localhost:8000/index.html in the browser.

Once you access index.html you'll find two links: view1 and view2. If you click on

the links you can see the URL in the browser change and the content from the ap-

propriate view template will be shown accordingly.

You might have already noticed the route name is prefixed with # in the URL. For

example, when you click on hyperlink view1, the URL in the address bar changes

to index.html#/view1. This is called hashbang mode, which is the default in An-

gularJS. The other option is to ask AngularJS to use HTML5 history API. This mode

is called html5Mode. In this case, the URLs in address bar for the two routes will

be changed to:

■ /view1 from index.html#/view1

■ /view2 from index.html#/view2

AngularJS: Novice to Ninja76

www.it-ebooks.info

http://www.it-ebooks.info/


The html5Mode, when activated, removes # from your URLs and takes advantage

of HTML5's pushState API.

The html5Mode can be introduced by injecting another built-in AngularJS object

called $locationProvider into the callback passed to config(). Here's the modified

code:

angular.module('myApp').config(function($routeProvider,
➥$locationProvider){
        $routeProvider.when('/view1',{
            controller:'Controller1',
            templateUrl:'partials/view1.html'
        }).when('/view2',{
            controller: 'Controller2',
            templateUrl: 'partials/view2.html'
        });
        $locationProvider.html5Mode(true); //activate HTML5 Mode
});

You also need to change the hyperlinks in the main page (index.html) to remove

the # prefixes. Here's the modified code that should be placed in index.html:

<ul class="menu">
    <li><a href="/view1">view1</a></li>
    <li><a href="/view2">view2</a></li>
</ul>

Now if you refresh index.html and click any of the two links you can see the URL

change to either http://localhost:8000/view1 or http://localhost:8000/view2

depending on the link clicked.

What if the Browser Does Not Support the History API?

If you set html5Mode to true, AngularJS first checks for history API support in

the browser. If it's available then the html5Mode is used, otherwise AngularJS

falls back to the hashbang mode. In other words, it uses the best option transpar-

ently so that you don't have to worry about browser compatibility issues.

But there is a gotcha! When navigating inside of the app, everything works as ex-

pected. But if you try to open a URL like http://localhost:8080/view1 dir-

ectly in the browser it will result in a 404. The reason for this is that there's no

77Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


AngularJS when you directly ask the server for http://localhost:8080/view1.

But in the case of the hashbang version, the browser always loads the index.html

first, and AngularJS then steps in to resolve the hashbang URL. Hence this is the

limitation of html5Mode. If you want to stick to html5Mode, you'll need some

kind of server-side configuration to resolve this issue.

If you're really interested in learning about the HTML5 history API you should

go through the following link: http://diveintohtml5.info/history.html 1

The otherwise() Function

There is also an otherwise() function in $routeProvider, which can be used

to redirect users to a particular route when no route match is found. It can be done

in this way:

$routeProvider.otherwise({redirectTo:'/view1'});

Every AngularJS app will have a fixed set of routes. So, if somebody tries to mess

around and tries loading a route that doesn't exist (like http://local-

host:8000/index.html#/view3) your app won't break. You can safely redirect

the user to a default route with the help of otherwise().

Using $routeParams in the Controller
Sometimes it's necessary to pass some parameters to the controller associated with

your view. For example, in a blogging app, you may want to pass a post ID in the

URL, which the controller can grab and then fetch the related content via an Ajax

call. These parameters passed in the route are called route parameters and are ex-

posed by a integrated AngularJS service called $routeParams. To demonstrate this

concept let's adjust our previous demo app to use $routeParams.

Let's modify the two routes as follows:

■ /view1: This allows users to enter their first and last names. On the click of a

button, we load route /view2, passing the first name and last name as route

parameters.

1 http://diveintohtml5.info/history.html

AngularJS: Novice to Ninja78

www.it-ebooks.info

http://diveintohtml5.info/history.html
http://www.it-ebooks.info/


■ /view2: It retrieves the passed first name and last name from the route and dis-

plays them.

Here are the updated files:

app.js:

'use strict';

angular.module('myApp', [
  'myApp.controllers',
  'ngRoute'
]);

angular.module('myApp').config(function($routeProvider,
➥$locationProvider){
    $routeProvider.when('/view1',{
        controller:'Controller1',
        templateUrl:'/partials/view1.html'
    }).when('/view2/:firstname/:lastname',{
        controller: 'Controller2',
        templateUrl: '/partials/view2.html'
    }).otherwise({redirectTo:'/view1'});
    $locationProvider.html5Mode(true);
});

While configuring route details for /view2we passed '/view2/:firstname/:last-

name'as the first parameter to when(). This specifies that firstname and lastname

are two route parameters here. Furthermore, inside the controller associated with

this view (Controller2) we can refer to these route params via the keys $route-

Params.firstname and $routeParams.lastname.

Did you notice the templateUrl is prefixed with a /? This is because when /view2

is loaded, the URL will be something like /view2/myfirstname/mylastname. So, if

you don't prefix the template path (such as partials/view2.html) with a /AngularJS

will look for the template inside /view2/myfirstname/lastname/par-

tials/view2.html due to the changed URL, and this will result in a 404 error. So,

a / tells AngularJS that the template partials/view2.html is in the root directory.

partials/view1.html:

79Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


<p>
    First name: <input type="text" ng-model="firstname"/> <br/>
    Last name: <input type="text" ng-model="lastname"/> <br/>
    <button ng-click="loadView2()">Load View2</button>
</p>

As you can see, we have two input fields that are bound to two models: firstname

and lastname. There's also a button which, when clicked, triggers the scope function

loadView2(). This function is responsible for handling firstname, lastname and

loading /view2, with these model values as route parameters.

partials/view2.html:

<p>
    From View2.
    <ul>
        <li>First name: {{firstname}}</li>
        <li>Last name: {{lastname}}</li>
    </ul>
</p>

This template is very simple—it simply uses expressions to display scope models.

controllers.js:

use strict';

angular.module('myApp.controllers', []).controller('Controller1'
➥,function($scope,$location){
    $scope.loadView2=function(){
        $location.path('/view2/'+$scope.firstname+'/'
➥+$scope.lastname);
    }
}).controller('Controller2',function($scope,$routeParams){
    $scope.firstname=$routeParams.firstname;
    $scope.lastname=$routeParams.lastname;
});

Controller1 declares a dependency on something new: the $location service. This

is a built-in service that parses the URL in the browser address bar and exposes it

to our app via several functions. We'll discuss $location in detail later on in this

chapter. For now, just note that $location.path() is used to load a new route.

AngularJS: Novice to Ninja80

www.it-ebooks.info

http://www.it-ebooks.info/


Controller2 declares a dependency on $routeParams, which is an AngularJS service

that exposes the route parameters to our controller.

Now, if you run the app and access http://localhost:8080/index.html you'll

end up in the /view1 route. If you fill out the first name and last name input fields

and hit Load View2 you will be redirected to /view2, which looks something like

Figure 4.1.

Figure 4.1. Using route parameters

$routeParams Also Parses the Query String

Apart from named parameters, $routeParams also parses the query string, if

present. So, if your URL contains a query string like ?key1=value1, the key/value

pair is added to $routeParams.

Using ng-template
We've seen how to put views for different routes into different HTML files. For ex-

ample, the templates for /view1 and /view2 go into partials/view1.html and

partials/view2.html, respectively. But we also have an option to define templates

inline, which is done through the ng-template directive. Let's modify our code to

use ng-template. The changes will be made to app.js and index.html.

index.html

<!doctype html>
<html lang="en" ng-app="myApp">
<head>
  <meta charset="utf-8">
  <title>AngularJS Routing</title>
  <link rel="stylesheet" href="css/app.css"/>
  <script type="text/ng-template" id="/view1.tpl">
      <p>
        First name: <input type="text" ng-model="firstname"/> <br/>
        Last name: <input type="text" ng-model="lastname"/> <br/>

81Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


        <button ng-click="loadView2()">Load View2</button>
      </p>
  </script>
  <script type="text/ng-template" id="/view2.tpl">
      <p>
        From View2.
        <ul>
            <li>First name: {{firstname}}</li>
            <li>Last name: {{lastname}}</li>
        </ul>
      </p>
  </script>
</head>
<body>
  <ul class="menu">
    <li><a href="/view1">view1</a></li>
    <li><a href="/view2">view2</a></li>
  </ul>

  <div ng-view></div>

  <script src="lib/angular/angular.js"></script>
  <script src="lib/angular/angular-route.js"></script>
  <script src="js/app.js"></script>
  <script src="js/controllers.js"></script>
</body>
</html>

You can define templates using <script type="text/ng-template">. This loads

the content of the <script> into the $templateCache service so that ng-view (and

other directives) can use it. You also need to give it an id through which it can be

referenced in other places. In our case we'll use this id in app.js while configuring

modules.

Here is the modified app.js:

app.js

$routeProvider.when('/view1',{
        controller:'Controller1',
        templateUrl:'/view1.tpl' // The ng-template id
    }).when('/view2/:firstname/:lastname',{

AngularJS: Novice to Ninja82

www.it-ebooks.info

http://www.it-ebooks.info/


        controller: 'Controller2',
        templateUrl: '/view2.tpl' // The ng-template id
});

You should note that the extension .tpl in the id is optional. You can give it any

extension you want or leave it. All you need to do is specify a name that you can

use afterwards to refer to the template.

Now if you refresh the browser the app will work as expected.

Use Separate HTML Files for Templates

If your template is really tiny you might benefit from declaring it inside ng-tem-

plate. But in a real-world app, you won't probably ever need this. Rather it's best

to create different HTML files for different templates as it keeps your app main-

tainable in the long run and does not clutter your main view with <script> tags.

The resolve Property in the Route Config
Object

There is a resolve property in the Route Config object we pass as the second argu-

ment to the $routeProvider.when() function. This can be used to pass additional

dependencies to the controller. For example, for a controller to work we might need

to retrieve all the users in our system, typically by doing an AJAX call. This is what

resolve does. We provide an object as the value to the resolve property. This object

has keys, which can be used as the names for the controller's dependencies. In

other words you'll declare your controller's constructor function with these names

as parameters. The value to the key can be a string or a function. If it's a string,

AngularJS will try to find a service with that name. If it's a function its return value

is used.

Now, the function's return value can be of two types. The first consists of simple

values (string, array, object etc.) in which case the dependency in resolve takes

that value.

The second value is a special case. Most of the times the value you return from the

function is a deferred type (also known as a promise), which means the returned

value is just a placeholder for an actual value that'll be available in the near future

83Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


(by the time your controller is instantiated). Consider an AJAX call that retrieves a

blog post from its id. You can use resolve here to get the post object. In your

function you simply return a deferred/promise and the resolve property will

automatically be updated when the actual post arrives. Don't worry, we'll get into

the details of deferred types later on.

So, before the route change ends, all these dependencies listed in resolve should

be resolved, or at least one should be rejected. Again let's consider our AJAX call

to obtain a post object. While fetching a post the network may fail and, with it, the

dependency may fail to get its actual value (which means the dependency—the

deferred value—was rejected). On the other hand, if everything goes well, the de-

pendency listed in resolve gets its value successfully. In this case we say that the

dependency was resolved. If all the dependencies are resolved a $routeChangeSuc-

cess event is broadcast. If one of the dependencies fails to resolve a $routeChan-

geError event is broadcast. If you're interested in these events you can subscribe

to them using $rootScope.$on() and do something meaningful. Again, don't worry

too much about this for now as we'll be returning to dependencies later on.

Let's modify our previous code to introduce an additional dependency to our con-

troller Controller2. In /view2, apart from showing the first name and last name,

we also need to display all our users. Typically, you'll get this list from an Ajax call

to the server. But as we don't know how to do that yet in AngularJS, let's hard code

the array of names.

The first change is carried out in app.js, and adds this dependency to the resolve

property:

'use strict';

angular.module('myApp', [
  'myApp.controllers',
  'ngRoute'
]);

angular.module('myApp').config(function($routeProvider, 
➥$locationProvider) {
  $routeProvider.when('/view1', {
    controller: 'Controller1',
    templateUrl: '/partials/view1.html'
  }).when('/view2/:firstname/:lastname', {

AngularJS: Novice to Ninja84

www.it-ebooks.info

http://www.it-ebooks.info/


    controller: 'Controller2',
    templateUrl: '/partials/view2.html',
    resolve: {
      names: function() {
        //typically you will use a service to retrieve values from 
➥the server here
        return ['Misko', 'Vojta', 'Brad']; //this is used as 
➥dependency value
      }
    }
  }).otherwise({
    redirectTo: '/view1'
  });
  $locationProvider.html5Mode(true);
});

You should also note here that we can add other dependencies besides names.

Now our controller can be modified as follows:

'use strict';

angular.module('myApp.controllers', []).controller('Controller1'
➥,function($scope,$location){
    $scope.loadView2=function(){
        $location.path('/view2/'+$scope.firstname+'/'
➥+$scope.lastname);
    }
}).controller('Controller2',function($scope,$routeParams,names){ 
➥//names is now a dependency
    $scope.firstname=$routeParams.firstname;
    $scope.lastname=$routeParams.lastname;
    $scope.names=names;
});

So, before instantiating Controller2 AngularJS executes the function provided to

the names property in resolve. The return value of this function is used as the value

of the names dependency declared by the controller.

The final change is made to our partial view2.html. I assume we're using the partials

as regular HTML files, and not as ng-template.

partials/view2.html:

85Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


<p>
  From View2.
  <ul>
    <li>First name: {{firstname}}</li>
    <li>Last name: {{lastname}}</li>
  </ul>
  Our additional users are:
  <ul>
    <li ng-repeat="name in names">
      {{name}}
    </li>
  </ul>
</p>

Now, if you refresh the browser, fill out the first name/last name fields and hit the

button, you'll see something like Figure 4.2.

Figure 4.2. Using the resolve property

As we've seen, the resolve property is about pre-loading your controller's depend-

encies. You'll see this more often when we learn about services and use it in the

demo app.

Exploring the $location Service
$location is an AngularJS service that exposes the current browser URL (obtained

from window.location) through a well-defined API. Besides that, it keeps itself and

the URL in sync. Any change you make to $location is propagated to the URL, and

whenever the URL changes (such as when a new route is loaded) the $location

service updates itself.

You can use this service to update the browser's URL to navigate to a different route,

or to watch for changes in $location and take appropriate actions in your app.

AngularJS: Novice to Ninja86

www.it-ebooks.info

http://www.it-ebooks.info/


Updating $location Does Not Cause a Full Page Refresh

When you use $location to update browser URL, this just loads a new route

and does not cause a full page refresh. If you want to trigger a full page refresh,

or redirect the user to a different website or URL, you can do that using $win-

dow.location.href.

The API
$location service offers several getters and setters to read and update different

parts of a URL. Some parts of the URL like host, protocol, port etc are not writable

and therefore $location service offers only getters for them. For writable parts like

path, search, hash you receive both read and write options.

Have a look at Figure 4.3 taken from the AngularJS website. It describes the different

parts of a URL.

Figure 4.3. The different parts of a URL

Writable Parts
path:

Path is the part of URL that comes after the hostname and protocol. For a URL like

http://localhost:8000/view1, the path is /view1.

87Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


$location.path(); // gets the current path

$location.path('/view2'); // sets the current path and updates URL

The above also holds true for hash-based URLs.

When you change the path inside AngularJS' handlers, such as ng-click, ng-model

etc., the path is updated and the change is reflected in the URL. This is because

these function calls are wrapped inside $apply() and a $digest cycle begins, which

in turn fires watchers set up by $location to update the browser URL. If you're

updating the path outside of AngularJS world (in a custom event handler, for ex-

ample) you need to call $scope.$apply() after calling $location.path().

$location is Aware of the AngularJS Scope Life Cycle

$location, being a built-in service, is aware of the AngularJS scope life cycle.

So it integrates with the scope life cycle by updating itself and calling $apply()

whenever the browser URL changes. This is necessary because you might want

to set up watchers on $location.path() and receive notifications when it

changes.

Also, when you call a setter method such as path() on $location, it doesn't

immediately push the change to the URL. They're actually committed and pushed

to the URL in the digest cycle.

A path name always starts with a /. If you don't prefix the path name with a / while

passing it to $location.path() AngularJS automatically adds a /.

search:

search() lets you provide key/value pairs as search parameters to the URL. So, in-

stead of using $routeParams you can also use the search() function to pass params

to the route and read them in the controller. The key/value you pass will be appen-

ded to the path with ? as the prefix and & as a separator.

For example: http://localhost:8000/view2?firstname=fname&lastname=lname

AngularJS: Novice to Ninja88

www.it-ebooks.info

http://www.it-ebooks.info/


$location.search(); //get an object that has key/values as search 
➥parameters

$location.search({key1:value1,key2:value2}); //set the search 
➥parameter

hash:

hash() function lets you get or set the hash part of the URL.

$location.hash(); //get the hash part. e.g. #div1, #div2 etc

$location.hash('div1'); //changes URL to /view1#div1

#div1 is a Real Anchor

Here, #div1 is a real anchor and has nothing to do with routes. As you can see

in the snippet above, the hash() function simply appends #div1 at the end of

current URL.

These function calls return the same $location instance. So, you can chain the

calls to update various parts in a single go.

For example:

$location.path('/view2').search({key1:value1}).hash('div1');

Non-Writable Parts
The following functions of $location can be used to read the non-writable parts

of the URL.

■ host(): Returns the host name, such as localhost

■ port(): Returns the port the server is listening on, such as 8000

■ protocol(): Returns the protocol used, such as http

■ url(): Returns the part of the URL after hostname and protocol (i.e. only

path+search+hash). e.g. /view1?key1=value1#div1

89Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


■ absUrl(): Returns the whole URL, such as http://local-

host:800/view1?key1=value1#div1

Adding a New History Entry Versus Replacing One
Whenever you update the $location service and changes are pushed to the browser

URL it creates a new history entry. A new history entry essentially means, when

you hit the browser's back button, it'll behave as expected and go to the previous

route. But in case you want to replace the last history entry instead of creating a

new entry, you should use the $location.replace() function after modifying one

or more parts. An example of this might be:

$location.path('/view2').search({key1:value1}).hash('div1'); 
➥//change the parts

$location.replace(); // changes the URL, but does not create 
➥a new history entry.

Do this and, next time, when the $location syncs itself with the URL (in a digest

cycle, of course!) it'll change the URL and update the last history entry instead of

creating a new one. This works well for both HTML5 and Hashbang modes.

Events in Routing
There are couple of events in routing that you should be aware of. These are:

$location related events
■ $locationChangeStart: This event is broadcast on the $rootScope just before

the URL in the browser changes as result of the mutations done to $location

via setters—such as calling path().

■ $locationChangeSuccess: This event is broadcast just after URL in the browser

changes. But, if some part of your code listens to the $locationChangeStart

event and calls preventDefault on it, this event won't be fired.

$route related events
■ $routeChangeStart:This event is broadcast just before AngularJS starts changing

the route. At this point, the $route service starts resolving all the dependencies

AngularJS: Novice to Ninja90

www.it-ebooks.info

http://www.it-ebooks.info/


needed to effect this change. This typically involves fetching the view template

and resolving all the dependencies listed in resolve property in the route

definition. You can, for example, listen for this event and display some kind of

loading image or progress bar in the listener function.

angular.module('myApp').run(function($rootScope){
    $rootScope.$on('$routeChangeStart',function(){
        //do something magical here
    });
});

The run() function gets called when all the modules are successfully loaded. In

this case we're simply registering a listener which will be notified every time the

route change starts.

■ $routeChangeSuccess: This event is broadcast after the $route service is able

to successfully resolve all the dependencies needed to load the new route. The

ng-view directive listens to this event so that it can instantiate the related con-

troller, and the view can be rendered.

angular.module('myApp').run(function($rootScope){
    $rootScope.$on('$routeChangeSuccess',function(){
        //do something magical here. maybe stop the animation 
➥you started in
        $routeChangeStart listener.
    });
});

■ $rootChangeError: If the $route service is unable to resolve at least one of the

dependencies needed to change the route,the $routeChangeError event is

broadcast.

All These Events Are Broadcast on the $rootScope

All these events are broadcast on the $rootScope. In other words, the $route

service calls $rootScope.$broadcast() to broadcast the event. And you already

know that if a $scope broadcasts an event it can also listen to the same event.

91Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


The ng-include Directive
Sometimes, it's desirable to divide your HTML template into reusable parts so that

they can be included in the main view. The ng-include directive can be used to

fetch, compile and include an external HTML fragment in your main page. For ex-

ample, your main HTML file can have different sections like a header, a footer, a

sidebar etc. You can put the template for these components in separate HTML files,

and include them into your main HTML.

So, let's modify our /view2 to divide the template into two different HTML fragments.

Create a new directory fragments inside partials and create two files inside it:

selected-user.html:

From View2.
<ul>
    <li>First name: {{firstname}}</li>
    <li>Last name: {{lastname}}</li>
</ul>

The above template is used to list the first name and last name passed from /view1.

all-users.html:

Our additional users are:
<ul>
    <li ng-repeat="name in names">
        {{name}}
    </li>
</ul>

This is used to list all the available users.

Now let's modify the template for /view2. The modified template will be:

<p>
      <div ng-include="'/partials/fragments/selected-user.html'">
➥</div>
      <div ng-include="'/partials/fragments/all-users.html'"/></div>    
</p>  

AngularJS: Novice to Ninja92

www.it-ebooks.info

http://www.it-ebooks.info/


Or, you may use ng-include as a standalone element and use it, like so:

<p>
    <ng-include src="'/partials/fragments/selected-user.html'">
➥</ng-include>
    <ng-include src="'/partials/fragments/all-users.html'"/>
➥</ng-include>
</p>

Now, if you refresh index.html and proceed as usual you'll see that the app works

with this modification. AngularJS fetches the content from the file specified in src,

and compiles it, so that expressions like {{firstname}} are evaluated, and includes

the content in our view.

You'll also notice that ng-include creates a new scope that prototypally inherits

from the parent scope (the controller's scope, associated with the route).

This was just a small example to show the usage of ng-include, but hopefully it

gives you an idea about how to use it in our apps. We'll be using it often while de-

veloping the demo app.

Using ng-include

ng-include expects an expression to be passed as the value to src attribute. For

example, if you have a scope model, which points to a template, you can pass

that model name directly to src. But, if you want to pass a string like /par-

tials/fragments/selected-user.html to src, make sure to wrap it inside

single quotes just as we did above.

Introducing the Angular UI Router
When you are starting with AngularJS routing, it's a good idea to begin with ngRoute.

That said, it has one serious limitation in that you can't have nested views in your

app—just the one ng-view. But when your app grows in complexity, you may wish

to have views within views. For example, your app's admin panel will be loaded

inside an ng-view. Furthermore, this admin panel could have several sub views,

which should ideally be loaded inside the admin panel's own ng-view. But we

know this isn't possible with AngularJS' default routing system.

93Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


The solution to this problem is to use the Angular UI Router—a third-party routing

module that has many awesome features, including nested views support. If you're

working on a serious real-world app, consider using UI Router instead of the default

routing system.

We'll be using UI Router for developing our demo app. So, let's take a quick overview

and learn how to make the transition from ngRoute to UI Router.

Getting Started With UI Routter
Instead of working with URLs, UI Router takes a state-based approach. A state de-

scribes how your UI looks at a particular time. To put it simply, the state can be

composed of a URL, controller and template. Let's modify our previous snippet to

use UI Router.

Requirements

1. Download the UI Router script from http://angular-ui.github.io/ui-

router/release/angular-ui-router.min.js and include it in your index.html.

2. To use UI Router you need to add a dependency on ui.router module to your

main app module.

Defining States
We can modify our app.js as follows to introduce states:

'use strict';

    angular.module('myApp', [
      'myApp.controllers',
      'ui.router' //this is the dependency on ui.router module
    ]);

    angular.module('myApp').config(function($stateProvider,
➥$urlRouterProvider,$locationProvider){ //$stateProvider and
➥ $urlRouterProvider are from ui.router module
        $stateProvider.state('view1',{
            url: '/view1',
            controller:'Controller1',
            templateUrl:'/partials/view1.html'
        }).state('view2',{

AngularJS: Novice to Ninja94

www.it-ebooks.info

http://angular-ui.github.io/ui-router/release/angular-ui-router.min.js
http://angular-ui.github.io/ui-router/release/angular-ui-router.min.js
http://www.it-ebooks.info/


            url: '/view2/:firstname/:lastname',
            controller:'Controller2',
            resolve:{
                names: function(){
                    return ['Misko','Vojta','Brad'];
                }
            },
            templateUrl: '/partials/view2.html'
        });
        $urlRouterProvider.otherwise('/view1'); // when no route 
➥match found redirect to /view1
        $locationProvider.html5Mode(true);
    });

When you use UI Router you need to think in terms of states rather than URLs. As

you can see we have two states : view1 and view2. A state is registered with the

method state() and the first argument to it represents the state name. Each of the

states consist of three components: url,templateUrl, and controller. Also note

that the second state uses the resolve property, which is written as usual.

Now, when a state is activated the browser's address bar is updated with the url

associated with the state. So, you should always focus on changing states rather

than URLs. I'll show you how shortly!

The following changes should be made to index.html:

<ul class="menu">
    <li><a ui-sref="view1">view1</a></li>
    <li><a ui-sref="view2">view2</a></li>
</ul>

Also, the UI Router script should be present in the page:

<script src="lib/angular-ui-router/angular-ui-router.min.js">
➥</script>

As you can see, the hyperlinks now use a special attribute ui-sref instead of just

href. This is because we are concerned with changing the state. The ui-srefmeans

that when the link is clicked the corresponding state activates.

95Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


Now, we need to make a small change in $scope.loadView2() inside Controller1.

This is done so that, when users click on the button in view1, they're taken to state

view2.

angular.module('myApp.controllers', []).controller('Controller1', 
➥function($scope, $location, $state) {
  $scope.loadView2 = function() {
    // the following activates state view2
    $state.go('view2', {
      firstname: $scope.firstname,
      lastname: $scope.lastname
    });
  }
});

As you see, our controller declares a dependency on $state which comes from

ui.router module. We don't use $location.path() anymore to change route. In-

stead $state.go() is used to activate a new state and make the transition. The first

argument to this function is the new state name. The second argument can be an

object that is used to pass $stateParams to the new state (As opposed to $route-

Params).

Our last change will be in Controller2 to use $stateParams instead of $routeParams

to obtain the named parameters passed to the state.

angular.module('myApp.controllers').controller('Controller2',
➥function($scope,$stateParams,names){
        $scope.firstname=$stateParams.firstname;
        $scope.lastname=$stateParams.lastname;
        $scope.names=names;
});

Now if you access http://localhost:8000/index.html the app should work as

expected. But the difference is that we're now using a more powerful routing system.

As we develop our demo app using UI Router you'll get to know more about it.

You can also check out their GitHub2 repository to explore more about UI Router.

2 https://github.com/angular-ui/ui-router

AngularJS: Novice to Ninja96

www.it-ebooks.info

https://github.com/angular-ui/ui-router
http://www.it-ebooks.info/


Conclusion
So far we have covered the basics of AngularJS routing. But before implementing

this in our app it's important to be aware of service and factories because we'll be

using these to store/retrieve the posts. The next chapter is all about services,

factories and providers. Once you have a clear idea about these we can start gener-

ating views and related services for our Single Page Blogger.

97Multiple Views and Routing

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter5
AngularJS Services, Factories, and

Providers
We've already mentioned services several times in the last few chapters. You have

already used several built-in AngularJS services like $location, $timeout, $root-

Scope etc. But, in a real world application, the built-in services are not always going

to be sufficient so you'll need to create custom services. This chapter will give you

a comprehensive guide to three critical components of AngularJS: services, factories,

and providers.

The main purpose of these components is that they hold some logic that's required

at multiple points within your app. Although services, factories and providers are

all used to accomplish the same task (encapsulating repetitive logic), there are subtle

differences between them.

Services, factories, and providers are all injectable types. As you've seen in previous

chapters, this means that they can be injected into controllers and other services

through Dependency Injection. Apart from these there are also two more injectable

types: value and constant. Let's explore each of these types in detail, starting with

the simplest—services.

www.it-ebooks.info

http://www.it-ebooks.info/


Service
An AngularJS service encapsulates some specific business logic and exposes an

API, to be used by other components, to invoke this logic. For example, the built-

in $timeout service executes a function after a specified interval. The $http service

encapsulates the logic required to interact with REST back-ends. We ask AngularJS

to inject these services into our controllers so that we can utilize them. service is

an injectable type, and this means it can be inserted into different AngularJS com-

ponents through dependency injection.

AngularJS Services are Always Singletons

It's important to note that AngularJS services are always singletons. This means

that, once AngularJS constructs a service object, the same instance is reused

throughout your app. There are never ever two service instances. This makes them

great candidates to share application data across multiple components. For ex-

ample, after a successful login, you'll need to store the login status where the

status can be retrieved in all other components. In this scenario, you can store the

status in a service and then, whenever you need to read the value, you can just

inject it into your controller/service and check it.

Take a look at the following snippet:

angular.module('myApp').controller('TestController',
➥function($http,$timeout){
  //use $http, $timeout here
});

In the above snippet our controller TestController declares dependency on two

services: $http and $timeout. So, when the controller is instantiated, AngularJS

passes the two services to it.

Similarly, you can create your own services that encapsulate the business logic

specific to your apps. Here is how you register a service in a module:

AngularJS: Novice to Ninja100

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').service('helloService',function(){
  this.sayHello=function(){ // define an instance method
    alert('Hello!! Welcome to services.');
  }
});

As you see, angular.module() provides a function service() that's used to register

a service. The first argument to this function is the service name. The second argu-

ment is a constructor function. It can have usual instance variables and functions.

Now, in a controller, if you ask for this service AngularJS constructs an object by

invoking the constructor function with the new keyword. This object is then injected

into your controller. If you want to use our helloService in a controller you can

do this:

angular.module('myApp').controller('TestController',
➥function(helloService){
  helloService.sayHello(); // helloService is the service object. 
➥It has sayHello function.
});

Why Use CamelCase?

You might think 'why choose camelCase to name a service if we're passing a

constructor function to the service() method?' The reason is that, when you

ask for the service in a different component—a controller, say—all you get is an

instance of that constructor function. That's why I prefer camelCase and not Pas-

calCase.

It's also worth looking at how we're attaching functions to our service. If you define

functions for instances using this keyword it's usually bad practice. The reason

for this is that the same function is copied across all the instances. Indeed, certain

JavaScript gurus might even feel offended if they see you doing this. However, in

AngularJS we have a get out. Since Angular services are singletons it's guaranteed

that there'll be only one instance of your service. As a result, it doesn't matter if

you define functions using this or use the prototype property.

In the controller we declare a dependency on helloService. When AngularJS re-

solves this dependency it'll take the constructor function associated with the service

name helloService and instantiate it. The result is an object that's finally injected

101AngularJS Services, Factories, and Providers

www.it-ebooks.info

http://www.it-ebooks.info/


into our controller. Just note that this is done only once. Afterwards, the service

returned is the cached version of the first call to the service constructor function.

In the above case, the service just displayed a simple Hello message. But our service

can also have dependencies on other services. For example, it can depend on the

$timeout service and defer the alert by an interval you specify. The service can

be rewritten as follows:

angular.module('myApp').service('helloService',function($timeout){
  this.sayHello=function(name){
    $timeout(function(){
      alert('Hello '+name);
    },2000);
  }
});

Our service, here, is dependent on the built-in $timeout service. When AngularJS

invokes this constructor function it'll pass the dependency i.e. $timeout. Now the

instance method has been modified to take a name and show a customized Hello

message. With the help of $timeout we display the message after a two-second

delay. Finally, we can inject this into our controller and use it, as follows:

angular.module('myApp').controller('TestController',
➥function(helloService){
  helloService.sayHello('AngularJS'); // Alerts Hello AngularJS
});

These basic examples show how to create and use services. In real life, you should

use them to encapsulate the repeatable logic and share data among different com-

ponents of your app. For example, you might need to perform REST interactions at

various places in your app. To do this, you can build a service that internally uses

$http to communicate with the server and inject this into controllers. Also, if you

have data that may be needed in multiple locations you can encapsulate it in the

service and use it wherever required.

Here are the most important points to remember about services:

1. A service is registered using the service() function of angular.module().

AngularJS: Novice to Ninja102

www.it-ebooks.info

http://www.it-ebooks.info/


2. The second argument to service() is a constructor function. When we ask for

the service as a dependency, AngularJS creates an object from this constructor

function and injects it.

3. A service is a singleton. AngularJS instantiates the service object only once and

all other components share the same instance.

4. Services are lazily instantiated. This means AngularJS instantiates the service

only when it encounters a component that declares dependency on the service.

Eager Loading of a Service
Services are always lazily instantiated. But what if we have a heavy service that

consumes resources and takes a while to get created? In this case, we certainly don't

want a bad user experience, so we'd want to load our services eagerly just after the

module loads. The good news is that this is easy to do with the module.run()

function. As the name suggests, once a module is loaded, its run() function executes.

You can pass a callback to it with your service names as arguments, so that when

the run() runs, the passed callback also executes. As a result, the listed dependencies

are resolved and get instantiated, and your service will be ready before someone

asks for it in your app. A logging service would be a good example of a service that

should be eagerly loaded. For now, here is how we can eagerly load our hel-

loService:

angular.module('myApp').service('helloService',function($timeout){
  this.sayHello=function(name){
    $timeout(function(){
      alert('Hello '+name);
    },2000);
  }
});

angular.module('myApp').run(function(helloService){
    //helloService can be used here. It has been instantiated.
});

Factory
A factory is another injectable type. Effectively it's the same as a service. However,

it's more verbose and configurable, by which I mean it gives you the freedom to

103AngularJS Services, Factories, and Providers

www.it-ebooks.info

http://www.it-ebooks.info/


determine what to instantiate and return from the factory. As its name suggests, it's

a factory for a service.

You register a factory by calling the factory() function on angular.module(). For

example, we can implement helloService as a factory as follows:

angular.module('myApp').factory('helloService',function(){
  return {
    sayHello: function(name){
      alert('Hello '+name);
    },
    echo: function(message){
      alert(message);
    }
  }
});

The first argument to factory() is obviously the name you want to use for the

factory. The second argument is a normal function (not a constructor function),

which can return an object or a function. When we ask for the factory as a depend-

ency in a controller/service, AngularJS invokes the factory function (the second

argument to factory()) and injects the value it returns. The value, as I said above,

can be a function, object, or value. In our case, we are just returning an object with

two instance methods. So, this object is assigned to the variable helloService while

instantiating the controller. In simpler terms, your service is nothing but the return

value obtained from calling the factory function.

The above factory can be used in a controller in exactly the same way as services:

angular.module('myApp').controller('TestController', 
➥function(helloService) {
  helloService.sayHello('AngularJS'); //alerts Hello AngularJS
  helloService.echo('I Love AngularJS'); //alerts I Love AngularJS
});

Usually, the object you return from the factory function, has several functions that

perform different tasks. For instance, in a note-taking app you can have a noteFact-

ory. The instance returned by the factory function may have functions such as:

AngularJS: Novice to Ninja104

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').factory('noteFactory',function($http){ 
➥//declare dependency on $http
  return {
    addNote: function(note){
      // save the note. may be use $http to persist on server
    },
    updateNote: function(note){
     //update note
    },
    getNotes: function(){
      //get all notes
    },
    getNote: function(noteId){
      //get a single note
    }
  }
});

This factory can be injected into a controller or some other service whenever re-

quired.

Remember that factories, like services, are singletons. A factory can also depend on

other services or factories. The above example demonstrates this by declaring a

dependency on $http. Both services and factories are used to accomplish the same

task: sharing data and encapsulating business logic. Note that you return an object

from the factory function, so you have the freedom to determine which object to

return based on certain parameters. This is not the case with services where you

simply pass a constructor function to service(). That said, in many instances, you

can use either a service or factory.

Provider
A provider is the most configurable and verbose version of services because it's

based on prior settings or logic. For example, the built-in $route service may behave

differently based on the mode (html5Mode or hashbang) you configured in $route-

Provider. In short, a provider, as its name suggests, acts as a provider of some sort

of service.

105AngularJS Services, Factories, and Providers

www.it-ebooks.info

http://www.it-ebooks.info/


Every Service Has a Provider

Every service you create has an associated provider (AngularJS does this automat-

ically for you). But don't worry about this for now as we'll explore these details

in our chapter on Dependency Injection.

As you might have guessed, a provider can be injected into our module's config()

block, where a user can configure it before the app starts. Now let's modify our

previous snippets to use a provider. We don't want to greet our users with just

Hello!. We want to be able to configure the greeting text first. This configured text

should be used subsequently to greet users.

You register a provider by writing:

angular.module('myApp').provider('greet', function() {

  this.greeting = 'Hello'; //we can configure this. 
➥The default is Hello.

  this.$get = function() { //this will be called to obtain greet 
➥service
    var greeting = this.greeting;
    return function(name) {
      alert(greeting + ', ' + name);
    }
  }

  this.setGreeting = function(greeting) { //setter for greeting text
    this.greeting = greeting;
  }

});

The provider() function of angular.module() is used to register a provider. The

second argument to provider() is a constructor function. This must have an instance

method called $get() in order for the provider to work. In the above snippet, we

have created a provider called greetProvider. Note its name. When we create a

provider, the first argument to the provider() function is the name of the service

that's being provided. In this case, we're exposing a service called greet. But the

actual provider name is greetProvider. So, we'll use the name greet to get a refer-

AngularJS: Novice to Ninja106

www.it-ebooks.info

http://www.it-ebooks.info/


ence to the service and greetProvider to get a reference to the provider (in mod-

ule.config()).

Using Providers and Services

Although we've passed the name greet as the first argument to provider()

AngularJS understands that the actual provider's name is greetProvider. So,

in our module's config block, when you declare a dependency on greetPro-

vider, AngularJS knows that it needs to instantiate the constructor function

passed to provider() using new, and inject it. Similarly, when another component

declares a dependency on the greet service, AngularJS knows that it needs to

call $get() on the greetProvider instance and inject whatever it returns.

Now we can configure and use the provider as following:

angular.module('myApp').config(function(greetProvider) { //get the 
➥provider injected
  greetProvider.setGreeting('Hola'); //configure our provider
});

angular.module('myApp').controller('TestController', 
➥function(greet) {
  greet('Sandeep'); // use the greet service
});

When the module myApp loads, the config() function runs. The function passed

to config() declares a dependency on greetProvider. By this time AngularJS has

already instantiated greetProvider by invoking new on the function passed to an-

gular.module().provider(). So, this provider instance is injected and then con-

figured inside config block. Then, in a different component, TestController, we

declare a dependency on greet service. Hence AngularJS will call the $get()

function on the greetProvider instance and return whatever it returns. As a result,

the value returned from greetProvider.$get() will be assigned to the argument

of greet in the TestController. In this way we get a reference to the greet service,

which is a simple function. When invoked, it shows an alert. In this case we have

configured the provider to use "Hola" as greeting text. So, if you run the app it will

alert Hola, Sandeep. Try changing the greeting text in config() and see the result.

107AngularJS Services, Factories, and Providers

www.it-ebooks.info

http://www.it-ebooks.info/


Providers are Instantiated Only Once

Providers are instantiated only once and you can inject them only inside the

config() block. This is because you get a chance to configure your provider

when the module loads. Later, your other app components just need to ask for

the service provided by the provider.

When you define a provider you don't necessarily need to refer to it in a config()

block. AngularJS automatically instantiates your provider when the module loads.

You can directly ask for the service in an app component and, at that time, the

service instance will be created out of the provider. You need to refer to the pro-

vider in config() block only when you want to configure it.

What's Returned?

In the above example, the following rules hold true for the two dependencies:

■ greetProvider = Result of invoking the constructor function passed to

provider() with new. This returns an object.

■ greet = Result of calling greetProvider.$get(). In this case it returns a

function which displays an alert. But the return type can be anything in general.

We just outlined the three most commonly used injectable types in AngularJS: ser-

vices, factories, and providers. We also discussed the basic differences between the

three and saw how they can be used in our apps.

But there are two more injectable types we can use: value and constant, and we'll

briefly cover them here. The great news is that they're much simpler than the previ-

ous injectable types.

Value
A value is an injectable type that is used to register a simple service, which can be

a string, number, array, function, or an object. Suppose you want to provide a version

number for your website; you can just use a value service. A value service is re-

gistered using the value() function of angular.module(). The following example

registers a value that represents the version number:

AngularJS: Novice to Ninja108

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').value('appVersion','1.0');

The above snippet registers a value service appVersion whose value set to 1.0. A

controller or some service in our app can declare a dependency on this value and

use it. Note that the second argument to the value() function can be anything.

Whatever you pass here will be passed to you when you declare a dependency on

it somewhere in the code. You should also note that value can't be injected in

module.config(); this is one of the important differences between values and

constants. This is done to prevent accidental instantiation of services during the

configuration phase.

Constant
A constant is an injectable type that is the same as a value except that it can be in-

jected into module.config(). You register a constant by calling constant() function

of angular.module():

angular.module('myApp').constant('DATA_SOURCE','a string here');

Using Decorators
Sometimes, you'll need to extend the default functionality of certain third-party

services, but won't have permission to alter their source code. Aside from which,

it's not a good idea to modify third-party libraries to suit your needs. No problem:

This is where decorators come in! A decorator intercepts the creation of a service

and modifies its default behavior on the fly. It may return an object which wraps

the original service and delegate tasks to it, or simply attach new functions/properties

to the original service.

Let's look at an example. There is a built-in $log service in AngularJS which is used

to log messages to the console by default. However, say we need a different func-

tionality: Our app should be able to send some log data to the server apart from

logging to the console.

The $log service has five simple methods for logging:

■ log()

109AngularJS Services, Factories, and Providers

www.it-ebooks.info

http://www.it-ebooks.info/


■ info()

■ debug()

■ warn()

■ error()

We need a different method in the $log service, which logs to console and also

sends the data to a server. Let's implement this using a simple decorator that'll add

a new function to the $log service dynamically.

You register a decorator as follows:

angular.module('myApp').config(function($provide) {
  $provide.decorator('$log', function($delegate) { //$delegate is 
➥the original $log service.
    $delegate.postInfoToURI = function(message) {
      //send data to server. Maybe inject a service here which 
➥interacts with the server
      $delegate.log('Data to post:' + message);
      $delegate.log('Sending data to server');
    }
    return $delegate; //this is the modified $log service
  });
});

We create the decorator in config(), which runs when our module loads. Don't

worry about $provide. This is an built-in service and we're using it here simply to

register a decorator. The first argument to decorator() should be the name of the

service we want to decorate. In this case we want to decorate $log, so we pass $log

as the first argument. The second argument is a simple function which can declare

multiple dependencies. The argument $delegate represents the service to be dec-

orated which is, in this case, the $log service. Apart from $delegate you can declare

dependencies on other built-in and custom services.

Check for the Existence of Functions/Properties Before Attaching

Them
Before attaching a new function or property to a service inside a decorator you

should always check for the existence of the function or property. This is because,

AngularJS: Novice to Ninja110

www.it-ebooks.info

http://www.it-ebooks.info/


in a future release, AngularJS might itself define a new function that happens to

have the same name your decorator uses. Doing some extra checking doesn't hurt.

This can be done easily with the Object.hasOwnProperty() function and, in

case the service already has the function, you can throw an exception.

In this scenario we need a separate method for sending data to our server. So, we

call this method postInfoToURI() and attach it to $delegate, which is nothing but

the $log service. Finally, we return this updated $delegate object. As a result, if

you ask for a $log service in a different component (such as a controller), you will

get $log service with one extra function: postInfoToURI().

The following snippet shows how to use this modified $log service in a controller:

angular.module('myApp').controller('TestController', function($scope,
➥ $log) {
  $scope.data='sample data';
  $log.postInfoToURI('Added some data to scope'); //call the newly 
➥added function
});

In the above example, the decorator simply adds a new behavior to an existing ser-

vice. You can also do pretty complex things with decorators. For example, it's pos-

sible to wrap the service in a new object and delegate the function calls to the ori-

ginal service. This is useful in cases where you want to perform additional logics

before or after delegating to actual function. For instance, if you want to log the

current timestamp before a log message is written you can use this pattern to decorate

$log service.

Now that we've seen decorators, this gives us another difference between a value

and a constant. While values can be decorated and thereby extended, the same

can't be done with constants.

What About $provide?

We've only really touched on the $provide service, so far, but it's definitely a

big deal. Indeed, $provide is what actually makes registering different components

possible. All the functions you called on angular.module()—such as. ser-

vice(),factory(),provider(),value() andconstant()—also exist in the

$provide service. These are exposed on angular.module() for convenience

111AngularJS Services, Factories, and Providers

www.it-ebooks.info

http://www.it-ebooks.info/


and, internally, they all delegate to the corresponding functions defined in

$provide. But you don't have to worry about it now as we have a dedicated

chapter on dependency injection which explores $provide in detail.

Conclusion
In this chapter we've looked at the various injectable types in AngularJS—in partic-

ular services, factories and providers. We also took a look at decorators. By now

you're probably itching to get your hands dirty and write some real AngularJS code.

Don't worry, in the next chapter, you'll get to do just that as we'll start developing

our demo app, Single Page Blogger.

AngularJS: Novice to Ninja112

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter6
Developing Single Page Blogger

Developing Our App
Now the fun really begins! In Chapter 2 you downloaded a zip containing the source

code for our app. At present it doesn't do very much: It has the starter source code,

a good directory structure and includes some modules to make a start. Like every

other blogging system, our app also has a posts module. And everything related to

the posts module goes into the directory posts. Let's start with the routing first.

Defining Routes
After extracting the zip you downloaded in Chapter 2 you'll have a directory called

sp-blogger. This is our working directory.

We'll use Angular UI-router, discussed in Chapter 4, to define states. To do this,

simply add the following code to sp-blogger/modules/posts/postModule.js:

angular.module('spBlogger.posts').config(['$stateProvider',
➥'$locationProvider',function($stateProvider,$locationProvider){
    $stateProvider.state('allPosts',{
        url:'/posts',

www.it-ebooks.info

http://www.it-ebooks.info/


        templateUrl: 'modules/posts/views/posts.html',
        controller: 'PostController'
    });
    $stateProvider.state('singlePost',{
        url:'/posts/:id/:permalink',
        templateUrl: 'modules/posts/views/singlePost.html',
        controller: 'PostDetailsController'
    });
}]);

Here's what we just did, step-by-step:

1. First, we need to configure our module to define different states. For this we inject

$stateProvider from the ui.router module.

2. There are currently two states. The first one is allPosts, which deals with

showing all the blog posts. This state consists of three properties: url, tem-

plateUrl, and controller. As we've set the url to /posts, when the state all-

Posts is activated, the user is taken to the URL: /posts. The templateUrl points

to the appropriate HTML template, which loops through all the posts and displays

them. The controller points to PostController, which we're going to create

shortly.

3. The second state deals with displaying details about a single blog post. When

the app is in the first state, the users see all the posts. So, once they click on any

single post the second state is activated displaying more details about the selected

post. In the url you can see two named parameters: id and permalink. We will

use id to fetch a single post. The permalink property is there for creating search

engine friendly URLs. It represents the hyphen-separated title of a post. We'll see

that while storing posts. The templateUrl and controller for this state are :

singlePost.html and PostDetailsController.

4. Note we're not using html5Mode here and that's why the URLs will be prefixed

with #. It's a great idea to turn off html5Mode during development so that you can

directly access routes without any server-side configuration. Later on, we'll see

how to take advantage of html5Mode.

5. Finally, when all the modules finish loading we make a transition to the state

allPosts by calling $state.go('allposts'). As a result, when someone visits

AngularJS: Novice to Ninja114

www.it-ebooks.info

http://www.it-ebooks.info/


http://localhost:8000 the state allPosts is activated and they see all the blog

posts. The code for this goes into /sp-blogger/app/js/app.js:

angular.module('spBlogger').run(['state ,function(state)
➥{ $state.go('allPosts'); }]);

Now that we have the routing in place, let's get our service ready; it exposes a

method to retrieve the blog posts. The service will then be injected into our control-

lers so that we can fetch the posts and stick them in the $scope.

Creating Our Service
Our service will typically interact with a REST back-end to fetch the blog posts.

But, as we haven't yet developed that back-end yet, let's just hard code a few post

objects and provide some functions that expose them. Later on, we can change the

internal implementation of our service regarding how we fetch posts, but the client

code that uses our service will remain the same. Here is our service, which should

go into sp-blogger/app/modules/posts/js/services.js as this is a part of the postsmodule:

angular.module('spBlogger.posts.services', []).factory('postService'
➥, function() {
  return {
    posts: [{
      id: 1,
      title: 'Simple title1',
      content: 'Sample content...',
      permalink: 'simple-title1',
      author: 'Sandeep',
      datePublished: '2012-04-04'
    }, {
      id: 2,
      title: 'Simple title2',
      content: 'Sample content...',
      permalink: 'simple-title2',
      author: 'Sandeep',
      datePublished: '2012-05-04'
    }, {
      id: 3,
      title: 'Simple title3',
      content: 'Sample content...',
      permalink: 'simple-title3',

115Developing Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


      author: 'Sandeep',
      datePublished: '2012-06-04'
    }, {
      id: 4,
      title: 'Simple title4',
      content: 'Sample content...',
      permalink: 'simple-title4',
      author: 'Sandeep',
      datePublished: '2012-07-04'
    }],
    getAll: function() {
      return this.posts;
    },
    getPostById: function(id) {
      for (var i in this.posts) {
        if (this.posts[i].id == id) {
          return this.posts[i];
        }
      }
    },
  }
});

1. As you can see we've taken the factory approach and hard-coded four post objects

in the instance returned by the factory. Each post has six properties—id, title,

content, permalink, author, datePublished—which are self-explanatory.

The permalink property represents a search engine-friendly URL, which is created

by rendering the title in lowercase, and converting the spaces into hyphens.

2. We expose two methods: getAll() and getPostById(). The former returns all

the posts and the latter one finds a single post specified by an id.

Now that we have our service ready let's create the controller and utilize the service.

Creating the Controller
The controllers: PostController and PostDetailsController are part of the posts

module. The following code will go into sp-blogger/app/modules/posts/js/controllers.js:

angular.module('spBlogger.posts.controllers',[]).controller
➥('PostController',['$scope','postService',
➥function($scope,postService){

AngularJS: Novice to Ninja116

www.it-ebooks.info

http://www.it-ebooks.info/


    $scope.getAllPosts=function(){
        return postService.getAll();
    };

    $scope.posts=$scope.getAllPosts();

}]).controller('PostDetailsController',['$stateParams','$state',
➥'$scope','postService',function($stateParams,$state,$scope,
➥postService){

    $scope.getPostById=function(id){
        return postService.getPostById(id);
    };

    $scope.closePost=function(){
        $state.go('allPosts');
    };

    $scope.singlePost=$scope.getPostById($stateParams.id);

}]);

1. The controller PostController gets a reference to postService through depend-

ency injection. It attaches a function getAllPosts() to the $scope which, under

the hood, calls the function getAll() on postService.

2. Similarly, the controller PostDetailsController attaches a function getPostBy-

Id() to the $scope, which retrieves a single post based on the post id. The id is

passed in the URL and was declared as a named parameter while configuring the

states. So, it's available in $stateParams. The controller also attaches another

function closePost() to the $scope, which takes users from a single post page

to home (back to all blog posts). This function is called when they click on the

close button.

3. After fetching the post(s) we attach them to our $scope so that the templates can

access them.

Now that we have the controllers ready let's move towards the templates.

117Developing Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


Creating the Templates
We need two templates, which are as follows:

1. Template for showing all posts (state allPosts). This template loops through all

the posts ($scope.posts model) and lists them. This should go into

sp-blogger/modules/posts/views/posts.html.

<div class="row">
  <div class="col-xs-3" ng-repeat="post in posts track by $index">
   <div class="well">
    <h3 class="postTitle"><a ui-sref="singlePost({id:post.id,
➥permalink:post.permalink})">{{post.title}}</a></h3>
    <h5>By: {{post.author}} | {{post.datePublished}}</h5>
   </div>
  </div>
</div>

As you can see, we loop through the posts and show title, author and the

published date of each. We also use ui-sref directive from ui.router module

to take users to the state singlePost from allPosts. We also pass id and

permalink to the state which appear in the URL. So, when somebody clicks on

the title they're taken to something like this: http://local-

host:8000/#/posts/1/simple-title1 and the state singlePost is activated.

2. Template for showing details about the selected post (state singlePost). This

template uses $scope.singlePost model to show the details. This should go

into sp-blogger/modules/posts/views/singlePost.html.

<div class"row">
  <div class="col-xs-8 col-xs-offset-2">
 <span class="pull-right cross-btn" ng-click="closePost()">×
➥</span>
 <h1>{{singlePost.title}}</h1>
 <h5>By: {{singlePost.author}} | {{singlePost.datePublished}}</h5>
 <div class="postContent">

  {{singlePost.content}}

 </div>
  </div>
</div>                    

AngularJS: Novice to Ninja118

www.it-ebooks.info

http://www.it-ebooks.info/


This page utilizes expressions {{}} to display the model properties. We have an

× button which, when clicked, calls $scope.closePost()and takes users back

to state allPosts.

App Entry Point (index.html)
When the user accesses localhost:8000 the index.html loads where AngularJS kicks

in. Here we'll use some Bootstrap CSS to quickly create a layout for us. We also use

the directive ui-view from ui.router module where our templates will load. Here

is what index.html looks like:

<!doctype html>
<html lang="en" ng-app="spBlogger">
<head>
  <meta charset="utf-8">
  <base href="/">
  <title>The Single Page Blogger</title>
  <link rel="stylesheet" href="css/bootstrap.min.css">
  <link rel="stylesheet" href="css/app.css">
  <link rel="stylesheet" href="modules/posts/css/posts.css">
</head>
<body>
  <div class="container">
    <br/>
    <div class="jumbotron text-center">
        <h1>The Single Page Blogger</h1>
        <p>One stop blogging solution</p>
    </div>
    <div ui-view></div>
    <div class="row footer">
        <div class="col-xs-12 text-center">
            <p>The Single Page Blogger <app-version/></p>
        </div>
    </div>
  </div>
</body>
    <script src="lib/angular/angular.min.js"></script>
    <script src="lib/angular-ui-router/angular-ui-router.min.js">
➥</script>
    <script src="js/app.js"></script>
    <script src="js/controllers.js"></script>
    <script src="js/directives.js"></script>
    <script src="js/filters.js"></script>
    <script src="js/services.js"></script>

119Developing Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


    <script src="modules/posts/postModule.js"></script>
    <script src="modules/posts/js/controllers.js"></script>
    <script src="modules/posts/js/filters.js"></script>
    <script src="modules/posts/js/directives.js"></script>
    <script src="modules/posts/js/services.js"></script>
</html>

Be sure to download the updated web-server.js from the code archive and replace

scripts/web-server.js with the new one. I have tweaked some code so that you just

type http://localhost:8000 and Node serves index.html automatically. If you open

up the browser and go to http://localhost:8000 you'll see the result, shown in

Figure 6.1 and Figure 6.2.

Figure 6.1. Our blogging app, showing all of the posts

AngularJS: Novice to Ninja120

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 6.2. Our blogging app, showing a single post (lorem ipsum text added for testing purposes)

How About Some Unit Tests?
If you recall, in Chapter 1 we set up our test environment, but now it's actually time

for us to embrace best practices and unit test our code. Having already seen why

we unit test our code let's move towards the 'how' part and start with our service.

Before anything else, be sure to download karma.conf.js and protractor-conf.js from

Chapter 6's codebase. The files should be (re)placed in the /sp-blogger/config direct-

ory.

Unit Testing postService
Let's unit test our postService to ascertain two things:

1. When postService.getAll() is called it returns four post objects. Here, I assume

that we have four hard-coded posts in postService instance.

2. When we call postService.getPostById(id) passing two as the argument, we

get only one post object.

Here is the test written in Jasmine syntax. Paste this into

sp-blogger/test/unit/servicesSpec.js.

121Developing Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


describe('postService test\n',function(){
    beforeEach(module('spBlogger.posts.services'));

    it('postService should return 4 post objects',
➥inject(function(postService){
        expect(postService.getAll().length).toBe(4);
    }));

    it('postService should return one object for id 2',
➥inject(function(postService){
        var post=postService.getPostById(2);
        expect(post).not.toBe(undefined);
    }));
});

We also need to tell Karma, the test runner, where to look for our modules. So, go

to karma-conf.js present inside sp-blogger/config and make sure the following two

lines are present in the files array:

'app/lib/angular-ui-router/angular-*.js', //for ui.router module
'app/modules/**/*.js' //for our app modules

Now run the script scripts/test.sh or scripts/test.bat as explained previously. On Mac

you simply need to go to sp-blogger/scripts in the terminal and run sh test.sh. If

you're on Windows just double-click on test.bat. If everything goes well, the Karma

server will start. Click on the debug button and you'll be taken to the debug screen.

If you open up the browser console you can see the test succeed with a message as

shown in Figure 6.3.

Figure 6.3. Successful Karma test of our app

AngularJS: Novice to Ninja122

www.it-ebooks.info

http://www.it-ebooks.info/


Now let's understand what really happens in the above unit test.

1. The unit test you see above is written with Jasmine syntax. The describe()

function is known as a test suite and groups a set of related tests. Inside this we

can have multiple test specs. The it() function creates one such test spec.

2. The beforeEach() function runs before each it(). We want our module to be

loaded before the it() function runs. So, we call the module() function with our

module name spBlogger.posts.services and pass it to beforeEach().

3. The it() function does the actual task. The first argument is a string indicating

the result you expect from the test. You may pass inject() function as the second

argument. The inject() function takes a callback where you can write your test

spec and also declare your dependencies. In this case we ask for postService

instance so that we can call the functions on it.

4. The first argument to expect() is the value you want to check and toBe() function

takes the expected value. In case the value of the first argument does not match

the expected value the test fails. You can play around with these values and

tweak the tests to see them fail.

5. In the above cases, if you change value in toBe() or add or remove some hard-

coded posts in the postService the tests will fail.

Now, if you change anything in your postService implementation, you ensure that

you didn't break any of the previous code just by refreshing the browser.

Similarly, we can also unit test our controllers PostController and PostDetailsCon-

troller.

Unit Testing Controllers
The following unit test validates that when the controller PostController is instan-

tiated, the $scope.posts model is initialized with four posts. When the controller

PostDetailsController is instantiated, we ensure that the model $scope.single-

Post is initialized with a single post object. Make sure to put the test inside

sp-blogger/test/unit/controllersSpec.js.

123Developing Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


describe('PostController Test\n', function(){
  beforeEach(module('spBlogger.posts.controllers'));
  beforeEach(module('spBlogger.posts.services'));   
    
  it('Should initialize controller with 4 posts', 
➥inject(function($rootScope,$controller,postService) {
      var $scope=$rootScope.$new();
      $controller('PostController',{$scope:$scope,
➥postService:postService});
      expect($scope.posts.length).toBe(4);
  }));

  
});

describe('PostDetailsController Test\n', function(){
    beforeEach(module('spBlogger.posts.controllers'));
    beforeEach(module('ui.router'));
    beforeEach(module('spBlogger.posts.services'));

    it('Should initialize controller with 1 post', 
➥inject(function($state,$stateParams,$rootScope,$controller,
➥postService) {
        var $scope=$rootScope.$new();
        $stateParams.id=2;
        $controller('PostDetailsController',{$scope:$scope,
➥$stateParams:$stateParams,$state:$state,postService:postService});
        expect($scope.singlePost).not.toBe(undefined);
    }));

});

Now if you refresh the browser you can see the result of this new test. Figure 6.4 is

how it looks on my machine.

AngularJS: Novice to Ninja124

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 6.4. Testing the controllers

The unit test for our controllers is similar to the one created previously, with only

a few differences:

1. We load the required modules using beforeEach() so that our components can

be discovered.

2. We pass three and five dependencies to the callback passed to inject() for

PostController and PostDetailsController respectively .

3. The $controller is a built in AngularJS service which instantiates a controller.

While instantiating we pass the required dependencies to it.

4. The $rootScope.$new() creates a new child $scope needed by our controller.

5. The first test spec is pretty simple. But in the second test spec we assume that

the app is in state singlePost. So, we grab the $stateParams service and set

$stateParams.id to two explicitly. Finally, $state along with $stateParams

and postService are passed to $controller.

6. Once the controller is instantiated, in the first test spec we validate that

$scope.posts model has four objects. In the second one we validate that

$scope.singlePost is an object and not undefined.

We have just two unit tests for now. As we develop more features, we'll create more

such tests.

125Developing Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


Writing an End-to-End (e2e) Test
Now that we've written some unit tests, let's wrap up with a simple e2e test. Note

that the protractor configurations are present in sp-blogger/config/protractor-conf.js.

This test, carried out using Protractor, validates two things:

1. When the users navigate to http://localhost:8000 the state allPosts loads

and they see four posts.

2. When the first post is clicked, the new route with URL http://local-

host:8000/#/posts/1/simple-title1 loads.

So, here is the e2e test that should go into sp-blogger/test/e2e/scenarios.js.

describe('The Single Page Blogger E2E Test', function() {

  browser.get('/'); //go to http://localhost:8000

  protractor = protractor.getInstance();

  it('Should have 4 posts', function() {
     var posts = element.all(by.repeater('post in posts'));
     expect(posts.count()).toBe(4); // we have 4 hard coded posts
  });

  it('Should redirect to #/posts/1/sample-title1', function() {
    var posts = element.all(by.repeater('post in posts'));
    posts.first().then(function(postElem) {
        postElem.findElement(by.tagName('a')).then(function(a) {
              a.click(); //click the title link of 1st post
              expect(protractor.getCurrentUrl()).toMatch
➥('/posts/1/simple-title1');
        });
    });
  });

});

Now if you run scripts/e2e-test.sh or scripts/e2e-test.bat (depending on your OS) you

can see the test succeed! Let's have a closer look at the above test scenario to under-

stand more about e2e tests:

AngularJS: Novice to Ninja126

www.it-ebooks.info

http://www.it-ebooks.info/


1. With the help of Protractor we programmatically open the HTML page, click

links just like a real user would, and finally check the outcome.

2. browser.get() function accepts the HTML file name where we want to conduct

the tests.

3. element.all(by.repeater('post in posts')); accepts the repeater expression

present in the view and returns the number of elements present. Since we have

four hard-coded posts in the service, the value obtained here must exactly be

four.

4. Next, we want to validate that when someone clicks on the first post, he is taken

to the URL http://localhost:8000/posts/1/simple-title1.

5. posts.first() let's grab the first post element in the repeater. We pass a callback

to posts.first().then(), which is subsequently called by Protractor with the

first element as an argument.

6. findElement() and by.tagName() together help us select the <a> tag (hyperlink

on post title) present on the view for the first post. When we say a.click(), this

link is clicked and in the next step we make sure the newly loaded URL matches

the expected URL.

This was our first taste of End-to-End tests with Protractor. We'll see more variations

as we progress.

Conclusion
In this chapter, we finally started making significant progress with our demo app!

We developed some components for it and also unit tested them to make sure

everything works as expected. In the end we also saw how to run End-to-End tests.

At this point we are confident about creating routes, controllers and services for

our app. The next chapter will show how you can accept user inputs and take the

app one step further with AngularJS forms.

127Developing Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter7
Understanding AngularJS Forms
A form is one of the basic requirements for any CRUD app. You'll likely have differ-

ent forms for different kind of operations. The good news is that AngularJS offers

a nice form API that, not only lets you bind form controls to scope models, but also

allows you to validate each control easily. This chapter will focus on form handling

and validation in AngularJS.

AngularJS Forms
What's a form? Well, it's just a container that groups several related input controls

together. A control is an HTML element (such as input, select, textarea) that lets

users enter data. You already know AngularJS provides us with the very useful ng-

model directive that keeps the input control value and scope model in sync. So, to

begin with, let's see how you can use ng-model with different input controls.

The <form> Element

Please note that in the following examples, the <form> element isn't doing any-

thing extra. All the data bindings will still work without <form>. Later on, we

will see how the <form> element is useful.

www.it-ebooks.info

http://www.it-ebooks.info/


<input> and <textarea> controls
As you've already seen, to tie the input control value to a scope model, you need

to attach the ng-model directive to it:

<form name="myform">
    <input type="text" name="firstname" ng-model="user.firstname" />
</form>

By doing this you bind the input field's value to the scope model user.firstname.

A textarea can also be bound to a scope model in exactly the same way:

<form name="myform">
    <textarea name="bio" ng-model="user.bio"></textarea>
</form>

Now, let's see some more controls we haven't used so far.

<select> control
To bind the selected option of a <select> element to the scope model you need to

use the ng-model directive as follows.

  <form name="myform">
    <select name="country" ng-model="user.country">
      <option value="US">United States</option>
      <option value="GB">United Kingdom</option>
      <option value="AU">Australia</option>
    </select>
  </form>

In this case whatever value you select is passed to the $scope.user.country model.

There is nothing extra you need to do. AngularJS automatically detects the currently

selected option and sets it to the scope model.

Handling Empty Options
One of the common problems encountered while dealing with <select> is that,

initially, AngularJS automatically inserts an empty <option> to the <select>. This

is because, to begin with, $scope.user.country doesn't match any option values.

So, in the above example, you'll see an empty option in addition to the three

AngularJS: Novice to Ninja130

www.it-ebooks.info

http://www.it-ebooks.info/


country options. To ensure this doesn't happen you can insert something like this

to the <select>:

<select name="country" ng-model="user.country">
    <option value="">Please select an option</option>
    <option value="US">United States</option>
    <option value="GB">United Kingdom</option>
    <option value="AU">Australia</option>
</select>

If you do this, the first option in the select drop down will be Please select an

option rather than an empty value.

Getting Options From the Scope Model
In a real world app you would most likely fetch the different options for the select

menu via a web service and store them in a scope model. The next task for you is

to loop through the array of options and generate the select menu dynamically. This

can be achieved easily with the ng-options directive. So, let's modify our previous

snippet to do this.

Script:

  <script type="text/javascript">
    angular.module('myApp', []).controller('UserController', 
➥function($scope) {
      $scope.user = {};
      $scope.countries = [{
        id: 'US',
        desc: 'United States'
      }, {
        id: 'GB',
        desc: 'United Kingdom'
      }, {
        id: 'AU',
        desc: 'Australia'
      }];
    });
  </script>

HTML Markup:

131Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


<body ng-controller="UserController">
  <form name="myform">
    <select name="country" ng-model="user.country" ng-options=
➥"country.id as country.desc for country in countries">
    </select>
  </form>
  <div>Selected Country: {{user.country}}</div>
</body>

As you can see, we have a scope model $scope.countries, which holds an array

of country objects. Right now it's hard coded. Each object has two properties : id

and desc. Now take a look at the ng-options directive attached to <select>. Its

value is as follows:

ng-options="country.id as country.desc for country in countries"

We can break the above expression into two smaller chunks.

1. Loop through the countries array present in $scope and in each loop assign the

current object to the variable country.

2. Create an <option> element. The value attribute of the element should be coun-

try.id. The actual label that the users will see should be country.desc.

As we have three objects in the array AngularJS will create three <option> elements

for our select menu. After that, the value you select will go into the scope model

$scope.user.country. As usual there will also be an empty value in the select

initially. This can be resolved by writing something like this:

<select name="country" ng-model="user.country" ng-options=
➥"country.id as country.desc for country in countries">
  <option value="">Please select an option</option>
</select>

Adjusting the Code to Return the Country Object

When you select an option in the drop-down the scope model

$scope.user.country is set to the value of country.id (country represents

the selected country in drop-down) and not the country object. So, if you want

to have the actual country object you can tweak ng-options as follows:

AngularJS: Novice to Ninja132

www.it-ebooks.info

http://www.it-ebooks.info/


ng-options="country as country.desc for country in countries"

Note we're not using country.id as country.desc. Rather we use country

as country.desc. So, when an option is selected in the drop-down, your scope

model user.country is assigned to the selected country object.

Handling Multi Select
If you attach an attribute multiple to a <select> then it becomes a multi select.

This means users are allowed to select multiple options rather than just one. In that

case if you have ng-model attached to the <select>, the scope model will hold an

array of choices rather than just a string. Try adding a multiple attribute to the select

element in above snippet to see the change.

Radio Button Control
Assume that you have a set of radio buttons, out of which only a single button can

be selected. In this case you can use ng-model as follows:

Script:

  <script type="text/javascript">
    angular.module('myApp', []).controller('UserController', 
➥function($scope) {
      $scope.user = {};
    });
  </script>

HTML Markup:

<body ng-controller="UserController">
  Hey, what do you love?
  <form name="myform">
    <input type="radio" ng-model="user.choice" value="Coffee" />
➥Coffee
    <input type="radio" ng-model="user.choice" value="Beer" />
➥Beer

133Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


  </form>
  <div>I love: {{user.choice}}</div>
</body>

Basically, you need to bind multiple radio buttons to the same ng-model and the

scope model will be updated with the currently selected value.

Checkbox Control
Binding checkboxes to a scope model is very simple and can be done like this:

<body ng-controller="UserController">
  Hey, do you love coffee?
  <form name="myform">
    <input type="checkbox" ng-model="user.choice" />Coffee
  </form>
  <div>{{user.choice}}</div>
</body>

For the sake of brevity I'm only showing the markup that's been altered. In this case,

if the checkbox is checked the scope model user.choice will be set to true. Simil-

arly, when it's left unchecked the value of scope model will be false. If a true/false

combo doesn't suit, you can use the ng-true-value and ng-false-value to set a

custom value. Here is how you do it:

<input type="checkbox" ng-model="user.choice" ng-true-value="yes"
➥ ng-false-value="no"/>Coffee

Now, the scope model user.choice will be set to yes or no, depending on whether

the checkbox is checked or unchecked.

Okay, we've discussed using different controls. Now let's see how we can easily

validate our forms while providing instant feedback to our users.

AngularJS Form Validation
Validating form controls and providing feedback to users is very important. To

provide the best experience, users should be immediately notified about any errors

and allowed to correct them. As discussed above, AngularJS is pretty good at this;

AngularJS: Novice to Ninja134

www.it-ebooks.info

http://www.it-ebooks.info/


it offers a well-defined API to validate forms and notify the users about errors intu-

itively. Let's see how to use it.

Don't Forget Server-Side Validation

Although doing client-side validation is good, it can be easily bypassed. So, in

addition to client-side validation, you should always have validation on the

server side. That way, even if somebody bypasses your AngularJS validation you're

still protected.

When you write a <form> element in AngularJS, it has a special meaning. A form

is an AngularJS directive. When we reach the directives chapter, you'll discover

that directives can also have controllers associated with them. An AngularJS form

directive instantiates a FormController, which keeps track of its child controls and

their states (such as valid, invalid, etc.). If you attach a name attribute to <form>

(thereby giving it a name) then the FormController instance is published to the

enclosing scope under that name. Similarly, an ng-model directive instantiates Ng-

ModelController and, if you attach a name attribute to the field, the instance is

published to the enclosing scope. NgModelController exposes an API to validate

the field, format or parse the values, track the field state, etc.

Having these things in mind, let's modify our previous examples, add some more

fields to the <form>, and validate them as follows:

1. The First Name and Last Name fields should be mandatory and should contain a

minimum of two characters.

2. The phone number field is optional and should contain exactly 10 digits, if filled.

AngularJS offers a set of built-in directives to validate form controls:

1. ng-maxlength: Validates the maximum allowable characters in a field.

2. ng-minlength: Validates the minimum allowable characters in a field.

3. ng-required: Marks the fields that are mandatory.

4. ng-pattern: Validates a field against a given regex (regular expression).

135Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


Let's create a simple form with First Name, Last Name and Phone Number fields, and

validate them with the built-in AngularJS directives:

<html ng-app="myApp">

<head>
  <title>AngularJS Form Validation</title>
  <script src="https://code.angularjs.org/1.2.16/angular.js">
➥</script>
  <script type="text/javascript">
    angular.module('myApp', []).controller('UserController', 
➥function($scope) {
      $scope.user = {};
    });
  </script>
  <style>
    .error-message {
      color: red;
    }
    input.ng-dirty.ng-invalid {
      border-color: red;
    }
  </style>
</head>

<body ng-controller="UserController">
  <form name="myform" novalidate>
    First Name:
    <input type="text" name="firstname" ng-model="user.firstname"
➥ ng-required="true" ng-minlength="2" />
    <span class="error-message" ng-show="myform.firstname.$dirty 
➥&& myform.firstname.$error.required">The First Name is Mandatory
➥</span>
    <span class="error-message" ng-show="myform.firstname.$dirty 
➥&& myform.firstname.$error.minlength">The First Name should be 
➥minimum 2 characters</span>

    <br/>Last Name :
    <input type="text" name="lastname" ng-model="user.lastname" 
➥ng-required="true" ng-minlength="2" />
    <span class="error-message" ng-show="myform.lastname.$dirty 
➥&& myform.lastname.$error.required">The Last Name is Mandatory
➥</span>
    <span class="error-message" ng-show="myform.lastname.$dirty 

AngularJS: Novice to Ninja136

www.it-ebooks.info

http://www.it-ebooks.info/


➥&& myform.lastname.$error.minlength">The Last Name should be 
➥minimum 2 characters</span>

    <br/>Phone No. :
    <input type="text" name="phoneNumber" ng-model="user.phoneNumber" 
➥ng-maxlength="10" ng-minlength="10" ng-pattern="/^\d{10}$/" />
    <span class="error-message" ng-show="myform.phoneNumber.$dirty 
➥&& myform.phoneNumber.$invalid">The phone number field should be 
➥of 10 digits</span>
    <br/>
  </form>
</body>

</html>

If you type into the fields (first name and last name) and erase them you'll see an

error message. Also, you'll see validation errors until the fields contain a minimum

of two characters. Similarly, as you type into the phone number field you'll see an

error message until the value is 10 characters long and consists of numbers only.

Let's take a look at what's happening behind the scenes.

Applying Validation
You can attach the built-in validation directives listed above to kick-start the valid-

ation process. AngularJS will apply the validation automatically once you attach a

validation directive. The next step for you is to detect when the fields become in-

valid and show corresponding error messages.

Tracking Validity of a Form
As I mentioned earlier, the form directive publishes an instance of FormController

into the scope. In this case, the name of our form is myform. So, we automatically

get a model myform in the $scope passed to UserController and, as you know, we

can use this model in our view. This scope model has various properties that let us

track the status of our form. These are as follows

1. $pristine: If true then the user has not started interacting with our form. Once

the user interacts with the form, the $pristine property is set to false. So, in our

case you can use myform.$pristine to track whether a user has interacted with

the form or not.

137Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


2. $dirty: This is the reverse of $pristine. Initially, the property $dirty is set to

false. Once the user starts interacting with any of the form controls, the form be-

comes dirty and $dirty property is set to true. Ideally, we don't want to show

any validation messages until the user starts interacting with the form. In that

case you can use $dirty property to check whether the form is dirty or not.

3. $valid: The $valid property of the form is set to true when all the individual

fields of a form become valid. So, in our case we can just check myform.$valid

to make sure we are displaying error messages only after the user starts interacting

with our form.

4. $invalid: The $invalid property of the form is set to true if at least one field in

the form is invalid.

You should also note that all the above properties are also available at the individual

field level. As you know, the ng-model directive publishes an instance of NgModel-

Controller to the scope. This model also exposes the four properties discussed

above to track the status of the particular field. For example, when you say my-

form.firstname.$valid you are checking the validity of the individual field

(firstname) rather than the form. When all these individual fields become valid,

the enclosing form becomes valid. Similarly, you can check other properties like

$pristine, $dirty and $invalid at the field level.

In the previous snippet, we first added novalidate to our form so that the default

HTML5 validation is turned off. We do this because we don't want the browser to

apply its own validation. Our AngularJS code will take care of validation here, and

prevent the form from getting submitted in case of validation errors. We attach the

ng-required directive to the firstname and lastname fields so that they are always

filled before the form is submitted. We also use ng-minlength to make sure

firstname and lastname are at least two characters long.

Now we need to show different error messages for these fields depending on the

type of error present. This is because we have multiple validators attached to the

first name and last name fields and they can go into $invalid state due to any of

the validations. So, you can use $error property which contains all the validation

errors associated with the field as keys. We can use different keys for showing dif-

ferent validation messages. Take a look at the following list to know the key names

in form.fieldName.$error for different validators:

AngularJS: Novice to Ninja138

www.it-ebooks.info

http://www.it-ebooks.info/


1. ng-required: form.fieldName.$error.required

2. ng-maxlength: form.fieldName.$error.maxlength

3. ng-minlength: form.fieldName.$error.minlength

4. ng-pattern: form.fieldName.$error.pattern

In our form above we are using ng-show="myform.firstname.$error.required"

to show a particular error message for required validation errors. When the error

is related to minlength we use ng-show="myform.firstname.$error.minlength"

to show a different error message.

We also need to ensure that the error message is displayed only after the user inter-

acts with the field (in other words, when the field is dirty). So, we write:

<span class="error-message" ng-show="myform.firstname.$dirty && 
➥myform.firstname.$error.required"></span>

This way our message is displayed only if the field is dirty and not valid.

Next, we need to validate that the phoneNumber should be of exactly 10 digits. Note

that phoneNumber field is optional and should only be validated if it's filled. So, we

use ng-pattern to validate that the field contains exactly 10 digits and omit the

ng-required directive to make it optional. ng-pattern can take a regular expression

(regex) and validate the field against it. So, I have used the regex /^\d{10}$/ to

make sure non-digit characters are not allowed and exactly 10 digits are present. If

you have some other constraints you can roll out your own regex and use it with

ng-pattern. Since there is only one validator attached to phoneNumber field we can

simply do the following to display a message in case of validation error:

<span class="error-message" ng-show="myform.phoneNumber.$dirty && 
➥myform.phoneNumber.$invalid">The phone number field should be 
➥of 10 digits</span>

Applying Color to Invalid Input controls and Messages
When an input control becomes invalid due to some validation errors AngularJS

automatically adds the ng-invalid class to it. So, you can easily write CSS rules

against this class so that, for example, the field becomes red (or any color you wish)

139Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


when a user types some incorrect value and the field becomes invalid. Also when

the field becomes valid again, AngularJS remembers to take out that ng-invalid

class and add ng-valid to the field, and so the input field looks normal again..

In our form we're using the following CSS to trigger this:

input.ng-dirty.ng-invalid{
    border-color:red;
}

The following CSS is used to display the error message inside <span> in a red color:

.error-message {
    color: red;
}

Form Submission
So far so good. We've validated our fields. But how do you submit an AngularJS

form? To do that, you simply attach ng-submit to the <form> and pass a function

to it. Then you'll need an <input type="submit"/> button somewhere in the form

to trigger the submission. Further inside the submission handler function you can

check whether the form is valid or invalid and proceed accordingly.

Here's how to modify our form to trigger submission:

1. Add <input type="submit" value="Save"/> to the <form>

2. Add a function to scope that will handle the form submission. This is done in

the controller.

$scope.saveUser = function() {
    if($scope.myform.$valid)
      console.log('saving user'); // save $scope.user object
    else
      console.log('Unable to save. Validation error!');
 }

3. Attach ng-submit to our <form>:

AngularJS: Novice to Ninja140

www.it-ebooks.info

http://www.it-ebooks.info/


ng-submit="saveUser()"

So, when the user clicks the submit button, $scope.saveUser() runs. Inside the

function you can check $scope.myform.$valid to ensure that the form is valid and

proceed with the submission. Remember that a form is valid when all the fields of

the form are valid.

Using ng-form
There is also an ng-form directive which is useful if you want to nest forms. Actually,

the browser won't allow you to nest forms by default. So, if you have a form and

want to group together a set of elements inside it, you can use ng-form.

You should note that ng-form is not a replacement for the form directive. ng-form

should only be used to group fields and check their validity. You might wonder

why we need this extra ng-form directive. Why we can't just use a normal div to

group several form controls inside the main form? Well, ng-form comes to the rescue

when we dynamically output input controls and need to validate those. Take a

look at the following code:

<body ng-controller="MainController">
  <form name="outer">
    <div ng-repeat="item in items" ng-form="inner">
      Name:
      <input ng-model="item.name" name="name" ng-required="true" /> 
➥<span ng-show="inner.name.$dirty && inner.name.$invalid">
➥Name is required</span>
      <br/>Price:
      <input ng-model="item.price" name="price" ng-required="true" 
➥/><span ng-show="inner.price.$dirty && inner.price.$invalid">
➥Price is required</span>
      <hr/>
    </div>
  </form>
</body>

Here, based on the number of items present in the scope, we'll output input controls.

If you didn't use ng-form as shown above and used a div to group the input controls,

we won't, now, be able to validate them. Like form, ng-form accepts a name and

141Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


publishes the FormController to the enclosing scope. In each iteration we can refer

to this name and apply validations to the dynamically output fields.

Custom Validators
While built-in validators certainly come in handy, in real-world apps you'll often

need to create custom validators to validate data. AngularJS has full support for

creating custom validators through directives. But we're not going to cover directives

for a while yet! So, let's save custom validators for our chapter on directives.

Updating Models With a Twist
Here, I'd like to mention something interesting. While accepting user inputs,

sometimes, you'll want to trigger model updates in a different way. As you already

know, ng-model attaches a keydown listener to the input field so that, each time

someone types into it, the scope model gets updated. But you may want to trigger

the view to model update on some other event, such as mousedown or blur. For ex-

ample, you may like to update the model only when the input field loses focus. So,

you can tell AngularJS to update the scope model on a blur event. This is done

through the ng-model-options directive:

<input type="text" ng-model="firstname" ng-model-options="
➥{updateOn: 'blur'}" />

In this case, the model doesn't get updated while the user is typing. Instead it updates

when the field loses focus—in other words, when you click somewhere outside of

the field. If you want to update the model on multiple DOM events you can do so.

For example, the following snippet updates the model on both blur and mousedown

events:

<input type="text" ng-model="firstname" ng-model-options="
➥{updateOn: 'blur mousedown'}" />

You can also preserve the default behavior i.e. updating the model as the user types

and add additional events. This is done like this:

AngularJS: Novice to Ninja142

www.it-ebooks.info

http://www.it-ebooks.info/


<input type="text" ng-model="firstname" ng-model-options="
➥{updateOn: ' default blur mousedown'}" />

You also get another feature with ng-model-options: You can perform debounced

model updates with the debounce property in ng-model-options. Debounced update

means the model should not be updated immediately. By default when the DOM

event fires, the ng-model updates the scope model immediately. But if you want to

introduce some delay before the model update you can use debounce. The following

snippet explains this:

<input type="text" ng-model="firstname" ng-model-options="
➥{updateOn: 'blur', debounce:100}" />

The above snippet introduces a100 millisecond delay while updating the model. If

you want different delay periods for different events you can do so like this:

➥<input type="text" ng-model="firstname" ng-model-options="
➥{updateOn: 'blur', debounce:{default: 100, blur:200}}" />

In default case, the model update gets delayed by 100 ms and in case of blur the

delay is 200 ms.

Forms in Action : Single Page Blogger v1.1
We've discussed many aspects of AngularJS forms. Now let's add a simple form to

our example app that takes inputs from the admin to create a blog post. We won't

create the post or store it somewhere. We'll just create a form and validate it to rein-

force the concepts discussed in this chapter.

Post CRUD operations is the functionality of the admin panel. So, first we need to

create an admin module and define the states. For now we won't implement any

authentication or authorization. The aim is that, when we type the URL for the admin

panel in the browser, our route should load. Later on, when we have the admin

panel completely ready we'll implement authentication or authorization.

Creating the admin Module
The admin module is created in the same way as the posts module. Take a look at

the screenshot shown in Figure 7.1 see the differences.

143Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 7.1. Admin Module Structure

Defining States
Now we need to define some states using the ui.routermodule. The content should

go into modules/admin/adminModule.js:

angular.module('spBlogger.admin').config(['$stateProvider',
➥function($stateProvider){
    $stateProvider.state('admin',{
        url:'/admin',
        abstract:true,
        controller:'AdminController',
        templateUrl:'modules/admin/views/admin-home.html'

AngularJS: Novice to Ninja144

www.it-ebooks.info

http://www.it-ebooks.info/


    }).state('admin.postNew',{
        url:'/posts/new',
        controller: 'PostCreationController',
        templateUrl:'modules/admin/views/admin-new-post.html'
    }).state('admin.postUpdate',{
        url:'/posts/:id/edit',
        controller: 'PostUpdateController',
        templateUrl:'modules/admin/views/admin-update-post.html'
    }).state('admin.postViewAll',{
        url:'',
        controller: 'PostListController',
        templateUrl:'modules/admin/views/admin-all-posts.html'
    });
}]);

As you see, AdminPanelController is the central control that'll be used for the admin

panel. For CRUD operations, we have different states with different controllers.

In UI router, states can be nested. The templateUrl of state admin

(modules/admin/views/admin-home.html) has a sidebar and also a ui-view. The

sidebar contains all the admin operations like "Create Post", "Update Post", etc. The

ui-view is used for loading the child states of admin. You should also note that in

UI router if you use a period . in the name of a state, say, admin.postViewAll, then

the part after the period (in this case postViewAll) becomes a child to the part before

the period (in this case, admin). So here we have three child states of admin: ad-

min.postNew, admin.postUpdate, admin.postViewAll. You can see that the state

admin is marked as abstract. This means the state can't be activated directly. Rather

it will be loaded when any of its child states is activated. As we have set the url of

state admin.postViewAll to '', this becomes the default child state. This means

when the state admin loads, its ui-view is automatically loaded with its child state

admin.postViewAll.

Creating Controllers
Now the following controllers should go into modules/admin/js/controllers.js:

angular.module('spBlogger.admin.controllers',[]).
➥controller('AdminController',['$scope',function($scope){
    
}]).controller('PostCreationController',['$scope',function($scope){
    

145Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


}]).controller('PostUpdateController',['$scope',function($scope){
    
}]).controller('PostListController',['$scope',function($scope){
    
}]);

The controllers don't do anything yet, but we'll fill them later on.

Admin Panel Template
The template for Admin Panel is added to modules/admin/views/admin-home.html.

The content is as follows:

<div class="row">
    <div class="col-xs-3">
        <ul class="nav nav-pills nav-stacked on-click-make-active">
            <!--Loads admin.viewAll state, doesn't contain 
➥anything right now -->
            <li><a ui-sref="admin.viewAll">View All Posts</a></li>
            <!--Loads admin.postNew state -->
            <li class="active"><a ui-sref="admin.postNew">Add Post
➥</a></li>
        </ul>
    </div>

    <div class="col-xs-9 border-left">
        <div ui-view></div> <!--The nested views are loaded here -->
    </div>

</div>

We are using nested views here. When the admin state is activated the above template

will be loaded into ui-view present in index.html. But when the state for adding

a new post, i.e. newPost is activated, its template (admin-new-post.html) is loaded

into ui-view present in the above template. If you look at the states you'll see that

the states for CRUD operations are prefixed with admin. So, from this ui.router

knows that the CRUD states are nested inside admin state.

AngularJS: Novice to Ninja146

www.it-ebooks.info

http://www.it-ebooks.info/


We're Using Bootstrap

We are using Bootstrap 3 to quickly create layouts.

Template For Adding a New Post
Here, we'll create a template that contains a simple form to get inputs from admin

in order to create a new post. The file is named admin-new-post.html and goes into

modules/admin/views. The validation rules are simple and as follows:

1. The Post Title and Content are mandatory.

2. The Keywords and Tags fields can't contain any special characters, except com-

mas.

3. The Add Post button is enabled only when all the validation conditions are sat-

isfied.

<div class="row">
    <div class="col-xs-8">
        <form name="newPostForm" class="form-horizontal" novalidate 
➥role="form">
            <div class="form-group" ng-class="{'has-error'
➥:newPostForm.title.$dirty && newPostForm.title.$invalid}">
                <label for="title" class="col-sm-2 control-label">
➥Post Title</label>
                <div class="col-sm-10">
                    <input type="text" name="title" ng-model=
➥"post.title" ng-required="true" class="form-control" id="title" 
➥placeholder="Title">
                    <span class="error-message" ng-show="newPostForm.
➥title.$dirty && newPostForm.title.$invalid">Title is mandatory
➥</span>
                </div>
            </div>
            <div class="form-group" ng-class="{'has-error':
➥newPostForm.content.$dirty && newPostForm.content.$invalid}">
                <label for="content" class="col-sm-2 control-label">
➥Content</label>
                <div class="col-sm-10">
                    <textarea cols="8" rows="6" name="content" 
➥class="form-control" ng-model="post.content" ng-required="true" 
➥id="content" placeholder="Content"></textarea>

147Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


                    <span class="error-message" ng-show="newPostForm.
➥content.$dirty && newPostForm.content.$invalid">You need to have 
➥some content!</span>
                </div>
            </div>
            <div class="form-group" ng-class="{'has-error':
➥newPostForm.tags.$dirty && newPostForm.tags.$invalid}">
                <label for="tags" class="col-sm-2 control-label">
➥Tags</label>
                <div class="col-sm-10">
                    <input type="text" name="tags" 
➥class="form-control" id="tags" ng-pattern="/^[\w,]+$/"
➥ ng-model="post.tags" placeholder="Comma separated tags"/>
                    <span class="error-message" ng-show="newPostForm
➥.tags.$dirty && newPostForm.tags.$invalid">Sorry! No special 
➥characters allowed here.</span>
                </div>
            </div>
            <div class="form-group" ng-class="{'has-error':
➥newPostForm.keywords.$dirty && newPostForm.keywords.$invalid}">
                <label for="keywords" class="col-sm-2 
➥control-label">Keywords</label>
                <div class="col-sm-10">
                    <input type="text" name="keywords" class=
➥"form-control" id="keywords" ng-pattern="/^[\w,]+$/"  
➥ng-model="post.keywords" placeholder="Comma separated keywords"/>
                    <span class="error-message" ng-show="newPostForm.
➥keywords.$dirty && newPostForm.keywords.$invalid">Sorry! No special
➥ characters allowed here</span>
                </div>
            </div>
            <div class="form-group">
                <div class="col-sm-offset-2 col-sm-10">
                    <button type="submit" class="btn btn-success"
➥ ng-disabled="newPostForm.$invalid">Add Post</button>
                </div>
            </div>
        </form>
    </div>
</div>

Now we're all set. If you type http://localhost:8000/#/admin/posts/new in your

browser you'll be taken to this form. Take a look at the screenshot in Figure 7.2 to

check it out.

AngularJS: Novice to Ninja148

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 7.2. The New Post Form

Now, the form looks like Figure 7.3 if the validation fails:

Figure 7.3. The New Post Form, with Failed Validations

We won't create any other forms for now. The other forms will be created as a part

of CRUD operations when we'll learn to interact with REST APIs.

149Understanding AngularJS Forms

www.it-ebooks.info

http://www.it-ebooks.info/


Conclusion
This was just a simple form for creating a new post. In the next chapter we'll see

how to talk to the outside world via XHRs and actually persist the data in a back-

end using the $http and $resource services. We'll also learn to make promises!

AngularJS: Novice to Ninja150

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter8
Interacting with REST APIs
Up to this point in our project, we've been storing all the blog posts in a custom

service. But in a real-world app, you'll need to store your data in persistent storage:

your server will normally expose a REST API, which will enable you to perform

CRUD operations on your app. In AngularJS, we interact with these REST APIs using

services such as $http and $resource. But before you do this, you need to be aware

of a concept called promises. This chapter will first introduce the concept of

promises and then explain how to work with REST APIs using $http and $resource.

In the next chapter we'll revamp our demo app to use a REST back-end to store our

blog posts. We'll also see how to unit test controllers that involve REST interaction.

Let's start with promises first. They're both fun and enjoyable (promise!)

A Primer on Promises
A promise object represents a value that may not be available yet, but will be at

some point in future. It enables you to write asynchronous code in a more synchron-

ous way. This means your asynchronous function will return immediately and you

can treat this return value as a proxy to the actual value that'll be obtained in future.

www.it-ebooks.info

http://www.it-ebooks.info/


A typical example of the use of a promise object is in an AJAX request to a remote

server. If you use promises, your AJAX call should return a promise object immedi-

ately rather than waiting for a response. This won't hold any value yet; it just acts

as a proxy to the actual value that will be received from the server later. When the

AJAX request completes and an actual response arrives from the server, the Promise

is resolved with that data. If the response can't be obtained due to some error, the

promise is rejected with an error message. The promise object also exposes several

methods that enable you to write callbacks, which will be called once the it's resolved

or rejected.

The figure shown in Figure 8.1 depicts the basic idea behind Promises:

Figure 8.1. How promises work

Let's take a look at some pseudo code that logs in a user and (once the login is suc-

cessful) performs some other task. In the first scenario we pass a callback to login()

that's called after login is successful:

AngularJS: Novice to Ninja152

www.it-ebooks.info

http://www.it-ebooks.info/


user.login(username,password,function(){
    //This callback is passed to login() so that it's called only 
➥after login is successful.
});

Now, here's the login() function returning a promise, and we use it to perform

some task once login is successful:

user.login(username,password).then(function(){
    //do something here
});

The following section discusses the Promise API in detail.

The Promise API
AngularJS enables you to create and use promises through a built-in service called

$q. The following pseudo code shows how to use the API exposed by $q:

function getPromise(){

    var deferred=$q.defer(); // Line 1 : Creates a new deferred 
➥object

    doAsyncTask(function(err,data){
        if(err)
            deferred.reject('Promise Rejected'); // Reject the 
➥Promise associated with the deferred object
        else
            deferred.resolve('Promise Resolved'); // Resolve the 
➥Promise associated with the deferred object
    });

    return deferred.promise;   //return the Promise associated with 
➥the deferred object

}

Assuming $q is available in the scope, the method $q.defer() creates a new de-

ferred object, which has an associated Promise instance. Within the code is an

imaginary function doAsyncTask() that performs a task asynchronously . For in-

stance, if you want to retrieve data from a remote server you'd make an AJAX call;

153Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


If you want to delay the execution of an expression you could use $timeout/$inter-

val here. When the actual result of the operation is available you should resolve

the associated promise by calling deferred.resolve(). In case of an error, you can

reject the promise with an error message. This is done by calling deferred.reject().

The last thing to note is that the above function returns immediately with de-

ferred.promise as the return value. So, whoever calls this function will get the

promise instance in return.

$q Inspirations

The $q service was inspired by Kris Kowal's Q1. The difference is that $q is tightly

integrated with the scope life cycle and contains all the features needed by common

asynchronous tasks.

Let's see how we can deal with the promise:

function showResult(){

    var promise = getPromise(); // get the Promise instance

    promise.then(function(message) {
      console.log('Promise Resolved with Message: '+message);
    }, function(message) {
      console.log('Promise Rejected with Message: '+message);
    });
}

The function getPromise() returns a promise instance. This has a method then(),

which takes three callbacks as follows:

promise.then(successCallback,failureCallback,notifyCallback);

The success callback is called when the promise is resolved (as a result of calling

deferred.resolve()). The callback accepts one argument, which represents the

resolution value (the value passed to deferred.resolve()). The second callback

passed to then() is the error callback and is called when the Promise is rejected as

a result of calling deferred.reject(). Again it accepts a single argument, which

represents the rejection reason (the value passed to deferred.reject()). The third

1 https://github.com/kriskowal/q

AngularJS: Novice to Ninja154

www.it-ebooks.info

https://github.com/kriskowal/q
http://www.it-ebooks.info/


argument is the notify callback which may be called multiple times to indicate the

operation progress (we'll see it shortly). Note that not every callback is mandatory.

In the snippet above we only used the success callback. But if you don't provide an

error callback you won't be able to know if your promise gets rejected. So, in most

cases it's a good idea to pass both success and error callbacks.

Promise Resolution

A promise instance can be resolved or rejected only once in its lifetime. If a

promise is not yet resolved/rejected it's said to be in a pending state. You should

also note that in the world of promises we are not concerned about when a

promise is resolved/rejected. Rather we're interested in the final outcome of the

promise. So, if a promise has already been resolved and, later, you pass two call-

backs to the then() function, the success callback will be correctly called. Since

promises are resolved/rejected only once, if you try to resolve/reject a promise

multiple times such operations will be ignored.

Promises Shorthand

You can also use promise.catch(errorCallback) for handling rejections. It's

a shorthand for promise.then(null,errorCallback)

There is also a promise.finally(callback) method, which can be used to

perform some tasks regardless of whether a promise is resolved or rejected. Use

cases for this method include performing final cleanups, releasing resources etc.

But beware! As finally is a reserved keyword in JavaScript you should write

your method like promise['finally'](callback) to keep IE8 happy!

Example Usage
Keeping the above points in mind, let's simulate an asynchronous task using

promises. First we need to create an empty controller as follows:

Controller:

 angular.module('mainApp', []).controller('MainController', 
➥['$scope','$q','$interval',function($scope, $q, $interval) {

155Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


    // we wil use $q here

 }]);

Now, inside the controller, we'll attach a method to $scope, which will use the

built-in $interval service to perform a simple task asynchronously:

getPromise():

$scope.getPromise = function() {
    var i = 0;
    var deferred = $q.defer(); //creates a new deferred object

    var timer = $interval(function() {

      if ( !! $scope.cancelRequested) { //if cancellation is 
➥requested from UI, reject the Promise
        deferred.reject('Promise Rejected due to cancellation.');
        $interval.cancel(timer);
      }

      i = i + 1; //increment i each time

      if (i == 5) {
        deferred.resolve('Counter has reached 5'); //once the value 
➥of i=5, resolve the promise
        $interval.cancel(timer); //make sure to cancel timer
      } else {
        deferred.notify('Counter has reached ' + i); //else notify 
➥the client about the progress
      }
    }, 1000); //run the task every 1 second

    return deferred.promise; //finally, return the Promise instance
}

Our function is pretty simple. It runs a task every second and increments a variable

i by 1. In each iteration we check if the value of i has reached 5. If so, we resolve

the promise. Otherwise, we call deferred.notify() to notify the user about its

progress. If the model $scope.cancelRequested is set to true, it means somebody

has requested to cancel the task. In this case, we reject the promise and cancel the

AngularJS: Novice to Ninja156

www.it-ebooks.info

http://www.it-ebooks.info/


timer. Finally, the function returns deferred.promise to return the Promise instance

to the caller.

Now, we need to add another function getAsyncMessage() to the $scope which

calls the above function:

getAsyncMessage():

$scope.getAsyncMessage = function() {

    var promise = $scope.getPromise(); //get hold of the Promise 
➥instance

    promise.then(function(message) {
      $scope.status = 'Resolved : ' + message;
    }, function(message) {
      $scope.status = 'Rejected : ' + message;
    }, function(message) {
      $scope.status = 'Notifying : ' + message;
    });
}

Here we get the promise instance by calling $scope.getPromise(). Next, we pass

three callbacks to the function promise.then(). Notice the third callback. This is

called whenever deferred.notify() is called while performing an asynchronous

task. So, in our case, it'll execute multiple times while the first two callbacks will

execute only once. Also note that, for a particular Promise instance, either the success

callback or the error callback will be called, depending on whether the promise is

resolved or rejected.

Causing a $digest Cycle

When the different callbacks passed to then() execute, a $digest() cycle runs.

So, if you change any scope models inside these callbacks (like we did above),

the view will be updated.

Now, let's quickly create some markup that shows two buttons: One to start the

asynchronous task and the other one to cancel it.

index.html:

157Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


  <body ng-controller="MainController">
          
  <input type="button" ng-click="getAsyncMessage()" value="Get me an 
➥async message"/>
  <input type="button" ng-click="cancelRequested=true" value="Cancel 
➥Fetching Message"/><br/>
  Promise Status - {{status}}
  </body>

Now, if you hit the first button you'll see the task progress via the notify callback.

Finally, when the promise is resolved, the status text will be updated with the

resolution message. But if you cancel the task in the meantime, by clicking the

second button,the promise will be rejected and the status text will be updated with

the corresponding message.

Promise Chaining
Chaining is one of the most important aspects of promises. The basic idea is that

promises can be composed through chaining. This means you can trigger a specified

task only after previous promise has been resolved.

The function promise.then() returns another promise instance, which is resolved

via the return value of a success callback. Take a look at the following example:

promise.then(function(message) {
  return "success";
}).then(function(message) {
  console.log(message); // prints "success"
});

Now we have two promises chained together. Note that the success callback passed

to the first then() returns a simple value "success". So, the promise instance re-

turned by then() is resolved immediately with the value success. As the second

then() waits on this promise, the success callback passed to it gets called immedi-

ately.

But what if the success callback returns another promise instead of a simple value?

How do we handle this? Let's modify our previous code:

AngularJS: Novice to Ninja158

www.it-ebooks.info

http://www.it-ebooks.info/


promise.then(function(message) {
  //we have our message here
  return getAnotherPromise(); //return a promise here again
}).then(function(message) {
  //handle the final result
});

In this case the success callback to first then() returns another promise instance.

So, the second then() waits on this promise until it's settled (resolved or rejected)

and the appropriate callback is called with a resolution or rejection message as an

argument. The figure shown in Figure 8.2 depicts what's happening here:

Figure 8.2. Promise chaining

Now that you have multiple promises chained you can attach a catch() to promise

object (like then()) to handle any rejections.

Creating a Promise that Always Rejects
Sometimes it's useful to create and return a promise that is always rejected. This is

useful if you want to tell a user about the occurrence of an error but in terms of a

promise rather than a simple value.

For now let's see how to create such a promise:

function getPromise(){
    return $q.reject('Rejection Reason');
}

The above function creates a promise that's always rejected. So, if you attach a

then() function to the returned promise instance and pass two callbacks the error

callback will be correctly called.

159Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


getPromise().then(function(message) {
    // Doesn't get called
},function(message) {
    //This is called
});

The main focus of this chapter is to give you an idea about how to perform REST

interaction with a back-end server. In AngularJS, you can talk to REST APIs through

a service called $http, which heavily relies on promises. Now that you've seen

promises, it's time for us to move on and learn about the $http service.

Understanding the $http Service
Let's meet $http officially. $http is a core AngularJS service that uses the browser's

XMLHttpRequest object to communicate with remote servers. Like all other services

you need to inject $http into your controller or custom service via dependency in-

jection. Here's how you can inject $http into your custom service:

angular.module('mainModule',[]).service('customService',
➥function($http) {
  this.getData=function(){
    return $http({method:'GET',url:'/api'}); //use $http() here. 
➥This function returns a Promise.
  }
});

The $http service is a function that accepts a single argument, called the config

object.

This config object defines various parts of the HTTP request, such as method, url,

data etc. As $http is based on the $q service, the return value of the function $ht-

tp() is a promise instance. So, you can attach then() to it as usual and pass suc-

cess/error callbacks that'll be called appropriately. So, here is how we can use the

customService defined in the above snippet.

angular.module('mainModule').controller('TestController', 
➥function($scope, customService) {
    $scope.getData=function(){
        customService.getData().then(function(data,status,config,
➥headers){

AngularJS: Novice to Ninja160

www.it-ebooks.info

http://www.it-ebooks.info/


            console.log('Response from server: '+data); //called 
➥when responses arrives from server
        },function(data,status,config,headers){
            console.log('Some error occurred!'); //called in case of 
➥error
        });
    }
});

The success callback is called asynchronously when the request completes and the

response arrives from the server. Similarly, in the case of any error the error callback

is fired. These callbacks can even be rewritten as follows:

angular.module('mainModule').controller('TestController', 
➥function($scope, customService) {
    $scope.getData=function(){
        customService.getData().success(function(data,status,config,
➥headers){
            console.log('Response from server: '+data); //called 
➥when responses arrives from server
        }).error(function(data,status,config,headers){
            console.log('Some error occurred!'); //called in case of 
➥error
        });
    }
});

Note the usage of success() and error() methods.

These callbacks accept the following parameters:

■ data: This is the response obtained from server.

■ status: The HTTP status code (e.g. 200, 401 etc) returned from server.

■ config: The config object that was used to generate the request.

■ headers:This is a map which contains the headers sent by the server.

■ statusText: The HTTP status text (e.g. OK for 200) for the status code.

Now, you can either use $http() passing a config object to it or just use one of the

following shorthand methods:

161Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


■ $http.get(url)

■ $http.post(url,data)

■ $http.put(url,data)

■ $http.delete(url)

■ $http.head(url)

The above methods also accept an extra optional parameter, config, which is used

to configure other parts of the request if any.

The config Object
The config object can be used to configure several options for generating the request.

The most common properties that you're going to use are:

■ url: The URL to which a request will be made. This may be relative or absolute.

Just note that the URL should be from your own domain in order for $http to

work. But if you want to work with remote URLs outside your domain the URLs

must be CORS enabled. In other words, the remote server must specify that your

domain is allowed to interact with it by setting a header called Access-Control-

Allow-Origin in the response.

■ method: This represents your request method i.e. GET, POST , PUT etc.

■ data: If you're making a POST/PUT request you might need to send some data

as request body. This is configured in the data property of config object and

can either be a simple string or an object. In the case of an object, the data will

be serialized to a JSON string before getting sent as request body.

■ headers: This is a simple object for configuring the headers. The key corresponds

to the header name and the value corresponds to the header value.

■ params: If you're making a GET request and want to send query parameters (such

as ?key1=value1&key2=value2) you can configure that here via a simple object.

There are several other properties in the config object that we'll cover as we proceed.

AngularJS: Novice to Ninja162

www.it-ebooks.info

http://www.it-ebooks.info/


Cross Origin Resource Sharing

When you provide a cross-domain URL to $http, the browser will first perform

an OPTIONS request to the remote URL to check if Access-Control-Allow-

Origin is present in the response. If it exists then it'll proceed with the actual

request, or else, won't go any further.

You can learn more about CORS (Cross Origin Resource Sharing) at Wikipedia2.

There is also a method called $http.jsonp(),which facilitates interaction with

remote URLs, but it expects the server to return a response in a slightly different

way. That said, in general, CORS is the modern way of doing things. If you want

to support really old browsers (like IE 7 or earlier) you might want to use jsonp.

If you want to have a CRUD API you're going to have a hard time with jsonp.

A Weather Search Service
Let's build something fun and practical to understand how $http works. In this

section we'll build a simple AngularJS app that returns the current weather data for

your favorite city.

The OpenWeatherMap3 website exposes a nice API, which returns our required

weather data. Let's see how to do it:

Assuming our main module has already been defined as mainApp, here is how we

define our service:

angular.module('mainApp').factory('weatherService', 
➥function($http) {
  return {
    getWeather: function(city, country) {
      var query = city + ',' + country;
      return $http.get('http://api.openweathermap.org/data/2.5/
➥weather', {
        params: {
          q: query
        }
      }).then(function(response) { //then() returns a promise which 
➥is resolved with return value of success callback
        return response.data.weather[0].description; ///extract 

2 http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
3 http://openweathermap.org/

163Interacting with REST APIs

www.it-ebooks.info

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://openweathermap.org/
http://www.it-ebooks.info/


➥weather data
      });
    }
  }
});

Our API endpoint is : http://api.openweathermap.org/data/2.5/weather. It ad-

ditionally expects a query parameter q, which should contain value in the following

format:

?q=cityName,countryName

So, our custom service weatherService defines the getWeather() function, which

accepts city and country and uses them to send a GET request to the API.

Now, we need to use this service in our controller as follows:

angular.module('mainApp').controller('WeatherController', 
➥function($scope, weatherService) {
  $scope.getWeather = function() {
    $scope.weatherDescription = "Fetching . . .";
    weatherService.getWeather($scope.city, $scope.country).
➥then(function(data) {
      $scope.weatherDescription = data;
    }, function() {
      $scope.weatherDescription = "Could not obtain data";
    });
  }
});

As you can see we call weatherService.getWeather() and pass success and error

callbacks to the promise returned by it. When the response comes from the remote

server, the success callback is called, setting a scope model called $scope.weather-

Description. The first parameter data to the success callback is the weather data

returned by the server.

Also, just before making the request we change the $scope model weatherDescrip-

tion to Fetching . . . so that the UI will be updated through data binding.

Finally, we create the view as follows:

AngularJS: Novice to Ninja164

www.it-ebooks.info

http://www.it-ebooks.info/


<body ng-controller="WeatherController">
  City :
  <input type="text" ng-model="city" placeholder="Enter city name 
➥here" />Country:
  <input type="text" ng-model="country" placeholder="Enter country 
➥name here" />
  <button ng-click="getWeather()">Get Weather</button>
  <br/>
  <br/>
  <b>Weather Condition:</b>  <span>{{weatherDescription}}</span>
</body>

We simply ask the user for city and country names. When the button is clicked the

controller method getWeather() is called to obtain the weather information.

If you open up the code archive and run this app, you will see the weather data as

expected.

Setting Request Headers
If you want to configure headers for every HTTP request, you can do so in config

block as follows:

angular.module('mainApp').configure(function($httpProvider){
    $httpProvider.defaults.headers.common.Accept="applcation/json";
});

Or in a run block, as a part of $http.defaults:

angular.module('mainApp').run(function($http){
    $http.defaults.headers.common.Accept="applcation/json";
});

If you need to configure headers only for PUT or POST requests you need to use the

object $httpProvider.defaults.headers.put or $httpProvider.defaults.head-

ers.post.

Apart from post and put if you want to configure headers for other requests (such

as GET) you can do so as follows:

165Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('mainApp').configure(function($httpProvider){
    $httpProvider.defaults.headers.get={'Content-Type':
➥'application/json'};
});

Please note the lowercase get in the above code!

The above was all about setting headers globally. But you might want to override

the headers for a particular request. In that case you should set the headers property

in the request config object. Take a look at the following code:

$http.({url:'/api',method:'GET',headers:{'Content-Type':
➥'text/plain'}});

In this example, we have safely overridden the headers for a particular request

without changing global configurations.

Request and Response Transformers
Whenever we are using the $http service there are some transformations going on

under the hood. These transformations are:

1. If you pass a JavaScript object as POST data in a POST/PUT request, it's serialized

to JSON before getting sent.

2. Similarly, if the server responds with a JSON string it's parsed into a JavaScript

object and passed to the success callback attached to the promise.

Apart from these, sometimes you might need to transform the request or response

before sending the request or after receiving the response. You can do this by con-

figuring transformRequest and transformResponseproperties of $httpProvider.de-

faults.

transformRequest
The transformRequest property can be set to a function that accepts two parameters,

data and getHeaders, and returns a serialized version of data. Inside the function

you can add or modify the headers, and also manipulate the data dynamically for

any request. To put it another way, you get a chance to modify the request before

actually sending it.

AngularJS: Novice to Ninja166

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('mainApp',[]).config(function($httpProvider){
    $httpProvider.defaults.transformRequest=function(data,
➥getHeaders){
        var headers=getHeaders(); //obtain the headers
        headers['Content-Type']='text/plain'; // add a header 
➥dynamically
        return JSON.stringify(data); //return serialized data
    }
});

You can also configure transformRequest property for a particular request in the

config object.

$http.({url:'/api',method:'GET',
➥transformRequest:transformRequestFunc});

Using Multiple Request Transformers

If you directly assign a transformation function to $httpProvider.de-

faults.transformRequest it will be the only transformer and remove any

other request transformers that were previously present. If you would rather like

to have multiple request transformers you can push or unshift your function to

$httpProvider.defaults.transformRequest property as follows:

$httpProvider.defaults.transformRequest.push
➥(yourTransformerFunction);

transformResponse
With the transformResponse property you get a chance to transform the response

before handing it to your application code. You configure a response transformer

as follows:

angular.module('mainApp',[]).config(function($httpProvider){
    $httpProvider.defaults.transformResponse=function(data,
➥getHeaders){
        data.someProperty='something else'; //change the response

167Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


        return JSON.stringify(data); //return serialized data
    }
});

Like transformRequest, this can also be set for a particular request through the

config object. If you want to have multiple response transformers you can

push/unshift your function, as we did in the case of transformRequest.

Caching
Once users are on your website you may not want to hit the server every time you

need to obtain data. Chances are that the data might not have been changed at all;

often it's a good idea to cache the response obtained from server.

There's a cache property in the request config object. If you set it to true, the first

request made to the URL is actually sent to server. All the subsequent requests made

to the same URL are served from cache without hitting the server. So, in our

weather tracking app, we can use caching as follows:

return $http.get('http://api.openweathermap.org/data/2.5/weather?' 
➥+ query,{cache:true});

Now try entering a particular city and country name and hit the button. Next time

whenever you enter same city and country name into the fields the response will

be served from cache.

You should note that cached response is stored locally in a service called

$cacheFactory. As it uses the browser's memory to store the cached data, everything

will be erased if you even refresh the page. So, if you want to persist the cached

data across page reloads you may use localStorage.

Interceptors
Interceptors are useful for pre-processing the request before it's sent to the server,

and for post-processing of the response before it's handed to your application code.

A few examples of interceptors are authentication, logging, error handling etc.

AngularJS: Novice to Ninja168

www.it-ebooks.info

http://www.it-ebooks.info/


As the name suggests, interceptors are used to intercept the request/response at

different points, and to perform processing. There are two types of interceptors:

request and response, and these can be written as factory methods:

angular.module('mainApp',[]).factory('customInterceptor',
➥function($q,dependency1,dependency2){
    return {
        request: function(config){

            //A request interceptor is called before the request is 
➥sent to server and is passed a request config object.
            //You can either return a modified/new config object 
➥here
            //You can also return a Promise which resolves with a 
➥config object
            //In case of any error you can return a Promise that is 
➥rejected or throw an exception

            return config;
        },
        requestError: function(rejectionReason){
            //If a previous request interceptor returned a rejected 
➥Promise, this interceptor is called
            //You might try to recover from the error here and 
➥return a new config.
            // If all else fails let it fail by returning a promise 
➥that is always rejected

            if(ableToRecover(rejectionReason)){
                //constructs a config object
                return config;
            }
            else
                return $q.reject('Could not recover'); //return a 
➥Promise which always rejects
        },

        response: function(response){
            // This interceptor is called when $http receives the 
➥response from the backend.
            //but before the response is handed to the application 
➥code the interceptor kicks in.
            // The response object contains: data,status,config,
➥headers and statusText.
            // You return a new/modified response or a Promise that 

169Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


➥resolves with a response object.
            ///In case of error return a Promise that's always 
➥rejected.

            return response;
        },
        responseError:function(rejectionReason){
            // Sometimes a backend call may fail
            // Or a previous response interceptor may return a 
➥rejected Promise
            // In that case you might try to recover from that here

            if(ableToRecover(rejectionReason)){
                //create a response here
                return response; //You may also return a Promise 
➥here
            }
            else
                return $q.reject('Could not recover'); //return a 
➥Promise which always rejects
        }
    }
});

Now, you can push your interceptor to the list of interceptors as following:

angular.module('mainApp').config(function($httpProvider) {
    $httpProvider.interceptors.push('customInterceptor'); //factory 
➥name here
});

Now, depending on the interceptors you've configured, the methods will be called

at appropriate points.

Differences Between Transformers and Interceptors

An interceptor can be used to intercept the request/response at various points, as

discussed above. But transformers can be applied just before sending a request or

after receiving a response. Another important consideration is that, using trans-

formers, you just get access to data and headers of request/response while inter-

ceptors have access to the config object.

AngularJS: Novice to Ninja170

www.it-ebooks.info

http://www.it-ebooks.info/


The real advantage of $http is that it's very low level and therefore gives you great

flexibility. But, should you need more abstractions it's important to use the $re-

source service, as it's best suited for CRUD apps, and is, itself, based on $http.

There are some situations in which you might want to switch to $resource as it

gets you started quickly and offers useful out-of-the-box methods for dealing with

classic RESTful APIs. Let's see how to use $resource in our AngularJS apps.

Understanding AngularJS $resource
Most AngularJS apps will involve some level of CRUD operation. As such, you can

use $resource service to get started quickly. $resource is built on the top of $http,

but provides a higher level of abstraction.

Prerequisites
The $resource service doesn't ship with the AngularJS script out of the box. This

is because not every Angular app involves CRUD operations, and developers already

have $http for interacting services. So, if you need the $resource service you must

download angular-resource.js separately and include it in your page.

So, open up the directory Angular-Seed-Master/app/lib/angular and find angu-

lar-resource.js. This is the script file you'll need. After including it in your page

you need to declare a dependency on the module ngResource as follows:

angular.module('myApp',['ngResource']);

We're doing this because the $resource service is defined in the module ngResource.

How Does $resource Work?
$resource expects a classic RESTful API. This means your URLs should be in the

following format:

ResultRequest BodyHTTP VerbURL

Returns all entriesemptyGET/api/entries

Creates new entryJSON StringPOST/api/entries

Returns single

entry

emptyGET/api/entries/:id

171Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


ResultRequest BodyHTTP VerbURL

Updates existing

entry

JSON StringPUT/api/entries/:id

Deletes existing

entry

emptyDELETE/api/entries/:id

To use $resource inside your controller or service you need to declare a dependency

on $resource. The following snippet shows how to use $resource in your custom

service:

angular.module('myApp').factory('Entry', function($resource) {
  return $resource('/api/entries/:id'); // Note the full endpoint 
➥address
});

As you can see, you need to pass the full endpoint URL to the $resource()function.

Its return point is a $resource class representation. This is nothing but a constructor

function that may be instantiated to get a $resource instance. So, we have named

our service as Entry (not entry) because this is going to be a $resource class rep-

resentation.

Also note that Entry is just an example name here. In a real world app, this would

represent the name of something you want to persist in a back-end. For example,

in a movie store app, the service could be named Movie.

The $resource class has five methods by default:

1. get()

2. query()

3. save()

4. remove()

5. delete()

Now let us see how to use the methods through a simple example:

AngularJS: Novice to Ninja172

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').controller('ResourceController',
➥function($scope, Entry) {

  var entry = Entry.get({ id: $scope.id }, function() {
    console.log(entry);
  }); // get() returns a single entry

  var entries = Entry.query(function() {
    console.log(entries);
  }); //query() returns all the entries

  $scope.entry = new Entry(); //You can instantiate resource class

  $scope.entry.data = 'some data'; //so $scope.entry= 
➥{data:'some data'}

  Entry.save($scope.entry, function() {
        //saves serializes $scope.entry object as JSON and sends as 
➥POST body
  });

  Entry.delete({ id: $scope.id }, function() {
    console.log('Deleted from server');
  });

});

The get() function issues a GET request to the URL /api/entries/:id. We replace

the named parameter :id in the URL with $scope.id before the request is sent. You

should also note that the function get() returns an empty object (rather than a

Promise). This is populated automatically when the actual data comes from server.

The second argument to get() is a callback which is executed when the data arrives

from server. This is a useful trick because you can set the empty object returned by

get() as a $scope model and refer to it in the view. When the actual data arrives

and the object is populated, the data binding kicks in and your view is also updated.

Why Show an Empty Object?

You might question the wisdom of showing an empty object initially. Actually

it's a good thing because you can omit the callback passed to get() function. If

all you want is to set the model to $scope and you are not interested in knowing

when response comes you can just do the following:

173Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


$scope.entry=Entry.get({ id: $scope.id });

And now you can refer it in the template as usual. If the get() function didn't

return an empty object initially you would always need a callback, like this:

  Entry.get({ id: $scope.id }, function(entry) {
    $scope.entry=entry;
  });

The function query() issues a GET request to /api/entries (notice there is no :id)

and returns an empty array (not a simple object). This array is populated when the

data arrives from the server. Again you can set this array as a $scope model and

refer to it in the view through ng-repeat. You can also pass a callback to query(),

which is called once the data comes from the server.

The save() function issues a POST request to /api/entries using the first argument

as the POST body. The second argument is a callback, which is called once the data

is saved. You might recall that the return value of the $resource() function is a

resource class. So, in our case, we can call new Entry() to create an actual resource

instance, set various properties to it and finally save the object to the back end.

delete() and remove() work identically and issue a DELETE request to the URL

/api/entries/:id.

Use remove() to Ensure Compatibility with IE

The delete() method might not work in certain versions of IE, as delete is a

reserved keyword. To ensure your code works everywhere, use remove() instead.

Ideally, you'll only use get() and query() on the resource class (Entry in our case).

All the non GET methods, such as save() and delete() are also available in the

instance obtained by calling new Entry() (let's call this a $resource instance). But

the difference is that these methods are prefixed with a $. So, the methods available

in the $resource instance (as opposed to $resource class) are:

AngularJS: Novice to Ninja174

www.it-ebooks.info

http://www.it-ebooks.info/


$save()
$delete()
$remove()

For instance, the method $save() can be used as follows:

$scope.entry = new Entry(); //this object now has a `$save()` method
$scope.entry.$save(function() {
  console.log('data saved');
}); //$scope.entry is serialized to JSON and sent as the POST body.

We've explored the create, read and delete parts of CRUD. Now we're left with up-

date. To support an update operation we need to modify our custom factory Entry

as shown below.

angular.module('myApp').factory('Entry', function($resource) {
  return $resource('/api/entries/:id', { id: '@_id' }, {
    update: {
      method: 'PUT' // this method issues a PUT request
    }
  });
});

The second argument to $resource() is a map indicating what the value of the

parameter :id in the URL should be. Setting it to @_id means that, whenever we

call methods like $update() and $delete() on the resource instance, the value of

:id will be set to the _id property of the instance. This is useful for PUT and DELETE

requests. Also note the third argument. This is a map that allows us to add any

custom methods to the resource class. If the method issues a non-GET request it’s

made available to the $resource instance with a $ prefix. So, let’s see how to use

our $update method. Assuming we are in a controller:

$scope.entry = Entry.get({ id: $scope.id }, function() {
  // $scope.entry is fetched from server and is an instance of Entry
  $scope.entry.data = 'something else';
  $scope.entry.$update(function() {

175Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


    //updated in the backend
  });
});

When the $update() function is called, it does the following:

1. AngularJS knows that $update() function will trigger a PUT request to the URL

/api/entries/:id.

2. It reads the value of $scope.entry._id, assigns the value to named parameter

:id and generates the URL.

3. It then sends a PUT request to the URL with $scope.entry as the post body.

Similarly, if you want to delete an entry it can be done like this:

$scope.entry = Movie.get({ id: $scope.id }, function() {
  // $scope.entry is fetched from server and is an instance of Entry

  $scope.entry.$delete(function() {
    //gone forever!
  });
});

It follows the same steps as above, except the request type is DELETE instead of

PUT.

Using MongoDB

If MongoDB is used in the server, the $scope.entry instance you obtain from

the back-end will usually have a property called _id. It works as a unique identi-

fier for the particular instance. So, by writing { id: '@_id' } we ensure that

whenever $update() or $delete() is called on the resource instance, the named

parameter :id in the URL gets the value of _id property of that instance.

We've covered all the operations in a CRUD. But the $resource function also has

an optional fourth parameter. This is a map with custom settings. Currently, there

is only one setting available which is stripTrailingSlashes. By default this is set

to true, which means trailing slashes will be removed from the URLs you pass to

$resource(). If you wish to turn this off you can do so like this:

AngularJS: Novice to Ninja176

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').factory('Entry', function($resource) {
  return $resource('/api/entries/:id', { id: '@_id' }, {
    update: {
      method: 'PUT' // this method issues a PUT request
    }
  }, {
    stripTrailingSlashes: false
  });
});

No you know all about the $resource service. If you wish to learn more about the

settings and configurations available in $resource I encourage you to go through

the documentation: https://docs.angularjs.org/api/ngResource/service/$re-

source.

Now that you know how to talk to the outside world it's time to create different

views for our Single Page Blogger and store all the data in a remote server. In the

next chapter, we'll focus on implementing this new functionality.

Conclusion
So, we've ventured out into the world using AngularJS. Firstly, we learned about

$q service and promise API. Next, we saw how to make AJAX calls with built in

$http service. Finally, we explored $resource and revamped our app to store the

posts in a remote server. We also wrote couple of unit tests to test our controllers

using $httpBackend.

Next up, we'll walk you through the creation a CRUD app with $resource.

177Interacting with REST APIs

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter9
Using REST APIs in Single Page

Blogger

Applying $resource to Our App
Let's return to our Single Page Blogger app and use AngularJS's $resource to store

all our blog posts on a remote server. I've developed a RESTful back end to store

blog posts using Node.js and MongoDB. The app has been deployed to OpenShift

Cloud and can be accessed at http://spblogger-sitepointdemos.rhcloud.com.

Here is what the API looks like:

ResultRequest BodyHTTP VerbURL

Returns all postsemptyGET/api/posts

Create new postJSON StringPOST/api/posts

Returns single postemptyGET/api/posts/:id

Updates existing

post

JSON StringPUT/api/posts/:id

www.it-ebooks.info

http://www.it-ebooks.info/


ResultRequest BodyHTTP VerbURL

Deletes existing

post

emptyDELETE/api/posts/:id

Making Cross-domain API Calls

Normally you won't be able to make cross-domain API calls from your AngularJS

app. But since I have enabled CORS in my Node.js app you'll be able to make calls

to the above URLs from your app, which is great for testing purposes. But, in the

real world, be careful whitelisting different domains to access your API.

Let's start by creating three services:

1. A value service API_ENDPOINT that stores our end point URL.

2. A custom service Post that internally uses $resource.

3. A service called popupService which will show a prompt message to the users

when required.

Here's how we define the services. These definitions should go into

modules/admin/js/services.js.

angular.module('spBlogger.admin.services', []).factory('Post',
➥['$resource','API_ENDPOINT',function($resource,API_ENDPOINT){
    return $resource(API_ENDPOINT, { id: '@_id' }, {
        update: {
            method: 'PUT'
        }
    });
}]).service('popupService',['$window',function($window){
    this.showPopup=function(message){
        return $window.confirm(message); //Ask the users if they 
➥really want to delete the post entry
    }
}]).value('API_ENDPOINT','http://spblogger-sitepointdemos.rhcloud.
➥com/api/posts/:id'); // This is our end point

As you can see, our custom service Post uses the $resource service exactly as we've

discussed previously. The only difference is that it uses a real API. This URL is

stored in a value service called API_ENDPOINT.

AngularJS: Novice to Ninja180

www.it-ebooks.info

http://www.it-ebooks.info/


To keep things simple, let's assume that each blog post has four properties, which

will be collected via our AngularJS forms. These are as follows:

1. title

2. content

3. tags

4. keywords

Additionally there are two properties that are set on the server-side and, as such,

we don't provide them.

1. author – Defaults to Admin

2. datePublished – The current date.

In addition, there's a permalink property, which is derived from the title property

by replacing all spaces with dashes. This is for showing the post title in the URL

to end users.

Defining Templates
Here we'll define templates for CRUD operations. The first one is _form.html. This

template only contains the form fields and is used by both the Create and Update

templates. Here's the markup:

_form.html

<div class="form-group" ng-class="{'has-error':postForm.title.$dirty 
➥&& postForm.title.$invalid}">
    <label for="title" class="col-sm-2 control-label">Post Title
➥</label>
    <div class="col-sm-10">
        <input type="text" name="title" ng-model="post.title" 
➥ng-required="true" class="form-control" id="title" 
➥placeholder="Title">
        <span class="error-message" ng-show="postForm.title.$dirty 
➥&& postForm.title.$invalid">Title is mandatory</span>
    </div>
</div>
<div class="form-group" ng-class="{'has-error':postForm.content.

181Using REST APIs in Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


➥$dirty && postForm.content.$invalid}">
    <label for="content" class="col-sm-2 control-label">Content
➥</label>
    <div class="col-sm-10">
        <textarea cols="8" rows="6" name="content" 
➥class="form-control" ng-model="post.content" ng-required="true"
➥ id="content" placeholder="Content"></textarea>
        <span class="error-message" ng-show="postForm.content.$dirty 
➥&& postForm.content.$invalid">You need to have some content!</span>
    </div>
</div>
<div class="form-group" ng-class="{'has-error':postForm.tags.$dirty 
➥&& postForm.tags.$invalid}">
    <label for="tags" class="col-sm-2 control-label">Tags</label>
    <div class="col-sm-10">
        <input type="text" name="tags" class="form-control" 
➥id="tags"
➥ ng-pattern="/^[\w,]+$/" ng-model="post.tags" 
➥placeholder="Comma separated tags"/>
        <span class="error-message" ng-show="postForm.tags.
➥$dirty && postForm.tags.$invalid">Sorry! No special 
➥characters allowed here.</span>
    </div>
</div>
<div class="form-group" ng-class="{'has-error':postForm.keywords.
➥$dirty && postForm.keywords.$invalid}">
    <label for="keywords" class="col-sm-2 control-label">Keywords
➥</label>
    <div class="col-sm-10">
        <input type="text" name="keywords" class="form-control" 
➥id="keywords" ng-pattern="/^[\w,]+$/"  ng-model="post.keywords" 
➥placeholder="Comma separated keywords"/>
        <span class="error-message" ng-show="postForm.keywords.
➥$dirty && postForm.keywords.$invalid">Sorry! No special 
➥characters allowed here</span>
    </div>
</div>
<div class="form-group">
    <div class="col-sm-offset-2 col-sm-10">
        <button type="submit" class="btn btn-success" ng-disabled=
➥"postForm.$invalid">{{buttonText}}</button>
    </div>
</div>

Now let's move on to the next template.

AngularJS: Novice to Ninja182

www.it-ebooks.info

http://www.it-ebooks.info/


admin-new-post.html:

<div class="row">
    <div class="col-xs-8">
        <form name="postForm" ng-submit="savePost()" 
➥class="form-horizontal" novalidate role="form">
            <div ng-include="'/modules/admin/views/_form.html'"
        </form>
    </div>
</div>

As you can see this template dynamically includes the _form.html template using

ng-include.

admin-update-post:

<div class="row">
    <div class="col-xs-8">
        <form name="postForm" ng-submit="updatePost()" 
➥class="form-horizontal" novalidate role="form">
            <div ng-include="'/modules/admin/views/_form.html'"
        </form>
    </div>
</div>

This template, like the above one, dynamically includes the _form.html template

using ng-include.

admin-home.html:

<div class="row">
    <div class="col-xs-3">

        <ul class="nav nav-pills nav-stacked on-click-make-active">
            <li ui-sref-active="active"><a ui-sref=
➥"admin.postViewAll">View All Posts</a></li>
            <li ui-sref-active="active"><a ui-sref=
➥"admin.postNew">Add Post</a></li>
        </ul>

    </div>

183Using REST APIs in Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


    <div class="col-xs-9 border-left">
        <div ui-view></div>
    </div>

</div>

This template is for the Admin Panel. In the left sidebar it contains two links: View

All Posts and Add Post. It also includes a ui-view, which loads the templates for

different CRUD operations.

admin-all-posts:

<div class="row">
    <div class="col-xs-8">
        <table class="table">
            <tr>
                <td><h3>View All Posts</h3></td>
                <td></td>
            </tr>
            <tr ng-repeat="post in posts | orderBy:'-_id'">
                <td>{{post.title}}</td>
                <td>
                    <a class="btn btn-primary" 
➥ui-sref="admin.postUpdate({id:post._id})">Edit</a>
                    <a class="btn btn-danger"  
➥ng-click="deletePost(post)">Delete</a>
                </td>
            </tr>
        </table>
    </div>
</div>

This template lists all the posts and provides options for editing and deleting them.

Defining Controllers
Now we need to create three controllers in total. Let's see what each of them does.

These controllers go into modules/admin/js/controllers.js:.

PostCreationController:

This controller helps to create a new post. Upon instantiation, the following control-

ler creates a new $resource instance and sets it to scope model post. The function

AngularJS: Novice to Ninja184

www.it-ebooks.info

http://www.it-ebooks.info/


$scope.savePost() uses the $save() method of $resource instance to save the

post. Once saved we navigate to admin.postViewAll state to see all the posts.

angular.module('spBlogger.admin.controllers',[]).controller
➥('PostCreationController',['$scope','$state','Post',
➥function($scope,$state,Post){

    $scope.post=new Post(); // Create an empty Post instance

    $scope.buttonText="Create"; // Set initial label for button

    $scope.savePost=function(){
        $scope.buttonText="Saving. . ."; //Once clicked change 
➥button text
        $scope.post.permalink=angular.lowercase($scope.post.title).
➥replace(/[\s]/g,'-');//generate permalink
        $scope.post.$save(function(){
            $state.go('admin.postViewAll'); //Once saved go to state 
➥`admin.postViewAll`
        });
    }

}]);

PostUpdateController:

This controller helps update an existing post. It initially loads the post to be updated

and allows admin to edit the fields on the UI. When the save button is clicked

$scope.updatePost()method is called, which uses $update()method of $resource

instance to update it.

angular.module('spBlogger.admin.controllers').controller
➥('PostUpdateController',['$scope','Post','$stateParams',
➥'$state',function($scope,Post,$stateParams,$state){

    $scope.post=Post.get({id:$stateParams.id}); //Obtain the Post 
➥from backend. Search by Id

    $scope.buttonText="Update"; //Set initial label for button

    $scope.updatePost=function(){
        $scope.buttonText="Updating. . ."; //Once clicked change 
➥button text

185Using REST APIs in Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


        $scope.post.$update(function(){
           $state.go('admin.postViewAll'); //Once updated go to 
➥state `admin.postViewAll`
        });
    }

}]);

PostListController:

This controller retrieves all the posts from back end and also provides a function

that can delete an existing post.

angular.module('spBlogger.admin.controllers').controller
➥('PostListController',['$scope','Post','popupService',
➥'$state',function($scope,Post,popupService,$state){

    $scope.posts=Post.query(); // Obtain all the posts from backend

    $scope.deletePost=function(post){
        if (popupService.showPopup('Really delete this?')) { // Ask 
➥for confirmation
            post.$delete(function() {
                $state.go('admin.postViewAll',undefined,{ //once 
➥deleted reload the state
                    reload:true
                });
            });
        }
    }

}]);

Now, if you remember, we previously created postService, which was used by the

posts module to show blog posts to the users, in an earlier chapter. We hard coded

some posts into it, so that users see those blog posts when they visit our website.

We also developed two controllers PostController and PostDetailsController,

which used postService to obtain blog posts. Now that we've created the all-new

Post service we can modify the controllers to use it. So, here are the updated con-

trollers:

AngularJS: Novice to Ninja186

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('spBlogger.posts.controllers',[]).controller
➥('PostController',['$scope','Post',function($scope,Post){

    $scope.posts=Post.query(); //obtain all the posts

}]).controller('PostDetailsController',['$stateParams','$state',
➥'$scope','Post',function($stateParams,$state,$scope,Post){

    $scope.closePost=function(){
        $state.go('allPosts');
    };

    $scope.singlePost=Post.get({id:$stateParams.id}); //obtain a 
➥single post

}]);

Including angular-resource.js and Adding the
ngResource Module
As a last step you should include angular-resource.js in index.html. After this,

add ngResource as a dependency to your main module because $resource service

is defined in this module.

angular.module('spBlogger',['ngResource', . . .]);

Now, you can access the admin panel at http://localhost:8000/#/admin. By de-

fault the system shows all the blog posts when you go to the admin panel. Try

playing around with the admin panel and create/update a few posts to get an under-

standing of how everything works. You can always look into the codebase should

anything not make immediate sense, as it contains everything we've developed here.

Authentication and Authorization

We are not looking at authentication or authorization here. Anyone can now access

our Admin Panel. This is because, for now, we're more focused on how to perform

CRUD operations. For authorization/authentication to work, we'll need some

server-side configuration, and we'll get there towards the end of the book.

187Using REST APIs in Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


Unit Testing Our Controllers
At this juncture our controllers aren't all that simple any more. They involve REST

interactions and hit remote servers to perform CRUD operations. But during unit

testing, we just want to test our controllers and don't want the involvement of real

HTTP requests and responses.

Fortunately, AngularJS helps us here, by introducing a mock service called $http-

Backend. It helps us configure predefined responses for different requests. So, when

our controllers make HTTP requests during unit testing, they go to the mock $http-

Backend and, as a result, we get our predefined responses, eliminating the depend-

ency on real HTTP responses so that we can focus on testing just the controllers.

Using a Fake Back End for Testing

A real $httpBackend exists, which is internally used by $http, of course. But

during unit testing we'll use the fake example defined in the angular-mocks.js

file and inside ngMock module. We've already asked Karma to load this file in

karma.conf.js.

As we're not using the old postService any more, it's a good idea to comment out

its test specs or even delete them if you wish. Also note that these tests go into

test/unit/controllersSpec.js.

In this section we'll be unit testing two controllers: PostController and PostDe-

tailsController.

First up? Let's see how to unit test the PostController. The controller issues a GET

request to http://spblogger-sitepointdemos.rhcloud.com/api/posts and retrieves all the

blog posts. Here is the unit test:

beforeEach(module('spBlogger.posts.controllers'));
beforeEach(module('spBlogger.posts.services'));
beforeEach(module('spBlogger.admin.services'));
beforeEach(module('ngResource'));
beforeEach(module('ui.router'));

describe('PostController Test\n', function(){

AngularJS: Novice to Ninja188

www.it-ebooks.info

http://www.it-ebooks.info/


    var $httpBackend;

    beforeEach(inject(function(_$httpBackend_) {

        $httpBackend=_$httpBackend_; //store fake $httpBackend
➥ in a variable

        $httpBackend.expectGET('http://spblogger-sitepointdemos.
➥rhcloud.com/api/posts').respond([{title:'Test',_id:1},
➥{title:'Test2',_id:2}]); //respond with 2 post objects

    }));

  it('Should initialize controller with 2 posts', 
➥inject(function($rootScope,$controller,Post) {

      var $scope=$rootScope.$new(); //create a new scope

      $controller('PostController',{$scope:$scope,Post:Post}); //
➥instantiate controller

      $httpBackend.flush(); // flush so that responses are actually 
➥sent

      expect($scope.posts.length).toBe(2); // Now we should have 2 
➥post objects in model
  }));

});

Before our it() block runs, we retrieve $httpBackend and store it in a variable.

Note that we're doing this because it's going to be needed in the it() block as well.

And you should also note that AngularJS Dependency Injection will still work if

you prefix/suffix service names with underscores, such as _$httpBackend_.

The method $httpBackend.expectGET()enables you to define a response to send

when a GET request is made to a particular URL. It also ensures that the test will

fail if a GET request is not made in the subsequent it() block. Furthermore, if you

write multiple expectGET() then their order is important. The actual requests in

our controller (in it() block) should be made in that order. But if you don't mind

189Using REST APIs in Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


whether the request is made or not, and simply want to configure some predefined

responses, you can do so with $httpBackend.whenGET().

expect Methods

There are also several expectmethods for other HTTP verbs, for example expect-

POST(), expectPUT() etc. For a complete list, do go through the documentation:

https://docs.angularjs.org/api/ngMock/service/$httpBackend

Another thing to note is that the HTTP response is asynchronous in nature. Asyn-

chronous code is usually difficult to maintain and follow because the result isn't

immediately available. On the other hand, we're all familiar with synchronous code.

But, in reality, it's not possible to modify $httpBackend's behavior to respond syn-

chronously. That's why there is a flush() method on $httpBackend, which allows

us to flush a response manually whenever we want. This gives us more control be-

cause it lets us know when the result will be available. As a result, we can use it to

write our test cases easily.

Once you're ready to test your expectation (for example, ex-

pect($scope.posts.length).toBe(2)) you should call flush() prior to it. By doing

this $httpBackend sends the predefined response to the $http service and you can

check your models.

And so, in the above unit test we ensure that our controller, when instantiated,

should make a GET request to http://spblogger-sitepoint-

demos.rhcloud.com/api/posts and in response it sends two objects.

Here is the unit test for PostDetailsController whose job is to obtain an id from

$stateParams and retrieve the corresponding post:

describe('PostDetailsController Test\n', function(){

    var $httpBackend;

    beforeEach(inject(function(_$httpBackend_) {

        $httpBackend=_$httpBackend_;

        $httpBackend.expectGET('http://spblogger-sitepointdemos.
➥rhcloud.com/api/posts/2').respond({title:'Test2',_id:2}); 

AngularJS: Novice to Ninja190

www.it-ebooks.info

http://www.it-ebooks.info/


➥//respond with a single object

    }));

    it('Should initialize controller with 1 post', 
➥inject(function($state,$stateParams,$rootScope,$controller,Post) {

        var $scope=$rootScope.$new();

        $stateParams.id=2;

        $controller('PostDetailsController',{$scope:$scope,
➥$stateParams:$stateParams,$state:$state,Post:Post});

        $httpBackend.flush(); // flush so that responses are 
➥actually sent

        expect($scope.singlePost).not.toBe(undefined); //make sure 
➥the model is initialized
    }));

});

This unit test is same as above, but here we test that our controller issues a GET

request to http://spblogger-sitepointdemos.rhcloud.com/api/posts/2. In re-

sponse it gets a single object and the scope model $scope.singlePost is initialized

with one post object.

Now you can run Karma as usual and check the results. If you tweak the expectations

you'll see the tests fail. I also encourage you to go through the $httpBackend docu-

mentation (given above) and write some test cases for the CRUD controllers yourself.

We've now developed a CRUD app for our Single Page Blogger and added some

unit tests as well. The next chapter will focus on one of the trickiest parts of Angu-

larJS—directives.

191Using REST APIs in Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter10
AngularJS Directives
The Directive API is one of the coolest features of AngularJS. Now that you've been

developing in AngularJS for some time, you've come across many simple directives,

such as ng-repeat, ng-show, ng-model, etc. But when you come to develop real

world apps you'll most likely need custom directives. This chapter will teach you

how to build these and implement them in our demo app.

What Are Directives, Really?
A directive is something that attaches special behavior to a DOM element and teaches

it awesome tricks! Let's take the example of the built-in ng-repeat directive: What

this does is attach special behavior to a DOM element by repeating it multiple times.

Similarly, ng-show and ng-hide conditionally show or hide an element. Let's think

of a few scenarios in which directives could help solve a problem. For example,

normal HTML markup can't create a date picker widget. To introduce a custom

element like this into HTML you need a directive. In essence, the basic idea behind

directives is quite simple: to help to make your HTML truly interactive by attaching

event listeners to the elements and/or transforming the DOM.

www.it-ebooks.info

http://www.it-ebooks.info/


Directives From the jQuery Perspective
Let's imagine how we attach special behaviors to elements in jQuery. To implement

a date picker, first we create a normal HTML input element, like this:

<input type="text" class="date-picker"/>

Then we change its default behavior through some JavaScript code, which might

look something like this:

 $(".date-picker").datePicker();

But when other designers see your code they might not immediately see what this

element does. They need to check out the underlying JavaScript code to be sure of

its function. But with AngularJS you can create a directive for this element and use

it like this:

<date-picker></date-picker>

In this way, you can create truly reusable components with directives, and this ap-

proach to building custom components is definitely neater and more intuitive.

Creating Custom Directives
Directives come in four flavors, as follows:

■ As elements: <date-picker></date-picker>

■ As attributes: <input type="text" date-picker/>

■ As classes: <input type="text" class="date-picker"/>

■ As comments : <!--directive:date-picker-->

But it's best to try and use directives as elements and attributes whenever possible,

as this makes it very clear and easy to see what they do.

Let's examine how a directive is actually written. The following snippet creates a

directive which outputs Hello, World:

AngularJS: Novice to Ninja194

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp', []).directive('helloWorld', function() {
  return {
      restrict: 'AEC',
      replace: true,
      template: '<h3>Hello, World!</h3>'
  };
});

The first argument to angular.module().directive() is the name of the directive.

The second argument is a directive definition function that returns an object. This

object (called directive definition object) has various properties that are used to

configure a directive. We'll cover these options shortly. The function passed as the

second argument (the directive definition function) can optionally list dependencies

such as $rootScope,$http etc.

Note that although you use camelCase to name the directive, when using it in the

HTML you'll need to separate the words with dashes (-) or colons (:).

You can use the directive in your HTML as follows:

<hello-world/>

Or:

<hello:world/>

You can also use it as an attribute:

<div hello-world />

Or:

<div hello:world />

If you want to be HTML5 compliant you can prefix your directive name with x- or

data-.

195AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


<div data-hello-world></div>

Or:

<div x-hello-world></div>

While matching the directive name, AngularJS will automatically strip the prefixes

data or x and convert a hyphen/colon separated name to camelCase.

Using a Prefix

It's good practice to prefix your directive names with something (maybe your or-

ganization name). This is because, if a future HTML version includes an element

that uses the same name as your directive, your code will break. Likewise, you

shouldn't use the prefix ng, as it's already being used by AngularJS.

Now let's see the various configuration options we used in our Hello World directive.

■ restrict – This provides a way to specify how a directive should be used in

HTML (remember that there are four ways a directive can be used). In this case

we've set it to 'AEC', which means the directive can be used as an attribute, a new

HTML element or class. The order of the letters doesn't matter. Equally, if you

don't want the directive to be used as a class you could, for example, skip 'C'.

■ template – This specifies the HTML markup that'll be produced when the dir-

ective is processed by AngularJS. This doesn't have to be a simple string. The

template can be complex, often involving other directives, expressions ({{ }}),

etc. In most cases you'll want to use the templateUrl property instead of tem-

plate. And so, ideally you should place the template in a separate HTML file

and make templateUrl point to it. For example, you can use templateUrl as

follows:

angular.module('myApp', []).directive('helloWorld', function() {
  return {
      restrict: 'AEC',
      replace: true,
      templateUrl: 'hello.html'
  };
});

AngularJS: Novice to Ninja196

www.it-ebooks.info

http://www.it-ebooks.info/


■ replace – This specifies that the generated template will replace the HTML

element on which the directive is applied. In our case we've used the directive

as <hello-world></hello-world>. Because the replace property is set to true

when the directive is compiled, the output template replaces the markup <hello-

world></hello-world>. As a result, the final output is <h3>Hello World!!</h3>.

If you set replace to false, the output template will be inserted as a child to

the element on which the directive is applied.

The same also applies if you use the directive as an attribute. Let's assume that

the above directive is used as an attribute:

<div hello-world></div>

If you have replace:true then the final outcome will be: <h3>Hello

World!!</h3>. Now, if you set replace to false the output will be:

<div hello-world>
    <h3>Hello World!!</h3>
</div>

Keep Your Directives in a Separate HTML File

It's best practice to keep your directive's template in a separate HTML file and

refer to it through the templateUrl property. This keeps your directives and the

templates maintainable.

There's one more thing to note. If you use / at the beginning of the templateUrl

path, the template file is resolved relative to the web app root. Otherwise, the path

is relative to the main view index.html. You may also set the base url in your

index.html as <base href="/"/>. This way the template files will be resolved relative

to the web app root automatically if you don't prefix the paths with /.

The Link Function
As we discussed earlier, the template used by your directive can be complex and

involve data-binding expressions {{}}. These expressions are meaningless if the

directive's template is not compiled against the correct scope. That's why every

directive needs a scope. In order to make use of this scope we can take advantage

197AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


of the link function, and this is configured by the link property of directive

definition object. Inside the link function you can set models on the scope object,

watch models for changes, and add event listeners to DOM elements. If you're per-

forming any DOM manipulation, this is the only place to do so. Let's modify our

helloWorld directive to make use of the link function.

We have the following requirements:

1. Let's allow our users to enter a message, and our directive should display that

message alongside our Hello, World! string.

2. Our directive should also be able to watch when the message changes.

3. When somebody clicks on the template produced by the directive, the message

should be set to "empty".

First, let's define a controller MainController, which sets the value of the scope

model message to I Love AngularJS:

angular.module('myApp', []);

angular.module('myApp').controller('MainController', 
➥function($scope) {
  $scope.message = 'I love AngularJS';
});

Now our directive helloWorld can be modified to include a link function:

angular.module('myApp').directive('helloWorld', function() {
  return {
    restrict: 'AEC',
    replace: true,
    template: '<p ng-click="clearMessage()">Hello, World! 
➥{{message}} </p>',
    link: function(scope, elem, attrs) {

      scope.$watch('message', function(value) {
        console.log('Message Changed!');
      });

      scope.clearMessage = function() {
        scope.message = '';

AngularJS: Novice to Ninja198

www.it-ebooks.info

http://www.it-ebooks.info/


      }

      elem.bind('mouseover', function() {
        elem.css('cursor', 'pointer');
      });

    }
  }
});

Now, you can use it in HTML as follows:

<body ng-controller="MainController">
  <input type="text" ng-model="message" 
➥placeholder="Enter message" />
  <hello-world></hello-world>
</body>

The link function accepts the following parameters:

■ scope: The scope object for the directive. By default this is same as the parent's

scope. For instance, if you have ng-controller in the markup and our directive

is used inside it, then the directive will use the parent controller's scope. This

means that you can set models and watchers on this scope inside the link

function. But this is not your only option. Directives can also be configured to

define their own scope—something we'll cover later in this chapter.

■ elem: This is the element on which our directive is applied. This element is

already jQLite wrapped. If you remember, jQLite is a subset of jQuery and sup-

ports the basic DOM operations you'll habitually need. But what if we require

the features of the full jQuery library, instead of jQLite? Well, the secret is that

you only need to load the jQuery script before AngularJS in the HTML! That's

all. Do this and AngularJS will now wrap elem with jQuery and pass it to the

link function.

■ attrs: This is a map containing the attributes and their values that are applied

to the directive in HTML. For instance, you can attach attributes to your directive

element in HTML like this: <hello-world some-attribute></hello-world>

and access it in the link function as attrs.someAttribute.

199AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


attrs Contains all the Attributes Set for the Element of the Directive

It's important to note that attrs contains, not only the attributes that were set

for the directive, but also all the attributes set for the element of the directive.

This way, even if you use a directive as an attribute itself, you can access all the

other attributes on the same element.

There's No Need to Convert elem to a jQuery-Wrapped Element

You might find code in which people convert the elem passed to the link function

to a jQuery-wrapped element by writing angular.element(elem). This is un-

necessary. If you're loading jQuery before AngularJS the elem argument is already

a jQuery element. If you want to know which methods are supported by jQLite

refer to the documentation1.

Now let's see what our modified directive helloWorld does:

1. Our directive uses a data binding expression {{message}} in the template. When

the user types something into the input field this expression changes automatic-

ally. This is because our directive's scope is same as that of the enclosing control-

ler. Any change to the model message on the controller's scope is properly reflec-

ted in the directive's template.

2. Inside the link function, we set up a watcher on the scope model message so

that we know when it changes.

3. We also set up a function clearMessage() on the scope, which clears the model

message.

4. Furthermore, we want to change the cursor style to pointer when the user hovers

their mouse on the directive's template. For that we set up a mouseover event

listener on the DOM element through elem.bind().

So that's an overview of the link function, which should be used to attach models

to the scope, set up watchers on scopemodels, add event listeners to DOM elements,

etc.

1 https://docs.angularjs.org/api/ng/function/angular.element

AngularJS: Novice to Ninja200

www.it-ebooks.info

https://docs.angularjs.org/api/ng/function/angular.element
http://www.it-ebooks.info/


The Compile Function
Along with the link function, there's also another important function in the directive

API: compile. This is configured through the compile property of a directive

definition object.

The compile function is used to perform a DOM transformation before the link

function runs. Note that the compile function doesn't have access to the scope, and

must return a link function. But if there's no compile function you can configure

the link function as usual.

The compile function accepts the following arguments.

■ tElement – The element on which the directive is applied. The prefix t indicates

that this is a template element and no scope is available yet.

■ attrs – The map of attributes declared on the element in markup.

The compile function can be written like this:

angular.module('testModule').directive('testDirective', function() {
  return {
    compile: function(tElem,attrs) {
      //do optional DOM transformation here
      //tElem is jQLite/jQuery wrapped
      return function(scope,elem,attrs) {
        //linking function here
      };
    }
  };
});

Most of the time, you'll be working with the link function alone. This is because

most directives are concerned with registering event listeners, watchers, updating

the DOM, etc., and this is done inside the link function. Directives such as ng-re-

peat, which need to clone and repeat the DOM element several times, use the com-

pile function before the link function runs. This leads to the question of why two

separate functions are needed at all. Why can't we just have one? To answer this,

we need to understand how directives are compiled by AngularJS.

201AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


Compilation of Directives
When the application bootstraps, AngularJS starts parsing the DOM using the

$compile service. This searches for directives in the markup and matches them

against registered directives. Once all of these have been identified, AngularJS ex-

ecutes their compile functions. As we've touched on before, the compile function

returns a link function, which is added to the list of link functions to be executed

later. This is called the compile phase. If a directive needs to be cloned multiple

times (such as ng-repeat), we get a performance benefit, because the compile

function runs solely for the cloned element. However, the link function runs for

each cloned instance of that element. That’s why the compile function doesn't receive

a scope.

After the compile phase is over, the linking phase, where the collected link functions

are executed one by one, starts. This is where the templates produced by the direct-

ives are evaluated against the correct scope, and are turned into Live DOM which

react to events.

Changing a Directive’s Scope
By default, a directive gets its parent's scope. But we don’t always want that. If we're

exposing the parent controller's scope to the directives, they're free to modify its

properties. In some cases your directive may want to add several properties and

functions to the scope that are for internal use only. For example, if you have a

directive that deals with comments, you may want to set some internal variable to

show or hide some of its specific sections. If we set these models to the parent's

scope we would pollute it.

And so, we have two other options:

■ Use a child scope — This scope prototypically inherits the parent's scope.

■ Use an isolated scope — A new scope that doesn't inherit from the parent and

exists on its own.

The scope can be configured with the scope property of the directive definition

object. Here's an example:

AngularJS: Novice to Ninja202

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').directive('helloWorld', function() {
  return {
    scope: true,  // use a child scope that inherits from parent
    restrict: 'AE',
    replace: true,
    template: '<h3>Hello, World!</h3>'
  };
});

The above snippet of code asks AngularJS to give the directive a new child scope

that prototypically inherits from the parent scope. You can use this method if you

want all the parent scope models to trickle down transparently to the child scope.

This enables you to reuse these models and also set additional internal models to

the child scope. Figure 10.1 depicts the scenario:

203AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 10.1. Giving the directive a new child scope that prototypically inherits from parent scope

But sometimes you may not need all the parent scope models and may require ad-

ditional decoupling. Your other option, an isolated scope, is shown below.

AngularJS: Novice to Ninja204

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').directive('helloWorld', function() {
  return {
    scope: {},  // use a new isolated scope
    restrict: 'AE',
    replace: true,
    template: '<h3>Hello, World!</h3>'
  };
});

This directive uses a new isolated scope that doesn't inherit from its parent. Isolated

scopes are good when we want to create reusable components. By isolating the

scope we guarantee that the directive is self-contained and can be easily plugged

into an HTML app. This protects the parent scope from getting polluted, as it's not

accessible inside the directive. In our modified helloWorld directive if you set the

scope to {} the code won’t work any more. Instead, it'll create an isolated scope for

the directive and the expression {{message}} will now refer to the isolated scope

property (not the parent scope), which is undefined. Take a look at Figure 10.2,

which depicts an isolated scope.

205AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 10.2. Isolated scope

AngularJS: Novice to Ninja206

www.it-ebooks.info

http://www.it-ebooks.info/


Note that isolating the scope does not mean that you have no access to the parent

scope's properties. There are techniques that allow you to access the parent scope's

properties and also watch for changes in them. Let's see how to do that.

Binding Between Parent Scope and Isolated
Scope Models

Often, it’s convenient to isolate a directive's scope, especially if you are manipulating

many scope models and attaching models or functions to scope for internal usage.

But you may also need to access some parent scope properties inside the directive

in order for the code to work. The good news is that AngularJS gives you enough

flexibility to selectively pass parent scope properties to the directive through

bindings.

Let's isolate our directive's scope and see how we can pass the parent scope model

message to it. Our helloWorld directive will look like this:

angular.module('myApp').directive('helloWorld', function() {
  return {
    restrict: 'AEC',
    scope: {}, // isolated scope introduced here
    replace: true,
    template: '<p ng-click="clearMessage()">Hello, World! 
➥{{message}} </p>',
    link: function(scope, elem, attrs) {
        ..
        ..
        // link function code goes here
    }
  }
});

Now, let's see the different options for passing parent scope models to the directive.

Using @ For One-Way Binding
In the directive definition, shown below, we've specified that the isolated scope

property message should be bound to the attribute messageAttr, which is applied

to the directive in the HTML. If you look at the markup below, you can see the ex-

pression {{message}} is assigned to message-attr. When the value of the expression

207AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


changes, the attribute message-attr also changes. This, in turn, changes the isolated

scope property, message.

angular.module('myApp').directive('helloWorld', function() {
  return {
    restrict: 'AEC',
    scope: {
        message:'@messageAttr'
    },
    replace: true,
    template: '<p ng-click="clearMessage()">Hello, World! 
➥{{message}} </p>',
    link: function(scope, elem, attrs) {
        ..
        ..
        // link function code goes here
    }
  }
});

Now the HTML markup can be written as:

<body ng-controller="MainController">
  <input type="text" ng-model="message" 
➥placeholder="Enter message" />
  <hello-world message-attr="{{message}}"></hello-world>
</body>

@ is used to establish a one-way binding between isolated scope model and a parent

scope property. We call this one-way binding because with this technique you can

only pass strings to the attribute (using expressions, {{}} or just static values). When

the parent scope property changes, your isolated scope model also changes. However,

the reverse is not true! You can't change the parent scope model by manipulating

the isolated scope model.

Now if you run the code it will work. But there's still a problem. When you click

on the directive's template the isolated scope model message will be set to "empty",

but the parent scope model message won't change, due to the one-way binding. As

a result, the message in input field won't change. We'll see how to solve this in the

next section.

AngularJS: Novice to Ninja208

www.it-ebooks.info

http://www.it-ebooks.info/


Using = For Two-Way Binding
Unlike @, this technique (=) lets you assign an actual scope model to the attribute

rather than just plain strings. As a result you can pass values ranging from simple

strings and arrays to complex objects to the isolated scope. Additionally, a two-way

binding exists. Whenever the parent scope property changes, the corresponding

isolated scope property also changes, and vice versa. As usual, you can watch this

scope property for changes.

To use a two-way binding the scope property of our directive definition object can

be modified as follows:

scope: {
    message:'=messageAttr' // notice = instead of @
},

The corresponding HTML markup will be:

<hello-world message-attr="message"></hello-world>

Note that in the above markup we don't use {{}} any more. Rather, we pass the

actual scope model; this is because of the two-way binding.

Also you'll notice that, when you click on the directive template, both isolated and

parent scope models message change, which solves the problem described above.

Using & to Execute Functions in the Parent Scope
It’s sometimes necessary to call functions defined in the parent scope from a directive

with an isolated scope. To refer to functions defined in the outer scope we use &.

To demonstrate the concept, let's introduce a function showMessage() to our con-

troller's scope and call it from our directive.

Here is the modified controller:

angular.module('myApp').controller('MainController', 
➥function($scope) {

  $scope.message = 'I love AngularJS';

209AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


  $scope.showMessage=function(){
    console.log('Message Changed');
  }
});

Our directive's scope property can be modified as following:

scope:{
  message:'=messageAttr',
  showMessage:'&showMessageAttr' // Bind with parent scope function
},

Now let's call this function every time the model message changes. So, the watcher

inside link function should be rewritten as:

scope.$watch('message', function(value) {
    scope.showMessage(); // This will call the function defined by 
➥enclosing controller
});

The HTML markup looks like this:

<hello-world message-attr="message" 
➥show-message-attr="showMessage()"></hello-world>

The code archive contains code for all the above options. You can download and

play around with it to make sure you understand the isolated scope completely.

In case you want to pass arguments to the parent scope function you need to list

the function parameters in the HTML as well. For example, assume showMessage()

declares a parameter arg as follows:

$scope.showMessage=function(arg){
    console.log('Message Changed with argument'+arg);
}

Now, in HTML you need to change the binding as follows:

AngularJS: Novice to Ninja210

www.it-ebooks.info

http://www.it-ebooks.info/


<hello-world message-attr="message" 
➥show-message-attr="showMessage(arg)"></hello-world>

Next, inside your directive while calling the function you need to pass an object

with the argument name and value as follows:

scope.$watch('message', function(value) {
    scope.showMessage({arg:'sample argument'});
});

Using Matching Isolated Scope Model and Attribute Names

If the isolated scope property and the attribute name is the same you can change

the directive definition like this:

angular.module('myApp').directive('helloWorld', function() {
  return {
    restrict: 'AEC',
    scope: {
        message:'@' // No messageAttr
    },
    ..
    ..
    //Rest of the code
  }
});

The corresponding HTML markup will be:

<hello-world message="{{message}}"></hello-world>

Notice the isolated scope model and attribute name in HTML match. The above

example uses @, but the same holds true for = and & based binding as well.

$parent in Isolated Scopes

Every scope object contains a special property called $parent which refers to

its parent scope. The isolated scope also has a $parent property. But it refers

to the enclosing controller/directive's scope.

211AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


Parent Scope vs. Child Scope vs. Isolated
Scope

As an AngularJS beginner one might get confused while choosing the right scope

for a directive. By default, a directive doesn't create a new scope and uses its parent's

scope. But in many cases this isn't what we want. If your directive manipulates the

parent scope properties heavily and creates new ones, it might pollute the scope.

Letting all the directives use the same parent scope isn't a good idea because anybody

can modify our scope properties. The following guidelines may help you choose

the right scope for your directive:

■ Parent Scope (scope: false)—This is the default case. If your directive doesn't

manipulate the parent scope properties you might not need a new scope. In this

case, using the parent scope is okay.

■ Child Scope (scope:true)—This creates a new child scope for a directive which

prototypically inherits from the parent scope. If the properties and functions

you set on the scope are not relevant to other directives and the parent, you

should probably create a new child scope. With this you also have all the scope

properties and functions defined by the parent.

■ Isolated Scope (scope:{})— This is like a sandbox! You need this if the directive

you're going to build is self-contained and reusable. Your directive might be

creating many scope properties and functions which are meant for internal use,

and should never be seen by the outside world. If this is the case, it’s better to

have an isolated scope. The isolated scope, as expected, does not inherit the

parent scope.

Transclusion
Transclusion is a feature that enables us to wrap a directive around arbitrary content.

We can extract and compile it against the correct scope later, and eventually place

it at the specified position in the directive template. If you set transclude:true in

the directive definition, a new transcluded scope will be created which prototypically

inherits from the parent scope. If you want your directive with isolated scope to

contain an arbitrary piece of content and execute it against the parent scope, tran-

sclusion can be used.

AngularJS: Novice to Ninja212

www.it-ebooks.info

http://www.it-ebooks.info/


Let’s say we have a directive registered like this:

angular.module('test').directive('outputText', function() {
  return {
    transclude: true,
    scope: {},
    template: '<div ng-transclude></div>'
  };
});

And this directive can be used as follows:

<div output-text>
  <p>Hello {{name}}</p>
</div>

ng-transclude says where to put the transcluded content. In this case the DOM

content <p>Hello {{name}}</p> is extracted and put inside <div ng-tran-

sclude></div>. The important point to remember is that the expression {{name}}

interpolates against the property defined in the parent scope rather than the isolated

scope.

Differences Between
transclude:'element' and
transclude:true

Sometimes we need to transclude the element on which the directive is applied

rather than just the contents. In these cases transclude:'element' is used. This,

unlike transclude:true, includes the element itself inside the directive template

marked with ng-transclude. As a result of transclusion your link function gets a

transclude linking function pre-bound to the correct directive scope. This link

function gets access to a clone of the DOM element that's to be transcluded. You

can perform tasks like modifying the clone, adding it to the DOM, and so on.

Have a look at the following example, which repeats a DOM element using this

technique and changes the background color of the second instance:

213AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp', []).directive('transcludeDirective', 
➥function() {
  return {
    transclude: 'element',
    scope: {},
    restrict: 'AE',
    replace: true,
    link: function(scope, elem, attrs, ctrl, transclude) {
      transclude(function(clone) { //'clone' is the clone of 
➥ the directive element
        clone.css('background-color', 'yellow');
        elem.after(clone); //append the clone 
      });
    },
    template: '<div ng-transclude></div>'
  }
});

Now the directive can be used in HTML as follows:

<p transclude-directive>Hello World!</p>

Also note that by using transclude:'element', the element on which the directive

is applied is converted into an HTML comment. So, if you combine transclude:'ele-

ment' with replace:false, the directive template essentially gets innerHTMLed to

the comment—which means nothing really happens! Instead, if you choose re-

place:true the directive template will replace the HTML comment and things will

work as expected. For instance, using replace:false with transclude:'element'

makes sense when you want to repeat the DOM element and don’t want to keep the

first instance of the element (which is converted to a comment).

The Controller Function and Require
The controller function of a directive is used if you want to allow other directives

to communicate with yours. In some cases you may need to create a particular UI

component by combining two directives. For example, you can attach a controller

function to a directive (outerDirective) as shown below.

AngularJS: Novice to Ninja214

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp', []).directive('outerDirective', function() {
  return {
    scope: {},
    restrict: 'AE',
    controller: function($scope, $compile, $http) { // you can 
➥inject dependencies here
      // $scope is the proper scope for the directive
      this.addChild = function(nestedDirectiveScope) { // this 
➥refers to the controller
        console.log('Got the message from nested directive:' + 
➥nestedDirectiveScope.message);
      };
    }
  };
});

This code attaches a controller named outerDirective to the directive. When an-

other directive wants to communicate, it needs to declare that it requires this direct-

ive's controller instance. This is done as shown below.

angular.module('myApp', []).directive('innerDirective', function() {
  return {
    scope: {},
    restrict: 'AE',
    require: '^outerDirective', //We need the outerDirective 
➥controller
    link: function(scope, elem, attrs, controllerInstance) {
      //the fourth argument is the controller instance you require
      scope.message = "Hi, Parent directive";
      controllerInstance.addChild(scope);
    }
  };
});

The above directives can be used in the markup as follows:

<outer-directive>
  <inner-directive></inner-directive>
</outer-directive>

require: '^outerDirective' tells AngularJS to search for the controller on the

element and its parent. In this case, the found controller instance is passed as the

215AngularJS Directives

www.it-ebooks.info

http://www.it-ebooks.info/


fourth argument to the link function of innerDirective. Inside the link function,

we send the scope of the nested directive to the parent by calling controller-

Instance.addChild().

To summarize, you should use controller to expose an API for others to commu-

nicate with your directive.

Cleaning Up Your Directive
Inside your directive, if you register any listener to the scope, it'll be destroyed

automatically at the same time as the scope. But if you register listeners on a service

or a DOM element which isn't going to be destroyed you should manually clean

them up. Otherwise you may introduce memory leakages.

When your scope is getting destroyed it will broadcast a $destroy event. You can

listen to it, and perform any final cleanups like so:

scope.$on('$destroy',function(){
    // cleanups here
});

Let's take an example of a directive, which uses $interval service to log a message

every five seconds. When the scope is going to be destroyed we need to clear this

timer.

angular.module('myApp',[]).directive('testDirective',
➥function($interval){
    scope:true,
    replace:true,
    link:function(scope,elem,attrs){

        var timer=$interval(function(){
            console.log('message logged');
        },5000);

        scope.$on('$destroy',function(){
            $interval.cancel(timer);

AngularJS: Novice to Ninja216

www.it-ebooks.info

http://www.it-ebooks.info/


        }
    }
});

IE 8 Precautions
It seems that older versions of IE are not very happy with custom element names.

So, if you want to support IE 8 and use custom element names like <hello-world>

in the markup you need to pre-declare the element names, as follows:

<!doctype html>
  <html xmlns:ng="http://angularjs.org" id="ng-app" 
➥ng-app="optionalModuleName">
    <head>
      <!--[if lte IE 8]>
        <script>
          document.createElement('hello-world');
          document.createElement('ng-include');
          document.createElement('ng-pluralize');
          document.createElement('ng-view');

          // Optionally these for CSS
          document.createElement('ng:include');
          document.createElement('ng:pluralize');
          document.createElement('ng:view');
        </script>
      <![endif]-->
    </head>
    <body>
      ...
    </body>
</html>

This example is taken from from https://docs.angularjs.org/guide/ie. You can visit

this link to discover more about IE compatibility issues. The above trick should be

employed if you use custom element names and still want to support older versions

of IE. But if you use directives as attributes or classes you are good to go. It's worth

noting that AngularJS 1.3 is dropping IE 8 support.

217AngularJS Directives

www.it-ebooks.info

https://docs.angularjs.org/guide/ie
http://www.it-ebooks.info/


Conclusion
This concludes our overview of AngularJS directives. You can create truly reusable

custom components with the directive API. However, we haven't seen any real

world use of the directives yet! That's why the next chapter focuses on using them

to create a comment system for our demo app.

AngularJS: Novice to Ninja218

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter11
Adding a Comment System to Single

Page Blogger
Every blogging app has an integrated comment system and obviously our Single

Page Blogger would be incomplete without one. We're going to build a simple

comment system by creating a custom directive. Let's name this directive spb-com-

ments. Here is its initial structure:

angular.module('spBlogger.posts.directives',[]).
➥directive('spbComments',function(Post){
   return {
       restrict:'AEC',
       scope:{
           postInstance:'='
       },
       replace:true,
       link:function(scope,elem,attrs){

       },

www.it-ebooks.info

http://www.it-ebooks.info/


       templateUrl:'modules/posts/views/comments.html'
   }
});

The code goes into the file: modules/posts/js/directives.js.

As you can see, the directive creates an isolated scope. The isolated scope has a

property called postInstance. The page that's going use this directive will pass the

post object to it. Each post object has an array of comments which will be iterated

in the directive's template. The directive also has a dependency on the Post service

which is injected via Dependency Injection.

The template of the directive is placed in the file modules/posts/js/directives.js. It

looks like this:

<div class="row">
    <div class="col-xs-12">
        <h3>Comments</h3>
        <br/>
        <textarea cols="40" rows="5" class="form-control" 
➥ng-model="comment.content" placeholder="Type your comment here">
➥</textarea>
        <br/>By : <input type="text" ng-model="comment.author" 
➥class="form-control" placeholder="Type your name here"/> <br/>
        <input type="submit" value="Add" ng-click="saveComment()" 
➥class="form-control btn-success small-button" />
        <hr/>
        <div class="comments-list">
            <div class="single-comment" ng-repeat="comment in 
➥postInstance.comments">
                <div class="content">{{comment.content}}</div>
                <div class="info">By: <span>{{comment.author}}
➥</span> 
➥| On: <span>{{comment.datePublished | date:'MM-dd-yy'}}</span>
➥</div>
            </div>
        </div>
    </div>
</div>

The template provides input fields for users to enter their comments. Each comment

has content and author properties. So, we bind the two input fields to the above

AngularJS: Novice to Ninja220

www.it-ebooks.info

http://www.it-ebooks.info/


scope models through ng-model. When the Add Comment button is clicked we call

the scope function saveComment(), which saves the comment. The template also

lists all the comments for the given post using ng-repeat.

Now let's update our directive's link function to define the saveComment() function

that actually saves the comment entered by the user.

link:function(scope,elem,attrs){

   scope.saveComment=function(){
       var postID=scope.postInstance._id,
               savedPostInstance={};
       scope.comment.datePublished=new Date(); //Give a date to the 
➥comment
       angular.copy(scope.postInstance,savedPostInstance); //copy 
➥the post instance in `scope` to a variable `savedPostInstance`
       savedPostInstance.comments.unshift(scope.comment); //push the 
➥comment to the savedPostInstance
       scope.postInstance.comments.unshift(scope.comment); //push 
➥the comment to the `scope.postInstance` as well
       scope.comment={}; // clear the comment
       savedPostInstance.$update(); //Now update `savedPostInstance` 
➥so that the new comment goes to the server.
   }
} 

You could have just pushed a new comment to scope.postInstance and called

$update() on it. But the problem is that once a resource instance is updated all of

its properties, including comments, are cleared and in the view you won't see any-

thing. So, you have to fetch the fresh copy of the updated post from the server again.

To workaround this, we first copy the original scope.postInstance to a variable

called savedPostInstance and update it. As a result of the update, the properties

of the resource instance savedPostInstance are cleared. But it doesn't impact our

view as our scope model scope.postInstance is still bound to the UI and is updated

with a new comment. (Also, note that we push the comment to scope.postInstance

as well).

Our comments directive uses an isolated scope so that it's self-contained and can

be easily plugged into any app as long as we supply a Post instance to it.

221Adding a Comment System to Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


We use this custom directive in singlePost.html, which is present inside

modules/posts/views/singlePost.html. Here's the code:

<div class="comments">
    <spb-comments post-instance="singlePost"></spb-comments>
</div>

singlePost is the post object obtained from the server. It's assigned to the attribute

post-instance which is two-way bound to the isolated scope property of the dir-

ective.

We're done! Users can now browse through posts and comment on them. Figure 11.1

shows how it looks on my system:

Figure 11.1. Commenting on a post in Single Page Blogger

Unit Testing Our Directive
Now that you've written the directive it's time to unit test it as usual. We'll write a

simple unit test to verify that the directive loads the required number of comments

upon compilation.

So, here is our test, which goes into test/unit/directivesSpec.js:

AngularJS: Novice to Ninja222

www.it-ebooks.info

http://www.it-ebooks.info/


beforeEach(module('spBlogger.posts.directives'));
beforeEach(module('spBlogger.admin.services'));
beforeEach(module('templates')); // This module loads all our 
➥templates pointed to by templateUrl.

describe('Directive Test\n', function(){

    it('Should initialize comments div with 2 comments', 
➥inject(function($rootScope,$compile) {

        var $scope=$rootScope.$new(); //Create a new scope

        $scope.singlePost={comments:[{content:'test',author:'test'},
➥{content:'test1',author:'test1'}]}; // Fake comments array in a 
➥fake post instance

        var template='<spb-comments post-instance="singlePost">
➥</spb-comments>'; // This our markup which uses the directive

        var elem=angular.element(template); // wrap the element with 
➥jQuery as $compile service compiles DOM and not a String

        $compile(elem)($scope); // Link it with proper scope

        $rootScope.$digest(); // Fire a digest so that expressions 
➥are evaluated

        expect(elem.find('.single-comment').length).toBe(2); // 
➥Expect number of comments to be 2
    }));

});

When unit testing directives, $compile is your friend. In the above example it

compiles the DOM, which uses our directive and links it with a scope. Finally, we

fire a $digest() cycle. As we've fed a fake post object with two comments, our

directive template should produce two .single-comment elements. We check that

with expect(). You can play around with it and change the expected values to see

the test fail.

But wait! Does this test work? Not yet! As our directive has a templateUrl property,

a separate GET request will be fired to fetch the template. But the $httpBackend

doesn't call the expectGET() function and AngularJS complains that an unexpected

223Adding a Comment System to Single Page Blogger

www.it-ebooks.info

http://www.it-ebooks.info/


GET request was made. To overcome this we need to use a Karma plugin called

karma-ng-html2js-preprocessorwhich converts HTML files into JavaScript strings

to generate AngularJS modules. As a result, AngularJS won't send a GET for this

and will, instead, serve the template from $templateCache. In our case our templates

are loaded as a module called templates. That's why we wrote beforeEach(mod-

ule('templates')) in the beginning.

In order to run this test, we need to::

1. Go to the root of the project sp-blogger and run npm install karma-ng-html2js-

preprocessor --save-dev.

2. Download the updated karma.conf.js and replace the old one with this.

Now run sh scripts/test.sh and see the tests pass!

Conclusion
In this chapter we not only learned about directives but also implemented a feature

using them. The unit testing is simple, but gives you an idea about how directives

are unit tested. As you keep working with directives and testing them you will en-

counter new problems and learn how to tackle them. But for now you can relax as

you've just covered one of the trickiest parts of AngularJS. The next chapter will

give you a tour of the Dependency Injection framework in AngularJS.

AngularJS: Novice to Ninja224

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter12
Dependency Injection In AngularJS
Dependency Injection (DI) is one of the best features of AngularJS. It makes our

lives easier by letting us write loosely coupled and easily testable components. The

DI framework's in charge of creating components, resolving their dependencies,

and passing them to other components when requested. You've already seen many

examples of Dependency Injection. This chapter covers two core AngularJS services

called $provide and $injector that work in the background to make Dependency

Injection possible.

A Brief Recap
Components may obtain their dependencies in the following two ways:

1. By invoking new on a constructor function to obtain their dependency themselves.

2. By using a global variable to look up dependencies.

But sadly these solutions come at a price. If a component invokes new on another

component, then both are tightly coupled. This makes unit testing very difficult as,

to test one component, you'll need the other upon which it depends.

www.it-ebooks.info

http://www.it-ebooks.info/


Secondly, if you need a global object to obtain a dependency then that object needs

to be passed around throughout your app. But this isn't the best way of doing things,

because each component should know as little as possible about other components

to improve testability. To avoid these issues, AngularJS does things in a different

way: using a service locator.

Assume that you have the following constructor function, which is used as a con-

troller:

function SimpleController($scope,$rootScope,$http){
    $scope.someModel="Hello, World!";
}

The controller declares its dependencies through the method parameters. While

instantiating the controller, AngularJS looks for the registered services that match

the parameter names and automatically injects them as arguments. Rather than ob-

taining the dependencies ourselves, we ask the DI subsystem to inject those depend-

encies for us. We call these dependencies "injectable types" because they can be

injected into other components. This hugely improves the testability of your app

because, while unit testing a particular component, you can mock up the depend-

encies and just focus on the component under test.

But how are these injectable components registered? The answer is the $provide

service. Let's take a look at how $provide works.

The $provide Service
The injectable types most commonly used in AngularJS are services. As we saw in

Chapter 5, every service has an associated provider, and the $provide exposes a

method called provider to register one. Take a look at the following example:

angular.module('myApp',[]).config(function($provide){
    $provide.provider('alertService',function(){
        this.$get=function(){
            return function(){
                alert('Service in action');
            }

AngularJS: Novice to Ninja226

www.it-ebooks.info

http://www.it-ebooks.info/


        }
    });
});

You can get hold of the $provide service inside the config block of your module.

Then you can call $provide.provider() to register a new provider. Now, in another

component, say a controller, you can ask for alertService to be injected as follows:

function simpleController(alertService){
    alertService();
}

When you ask for the alertService the provider's $get method is called and you

receive what it returns.

The $provide service doesn't expose the provider() method alone. It also exposes

methods like service(), factory(), value() and constant() to register different

injectable types. For convenience these methods also exist on the module level so

that you can directly call them on angular.module(). But they do the same thing

in the end.

Now let me reveal a secret. Methods such as factory(), value(), constant() etc.

all create providers for you implicitly without obliging you to type all the provider

related stuff.

Above, we created the alertService through a provider. Now let's see how to do

the same using a factory:

app.config(function($provide) {
  $provide.factory('alertService',function(){
      return function(){
        alert('Service in Action');
      }
  });
});

Or we can call the method factory() on angular.module(),

227Dependency Injection In AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('myApp').factory('alertService',function(){
      return function(){
        alert('Service in Action');
      }
  });

This code creates a provider for alertService automatically and is the same as

writing a provider yourself. You can get the created provider as usual inside a

config block by declaring a dependency on alertServiceProvider.You can also

achieve the same result using a value() service. I recommend you also try that on

your own.

This brings up another important question: While calling a constructor function or

a normal method, how does AngularJS resolve the dependencies? Well, $provide

is only half of the story. $injector is the service that actually resolves the depend-

encies. Let's see how!

The $injector Service
$injector is responsible for actually instantiating the injectable types and resolving

the dependencies. The $provide service registers the injectable types with $inject-

or. Then it's the $injector which instantiates these injectables using the code

provided by the $provide service. While invoking a method or constructor function

$injector knows how to resolve its dependencies. Let's take a look at the following

controller, which has three dependencies:

function TestController($scope,$http,customService){
    //controller code goes here
}

When this controller is to be instantiated, the $injector's instantiate method

gets called. It will look something like this:

$injector.instantiate(TestController);

While instantiating this controller $injector will go through the parameters list

and call $injector.get(serviceName) to obtain the service instance. This is where

the corresponding provider's $get() method is called to obtain our service instance.

AngularJS: Novice to Ninja228

www.it-ebooks.info

http://www.it-ebooks.info/


To put it another way, the $injector's get() method knows how to resolve a de-

pendency.

The $injector service also offers another method called invoke(), which takes a

function and calls it, resolving the dependencies. If you have a function and it has

some dependencies you can write something like this to invoke it via $injector:

$injector.invoke(function(customService,$http){
    //some code here
});

But this leads to the basic question of how to access the $injector? The answer is

simple: Have it dependency-injected into your service/controller. Yes, $injector

knows how to inject itself. Actually, AngularJS creates an $injector for your app

while bootstrapping. Here is how you can access $injector inside your service:

angular.module('myApp').service('customService',function($injector){
    var $http=$injector.get('$http'); //get $http service
    var $rootScope=$injector.get('$rootScope'); //get the $rootScope
});

You can also get $injector injected into the config block of your module, like this:

angular.module('myApp').config(['$injector',function($injector){
    //use $injector here
}]);

Apart from the above techniques you can also have the $injector for selected

modules. This is done as follows:

var injector=angular.injector(['ng','customModule']);

$injector Will Create Only One Instance of Any Service

$injectorwill create only one instance of any service. Once the service instance

is obtained, its value is cached and used subsequently. Every time you ask for the

service via dependency injection you will always get the same instance.

229Dependency Injection In AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


Dynamically Injecting a Dependency
Now that you know how dependency injection works in AngularJS, I'll share a use

case of the $injector service. As we saw, the $injector.get() method finds and

returns a service by name. We can use this to obtain a dependency dynamically.

Take a look at the following code, which defines a simple controller:

angular.module('myApp',[]).controller('SimpleController',
➥['$injector',function($injector){
    $scope.getDependency=function(serviceName){
        var service=$injector.get(serviceName);
        //use service here 
    }
    $scope.getDependency('$http');
}]);

In the above example, our controller defines a method on scope called getDepend-

ency(). It accepts a single argument, which is the service name to look for, and uses

$injector.get() to obtain it. So, here you don't need to list the dependencies in

the controller's constructor function. Rather, we use $injector to obtain the depend-

encies dynamically. While you may not need this kind of arrangement often, it's

good to have it in your toolbox.

Registration of Controllers, Filters, and Directives
So far we have only seen how services are registered. What about controllers, dir-

ectives, and filters? Well, these components are not registered via $provide and,

consequently, they aren't injectable. The following list shows how they're registered:

■ controller: There is a $controller service (and $controllerProvider), which

is responsible for setting up your controllers. The $controllerProvider.re-

gister() method registers a new controller. When you call the method angu-

lar.module().controller() to register a controller, $controllerProvider.re-

gister() actually gets called behind the scenes. We've already seen the useful-

ness of the $controller service during unit testing. You can basically use it to

instantiate your controller manually and carry on with your testing easily.

■ filter: Filters are registered via the $filterProvider.register() method.

Later if you want to obtain a filter instance in another component you can do so

by calling $filter(filterName). Of course you'll need to declare a dependency

AngularJS: Novice to Ninja230

www.it-ebooks.info

http://www.it-ebooks.info/


on the $filter service to use it. We'll look into this in detail shortly when we

reach the filters chapter.

■ directive: AngularJS has a built -in service called $compile. Using it, directives

are registered via the $compileProvider.directive() method. With the help

of the $compile service you can manually compile an HTML string and then

link it with a scope to interpolate the bindings and add the element to DOM.

Let's take a look at the following directive:

    angular.module('myApp').directive('compileDirective', 
➥['$compile','$rootScope',function($compile, $rootScope) {
      return {
        restrict: 'A',
        link: function(scope, elem, attrs) {
          var html = '<div>Hello, World! {{message}}</div>';
          var element = $compile(angular.element(html))(scope); 
➥//get the element by compiling and linking it
          elem.after(element); // add the compiled element to the 
➥DOM
        }
      }
    }]);

The first thing to note is that the $compile service expects a DOM. So, you pass

the HTML string to angular.element() to create a jQuery/jQLite wrapped ele-

ment. After invoking $compile with the newly created element you'll receive a

linker. To interpolate the bindings (in our case {{message}}) you need to call

the linker function with the proper scope. At this point we have an element that

can be added to DOM. $compile service comes in handy while unit testing dir-

ectives. Without it there's no other way to invoke a directive in unit tests. We've

already explored this in the last chapter. If you don't remember it feel free to flip

a few pages and go through the unit tests we wrote for our comment directive.

While registering filters, controllers, and directives may not be very relevant to you

at present, there's no harm in knowing how different components are registered by

AngularJS internally. So, later, if you run into some error, you can easily debug and

know what's happening behind the scenes.

231Dependency Injection In AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


Conclusion
To summarize, we can inject dependencies into any function that's invoked via

$injector.invoke() or $injector.instantiate(). On the other hand, only those

values can be injected into a function which are registered via $provide (We'll later

see how filter is a different case).

The following definition functions can get their dependencies injected via depend-

ency injection:

■ Service

■ Factory

■ Provider's $get method

■ Controller

■ Directive

■ Filter

And the following are the injectable types which can be injected into other compon-

ents:

■ Service

■ Factory

■ Provider

■ Value

■ Constant

This chapter discussed dependency injection in AngularJS. The next chapter takes

a look at AngularJS filters.

AngularJS: Novice to Ninja232

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter13
AngularJS Filters
Sometimes data stored in a web app is in a format that's different from what we

want to show to the users. For example, you may store two-digit country codes in

lowercase in your database, but wish to display those country codes on a web page

in uppercase. This is where AngularJS filters come in. Filters, as the name suggests,

help to filter or format the data to be displayed to the users.

Most commonly, filters are applied to data binding expressions in the template. But

they can also be used inside controllers, services, and directives. This chapter covers

filters in AngularJS. Once you have the basics covered, we'll see how to implement

and unit test some simple filters in our demo app.

Filter Basics
The most common usage of filters can be found in view templates. Here is how we

apply a filter to an expression:

www.it-ebooks.info

http://www.it-ebooks.info/


{{countryCode | uppercase}}

Here, countryCode is the scope model and uppercase is the name of the filter (in

this example, uppercase is a built-in filter in AngularJS). If you have an expression

you'd like to display in uppercase, you simply need to add the uppercase filter to

it. Note how the expression is separated from the filter by a vertical pipe character

(|).

Filters can take arguments too! Let's take a look at another built-in filter in AngularJS,

the date filter:

{{currentDate | date : 'yyyy-MM-dd'}}

The date filter formats a Date object as a string representation. As you can see,

we've passed a single argument to the filter, which says how to format the date.

Filters can also accept multiple arguments. To pass multiple arguments you simply

separate the arguments with a colon (:). Take a look at the following snippet, which

passes three arguments to an imaginary filter:

{{expression | imaginaryFilter: arg1 : arg2 : arg3 }}

Angular's Built-in Filters

AngularJS ships with many useful and fun-to-use filters out of the box. Here is a

list of some important AngularJS filters you'll find useful:

■ currency1 : Formats a number as currency

■ number2 : Formats an expression as a number

■ date3 : Formats a date object into string

■ json4 : Formats and shows an object as JSON string

1 https://docs.angularjs.org/api/ng/filter/date
2 https://docs.angularjs.org/api/ng/filter/number
3 https://docs.angularjs.org/api/ng/filter/date
4 https://docs.angularjs.org/api/ng/filter/json

AngularJS: Novice to Ninja234

www.it-ebooks.info

https://docs.angularjs.org/api/ng/filter/date
https://docs.angularjs.org/api/ng/filter/number
https://docs.angularjs.org/api/ng/filter/date
https://docs.angularjs.org/api/ng/filter/json
http://www.it-ebooks.info/


Fun with Custom Filters
You may be wondering what we do if we need a filter that isn't built-in to AngularJS.

In this situation, you need to use custom filters, and these are relatively easy to

create. Let's see how.

To register a filter you need to call the function angular.module().filter(). As

usual, the first argument is the name of the filter. The second argument is the filter

factory function. For instance, the following snippet creates a filter that restricts

the number of characters in a string to 127.

angular.module('myApp',[]).filter('limitCharacters',function(){
    return function(input,characterCount){
        return (input.length > characterCount) ? 
➥input.substring(0,characterCount) : input;
    }
});

The second argument to the filter() function is called a filter factory function.

This is where we return the actual filter. If your filter has dependencies, you can

list those as arguments in this function. In this simple example we don't have any

dependencies, but you will need them in future. Now, let's examine the filter

function returned from the factory. The first parameter represents the expression

on which the filter is applied. The rest of the parameters are the filter arguments,

which can be 0 or above (remember, filters can accept arguments). Now, in the

template we apply the filter like so:

{{content | limitCharacters : 127}}

Assume that content is the scope model, which contains a long string. As you can

see limitCharacters is applied on the expression with the help of a vertical pipe

(|). We also want to pass an argument to the filter specifying how many characters

to limit.

Chaining Multiple Filters
In the example above, we restricted the number of characters in a string to a certain

length. But, what happens if we have another requirement, such as wanting to make

the characters uppercase as well? Well, you can chain filters; the output from the

235AngularJS Filters

www.it-ebooks.info

http://www.it-ebooks.info/


first filter will become the input to the next filter, and so on. Let's tweak the previous

example to apply an uppercase filter immediately after the limitCharacters filter,

so that they're chained:

{{content | limitCharacters : 127 | uppercase}}

In this example, the limitCharacters filter will be applied first, and then uppercase

will be applied to the result from first filter.

Ordering of Chained Filters

The ordering of the filters may have a dramatic effect on the performance of your

app. For example, if you have a very long string you should first limit its size and

then uppercase it—not the other way around. Similarly, it's a bad idea to first sort,

and then filter your data, because a a quantity of data will need to be ordered for

no good reason.

Using Filters in Controllers, Services, and Directives
So far we've seen how to use filters in the view templates. But the good news is that

filters are injectable and you're allowed to use them inside the controllers, services,

and directives via dependency injection. The trick is that you need to add a suffix

Filter to the filter name while listing it as an argument for dependency injection.

For example, if you want to use the previously created filter limitCharacters in

your controller, you should inject limitCharactersFilter in the controller. Here's

how we do that:

angular.module('myApp',[]).controller('TestController',
➥function($scope,limitCharactersFilter){
    $scope.content=limitCharactersFilter
➥('This is less than 127',127);
});

The first argument to the filter is the input to which the filter should be applied.

After that you can pass the optional arguments. As we're applying the filter inside

the controller there's no need to keep it in the template. So, in the template itself

we only need to write the following expression:

AngularJS: Novice to Ninja236

www.it-ebooks.info

http://www.it-ebooks.info/


{{content}}

You can inject the filter in exactly the same way inside services and directives.

Next, let's meet some really interesting filters you'll encounter in day-to-day pro-

gramming.

Why the Suffix?

You're probably wondering why we need the extra suffix Filter while injecting

the filter into our controller? In the last chapter, I noted that filters are not registered

through the $provide service. Instead they're registered with $filterProvider.

If we directly passed limitCharacters as an argument to our controller, Angu-

lar's DI system would look for a provider named limitCharactersProvider

and try to inject the service limitCharacters. The suffix Filter tells the DI

system that it should first look for the provider and, if it's present, use it. Otherwise

it must strip the suffix Filter and look for a corresponding filter and inject that.

So, if the service name is exampleFilter, say, (you should never actually name

your services like this) then DI will first look for exampleFilterProvider and,

if it finds it, use it. Otherwise, it'll look for a filter named example and try to inject

that.

Meet a Filter Called filter
There's a built-in filter in AngularJS called filter that takes an array of items and

returns a sub-array based on a filtering condition. filter is most commonly used

in conjunction with ng-repeat.

To understand the concept here let's create a small app that lists a group of friends'

details. Here is our controller, with some hardcoded example data:

angular.module('myApp',[]).controller('FriendsController', 
➥function($scope, $filter) {
  $scope.friends = [{
    name: 'Sandeep',
    phone: '7432453412',
    country: 'IN'
  }, {
    name: 'John',
    phone: '8647323423',

237AngularJS Filters

www.it-ebooks.info

http://www.it-ebooks.info/


    country: 'US'
  }, {
    name: 'Alex',
    phone: '5453562353',
    country: 'NZ'
  }, {
    name: 'Martin',
    phone: '2376454323',
    country: 'US'
  }, {
    name: 'Ian',
    phone: '8645432364',
    country: 'AU'
  }, {
    name: 'Rob',
    phone: '8967654567',
    country: 'UK'
  }];
});

And, this is our template, which lists all the friends with their details:

<body ng-controller="FriendsController">
    <h3>Your Friends are:</h3>
    <ul>
      <li ng-repeat="friend in friends">
        {{friend.name}} ({{friend.phone}}, {{friend.country}})
      </li>
    </ul>
</body>

Now, let's assume that you want to filter through the list to look up all of your

friends whose names contains a particular string ('sa', for example). This is where

filter shines. You can attach it to ng-repeat whereupon it'll filter through the list

and return only the relevant results. Let's add an input field to the above template

so that the list refreshes itself based on the filter text typed into the field. Here's the

modified template:

<body ng-controller="FriendsController">
    <h3>Your Friends are:</h3>
    Filter: <input type="text" ng-model="filterText"/>
    <ul>

AngularJS: Novice to Ninja238

www.it-ebooks.info

http://www.it-ebooks.info/


      <li ng-repeat="friend in friends | filter: filterText">
        {{friend.name}} ({{friend.phone}}, {{friend.country}})
      </li>
    </ul>
</body>

Note that we are referencing a scope model filterText in the filter clause inside

ng-repeat. The model filterText is bound to an input field so that it's updated

whenever we type something into it. As filterText changes, the list is automatically

refreshed based on the filter. Note, however, that this approach accepts a match

against any property of the object in the list. To match against a specific property

in the object you can change the filter clause as follows:

<li ng-repeat="friend in friends | filter:{name:filterText}">
    {{friend.name}} ({{friend.phone}}, {{friend.country}})
</li>

Now this arrangement should filter only those friends whose name property matches

the filter text.

While a partial match is sufficient, sometimes you might need a strict match. This

means, in the above example if we type j or J as the filter text there should be no

results. But if we type the complete name John it should yield one record. The

second argument to filter is a boolean value indicating whether or not we want

a strict match. We can, again, modify our template to introduce a checkbox that

toggles this boolean value and use this as the second argument with filter.

<body ng-controller="FriendsController">
    <h3>Your Friends are:</h3>
    Filter: <input type="text" ng-model="filterText"/>
    Strict: <input type="checkbox" ng-model="isStrict"/>
    <ul>
      <li ng-repeat="friend in friends | filter:{name:filterText}
➥:isStrict">
        {{friend.name}} ({{friend.phone}}, {{friend.country}})

239AngularJS Filters

www.it-ebooks.info

http://www.it-ebooks.info/


      </li>
    </ul>
</body>

Now if you select the checkbox you'll enter into the strict mode. Similarly, de-se-

lecting the checkbox will bring you back to the normal mode.

Meet the orderBy Filter
orderBy is another filter that's used in conjunction with ng-repeat. This is useful

when you want to order a list of items by a certain parameter. Let's arrange the list

of our friends by the name property, in ascending order. The modified ng-repeat

looks like this:

<li ng-repeat="friend in friends | filter:{name:filterText}:strict
➥ | orderBy:'name'">
    {{friend.name}} ({{friend.phone}}, {{friend.country}})
</li>

Now what about descending order? Just modify the orderBy filter like this: or-

derBy:'-name'.

Meet the limitTo Filter
The third important companion of ng-repeat is the limitTo filter. As its name

suggests, it limits the list items to a specified number. Suppose you want to see the

details for five friends only. In that case you can use limitTo as follows:

<li ng-repeat="friend in friends | filter:{name:filterText}:strict | 
➥orderBy:'name' | limitTo:5">
    {{friend.name}} ({{friend.phone}}, {{friend.country}})
</li>

We've nearly covered everything. But there's one small trick left. You can obtain

your filters in a different way. Let's see how.

Using the $filter Service
There is also a built-in service called $filter. If you don't want to list the individual

filters as arguments you can just inject the $filter service and use it to obtain the

AngularJS: Novice to Ninja240

www.it-ebooks.info

http://www.it-ebooks.info/


registered filters. Here is how our previously created controller looks like, modified

to use $filter:

angular.module('myApp',[]).controller('TestController',
➥function($scope,$filter){
    var limitCharactersFilter=$filter('limitCharacters'); //This 
➥gives us the filter. Notice no Filter suffix!
    $scope.content=limitCharactersFilter
➥('This is less than 127',127);
});   

Using Filters in Single Page Blogger
Let's add two more requirements for our Single Page Blogger app to demonstrate

the use of filters. We'll start by looking at a permalink filter.

Permalink Filter
As you already know, we generate the permalink for a post using its title. To do

that we lowercase the title entered by the admin and replace all the spaces with

hyphens (-). For example, if the title for a post is "Lorem Ipsem Post" the permalink

will be: http://localhost:8000/#/posts/44/lorem-ipsum-post. Generating these

permalinks is a good example of using a filter that we can use in both our view

template and controller. The objective here is simple: while the admininstrator is

typing in the title field, we can show them what the permalink will look like.

First, let's create a filter called permalink inside the file modules/admin/js/fil-

ters.js:

angular.module('spBlogger.admin.filters',[]).
➥filter('permalink',function(){
    return function(title){
        return title===undefined ? '' : angular.lowercase(title).
➥replace(/[\s]/g,'-');
    }
});

The filter is quite simple. If the user has not typed anything into the title field it's

undefined, in which case we simply return an empty string. Otherwise, we convert

the title to lowercase and replace all the spaces with dashes -. Now we need to

241AngularJS Filters

www.it-ebooks.info

http://www.it-ebooks.info/


display it on the view so that administrators see the permalink updated whenever

they type into the title field. Open up the file modules/admin/views/_form.html and

place the filter just below title input field. Here is the code:

<input type="text" name="title" ng-model="post.title" 
➥ng-required="true" class="form-control" id="title" 
➥placeholder="Title">
<span>Permalink:<i>/posts/[id]/{{post.title | permalink}}</i></span>

As usual, we invoke our filter with the vertical pipe. As the model post.title

changes the filter is re-evaluated and the view is updated with the new permalink.

That's it! But we can also use this filter elsewhere. You might remember that Post-

CreationController also calculates the permalink value. I'll leave it up to you to

inject the filter into the controller and use it to calculate the permalink . Just make

sure to inject permalinkFilter and not permalink.

Now, let's write the unit test for this filter. As this is a filter test it should go into

test/unit/filtersSpec.js. Here's the code you need:

describe('filter', function() {

  beforeEach(module('spBlogger.admin.filters'));

  describe('Permalink Filter Test\n', function() {

    it('Should Replace all spaces with hyphens and convert to 
➥lowercase', inject(function(permalinkFilter) {
      expect(permalinkFilter('I had 3 spaces')).
➥toEqual('i-had-3-spaces');
    }));

  });

});

The test is pretty straightforward. Here we just inject permalinkFilter and test it

with a sample input as usual.

Now you can run scripts/test.sh or scripts/test.bat to execute the tests.

AngularJS: Novice to Ninja242

www.it-ebooks.info

http://www.it-ebooks.info/


Wordcount Filter
A helpful feature of many blogging apps is the ability to show the word count of a

post while it's being written or edited. Let's add that to our app using filters.

Here is the code for the filter wordcount from the file modules/admin/js/filters.js:

angular.module('spBlogger.admin.filters').
➥filter('wordcount',function(){
    return function(input){
        return input===undefined ? 0 : input.split(/\s/g).length;
    }
});

If the admin has not typed any content the count is 0. Otherwise we break at every

space to count the words. Now the filter can be used in the template

modules/admin/views/_form.html:

<span>{{post.content | wordcount}} words</span> <br/>

Lastly, we need to test this filter as well. So, here is the snippet for the unit test that

goes into test/unit/filtersSpec.js :

describe('Wordcount Filter Test\n', function() {

    it('Should count the number of words as 3', 
➥inject(function(wordcountFilter) {
        expect(wordcountFilter('Three words here')).toEqual(3);
    }));

});

As usual, you can run scripts/test.sh or scripts/test.bat to see the test results.

Conclusion
Filters give you great power in terms of formatting data. In this chapter we covered

the basics of filters and explored some of the built-in filters. We also learned how

to create custom filters and saw three important filters that work with ng-repeat.

Finally, we saw how to build two simple filters for our demo app and unit test them.

243AngularJS Filters

www.it-ebooks.info

http://www.it-ebooks.info/


Next up, we'll move on to look at animation in AngularJS.

AngularJS: Novice to Ninja244

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter14
AngularJS Animation
Animation is an important part of any web app that wants to create a rich user ex-

perience. With the release of AngularJS 1.2 creating animations has become even

easier. If you have an existing AngularJS app, all you need to do is add CSS classes

to your elements to provide a hook for the animations. AngularJS automatically

adds or removes these classes at various points in the lifecycle of several directives.

You can write CSS rules against these classes and get started with animation in no

time.

Animations can be written using CSS3 transitions, CSS keyframe animations, and

JavaScript code. This chapter will teach you how to create animations using all

three techniques. To finish, we'll also add a simple animation to our demo app.

A Primer on Animation Types

We can create animations in AngularJS using three techniques:

■ CSS3 Transitions: Normally, when you change a CSS property the result is

instantaneous (say, when you change the color of a <div> from white to red,

www.it-ebooks.info

http://www.it-ebooks.info/


for example). CSS3 transitions1 provide an easy way to make this change

happen gradually over a period of time.

■ CSS3 Keyframes: CSS3 keyframe animation2 lets you control the intermediate

steps in animation by introducing keyframes. This provides a much greater

level of control over the animation than using simple transitions.

■ JavaScript Animation: JavaScript animation is achieved by gradually moving

DOM elements, changing element styles, etc. jQuery provides a simple-to-use

interface to apply animations to your web app. We can use it in our AngularJS

app, too. But do remember CSS3 animations are much faster than JavaScript

animations and should be used whenever possible.

Getting Started
Animation is not a core part of AngularJS. To get started, you need to include the

script angular-animate.js in your main page. Head over to the Angular Seed Master

you downloaded earlier and navigate to app/lib/angular/angular-animate.js. This is

the script you need to include in your project, and it creates a module called ngAn-

imate. In order to use animations you need to declare a dependency on the module

ngAnimate as follows:

angular.module('myApp',['ngAnimate']);

Animation with CSS3 Transitions
Let's see how to apply a simple fade-in/fade-out animation using the ng-if directive

and CSS3 transitions. Assuming you have downloaded and installed ngAnimate

let's start with a simple template:

<div ng-init="isShown=true">
    <input type="checkbox" ng-model="isShown" />Show

    <div class="my-animation-class" ng-if="isShown">
      <h3>Enter/Leave Animation</h3>

1 http://www.w3.org/TR/css3-transitions/
2 http://www.w3.org/TR/css3-animations/

AngularJS: Novice to Ninja246

www.it-ebooks.info

http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-animations/
http://www.it-ebooks.info/


    </div>

</div>

Here, we have an ng-if directive attached to a div that inserts a template based on

the model isShown. Let's say we want to apply an animation while the template is

being added or removed. This can be done with simple CSS3 transitions. The ng-

if directive automatically adds a couple of CSS classes to the element during its

lifecycle. When AngularJS inserts the template a class ng-enter is added. You can

use this class to write your starting animation. Once the template has been added

another class called ng-enter-active is added to the element, which marks the

end of the transition. You can use this class to complete the animation.

I have added a class my-animation-class to the element and we'll write all CSS

transitions using this class as a base.

.my-animation-class.ng-enter {
  -webkit-transition: 0.5s linear all;
  -o-transition: 0.5s linear all;
  -moz-transition: 0.5s linear all;
  opacity: 0;
  background: green;
}
.my-animation-class.ng-enter.ng-enter-active {
  opacity: 1;
}

The starting animation is written using the class .my-animation-class.ng-enter

as a hook. We make the opacity 0, set the background as green, and trigger a

transition for 0.5s. The good news is that ngAnimate is aware of the transition-

delay property (in this case, 0.5s) and automatically adds the class ng-enter-active,

which acts as the end point for our animation.

In this case we simply make the opacity 1. Once the animation is over, both the

classes ng-enter and ng-enter-active are automatically removed. As a result of

the transition we see a fade-in effect while the template is being added, due to ng-

if.

Now, let's say that we also want to show an animation when the template is being

removed. When this happens, the ng-if directive also adds two more CSS classes

247AngularJS Animation

www.it-ebooks.info

http://www.it-ebooks.info/


called ng-leave and ng-leave-active. We can use these classes to start and stop

the animation when the template is being removed. Here is the CSS to do that:

.my-animation-class.ng-leave {
  -webkit-transition: 0.5s linear all;
  -o-transition: 0.5s linear all;
  -moz-transition: 0.5s linear all;
}
.my-animation-class.ng-leave.ng-leave-active {
  opacity: 0;
}

Going Further
ng-if is not the only directive that automatically adds and removes ng-enter and

ng-leave CSS classes during its lifecycle. The following table shows the different

directives that use these classes:

DirectivesEnd CSS ClassStart CSS ClasssEvent

ngIf,ngView.ng-enter-active.ng-enterenter

ngInclude,ngRepeat.ng-enter-active.ng-enterenter

ngIf,ngView.ng-leave-active.ng-leaveleave

ngInclude,ngRepeat.ng-leave-active.ng-leaveleave

ngRepeat.ng-move-active.ng-movemove

You write the animations in a similar way as described above for each of the direct-

ives.

AngularJS also supports animation based on the addition or removal of CSS classes.

The following table provides a summary:

DirectivesEnd CSS ClassStart CSS ClasssEvent

ngShow,ngHide.ng-hide-add-active.ng-hide-addhide

ngShow,ngHide.ng-hide-remove-active.ng-hide-removeshow

ngClass,class={{classname}}.CLASSNAME-add-active.CLASSNAME-addaddition of class

ngClass,class={{classname}}.CLASSNAME-remove-active.CLASSNAME-removeremoval of class

AngularJS: Novice to Ninja248

www.it-ebooks.info

http://www.it-ebooks.info/


Let's see how we can change our previous example to use ng-show and animate it.

The modified template is as follows:

<div ng-init="isShown=true">
    <input type="checkbox" ng-model="isShown" />Show

    <div class="my-animation-class" ng-show="isShown">
      <h3>Show/Hide Animation</h3>
    </div>

</div>

Now we are using ng-show to show and hide the template. When the template is

being shown the class ng-hide-remove is added initially, while ng-hide-remove-

active is added to mark the end of the transition. Similarly, when the template is

being hidden, the ng-hide-add and ng-hide-add-active classes are added. As a

result, we can use these classes to apply some CSS3 transitions:

.my-animation-class.ng-hide-remove {
  -webkit-transition: 0.5s linear all;
  -o-transition: 0.5s linear all;
  -moz-transition: 0.5s linear all;
  opacity: 0;
  background: green;
}
.my-animation-class.ng-hide-remove.ng-hide-remove-active {
  opacity: 1;
}
.my-animation-class.ng-hide-add {
  -webkit-transition: 0.5s linear all;
  -o-transition: 0.5s linear all;
  -moz-transition: 0.5s linear all;
}
.my-animation-class.ng-hide-add.ng-hide-add-active {
  opacity: 0;
}

Support in Older Versions of IE

CSS3 transitions are not supported in IE9 and earlier. If you want to support these

browsers, you might use jQuery animations instead. We'll see how to do that

249AngularJS Animation

www.it-ebooks.info

http://www.it-ebooks.info/


shortly. But do bear in mind that CSS3 transitions are always faster and should

be used whenever possible.

Animation Using Keyframes
We've seen how to write animations using CSS3 transitions, but ngAnimate also

supports animations using CSS3 keyframes. Let's see how to refactor the show/hide

animation we discussed earlier using keyframes. The process is very similar; the

only difference is that you don't need to write any CSS against ng-hide-remove-

active. Your CSS code will target the class .ng-hide-remove and the animations

will be managed within @keyframes blocks. Here's the CSS to support keyframe

animations (The template remains same as before):

.my-animation-class.ng-hide-remove {
  -webkit-animation:0.5s fade-in;
  animation:0.5s fade-in;
}

@keyframes fade-in {
  from { opacity:0;background:green; }
  to { opacity:1; }
}

@-webkit-keyframes fade-in {
  from { opacity:0; background:green;  }
  to { opacity:1; }
}

The above code displays an animation when the div is being shown. I'll leave it up

to you to write an animation for when the template is being hidden.

Support in Older Versions of IE

Like CSS3 transitions, keyframe animation also doesn't work with IE9 and below.

Animation Using jQuery
If you need more control over the animation and want to support older browsers

you can always use JavaScript for animation. Let's see how we can use jQuery for

animating our previous example involving the ng-if directive. Here's the template:

AngularJS: Novice to Ninja250

www.it-ebooks.info

http://www.it-ebooks.info/


<div ng-init="isShown=true">
        <input type="checkbox" ng-model="isShown" />Show

        <div class="my-animation-class" ng-if="isShown">
          <h3>Enter/Leave Animation</h3>
        </div>
</div>

To attach animations through jQuery you need to create an animation component

by calling the angular.module().animation() function. The following code shows

the creation of such a component:

angular.module('animationDemo', ['ngAnimate']).
➥animation('.my-animation-class',function(){
  return {
    enter: function(elem,done){

      elem.css({
        background:'green',
        opacity:0
      });

      elem.animate({
        backgroundColor:'white',
        opacity:1
      }, done);

    },
    leave:function(elem,done){
      elem.css({
        opacity:1
      });

      elem.animate({
        opacity:0
      }, done);
    },

    move : function(element, done) { done(); },

    beforeAddClass : function(element, className, done) { done(); },
    addClass : function(element, className, done) { done(); },

    beforeRemoveClass : function(element, className, done) 

251AngularJS Animation

www.it-ebooks.info

http://www.it-ebooks.info/


➥{ done(); },
    removeClass : function(element, className, done) { done(); }
  }
});

As you see, the first argument to the .animation() function is the name of the CSS

class present on your target element. In our case, it's .my-animation-class. The

second argument is a factory function that returns an object that possesses various

properties to attach animations. As we are using ngIf, we can use the enter and

leave properties to apply animations.

Inside enter, we first set the opacity to 0 and change the background color to green.

Next, we call jQuery.animate() to make a transition. Also note the done() function

is passed to animate() to mark the end of transition. The same is true of the leave

transition, but, in terms of opacity, we do the reverse.

There's also support for other types of animation through properties such as move,

beforeAddClass, addClass, beforeRemoveClass, removeClass etc. In our example,

we only need enter and leave animations so we can omit these properties. Later

on we'll see how to utilize other properties.

Note that you need to load jQuery before AngularJS in order for the animation to

work. Bear in mind, also, that you should always use CSS3 animations in your app

so that modern browsers can take advantage of them. Then, in your JavaScript an-

imation component, you can detect the browser and conditionally write animations

so that users of older browsers get a fallback to jQuery animation.

Animation Using ngClass
So far we've seen the three ways of writing animations and, in every method, CSS

classes have played the major role in attaching them. You might remember ng-class

conditionally attaches classes to the element based on the scope model value. It's

even easier to employ this to write our animations. Let's see how we can animate

elements with the ng-class directives.

As we saw in the previous table, animation hooks look like .CLASSNAME-add,

.CLASSNAME-add-active &, .CLASSNAME-remove, and .CLASSNAME-remove-active.

Think of CLASSNAME as the name of the class that's added or removed by ng-class.

So, when ng-class adds a new class to the element, the animation you wrote against

AngularJS: Novice to Ninja252

www.it-ebooks.info

http://www.it-ebooks.info/


.CLASSNAME-add will be triggered. The end of the animation is marked by .CLASS-

NAME-add-active. The same is true for .CLASSNAME-remove and.CLASSNAME-remove-

active.

Take a look at the following snippet, which displays a 100x100 div. Let's say that,

on hover, its size should expand to 200x200 and then return back to its original

size:

<div class="my-animation-class" ng-class="{'growing-div':grow}" 
➥ng-mouseover="grow=true" ng-mouseout="grow=false"></div>

When a user hovers on the div, a class growing-div is attached to it. ng-class also

adds the class growing-div-add for starting the animation. When this happens, the

transition written against .growing-div-add will be triggered. Similarly the trans-

ition written against growing-div-add-active will be triggered when the animation

needs to be stopped. This is where we increase the size of the div.

Here is the code for the transition:

.my-animation-class {
  height: 100px;
  width: 100px;
  background:green;
}
.my-animation-class.growing-div-add {
  -webkit-transition-property: height, width;
  -webkit-transition-duration: 1s;
}
.my-animation-class.growing-div-add-active {
  width: 200px;
  height: 200px;
}

Now, when you hover on the div its size will grow and then come back to normal.

However, if you want the div to retain its size as long as the user hovers on the div,

you can use the following CSS transition:

.my-animation-class.growing-div{
  -webkit-transition-property: height, width;
 -webkit-transition-duration: 1s;

253AngularJS Animation

www.it-ebooks.info

http://www.it-ebooks.info/


  width: 200px;
  height: 200px;
}

I encourage you to try .CLASSNAME.remove and .CLASSNAME.remove-active anima-

tions on your own to make it so that when the div returns to its normal size the

transition is smooth.

Now if you wanted to achieve the same effect using JavaScript, you could use the

following:

angular.module('animationDemo', ['ngAnimate']);

angular.module('animationDemo').animation('.my-animation-class',
➥function(){
  return {
    addClass : function(elem, className, done) {
      if(className==='growing-div'){
        elem.animate({width: '200px',height:'200px',duration: 1000, 
➥queue: true}, done);
      }
    },
    removeClass : function(elem, className, done) {
      if(className==='growing-div'){
        elem.animate({width: '100px',height:'100px',duration: 1000, 
➥queue: true},done);
      }
    }

  }
});

In our previous discussion of JavaScript animation, we saw the enter and leave

functions. Now let's see two more functions: addClass and removeClass. The ad-

dClass function will be called when ng-class adds the class to the element.

className detects the class being added, and writes the transition accordingly.

Similarly, removeClass is called when the class is removed. We use jQuery animation

here to ensure the transition is smooth when the div returns to its original size.

AngularJS: Novice to Ninja254

www.it-ebooks.info

http://www.it-ebooks.info/


You can comment out the CSS rules and add this code to see it working. No other

change is needed. Again this uses jQuery's animation, so you need to load jQuery

before AngularJS.

Animation with Custom Directives
We've seen how to use animations with directives such as ngIf,ngShow,ngClass,

etc. What if we wanted to use animations with our own directives? The good news

is that ngAnimate provides a useful service called $animate which can be used to

roll out animations with custom directives. To use $animate, you need to inject it

into your directive's factory function. It defines the following functions, which can

be invoked within your directive to trigger the appropriate animations:

■ enter(elem,parent,after,callback) : Appends the child element into the

parent node or after the after node and then runs enter animation.

■ leave(elem,callback): Runs leave animation and removes the element from

DOM.

■ move(elem, parent, after, callback): Moves the element into the parent

node or after the after node and runs the move animation.

■ addClass(elem,className,callback): Runs the addClass animation and adds

the specified class to the element.

■ removeClass(elem,className,callback):Runs the removeClass animation and

removes the specified class from the element.

Let's create a directive that uses $animate for animations. We'll develop a simple

directive which will generate and display a random number on a button click. If

the generated number is more than 0.5, the number should shake.

The directive code is pretty straightforward:

angular.module('animationDemo', ['ngAnimate']).directive('shakeDiv', 
➥function($animate, $timeout) {
  return {
    link: function(scope, elem, attrs) {
      scope.generateRandom = function() {
        scope.randomValue = Math.random().toFixed(2);

255AngularJS Animation

www.it-ebooks.info

http://www.it-ebooks.info/


        if (scope.randomValue > 0.5) { //if >0.5 add the class
          $animate.addClass(elem.find('.my-animation-class'), 
➥'shake');
          $timeout(function() {
            $animate.removeClass(elem.find('.my-animation-class'), 
➥'shake');
          }, 1000);
        }
      }
    },
    template: '<input type="button" ng-click="generateRandom()" 
➥value="Generate Random Value"/><h2 class="my-animation-class">
➥{{randomValue}}</h2>'
  }
});

The name of our directive is shakeDiv. It has two dependencies: $animate and

$timeout. It has a simple template that consists of a button and an <h2> element

which displays the generated random number.

On the button click scope.generateRandom() is called; it generates a random value.

If the value is more than 0.5, we call $animate.addClass(elem.find('.my-anima-

tion-class'), 'shake') to trigger addClass animation where we perform a shake

effect. Next, we use $timeout service to remove the class after 1s. We do this so

that the shake effect doesn't last forever.

Now the CSS3 keyframe animation for the shake effect is as follows:

.my-animation-class {
    -webkit-animation-duration: 1s;
    animation-duration: 1s;
    -webkit-animation-fill-mode: both;
    animation-fill-mode: both;
}

@-webkit-keyframes shake {
    0%, 100% {-webkit-transform: translateX(0);}
    10%, 30%, 50%, 70%, 90% {-webkit-transform: translateX(-10px);}
    20%, 40%, 60%, 80% {-webkit-transform: translateX(10px);}
}
@keyframes shake {
    0%, 100% {transform: translateX(0);}
    10%, 30%, 50%, 70%, 90% {transform: translateX(-10px);}

AngularJS: Novice to Ninja256

www.it-ebooks.info

http://www.it-ebooks.info/


    20%, 40%, 60%, 80% {transform: translateX(10px);}
}
.my-animation-class.shake {
    -webkit-animation-name: shake;
    animation-name: shake;
}

Adding Simple Animation to Single Page
Blogger

Let's see how to apply animation to Single Page Blogger. We'll add an animation to

the comments section. Currently, when you add a new comment to a post it appears

suddenly. Now let's make comment appearance smooth by adding a fade-in trans-

ition.

If you open up the template for comments modules/posts/views/comments.html you'll

find the following <div> that is repeated through ng-repeat:

<div class="single-comment" ng-repeat="comment 
➥in postInstance.comments"></div>

Now you should recall ng-repeat adds a class .ng-enter when a new item is added

to the list. It also adds .ng-enter-active when the animation should end. So, you

can simply open up app.css and add the following CSS rules for animation:

.single-comment.ng-enter{
    -webkit-transition: 1s linear all;
    -o-transition: 1s linear all;
    -moz-transition: 1s linear all;
    opacity: 0;
}
.single-comment.ng-enter.ng-enter-active{
    opacity:1;
}

Note that .single-comment is the name of our target element class. Now, if you open

a post and add a new comment you can see a fade-in effect! That's it.

It's almost too simple to add animations to an existing AngularJS app. There are

many more places in Single Page Blogger where you can add animation. For example,

257AngularJS Animation

www.it-ebooks.info

http://www.it-ebooks.info/


when the ui-view content changes it adds ng-enter and ng-enter-active classes.

You can start with this and gradually move to other places.

Don't Go Overboard with Animation

Don't go overboard with animations. Use them sparingly and they'll have a much

bigger impact.

Remember to Install ngAnimate in the App

For animation to work in Single Page Blogger, you need to have installed ngAnim-

ate.

Conclusion
In this chapter we explored the different ways of applying animations in AngularJS.

You'll have noted that addition and removal of CSS classes play the major role in

animation. You can write either CSS rules or JavaScript code that fires transitions

or animations based on the classes. In a nutshell, AngularJS enables us to write

animations using CSS3 transitions, CSS keyframe animation, and JavaScript. You

can also roll out animations within your own directive using $animate service. I

hope you've enjoyed reading about animations. The next chapter will discuss de-

ployment.

AngularJS: Novice to Ninja258

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter15
Deployment and Internationalization
You're nearing the end of the book, and are well on your way to becoming an Angular

ninja. But there is a tiny gotcha! We've been busy developing functionality for our

app right from the beginning, but how do we deploy our app for the world to see

it? And what about people from different locations who speak different languages?

Can they understand our website content? Well, this chapter answers these questions

and readies your AngularJS app ready for deployment.

To begin with, let's see how we can deploy our app.

Deployment
Here's an overview of best practice deployment:

1. Open up index.html from our demo app (/sp-blogger/index.html), scroll to the

bottom, and you'll see our source code is divided into many JavaScript files. The

problem with loading multiple script files is that they block parallel execution.

In addition to this, there's a limit on the maximum number of parallel resource

downloads for the same domain. When the browser encounters a <script> tag

the rendering stops and it starts executing the script. This done, it then moves

www.it-ebooks.info

http://www.it-ebooks.info/


to the next <script> and so on. Of course, you can set the async attribute on

<script> element, which will enable multiple scripts to be downloaded asyn-

chronously. However, this gives the server a lot more work to do. The solution

to these issues is to concatenate all the scripts into a single file so that the browser

can download the whole lot in a single HTTP request. This clearly improves the

performance and reduces your app's response time.

2. Simply concatenating files is not enough, though. To improve the performance

further we need to reduce the script size so that the browser can quickly download

it.

3. We need to repeat steps one and two for CSS files as well; in other words, we

also need to link and compress CSS files.

4. Finally, it's a good idea to keep source code and deployable code in separate

directories to make it easy to deploy the app.

It's a huge pain to do all these tasks manually each time we prepare our app for

deployment. And so, we'll use a tool called Grunt1. Grunt is a task runner that

automates recurring tasks for us, and it's available as a Node module. Let's see how

we can use Grunt in our demo app.

First of all, we need to download and install the grunt-cli node module globally.

To do this run the following command from terminal:

npm install grunt-cli -g

This will add the grunt command to your system path so you can invoke it from

any directory. Next, you need to install the actual grunt module locally in your

app. So now go to your app root directory /sp-blogger and run the following

command:

npm install grunt --save

Grunt will now look for a special file Gruntfile.js in the root directory in order

to read the tasks. Let's add this file to the root of our app and list all the tasks in it.

Figure 15.1 shows the presence of Gruntfile.js in our app.

1 http://gruntjs.com/

AngularJS: Novice to Ninja260

www.it-ebooks.info

http://gruntjs.com/
http://www.it-ebooks.info/


Figure 15.1. Grunfile.js in place

Next up, we need to download a selection of Grunt plugins that automate a variety

of tasks. These are node modules and need to be installed via npm. Before doing

that let's take a look at each of the tasks:

1. grunt-contrib-concat: Concatenates multiple JS files into one.

2. grunt-contrib-uglify: Minifies the JS files.

3. grunt-contrib-cssmin: Minifies CSS files.

4. grunt-usemin: Replaces the references to non-optimized files with the optimized

and concatenated file.

5. grunt-contrib-copy: Copies the source files into the deployable directory.

6. grunt-contrib-clean: Cleans the output deployable directory.

We need to update the devDependencies in package.json with the above module

names. The content of package.json becomes:

261Deployment and Internationalization

www.it-ebooks.info

http://www.it-ebooks.info/


{
  "name": "Single Page Blogger",
  "description": "A Single Page Blogging app built with AngularJS",
  "devDependencies": {
    "karma": "~0.10",
    "karma-chrome-launcher": "^0.1.2",
    "karma-jasmine": "^0.2.2",
    "karma-junit-reporter": "^0.2.1",
    "karma-ng-html2js-preprocessor": "^0.1.0",
    "phantomjs": "~1.9",
    "protractor": "~0.17.0",
    "grunt-contrib-concat": "~0.3.0",
    "grunt-contrib-uglify": "~0.2.7",
    "grunt-contrib-cssmin": "~0.7.0",
    "grunt-usemin": "~2.0.2",
    "grunt-contrib-copy": "~0.5.0",
    "grunt-contrib-clean": "~0.5.0"
  }
}

Now we simply run npm install from our app's root directory to install the modules.

No Need to Install the Modules if You're Using the Code Archive

If you're using the book's code archive, it already has these modules installed, so

you won't need to run npm install.

Finally, you need to create a directory /sp-blogger/dist in which our distribution

release will be placed.

Now open up Gruntfile.js and take a look inside to understand what really happens

in deployment:

1. grunt.initConfig provides options for configuring different tasks.

2. clean: ["dist", '.tmp'] tells grunt to clean up dist and .tmp directories before

copying resources.

3. The copy task configuration specifies which directories to copy to the dist/ dir-

ectory. In our case we only copy app/ and script/web-server.js to the output direct-

ory.

AngularJS: Novice to Ninja262

www.it-ebooks.info

http://www.it-ebooks.info/


4. useminPrepare and usemin specify the main files that contain references to

various scripts. In our case the files are app/index.html and dist/app/index.html.

The script and CSS files included in app/index.html will be concatenated and

minified.

5. uglify configuration gauges whether or not to compress the files.

As described previously, Grunt task plugins are installed via npm. And so, we need

to register these tasks with the following code in Gruntfile.js:

grunt.loadNpmTasks('grunt-contrib-clean');
grunt.loadNpmTasks('grunt-contrib-copy');
grunt.loadNpmTasks('grunt-contrib-concat');
grunt.loadNpmTasks('grunt-contrib-cssmin');
grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.loadNpmTasks('grunt-usemin');

Finally, we need to tell Grunt what to do when we type grunt in the terminal. What

we really want is to run the above tasks one after another, like so:

grunt.registerTask('default', [
   'clean', 'copy', 'useminPrepare', 'concat', 'uglify', 'cssmin', 
➥'usemin','adjustBuiltLinks'
]);

Now, open up app/index.html. We need to tell Grunt about the files we want to

concatenate and minify. For CSS files, we use the following comment block:

  <!-- build:css app/built/app.min.css -->
  <link rel="stylesheet" href="lib/bootstrap/bootstrap.css">
  <link rel="stylesheet" href="css/app.css">
  <!-- endbuild -->

This means the two CSS files mentioned will be concatenated and minified and the

result will be placed in dist/app/built/app.min.css.

Similarly, for these scripts we write the following:

<!-- build:js app/built/app.min.js -->

<script src="lib/jquery/jquery.js"></script>

263Deployment and Internationalization

www.it-ebooks.info

http://www.it-ebooks.info/


<script src="lib/bootstrap/bootstrap.js"></script>
<script src="lib/angular/angular.js"></script>
<script src="lib/angular-ui-router/angular-ui-router.js">  </script>
<script src="lib/angular/angular-resource.js"></script>
<script src="lib/angular/angular-sanitize.js"></script>
<script src="lib/angular/angular-animate.js"></script>

<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/directives.js"></script>
<script src="js/filters.js"></script>
<script src="js/services.js"></script>

<script src="modules/admin/adminModule.js"></script>
<script src="modules/admin/js/controllers.js"></script>
<script src="modules/admin/js/filters.js"></script>
<script src="modules/admin/js/directives.js"></script>
<script src="modules/admin/js/services.js"></script>

<script src="modules/posts/postModule.js"></script>
<script src="modules/posts/js/controllers.js"></script>
<script src="modules/posts/js/filters.js"></script>
<script src="modules/posts/js/directives.js"></script>
<script src="modules/posts/js/services.js"></script>

<!-- endbuild -->

And so, ultimately, the script files will be concatenated and minified and stored in

app/built/app.min.js.

Now, let's start the deployment. Go to /sp-blogger and just type grunt and hit enter.

Once the process finishes, open up dist/app/index.html and you'll notice that it

contains only a single CSS and JavaScript file. The index.html content looks like

this:

<!doctype html>
<html lang="en" ng-app="spBlogger">
<head>
  <meta charset="utf-8">
  <base href="/">
  <title>The Single Page Blogger</title>
  <link rel="stylesheet" href="built/app.min.css"/>
</head>

AngularJS: Novice to Ninja264

www.it-ebooks.info

http://www.it-ebooks.info/


<body>
  <div class="container">
    <br/>
    <div class="jumbotron text-center">
        <h1>The Single Page Blogger</h1>
        <p>One stop blogging solution</p>
    </div>
    <div ui-view class="main-content">Loading . . .</div>
    <div class="row footer">
        <div class="col-xs-12 text-center">
            <p>The Single Page Blogger</p>
        </div>
    </div>
  </div>
</body>

    <script src="built/app.min.js"></script>
</html>

Congratulations! You've completed the deployment. Now, to verify it, run the fol-

lowing in terminal:

cd sp-blogger/dist/app

And then:

node ../scripts/web-server.js

This will start the server and you can open up http://localhost:8000 as usual in

the browser. Now your app is optimized and its performance improved.

Source Maps for Debugging

An issue with the approach described here is that we're running different code

in development and production modes. The code in production is optimized, as

it's minified and concatenated. There's a chance that you may find a bug in the

production mode that doesn't occur in development mode. To address this, you

can run Grunt every time you change code, and always work in production mode

so that you're sure that the code works in production.

265Deployment and Internationalization

www.it-ebooks.info

http://www.it-ebooks.info/


To make debugging easier, you can start using Source Maps2. A source map is

basically a mapping between the production code and the original development

code you authored. So, if you encounter some error in the minified version you

can easily locate its exact position in the original code.

Whenever you make significant changes and need to redeploy the app to the cloud

you simply need to run grunt and go to the dist/ directory to pick up the release.

So that's deployment. I encourage you to go through the grunt documentation to

learn more about the tool and different tasks.

Finally in this chapter, let's make our app accessible to users from around the world.

To do this we need to add internationalization support. Let's see how we can do

that in AngularJS.

Internationalization
To add internationalization to our demo app we'll use a very easy-to-use third-party

module called angular-translate3. You don't need to download the script as I've

already placed it in the demo app. The path to the file is

/sp-blogger/app/lib/angular/angular-translate.js.

To demonstrate angular-translate let's add German-language support to Single

Page Blogger. First, we need to load the script in index.html so that AngularJS can

find the module. Here is how we include the file:

<script src="lib/angular/angular-translate.js"></script>

The next step is to add a dependency on the module pascalprecht.translate

defined by angular-translate. So, we go to sp-blogger/app/js/app.js and add

the above module in the dependencies list. It now looks like this:

2 http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
3 http://angular-translate.github.io/

AngularJS: Novice to Ninja266

www.it-ebooks.info

http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://angular-translate.github.io/
http://www.it-ebooks.info/


angular.module('spBlogger',['ngSanitize','ngResource',
➥'ngAnimate','ui.router','pascalprecht.translate',..]);

Note that I omitted our custom modules listed towards the end for the sake of

brevity.

Now, we need to add a config block to our main module spBlogger and inject

$translateProvider to add translations to it. The following code shows how it's

done:

angular.module('spBlogger').config(['$translateProvider',
➥function($translateProvider){

    $translateProvider.translations('en', {
        TITLE: 'The Single Page Blogger',
        SUBTITLE: 'One Stop Blogging Solution',
        COMMENTS: 'Comments',
        BY:'By',
        ADD:'Add'
    });

    $translateProvider.translations('de', {
        TITLE: 'Single Page Blogger',
        SUBTITLE: 'Die Komplettlösung für Ihr Blog',
        COMMENTS: 'Kommentare',
        BY:'Von',
        ADD:'Hinzufügen'
    });

    $translateProvider.preferredLanguage('en');

}]);

We use translateProvider.translations to store the translations against a key.

Here we added translations for English and German. But if you want to support

more languages you can keep adding more translations using the same method. Fi-

nally, $translateProvider.preferredLanguage('en') sets the preferred language

to English.

Next, we'll add a toggle button to index.html, which will allow users to switch

between languages. The following markup creates this:

267Deployment and Internationalization

www.it-ebooks.info

http://www.it-ebooks.info/


<div class="btn-group btn-toggle">
            <button class="btn btn-xs btn-default" 
➥ng-class="{en:'active'}[languagePreference.currentLanguage]" 
➥ng-click="languagePreference.switchLanguage('en')" >English
➥</button>
            <button class="btn btn-xs btn-primary" 
➥ng-class="{de:'active'}[languagePreference.currentLanguage]" 
➥ng-click="languagePreference.switchLanguage('de')">German</button>
</div>

Note that we're using Bootstrap's CSS classes to create toggle buttons.

The next thing we need to do is add a function languagePreference.switchLan-

guage() to $rootScope. This takes the language key and switches to the specified

language. For that we modify the run block in our module spBlogger as follows:

angular.module('spBlogger').run(['$state','$rootScope','$translate',
➥function($state,$rootScope,$translate){

      $state.go('allPosts');

      $rootScope.languagePreference={currentLanguage:'en'};

      $rootScope.languagePreference.switchLanguage=function(key){
          $translate.use(key);
          $rootScope.languagePreference.currentLanguage=key;
      }
}]);

The function $translate.use(key) takes a key and loads the translations written

against it. In addition, we use the property $rootScope.language.currentLanguage

to apply the active class, conditionally, to the toggle button in the view.

Now we need to open up index.html and replace the static hardcoded strings with

something like:

{{'KEY' | translate}}

So, the following expressions can be added to index.html to represent title and

subtitle of the website.

AngularJS: Novice to Ninja268

www.it-ebooks.info

http://www.it-ebooks.info/


<h1>{{'TITLE' | translate}}</h1>
<p>{{'SUBTITLE' | translate}}</p>

Now let's open up modules/posts/views/comments.html and replace the text

Comments and button label Add with:

<h3>{{'COMMENTS' | translate}}</h3>

And:

<input type="submit" value="{{'ADD' | translate}}" 
➥ng-click="saveComment()" class="form-control btn-success     
➥small-button" />

We're all set! Of course, should you wish, you can add more translations and inter-

nationalize additional sections.

To test this you can go to localhost:8000 in the browser and switch the language

by clicking on the toggle button. As soon as you switch you can instantly see the

labels change to the chosen language. Cool, isn't it?

Figure 15.2 and Figure 15.3 show how the app looks in German :

Figure 15.2. Single Page Blogger in German

269Deployment and Internationalization

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 15.3. The comments section, internationalized

Supporting Many Different Locations

When the number of translations grows in terms of size it's not feasible to keep

them in a single JavaScript file. You need to break the translations into separate

external files organized by location and load them asynchronously. The good

news is that angular-translate has excellent support for this. Check out the

documentation4 for more details.

Conclusion
We're almost at the end of the book! First we saw how to optimize our app for de-

ployment with grunt and now we've gone international with angular-translate.

But to be a true ninja you need to understand how to authenticate the users of your

app, and so that's the topic of the final chapter.

4 http://angular-translate.github.io/docs/#/guide/12_asynchronous-loading

AngularJS: Novice to Ninja270

www.it-ebooks.info

http://angular-translate.github.io/docs/#/guide/12_asynchronous-loading
http://angular-translate.github.io/docs/#/guide/12_asynchronous-loading
http://www.it-ebooks.info/


Chapter16
Authentication and Authorization in

AngularJS
Authentication and Authorization are two important parts of any web application.

Authentication is a process during which a client needs to prove its identity to the

server. Authorization, on the other hand, is used by the server to determine if the

user has permission to view a particular resource. In this chapter you'll learn how

to implement user authentication and authorization in our demo app.

Before getting started, let's go through our problem statement. We want to implement

an authentication/authorization mechanism where only administrators can publish,

edit, or delete posts. To authenticate themselves, the users must provide a username

and password and we'll check if it's valid. If so, we'll redirect the administrator to

the admin panel route where he or she can perform CRUD operations. Otherwise

the user will be asked to log in again. We'll also check if the user is logged in every

time an admin route loads so that nobody can access the admin route directly.

The main issue we have is that any security constraints we put in on the client-side

can easily be circumvented. Securing our resource URLs from unauthorized access

is a server-side affair and hence we need to take care of this first. Then, on the client

www.it-ebooks.info

http://www.it-ebooks.info/


side, we can use AngularJS to provide a better user experience by asking the users

to log in to access secure routes. Remember that the view templates and code for

secure routes can still be accessed by the end users. But as long as your API end-

points are secured and protected this shouldn't be a problem. With these points in

mind, let's implement authentication in our demo app.

Adding Login Functionality
If you remember, our API endpoints for interacting with posts for Single Page

Blogger look like the following. I have omitted the hostname in the URLs, which is

: spblogger-sitepointdemos.rhcloud.com.

ProtectedResultRequest BodyHTTP VerbURL

NoReturns all

posts

emptyGET/api/posts

YesCreate new

post

JSON StringPOST/api/posts

NoReturns single

post

emptyGET/api/posts/:id

NoUpdates

existing post

JSON StringPUT/api/posts/:id

YesDeletes

existing post

emptyDELETE/api/posts/:id

Additionally, I have now added security constraints to the endpoints. The last

column, Protected, indicates if the URL is protected. We have two secure end-

points—that is endpoints involving POST and DELETE actions. You need to authen-

ticate yourself to access these. The other endpoints use PUT and GET requests that

are available for public access. The PUT request should really be protected also, as

it changes the state of server resource just like POST. But as we're allowing the

public to comment on the posts and thereby update them let's keep it open for now

for the sake of simplicity.

Also, we have another endpoint /login that'll authenticate the users, and this expects

a JSON string containing username and password as the POST body. If the login

succeeds it responds with a JSON response, which represents the admin. Otherwise

AngularJS: Novice to Ninja272

www.it-ebooks.info

http://www.it-ebooks.info/


it'll send a "401 unauthorized" response. Similarly, to log out a user we have another

endpoint called /logout. It responds to a POST request and logs out the currently

logged-in user.

Now, let's take a look at what we need to do on the AngularJS side of things:

1. Create a state login which shows a login screen to the user.

2. Once we have a username and password we'll make a POST request to the remote

server endpoint /login, which will check the validity.

3. If the username/password combination is valid it will send a JSON response

representing the user. Otherwise it'll send a 401 status code.

4. Once the login is successful we'll take the user to the admin panel. In our case

the admin state name is admin. So, the admin user will be redirected to here.

5. In case of unsuccessful login, we will show an error message and ask the user to

re-authenticate.

6. To logout we simply send a request to the remote server URL /logout and redirect

the user to the login state.

Firstly, let's define a state login, as follows:

$stateProvider.state('login',{
    url:'/login',
    controller:'LoginController',
    templateUrl:'modules/admin/views/login.html'
});

This is defined in the file app/modules/admin/adminModule.js. Here is the template

used in this state:

<div class="row">
    <div class="col-sm-6 col-md-4 col-md-offset-4">
        <h1 class="text-center login-title">Login to Admin Panel
➥</h1>
        <div class="account-wall">
            <form class="form-signin" ng-submit="login()">
                <div ng-show="invalidLogin" 
➥class="alert alert-danger">Invalid username/password</div>

273Authentication and Authorization in AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


                <input type="text" class="form-control" p
➥laceholder="Username" ng-model="credentials.username" 
➥ng-required="true"/>
                <input type="password" class="form-control" 
➥placeholder="Password" ng-model="credentials.password" 
➥ng-required="true"/>
                <button class="btn btn-lg btn-primary btn-block" 
➥type="submit">{{buttonText}}</button>
            </form>
        </div>
    </div>
</div>

This is a simple form that asks for a username and password. These values are stored

in two scope models called credentials.username and credentials.password

respectively. When the Login button is clicked the form is submitted and our

function login() runs, which starts the authentication process. This is how the

function is defined in our controller LoginController:

angular.module('spBlogger.admin.controllers').controller
➥('LoginController',['$scope','authService',
➥'$state',function($scope,authService,$state){

    $scope.buttonText="Login";

    $scope.login=function(){

        $scope.buttonText="Logging in. . .";

        authService.login($scope.credentials.username,$scope.
➥credentials.password).then(function(data){
            $state.go('admin.postViewAll');
        },function(err){
            $scope.invalidLogin=true;
        }).finally(function(){
            $scope.buttonText="Login";
        });
    }
}]);

Before initiating the login, we change the button text to Logging in so that the user

gets feedback that the process has started. Then we use a custom authService (you'll

see shortly) to login. If authentication succeeds we load the state admin.postViewAll.

AngularJS: Novice to Ninja274

www.it-ebooks.info

http://www.it-ebooks.info/


In case of unsuccessful login we set a scope model invalidLogin to true so that the

user can see an error message. And finally in either case we change back the button

text to Login.

The final login screen looks like Figure 16.1.

Figure 16.1. The login screen

Now, let's create a custom service called authService that deals with authenticating

the user:

angular.module('spBlogger.admin.services').factory('authService',
➥['AUTH_ENDPOINT','LOGOUT_ENDPOINT','$http','$cookieStore',
➥function(AUTH_ENDPOINT,LOGOUT_ENDPOINT,$http,$cookieStore){

    var auth={};

    auth.login=function(username,password){
        return $http.post(AUTH_ENDPOINT,{username:username,
➥password:password}).then(function(response,status){
            auth.user=response.data;
            $cookieStore.put('user',auth.user);
            return auth.user;
        });
    }

    auth.logout=function(){

275Authentication and Authorization in AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


        return $http.post(LOGOUT_ENDPOINT).then(function(response){
            auth.user=undefined;
            $cookieStore.remove('user');
        });
    }

    return auth;

}]);

Here are the endpoint URLs for login and logout respectively:

angular.module('spBlogger.admin.services').value('AUTH_ENDPOINT',
➥'http://spblogger-sitepointdemos.rhcloud.com/login');
angular.module('spBlogger.admin.services').value('LOGOUT_ENDPOINT',
➥'http://spblogger-sitepointdemos.rhcloud.com/logout');

All the above go into app/modules/admin/js/services.js.

authService.login() function takes a username and password and makes a request

to AUTH_ENDPOINT. If the login is successful, it stores the user info in authSer-

vice.user as well as $cookieStore so that it's available across page reloads. By the

way, $cookieStore is defined in a separate module called ngCookies. So, we need

our main module to depend on this and include angular-cookies.js script.

Now let's see the logout() function. It simply sends a POST request to

LOGOUT_ENDPOINT and, upon success, clears both authService.user and $cooki-

eStore's user.

To add $cookieStore support you need to include the following script in

app/index.html:

<script src="lib/angular/angular-cookies.js"></script>

If you're using the code archive, I've already placed the script in the appropriate

directory in the codebase so you don't have to download it.

As usual, here's how to declare the dependency on ngCookies:

AngularJS: Novice to Ninja276

www.it-ebooks.info

http://www.it-ebooks.info/


angular.module('spBlogger',['ngCookies', . . .);

I have omitted the other dependencies for brevity. This goes into app/js/app.js.

Now we'll add a controller to the state admin. This will help perform the logout ac-

tion. So, here is the controller with the logout() function:

angular.module('spBlogger.admin.controllers').controller
➥('AdminController',['$scope','authService','$state',
➥'user',function($scope,authService,$state,user){

    $scope.logout=function(){
        authService.logout().then(function(){
            $state.go('login');
        });
    }
}]);

The state admin should also be updated to include this controller:

$stateProvider.state('admin',{
    url:'/admin',
    abstract:true,
    controller:'AdminController',
    templateUrl:'modules/admin/views/admin-home.html'
});

Now if you open up http://localhost:8000/#/login you can see the brand new

login page. The username and password are admin and admin. If you provide the

correct values you'll be taken to http://localhost:8000/#/admin. In case of incor-

rect values you'll see an error message as shown below.

277Authentication and Authorization in AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 16.2. An invalid login

But if you logout and try to access http://localhost:8000/#/admin directly you'll

be able to do so. That's because we haven't implemented access control yet! So, let's

do it now.

Authorization
Our objective in this section is to prevent direct access to the admin state. Non-au-

thenticated users shouldn't be able to access the URL localhost:8000/#/admin.

Although they may access the view template for this state directly in the browser

(by loading http://localhost:8000/modules/admin/views/admin-home.html)

our API endpoints are already secure.

In UI Router, we have the concept of the resolve property in the state definition.

This resolve property is an object that lists several dependencies that should be

resolved before the controller is loaded. We can introduce one such dependency to

our admin state—the authService.user property. If it's set it means the user is

logged in and we are good to go. Otherwise, we cancel the state loading and redirect

the user to the login state.

So, our modified admin state looks like following:

AngularJS: Novice to Ninja278

www.it-ebooks.info

http://www.it-ebooks.info/


$stateProvider.state('admin',{
    url:'/admin',
    abstract:true,
    controller:'AdminController',
    resolve:{
        user:['authService','$q',function(authService,$q){
            return authService.user || $q.reject
➥({unAuthorized:true});
        }]
    },
    templateUrl:'modules/admin/views/admin-home.html'
});

Note the user property inside resolve. If we find the authenticated user in auth-

Service we return it. Otherwise we return a promise that always rejects (with er-

ror.unAuthorized=true) which, in turn, prevents the state from loading and triggers

a $stateChangeError event.

Listing Dependencies

You can list a dependency in the controller AdminController as user and, if

the state loads successfully, it'll have the value authService.user.

Now, what we do is listen for a $stateChangeError event on $rootScope. If the

error.unAuthorized is set to true we know the user is trying to access admin

without authenticating first. So, we redirect to the login state. Here's how it looks:

angular.module('spBlogger.admin').run(['$rootScope','$state',
➥'$cookieStore','authService',function($rootScope,$state,
➥$cookieStore,authService){

    $rootScope.$on('$stateChangeError', function(event, toState, 
➥toParams, fromState, fromParams, error) {
        if(error.unAuthorized) {
            $state.go("login");
        }
    });

279Authentication and Authorization in AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


    authService.user=$cookieStore.get('user');

}]);

We also retrieve the user from $cookieStore when the app loads and set it to auth-

Service.user. This'll be useful in case of page refresh.

Now what if an authenticated user accesses the login state? Should we ask them

to log in again? No. We'll send the user directly to the admin state. For that we add

a resolve property to the login state and check for authService.user. If it's set

we reject the state loading with error.authorized=true. Here's the code:

$stateProvider.state('login',{
    url:'/login',
    controller: 'LoginController',
    resolve:{
        user:['authService','$q',function(authService,$q){
            if(authService.user){
                return $q.reject({authorized:true});
            }
        }]
    },
    templateUrl:'modules/admin/views/login.html'
});

Now we listen to $stateChangeError and check whether error.authorized is true.

In that case we redirect to admin state. Here is the code:

    $rootScope.$on('$stateChangeError', function(event, toState, 
➥toParams, fromState, fromParams, error) {

        if(error.unAuthorized) {
            $state.go('login');
        }
        else if(error.authorized){
            $state.go('admin.postViewAll');
        }
    });

Remember our client-side AngularJS app runs on http://localhost:8000 and the

Node.js back-end is on the cloud. As we're performing a cross-origin communication

here we need to tell $http to send the session ID with the request (By default Angu-

AngularJS: Novice to Ninja280

www.it-ebooks.info

http://www.it-ebooks.info/


larJS won't send the session ID) so that we'll stay authenticated. If the API endpoints

belong to the same server as your Angular app, this step won't be needed. Inside

the config block of our main module we write the following code to allow sending

credentials with the request:

$httpProvider.defaults.withCredentials = true;

Congratulations! We now have a login system ready for our Single Page Blogger.

And this marks the end of the book as we've just released the ninja version of our

app. Good work! All that remains is to follow our build process with grunt to obtain

the deployable.

Where To Go Next?
While we've discussed most of the aspects of AngularJS there's a lot you can do to

improve your AngularJS knowledge, including further reading and refining our

demo app.

Things to Do Now
To improve your skills and explore new things in AngularJS you may want to get

acquainted with the following:

1. AngularJS is great for creating awesome real-time apps. To create real-time apps

you need a real-time back-end. This is where Firebase comes in handy. You can

use Firebase1 with your AngularJS app to store and sync data. Although Firebase

is a paid service you can use the free hacker plan for testing purposes. I wrote a

tutorial on Firebase2 for SitePoint.

2. Clone the AngularJS Github repository3 to your system and play with it. After

all, reading code greatly improves your skill set. And who knows you might start

contributing as well!

3. Read the documentation4. You'll find lots of useful examples there.

1 https://www.firebase.com/
2 http://www.sitepoint.com/creating-three-way-data-binding-firebase-angularjs/
3 https://github.com/angular/angular.js
4 https://docs.angularjs.org/guide

281Authentication and Authorization in AngularJS

www.it-ebooks.info

https://www.firebase.com/
http://www.sitepoint.com/creating-three-way-data-binding-firebase-angularjs/
http://www.sitepoint.com/creating-three-way-data-binding-firebase-angularjs/
https://github.com/angular/angular.js
https://docs.angularjs.org/guide
http://www.it-ebooks.info/


4. Go to the Angular UI Router5 official website and check out the documentation.

5. Subscribe to the AngularJS6 and ng-conf7 YouTube channels for useful videos.

6. Head over to SitePoint for some cool AngularJS tutorials8.

7. Have a look at all the nice things built with AngularJS.9

8. Subscribe to AngularJS questions on Stackoverflow10 and take advantage of the

active community.

9. If you're interested in mobile apps you may take a look at Ionic11, which uses

AngularJS to create hybrid apps.

Improving Our Demo App
Single Page Blogger is still very basic, but it could be greatly improved. Here are a

few feature ideas; you can add these to take your app to the next level:

1. When a post is being loaded, display a loading icon and hide it when the post is

shown. Hint: Show the loading icon through ng-show on$stateChangeStart

event and hide it on $stateChangeSuccess event. These events are triggered at

the $rootScope.

2. The access control feature we implemented in this chapter is a basic one. You

can improve it by adding role-based access control. Upon login the user info you

obtain should have a list of permissions. Depending on these permissions the

user can perform operations. For example, the admin can perform all the CRUD

operations while an editor can only create and edit posts.

3. The footer currently says "The Single Page Blogger". Create a new service that

returns a version number and use it to show this in the footer. Hint: Use a directive

and service.

5 http://angular-ui.github.io/ui-router/
6 https://www.youtube.com/user/angularjs
7 https://www.youtube.com/user/ngconfvideos
8 http://www.sitepoint.com/?s=angularjs
9 https://builtwith.angularjs.org/
10 http://stackoverflow.com/tags/angularjs/info
11 http://ionicframework.com

AngularJS: Novice to Ninja282

www.it-ebooks.info

http://angular-ui.github.io/ui-router/
https://www.youtube.com/user/angularjs
https://www.youtube.com/user/ngconfvideos
http://www.sitepoint.com/?s=angularjs
https://builtwith.angularjs.org/
http://stackoverflow.com/tags/angularjs/info
http://ionicframework.com
http://www.it-ebooks.info/


4. Add more languages and translations to our app.

Host it Yourself : Back-end
As you know the back-end Node.js application that powers Single Page Blogger is

hosted in the cloud. It means all the readers of this book are sharing the same

MongoDB instance to store the posts. If this is not what you want, you can host the

app yourself. There are two codebases available for download:

1. The main Single Page Blogger codebase that you've been using throughout this

book

2. The Single Page Blogger Node.js back-end. This has been deployed to Openshift

cloud so that you don't have to host it locally.

But if you are familiar with Nodejs and MongoDB and already have these installed

you can host the back-end on your machine. Assuming you have got Node.js and

MongoDB installed, just follow the steps below to install the back-end on your

machine:

1. Download and unzip sp-blogger-backend.zip. It'll create a directory named

sp-blogger-backend.

2. Go to the above directory in the terminal and type node ./bin/www. This should

start a server on localhost:8080. Ensure you've already started MongoDB before

running the command.

3. Now you should configure your AngularJS app (sp-blogger) to use the local

endpoints instead of the remote ones. So, use the following configurations in

app/modules/admin/js/services.js:

angular.module('spBlogger.admin.services').value('API_ENDPOINT'
➥,'http://localhost:8080/api/posts/:id')
angular.module('spBlogger.admin.services').value('AUTH_ENDPOINT'
➥,'http://localhost:8080/login');
angular.module('spBlogger.admin.services').value('LOGOUT_ENDPOINT'
➥,'http://localhost:8080/logout');

4. Now access your app as usual with the URL http://localhost:8000 and this'll

now use the local endpoints.

283Authentication and Authorization in AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/


That's it! I hope you enjoyed reading this book. Keep rocking in AngularJS!

AngularJS: Novice to Ninja284

www.it-ebooks.info

http://www.it-ebooks.info/

	AngularJS: Novice to Ninja
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to Take Your Learning Further?

	Falling In Love With AngularJS
	The Power Features of AngularJS
	Download and Installation
	Installing via CDN
	Hosting on Your Server

	Required Tools
	AngularJS Batarang

	The Angular Seed Project
	The Anatomy of an AngularJS app
	What is MVW?
	MVC
	MVVM

	Structuring Our Code With MVC

	Unit and End-to-End Testing in AngularJS
	Where to Put Your Tests
	How to Run Tests
	For Unit Tests
	For End-to-End Tests


	When Not To Use AngularJS
	Conclusion

	Modules, Controllers & Data Binding
	Creating Our First Module
	Modular Programming Best Practices
	Controllers
	The Role of a Controller
	Attaching Properties and Functions to Scope
	Adding Logic to the Controller
	Adding Instance Functions and Properties to Controllers
	Dependency Injection in Controllers With Minification

	Overview of Two-Way Data Binding
	What Is Data Binding?
	Two-Way Binding in AngularJS
	Doing Something Cool
	Introducing Our Demo Application
	The Single Page Blogger
	Getting Ready

	Conclusion

	AngularJS Scope & Events
	Scope Demystified
	Writing Access with Prototypes
	Writing a Primitive to an Object
	Writing a Reference Type to an Object

	Objects Can Extend Objects

	Prototypal Inheritance in AngularJS Scopes
	Advanced Scope Concepts
	The Watchers in AngularJS
	The $watchCollection() Function
	The $apply() Function and the $digest Loop
	$apply and $digest in Action
	Introducing the $timeout Service


	Broadcasting & Emitting Events
	$scope.$emit(name,args) For Emitting Events
	$scope.$broadcast(name,args) For Broadcasting Events
	$scope.$on(name,handlerFunction) For Registering Listeners
	Events in Action
	The $destroy event

	Conclusion

	Multiple Views and Routing
	Creating Multiple Views
	Using $routeParams in the Controller
	Using ng-template
	The resolve Property in the Route Config Object
	Exploring the $location Service
	The API
	Writable Parts
	Non-Writable Parts
	Adding a New History Entry Versus Replacing One


	Events in Routing
	$location related events
	$route related events

	The ng-include Directive
	Introducing the Angular UI Router
	Getting Started With UI Routter
	Requirements

	Defining States

	Conclusion

	AngularJS Services, Factories, and Providers
	Service
	Eager Loading of a Service

	Factory
	Provider
	Value
	Constant
	Using Decorators
	Conclusion

	Developing Single Page Blogger
	Developing Our App
	Defining Routes
	Creating Our Service
	Creating the Controller
	Creating the Templates
	App Entry Point (index.html)

	How About Some Unit Tests?
	Unit Testing postService
	Unit Testing Controllers

	Writing an End-to-End (e2e) Test
	Conclusion

	Understanding AngularJS Forms
	AngularJS Forms
	<input> and <textarea> controls
	<select> control
	Handling Empty Options
	Getting Options From the Scope Model
	Handling Multi Select

	Radio Button Control
	Checkbox Control

	AngularJS Form Validation
	Applying Validation
	Tracking Validity of a Form
	Applying Color to Invalid Input controls and Messages
	Form Submission
	Using ng-form
	Custom Validators

	Updating Models With a Twist

	Forms in Action : Single Page Blogger v1.1
	Creating the admin Module
	Defining States
	Creating Controllers
	Admin Panel Template
	Template For Adding a New Post

	Conclusion

	Interacting with REST APIs
	A Primer on Promises
	The Promise API
	Example Usage
	Promise Chaining
	Creating a Promise that Always Rejects

	Understanding the $http Service
	The config Object
	A Weather Search Service
	Setting Request Headers
	Request and Response Transformers
	transformRequest
	transformResponse

	Caching
	Interceptors

	Understanding AngularJS $resource
	Prerequisites
	How Does $resource Work?

	Conclusion

	Using REST APIs in Single Page Blogger
	Applying $resource to Our App
	Defining Templates
	Defining Controllers
	Including angular-resource.js and Adding the ngResource Module

	Unit Testing Our Controllers

	AngularJS Directives
	What Are Directives, Really?
	Directives From the jQuery Perspective
	Creating Custom Directives
	The Link Function
	The Compile Function
	Compilation of Directives
	Changing a Directive’s Scope
	Binding Between Parent Scope and Isolated Scope Models
	Using @ For One-Way Binding
	Using = For Two-Way Binding
	Using & to Execute Functions in the Parent Scope

	Parent Scope vs. Child Scope vs. Isolated Scope
	Transclusion
	Differences Between transclude:'element' and transclude:true
	The Controller Function and Require
	Cleaning Up Your Directive
	IE 8 Precautions
	Conclusion

	Adding a Comment System to Single Page Blogger
	Unit Testing Our Directive
	Conclusion

	Dependency Injection In AngularJS
	A Brief Recap
	The $provide Service
	The $injector Service
	Dynamically Injecting a Dependency
	Registration of Controllers, Filters, and Directives
	Conclusion


	AngularJS Filters
	Filter Basics
	Fun with Custom Filters
	Chaining Multiple Filters
	Using Filters in Controllers, Services, and Directives

	Meet a Filter Called filter
	Meet the orderBy Filter
	Meet the limitTo Filter
	Using the $filter Service

	Using Filters in Single Page Blogger
	Permalink Filter
	Wordcount Filter

	Conclusion

	AngularJS Animation
	Getting Started
	Animation with CSS3 Transitions
	Going Further
	Animation Using Keyframes
	Animation Using jQuery
	Animation Using ngClass
	Animation with Custom Directives
	Adding Simple Animation to Single Page Blogger
	Conclusion

	Deployment and Internationalization
	Deployment
	Internationalization
	Conclusion

	Authentication and Authorization in AngularJS
	Adding Login Functionality
	Authorization
	Where To Go Next?
	Things to Do Now
	Improving Our Demo App
	Host it Yourself : Back-end



