
About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB and its many
features varies across reading devices and applications. Use your device or app settings to customize
the presentation to your liking. Settings that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For
additional information about the settings and features on your reading device or app, visit the device
manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of
these elements, view the e-book in single-column, landscape mode and adjust the font size to the
smallest setting. In addition to presenting code and configurations in the reflowable text format, we
have included images of the code that mimic the presentation found in the print book; therefore,
where the reflowable format may compromise the presentation of the code listing, you will see a
“Click here to view code image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

Cyber Security Engineering

A Practical Approach for Systems and Software Assurance

Nancy R. Mead
Carol C. Woody

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Cape Town • Dubai • London • Madrid • Milan • Munich
Paris • Montreal • Toronto • Delhi • Mexico City • São Paulo • Sydney

Hong Kong • Seoul • Singapore • Taipei • Tokyo

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT,
and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation;
CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software
Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat,
Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process;
PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead
Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon
University.

Special permission to reproduce portions of Mission Risk Diagnostic (MRD) Method Description,
Common Elements of Risk, Software Assurance Curriculum Project, Vol 1, Software Assurance
Competency Model, and Predicting Software Assurance Using Quality and Reliability Measures ©
2012, 2006, 2010, 2013, and 2014 by Carnegie Mellon University, in this book is granted by the
Software Engineering Institute.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016952029

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw

appropriate contacts within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-134-18980-2
ISBN-10: 0-134-18980-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing: November 2016

http://www.pearsoned.com/permissions/

Praise for Cyber Security Engineering

“This book presents a wealth of extremely useful material and makes it available from a single
source.”

—Nadya Bartol, Vice President of Industry Affairs and
Cybersecurity Strategist, Utilities Technology Council

“Drawing from more than 20 years of applied research and use, CSE serves as both a comprehensive
reference and a practical guide for developing assured, secure systems and software—addressing the
full lifecycle; manager and practitioner perspectives; and people, process, and technology
dimensions.”

—Julia Allen, Principal Researcher,
Software Engineering Institute

For my husband Woody—he was my mentor, sounding board, and best friend

—Nancy

With thanks to my husband Robert for his constant love and support and in memory of my parents
who taught me the value of hard work and the constant pursuit of knowledge

—Carol

Contents at a Glance

Foreword

Preface

Chapter 1: Cyber Security Engineering: Lifecycle Assurance of Systems and Software

Chapter 2: Risk Analysis—Identifying and Prioritizing Needs

Chapter 3: Secure Software Development Management and Organizational Models

Chapter 4: Engineering Competencies

Chapter 5: Performing Gap Analysis

Chapter 6: Metrics

Chapter 7: Special Topics in Cyber Security Engineering

Chapter 8: Summary and Plan for Improvements in Cyber Security Engineering Performance

References

Bibliography

Appendix A: WEA Case Study: Evaluating Security Risks Using Mission Threads

Appendix B: The MSwA Body of Knowledge with Maturity Levels Added

Appendix C: The Software Assurance Curriculum Project

Appendix D: The Software Assurance Competency Model Designations

Appendix E: Proposed SwA Competency Mappings

Appendix F: BSIMM Assessment Final Report

Appendix G: Measures from Lifecycle Activities, Security Resources, and Software Assurance
Principles

Index

Register your copy of Cyber Security Engineering at informit.com for convenient access to
downloads, updates, and corrections as they become available. To start the registration process, go to
informit.com/register and log in or create an account. Enter the product ISBN 9780134189802 and
click Submit. Once the process is complete, you will find any available bonus content under
“Registered Products.”

http://informit.com
http://informit.com/register

Contents

Foreword

Preface

Chapter 1: Cyber Security Engineering: Lifecycle Assurance of Systems and Software

1.1 Introduction

1.2 What Do We Mean by Lifecycle Assurance?

1.3 Introducing Principles for Software Assurance

1.4 Addressing Lifecycle Assurance

1.5 Case Studies Used in This Book

1.5.1 Wireless Emergency Alerts Case Study

1.5.2 Fly-By-Night Airlines Case Study

1.5.3 GoFast Automotive Corporation Case Study

Chapter 2: Risk Analysis—Identifying and Prioritizing Needs

2.1 Risk Management Concepts

2.2 Mission Risk

2.3 Mission Risk Analysis

2.3.1 Task 1: Identify the Mission and Objective(s)

2.3.2 Task 2: Identify Drivers

2.3.3 Task 3: Analyze Drivers

2.4 Security Risk

2.5 Security Risk Analysis

2.6 Operational Risk Analysis—Comparing Planned to Actual

2.7 Summary

Chapter 3: Secure Software Development Management and Organizational Models

3.1 The Management Dilemma

3.1.1 Background on Assured Systems

3.2 Process Models for Software Development and Acquisition

3.2.1 CMMI Models in General

3.2.2 CMMI for Development (CMMI-DEV)

3.2.3 CMMI for Acquisition (CMMI-ACQ)

3.2.4 CMMI for Services (CMMI-SVC)

3.2.5 CMMI Process Model Uses

3.3 Software Security Frameworks, Models, and Roadmaps

3.3.1 Building Security In Maturity Model (BSIMM)

3.3.2 CMMI Assurance Process Reference Model

3.3.3 Open Web Application Security Project (OWASP) Software Assurance Maturity Model
(SAMM)

3.3.4 DHS SwA Measurement Work

3.3.5 Microsoft Security Development Lifecycle (SDL)

3.3.6 SEI Framework for Building Assured Systems

3.3.7 SEI Research in Relation to the Microsoft SDL

3.3.8 CERT Resilience Management Model Resilient Technical Solution Engineering
Process Area

3.3.9 International Process Research Consortium (IPRC) Roadmap

3.3.10 NIST Cyber Security Framework

3.3.11 Uses of Software Security Frameworks, Models, and Roadmaps

3.4 Summary

Chapter 4: Engineering Competencies

4.1 Security Competency and the Software Engineering Profession

4.2 Software Assurance Competency Models

4.3 The DHS Competency Model

4.3.1 Purpose

4.3.2 Organization of Competency Areas

4.3.3 SwA Competency Levels

4.3.4 Behavioral Indicators

4.3.5 National Initiative for Cybersecurity Education (NICE)

4.4 The SEI Software Assurance Competency Model

4.4.1 Model Features

4.4.2 SwA Knowledge, Skills, and Effectiveness

4.4.3 Competency Designations

4.4.4 A Path to Increased Capability and Advancement

4.4.5 Examples of the Model in Practice

4.4.6 Highlights of the SEI Software Assurance Competency Model

4.5 Summary

Chapter 5: Performing Gap Analysis

5.1 Introduction

5.2 Using the SEI’s SwA Competency Model

5.3 Using the BSIMM

5.3.1 BSIMM Background

5.3.2 BSIMM Sample Report

5.4 Summary

Chapter 6: Metrics

6.1 How to Define and Structure Metrics to Manage Cyber Security Engineering

6.1.1 What Constitutes a Good Metric?

6.1.2 Metrics for Cyber Security Engineering

6.1.3 Models for Measurement

6.2 Ways to Gather Evidence for Cyber Security Evaluation

6.2.1 Process Evidence

6.2.2 Evidence from Standards

6.2.3 Measurement Management

Chapter 7: Special Topics in Cyber Security Engineering

7.1 Introduction

7.2 Security: Not Just a Technical Issue

7.2.1 Introduction

7.2.2 Two Examples of Security Governance

7.2.3 Conclusion

7.3 Cyber Security Standards

7.3.1 The Need for More Cyber Security Standards

7.3.2 A More Optimistic View of Cyber Security Standards

7.4 Security Requirements Engineering for Acquisition

7.4.1 SQUARE for New Development

7.4.2 SQUARE for Acquisition

7.4.3 Summary

7.5 Operational Competencies (DevOps)

7.5.1 What Is DevOps?

7.5.2 DevOps Practices That Contribute to Improving Software Assurance

7.5.3 DevOpsSec Competencies

7.6 Using Malware Analysis

7.6.1 Code and Design Flaw Vulnerabilities

7.6.2 Malware-Analysis–Driven Use Cases

7.6.3 Current Status and Future Research

7.7 Summary

Chapter 8: Summary and Plan for Improvements in Cyber Security Engineering
Performance

8.1 Introduction

8.2 Getting Started on an Improvement Plan

8.3 Summary

References

Bibliography

Appendix A: WEA Case Study: Evaluating Security Risks Using Mission Threads

Appendix B: The MSwA Body of Knowledge with Maturity Levels Added

Appendix C: The Software Assurance Curriculum Project

Appendix D: The Software Assurance Competency Model Designations

Appendix E: Proposed SwA Competency Mappings

Appendix F: BSIMM Assessment Final Report

Appendix G: Measures from Lifecycle Activities, Security Resources, and Software
Assurance Principles

Index

Acknowledgments

We are pleased to acknowledge the encouragement and support of many people who were involved
in the book development process. Rich Pethia and Bill Wilson, the leaders of the CERT Division at
the Software Engineering Institute (SEI), encouraged us to write the book and provided support to
make it possible. Our SEI technical editors edited and formatted the entire manuscript and provided
many valuable suggestions for improvement, as well as helping with packaging questions. Sandy
Shrum and Barbara White helped with the early drafts. Hollen Barmer worked across the Christmas
holidays to edit the draft. Matthew Penna was tremendously helpful in editing and formatting the
final draft for submission. Pennie Walters, one of our editors, and Sheila Rosenthal, our head
librarian, helped with obtaining needed permissions to use previously published materials.

Much of the work is based on material published with other authors. We greatly appreciated the
opportunity to collaborate with these authors, and their names are listed in the individual chapters
that they contributed to, directly or indirectly. In addition, we would like to acknowledge the
contributions of Mark Ardis and Andrew Kornecki to Chapter 4, and Gary McGraw to Chapter 5.

Julia Allen of the SEI provided internal review, prior to the initial submission to the publisher. Her
review led to a number of revisions and improvements to the book. We also appreciate the inputs and
thoughtful comments of the Addison-Wesley reviewers: Nadya Bartol and Ian Bryant. Nadya
reminded us of the many standards available in this area, and Ian provided an international
perspective.

We would like to recognize the encouragement and support of our contacts at Addison-Wesley.
These include Kim Boedigheimer, publishing partner; Lori Lyons, project editor; and Dhayanidhi,
production manager. We also appreciate the efforts of the Addison-Wesley and SEI artists and
designers who assisted with the cover design, layout, and figures.

About the Authors

Dr. Nancy R. Mead is a Fellow and Principal Researcher at the Software Engineering Institute (SEI).
She is also an Adjunct Professor of Software Engineering at Carnegie Mellon University. She is
currently involved in the study of security requirements engineering and the development of software
assurance curricula. She served as director of software engineering education for the SEI from 1991
to 1994. Her research interests are in the areas of software security, software requirements
engineering, and software architectures.

Prior to joining the SEI, Dr. Mead was a senior technical staff member at IBM Federal Systems,
where she spent most of her career in the development and management of large real-time systems.
She also worked in IBM’s software engineering technology area and managed IBM Federal Systems’
software engineering education department. She has developed and taught numerous courses on
software engineering topics, both at universities and in professional education courses, and she has
served on many advisory boards and committees.

Dr. Mead has authored more than 150 publications and invited presentations. She is a Fellow of
the Institute of Electrical and Electronic Engineers, Inc. (IEEE) and the IEEE Computer Society, and
is a Distinguished Educator of the Association for Computing Machinery. She received the 2015
Distinguished Education Award from the IEEE Computer Society Technical Council on Software
Engineering. The Nancy Mead Award for Excellence in Software Engineering Education is named
for her and has been awarded since 2010, with Professor Mary Shaw as the first recipient.

Dr. Mead received her PhD in mathematics from the Polytechnic Institute of New York, and
received a BA and an MS in mathematics from New York University.

Dr. Carol C. Woody has been a senior member of the technical staff at the Software Engineering
Institute since 2001. Currently she is the manager of the Cyber Security Engineering team, which

focuses on building capabilities in defining, acquiring, developing, measuring, managing, and
sustaining secure software for highly complex networked systems as well as systems of systems.

Dr. Woody leads engagements with industry and the federal government to improve the
trustworthiness and reliability of the software products and capabilities we build, buy, implement,
and use. She has helped organizations identify effective security risk management solutions, develop
approaches to improve their ability to identify security and survivability requirements, and field
software and systems with greater assurance. For example, she worked with the Department of
Homeland Security (DHS) on defining security guidelines for its implementation of wireless
emergency alerting so originators such as the National Weather Service and commercial mobile
service providers such as Verizon and AT&T could ensure that the emergency alerts delivered to your
cell phones are trustworthy. Her publications define capabilities for measuring, managing, and
sustaining cyber security for highly complex networked systems and systems of systems. In addition,
she has developed and delivered training to transition assurance capabilities to the current and future
workforce.

Dr. Woody has held roles in consulting, strategic planning, and project management. She has
successfully implemented technology solutions for banking, mining, clothing and tank
manufacturing, court and land records management, financial management, human resources
management, and social welfare administration, using such diverse capabilities as data mining,
artificial intelligence, document image capture, and electronic workflow.

Dr. Woody is a senior member of the Institute of Electrical and Electronic Engineers, Inc.
Computer Society and a senior member of the Association for Computing Machinery. She holds a BS
in mathematics from the College of William & Mary, an MBA with distinction from The Babcock
School at Wake Forest University, and a PhD in information systems from NOVA Southeastern
University.

Foreword

Why, Why, Why...???

• Why this topic matters and why this book?

• Why me and why these authors?

• Why should you read and use this book?

Information Technology (IT) matters. The security of IT matters. IT is ubiquitous. We depend on
it working as intended every minute of every day. All too often, IT is designed and built for a
pristine, uncontested environment. But this is not the real world—the world in which we live, work,
and play. The real world is not a scientific “clean room.” Competitive adversaries will take advantage
of known flaws in IT and even insert their own weaknesses to exploit later. We need to do a better job
of building security into the IT we develop. We also need to do a better job of managing security
risks in the IT we buy and use. This book will help all of us to “build security in” and make better
decisions about risks in IT and the enterprises it enables.

The world is in the throes of a technological revolution. At first, it primarily focused on
mechanical systems. Later, it expanded to electro-mechanical systems. Now, it’s mostly electronic (or
digital) systems. Microelectronic hardware (HW) and software (SW) are embedded within devices
that are being networked together to maximize system effectiveness and efficiency. We have nearly
completed the first two phases of this revolution. But we are still in the middle of the third, digital
phase, in which people and the tools they use are becoming more and more dependent on information
and digital systems.

While IT itself is fairly mature, IT security is not. A single, agreed-upon methodology for securing
IT systems simply doesn’t exist. This book takes the realistic approach of sampling and presenting a
variety of perspectives on how to best “build IT security in.” It establishes a common language to use
in designing IT systems and making risk tradeoffs throughout their lifecycles. Everyone agrees that it
is difficult to manage what we can’t measure. To develop consistent, repeatable, transferable
information that leads to trust in and confident use of secure IT, we first must agree on how to
measure IT security. This book identifies methods to close that confidence gap throughout the IT
lifecycle. Using its suggested measurement techniques can transform IT security from an art into a
science.

With more than 42 years of experience in improving organizational processes—including
leveraging the skills of people to use the tools and technologies at their disposal—I have most
recently (2009-present) worked in the Office of the Department of Defense, Chief Information
Officer for Cybersecurity (DoD-CIO/Cybersecurity). I lead security efforts for IT and the science of
IT security, or as this book describes it, “Cyber Security Engineering.” I met Nancy Mead and Carol
Woody early in this most recent endeavor. They have continuously provided expertise and leadership
to improve the academic discipline contributing to this “Practical Approach for Systems and
Software Assurance” and advancing the science and discipline for all of us to use.

Thank you, Nancy and Carol, for your continuing research in this challenging area. Thanks also
for your ongoing collaboration with like-minded cyber security professionals such as Warren
Axelrod, Dan Shoemaker, and other subject matter experts who have contributed to this book’s
content.

—Donald R. Davidson, Jr.
Deputy Director for Cybersecurity (CS)

Implementation and CS/Acquisition
Integration in the Office of the DoD-CIO for Cybersecurity (CS)

Preface

The Goals and Purpose for This Book
Security problems are on the front page of newspapers daily. A primary cause is that software is not
designed and built to operate securely. Perfect security is not achievable for software that must also
be usable and maintainable and fast and cheap, but realistic security choices do not happen by
accident. They must be engineered. Software is in every field and all those involved in its
construction and use must learn how to choose wisely.

Security has traditionally been dealt with in operational, production environments as a reactive
process focused on compliance mandates and response to incidents. Engineering requires structuring
the capability to proactively plan and design for security during development and acquisition.
Determining what security actions to take based on budget and schedule is not effective.

The book is primarily a reference and tutorial to expose readers to the range of capabilities
available for building more secure systems and software. It could be used as an accompanying text in
an advanced academic course or in a continuing education setting. Although it contains best practices
and research results, it is not a “cookbook” which is designed to provide predictable repeatable
outcomes.

After reading this book, the reader will be prepared to:

• Define and structure metrics to manage cyber security engineering

• Identify and evaluate existing competencies and capabilities for cyber security engineering

• Identify competency and capability gaps for cyber security engineering

• Define and prioritize cyber security engineering needs

• Explore a range of options for addressing cyber security engineering needs

• Plan for improvements in cyber security engineering performance

The book will begin with an introduction to seven principles of software assurance followed by
chapters addressing the key areas of cyber security engineering. The principles presented in this book
provide a structure for prioritizing the wide range of possible actions, helping to establish why some
actions should be a priority and how to justify the investments required to take them. Existing
security materials focus heavily on the actions to be taken (best practices) with little explanation of
why they are needed and how one can recognize if actions are being performed effectively. This book
is structured using a group of assurance principles that form a foundation of why actions are needed
and how to go about addressing them.

Audience for This Book
The audience for this book is broad, and includes systems and software engineering, quality
engineering, reliability and security managers and practitioners. The book targets an interdisciplinary
audience including acquisition, software and systems engineering, and operations, since all of them
have a vested interest in ensuring that systems and software operate securely.

Some basic background in software engineering or the software and acquisition life cycles is
needed. The reader should also understand the importance of cyber security and the difficulties of
engineering, developing, and acquiring secure software. Although not a requirement, it would help if
they have read other books in the SEI Software Engineering or Software Security Series.

Organization and Content
This book provides material for multiple audiences. Not everyone may want to read all of the
material, so we offer the following guide to the chapters.

Chapter 1 lays the groundwork for why a lifecycle approach to cyber security engineering is
critical for ensuring system and software security. All audiences should read this material.

Chapter 2 focuses on ways to define and prioritize cyber security engineering needs. Threat and
risk analysis are key capabilities, and this chapter provides material about specific methods and
practices needed by those performing cyber security engineering to determine and prioritize needs.
Both practitioners and students wishing to develop skills in this area can benefit from reading this
material.

Chapters 3 and 4 focus on the critical competencies and capabilities needed organizationally,
programmatically, and technically to perform cyber security engineering for systems and software.
This material can benefit project staff and managers who want to learn how to evaluate existing
capabilities and establish resource needs. Technical leaders and practitioners can find out how cyber
security engineering competencies figure into a longer-term career strategy.

Chapter 5 provides examples of gap analysis, from both organizational and engineering
perspectives. Such analysis identifies the gaps in competencies and capabilities needed to
successfully perform cyber security engineering.

Chapter 6 provides information about metrics for cyber security. Those who manage, monitor,
and perform software and system engineering can benefit from this material.

Chapter 7 presents options for addressing cyber security needs gathered from standards, best
practices, and highly regarded sources. Both practitioners and students of cyber security engineering
should become familiar with this content.

Chapter 8 provides a summary of current cyber security engineering capabilities and suggests
ways to evaluate and improve cyber security engineering practice. This material is of particular
interest to cyber security practitioners and those who manage these resources.

Additional Content
The book’s companion website for Cyber Security Engineering is:

www.cert.org/cybersecurity-engineering/

In addition, for purchasers of this book, we are providing free access to our online course:
Software Assurance for Executives. This course provides an excellent overview of software
assurance topics for busy managers and executives. To obtain access to Software Assurance for
Executives, please send an email to:

stepfwd-support@cert.org

RE: SwA Executive Course

http://www.cert.org/cybersecurity-engineering/
mailto:stepfwd-support@cert.org

Chapter 1. Cyber Security Engineering: Lifecycle Assurance of
Systems and Software

with Warren Axelrod and Dan Shoemaker

In This Chapter

• 1.1 Introduction

• 1.2 What Do We Mean by Lifecycle Assurance?

• 1.3 Introducing Principles for Software Assurance

• 1.4 Addressing Lifecycle Assurance

• 1.5 Case Studies Used in This Book

1.1 Introduction
Everything we do these days involves system and software technology: Cars, planes, banks,
restaurants, stores, telephones, appliances, and entertainment rely extensively on technology. The
operational security of these software-intensive systems depends on the practices and techniques used
during their design and development. Many decisions made during acquisition and development have
an impact on the options for security once systems are deployed. Quality is important, but simply
reducing software defects is not sufficient for effective operational security. Lifecycle processes must
consider the security-related risks inherent in the operational environments where systems are
deployed. Increased consideration of operational security risk earlier in the acquisition and
development processes provides an opportunity to tune decisions to address security risk and reduce
the total cost of operational security. This book provides key operational management approaches,
methodologies, and practices for assuring a greater level of software and system security throughout
the development and acquisition lifecycle.

This book contains recommendations to guide software professionals in creating a comprehensive
lifecycle process for system and software security. That process allows organizations to incorporate
widely accepted and well-defined assurance approaches into their own specific methods for ensuring
operational security of their software and system assets. It’s worth pointing out that the material in
this book is applicable to many different types of systems. Although many of our recommendations
originated from our work in information systems security, the recommendations are equally
applicable to systems used to support critical infrastructure, such as industrial control systems and
SCADA (supervisory control and data acquisition) systems. The same can be said for other hardware/
software systems that are not primarily information systems but exist to support other missions.

This book also provides a learning tool for those not familiar with the means and methods needed
in acquisition and development to address operational security. Today’s tools and existing products
allow almost anyone to create a software-based system that meets its functional requirements, but
critical skills and practices are needed to ensure secure deployment results.

The exponential increase in cybercrime is a perfect example of how rapidly change is happening
in cyberspace and why operational security is a critical need. In the 1990s, computer crime was
usually nothing more than simple trespasses. Twenty-five years later, computer crime has become a
vast criminal enterprise, with profits estimated at $1 trillion annually. And one of the primary

contributors to this astonishing success is the vulnerability of America’s software to exploitation
through defects. How pervasive is the problem of vulnerability? Veracode, a major software security
firm, found that “58 percent of all software applications across supplier types [failed] to meet
acceptable levels of security in 2010” [Veracode 2012].

Increased system complexity, pervasive interconnectivity, and widely distributed access have
increased the challenges for building and acquiring operationally secure capabilities. Therefore, the
aim of this book is to show you how to create and ensure persistent operational assurance practice
across all of the typical activities that take place across the system and software lifecycle.

1.2 What Do We Mean by Lifecycle Assurance?
The accelerating pace of attacks and the apparent tendency toward more vulnerabilities seem to
suggest that the gap between attacks and data protection is widening as our ability to deal with them
seems to diminish. Much of the information protection in place today is based on principles
established by Saltzer and Schroeder in “The Protection of Information in Computer Systems,” which
appeared in Communications of the ACM in 1974. They defined security as “techniques that control
who may use or modify the computer or the information contained in it” and described three main
categories of concern: confidentiality, integrity, and availability (CIA) [Saltzer 1974].

As security problems expanded to include malware, viruses, Structured Query Language (SQL)
injections, cross-site scripting, and other mechanisms, those problems changed the structure of
software and how it performs. Focusing just on information protection proved vastly insufficient.
Also, the role of software in systems expanded such that software now controls the majority of
functionality, making the impact of a security failure more critical. Those working with deployed
systems refer to this enhanced security need as cyber security assurance, and those in the areas of
acquisition and development typically reference software assurance. Many definitions of each have
appeared, including these:

• “The level of confidence we have that a system behaves as expected and the security risks
associated with the business use of the software are acceptable” [Woody 2014]

• “The level of confidence that software is free from vulnerabilities, either intentionally
designed into the software or accidentally inserted at any time during its lifecycle, and that the

software functions in the intended manner”1

1. U.S. Department of Transportation Federal Aviation Administration Order 1370.109 http://www.faa.gov/
documentLibrary/media/Order/1370.109.pdf

• “Software Assurance: Implementing software with a level of confidence that the software
functions as intended and is free of vulnerabilities, either intentionally or unintentionally
designed or inserted as part of the software, throughout the lifecycle” [Woody 2014]

However, the most recent set of definitions of software assurance from the Committee on National
Security Systems [CNSS 2015] takes a different tack, using DoD and NASA definitions:

• “The level of confidence that software functions as intended and is free of vulnerabilities,
either intentionally or unintentionally designed or inserted as part of the software throughout
the lifecycle” [DoD 2012]

• “The planned and systematic set of activities that ensure that software lifecycle processes and
products conform to requirements, standards, and procedures” [NASA 2004]

http://www.faa.gov/documentLibrary/media/Order/1370.109.pdf
http://www.faa.gov/documentLibrary/media/Order/1370.109.pdf

Finally, the ISO standards provide comprehensive coverage of the various topics, although the
topics appear in various places in the standards, and not necessarily in a concise definition [ISO/IEC
2008a, 2008b, 2009, 2011, 2015].

As shown in Table 1.1, the various definitions of software assurance generally include the
requirement that software functions as expected or intended. Referring to the definitions, it is usually
more feasible to achieve an acceptable risk level (although what that risk level might be remains
somewhat obscure) than to feel confident that software is free from vulnerabilities. But how do you
know how many vulnerabilities actually remain? In practice, you might continue looking for errors,
weaknesses, and vulnerabilities until diminishing returns make it apparent that further testing does
not pay. However, it is not always obvious when you are at that point. This is especially the case
when testing for cyber security vulnerabilities, since software is delivered into many different
contexts and the variety of cyberattacks is virtually limitless.

Table 1.1 Comparison of Software Assurance Definitions from Various Sources

Since we are increasingly seeing the integration and interoperation of security-critical and safety-
critical systems, it makes sense to come up with an overarching definition of software assurance that
covers both security and safety. In some ways, the different approaches suggested by the existing
definitions result from risks related to modern systems of systems.

Further challenges to effective operational security2 come from the increased use of commercial
off-the-shelf (COTS) and open source software as components within a system. The resulting
operational systems integrate software from many sources, and each piece of software is assembled
as a discrete product.

2. These ideas are adapted from “Sustaining Software Intensive Systems—A Complex Security Challenge,” by
Carol Woody, which appears in Cyber Security: Strengthening Corporate Resilience, a 2007 booklet from
Cutter.

Shepherding a software-intensive system through project development to deployment is just the
beginning of the saga. Sustainment (maintaining a deployed system over time as technology and
operational needs change) is a confusing and multifaceted challenge: Each discrete piece of a
software-intensive system is enhanced and repaired independently and reintegrated for operational
use. As today’s systems increasingly rely on COTS software, the issues surrounding sustainment
grow more complex. Ignoring these issues can undermine the stability, security, and longevity of
systems in production.

The myth linked to systems built using COTS products is that commercial products are mature,
stable, and adhere to well-recognized industry standards. The reality indicates more of a Rube
Goldberg mix of “glue code” that links the pieces and parts into a working structure. Changing any
one of the components—a constant event since vendors provide security updates on their own
schedules—can trigger a complete restructuring to return the pieces to a working whole. This same
type of sustainment challenge for accommodating system updates appears for system components
built to function as common services in an enterprise environment.

Systems cannot be constructed to eliminate security risk but must incorporate capabilities to
recognize, resist, and recover from attacks. Initial acquisition and design must prepare the system for
implementation and sustainment. As a result, assurance must be planned across the lifecycle to
ensure effective operational security over time.

Within this book we use the following definition of software assurance developed to incorporate
lifecycle assurance [Mead 2010a]:

Application of technologies and processes to achieve a required level of confidence that
software systems and services function in the intended manner, are free from accidental or
intentional vulnerabilities, provide security capabilities appropriate to the threat
environment, and recover from intrusions and failures.

1.3 Introducing Principles for Software Assurance
In 1974, Saltzer and Schroeder proposed software design principles that focus on protection
mechanisms to “guide the design and contribute to an implementation without security flaws”
[Saltzer 1974]. Students still learn these principles in today’s macrocycle classrooms [Saltzer 1974]:

• Economy of mechanism—Keep the design as simple and small as possible.

• Fail-safe defaults—Base access decisions on permission rather than exclusion.

• Complete mediation—Every access to every object must be checked for authority.

• Open design—The design should not be secret. The mechanisms should not depend on the
ignorance of potential attackers but rather on the possession of specific, and more easily
protected, keys or passwords.

• Separation of privilege—Where feasible, a protection mechanism that requires two keys to
unlock it is more robust and flexible than one that allows access to the presenter of only a
single key.

• Least privilege—Every program and every user of the system should operate using the least
set of privileges necessary to complete the job.

• Least common mechanism—Minimize the amount of mechanism common to more than one
user and depended on by all users.

• Psychological acceptability—It is essential that the human interface be designed for ease of
use so that users routinely and automatically apply the protection mechanisms correctly.

Time has shown the value and utility in these principles, but new challenges surfaced soon after
Saltzer and Schroeder proposed them. The Morris worm generated a massive denial of service by
infecting more than 6,000 UNIX machines on November 2, 1988 [Wikipedia 2011a]. An advanced
operating system, Multiple Virtual Storage (MVS), where memory sharing was now available to all
programs under control of the OS, was released in March of the same year [Wikipedia 2011b]. As a
result, the security of the operating system became of utmost importance. Although Saltzer and

Schroeder’s principles still apply to security within an individual piece of technology, they are no
longer sufficient to address the complexity and sophistication of the environment within which that
component must operate.

We propose a set of seven principles focused on addressing the challenges of acquiring, building,
deploying, and sustaining systems to achieve a desired level of confidence for software assurance:

1. Risk shall be properly understood in order to drive appropriate assurance decisions—A
perception of risk drives assurance decisions. Organizations without effective software
assurance perceive risks based on successful attacks to software and systems and usually
respond reactively. They may implement assurance choices such as policies, practices, tools,
and restrictions based on their perception of the threat of a similar attack and the expected
impact if that threat is realized. Organizations can incorrectly perceive risk when they do not
understand their threats and impacts. Effective software assurance requires organizations to
share risk knowledge among all stakeholders and technology participants. Too frequently,
organizations consider risk information highly sensitive do not share it; protecting the
information in this way results in uninformed organizations making poor risk choices.

2. Risk concerns shall be aligned across all stakeholders and all interconnected technology
elements—Highly connected systems like the Internet require aligning risk across all
stakeholders and all interconnected technology elements; otherwise, critical threats are missed
or ignored at different points in the interactions. It is not sufficient to consider only highly
critical components when everything is highly interconnected. Interactions occur at many
technology levels (e.g., network, security appliances, architecture, applications, data storage)
and are supported by a wide range of roles. Protections can be applied at each of these points
and may conflict if not well orchestrated. Because of interactions, effective assurance requires
that all levels and roles consistently recognize and respond to risk.

3. Dependencies shall not be trusted until proven trustworthy—Because of the wide use of
supply chains for software, assurance of an integrated product depends on other people’s
assurance decisions and the level of trust placed on these dependencies. The integrated
software inherits all the assurance limitations of each interacting component. In addition,
unless specific restrictions and controls are in place, every operational component, including
infrastructure, security software, and other applications, depends on the assurance of every
other component. There is a risk each time an organization must depend on others’ assurance
decisions. Organizations must decide how much trust they place in dependencies based on
realistic assessments of the threats, impacts, and opportunities represented by various
interactions. Dependencies are not static, and organizations must regularly review trust
relationships to identify changes that warrant reconsideration. The following examples
describe assurance losses resulting from dependencies:

• Defects in standardized pieces of infrastructure (e.g., operating systems, development
platforms, firewalls, and routers) can serve as widely available threat entry points for
applications.

• Using many standardized software tools to build technology establishes a dependency for
the assurance of the resulting software product. Vulnerabilities can be introduced into
software products by the tool builders.

4. Attacks shall be expected—A broad community of attackers with growing technology
capabilities can compromise the confidentiality, integrity, and availability of an organization’s
technology assets. There are no perfect protections against attacks, and the attacker profile is

constantly changing. Attackers use technology, processes, standards, and practices to craft
compromises (known as socio-technical responses). Some attacks take advantage of the ways
we normally use technology, and others create exceptional situations to circumvent defenses.

5. Assurance requires effective coordination among all technology participants—The
organization must apply protection broadly across its people, processes, and technology
because attackers take advantage of all possible entry points. The organization must clearly
establish authority and responsibility for assurance at an appropriate level in the organization
to ensure that the organization effectively participates in software assurance. This assumes
that all participants know about assurance, but that is not usually the case. Organizations must
educate people on software assurance.

6. Assurance shall be well planned and dynamic—Assurance must represent a balance among
governance, construction, and operation of software and systems and is highly sensitive to
changes in each of these areas. Assurance requires an adaptive response to constant changes
in applications, interconnections, operational usage, and threats. Assurance is not a once-and-
done activity. It must continue beyond the initial operational implementation through
operational sustainment. Assurance cannot be added later; it must be built to the level of
acceptable assurance that organizations need. No one has resources to redesign systems every
time the threats change, and adjusting assurance after a threat has become reality is
impossible.

7. A means to measure and audit overall assurance shall be built in—Organizations cannot
manage what they do not measure, and stakeholders and technology users do not address
assurance unless they are held accountable for it. Assurance does not compete successfully
with other competing needs unless results are monitored and measured. All elements of the
socio-technical environment, including practices, processes, and procedures, must be tied
together to evaluate operational assurance. Organizations with more successful assurance
measures react and recover faster, learn from their reactive responses and those of others, and
are more vigilant in anticipating and detecting attacks. Defects per lines of code is a common
development measure that may be useful for code quality but is not sufficient evidence for
overall assurance because it provides no perspective on how that code behaves in an
operational context. Organizations must take focused and systemic measures to ensure that the
components are engineered with sound security and that the interaction among components
establishes effective assurance.

1.4 Addressing Lifecycle Assurance3

3. Material in this section comes from Predicting Software Assurance Using Quality and Reliability Measures
[Woody 2014].

In general, we build and acquire operational systems through coordinated actions involving a set of
predefined steps referred to as a lifecycle. Most organizations use a lifecycle model of some type,
although these models vary from one organization to another. In this book, the approaches we
describe relate to particular lifecycle activities, but we try to be independent of specific lifecycle
models. Standards such as ISO 15288 and NIST SP 800-160 can provide guidance to those looking
for additional background on suitable lifecycles in support of software assurance.

Organizations make or buy their technology to meet specified performance parameters but rarely
consider the ways in which a new development or acquisition functions within its intended
deployment environment and the unintended consequences that are possible. For example, security

defects (also referred to as vulnerabilities) provide opportunities for attackers to gain access to
confidential data, disrupt access to system capabilities, and make unauthorized changes to data and
software. Organizations tend to view higher quality and greater security as increasing operational
cost, but they fail to consider the total cost of ownership over the long term, which includes the cost
of dealing with future compromises. The lack of a comprehensive strategy in approaching how a
system or software product is constructed, operated, and maintained creates fertile ground for
compromise.

Every component of the software system and its interfaces must be operated and sustained with
organizational risk in mind. The planning and execution of the response is a strategic requirement,
which brings the absolute requirement for comprehensive lifecycle protection processes into the
discussion.

There is always uncertainty about a software system’s behavior. At the start of development, we
have very general knowledge of the operational and security challenges that might arise as well as the
security behavior that we want when the system is deployed. A quality measure of the design and
implementation is the confidence we have that the delivered system will behave as specified.

At the start of a development cycle, we have a limited basis for determining our confidence in the
behavior of the delivered system; that is, we have a large gap between our initial level of confidence
and the desired level of confidence. Over the development lifecycle, we need to reduce that
confidence gap, as shown in Figure 1.1, to reach the desired level of confidence for the delivered
system.

Figure 1.1 Confidence Gap

With existing software security practices, we can apply source-code static analysis and testing
toward the end of the lifecycle. For the earlier lifecycle phases, we need to evaluate how the
engineering decisions made during design affect the injection or removal of defects. Reliability
depends on identifying and mitigating potential faults. Software security failure modes, such as
unverified input data, are exploitable conditions. A design review must confirm that the business

risks linked to fault, vulnerability, and defect consequences are identified and mitigated by specific
design features. Software-intensive systems are complex; it is not surprising that the analysis—even
when an expert designer performs it—can be incomplete, can overlook a security problem, or can
make simplifying but invalid development and operating assumptions.

Our confidence in the engineering of software must be based on more than opinion. If we claim
the resulting system will be secure, our confidence in the claim depends on the quality of evidence
provided to support the claim, on confirmation that the structure of the argument about the evidence
is appropriate to meet the claim, and on the sufficiency of the evidence provided. If we claim that we
have reduced vulnerabilities by verifying all inputs, then the results of extensive testing using invalid
and valid data provide evidence to support the claim.

We refer to the combination of evidence and argument as an assurance case, which can be defined

as follows:4

4. Assurance cases were originally used to show that systems satisfied their safety-critical properties. For this
use, they were (and are) called safety cases. The notation and approach used here has been used for over a
decade in Europe to document why a system is sufficiently safe [Kelly 1998, 2004]. The application of the
concept to reliability was documented in an SAE standard [SAE 2004]. We extend the concept to cover
system security claims.

Assurance case is a documented body of evidence that provides a convincing and valid
argument that a specified set of critical claims about a system’s properties are adequately
justified for a given application in a given environment.

[Kelly 1998]

ISO/IEC 15026 provides the following alternative definition of an assurance case [ISO/IEC 2007]:

An assurance case includes a top-level claim for a property of a system or product (or set
of claims), systematic argumentation regarding this claim, and the evidence and explicit
assumptions that underlie this argumentation. Arguing through multiple levels of
subordinate claims, this structured argumentation connects the top-level claim to the
evidence and assumptions.

An analysis of an assurance case does not evaluate the process by which an engineering decision
was made. Rather, it is a justification of a predicted result based on available information (evidence).
An assurance case does not imply any kind of guarantee or certification. It is simply a way to
document the rationale behind system design decisions.

Doubts play a significant role in justifying claims. During a review, an assurance case developer
must justify through evidence that a set of claims has been met. A typical reviewer looks for reasons
to doubt the claim. For example, a reviewer might do any of the following:

• Doubt the claim—There is information that contradicts the claim.

• Doubt the argument—For example, the static analysis does not apply to the claim that a
specific vulnerability has been eliminated or the analysis does not consider the case in which
the internal network has been compromised.

• Doubt the evidence—For example, the security testing or static analysis was done by
inexperienced staff or the testing plan does not sufficiently consider recovery following a
compromise.

Quality and reliability can be considered evidence to be incorporated into an argument about
predicted software security. Standard and policy frameworks become an important part of this
discussion because they are the software industry’s accepted means of structuring and documenting
best practice. Frameworks and policies encapsulate and then communicate a complete and coherently
logical concept as well as methods of tailoring the approach for use by a particular aspect of “real-
world” work. Frameworks for a defined area of work are created and endorsed by recognized entities
such as the Software Engineering Institute (SEI), International Organization for Standardization
(ISO), National Institute of Standards and Technology (NIST), Institute of Electrical and Electronics
Engineers (IEEE), and Association for Computing Machinery (ACM).

Each framework typically focuses on a specific aspect of the lifecycle. The SEI has published
several process models that center on communicating a particular approach to an issue or concern.
Within the process domain, some SEI models focus on applying best practices to create a more
effective software organization. Many widely accepted frameworks predate the emergence of critical
operational security concerns and do not effectively address security.

1.5 Case Studies Used in This Book
Throughout the book we use three case studies to illustrate real problems that organizations and
individuals face:

• Wireless Emergency Alerts (WEA)—A real system for issuing emergency alerts

• Fly-By-Night Airlines—A fictitious airline with realistic problems

• GoFast Automotive—A fictitious automobile manufacturer with realistic problems

Brief descriptions of each case study follow, and we recommend that you familiarize yourself with
these case study descriptions to understand the context for the case study vignettes that appear.

1.5.1 Wireless Emergency Alerts Case Study5

5. This case study was developed by Christopher Alberts and Audrey Dorofee to use in training materials for
Security Engineering Risk Analysis (SERA).

The Wireless Emergency Alerts (WEA) service is a collaborative partnership that includes

• The cellular industry

• Federal Communications Commission (FCC)

• Federal Emergency Management Agency (FEMA)

• U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T)

The WEA service enables local, tribal, state, territorial, and federal public safety officials to send
geographically targeted emergency text alerts to the public.

An emergency alert is a message sent by an authorized organization that provides details of an
occurring or pending emergency situation to designated groups of people. Alerts are initiated by
many diverse organizations—for example, AMBER alerts from law enforcement and weather alerts
from the National Weather Service.

Wireless emergency alerts are text messages sent to mobile devices, such as cell phones and
pagers. The process of issuing this type of alert begins with a request from an initiator (such as law
enforcement or the National Weather Service) to submit an alert. The request is forwarded to an
organization that is called an alert originator (AO). A team from the AO receives the initiator alert

request and decides whether to issue the alert. If it decides to issue the alert, it then determines the
distribution channels for the alert (for example, television, radio, roadside signs, wireless
technologies).

If the team decides to issue a wireless emergency alert, an operator from the AO enters the alert
message into an alert originating system (AOS), which then formats the message. The AOS forwards
the alert message to FEMA systems, which validate and process it. After the FEMA systems process
the alert message, they then forward it to cellular service providers (for example, AT&T, Verizon).
Finally, the cellular service providers send a text message to recipients with capable devices in the
targeted geographic area.

1.5.2 Fly-By-Night Airlines Case Study6

6. This case study was developed by Tom Hilburn, professor emeritus, Embry-Riddle Aeronautical University.

Fly-Florida Airlines was a small regional passenger airline serving Florida cities. In late 2013, it
merged with two other regional airlines, becoming Fly-By-Night Airlines. It now serves airports
throughout the southeastern United States and is headquartered in Orlando, Florida.

At a recent meeting of the executive board of Fly-By-Night Airlines, the board discussed ways to
increase business and retain and expand the number of passengers by providing higher-quality
service. Also, Fly-By-Night’s chief financial officer shared with the board a report which showed that
the company could save substantial labor costs by automating certain services. As a result of this
discussion, the chief executive officer of Fly-By-Night decided that a web-based automated airline
reservations system (ARS) for Fly-By-Night Airlines should be developed, along with a frequent
flyer program.

With the web-based ARS, passengers can make reservations online. A reservation includes the
passenger name, flight number, departure date and time, reservation type (first class, business,
coach), a seat number, and the price of the ticket. (As designated by DOT Directive 1573, ticket
prices may not change more than once in a 12-hour period.) After the system completes the
reservation and verifies the credit card information, the customer can print tickets or use an e-ticket.
Passengers can also use the ARS to cancel or change completed reservations and check frequent flyer
mileage. In addition, anyone can check the status of a flight (on-time, delayed, canceled). An ARS
system administrator can enter flight data and ticket information or get a report on reservations for an
existing flight. Reports on reservations must be sent, on a daily basis, to the U.S. Department of
Homeland Security.

1.5.3 GoFast Automotive Corporation Case Study

GoFast is one of the “big 4” automobile manufacturers in the United States. It produces cars, sedans,
vans, SUVs, and pickup trucks. At times it also produces the Tiger sports car. The Tiger was first
introduced in 1965 and saw a revival in 2010. Recently, GoFast has been a leader in incorporating
self-driving car features and advanced electronics.

The Tiger dashboard is very appealing to those who are interested in high-tech features. It
supports all the options that are available to the driver: front and rear window windshield wipers that
can be synchronized, sensors that indicate when other cars are close, cameras that allow the driver to
“see through” the blind spot, and front and rear cameras to assist in parking and backing up.
Naturally, the Tiger has a sophisticated and proprietary entertainment system that gives GoFast a
competitive edge compared to other sports car manufacturers.

Software supports many of the Tiger’s systems and some of the systems in GoFast’s other models.
Software underlies many safety features (e.g., anti-lock braking), self-driving features, and
entertainment and communication systems. GoFast develops much of its own software but also uses
contractors.

In addition to its software development organization, GoFast has a specialized software security
team that is responsible for activities such as security risk assessment, security requirements and
architecture development, and security reviews throughout the software development process. The
security team is also responsible for development and maintenance of corporate software security
process documents and practices. The security team is permitted to test and perform “ethical
hacking” of the completed software prior to release and to advise executive management on whether
release should take place.

Chapter 2. Risk Analysis—Identifying and Prioritizing Needs

with Christopher Alberts and Audrey Dorofee

In This Chapter

• 2.1 Risk Management Concepts

• 2.2 Mission Risk

• 2.3 Mission Risk Analysis

• 2.4 Security Risk

• 2.5 Security Risk Analysis

• 2.6 Operational Risk Analysis—Comparing Planned to Actual

• 2.7 Summary

Risk management in systems acquisition and development has typically focused exclusively on cost
and schedule concerns. Organizations fund desired features and functions selected for
implementation based on cost estimates, budget availability, and perceived criticality of need.
Organizations closely monitor changes in any of these three areas and make adjustments to planned
delivery dates and features based on risk evaluation.

Risk is one of the assurance principles described in Chapter 1, “Cyber Security Engineering:
Lifecycle Assurance of Systems and Software,” and effective risk management of software assurance
is a competency that is not consistently applied in acquisition and development projects. This
competency considers what could go wrong and establishes how to reduce, mitigate, or avoid the
undesirable results that would occur if the risk were realized. Most project participants focus on how
to reach success and dismiss those raising the problems that may impede achieving the project’s
objectives. A successful project needs both perspectives working collaboratively side by side.

Risk can be connected to systems and software from many directions, and organizations must
consider all of those connections to effectively manage risk. Acquisition and development are
complex, and opportunities for things to go wrong abound. Effective risk analysis for assurance
requires, at a minimum, consideration of the following types of risk:

• Development risk

• Acquisition risk

• Mission risk

Development and acquisition risks typically dominate risk management efforts and relate
primarily to cost and schedule. These are actually short-term concerns, but they dominate the early
stages of the lifecycle. In this chapter we explore ways to consider the software assurance aspects of
all three types of risk.

2.1 Risk Management Concepts
For risk to exist in any circumstance, all of the following must be true [Alberts 2002]:

• The potential for loss exists.

• Uncertainty related to the eventual outcome is present.1

1. Some researchers separate the concepts of certainty (the absence of doubt), risk (where the probabilities of
alternative outcomes are known), and uncertainty (where the probabilities of possible outcomes are
unknown). However, because uncertainty is a fundamental attribute of risk, we do not differentiate between
decision making under risk and decision making under uncertainty.

• Some choice or decision is required to deal with the uncertainty and potential for loss.

The essence of risk, no matter what the domain, can be succinctly captured by the following

definition of risk: Risk is the probability of suffering harm or loss.2

2. This definition is derived from the definition used in Introduction to the Security Engineering Risk Analysis
(SERA) Framework [Alberts 2014].

Figure 2.1 illustrates the three components of risk:

• Potential event—An act, an occurrence, or a happening that alters current conditions and
leads to a loss

• Condition—The current set of circumstances that leads to or enables risk

• Consequence—The loss that results when a potential event occurs; the loss is measured in
relationship to the status quo (i.e., current state)

Figure 2.1 Components of Risk

From the risk perspective, a condition is a passive element. It exposes an entity3 (e.g., project,
system) to the loss triggered by the occurrence of an event. However, by itself, a risk condition does
not cause an entity to suffer a loss or experience an adverse consequence; it makes the entity
vulnerable to the effects of an event [Alberts 2012a].

3. An entity is an object affected by risk. The entities of interest in this chapter are interactively complex,
software-reliant systems. Examples include projects, programs, business processes, and networked
technologies.

Consider the following scenario: A project team is developing a software system for a customer.
The team has enough people with the right skills to perform its tasks and complete its next milestone
on time and within budget (status quo). However, the team does not have redundancy among team
members’ skills and abilities (condition). If the team loses people with certain key skills (potential
event), then it will not be able to complete its assigned tasks (consequence/loss). This puts the next
milestone in jeopardy, which is a loss when measured in relationship to the status quo (on track to
achieve the next milestone).

However, if none of the team members leaves or is reassigned (the event does not occur), then the
project should suffer no adverse consequences. Here, the condition enables the event to produce an
adverse consequence or loss.

When a risk occurs, an adverse consequence (a loss) is realized. This consequence ultimately
changes the current set of conditions confronting the entity (project or system). In this example, a
realized risk means that the project team has lost people and no longer has enough people to complete
its assigned tasks. The project now faces a problem that must be resolved. Put another way, the risk
has become an issue/problem (a condition that directly results in a loss or adverse consequence).

Three measures are associated with a risk: probability, impact, and risk exposure.4 The basic

relationships between probability and impact and the components of risk are shown in Figure 2.2.5 In
this context, probability is defined as a measure of the likelihood that an event will occur, while
impact is defined as a measure of the loss that occurs when a risk is realized. Risk exposure provides
a measure of the magnitude of a risk based on current values of probability and impact.

4. A fourth measure, time frame, is sometimes used to measure the length of time before a risk is realized or the
length of time in which action can be taken to prevent a risk.

5. The relationships between probability and impact and the components of risk depicted in Figure 2.2 are based
on the simplifying assumption that the loss resulting from the occurrence of an event is known with certainty.
In many cases, a range of adverse outcomes might be possible. For example, consider a project team that is
worried about the consequence of losing team members. The magnitude of the loss will depend on a number
of factors, such as which team member leaves the project, whether anyone is available to take the team
member’s place, the skills and experience of potential replacements, and so forth. The consequence could be
minor if an experienced person is available to step in and contribute right away. On the other hand, the
consequence could be severe if no one is available to step in and contribute. A range of probable outcomes is
thus possible. When multiple outcomes are possible, probabilities are associated with the potential outcomes.
As a result, risk analysts must consider two probabilities—one associated with the potential event and
another associated with the consequence. However, basic risk assessments assume that the loss is known with
relative certainty (or they only focus on the most likely consequence), and only the probability associated
with the event is considered.

Figure 2.2 Risk Measures and the Components of Risk (Simplified View)

Risk management is a systematic approach for minimizing exposure to potential losses. It
provides a disciplined environment for the following:

• Continuously assessing what could go wrong (i.e., assessing risks)

• Determining which risks to address (i.e., setting mitigation priorities)

• Implementing actions to address high-priority risks through avoidance or mitigation

Figure 2.3 illustrates the three core risk management activities:

• Assess risk—Assessment involves transforming concerns people have into distinct, tangible
risks that are explicitly documented and analyzed.

• Plan for controlling risk—Planning involves determining an approach for addressing each
risk and producing a plan for implementing the approach.

• Control risk—Controlling risk involves dealing with each risk by implementing its defined
control plan and tracking the plan to completion.

Figure 2.3 Risk Management Activities

When you consider the subactivities under the three main activities, the connection to the well-
known “Plan, Do, Check, Act” (PDCA) model is apparent:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Attributes

• Responding to change over following a plan

• Activity 2.1 Assess risk

• 2.1.1 Identify risk

• 2.1.2 Analyze risk

• 2.1.3 Develop risk profile

• Activity 2.2 Plan for risk control

• 2.2.1 Determine control approach

• 2.2.2 Develop control plan

• Activity 2.3 Control risk

• 2.3.1 Implement control plan

• 2.3.2 Track control plan

• 2.3.3 Make tracking decision

The mapping to PDCA is

• Plan—2.2.2 Develop control plan

• Do—2.3.1 Implement control plan

• Check—2.3.2 Track control plan

• Act—2.3.3 Make tracking decision

Everything before subactivity 2.2.2 (risk identification, risk analysis, risk prioritization/risk
profile, and control approach) prepares risk management personnel to be able to implement the
PDCA cycle. The same type of mapping could be done for the OODA (Observe, Orient, Decide, and
Act) decision-making framework.

One of the fundamental conditions of risk is uncertainty regarding its occurrence. A risk, by
definition, might or might not occur. With an issue, no uncertainty exists—the condition exists and is

having a negative effect on performance.6 Issues can also lead to (or contribute to) risks by

6. Many of the same tools and techniques can be applied to both issue and risk management.

• Creating a circumstance that enables an event to trigger additional loss

• Making an existing event more likely to occur

• Aggravating the consequences of existing risks

Figure 2.4 illustrates the two components of an issue or a problem:

• Condition—The current set of circumstances that produces a loss or an adverse consequence

• Consequence—The loss that is triggered by an underlying condition that is present

Figure 2.4 Components of an Issue/Problem

From the issue perspective, a condition directly causes an entity (e.g., project,- system) to suffer a
loss or experience an adverse consequence. Unlike a risk, an issue does not need an event to occur to
produce a loss or an adverse consequence.

2.2 Mission Risk
From the mission perspective, risk is defined as the probability of mission failure (i.e., not achieving
key objectives). Mission risk aggregates the effects of multiple conditions and events on a system’s
ability to achieve its mission.

Mission risk analysis is based on systems theory.7 The underlying principle of systems theory is to
analyze a system as a whole rather than decompose it into individual components and then analyze

each component separately [Charette 1990]. In fact, some properties of a system are best analyzed by
considering the entire system, including the following:

7. Because mission risk analysis is based on system theory, the term systemic risk can be used synonymously
with mission risk. The term mission risk is used throughout this chapter.

• Influences of environmental factors

• Feedback and nonlinearity among causal factors

• Systemic causes of failure (as opposed to proximate causes)

• Emergent properties

2.3 Mission Risk Analysis
The goal of mission risk analysis is to gauge the extent to which a system is in a position to achieve
its mission and objective(s). This type of risk analysis provides a top-down view of how well a
system is addressing risks.

The Mission Risk Diagnostic (MRD) [Alberts 2006] is one method that can be used to address this
type of analysis. The first step in this type of risk analysis is to establish the objectives that must be
achieved. The objectives define the desired outcome, or “picture of success,” for a system. Next,
systemic factors that have a strong influence on the outcome (i.e., whether the objectives will be
achieved) are identified. These systemic factors, called drivers in this chapter, are important because
they define a small set of factors that can be used to assess a system’s performance and gauge
whether the system is on track to achieve its key objectives. The drivers are then analyzed to enable
decision makers to gauge the overall risk to the system’s mission.

Table 2.1 presents a summary of the three core tasks that form the basis of the MRD. The MRD
comprises 13 tasks that must be completed. (A description of all MRD tasks is provided in Section 5
of the Mission Risk Diagnostic (MRD) Method Description [Alberts 2006].)

Table 2.1 Core Tasks of the MRD

We describe how to address each of these core tasks in the following sections.

2.3.1 Task 1: Identify the Mission and Objective(s)

The overarching goals when identifying the mission and objective(s) are to (1) define the
fundamental purpose, or mission, of the system that is being examined and (2) establish the specific
aspects of the mission that are important to decision makers. Once they have been established, the
mission and objective(s) provide the foundation for conducting the assessment.

The mission statement is important because it defines the target, or focus, of the analysis effort.
Each mission typically comprises multiple objectives. When assessing a system, analysts must select
which specific objective(s) will be evaluated during the assessment. Selecting objectives refines the
scope of the assessment to address the specific aspects of the mission that are important to decision
makers.

While decision makers have a tacit understanding of their objectives, they often cannot precisely
articulate or express the objectives in a way that addresses the criteria. If a program’s objectives are
not clearly articulated, decision makers may have trouble assessing whether the program is on track
for success.

2.3.2 Task 2: Identify Drivers

The main goal of driver identification is to establish a set of systemic factors, called drivers, that has
a strong influence on the eventual outcome or result to be used to measure performance in relation to
a program’s mission and objectives. Knowledge within the organization can be tapped to review and
refine the prototype set of drivers provided in Table 2.2. Once the set of drivers is established,
analysts can evaluate each driver in the set to gain insight into the likelihood of achieving the mission
and objectives. To measure performance effectively, analysts must ensure that the set of drivers
conveys sufficient information about the mission and objective(s) being assessed.

Table 2.2 Prototype Set of Driver Questions for Software Acquisition and Development Programs

Each driver has two possible states: a success state and a failure state. The success state means
that the program’s processes are helping to guide the program toward a successful outcome (i.e.,
achieving the objective[s] being evaluated). In contrast, the failure state signifies that the program’s
processes are driving the program toward a failed outcome (i.e., not achieving the objective[s] being
evaluated).

2.3.3 Task 3: Analyze Drivers

Analysis of a driver requires determining how it is currently acting (i.e., its current state) by
examining the effects of conditions and potential events on that driver. The goal is to determine
whether the driver is

• Almost certainly in its success state

• Most likely in its success state

• Equally likely to be in its success or failure states

• Most likely in its failure state

• Almost certainly in its failure state

This list can be used to define a qualitative scale for driver analysis.

As illustrated in Figure 2.5, a relationship exists between a driver’s success state (as depicted in a
driver profile) and mission risk. A driver profile shows the probability that drivers are in their success
states. Thus, a driver with a high probability of being in its success state (i.e., a high degree of

momentum toward the mission) translates to a low degree of mission risk. Likewise, a driver with a
low probability of being in its success state (i.e., a high probability of being in its failure state)
translates to a high degree of mission risk.

Figure 2.5 The Relationship Between Driver Value and Mission Risk

The driver profile thus helps decision makers understand how a system is performing against
potential mission risks.

2.4 Security Risk
Security risk is a measure of (1) the likelihood that a threat will exploit a vulnerability to produce an
adverse consequence or loss and (2) the magnitude of the loss. Figure 2.6 illustrates the three core
components of security risk:

• Threat—A cyber act, occurrence, or event that exploits one or more vulnerabilities and leads
to an adverse consequence or loss

• Vulnerability—A weakness in an information system, system security procedures, internal
controls, or implementation that a threat could exploit to produce an adverse consequence or
loss; a current condition that leads to or enables security risk

• Consequence—The loss that results when a threat exploits one or more vulnerabilities; the
loss is measured in relationship to the status quo (i.e., current state)

Figure 2.6 Components of Security Risk

From the security perspective, a vulnerability is the passive element of risk. It exposes cyber
technologies (e.g., software application, software-reliant system) to threats and the losses that those
threats can produce. However, by itself, a vulnerability does not cause an entity to suffer a loss or
experience an adverse consequence; rather, the vulnerability makes the entity susceptible to the

effects of a threat.8

8. Adapted from the book Managing Information Security Risks: The OCTAVE Approach [Alberts 2002].

The strategy for controlling a risk is based on the measures of the risk (i.e., probability, impact,
and risk exposure), which are established during the risk assessment. Decision-making criteria (e.g.,
for prioritizing risks or deciding when to escalate risks within an organization) can help determine the
appropriate strategy for controlling a risk. Common control approaches include the following:

• Accept—If a risk occurs, its consequences will be tolerated; no proactive action to address the
risk will be taken. When a risk is accepted, the rationale for doing so is documented.

• Transfer—Risk mitigation is shifted to another party (e.g., through insurance or outsourcing).
The system owner always retains responsibility for managing the risk, even if it is transferred.

• Avoid—Activities are restructured to eliminate the possibility of a risk occurring.

• Mitigate—Actions are implemented in an attempt to reduce or contain a risk.

For any security risk that is not accepted, a security analyst should develop and document a
control plan for that risk. A control plan defines a set of actions for implementing the selected control
approach. For risks that are being mitigated, plans can include actions from the following categories:

• Recognize and respond—Monitor the threat and take action when it is detected.

• Resist—Implement protection measures to reduce vulnerability to the threat and minimize any
consequences that might occur.

• Recover—Recover from the risk if the consequences or losses are realized.

In order to fully address a security risk, it is important to understand the environment in which it
resides. The focal point of the environment is the threat actor. A common goal of many threat actors
is to inflict harm or loss on a mission’s stakeholders. To accomplish that goal, a threat actor first

targets data used to support a workflow or mission thread.9 To access targeted mission data, a threat
actor must navigate through the complex network of people, processes, and technologies, looking for
weaknesses to exploit in organizational security practices and vulnerabilities in software-reliant
systems. Getting to the mission data can be difficult. A threat actor may need to jump from one
targeted computer to another when attempting to achieve the goal of the attack. In many cases, an
actor may target computers that are owned and maintained by trusted partners and third-party
collaborators when conducting a cyberattack.

9. A workflow is a collection of interrelated work tasks that achieves a specific result [Leveson 2004]. A
workflow includes all tasks, procedures, organizations, people, technologies, tools, data, inputs, and outputs
required to achieve the desired objectives. The business literature uses several terms synonymously with
workflow, including work process, business process, and process. Mission thread is essentially the term the
military uses in place of workflow. A mission thread is a sequence of end-to-end activities and events that
takes place to accomplish the execution of a military operation.

The threat actor is ultimately looking to violate the security attributes of mission data, with the
hope of causing a range of indirect, negative consequences for mission stakeholders. Data have three

basic security attributes: confidentiality, integrity, and availability.10 For a given risk, a threat actor
generally tries to produce one or more of the following outcomes:

10. Confidentiality is defined as keeping proprietary, sensitive, or personal information private and inaccessible
to anyone who is not authorized to see it. Integrity is defined as the authenticity, accuracy, and completeness
of data. Availability is defined as the extent to which, or frequency with which, data must be present or ready
for use. These definitions are adapted from the book Managing Information Security Risks: The OCTAVE
Approach [Alberts 2002].

• Disclosure of data (violation of the confidentiality attribute)

• Modification of data (violation of the integrity attribute)

• Insertion of false data (violation of the integrity attribute)

• Destruction of data (violation of the availability attribute)

• Interruption of access to data (violation of the availability attribute)

• System destruction, destabilization, or degradation (violation of the availability attribute)

Each outcome maps to a security attribute of the data. As indicated in Figure 2.7, the violation of a
security attribute has an impact on the workflow/mission thread and the organization’s ability to
achieve its mission successfully.

Figure 2.7 Security Risk Environment

The final basic element of the security risk environment is the impact on mission stakeholders.11

When a threat actor produces mission degradation or mission failure, the consequence can have a
negative impact on various stakeholder groups.

11. A stakeholder is defined as a person or group with an interest in a workflow/mission thread and the products
it produces or the services it provides.

2.5 Security Risk Analysis12

12. The material in this section comes from Microsoft [Microsoft 2013].

System and software security risk can be evaluated using the Security Engineering Risk Analysis
(SERA) framework [Alberts 2014]. SERA differs from many other risk-identification methods that
are based on brainstorming techniques. When brainstorming is used, participants describe risks based
on their tacit understanding of the operational environment. For security risk-identification methods,
people tend to identify threats with which they have some familiarity. They also tend to describe
consequences based on their personal knowledge of organizational workflows and associated
stakeholders. In lieu of brainstorming, SERA implements a detailed analysis that employs a multi-
model approach for establishing operational content. The SERA evaluation is not limited to the
knowledge of the active participants.

The SERA framework defines an approach for analyzing security risk in software-reliant systems
and systems of systems across the software lifecycle. Traditional security-risk analysis methods are
based on a simplified view of security risk, where a single threat actor exploits a single vulnerability
in a single system to cause an adverse consequence. However, in reality, multiple actors exploit
multiple vulnerabilities in multiple systems as part of a complex chain of events.

For SERA, a shared understanding of the system in its operational or production environment is
assembled using multiple models that represent various aspects of the system that are important to
security. If the system is still in development, the development environment is the targeted
environment.

Models representing the views listed in Table 2.3 can be analyzed to establish the following key
aspects of a threat:

• Critical data—(subset of the Data view) Important information highlighted in workflow/
mission thread, use case, and network diagrams. By examining these models, analysts can
identify which data elements are most critical to the workflow/mission thread and its
associated mission.

• Access path—(connecting Workflow and Network views) How a threat actor can gain access
to data and violate its security attributes (i.e., create breaches of data confidentiality, integrity,
and availability). The network and physical models provide insights into potential cyber and
physical access paths for an attack.

• Threat outcome—(identification of Workflow view failures that impact Critical data) The
direct consequence caused by the threat. A direct consequence describes which security
attributes of critical data have been breached. Examples of outcomes include data disclosure,
data modification, insertion of false data, destruction of data, and interruption of access to
data. The data model is used to identify the immediate consequence of a threat.

Table 2.3 Views Used to Assemble an Operational System Model

A threat ends with a description of its direct consequence or outcome. However, a security risk
analysis must also account for indirect consequences triggered by the occurrence of a threat. The
indirect consequences are used to (1) measure the impact of a security risk and (2) establish a risk’s
priority for decision makers. Analysts determine indirect consequences using models that represent
the workflow/mission thread and stakeholder views. Mission thread analysis, unlike other techniques,
allows consideration of the people and their interactions with technology in addition to the
functioning of a system itself.

Using the shared operational model, plausible threat scenarios can be developed and analyzed.
The SERA framework requires the following data to be recorded for each security risk:

• Security risk scenario

• Risk statement

• Threat components

• Threat sequence

• Workflow consequences

• Stakeholder consequences

• Enablers

The SERA framework comprises the following four tasks:

1. Establish the operational context

2. Identify risk

3. Analyze risk

4. Develop a control plan

The SERA framework can be self-applied by the person or group that is responsible for acquiring
and developing a software-reliant system or facilitated by external parties on behalf of the

responsible person or group.13 In either case, a small analysis team of approximately three to five
people is needed to implement the framework and report findings to stakeholders.

13. A facilitated assessment still requires participation from groups that are responsible for acquiring and
developing the system of interest. The person facilitating the assessment has expertise in conducting security
risk analysis. The facilitator includes others on the team with skills and experience in other areas, such as
systems engineering, software engineering, operational cyber security, and physical/facility security.

The analysis team should be an interdisciplinary team with members providing diverse skill sets.
Examples of skills and experience that should be considered when forming a team include security
engineering, risk analysis, systems engineering, software engineering, operational cyber security, and
physical/facility security. The exact composition of an analysis team depends on the point in the
lifecycle at which the SERA framework is being applied and the nature of the engineering activity
being pursued. The analysis team begins its work by focusing on the environment in which a
software-reliant system will be deployed. Table 2.4 lists the steps involved in task 1.

Table 2.4 Task 1 (Establish the Operational Context) Steps

In task 2 the analysis team transforms a security concern into a distinct, tangible risk scenario that
can be described and measured. Table 2.5 lists the steps involved in task 2.

Table 2.5 Task 2 (Identify Risk) Steps

For task 3, the analysis team evaluates each risk in relationship to predefined criteria to determine
the risk’s probability, impact, and exposure. Table 2.6 lists the steps involved in task 3.

Table 2.6 Task 3 (Analyze Risk) Steps

In Task 4, the team establishes a plan for controlling a selected set of risks. First, the analysis team
prioritizes the security risk scenarios based on their risk measures (probability and impact). Once
priorities have been established, the team determines the basic approach for controlling each risk

(i.e., accept or plan14), based on predefined criteria and current constraints (e.g., resources and
funding available for control activities). For each risk that is not accepted, the analysis team develops
a control plan that indicates the following:

14. The SERA framework examines control approaches in steps 4.2 and 4.3. During step 4.2, the analysis team
determines which risks will be accepted and no longer considered and which will have control plans. At this
point in applying the framework, the analysis team does not identify specific strategies for transferring,
avoiding, and mitigating risks. Those strategies are addressed in step 4.3. Security risk scenarios comprise
multiple threat steps (as defined in the threat sequence), many enablers, and a range of indirect consequences.
An analysis team might employ multiple strategies for addressing a given security risk scenario. For
example, some steps in the threat sequence might be avoided through restructuring the workflow/mission
thread or changing the network architecture. Certain financial consequences might be transferred to third
parties by purchasing insurance. The probability of occurrence for some steps in the threat sequence or some
types of consequences might be reduced by implementing mitigation controls. Specific control strategies
(e.g., transfer, avoid, mitigate) are considered when the control plan is being developed.

• How the threat can be monitored and the actions taken when it occurs (recognize and respond)

• Which protection measures can be implemented to reduce vulnerability to the threat and
minimize any consequences that might occur (resist)

• How to recover from the risk if the consequences or losses are realized (recover)

Table 2.7 lists the steps involved in task 4.

Table 2.7 Task 4 (Develop a Control Plan) Steps

A case study illustrating the use of SERA framework for the Wireless Emergency Alert (WEA)
system can be found in Appendix A, “WEA Case Study: Evaluating Security Risks Using Mission
Threads.”

2.6 Operational Risk Analysis—Comparing Planned to Actual
Assessments should be used to confirm that the implemented system meets the expected levels of risk
that were planned in acquisition, design, and development and continues to do so over time. If
effective security risk analysis is performed as the system is being developed, this knowledge can be
leveraged to focus assessments on confirming that expected mitigations are in place and are
appropriately addressing the risks.

Data from actual security incidents can be compared to the risks that were anticipated to identify
gaps that may indicate the need to revisit the risk analysis activities to factor in the new information
and determine whether changes are needed to meet the realities.

The goal of the risk assessment is to say with certainty that the currently deployed set of controls
properly addresses the right threats. The assessment should also demonstrate that those controls
continue to be effective, given overall business goals.

In addition to assessments, actual incidents should be collected and compared to anticipated risks
to identify gaps for improvements in future system releases.

2.7 Summary
Risk management is a critical element of software assurance. Most organizations are focused only on
risk to cost and schedule. The MRD can be used to analyze how organizational risks, which can
include lack of capability in risk management, impact the ability of a system to meet its objectives.
The SERA framework provides a view from each system of the security risks it may be contributing
that can negatively affect a mission. The SERA framework is structured to assemble these risks so
they can be prioritized along with other system risks.

Chapter 3. Secure Software Development Management and

Organizational Models1

1. Many of the models presented in this chapter were initially discussed in Mead [2010b].

with Julia Allen and Dan Shoemaker

In This Chapter

• 3.1 The Management Dilemma

• 3.2 Process Models for Software Development and Acquisition

• 3.3 Software Security Frameworks, Models, and Roadmaps

• 3.4 Summary

3.1 The Management Dilemma
When managers and stakeholders start a software acquisition or development project, they face a
dazzling array of models and frameworks to choose from. Some of those models are general software
process models, and others are specific to security or software assurance. Very often the marketing
hype that accompanies these models makes it difficult to select a model or set of practices.

In our study of the problem, we realized that there is no single, recognized framework to organize
research and practice areas that focuses on building assured systems. Although we did not succeed in
defining a single “best” framework, we were able to develop guidance to help managers and
stakeholders address challenges such as the following:

• How do I decide which security methods fit into a specific lifecycle activity?

• How do I know if a specific security method is sufficiently mature for me to use on my
projects?

• When should I take a chance on a security research approach that has not been widely used?

• What actions can I take when I have no approach or method for prioritizing and selecting new
research or when promising research appears to be unrelated to other research in the field?

In this chapter, we present a variety of models and frameworks that managers and stakeholders
can use to help address these challenges. We define a framework using the following definitions from
Babylon dictionary [Babylon 2009]:

A framework is a basic conceptual structure used to solve or address complex issues.
This very broad definition has allowed the term to be used as a buzzword, especially
in a software context.

A structure to hold together or support something, a basic structure.

3.1.1 Background on Assured Systems

The following topics exhibit varying levels of maturity and use differing terminology, but they all
play a role in building assured systems:

• Engineering resilient systems encompasses secure software engineering, as well as
requirements engineering, architecture, and design of secure systems and large systems of
systems, and service, and system continuity of operations.

• Containment focuses on the problem of how to monitor and detect a component’s behavior to
contain and isolate the effect of aberrant behavior while still being able to recover from a false
assumption of bad behavior.

• Architecting secure systems defines the necessary and appropriate design artifacts, quality
attributes, and appropriate trade-off considerations that describe how security properties are
positioned, how they relate to the overall system/IT architecture, and how security quality
attributes are measured.

• Secure software engineering (secure coding, software engineering, and hardware design
improvement) improves the way software and hardware are developed by reducing
vulnerabilities from software and hardware flaws. This work includes technology lifecycle
assurance mechanisms, advanced engineering disciplines, standards and certification regimes,
and best practices. Research areas in secure software engineering include refining current
assurance mechanisms and developing new ones where necessary, developing certification
regimes, and exploring policy and incentive options.

Secure software engineering encompasses a range of activities targeting security. The book
Software Security Engineering [Allen 2008] presents a valuable discussion of these topics, and
further research continues.

Some organizations have begun to pay more attention to building assured systems, including the
following:

• Some organizations are participating in the Building Security In Maturity Model [McGraw
2015].

• Some organizations are using Microsoft’s Security Development Lifecycle (SDL) [Howard
2006].

• Some organizations are members of the Software Assurance Forum for Excellence in Code
(SAFECode) consortium [SAFECode 2010].

• Some organizations are working with Oracle cyber security initiatives and security solutions
[Oracle 2016].

• Members of the Open Web Application Security Project (OWASP) are using the Software
Assurance Maturity Model (SAMM) [OWASP 2015].

• The Trustworthy Software Initiative in the UK, in conjunction with the British Standards
Institution, has produced Publicly Available Specification 754 (PAS 754), “Software
Trustworthiness—Governance and Management—Specification” [TSI 2014].

Software assurance efforts tend to be strongest in software product development organizations,
which have provided the most significant contribution to the efforts listed above. However, software
assurance efforts tend to be weaker in large organizations that develop systems for use in-house and
integrate systems across multiple vendors. They also tend to be weaker in small- to medium-sized
organizations developing software products for licensed use. It’s worth noting that there are many
small- and medium-sized organizations that have good cyber security practices, and there are also
large organizations that have poor ones. For a while, organizations producing industrial control
systems lagged behind large software development firms, but this has changed over the past several
years.

Furthermore, there are a variety of lifecycle models in practice. Even in the larger organizations
that adopt secure software engineering practices, there is a tendency to select a subset of the total set
of recommended or applicable practices. Such uneven adoption of practices for building assured
systems makes it difficult to evaluate the results using these practices.

Let’s take a look at existing frameworks and lifecycle models for building assured systems. In the
literature, we typically see lifecycle models or approaches that serve as structured repositories of
practices from which organizations select those that are meaningful for their development projects.

Summary descriptions of several software development and acquisition process models that are in
active use appear in Section 3.2, “Process Models for Software Development and Acquisition,” and
models for software security are summarized in Section 3.3, “Software Security Frameworks,
Models, and Roadmaps.”

3.2 Process Models for Software Development and Acquisition
A framework for building assured systems needs to build on and reflect known, accepted, common
practice for software development and acquisition. One commonly accepted expression of the
codification of effective software development and acquisition practices is a process model. Process
models define a set of processes that, when implemented, demonstrably improve the quality of the
software that is developed or acquired using such processes. The Software Engineering Institute
(SEI) at Carnegie Mellon University has been a recognized thought leader for more than 25 years in
developing capability and maturity models for defining and improving the process by which software
is developed and acquired. This work includes building a community of practitioners and reflecting
their experiences and feedback in successive versions of the models. These models reflect commonly
known good practices that have been observed, measured, and assessed by hundreds of organizations.
Such practices serve as the foundation for building assured systems; it makes no sense to attempt to
integrate software security practices into a software development process or lifecycle if this
development process is not defined, implemented, and regularly improved. Thus, these development
and acquisition models serve as the basis against which models and practices for software security
are considered. These development and acquisition models also serve as the basis for considering the
use of promising research results. The models described in this section apply to newly developed
software, acquired software, and (extending the useful life of) legacy software.

The content in this section is excerpted from publicly available SEI reports and the CMMI
Institute website. It summarizes the objectives of Capability Maturity Model Integration (CMMI)
models in general, CMMI for Development, and CMMI for Acquisition. We recommend that you
familiarize yourself with software development and acquisition process models in general (including
CMMI-based models) to better understand how software security practices, necessary for building
assured systems, are implemented and deployed.

3.2.1 CMMI Models in General

The following information about CMMI models is from the CMMI Institute [CMMI Institute 2015]:

The Capability Maturity Model Integration (CMMI®) is a world-class performance
improvement framework for competitive organizations that want to achieve high-
performance operations. Building upon an organization’s business performance
objectives, CMMI provides a set of practices for improving processes, resulting in a
performance improvement system that paves the way for better operations and
performance. More than any other approach, CMMI doesn’t just help you to improve
your organizational processes. CMMI also has built-in practices that help you to
improve the way you use any performance improvement approach, setting you up to
achieve a positive return on your investment.

CMMI does not provide a single process. Rather, the CMMI framework models
what to do to improve your processes, not define your processes. CMMI is designed
to compare an organization’s existing processes to proven best practices developed
by members of industry, government, and academia; reveal possible areas for
improvement; and provide ways to measure progress.

The result? CMMI helps you to build and manage performance improvement
systems that fit your unique environment.

CMMI is not just for software development. CMMI helps software and services
organizations in a variety of industries to align meaningful process improvement
with business and engineering goals for cost, schedule, productivity, quality, and
customer satisfaction.

CMMI helps companies to improve operational performance by lowering the cost
of development, production, and delivery. CMMI provides the framework for you to
consistently and predictably deliver the products and services that your customers
want, when they want them.

CMMI offers three constellations—CMMI for Acquisition, CMMI for
Development, and CMMI for Services—that help to improve specific business
needs, plus the People Capability Maturity Model (People CMM), which uses
process framework as a foundation to help organizations managing and developing
their workforce to become an employer of choice. Across these three constellations
and the People CMM, CMMI delivers measurable results for organizations of all
sizes in a variety of industries, including aerospace, finance, health services,
software, defense, transportation, and telecommunications.

3.2.2 CMMI for Development (CMMI-DEV)

The SEI’s CMMI for Development report states the following [CMMI Product Team 2010b]:

Companies want to deliver products and services better, faster, and cheaper. At the
same time, in the high-technology environment of the twenty-first century, nearly all
organizations have found themselves building increasingly complex products and
services. It is unusual today for a single organization to develop all the components
that compose a complex product or service. More commonly, some components are
built in-house and some are acquired; then all the components are integrated into the
final product or service. Organizations must be able to manage and control this
complex development and maintenance process.

The problems these organizations address today involve enterprise-wide solutions
that require an integrated approach. Effective management of organizational assets is
critical to business success. In essence, these organizations are product and service
developers that need a way to manage their development activities as part of
achieving their business objectives.

In the current marketplace, maturity models, standards, methodologies, and
guidelines exist that can help an organization improve the way it does business.
However, most available improvement approaches focus on a specific part of the
business and do not take a systemic approach to the problems that most organizations
are facing. By focusing on improving one area of a business, these models have
unfortunately perpetuated the stovepipes and barriers that exist in organizations.

CMMI® for Development (CMMI-DEV) provides an opportunity to avoid or
eliminate these stovepipes and barriers. CMMI for Development consists of best
practices that address development activities applied to products and services. It
addresses practices that cover the product’s lifecycle from conception through
delivery and maintenance. The emphasis is on the work necessary to build and
maintain the total product.

What Is a Process Area?

A process area is a cluster of related practices in an area that, when implemented
collectively, satisfies a set of goals considered important for making improvement in
that area.

CMMI-DEV includes the following 22 process areas [CMMI Product Team 2010b]. The 22
process areas appear in alphabetical order by acronym:

• Causal Analysis and Resolution (CAR)

• Configuration Management (CM)

• Decision Analysis and Resolution (DAR)

• Integrated Project Management (IPM)

• Measurement and Analysis (MA)

• Organizational Process Definition (OPD)

• Organizational Process Focus (OPF)

• Organizational Performance Management (OPM)

• Organizational Process Performance (OPP)

• Organizational Training (OT)

• Product Integration (PI)

• Project Monitoring and Control (PMC)

• Project Planning (PP)

• Process and Product Quality Assurance (PPQA)

• Quantitative Project Management (QPM)

• Requirements Development (RD)

• Requirements Management (REQM)

• Risk Management (RSKM)

• Supplier Agreement Management (SAM)

• Technical Solution (TS)

• Validation (VAL)

• Verification (VER)

3.2.3 CMMI for Acquisition (CMMI-ACQ)

The SEI’s CMMI for Acquisition (CMMI-ACQ) report states the following [CMMI Product Team
2010a]:

Organizations are increasingly becoming acquirers of needed capabilities by
obtaining products and services from suppliers and developing less and less of these
capabilities in-house. This widely adopted business strategy is designed to improve
an organization’s operational efficiencies by leveraging suppliers’ capabilities to
deliver quality solutions rapidly, at lower cost, and with the most appropriate
technology.

Acquisition of needed capabilities is challenging because acquirers have overall
accountability for satisfying the end user while allowing the supplier to perform the
tasks necessary to develop and provide the solution.

Mismanagement, the inability to articulate customer needs, poor requirements
definition, inadequate supplier selection and contracting processes, insufficient
technology selection procedures, and uncontrolled requirements changes are factors
that contribute to project failure. Responsibility is shared by both the supplier and the
acquirer. The majority of project failures could be avoided if the acquirer learned
how to properly prepare for, engage with, and manage suppliers.

In addition to these challenges, an overall key to a successful acquirer-supplier
relationship is communication.

Unfortunately, many organizations have not invested in the capabilities necessary
to effectively manage projects in an acquisition environment. Too often acquirers
disengage from the project once the supplier is hired. Too late they discover that the
project is not on schedule, deadlines will not be met, the technology selected is not
viable, and the project has failed.

The acquirer has a focused set of major objectives. These objectives include the
requirement to maintain a relationship with end users to fully comprehend their
needs. The acquirer owns the project, executes overall project management, and is
accountable for delivering the product or service to the end users. Thus, these
acquirer responsibilities can extend beyond ensuring the product or service is
delivered by chosen suppliers to include activities such as integrating the overall
product or service, ensuring it makes the transition into operation, and obtaining
insight into its appropriateness and adequacy to continue to meet customer needs.

CMMI® for Acquisition (CMMI-ACQ) enables organizations to avoid or
eliminate barriers in the acquisition process through practices and terminology that
transcend the interests of individual departments or groups.

CMMI-ACQ has 22 process areas, 6 of which are specific to acquisition practices, and 16 of
which are shared with other CMMI models. These are the process areas specific to acquisition
practices:

• Acquisition Requirements Development

• Solicitation and Supplier Agreement Development

• Agreement Management

• Acquisition Technical Management

• Acquisition Verification

• Acquisition Validation

In addition, the model includes guidance on the following:

• Acquisition strategy

• Typical supplier deliverables

• Transition to operations and support

• Integrated teams

The 16 shared process areas include practices for project management, organizational process
management, and infrastructure and support.

3.2.4 CMMI for Services (CMMI-SVC)

The SEI’s CMMI for Services (CMMI-SVC) report states the following [CMMI Product Team
2010c]:

The service industry is a significant driver for worldwide economic growth.
Guidance on developing and improving mature service practices is a key contributor
to the service provider performance and customer satisfaction. The CMMI® for
Services (CMMI-SVC) model is designed to begin meeting that need.

All CMMI-SVC model practices focus on the activities of the service provider.
Seven process areas focus on practices specific to services, addressing capacity and
availability management, service continuity, service delivery, incident resolution and
prevention, service transition, service system development, and strategic service
management processes.

CMMI-SVC contains 24 process areas. Of those process areas, 16 are core process areas, 1 is a
shared process area, and 7 are service-specific process areas. Detailed information on the process
areas can be found in CMMI for Services, Version 1.3 [CMMI Product Team 2010c]. The 24 process
areas appear in alphabetical order by acronym:

• Capacity and Availability Management (CAM)

• Causal Analysis and Resolution (CAR)

• Configuration Management (CM)

• Decision Analysis and Resolution (DAR)

• Incident Resolution and Prevention (IRP)

• Integrated Work Management (IWM)

• Measurement and Analysis (MA)

• Organizational Process Definition (OPD)

• Organizational Process Focus (OPF)

• Organizational Performance Management (OPM)

• Organizational Process Performance (OPP)

• Organizational Training (OT)

• Process and Product Quality Assurance (PPQA)

• Quantitative Work Management (QWM)

• Requirements Management (REQM)

• Risk Management (RSKM)

• Supplier Agreement Management (SAM)

• Service Continuity (SCON)

• Service Delivery (SD)

• Service System Development (SSD)

• Service System Transition (SST)

• Strategic Service Management (STSM)

• Work Monitoring and Control (WMC)

• Work Planning (WP)

3.2.5 CMMI Process Model Uses

CMMI models are one foundation for well-managed and well-defined software development,
acquisition, and services processes. In practice, organizations have been using them for many years to
improve their processes, identifying areas for improvement, and implementing systematic
improvement programs. Process models have been a valuable tool for executive managers and
middle managers. There are many self-improvement programs as well as consultants for this area.

In academia, process models are routinely taught in software engineering degree programs and in
some individual software engineering courses, so that graduates of these programs are familiar with
them and know how to apply them. In capstone projects, students are frequently asked to select a
development process from a range of models.

The next section describes leading models and frameworks that define processes and practices for
software security. Such processes and practices are, in large part, in common use by a growing body
of organizations that are developing software to be more secure.

3.3 Software Security Frameworks, Models, and Roadmaps
In addition to considering process models for software development and acquisition, a framework for
building assured systems needs to build on and reflect known, accepted, common practice for
software security. The number of promising frameworks and models for building more secure
software is growing. For example, Microsoft has defined their SDL and made it publicly available. In
their recently released version 6, the authors of Building Security In Maturity Model [McGraw 2015]
have collected and analyzed software security practices in 78 organizations.

The following subsections summarize models, frameworks, and roadmaps and provide excerpts of
descriptive information from publicly available websites and reports to provide an overview of the
objectives and content of each effort. You should have a broad understanding of these models and
their processes and practices to appreciate the current state of the practice in building secure software
and to aid in identifying promising research opportunities to fill gaps.

3.3.1 Building Security In Maturity Model (BSIMM)

An introduction on the BSIMM website states the following [McGraw 2015]:

The purpose of the BSIMM is to quantify the activities carried out by real software
security initiatives. Because these initiatives make use of different methodologies
and different terminology, the BSIMM requires a framework that allows us to
describe all of the initiatives in a uniform way. Our Software Security Framework
(SSF) and activity descriptions provide a common vocabulary for explaining the
salient elements of a software security initiative, thereby allowing us to compare
initiatives that use different terms, operate at different scales, exist in different
vertical markets, or create different work products.

We classify our work as a maturity model because improving software security
almost always means changing the way an organization works—something that
doesn’t happen overnight. We understand that not all organizations need to achieve
the same security goals, but we believe all organizations can benefit from using the
same measuring stick.

BSIMM6 is the sixth major version of the BSIMM model. It includes updated
activity descriptions, data from 78 firms in multiple vertical markets, and a
longitudinal study.

The BSIMM is meant for use by anyone responsible for creating and executing a
software security initiative. We have observed that successful software security
initiatives are typically run by a senior executive who reports to the highest levels in
an organization. These executives lead an internal group that we call the software
security group (SSG), charged with directly executing or facilitating the activities
described in the BSIMM. The BSIMM is written with the SSG and SSG leadership
in mind.

Our work with the BSIMM model shows that measuring a firm’s software
security initiative is both possible and extremely useful. BSIMM measurements can
be used to plan, structure, and execute the evolution of a software security initiative.
Over time, firms participating in the BSIMM show measurable improvement in their
software security initiatives.

A maturity model is appropriate for building more secure software—a key component of building
assured systems—because improving software security means changing the way an organization
develops software over time.

The BSIMM is meant to be used by those who create and execute a software security initiative.
Most successful initiatives are run by a senior executive who reports to the highest levels in the
organization, such as the board of directors or the chief information officer. These executives lead an
internal group that the BSIMM calls the software security group (SSG), charged with directly
executing or facilitating the activities described in the BSIMM. The BSIMM is written with the SSG
and SSG leadership in mind.

The BSIMM addresses the following roles:

• SSG (software security staff with deep coding, design, and architectural experience)

• Executives and middle management, including line-of-business owners and product managers

• Builders, testers, and operations staff

• Administrators

• Line of business owners

• Vendors

As an organizing structure for the body of observed practices, the BSIMM uses the software
security framework (SSF) described in Table 3.1.

Table 3.1 BSIMM Software Security Framework [McGraw 2015]

3.3.2 CMMI Assurance Process Reference Model

The Department of Homeland Security (DHS) Software Assurance (SwA) Processes and Practices
Working Group developed a draft process reference model (PRM) for assurance in July 2008 [DHS
2008]. This PRM recommended additions to CMMI-DEV v1.2 to address software assurance. These

also apply to CMMI-DEV v1.3. The “assurance thread” description2 includes Figure 3.1, which may
be useful for addressing the lifecycle phase aspect of building assured systems.

2. https://buildsecurityin.us-cert.gov/swa/procwg.html

https://buildsecurityin.us-cert.gov/swa/procwg.html

Figure 3.1 Summary of Assurance for CMMI Efforts

The DHS SwA Processes and Practices Working Group’s additions and updates to CMMI-DEV
v1.2 and v1.3 are focused at the specific practices (SP) level for the following CMMI-DEV process
areas (PAs):

• Process Management

• Organizational Process Focus

• Organizational Process Definition

• Organizational Training

• Project Management

• Project Planning

• Project Monitoring and Control

• Supplier Agreement Management

• Integrated Project Management

• Risk Management

• Engineering

• Requirements Development

• Technical Solution

• Verification

• Validation

• Support

• Measurement & Analysis

More recently, the CMMI Institute published “Security by Design with CMMI for Development,
Version 1.3,” a set of additional process areas that integrate with CMMI [CMMI 2013].

3.3.3 Open Web Application Security Project (OWASP) Software Assurance Maturity
Model (SAMM)

The OWASP website provides the following information on the Software Assurance Maturity Model
(SAMM) [OWASP 2015]:

The Software Assurance Maturity Model (SAMM) is an open framework to help
organizations formulate and implement a strategy for software security that is
tailored to the specific risks facing the organization. The resources provided by
SAMM will aid in:

• Evaluating an organization’s existing software security practices

• Building a balanced software security assurance program in well-defined
iterations

• Demonstrating concrete improvements to a security assurance program

• Defining and measuring security-related activities throughout an organization

SAMM was defined with flexibility in mind such that it can be utilized by small,
medium, and large organizations using any style of development. Additionally, this
model can be applied organization-wide, for a single line-of-business, or even for an
individual project. Beyond these traits, SAMM was built on the following principles:

• An organization’s behavior changes slowly over time—A successful software
security program should be specified in small iterations that deliver tangible
assurance gains while incrementally working toward long-term goals.

• There is no single recipe that works for all organizations—A software security
framework must be flexible and allow organizations to tailor their choices based
on their risk tolerance and the way in which they build and use software.

• Guidance related to security activities must be prescriptive—All the steps in
building and assessing an assurance program should be simple, well-defined, and
measurable. This model also provides roadmap templates for common types of
organizations.

The foundation of the model is built upon the core business functions of software
development with security practices tied to each [see Table 3.2]. The building blocks
of the model are the three maturity levels defined for each of the twelve security
practices. These define a wide variety of activities in which an organization could
engage to reduce security risks and increase software assurance. Additional details
are included to measure successful activity performance, understand the associated
assurance benefits, estimate personnel, and other costs.

Table 3.2 OWASP SAMM Business Functions and Security Practices [OWASP 2015]

Practical Measurement Framework for Software Assurance and Information
Security provides an approach for measuring the effectiveness of achieving software
assurance goals and objectives at an organizational, program, or project level. It
addresses how to assess the degree of assurance provided by software, using
quantitative and qualitative methodologies and techniques. This framework
incorporates existing measurement methodologies and is intended to help
organizations and projects integrate SwA measurement into their existing programs.

The SAMM presents success metrics for all activities in all 12 practices for all 4 critical business
functions. Each practice has 3 objectives, and each objective has 2 activities, for a total of 72
activities.

3.3.4 DHS SwA Measurement Work

Nadya Bartol and Michele Moss, both of whom played important roles in the DHS SwA
Measurement Working Group, led the development of several important metrics documents. These
documents were published at an earlier time. Note that we discuss more recent work in the
measurement area by the SEI in Chapter 6, “Metrics.”

According to the DHS SwA Measurement Working Group [DHS 2010]:

Practical Measurement Framework for Software Assurance and Information Security
provides an approach for measuring the effectiveness of achieving software
assurance goals and objectives at an organizational, program, or project level. It
addresses how to assess the degree of assurance provided by software, using
quantitative and qualitative methodologies and techniques. This framework
incorporates existing measurement methodologies and is intended to help
organizations and projects integrate SwA measurement into their existing programs.

The following discussion is from the Practical Measurement Framework for Software Assurance
and Information Security [Bartol 2008]:

Software assurance is interdisciplinary and relies on methods and techniques
produced by other disciplines, including project management, process improvement,
quality assurance, training, information security/information assurance, system
engineering, safety, test and evaluation, software acquisition, reliability, and
dependability [as shown in Figure 3.2].

Figure 3.2 Cross-Disciplinary Nature of SwA [Bartol 2008]

The Practical Measurement Framework focuses principally, though not
exclusively, on the information security viewpoint of SwA. Many of the contributing
disciplines of SwA enjoy an established process improvement and measurement
body of knowledge, such as quality assurance, project management, process
improvement, and safety. SwA measurement can leverage measurement methods and
techniques that are already established in those disciplines, and adapt them to SwA.
The Practical Measurement Framework report focuses on information assurance/
information security aspects of SwA to help mature that aspect of SwA
measurement.

This framework provides an integrated measurement approach, which leverages
five existing industry approaches that use similar processes to develop and
implement measurement as follows:

• Draft National Institute of Standards and Technology (NIST) Special Publication
(SP) 800-55, Revision 1, Performance Measurement Guide for Information
Security

• ISO/IEC 27004 Information technology—Security techniques—Information
security management measurement

• ISO/IEC 15939, System and Software Engineering—Measurement Process, also
known as Practical Software and System Measurement (PSM)

• CMMI Measurement and Analysis Process Area

• CMMI GQ(I)M—Capability Maturity Model Integration Goal Question Indicator
Measure

The Practical Measurement Framework authors selected these methodologies
because of their widespread use among the software and systems development
community and the information security community. The Framework includes a
common measure specification table which is a crosswalk of specifications,
templates, forms and other means of documenting individual measures provided by

the five industry approaches listed above that were leveraged to create the
framework.

Measures are intended to help answer the following five questions:

• What are the defects in the design and code that have a potential to be exploited?

• Where are they?

• How did they get there?

• Have they been mitigated?

• How can they be avoided in the future?

A number of representative key measures for different stakeholder groups are
included in the framework to help organizations assess the state of their SwA efforts
during any stage of a project:

• Supplier—an individual or an organization that offers software and system-related
products and services to other organizations. This includes software developers,
program managers, and other staff working for an organization that develops and
supplies software to other organizations.

• Acquirer—an individual or an organization that acquires software and system-
related products and services from other organizations. This includes acquisition
officials, program managers, system integrators, system owners, information
owners, operators, designated approving authorities (DAAs), certifying
authorities, independent verification and validation (IV&V), and other individuals
who are working for an organization that is acquiring software from other
organizations.

Within each supplier and acquirer organization, the following stakeholders are
considered:

• Executive Decision Maker—a leader who has authority to make decisions and
may require quantifiable information to understand the level of risk associated
with software to support decision-making processes.

• Practitioner—an individual responsible for implementing SwA as a part of their
job.

The framework describes candidate goals and information needs for each stakeholder group. The
framework then presents examples of supplier measures as a table, with columns for project activity,
measures, information needs, and benefits. The framework includes supplier project
activities—requirements management (five measures), design (three measures), development (six
measures), test (nine measures)—and the entire software development lifecycle (SDLC) (three
measures).

Examples of measures for acquirers are also presented and are intended to answer the following
questions:

• Have SwA activities been adequately integrated into the organization’s acquisition process?

• Have SwA considerations been integrated into the SDLC and resulting product by the
supplier?

The acquisition activities are planning (two measures), contracting (three measures), and
implementation and acceptance (five measures).

Ten examples of measures for executives are presented. These are intended to answer the question
“Is the risk generated by software acceptable to the organization?” The following are some of these
examples of measures:

• Number and percentage of patches published on announced date

• Time elapsed for supplier to fix defects

• Number of known defects by type and impact

• Cost to correct vulnerabilities in operations

• Cost of fixing defects before system becomes operational

• Cost of individual data breaches

• Cost of SwA practices throughout the SDLC

Fifteen examples of measures for practitioners are presented. They are intended to answer the
question “How well are current SwA processes and techniques mitigating software-related risks?”

3.3.5 Microsoft Security Development Lifecycle (SDL)

The Microsoft Security Development Lifecycle (SDL)3 is an industry-leading software security
process. A Microsoft-wide initiative and a mandatory policy since 2004, the SDL has played a
critical role in enabling Microsoft to embed security and privacy in its software and culture.
Combining a holistic and practical approach, the SDL introduces security and privacy early and
throughout all phases of the development process.

3. More information is available in The Security Development Lifecycle [Howard 2006], at the Microsoft
Security Development Lifecycle website [Microsoft 2010a], and in the document Microsoft Security
Development Lifecycle Version 5.0 [Microsoft 2010b].

The reliable delivery of more secure software requires a comprehensive process, so Microsoft
defined a collection of principles it calls Secure by Design, Secure by Default, Secure in Deployment,
and Communications (SD3+C) to help determine where security efforts are needed [Microsoft
2010b]:

Secure by Design

Secure architecture, design, and structure. Developers consider security issues part of
the basic architectural design of software development. They review detailed designs
for possible security issues, and they design and develop mitigations for all threats.

• Threat modeling and mitigation. Threat models are created, and threat mitigations
are present in all design and functional specifications.

• Elimination of vulnerabilities. No known security vulnerabilities that would
present a significant risk to the anticipated use of the software remain in the code
after review. This review includes the use of analysis and testing tools to eliminate
classes of vulnerabilities.

• Improvements in security. Less secure legacy protocols and code are deprecated,
and, where possible, users are provided with secure alternatives that are consistent
with industry standards.

Secure by Default

• Least privilege. All components run with the fewest possible permissions.

• Defense in depth. Components do not rely on a single threat mitigation solution
that leaves users exposed if it fails.

• Conservative default settings. The development team is aware of the attack
surface for the product and minimizes it in the default configuration.

• Avoidance of risky default changes. Applications do not make any default changes
to the operating system or security settings that reduce security for the host
computer. In some cases, such as for security products, it is acceptable for a
software program to strengthen (increase) security settings for the host computer.
The most common violations of this principle are games that either open firewall
ports without informing the user or instruct users to open firewall ports without
informing users of possible risks.

• Less commonly used services off by default. If fewer than 80 percent of a
program’s users use a feature, that feature should not be activated by default.
Measuring 80 percent usage in a product is often difficult because programs are
designed for many different personas. It can be useful to consider whether a
feature addresses a core/primary use scenario for all personas. If it does, the
feature is sometimes referred to as a P1 feature.

Secure in Deployment

• Deployment guides. Prescriptive deployment guides outline how to deploy each
feature of a program securely, including providing users with information that
enables them to assess the security risk of activating non-default options (and
thereby increasing the attack surface).

• Analysis and management tools. Security analysis and management tools enable
administrators to determine and configure the optimal security level for a software
release.

• Patch deployment tools. Deployment tools aid in patch deployment.

Communications

• Security response. Development teams respond promptly to reports of security
vulnerabilities and communicate information about security updates.

• Community engagement. Development teams proactively engage with users to
answer questions about security vulnerabilities, security updates, or changes in the
security landscape.

Figure 3.3 shows what the secure software development process model looks like.

Figure 3.3 Secure Software Development Process Model at Microsoft [Shunn 2013]

The Microsoft SDL documentation describes, in great detail, what architects, designers,
developers, and testers are required to do during each lifecycle phase. The introduction states,
“Secure software development has three elements—best practices, process improvements, and
metrics. This document focuses primarily on the first two elements, and metrics are derived from
measuring how they are applied” [Microsoft 2010b]. This description indicates that the document
contains no concrete measurement-related information; measures would need to be derived from each
of the lifecycle-phase practice areas.

3.3.6 SEI Framework for Building Assured Systems

In developing the Building Assured Systems Framework (BASF), we studied the available models,
roadmaps, and frameworks. Given our deep knowledge of the MSwA2010 Body of Knowledge
(BoK)—the core body of knowledge for a master of software architecture degree from Carnegie
Mellon University—we decided to use it as an initial foundation for the BASF.

Maturity Levels

We assigned the following maturity levels to each element of the MSwA2010 BoK:

• L1—The approach provides guidance for how to think about a topic for which there is no
proven or widely accepted approach. The intent of the area is to raise awareness and aid in
thinking about the problem and candidate solutions. The area may also describe promising
research results that may have been demonstrated in a constrained setting.

• L2—The approach describes practices that are in early pilot use and are demonstrating some
successful results.

• L3—The approach describes practices that have been successfully deployed (mature) but are
in limited use in industry or government organizations. They may be more broadly deployed
in a particular market sector.

• L4—The approach describes practices that have been successfully deployed and are in
widespread use. You can start using these practices today with confidence. Experience reports
and case studies are typically available.

We developed these maturity levels to support our work in software security engineering [Allen
2008]. We associated the BoK elements and maturity levels by evaluating the extent to which
relevant sources, practices, curricula, and courseware exist for a particular BoK element and the
extent to which we have observed the element in practice in organizations.

MSwA2010 BoK with Outcomes and Maturity Levels

We found that the current maturity of the material being proposed for delivery in the MSwA2010
BoK varied. For example, a student would be expected to learn material at all maturity levels. If a
practice was not very mature, we would still expect the student to be able to master it and use it in an
appropriate manner after completing an MSwA program. We reasoned that the MSwA curriculum
body of knowledge could be used as a basis for assessing maturity of software assurance practices,
but to our knowledge, it has not been used for this purpose on an actual project, so it remains a
hypothetical model. The portion of the table addressing risk management is shown below. The full
table is contained in Appendix B, “The MSwA Body of Knowledge with Maturity Levels Added.”

2. Risk Management

Outcome: Graduates will have the ability to perform risk analysis and tradeoff
assessment and to prioritize security measures.

2.1. Risk Management Concepts

2.1.1. Types and classification [L4]

Different classes of risks (for example, business, project, technical)

2.1.2. Probability, impact, severity [L4]

Basic elements of risk analysis

2.1.3. Models, processes, metrics [L4] [L3—metrics]

Models, process, and metrics used in risk management

2.2. Risk Management Process

2.2.1. Identification [L4]

Identification and classification of risks associated with a project

2.2.2. Analysis [L4]

Analysis of the likelihood, impact, and severity of each identified risk

2.2.3. Planning [L4]

Risk management plan covering risk avoidance and mitigation

2.2.4. Monitoring and management [L4]

Assessment and monitoring of risk occurrence and management of risk
mitigation

2.3. Software Assurance Risk Management

2.3.1. Vulnerability and threat identification [L3]

Application of risk analysis techniques to vulnerability and threat risks

2.3.2. Analysis of software assurance risks [L3]

Analysis of risks for both new and existing systems

2.3.3. Software assurance risk mitigation [L3]

Plan for and mitigation of software assurance risks

2.3.4. Assessment of Software Assurance Processes and Practices [L2/3]

As part of risk avoidance and mitigation, assessment of the
identification and use of appropriate software assurance processes and
practices

3.3.7 SEI Research in Relation to the Microsoft SDL

More recently, the SEI’s CERT Division examined the linkages between CERT research and the
Microsoft SDL [Shunn 2013]. An excerpt from this report follows:

Our research has confirmed that decisions made in the acquisition and
development of new software and software-based systems have a major impact
on operational security. The challenge begins with properly stating software
requirements and ensuring they clearly and practically define security. This is
fundamental to the development and fielding of effectively secure systems. When
these systems must interoperate with other systems built at a different time and with
varying degrees of security, effective operational security becomes much more
complex. Software and systems acquired, designed, and developed with operational
security in mind are more resistant to both intentional attack and unintentional
failures. The goal is to build and acquire better, minimally defective software and
systems that can

• possess, through testing and analysis, some measurable level of assurance of
minimal vulnerabilities

• operate correctly in the presence of most attacks by either resisting the
exploitation of weaknesses in the software or tolerating the failures that result
from such exploits

• recognize an attack and respond with expected behaviors that support resistance
and recovery

• limit the damage from failures caused by attack or unanticipated faults and events
and recover as quickly as possible

Managing complexity and ensuring survivability requires engineering methods
based on solid foundations and the realities of current and emerging systems. A great
deal of security response is reactive—addressing security issues in response to an
attack. A more effective approach is to reduce the potential of such attacks by
removing the vulnerabilities that allow a compromise in the first place. Our efforts to
address issues before they become a security problem focus on the following key
areas:

Secure Coding addresses tools, techniques, and standards that software developers
and software development organizations require to eliminate vulnerabilities resulting
from coding errors before software is deployed.

Vulnerability Analysis reduces the security risks posed by software vulnerabilities
by addressing both the number of vulnerabilities in software that is being developed
and the number of vulnerabilities in software that is already deployed. Our
vulnerability analysis work is divided into two areas. Identifying and reducing the
number of new vulnerabilities before the software is deployed is the focus of our
vulnerability discovery effort, while our vulnerability remediation work deals with
existing vulnerabilities in deployed software. We regularly comment on issues of
importance to the vulnerability analysis and security community through the CERT/
CC Blog.

Cyber Security Engineering addresses research needed to prepare acquirers,
managers, developers, and operators of largescale, complex, networked systems to
address security, survivability, and software assurance throughout the design and
acquisition lifecycles. This research encompasses four areas: Software Assurance,
Security Requirements, Software Supply Chain Risk Management (SCRM), and

Software Risk Management. Because much of the DoD software is vendor
developed, the research addresses both internal development and acquired software
sources.

The report thus highlights a sample of CERT results with readily apparent connections to the SDL.
Table 3.3 maps the CERT results to Microsoft SDL activities.

Table 3.3 Summary Mapping and Recommended Use

3.3.8 CERT Resilience Management Model Resilient Technical Solution Engineering
Process Area

As is the case for software security and software assurance, resilience is a property of software and

systems. Developing and acquiring resilient4 software and systems requires a dedicated process
focused on this property that encompasses the software and system lifecycle. Version 1.1 of the

CERT Resilience Management Model’s (CERT-RMM’s)5 Resilient Technical Solution Engineering
(RTSE) process area defines what is required to develop resilient software and systems [Caralli 2011]
(Version 1.2 is available as a free download. The associated release notes describe its updated

features.6):

4. There is substantial overlap in the definitions of assured software (or software assurance) and resilient
software (or software resilience). Resilient software is software that continues to operate as intended
(including recovering to a known operational state) in the face of a disruptive event (satisfying business
continuity requirements) so as to satisfy its confidentiality, availability, and integrity requirements (reflecting
operational and security requirements) [Caralli 2011].

5. www.cert.org/resilience/

6. Version 1.2 of the Resilience Management Model document [Caralli 2016] can be downloaded from the
CERT website (www.cert.org/resilience/products-services/cert-rmm/index.cfm).

• Establish a plan for addressing resiliency as part of the organization’s (or
supplier’s) regular development lifecycle and integrate the plan into the
organization’s corresponding development process. Plan development and
execution includes identifying and mitigating risks to the success of the project.

• Identify practice-based guidelines that apply to all phases such as threat analysis
and modeling as well as those that apply to a specific lifecycle phase.

• Elicit, identify, develop, and validate assurance and resiliency requirements (using
methods for representing attacker and defender perspectives, for example). Such
processes, methods, and tools are performed alongside similar processes for
functional requirements.

• Use architectures as the basis for design that reflect a resiliency and assurance
focus, including security, sustainability, and operations controls.

• Develop assured and resilient software and systems through processes that include
secure coding of software, software defect detection and removal, and the
development of resiliency and assurance controls based on design specifications.

• Test assurance and resiliency controls for software and systems and refer issues
back to the design and development cycle for resolution.

• Conduct reviews throughout the development life cycle to ensure that resiliency
(as one aspect of assurance) is kept in the forefront and given adequate attention
and consideration.

• Perform system-specific continuity planning and integrate related service
continuity plans to ensure that software, systems, hardware, networks,
telecommunications, and other technical assets that depend on one another are
sustainable.

• Perform a post-implementation review of deployed systems to ensure that
resiliency (as well as assurance) requirements are being satisfied as intended.

• In operations, monitor software and systems to determine if there is variability
that could indicate the effects of threats or vulnerabilities and to ensure that
controls are functioning properly.

• Implement configuration management and change control processes to ensure
software and systems are kept up to date to address newly discovered
vulnerabilities and weaknesses (particularly in vendor-acquired products and
components) and to prevent the intentional or inadvertent introduction of
malicious code or other exploitable vulnerabilities.

Table 3.4 lists RTSE practices.

http://www.cert.org/resilience/
http://www.cert.org/resilience/products-services/cert-rmm/index.cfm

Table 3.4 RTSE Practices

Organizations should consider the following goals—in addition to RTSE—when developing and
acquiring software and systems that need to meet assurance and resiliency requirements [Caralli
2011]:

Resiliency requirements for software and system technology assets in operation,
including those that may influence quality attribute requirements in the development
process, are developed and managed in the Resiliency Requirements Development
(RRD) and Resiliency Requirements Management (RRM) process areas respectively.

Identifying and adding newly developed and acquired software and system assets
to the organization’s asset inventory is addressed in the Asset Definition and
Management (ADM) process area.

The management of resiliency for technology assets as a whole, particularly for
deployed, operational assets, is addressed in the Technology Management (TM)
process area. This includes, for example, asset fail-over, backup, recovery, and
restoration.

Acquiring software and systems from external entities and ensuring that such
assets meet their resiliency requirements throughout the asset life cycle is addressed
in the External Dependencies Management process area. That said, RTSE specific
goals and practices should be used to aid in evaluating and selecting external entities
that are developing software and systems (EXD:SG3.SP3), formalizing relationships
with such external entities (EXD:SG3.SP4), and managing an external entity’s
performance when developing software and systems (EXD:SG4).

Monitoring for events, incidents, and vulnerabilities that may affect software and
systems in operation is addressed in the Monitoring (MON) process area.

Service continuity plans are identified and created in the Service Continuity (SC)
process area. These plans may be inclusive of software and systems that support the
services for which planning is performed.

RTSE assumes that the organization has one or more existing, defined process for software and
system development into which resiliency controls and activities can be integrated. If this is not the
case, the organization should not attempt to implement the goals and practices identified in RTSE or
in other CERT-RMM process areas as described above.

3.3.9 International Process Research Consortium (IPRC) Roadmap

From August 2004 to December 2006, the SEI’s process program sponsored a research consortium of
28 international thought leaders to explore process needs for today, the foreseeable future, and the
unforeseeable future. One of the emerging research themes was the relationships between processes
and product qualities, defined as “understanding if and how particular process characteristics can
affect desired product (and service) qualities such as security, usability, and maintainability” [IPRC
2006]. As an example, or instantiation, of this research theme, two of the participating members,
Julia Allen and Barbara Kitchenham, developed research nodes and research questions for security as
a product quality. This content helps identify research topics and gaps that could be explored within
the context of the BASF.

The descriptive material presented in Table 3.5 is excerpted from A Process Research Framework
[IPRC 2006].

Table 3.5 IPRC Research Nodes and Questions for Security as a Product Quality

3.3.10 NIST Cyber Security Framework

The NIST Framework for Improving Critical Infrastructure Cybersecurity is the result of a February
2013 executive order from U.S. President Barack Obama titled Improving Critical Infrastructure
Cybersecurity [White House 2013]. The order emphasized that “it is the Policy of the United States
to enhance the security and resilience of the Nation’s critical infrastructure and to maintain a cyber-
environment that encourages efficiency, innovation, and economic prosperity while promoting safety,
security, business confidentiality, privacy, and civil liberties” [White House 2013].

The NIST framework provides an assessment mechanism that enables organizations to determine
their current cyber security capabilities, set individual goals for a target state, and establish a plan for
improving and maintaining cyber security programs [NIST 2014]. There are three
components—Core, Profile, and Implementation tiers—as discussed in the following excerpt [NIST
2014]:

The Core presents the recommendations of industry standards, guidelines, and practices in
a manner that allows for communication of cybersecurity activities and outcomes across
the organization from the executive level to the implementation/operations level.

The Core is hierarchical and consists of five cyber security risk functions. Each function is further
broken down into categories and subcategories.

The categories include processes, procedures, and technologies such as the following:

• Asset management

• Alignment with business strategy

• Risk assessment

• Access control

• Employee training

• Data security

• Event logging and analysis

• Incident response plans

Each subcategory provides a set of cyber security risk management best practices that can help
organizations align and improve their cyber security capability based on individual business needs,
tolerance to risk, and resource availability [NIST 2014].

The Core criteria are used to determine the outcomes necessary to improve the overall security
effort of an organization. The unique requirements of industry, customers, and partners are then
factored into the target profile. Comparing the current and target profiles identifies the gaps that

should be closed to enhance cyber security. Organizations must prioritize the gaps to establish the
basis for a prioritized roadmap to help make improvements.

Implementation tiers create a context that enables an organization to understand how its current
cyber security risk management capabilities rate against the ideal characteristics described by the
NIST Framework. Tiers range from Partial (Tier 1) to Adaptive (Tier 4). NIST recommends that
organizations seeking to achieve an effective, defensible cyber security program progress to Tier 3 or
4.

3.3.11 Uses of Software Security Frameworks, Models, and Roadmaps

Because software security is a relatively new field, the frameworks, models, and roadmaps have not
been in use, on average, for as long a time as the CMMI models, and their use is not as widespread.
Nevertheless, there are important uses to consider.

Secure development process models are in use by organizations for which security is a priority:

• The Microsoft SDL and variants on it are in relatively wide use.

• BSIMM has strong participation, with 78 organizations represented in BSIMM6. Since its
inception in 2008, the BSIMM has studied 104 organizations.

• Elements of CERT-RMM are also widely used.

There is less usage data on secure software process models than on the more general software
process models, so the true extent of usage is hard to assess. As organizations and governments
become more aware of the need for software security, we expect usage of these models to increase,
and we expect to see additional research in this area, perhaps with the appearance of new models.

In academia, in addition to traditional software process models, software security courses often
present one or more of the secure development models and processes. Such courses occur at all levels
of education, but especially at the master’s level. Individual and team student projects frequently use
the models or their individual components and provide a rich learning environment for students
learning about secure software development.

3.4 Summary
This chapter presents a number of frameworks and models that can be used to help support cyber
security decision making. These frameworks and models include process models, security
frameworks and models in the literature, and the SEI efforts in this area. We do a deeper dive for
some of these topics in Chapter 7, “Special Topics in Cyber Security Engineering,” which provides
further discussion of governance considerations for cyber security engineering, security requirements
engineering for acquisition, and standards.

As noted earlier in this chapter, we developed maturity levels to support our work in software
security engineering [Allen 2008]. Since 2008, some of the practice areas have increased in maturity.
Nevertheless, we believe you can still apply the maturity levels to assess whether a specific approach
is sufficiently mature to help achieve your cyber security goals. Our earlier work [Allen 2008] also
included a recommended strategy and suggested order of practice implementation. This work remains
valid today, and we reiterate the maturity levels here. They also appear in Chapter 8, “Summary and
Plan for Improvements in Cyber Security Engineering Performance,” where we rate the maturity
levels of the methods presented throughout the book.

Maturity Levels, Revisited

• L1—The approach provides guidance for how to think about a topic for which
there is no proven or widely accepted approach. The intent of the area is to raise
awareness and aid in thinking about the problem and candidate solutions. The area
may also describe promising research results that may have been demonstrated in
a constrained setting.

• L2—The approach describes practices that are in early pilot use and are
demonstrating some successful results.

• L3—The approach describes practices that have been successfully deployed
(mature) but are in limited use in industry or government organizations. They may
be more broadly deployed in a particular market sector.

• L4—The approach describes practices that have been successfully deployed and
are in widespread use. You can start using these practices today with confidence.
Experience reports and case studies are typically available.

We encourage you to try using the maturity levels to assess the models presented
in this chapter to see which ones work best to support your cyber security goals.
Organizations may be able to use one or more of the models directly, or they may
need to tailor them to address their own unique organizational cyber security
problems and goals for improvement.

Chapter 4. Engineering Competencies

with Tom Hilburn and Dan Shoemaker

In This Chapter

• 4.1 Security Competency and the Software Engineering Profession

• 4.2 Software Assurance Competency Models

• 4.3 The DHS Competency Model

• 4.4 The SEI Software Assurance Competency Model

• 4.5 Summary

4.1 Security Competency and the Software Engineering Profession1

1. This section is drawn from The Software Assurance Competency Model: A Roadmap to Enhance Individual
Professional Capability [Mead 2013a].

Modern society increasingly relies on software systems that put a premium on quality and
dependability. The extensive use of the Internet and distributed computing has made software
security an ever more prominent and serious problem. So, the interest in and demand for software
security specialists have grown dramatically in recent years. The Department of Homeland Security
(DHS), the Department of Defense (DoD), the Software Engineering Institute (SEI), and other
government, commercial, and educational organizations have expressed a critical need for the
education and development of software security specialists.

However, to support this need, we must address some key questions. What background and
capability does a software security specialist need? How do individuals assess their capability and
preparation for software security work? What’s the career path to increased capability and
advancement in this area of software development? In this section, we hope to answer these questions
and provide guidance to career seekers in software security engineering. These answers might also
help employers determine their software security needs and assess and improve their employees’
software security capability.

Software was with us long before the creation of FORTRAN [Backus 1957]. The roots of software
engineering as a profession go back to the late 1960s and early 1970s, with the emergence of
structured programming, structured design, and process models such as the Waterfall model [Royce
1970]. This means that, at a minimum, software engineering has been a regular profession for at least
42 years.

In the past four decades, there have been numerous general attempts to define what a competent
software professional should look like. Examples of this range from Humphrey’s first published work
on capability [Humphrey 1989], through the effort to define software engineering as a profession,
accompanied by a Software Engineering Body of Knowledge [Abran 2004] and the People
Capability Maturity Model [Curtis 2002].

The success of these efforts is still debatable, but one thing is certain: Up to this point, there have
been only a few narrowly focused attempts to define the professional qualities needed to develop a
secure software product. The Software Assurance (SwA) Competency Model was developed to
address this missing element of the profession.

The obvious question, given all of this prior work, is “Why do we need one more professional
competency model?” The answer lies in the significant difference between the competencies required
to produce working code and those that are needed to produce software free from exploitable
weaknesses. That difference is underscored by the presence of the adversary.

In the 1990s, it was generally acceptable for software to have flaws, as long as those flaws did not
impact program efficiency or the ability to satisfy user requirements. So development and assurance
techniques focused on proper execution with no requirements errors. Now, bad actors can exploit an
unintentional defect in a program to cause all kinds of trouble. So although they are related in some
ways, the professional competencies that are associated with the assurance of secure software merit
their own specific framework.

A specific model for software assurance competency provides two advantages for the profession
as a whole. First and most importantly, a standard model allows prospective employers to define the
fundamental capabilities needed by their workforce. At the same time, it allows organizations to
establish a general, minimum set of competency requirements for their employees; and more
importantly, it allows companies to tailor an exact set of competency requirements for any given
project.

From the standpoint of the individual worker, a competency model provides software assurance
professionals with a standard roadmap that they can use to improve performance by adding specific
skills needed to obtain a position and climb the competency ladder for their profession. For example,
a new graduate starting in an entry-level position can map out a path for enhancing his/her skills and
planning his/her career advances as a software assurance professional. In many respects, this
roadmap feature makes a professional competency model a significant player in the development of
the workforce of the future, which, of course, is of interest to software engineering educators and
trainers.

4.2 Software Assurance Competency Models2

2. This section is drawn from Software Assurance Competency Model [Hilburn 2013a].

In this section, we discuss the SEI’s Software Assurance Competency Model in detail. Before we
begin, we provide a list of influential and useful sources—some of the competency models and
supporting materials that were studied and analyzed in the development of the SEI’s SwA
Competency Model:

• Software Assurance Professional Competency Model (DHS)—Focuses on 10 SwA
specialty areas (e.g., Software Assurance and Security Engineering and Information
Assurance Compliance) and describes four levels of behavior indicators for each specialty
area [DHS 2012].

• Information Technology Competency Model (Department of Labor)—Uses a pyramid
model to focus on a tiered set of generic non-technical and technical competency areas (e.g.,
Personal Effectiveness Competencies for Tier 1 and Industry-Wide Technical Competencies
for Tier 4). Specific jobs or roles are not designated [DoLETA 2012].

• A Framework for PAB Competency Models (Professional Advisory Board [PAB], IEEE
Computer Society)—Provides an introduction to competency models and presents guidelines
for achieving consistency among competency models developed by the Professional Advisory
Board (PAB) of the IEEE Computer Society. Provides a generic framework for a professional

that can be instantiated with specific knowledge, skills, and effectiveness levels for a
particular computing profession (e.g., Software Engineering practitioner) [IEEE-CS 2014].

• “Balancing Software Engineering Education and Industrial Needs”—Describes a study
conducted to help both academia and the software industry form a picture of the relationship
between the competencies of recent graduates of undergraduate and graduate software
engineering programs and the competencies needed to perform as a software engineering
professional [Moreno 2012].

• Competency Lifecycle Roadmap: Toward Performance Readiness (Software Engineering
Institute)—Provides an early look at the roadmap for understanding and building workforce
readiness. This roadmap includes activities to reach a state of readiness: Assess Plan, Acquire,
Validate, and Test Readiness [Behrens 2012].

Other work on competency models includes works from academia and government [Khajenoori
1998; NASA 2016]. Other related work, although it was not reviewed prior to development of the
SEI’s Software Assurance Competency Model, includes the Skills Framework for the Information

Age (SFIA), an international effort related to competencies in information technology.3

3. www.sfia-online.org/en

IEEE Software Engineering Competency Model

Since the SEI’s Software Assurance Competency Model was published, IEEE has
published the Software Engineering Competency Model (SWECOM) [IEEE-CS
2014]. We highly recommend the SWECOM as a relevant model for the broader
topic of software engineering competency.

4.3 The DHS Competency Model4

4. This section is drawn from Software Assurance Competency Model [Hilburn 2013a].

The DHS competency model was developed independently from the SEI’s competency model. The
structure of the DHS model provides insight into how competency models can differ from one
another, depending on the model developers, the intended audience, and so on. There is no single
“correct” software assurance competency model; however, use of a competency model benefits
organizations, projects, and individuals.

4.3.1 Purpose

The DHS model [DHS 2012] is designed to serve the following needs:

• Interagency and public–private collaboration promotes and enables security and resilience of
software throughout the lifecycle.

• It provides a means to reduce exploitable software weaknesses and improve capabilities that
routinely develop, acquire, and deploy resilient software products.

• Development and publishing of software security content and SwA curriculum courseware are
focused on integrating software security content into relevant education and training
programs.

• It enables software security automation and measurement capabilities.

http://www.sfia-online.org/en

4.3.2 Organization of Competency Areas

The DHS organizes its model around a set of “specialty areas” aligned with the National Initiative for
Cybersecurity Education (NICE), corresponding to the range of areas in which the DHS has interest
and responsibility:

• Software Assurance and Security Engineering

• Information Assurance Compliance

• Enterprise Architecture

• Technology Demonstration

• Education and Training

• Strategic Planning and Policy Development

• Knowledge Management

• Cyber Threat Analysis

• Vulnerability Assessment and Management

• Systems Requirements Planning

4.3.3 SwA Competency Levels

The DHS model designates four “proficiency” levels for which competencies are specified for each
specialty area:

• Level 1—Basic—Understands the subject matter and is seen as someone who can perform
basic or developmental-level work in activities requiring this specialty.

• Level 2—Intermediate—Can apply the subject matter and is considered someone who has
the capability to fully perform work that requires application of this specialty.

• Level 3—Advanced—Can analyze the subject matter and is seen as someone who can
immediately contribute to the success of work requiring this specialty.

• Level 4—Expert—Can synthesize/evaluate the subject matter and is looked to as an expert in
this specialty.

4.3.4 Behavioral Indicators

For each specialty area, the DHS describes, for each level, how the competency manifests itself in
observable on-the-job behavior; these descriptions are called behavioral indicators.

The description of each specialty area also designates proficiency targets (which identify the
proficiency at which a person in a specific career level should be performing) and aligns with the
behavioral indicator descriptions for the specialty area. For example, the Software Assurance and
Security Engineering specialty area designates the targets depicted in Table 4.1.

Table 4.1 Proficiency Targets for the Software Assurance and Security Engineering Specialty
Area

4.3.5 National Initiative for Cybersecurity Education (NICE)

As noted above, the DHS organizes its model around a set of “specialty areas” aligned with the
National Initiative for Cybersecurity Education (NICE). A major government initiative in cyber
security work descriptions and training, the National Initiative for Cybersecurity Careers and Studies

(NICCS) supporting NICE provides the following insight:5

5. https://niccs.us-cert.gov/home/about-niccs

The National Initiative for Cybersecurity Careers and Studies (NICCS) is a key
resource of cyber security information. NICCS directly supports the three
components of The National Initiative for Cybersecurity Education (NICE) that
focus on enhancing awareness, expanding the pipeline and evolving the field. NICCS
is a national resource available to anyone from government, industry, academia, and
the general public who seeks to learn more about cyber security and opportunities in
the field.

An important element of the initiative is the National Cybersecurity Workforce Framework:6

6. https://niccs.us-cert.gov/training/tc/framework

The National Cybersecurity Workforce Framework provides a blueprint to
categorize, organize, and describe cyber security work into Specialty Areas, tasks,
and knowledge, skills and abilities (KSAs). The Workforce Framework provides a
common language to speak about cyber roles and jobs and helps define professional
requirements in cyber security.

The Workforce Framework organizes cyber security into seven high-level categories, each
comprised of several specialty areas. The seven categories are Securely Provision, Operate and
Maintain, Protect and Defend, Investigate, Collect and Operate, Analyze, and Oversight and
Development.

The SEI’s Software Assurance Curriculum Model heavily influenced the Securely Provision
section of the NICE framework. Securely Provision includes the following specialty areas:
Information Assurance Compliance, Software Assurance and Security Engineering, Systems
Development, Systems Requirements Planning, Systems Security Architecture, Technology Research
and Development, and Test and Evaluation.

https://niccs.us-cert.gov/home/about-niccs
https://niccs.us-cert.gov/training/tc/framework

The framework additionally provides a discussion of knowledge, skills, and abilities,
competencies, and tasks, in a searchable database. NICE hosts periodic workshops and maintains a

training catalog7:

7. https://niccs.us-cert.gov/training/tc/search

The NICCS Training Catalog provides a robust listing of cyber security and cyber
security-related training courses offered in the U.S. The Training Catalog contains
over 2,000 courses, with more courses being added every day! The NICCS Training
Catalog is meant to serve as a central resource to help people find the information on
courses they want or need for a career in cyber. The Training Catalog allows users to
search for courses based on: keyword, proficiency level, delivery method, and
Workforce Framework Specialty Area.

4.4 The SEI Software Assurance Competency Model8

8. This section is drawn from Software Assurance Competency Model [Hilburn 2013a].

In the SEI Software Assurance Competency Model, the term competency represents the set of
knowledge, skills, and effectiveness needed to carry out the job activities associated with one or more
roles in an employment position [IEEE-CS 2014]:

• Knowledge is what an individual knows and can describe (e.g., can name and define various
classes of risks).

• Skills are what an individual can do that involves application of knowledge to carry out a task
(e.g., can identify and classify the risks associated with a project).

• Effectiveness is concerned with the ability to apply knowledge and skills in a productive
manner, characterized by attributes of behavior such as aptitude, initiative, enthusiasm,
willingness, communication skills, team participation, and leadership.

As noted above, in the process of developing the SEI’s Software Assurance Competency Model,
the authors studied and analyzed a number of other competency models and supporting material. A
key reference for the SwA Competency Model is the Master of Software Assurance Reference
Curriculum [Mead 2010a]. The curriculum underwent both internal and public review and was
endorsed by both the ACM and the IEEE Computer Society as being appropriate for a master’s
degree in software assurance. The curriculum document includes a mapping of the software
assurance topic areas to GSwE2009 [Stevens Institute of Technology 2009], thus providing a
comparison to software engineering knowledge areas. Since then, elements of the curriculum have
been adopted by various universities, including the Air Force Academy [Hadfield 2011, 2012],

Carnegie Mellon University, Stevens Institute of Technology, and notably by (ISC)2, a training and
certification organization. As noted below, the MSwA curriculum was the primary source for the
knowledge and skills used in the competency model for various levels of professional competency.

The Software Assurance Competency Model provides employers of software assurance personnel
with a means to assess the software assurance capabilities of current and potential employees. In
addition, along with the MSwA reference curriculum, this model is intended to guide academic or
training organizations in the development of education and training courses to support the needs of
organizations that are hiring and developing software assurance professionals.

https://niccs.us-cert.gov/training/tc/search

The SwA Competency Model enhances the guidance of software engineering curricula by
providing information about industry needs and expectations for competent security professionals
[Mead 2010a, 2010c, 2011b]; the model also provides software assurance professionals with
direction and a progression for development and career planning. Finally, a standard competency
model provides support for professional certification activities.

4.4.1 Model Features

Professional competency models typically feature competency levels, which distinguish between
what’s expected in an entry-level position and what’s required in more senior positions.

In the software assurance competency model, five levels (L1–L5) of competency distinguish
different levels of professional capability relative to knowledge, skills, and effectiveness [IEEE-CS
2014]. Individuals can use the competency levels to assess the extent and level of their capability and
to guide their preparation for software security work:

• L1—Technician C

• Possesses technical knowledge and skills, typically gained through a certificate or an
associate degree program or equivalent knowledge and experience.

• May be employed in system operator, implementer, tester, and maintenance positions with
specific individual tasks assigned by someone at a higher hierarchy level.

• Main areas of competency are System Operational Assurance (SOA), System Functional
Assurance (SFA), and System Security Assurance (SSA) (see Table 4.2).

Table 4.2 CorBoK Knowledge Areas and Competencies

• Major tasks: low-level implementation, testing, and maintenance.

• L2—Professional Entry Level

• Possesses “application-based” knowledge and skills and entry-level professional
effectiveness, typically gained through a bachelor’s degree in computing or through
equivalent professional experience.

• May perform all tasks of L1 and, additionally, manage a small internal project, supervise and
assign subtasks for L1 personnel, supervise and assess system operations, and implement
commonly accepted assurance practices.

• Main areas of competency are SFA, SSA, and Assurance Assessment (AA) (see Table 4.2).

• Major tasks: requirements fundamentals, module design, and implementation.

• L3—Practitioner

• Possesses breadth and depth of knowledge, skills, and effectiveness beyond the L2 level and
typically has 2 to 5 years of professional experience.

• May perform all tasks of L2 personnel and, additionally, set plans, tasks, and schedules for
in-house projects; define and manage such projects; and supervise teams on the enterprise
level, report to management, assess the assurance quality of a system, and implement and
promote commonly accepted software assurance practices.

• Main areas of competency are Risk Management (RM), AA, and Assurance Management
(AM) (see Table 4.2).

• Major tasks: requirements analysis, architectural design, tradeoff analysis, and risk
assessment.

• L4—Senior Practitioner

• Possesses breadth and depth of knowledge, skills, and effectiveness and a variety of work
experiences beyond L3, with 5 to 10 years of professional experience and advanced
professional development at the master’s level or with equivalent education/training.

• May perform all tasks of L3 personnel and identify and explore effective software assurance
practices for implementation, manage large projects, interact with external agencies, etc.

• Main areas of competency are RM, AA, AM, and Assurance Across Lifecycles (AALC)
(see Table 4.2).

• Major tasks: assurance assessment, assurance management, and risk management across the
lifecycle.

• L5—Expert

• Possesses competency beyond L4; advances the field by developing, modifying, and
creating methods, practices, and principles at the organizational level or higher; has peer/
industry recognition.

• Typically includes a low percentage of an organization’s workforce within the SwA
profession (e.g., 2% or less).

4.4.2 SwA Knowledge, Skills, and Effectiveness

The primary source for SwA Competency Model knowledge and skills is the Core Body of
Knowledge (CorBoK), contained in Software Assurance Curriculum Project, Volume I: Master of
Software Assurance Reference Curriculum [Mead 2010a]. The CorBoK consists of the knowledge
areas listed in Table 4.2. Each knowledge area is further divided into second-level units, as shown
later in this chapter, in Table 4.5. For each unit, competency activities are described for each of the
levels L1–L5.

The CorBoK specifies the KAs in greater detail, as illustrated by the specification of the System
Security Assurance KA in Table 4.3.

Other than the unit “Ethics and Integrity” in the System Security Assurance Knowledge Area
shown in Table 4.3, the CorBoK does not contain topics on competency associated with
effectiveness; the effectiveness attributes are listed in Table 4.4 (adapted from [IEEE-CS 2014]). In

Table 4.4, for a given attribute, there is no differentiation in effectiveness for the different
competency levels; however, professionals would be expected to show an increase in the breadth and
depth of capability in these areas of effectiveness as they proceed through their careers and move to
higher competency levels.

Table 4.3 The Specification for the System Security Assurance KA*

*This table is from “Building Security In: A Road to Competency” [Hilburn 2013b].

Table 4.4 Competency Attributes of Effectiveness

4.4.3 Competency Designations

Table 4.5 presents a portion of the CorBoK knowledge areas and second-level units, along with a
description of the appropriate knowledge and skills for each competency level and the effectiveness
attributes. The complete table can be found in the competency report [Hilburn 2013a]. A designation
of L1 applies to levels L1 through L5; a designation of L2 applies to L2 through L5; and so on. The
level descriptions indicate the competency activities that are demonstrated at each level.

Table 4.5 SwA Competency Designations

4.4.4 A Path to Increased Capability and Advancement9

9. This section is drawn from “Building Security In: A Road to Competency” [Hilburn 2013b].

The SwA Competency Model can provide direction on professional growth and career advancement.
Each competency level assumes competency at the lower levels. The model also provides a
comprehensive mapping between the CorBoK (KAs and units) and the competency levels. The
complete mapping can be found in Appendix D, “The Software Assurance Competency Model
Designations.” Table 4.6 illustrates this mapping for the System Security Assurance KA.

Table 4.6 The Competency Specification for the System Security Assurance KA

4.4.5 Examples of the Model in Practice10

10. This section is drawn from The Software Assurance Competency Model: A Roadmap to Enhance Individual
Professional Capability [Mead 2013a].

There are a number of ways the Software Assurance Competency Model can be applied in practice.
An organization in which software assurance is critical could use the type of information in Table 4.6
to do all of the following:

• Structure its software assurance needs and expectations

• Assess its software assurance personnel’s capability

• Provide a roadmap for employee advancement

• Use as a basis for software assurance professional development plans

For example, an organization intending to hire an entry-level software assurance professional
could examine the L1–L2 levels and incorporate elements of them into job descriptions. These levels
could also be used during the interview process by both the employer and the prospective employee
to assess the actual expertise of the candidate.

Another application is by faculty members who are developing courses in software assurance or
adding software assurance elements to their software engineering courses. The levels allow faculty to
easily see the depth of content that is suitable for courses at the community college, undergraduate,
and graduate levels. For example, undergraduate student outcomes might be linked to the L1 and L2
levels, whereas graduate courses aimed at practitioners with more experience might target higher
levels. In industry, the model could be used to determine if specific competency areas were being
overlooked. These areas could point toward corresponding training needs. With a bit of effort,
trainers can tailor their course offerings to the target audience. The model eliminates some of the
guesswork involved in deciding what level of material is appropriate for a given course.

It can also be used by faculty who are already teaching such courses to assess whether the course
material is a good fit for the target audience. The authors of this chapter are currently teaching
software assurance courses and use the model to revisit and tailor their syllabi accordingly.

4.4.6 Highlights of the SEI Software Assurance Competency Model11

11. This section is drawn from The Software Assurance Competency Model: A Roadmap to Enhance Individual
Professional Capability [Mead 2013a].

The Software Assurance Competency Model was developed to create a foundation for assessing and
advancing the capability of software assurance professionals. The span of competency levels L1
through L5 and the decomposition into individual competencies based on the knowledge and skills
described in the SwA CorBoK [Mead 2010a] provide the detail necessary for an organization or
individual to determine SwA competency across the range of knowledge areas and units. The model
also provides a framework for an organization to adapt its features to the organization’s particular
domain, culture, or structure.

The model was reviewed by invited industry reviewers and mapped to actual industry positions.
These mappings are included in the SEI’s report; the model also underwent public review prior to
publication. Dick Fairley, chair of the Software and Systems Engineering Committee of the IEEE
Computer Society (IEEE-CS) Professional Activities Board (PAB), endorsed the SEI Software
Assurance Competency Model “as appropriate for software assurance roles and consistent with A

Framework for PAB Competency Models.”12 In presentations and webinars delivered by the author
on software assurance, only about half of the participants had a plan for their own SwA competency
development. However, more than 80% said they could use the SwA Competency Model in staffing a
project.

12. http://www.cert.org/news/article.cfm?assetid=91675&article=156&year=2014.

http://www.cert.org/news/article.cfm?assetid=91675&article=156&year=2014

The most important outcome of this model is a better trained and educated workforce. As the
needs of the software industry for more secure applications continue, the recommendations of this
model can be used to ensure better and more trustworthy practice in the process of developing and
sustaining an organization’s software assets. That guidance going forward is a linchpin in the overall
effort to create trusted systems and provides the necessary reference to allow organizations and
individuals to help achieve cyber security.

Case Study 1: Using the SwA Competency Model to Staff a Project

Sam is a project manager for a new development project. He is in the automotive
industry and knows that the “smart” features being added to new cars often involve
significant amounts of software, as well as external communications. In this
particular case, the new software uses GPS capabilities as well as cameras, and it
communicates vehicle position information to a central processor. Sam knows that he
should be concerned about sensitive communications being intercepted by hackers
who may wish to track certain vehicles, such as those used by high-profile political
figures. This data could then be used for a number of purposes, ranging from
financial gain to terrorist attacks. Obviously, in the automotive industry, safety is a
primary risk area that must be considered in addition to security.

Sam therefore wants to build a team with the appropriate software assurance
competencies, so that software assurance, especially cyber security and safety, is
considered from the outset and built into the software. Luckily, threats and failure
modes have been under analysis on a number of the company’s projects for some
time, so Sam can build on prior work and does not need to create new analysis
methods. This means that he does not need Level 5 (Expert) competency skills for a
successful project. Looking at the other end of the scale, he realizes that there is little
opportunity to use staff with Level 1 (Technician) skills, so he focuses primarily on
Levels 2–4, Professional Entry Level, Practitioner, and Senior Practitioner. He can
now compare the needed skills with the skills his team already has.

It turns out that a year or so ago, the company started to develop skills profiles
jointly with the individual staff members, so comparing the existing skills to the
needed skills is not the arduous task that it might be otherwise. Nevertheless, after
performing the gap analysis, Sam finds there are some gaps between the team’s
existing software assurance skills and the skills needed to perform the project. Sam
can address some of these gaps fairly easily through training, but he really needs a
staff member with deep experience in threat modeling, so he realizes he must look for
someone elsewhere in the company with those skills or hire a new employee or
consultant to fill the gap. The company has a department that specializes in software
security, so he is hopeful that one of its staff members has the needed experience and
can be assigned to his project.

Since Sam is able to identify the gap areas up front, it is more likely that the new
project can successfully address software assurance. Otherwise, he might have been
partway through the project before he recognized the need, or, worse yet, the software
could have been operational and vulnerable to attack.

4.5 Summary
This chapter discussed the SEI’s Software Assurance Competency Model in detail. It also discusses
the DHS Competency Model and the related NICE, and it provides pointers to a number of other
competency models in the literature. Competency models can be useful in many fields. In software
assurance, these models are particularly useful for organizations and individuals trying to assess and
improve their own software assurance skills. We recommend that you peruse these models and select
one or more for your individual and organizational use. Competency models are essential for gap
analysis and development of an overall software assurance improvement plan.

Competency models need to evolve as new methods are developed. Some newer technical topics
are discussed in more depth in Chapter 7, “Special Topics in Cyber Security Engineering.” These
topics include DevOps, a convergence of concerns from both the development and operations
communities, and MORE, a research project that uses malware analysis—an operational
technique—to help identify overlooked security requirements to include in future systems.

Chapter 5. Performing Gap Analysis

with Tom Hilburn

In This Chapter

• 5.1 Introduction

• 5.2 Using the SEI’s SwA Competency Model

• 5.3 Using the BSIMM

• 5.4 Summary

5.1 Introduction
The preceding chapters present a number of management (organizational) and engineering capability
and competency models. These models can be used effectively at the management and engineering
levels to perform gap analysis and lay out an improvement plan.

The first task to be completed is selecting a model or models for this purpose. One strategy might
be to pick one model at the management level and a second model at the engineering level. A slightly
different approach might be to pick one model at the organizational level and a second model for
individuals to use.

In business process modeling, it is a common practice to identify the “as-is,” or current process,
state and also the “to-be,” or desired future, state. This approach can be used for many processes, and
there are lots of ways to do it. Organizations must identify the process stakeholders, and
documentation and discussion or brainstorming can help to document the as-is state. Depending on
the organization, such a document may already exist as part of a larger process activity, or the
organization may need to develop it. The next order of business is to document the to-be state, which
often involves relevant stakeholders and a brainstorming activity. It’s important to note that staff and
budget considerations should not initially constrain the to-be state, although those considerations may
come into play later. The documentation of the as-is and to-be states can be done as a first activity
prior to doing software assurance gap analysis.

One way to perform gap analysis is to assess the current (as-is) state using the selected model,
identify a desired (to-be) state using the same model, and thus identify the gaps between the current
state and the desired state. Once the organization has identified those gaps, it can develop a strategy
and an associated plan to address them.

In this chapter, we provide examples of gap analysis using the SEI’s Software Assurance (SwA)
Competency Model and Cigital’s Building Security In Maturity Model (BSIMM). Organizations can
use the SwA Competency Model at the organizational, project, or individual level, and as noted
earlier, that model focuses on software assurance competencies needed to support software assurance
goals. BSIMM is intended to assess software assurance practices at the organizational level and
across a number of projects. Organizations compare results to a benchmark of industry best practices
for software assurance. Organizations can then develop a plan to address the gaps in their software
assurance practices and participate in a follow-up BSIMM assessment to measure their improvement.
BSIMM provides a powerful approach that is independent of an organization’s specific software
development process and thus is process-agnostic.

5.2 Using the SEI’s SwA Competency Model
In Chapter 4, “Engineering Competencies,” we introduced the SEI’s Software Assurance
Competency Model [Hilburn 2013a]. To use the competency model, organizations must first map
their cyber security positions to the model.

When we developed the model, we mapped it to the DHS Competency Model levels. We also

asked (ISC)2 Application Security Advisory Board members to produce a mapping of their
organizations’ software assurance jobs and roles to the competency model levels. These mappings are
extremely useful because they account for a wide range of positions, thus validating the content of
the competency model and helping organizations see where they have competency gaps. In addition,
individuals with similar job titles can see how their competencies compare with expected
competencies elsewhere. We reproduce a segment of the mappings in Table 5.1. In Table 5.1, the
organizations mapped the knowledge areas and units from the competency model to job titles in their
organization(s). In this mapping, the organizations added four levels of behavioral indicators
denoting expertise. The full mapping and a second detailed mapping showing a comprehensive list of
job titles can be found in Appendix E, “Proposed SwA Competency Mappings.”

2. From a BSIMM sample report.

Table 5.1 Proposed SwA Competency Mappings from the (ISC)2 Applications Security Advisory
Board (Abridged) [Hilburn 2013a]

The first order of business is for an organization to develop an equivalent table for its own
software assurance job positions or to modify Table 5.1 as needed to reflect its positions.

One way to use this information on a specific project is to supplement the current table with the
following:

• An as-is state, represented by the job titles and associated behavioral indicators of the current
staff. Undoubtedly position descriptions exist for the job titles.

• A to-be state, showing the needed job titles for the project, thus identifying the gaps in
staffing. The to-be job titles should also have position descriptions.

It should be relatively easy to document the as-is state, as it corresponds to the existing staff and
their current skills. Arriving at the to-be state of job titles needed for the project is more challenging.
Useful inputs in making this determination could include the schedule, size, and complexity of the
project, which are considered as part of the project cost estimation activity. Project risk assessment,
as discussed in Chapter 2, “Risk Analysis—Identifying and Prioritizing Needs,” is an important input
to determining the needed project job titles when we are talking about software assurance positions.
Many projects have failed because management underestimated the skills that would be needed to
complete the project or because they were unable to acquire staff with the needed skills, either within
their organization or from the outside.

In this case, we would expect the project manager and lead personnel to determine which
positions are needed on the project, their associated skills, and therefore what level of staff member is
needed. Depending on the size and criticality of the project, executive management might also be
involved in the process. The result of this exercise leads us to a revision of Table 5.1. Table 5.2 shows
a revision of a fragment of Table 5.1, using a simple design to illustrate an example of how to use
such a table. Note that in this example, the organization has determined that some positions are not
needed for the project; those positions are shown as N/A in the two right columns. When N/A
appears in the “Current Staff on Hand” column and a position title appears in the “Needed Staff for
the Project” column, this means a staff member with the position title shown must be added to the
project. On the other hand, if a position title appears in the “Current Staff on Hand” column, and N/A
appears in the “Needed Staff for the Project” column, this means the position is staffed appropriately,
and no hiring is needed for that role.

Table 5.2 Proposed SwA Competency Mappings from the (ISC)2 Application Security Advisory
Board, Augmented by Project Needs (Abridged) [Hilburn 2013a]

The example in Table 5.2 shows a software architect on hand, but the project calls for the skills of
a senior software architect. The organization should determine whether there is enough lead time for
the existing software architect to acquire the needed skills or whether a senior software architect
needs to be transferred into the project or hired from the outside.

Developing such a table is an important part of project planning, but one that organizations often
overlook in favor of staffing projects with personnel who are available at the time—even though they
may not have the needed skills, and there may not be enough lead time on the project for the skills to
be acquired.

Another way to use Table 5.1 is to develop an as-is state for competencies, assuming that
employees with those job titles possess the designated competencies. You can take several
approaches to move up to the desired, or to-be, state.

The organization must first identify positions where more staff are needed. For example, perhaps
there are a lot of staff at the middle levels of the competency, but more are needed at the higher
levels. In that case, the organization can decide to hire more staff at the higher levels, grow the staff
at the intermediate levels so that they achieve the higher levels, or do some combination of the two.
The organization might choose the approach based on whether the staffing needs are immediate or
part of a longer-term strategy.

Example Case Study: Using SwA Competency and Curriculum Models to Meet
Organizational Needs

GoFast Automotive needs new software each year to support its latest automotive
models. Although much of the software it uses is from vendors, GoFast staff
members perform some software customization. The company wants to make sure
that the software for its automotive systems is secure: GoFast doesn’t want a failure
in an anti-lock brake system or other safety-critical on-board system as a result of
malicious tampering.

Although GoFast has very good staff, its management team feels that their
security risk analysis may not be as strong as it could be; they would like to improve
the organization’s expertise in that area. They puzzle over whether to grow the
expertise of an existing staff member or hire a new staff member.

On the one hand, they are not in crisis mode, as only a subset of the software
changes each year. GoFast can afford to take time to develop the expertise in house.
On the other hand, if a new requirement comes up, they don’t expect that someone
who has just acquired advanced skills will be able to go it alone.

Larry is a GoFast security expert with some background in risk analysis. He has
been exposed to it in his software engineering courses, as part of his degree program,
and he has also completed some security certifications.

After some exploration and discussions with Larry, the team identifies a course in
advanced risk analysis that could be helpful to him; professional resources—books
and blogs—are also available. Larry is enthusiastic about this career growth
opportunity, and a plan is put in place for him to acquire the additional expertise and
to start to apply it on selected future projects.

To assist in addressing any immediate needs, the team identifies a consultant who
is put on contract to help projects needing advanced risk analysis over the next few
months.

At an individual level, staff members could use the competency model directly along with Table
5.1 to identify their own gap areas and initiate discussion of a career growth strategy with their
management.

An individual could also use Table 5.3 to assess his or her current skill level and areas needed to
support career growth. Table 5.3 is an extract from core body of knowledge (BoK) for the Master of
Software Assurance Reference Curriculum, showing the knowledge unit, associated topics, and
description, including Bloom’s level. An individual could assess whether he or she has the needed
knowledge associated with specific topics and units and identify gap areas from it.

Table 5.3 The Specification for the System Security Assurance Knowledge Area [Hilburn 2013b]

Of course, not every software security job requires knowledge and competency across the entire
core body of knowledge. For example, a position might require deep capability in one or more areas
but only a lower level of awareness across the other areas. Also, different application domains (for
example, financial or transportation systems) and application types (for example, web or embedded
systems) typically require software security specialists to have competency beyond the body of
knowledge.

The core body of knowledge not only structures and organizes software assurance knowledge
(into KAs, units, and topics) but also details how to understand and use that knowledge. For example,
Table 5.3 specifies that a SwA professional should be able to perform “analysis of the threats to
which software is most likely to be vulnerable in specific operating environments and domains” and
have the “ability to duplicate the attacks that have been used to interfere with an application’s or
system’s operations.” This level of detail can help individuals determine their state of knowledge and
plan for professional development.

Example Case Study: Using SwA Competency and Curriculum Models to Improve
Individual Competencies

Joan graduated with a bachelor’s degree in computer science a few years ago and is a
software engineer for Fly-By-Night Airlines. As part of a team directed by the system
architect, she develops and maintains small and mid-sized modules for a software
system that provides services for passengers and flight crews.

In her undergraduate education, Joan acquired most of the SwA skills and
knowledge described in the Computer Science I and II courses, which are part of
Volume II in the SwA Curriculum Reports [Mead 2010a]; examples of these skills
and knowledge include foundations of information security, design concepts and
principles, design by contract, exception handling, secure programming, coding
standards, algorithm and code review, unit test design, penetration testing, program
metrics, and quality assessment. In her current position, Joan has practiced these
skills and participated in employer-sponsored workshops and training sessions.

However, Joan would like to advance and acquire additional SwA knowledge and
skills. She has looked through the SwA Competency Model [Hilburn 2013a] and
identified where she needs further professional development. In looking at the topic
areas in the model, she would like to be able to perform threat analysis, analyze risk,
and plan and monitor risk management for her projects. In addition, she knows that
she has only a fuzzy notion of how to do security analysis at the architectural level.
So, she reads through Volumes I and III in the SwA Curriculum Reports [Mead
2010a, 2011a] to see what to study.

Joan notices that the Assured Software Development 1 course covers several topics
in which she is weak, and she would like to learn more about software processes,
requirements engineering, software architecture, and software security topics such as
assurance risk assessment, attack trees, and misuse or abuse cases.

Based on her analysis of Volumes I and III, Joan examines a local university’s
courses, looking for ones that can help her in the areas she would like to study. She
finds courses that cover software process, requirements engineering, and software
architecture. However, she can’t find anything that includes the other topics on her
wish list.

Joan looks back at Assured Software Development 1 and reviews the description of
the primary sources recommended for it. She purchases both books listed and uses
them as part of her study plan. She consults with her supervisor about taking courses
at the local university and pursuing self-study using those books. Her supervisor
makes a few minor suggestions and strongly encourages her to proceed with her plan.

As Joan proceeds through her self-study, she improves her software security
knowledge and capability and can apply it in her work. Her supervisor notices and
comments on Joan’s improved SwA competency.

As we’ve discussed, competency models can be used in many different ways. Organizations and
projects can use them to determine the roles and corresponding skill sets needed across the
organization. Individual staff members can use them to develop a plan for growth and development.
One approach is to make an informal assessment part of annual planning, both at the management

level and for individual staff members. The plan can then be revisited periodically over the course of
the year. In addition, the start of a new project can trigger an assessment of the skills and roles needed
on the project. This can be done for any cross-section of skills, but our primary interest is in software
assurance skills.

5.3 Using the BSIMM

5.3.1 BSIMM Background

In Chapter 3, “Secure Software Development Management and Organizational Models,” we
introduced the BSIMM as a model that can be used to assess organizational software security
initiatives. The work began in 2008 with an assessment of 9 firms to create BSIMM Version 1. There
are now some 78 participants in BSIMM Version 6 [McGraw 2015]. As a consequence, the BSIMM
has a substantial practice database organizations can leverage when performing assessments. The
BSIMM provides organizations with an external assessment of their security practices relative to
other participating organizations. The BSIMM comprises 12 practices, each containing a number of
activities, for a total of 112 activities.

The 78 organizations that participated in BSIMM6 include (with some overlap) organizations
from the following sectors: financial services (33), independent software vendors (27), consumer
electronics (13), and healthcare (10) [McGraw 2015].

On average, the 78 participating firms had practiced software security for 3.98 years at the time of
assessment (ranging from less than a year to 15 years as of October 2015). All 78 firms agree that the
success of their initiative hinges on having an internal group, the SSG (Software Security Group),
devoted to software security. SSG size on average is 13.9 people (smallest 1, largest 130, median 6)
with a “satellite” of others (developers, architects, and people in the organization directly engaged in
and promoting software security) of 27.1 people (smallest 0, largest 400, median 3).

The average number of developers among our targets was 3,680 people (smallest 23, largest
35,000, median 1,200), yielding an average percentage of SSG to development of 1.51% (median
0.7%).

All told, the BSIMM describes the work of 1,084 SSG members working with a satellite of 2,111
people to secure the software developed by 287,006 developers.

It is interesting to note that “according to our observations, the first step of a Software Security
Initiative is forming an SSG” [McGraw 2015].

Example Case Study: Using the BSIMM for Software Security Improvement

Sarah has been hired by GoFast Automotive to head up the Software Security Group.
Although she has a software security background and is pleased that GoFast has an
SSG, she is having difficulty getting a handle on all of the SSG’s activities. Also, she
is unsure as to whether the current set of SSG activities and strategies are optimal in
terms of cost–benefit to the company. The automotive sector is new to her, and given
the importance and visibility of the SSG within the company, she wants to make sure
that she has a good understanding of the current software security practices and areas
where they could improve, especially compared to other automotive companies. She
also has observed that some of the staff are reluctant to tell her anything that could be
construed as bad news, so she would like to get an independent assessment of their
software security practices. She does some research and decides that a BSIMM
assessment would provide her with the information she needs. At the same time, any
suggestions for improvement (change) would come from an objective and
experienced external organization, so that she would not be seen as the “bad guy” for
pointing out areas where change is needed. She discusses the idea of a BSIMM
assessment with her direct reports. They look at the BSIMM and feel that a BSIMM
assessment could be very beneficial. They put a schedule in place for the assessment
and follow-on planning. It becomes a team-building process that everyone buys into,
and Sarah’s collaborative leadership style is viewed favorably by the staff.

During BSIMM data gathering at an organization, interviews are conducted, and documentation
may be reviewed. Typically, the SSG owner and some of their direct reports are interviewed along
with others involved in Software Security Initiative (SSI) activities. Cigital experts conduct the
interviews and perform the document review. The outputs from the activities result in the inputs to
the BSIMM tool. The BSIMM tool in turn provides insight into how the organization’s current
software security initiatives compare to the BSIMM benchmark data. Benchmarking is a well-known
good management process—“the process of comparing one’s business processes and performance

metrics to industry bests or best practices from other companies.”1 In this case, the benchmarking
data for industry bests and best practices in software assurance resides in the BSIMM database.

1. https://en.wikipedia.org/wiki/Benchmarking

The resulting BSIMM report includes an executive summary, a data gathering discussion, a high-
water mark, BSIMM practices, a BSIMM scorecard, a comparison within verticals, and a conclusion.
The data gathering section includes the names and roles of the people who were interviewed. The
high-water mark refers to the highest-level activity observed in each of the 12 BSIMM practices. The
high-water mark section in the report shows how the high-water mark for the company under study
compares to the average high-water mark for all participants in that edition of BSIMM, for each
practice area. Next, a more detailed view of the BSIMM practices observed is provided. The BSIMM
scorecard section provides detailed information about each activity in the company’s Software
Security Initiative (SSI). The comparison within verticals section provides a comparison between the
company being studied and other companies in the same business sector. The BSIMM data for the
companies in the same business sector (e.g., financial) provide a vertical slice of the complete set of
BSIMM data. The conclusion provides a summary and suggestions for where the company might
focus its software security improvement activities. The Appendixes provide background on the
BSIMM and a discussion of BSIMM activities.

https://en.wikipedia.org/wiki/Benchmarking

5.3.2 BSIMM Sample Report

A complete example of a BSIMM Assessment Final Report, based on BSIMM6 data, appears in
Appendix F, “Sample BSIMM Assessment Report.” In that example, a fictitious firm and dummy
interview data are used; however, the sections in the report and the benchmark data used for
comparison are real.

Figure 5.1 shows the BSIMM scorecard that appears in the report, along with an explanation.
(Note: The actual BSIMM reports use color; as the print book is grayscale, not color, we have
modified slightly.) This scorecard is for FakeFirm; 37 software security activities were observed for
this fake organization during the example assessment.

Figure 5.1 BSIMM Scorecard with the Entire BSIMM Database (“Earth Data”)2

Figure 5.1 provides detailed information about FakeFirm’s SSI. Primarily, it lists in the four
“FakeFirm” columns the 37 activities the assessment team observed during this assessment. In the
“BSIMM6 FIRMS” columns, the scorecard provides the count of firms (out of 67) in which the
assessment team observed each activity. See Figure F.8 in Appendix F for more explanation. In
addition, see the section “BSIMM Activities” in Appendix F for the short name associated with each
BSIMM activity (e.g., SM1.3 is “Educate executives”).

The scorecard shown in Figure 5.1 includes the following columns:

• Activity columns—List each of the 112 activities included in BSIMM6. For names of each
activity, see Appendix F or see http://bsimm.com for an interactive chart of long descriptions.

• BSIMM6 Firms columns—Give the count of BSIMM6 participants in which the activity was
observed, providing an indication of the prevalence of an activity in the current data pool.

• FakeFirm columns—Indicates with a “1” each activity observed during this assessment.

The scorecard also lists a number of common activities and practices:

• The most common activity in each BSIMM6 practice:

• Common activities also observed in FakeFirm, including the following:

• SM1.4: Identify gate locations, gather necessary artifacts

• T1.1: Provide awareness training

• SR1.1: Create security standards

• AA1.1: Perform security feature review

• CR1.4: Use automated tools along with manual review

• ST1.3: Drive tests with security requirements and security features

• PT1.1: Use external penetration testers to find problems

• SE1.2: Ensure host and network security basics are in place

• Common activities not observed in FakeFirm, including the following:

• CP1.2: Identify PII obligations

• SFD1.1: Build and publish security features

• CMVM1.2: Identify software bugs found in operations monitoring and feed them back to
development

• Practices where FakeFirm has not reached the same high-water mark as the average of the
current participants (i.e., where FakeFirm’s high-water mark is “inside” that of the data pool
average in Figure 5.1), including the following:

• Strategy & Metrics

• Compliance & Policy

• Security Features & Design

• Configuration Management & Vulnerability Management

Remember that this scorecard represents Cigital’s observations specific to software security
activity, as measured by the BSIMM. Observation—or the lack of observation—of a given activity is
inherently neither good nor bad. Judging sufficiency and effectiveness for the activities observed
requires a deeper analysis of FakeFirm’s business objectives, processes, and software. Results of such
an analysis can form a cornerstone for strategic broadening and deepening of the current SSI.

http://bsimm.com

Since the BSIMM collects information from companies in a number of domains, the report
includes a comparison of FakeFirm’s initiatives with the performance of other organizations in the
financial sector participating in the BSIMM6. Figure 5.2 presents and explains these results. This
figure summarizes the level reached by FakeFirm in each practice and compares it to the levels
reached by BSIMM6 participants in the financial industry (FI) vertical.

Figure 5.2 High-Water Mark per Practice Compared to Participants in a Vertical

In Figure 5.2, the dark line depicts the average high-water marks from 0 to 3 achieved by
BSIMM6 participants in a vertical. The gray line depicts the high-water marks from 0 to 3 achieved
by FakeFirm. Compared to the average high-water marks of financial industry BSIMM6 participants,
FakeFirm’s marks appear above average in Training, Attack Models, Code Review, and Penetration
Testing. FakeFirm’s marks appear near the average in Standards & Requirements, Architecture
Analysis, Security Testing, Software Environment, and Configuration Management & Vulnerability
Management. FakeFirm’s marks appear below the average in Strategy & Metrics, Compliance &
Policy, and Security Features & Design.

Compared to the averages shown in Figure 5.2 for the entire BSIMM data pool, the most
significant differences are in the following areas:

• Standards & Requirements, Compliance & Policy, Training, Strategy & Metrics, and
Code Review—The high-water mark average is higher among financial industry
organizations than for the entire data pool (known in BSIMM terminology as BSIMM Earth).

• Configuration Management & Vulnerability Management—The average is lower.

The conclusion section in a BSIMM report suggests areas that might be appropriate for
strengthening the organization’s SSI. We recommend that you go through the full report in Appendix
F to get a better picture of BSIMM results. These results are very powerful and use a proven method
built on years of experience and benchmark data. Keeping in mind that a single organization is not
expected to include all 112 activities among its practices; as noted above, Cigital observed 37
activities at FakeFirm.

The following are some of the improvement recommendations for FakeFirm:

• Secure Software Development Life Cycle (SDLC)—FakeFirm has created an SDLC overlay
that includes two security gates: one for “Permit to Build” and one for “Permit to Deploy.”
However, the Software Security Group (SSG) is not involved in all development projects. In
addition, the software security gates are voluntary even in large, critical projects. Over the
next 12 months, FakeFirm should institute process improvements to ensure that the SSG is
aware of all development and software acquisition projects worldwide. At the same time,
FakeFirm should phase in mandatory compliance with various aspects of the SDLC security
gates. For example, FakeFirm could immediately require remediation of critical security
defects, while phasing in remediation of high- and medium-security defects over a period of
months. Similarly, static analysis and penetration testing should quickly become mandatory
for all critical applications and should become mandatory for all applications over the next
12–18 months.

• Inventory—FakeFirm does not have a robust inventory of applications, personally
identifiable information (PII), or open-source software. Ensuring that all software flows
appropriately through various SDLC gates becomes complicated when the inventory is
unknown. Without a data classification scheme, prioritizing projects and making a PII
inventory is effectively impossible. FakeFirm should immediately begin an inventory
initiative that accounts for all applications in the SSG’s purview, ensures each application
receives a criticality rating, and associates each application with data levels. Over the next 12
months, it should expand the inventory to include the open-source software in use and the
current security status for each application. In addition, FakeFirm should begin including
software security waiver information for each application.

• Training—FakeFirm has a small amount of software security training that it uses to improve
awareness. However, FakeFirm provides only in-person training, and only to developers, and
only at onboarding time. Over the next six months, FakeFirm should begin providing on-
demand, role-based software security training to all roles involved in the SDLC. Such a plan
can increase global awareness and technical skill in the major engineering roles, such as
requirements analysis, architecture, development, and testing. FakeFirm should also
investigate the opportunity to provide training in the developer environment using Integrated
Development Environment (IDE)–based tools.

5.4 Summary
This chapter shows how organizations can use two models introduced in Chapters 3 and 4 to perform
gap analysis and thus to identify and implement improvements at organizational, project, and
individual levels. The BSIMM is aimed at organizational practices, whereas the SEI SwA
Competency Model focuses more on individual competencies and competencies needed to support a
specific project.

These kinds of analyses can help to identify an improvement path that is based on actual data, and
not solely on brainstorming or other less reliable means of identifying gaps.

Chapters 3 and 4 introduce many models that this chapter does not discuss. By doing some
exploration, you could also use those other models to lay out a path for improvement. In addition,
new models and frameworks are under development at the SEI and elsewhere that may be suitable
for this purpose once they have been validated in the field.

Chapter 6. Metrics

In This Chapter

• 6.1 How to Define and Structure Metrics to Manage Cyber Security Engineering

• 6.2 Ways to Gather Evidence for Cyber Security Evaluation

6.1 How to Define and Structure Metrics to Manage Cyber Security Engineering
A measure is defined as “an amount or degree of something”; it is an operation for assigning a value

to something.1 A metric is defined as “a standard of measurement”; it is the interpretation of assigned

values.2 Scientist Lord Kelvin said, “When you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the

beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science.”3

1. www.merriam-webster.com/dictionary/measure

2. www.merriam-webster.com/dictionary/metric

3. https://en.wikiquote.org/wiki/William_Thomson

Software assurance measurement assesses the extent to which a system or software item possesses
desirable characteristics [NDIA 1999]. The desires could be expressed as one or all of the following:
requirements, standards, compliance mandates, operational qualities, threats to be addressed, and
risks to be avoided. The purpose of software assurance measurement is to “establish a basis for
gaining justifiable confidence (trust, if you will) that software will consistently demonstrate one or
more desirable properties” [Bartol 2009]. This basis includes properties such as quality, reliability,
correctness, dependability, usability, interoperability, safety, fault tolerance, and security [Bartol
2009].

6.1.1 What Constitutes a Good Metric?

Jaquith posits that a good metric has three characteristics [Jaquith 2007]:

• Simple to explain and straightforward to determine so the meaning can be widely understood

• Expressible in time, money, or something that can be converted into these readily accepted
parameters

• Readily structured for benchmarking so that change can be quickly identified and evaluated

Further, a good metric must be consistently measurable, able to be gathered at a low cost
(preferably automated), preferably quantitative (expressed as a number or percentage), and
contextually specific to be relevant for decision makers to take action.

Metrics such as the age of an automobile driver, which an insurance company uses to determine
an annual cost for automobile insurance, are backed by decades of statistically analyzed data of
actual accident rates for drivers of every age. Likewise, a doctor estimates a patient’s risk of a heart
attack by looking at metrics such as age, deviation of weight from the norm, and whether the patient
engages in behaviors such as smoking—health information that has been assembled, along with data
on actual heart attacks, for decades across major sectors of the population.

http://www.merriam-webster.com/dictionary/measure
http://www.merriam-webster.com/dictionary/metric
https://en.wikiquote.org/wiki/William_Thomson

Cyber security does not have this kind of historical data from which to structure standardized
metrics, but that does not mean we cannot establish good metrics for decision making. We suggest
following a well-established methodology called Goal-Question-Metric (GQM), introduced and
described by Basili and Rombach [Basili 1984, 1988]. This process for deriving meaningful metrics
is to define the objectives/goals, formulate questions relevant to the goal, collect data and indicators
that inform the answers to the questions, define metrics, and report metrics (customized to target
audiences).

To be useful, software assurance metric data must be consistently valid, retrievable, relevant, and
cost-effective. In order to be practically effective, the data must be retrievable, understandable, and
relevant. Data must provide concrete values. Consequently, data collection must be based on
consistent units of measure that can be normalized. Moreover, once data have been collected, they
must be stored so that they retain their usefulness. These are the generic requirements for metrics-
based assurance:

• Agreed-on metrics to define the assurance

• Scientifically derived data for each metric

• Sufficient justification for collecting data to account for the added costs of collection

Organizations must define and adopt a frame of reference before assessors can select the particular
metrics to use for data collection. The frame of reference provides the practical justification for the
metric selection process. A frame of reference is nothing more than the logic (or justification) for
choosing the metrics that are eventually used. For instance, there are no commonly agreed on
measures to assess security; however, a wide range of standard metrics, such as defect counts or
cyclomatic complexity, could be used to measure that characteristic. The metric that is selected
depends on the context of its intended use.

The only rule that guides the selection and adoption process is that the metrics must be objectively
measurable, produce meaningful data, and fit the frame of reference that has been adopted
[Shoemaker 2013].

6.1.2 Metrics for Cyber Security Engineering

Cyber security is not something for which we can assemble a standard set of metrics, such as height,
width, length, and weight. A seemingly endless list of metrics could be collected for cyber security,
such as the number of security requirements, lines of validated code, vulnerabilities found by code
checkers, process steps that include security considerations, hours needed to fix a security bug, and
data validation tests passed and failed. Collecting each of these metrics involves time and effort, so
the benefit to organizations, projects, and even individuals must be clear. We may already be
collecting related metrics (e.g., for quality, safety, reliability, usability, and a whole host of other
system and software qualities) that could tell us something about cyber security.

System and software engineering is composed of many aspects that can be evaluated
independently but need to be considered collectively. We need security measures for the product, the
processes used to create and maintain that product, the capabilities of the engineers performing the
construction or those of the vendor for an acquisition, the trust relationships from the product to other
products and the controls on those connections, and the operational environment in which the product
executes. In addition, we need to establish that the engineering steps we are performing are moving
toward the desired cyber security results.

Why is this so difficult? The responsibilities for these various segments can be scattered across
teams, divisions, or even separate organizations, depending on how an engineering effort is
structured. The control we have over each segment and access to information about it can vary
widely and may impact measurement options. The needs for security and available solutions can also
vary widely, depending on the operational mission, languages and frameworks used in development
of the product, and operational infrastructure choices. There are currently no established standards for
assignment of these responsibilities.

Let’s consider software measurement in general. Although it is possible for software to be both
incorrect and secure, it is generally the case that incorrect software is also more likely to contain
security vulnerabilities. Organizations should establish a broad software measurement program in
place and add assurance considerations to it rather than just consider software assurance measures in
a vacuum. Software product measurement assesses two related but distinctly different attributes:
functional correctness and structural correctness. Functional correctness measures how the software
performs in its environment. Structural correctness assesses the actual product and process
implementation.

Software functional correctness describes how closely the behavior of the software complies with
or conforms to its functional design requirements or specifications. In effect, functional correctness
characterizes how completely the piece of software achieves its contractual purpose. Functional
correctness is typically implemented, enforced, and measured through software testing. The testing
for correctness is done by evaluating the existing behavior of the software against a logical point of
comparison. In essence, the logical point of comparison is the basis that a particular decision maker
adopts to form a conclusion [IEEE 2000]. Logical points of comparison include diverse things such
as “specifications, contracts, comparable products, past versions of the same product, inferences
about intended or expected purpose, user or customer expectations, relevant standards, applicable
laws, or other criteria” [Shoemaker 2013].

Measurements of structural correctness assess how well the software satisfies environmental or
business requirements, which support the actual delivery of the functional requirements. For instance,
structural correctness characterizes qualities such as the robustness or maintainability of the software,
or whether the software was produced properly. Structural correctness is evaluated through the
analysis of the software’s fundamental infrastructure and through the validation of its code against
defined acceptability requirements at the unit, integration, and system levels. Structural measurement
also assesses how well the architecture adheres to sound principles of software architectural design
[OMG 2013].

Consider an example of how metrics were selected and applied.4 The SEI maintains detailed size,
defect, and process data for more than 100 software development projects. The projects include a
wide range of application domains and project sizes. Five of these projects focus on specific security-
and safety-critical outcomes. Let’s take a look at the security results for these projects. Four of these
projects reported no post-release safety-critical or security defects in the first year of operation, but
the remaining one project had 20 such defects. On one of the projects with no safety-critical or
security defects, further study revealed that staff members had been trained to recognize common
security issues in development and had been required to build this understanding into their
development process. Metrics were collected using review and inspection checklists along with
productivity data. These metrics enabled staff to accurately predict the effort and quality required for
future components using actual historical data.

4. This example is drawn from Predicting Software Assurance Using Quality and Reliability Measures [Woody
2014].

The teams performed detailed planning for each upcoming code-release cycle and confirmation
planning for the overall schedule. For the project with the largest code base, teams conducted a
Monte Carlo simulation to identify a completion date within the 84th percentile (i.e., 84% of the
project simulated finished earlier than this completion date). The team included estimates for the
following:

• Incoming software change requests (SCRs) per week

• Triage rate of SCRs

• Percentage of SCRs closed

• Development work (SCR assigned) for a cycle

• SCR per developer (SCR/Dev) per week

• Number of developers

• Time to develop test protocols

• Software change requests per security verifier and validator (SCR/SVV) per week

• Number of verification persons

The team then committed to complete the agreed work for the cycle, planned what work was
being deferred into future cycles, and projected that all remaining work would still fit the overall
delivery schedule. The team tracked all defects throughout the projects in all phases (injection,
discovery, and fix data). Developers used their actual data to plan subsequent work and reach
agreement with management on the schedule, content, process used, and resources required so that
the plan could proceed without compromising the delivery schedule.

This example uses several measures collected from various aspects of engineering to assemble a
basis of confidence constructed from historical information that can be used in making a decision.
Each measure by itself is insufficient, but the collection can be useful. The metrics collected were
selected based on information needs to support a specific goal (workload planning) and addressed a
range of questions related to the goal, such as productivity of the resources performing the work and
level of expected churn in the workload. This follows the GQM methodology [Basili 1984, 1988].

Another important element that can be measured is organizational capability to address cyber
security. The National Institute of Standards and Technology (NIST) has developed a framework for
improving critical infrastructure cyber security [NIST 2014]. The NIST framework focuses on the
operational environment that influences the level of cyber security responsibility, enabling
organizations to identify features or characteristics of the infrastructure that support cyber security as
opposed to what needs to be engineered directly into the system and software. The framework
provides an assessment mechanism that enables organizations to determine their current cyber
security capabilities, set individual goals for a target state, and establish a plan for improving and
maintaining cyber security programs. After using the assessment mechanism to determine goals and
plans for cyber security, organizations can use metrics to monitor and evaluate results. Metrics are
collected and analyzed to support a decision so that a decision can determine an action [Axelrod
2012].

Measurement frameworks for security are not new, but broad use of available standards in the
lifecycle has been limited by the lack of system and software engineering involvement in security
beyond authentication and authorization requirements. With the growing recognition of the ways in
which engineering decisions impact security, metrics that support the monitoring and managing of
these concerns should be incorporated into the lifecycle.

Standards such as NIST’s Performance Measurement Guide for Information Security [Chew
2008] propose a wide range of possible metrics that can support an information security measurement
effort. These metrics are proposed to verify that selected security controls are appropriately
implemented and that appropriate federal legislative mandates have been addressed. An international
standard, ISO/IEC 27004, “provides guidance on the development and use of measures and
measurement in order to assess the effectiveness of an implemented information security

management system (ISMS).”5

5. www.iso.org/iso/catalogue_detail?csnumber=42106

6.1.3 Models for Measurement6

6. This section is drawn from Software Assurance Measurement—State of the Practice [Shoemaker 2013].

An organization might already have a measurement model that structures metrics to address selected
goals. There are three major categories of measurement models: descriptive, analytic, and predictive.

Measurement models of any type can be created based on equations, or analysis of sets of
variables, that characterize practical concerns about the software. A good measurement model allows
users to fully understand the influence of all factors that affect the outcome of a product or process,
not just primary factors. A good measurement model also has predictive capabilities; that is, given
current known values, it predicts future values of those attributes with an acceptable degree of
certainty.

Assurance models measure and predict the level of assurance of a given product or process. In that
respect, assurance models characterize the state of assurance for any given piece of software. They
provide a reasonable answer to questions such as “How much security is good enough?” and “How
do you determine when you are secure enough?” In addition, assurance measurement models can
validate the correctness of the software assurance process itself. Individual assurance models are built
to evaluate everything from error detection efficiency to internal program failures, software reliability
estimates, and degree of availability testing required. Assurance models can also be used to assess the
effectiveness and efficiency of the software management, processes, and infrastructure of an
organization.

Assurance models rely on maximum likelihood estimates, numerical methods, and confidence
intervals to make their assumptions. Therefore, it is essential to validate the correctness of a model.
Validation involves applying the model to a set of historical data and comparing the model’s
predicted outcomes to the actual results. The output from a model should be a metric, and that output
should be usable as input to another model.

Assurance modeling provides a quantitative estimate of the level of trust that can be assumed for a
system. Models that predict the availability and reliability of a system include estimates such as
initial error counts and error models incorporating error generation, uptime, and the time to close
software error reports.

Software error detection models characterize the state of debugging the system, which
encompasses concerns such as the probable number of software errors that are corrected at a given
time in system operation, plus methods for developing programs with low error content and for
developing measures of program complexity.

Models of internal program structure include metrics such as the number of paths (modules)
traversed, the number of times a path has been traversed, and the probability of failure, as well as
advice about any automated testing that might be required to execute every program path.

http://www.iso.org/iso/catalogue_detail?csnumber=42106

Testing effectiveness models and techniques provides an estimate of the number of tests necessary
to execute all program paths and statistical test models. Software management and organizational
structure models contain statistical measures for process performance. These models can
mathematically relate error probability to the program testing process and the economics of
debugging due to error growth.

Because assurance is normally judged against failure, the use of a measurement model for
software assurance requires a generic and comprehensive definition of what constitutes “failure” in a
particular measurement setting. That definition is necessary to incorporate considerations of every
type of failure at every severity level. Unfortunately, up to this point, a large part of software
assurance research has been devoted to defect identification, despite the fact that defects are not the
only type of failure. This narrow definition is due partly to the fact that defect data is more readily
available than other types of data, but it is mostly due to the lack of popular alternatives for modeling
the causes and consequences of failure for a software item. With the advent of exploits against
software products that both run correctly and fulfill a given purpose, the definition of failure must be
expanded. That expansion would include incorporating into the definition of failure intentional
(backdoors) or unintentional (defects) vulnerabilities that can be exploited by an adversary as well as
the mere presence of malicious objects in the code.

Existing security standards can be leveraged to fill this measurement need [ISO/IEC 2007].
Practical Measurement Framework for Software Assurance and Information Security [Bartol 2008]
identifies similarities and differences among five different models for measurement and would be a
useful resource to assist in selecting measurements appropriate to an organization’s cyber security
engineering needs.

What Decisions About Cyber Security Need to Be Supported by Metrics?

In this chapter we have focused on metrics for development planning with expected cyber security
results. Let’s now take a look at software that is being reused, as opposed to software that is being
newly developed. If we plan to reuse software such as a commercial product, open source, or code
developed for another purpose, is there something inherent in product cyber security that would
motivate us to choose one software product over another? If we can scan the code, we can use
software tools to find out what vulnerabilities the code contains as well as the severity of each
vulnerability, according to a metrics standard established in the Common Vulnerability Enumeration
(CVE). We could use other tools to evaluate the binaries for malware. Each piece of information
becomes evidence that supports or refutes a claim about an option.

At the start of a development cycle, we have a limited basis for determining our confidence in the
behavior of the delivered system; that is, we have a large gap between our initial level of confidence
and the desired level of confidence. Over the development lifecycle, we need to reduce that
confidence gap, as shown in Figure 6.1, to reach the desired level of confidence for the delivered

system [Woody 2014].7

7. This section is drawn from Predicting Software Assurance Using Quality and Reliability Measures [Woody
2014].

Figure 6.1 Confidence Gap

In Chapter 1, “Cyber Security Engineering: Lifecycle Assurance of Systems and Software,” we
discussed confidence in the engineering of software. To review, we must have evidence to support
claims that a system is secure. An assurance case is a documented body of evidence that provides a
convincing and valid argument that a specified set of critical claims about a system’s properties are
adequately justified for a given application in a given environment. Quality and reliability can be
incorporated as evidence into an argument about predicted software security. Details about an
assurance case structure and how to build an assurance case can be found in Predicting Software
Assurance Using Quality and Reliability Measures [Woody 2014].

6.2 Ways to Gather Evidence for Cyber Security Evaluation

6.2.1 Process Evidence

Table 6.1 presents a few examples of lifecycle-phase measures that can aid in demonstrating required
levels of software security. Increases in percentages for these measures over time can indicate an
expanded focus on security and process improvement for performing security analysis, but they
provide no evidence about the actual product. A more extensive list can be found in Appendix G,
“Examples of Lifecycle-Phase Measures.” Because of the volume of data that needs to be handled to
produce effective measures across an organization, consideration of automation for consistency in
collection and effectiveness in monitoring and management is critical. Without automation, labor
costs can be expected to be very high and the ability to achieve timely input will be greatly reduced.

Table 6.1 Examples of Lifecycle-Phase Measures

Alberts, Allen, and Stoddard [Alberts 2010] suggest a set of questions to use to assess key
lifecycle areas of security risk. Security experts identified 17 process-related areas from across the
lifecycle as being important for security. The associated security questions provide a means of
evaluating security risk. Many of the terms within the questions, such as “sufficient,” are not absolute
and must be defined based on organization-specific criteria. For example, addressing a frequently
occurring security problem may mean once a year for one organization and once a minute for
another, depending on what the organization is doing. Table 6.2 shows an extract of a full table
provided in Appendix G.

Table 6.2 Examples of Questions for Software Security [Alberts 2010]

Process-related areas can map to the updated security principles described earlier. Table 6.3 is an
extract of such a mapping, from the full table presented in Appendix G.

Table 6.3 Mapping Between Security Risk Focus Areas and Principles for Software Security
[Mead 2013b]

A framework of measures linked to the seven principles of evidence defined in Common
Weakness Enumeration [MITRE 2014] can provide evidence that organizations are effectively
addressing the security risk focus areas [Mead 2013b]. Table 6.4 shows an extract of a full table from
Appendix G.

Table 6.4 Example Measures Based on the Seven Principles of Evidence [MITRE 2014]

Example Case Study: Using Subcontracting Measures to Evaluate Trusted
Dependencies

GoFast automotive is planning a new entertainment system for the Tiger sports car.
Traditional entertainment systems cannot be readily adapted to the smaller space of a
sport automobile, and GoFast management feels that this newly engineered system
will give the company a competitive edge (and thus a financial benefit). After
performing risk analysis on the project, executive management decided that this
system would receive extra attention to software security.

Traveling Audio Video (TAV), a subcontractor with expertise in automotive
entertainment systems, is developing some of the software subsystems. Naturally,
GoFast is concerned about industrial espionage and wants to make sure that its
competitors cannot get access to company confidential information about its plans
and designs or, worse yet, pirate the software and use it themselves.

The security group, as part of its work in support of this project, decides to look at
the trusted dependencies principle. Much to their chagrin, they find out that TAV uses
other subcontractors in its supply chain, and GoFast must vet all of those
subcontractors to ensure that the entire supply chain is trustworthy. It turns out that
one of the subcontractors to TAV also contracts with one of GoFast’s competitors.
Fortunately, GoFast discovers this relationship early on and can assess the risk and
determine whether the supply chain needs to be modified in order to reduce the risk
or whether the supply chain is, in fact, trustworthy based on prior observations and
security measures in place.

If the subcontractor has a unique needed skill set, appropriate nondisclosure agreements may
provide the needed level of confidence. On the other hand, if the subcontractor is known to have
engaged in questionable practices (an extreme example would be accepting bribes to provide inside
information about competitive products to its customers), it might be best to replace that
subcontractor with another company, even if the replacement company is less experienced in these
types of products. Another option would be to decide to do that part of the development in-house,
thus reducing the risk of industrial espionage. Of course, this last option assumes that GoFast’s
employees have been vetted and deemed trustworthy.

6.2.2 Evidence from Standards

Evidence of effective cyber security engineering can be assembled by leveraging security standards
that the organization has chosen to follow. NIST Special Publication 800-53 [NIST 2013] provides a
wide range of security and privacy controls. These controls are widely used as implementation
mechanisms to meet security requirements. NIST 800-53A [NIST 2014a] is a companion document
to NIST 800-53 that describes how an audit could be conducted to collect evidence about the
controls. The audit focuses on determining the extent to which the organization has chosen to
implement the controls. Information is not provided for determining how well the implementation is
performing. NIST 800-55 [NIST 2008], as noted earlier, has a range of specific security measures
that can be applied across the lifecycle.

Alberts, Allen, & Stoddard [Alberts 2012b] provide a description of measures derived from the
security controls described in NIST 800-53 [NIST 2013] that could be assembled to evaluate the

effectiveness of a control. Another useful standard, detailed in Practical Measurement Framework
for Software Assurance and Information Security [Bartol 2008], is ISO/IEC 227002, which contains a

controls catalog, an ISO equivalent of NIST 800-53.8

8. www.iso27001security.com/html/27004.html

Product Evidence

Combining the process perspective with a product focus would assemble stronger evidence to support
confidence that cyber security requirements are met. Practical Measurement Framework for Software
Assurance and Information Security [Bartol 2008] provides an approach for measuring how
effectively an organization can achieve software assurance goals and objectives at an organizational,
program, or project level. This framework incorporates existing measurement methodologies and is
intended to help organizations and projects integrate SwA measurement into their existing programs.
(Refer to Chapter 3, “Secure Software Development Management and Organizational Models.”)

More recent engineering projects described by Woody, Ellison, and Nichols [Woody 2014]
demonstrate that a disciplined lifecycle approach with quality defect identification and removal
practices combined with code analysis tooling provide the strongest results for building security into
software and systems. Defect prediction models are typically informed by measures of the software
product at a specific time, longitudinal measures of the product, or measures of the development
process used to build the product. Metrics typically used to analyze quality problems can include the
following:

• Static software metrics, such as new and changed LOC, cyclomatic complexity,9 counts of
attributes, parameters, methods and classes, and interactions among modules

9. http://en.wikipedia.org/wiki/Cyclomatic_complexity

• Defect counts, usually found during testing or in production, often normalized to size, effort,
or time in operation

• Software change metrics, including frequency of changes, LOC changed, or longitudinal
product change data, such as number of revisions, frequency of revisions, numbers of modules
changed, or counts of bug fixes over time

• Process data, such as activities performed or effort applied to activities or development phases

Many models currently in use rely on static or longitudinal product measures, such as code churn.
Other approaches use historic performance or experience based on defect injection and removal
(generally described using a “tank and filter” metaphor), as shown in Figure 6.2, to monitor and
model the defect levels during the development process. The connections between defects, which are
typically related to quality and security vulnerabilities, is still an active area of research. Many of the
common weakness enumerations (CWEs) cited as the primary reasons for security failures are
closely tied to recognized quality issues. Data shows vulnerabilities to be 1% to 5% of reported
defects [Woody 2014]. There is wide agreement that quality problems are strong evidence for
security problems.

http://www.iso27001security.com/html/27004.html
http://en.wikipedia.org/wiki/Cyclomatic_complexity

Figure 6.2 “Tank and Filter” Quality Tracking Model

However, focusing just on a product to assure that it has few defects is also insufficient. Removal
of defects depends on assuring our capability to find them. Positive results from security testing and
static code analysis are often provided as evidence that security vulnerabilities have been reduced,
but it is a mistake to rely on them as the primary means for identifying defects. The omission of
quality practices, such as inspections, can lead to defects exceeding the capabilities of existing code
analysis tools [Woody 2014].

Organizations must establish product relevance before applying the metrics to cyber security. In
the research described above, the product was a medical device, and the security requirements being
evaluated were assigned to the whole device. These same measures could be performed on a single
software application running on this device. The relationship of the component to the whole must be
determined before it is possible to observe the utility of applying metrics collected on a component to
the composition. For example, a component that handles of the data input and output for the device
represents a critical part of the cyber security concern for the device. Measures collected on a USB
device driver on the device are not representative of the composition.

Evaluating the Evidence

Next, we need to be sufficiently specific about the definitions of the words we use to provide
consistent and repeatable usage. As an example, consider the word often. In some contexts, this word
may mean daily or weekly and in others it may mean multiple times per second. Table 6.5 provides
an example of structuring terms related to frequency to establish consistency.

Table 6.5 Example Frequency Structure

Measures can be qualitative or quantitative; both are useful, but the assigned value (shown in
parentheses in Table 6.5) depends on the question being asked and how well the measures support the

decision.10 Is it sufficient to have a relative frequency of occurrence, or does the decision demand a
specific count? There are trade-offs to consider in making this determination: The more exact the

information, the more costly it is to gather.11

10. NIST 800-55 [NIST 2008] also provides a terminology structure to help clarify terms like sufficient that can
be easily interpreted many ways.

11. In his book Engineering Safe and Secure Software Systems, Axelrod provides an interesting comparison of
qualitative and quantitative measurements for an automobile in Table 7.1 [Axelrod 2012].

Case Study: Risk Management for Wireless Emergency Alerts (see Chapter 1, section
1.5.1)

Consider the following example of evaluating risk from the Wireless Emergency
Alert (WEA) case study, using the terminology from Table 6.5:

Risk Statement

IF an outside actor with malicious intent obtains a valid certificate through social
engineering and uses it to send an illegitimate Common Alerting Protocol
(CAP)–compliant message by spoofing an Alert Originating System (AOS), THEN
health, safety, legal, financial, and reputation consequences could result.

Probability Value

Rare

Rationale

This risk requires that a complex sequence of events occurs.

The actor has to be highly motivated.

The attack needs to coincide with an event where a large crowd is gathered.

Impact Value

Maximum

Rationale

The impact ultimately depends on whether people trust the WEA service and take the
action recommended in the illegitimate WEA alert.

Health and safety damages could be severe, leading to potentially large legal
liabilities.

The reputation of WEA could be severely damaged beyond repair.

Figure 6.3 Shows the Risk.

Figure 6.3 Risk Exposure Value

6.2.3 Measurement Management12

12. This section is drawn from Measures for Managing Operational Resilience [Allen 2011].

Because software is not created once and left unchanged, we cannot make measurements once and
assume that they are sufficient for all ongoing needs. The same is true of cyber security information
for the software. If we want to show change over time, we must collect and assemble measurements
and structure them for future use. Measurement management ensures that suitable measures are
created and applied as needed in the lifecycle of the software or system. Measurement management
requires the formulation of coherent baselines of measures that accurately reflect product
characteristics and lifecycle management needs. Measurement baselines must be capable of being
revised as needed to track the evolving product throughout its lifecycle and evaluate relationships
with similar products. Using the appropriate set of baselines, the measurement management process
ensures that the right set of metrics is always in place to produce the desired measurement outcomes.
This approach is consistent with existing international security measurement standards, such as ISO/
IEC 27004 and ISO/IEC 15939, and security measurement guidance, such as Practical Measurement
Framework for Software Assurance and Information Security [Bartol 2008].

The measurement management process collects data about discrete aspects of a product and/or
process functioning to support operational and strategic decision making about the product. The
measurement management process should provide data-driven feedback in real time or near real time
to project managers, development managers, and technical staff. The National Vulnerability

Database13 is one of the resource baselines publically available for cyber security. This database

contains standards-based vulnerability data that can be used by automated tools to verify compliance
of software product implementations.

13. www.nist.gov/itl/csd/stvm/nvd.cfm

Managing Through Measurement Baselines

Management control is typically enforced through measurement baselines. A measurement baseline
is a collection of discrete metrics that characterize an item of interest for a target of measurement.
Using a measurement baseline, it is possible to make meaningful comparisons of product and process
performance to support management and operational decision making. Such comparisons can be vital
to improving products and processes over time through the use of predictive and stochastic assurance
models for decision making. Potential metrics for supporting such an effort might include basic
measures such as defect data, productivity data, and threat/vulnerability data. An evolving baseline
model provides managers with the necessary assurance insight, cost controls, and business
information for any process or product, and it allows value tracking for the assurance process.

Formulating a measurement baseline involves four steps:

1. The organization identifies and defines the target of measurement (the goal aspect of the
GQM model, as noted earlier).

2. The organization establishes the requisite questions that define needed metrics to assure the
desired measurement objectives; the organization assembles the relevant measures in a
formally structured and controlled baseline.

3. The organization establishes the comparative criteria for tracking performance. Those criteria
establish what will be learned from analyzing the data from each metric over time.

4. The organization carries out the routine measurement data collection and analysis activities,
using the baseline metrics.

Examples showing the results of this approach for operational resilience can be found in Measures

for Managing Operational Resilience [Allen 2011],14 which defines 10 strategic measures to support
organizational strategic objectives. The following is an example of an organizational objective along
with the measures that support it:

14. This report and others in the SEI’s Resilience Measurement and Analysis collection can be found at
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=434555.

Objective: In the face of realized risk, the operational resilience management (ORM)
system ensures the continuity of essential operations of high-value services and their
associated assets. Realized risk may include an incident, a break in service continuity,
or a human-made or disaster or crisis.

Measure 9: Probability of delivered service through a disruptive event

Measure 10: For disrupted, high-value services with a service continuity plan,
percentage of services that did not deliver service as intended throughout the
disruptive event

Consider using “near misses” and “incidents avoided” as predictors of successful disruptions in
the future.

http://www.nist.gov/itl/csd/stvm/nvd.cfm
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=434555

Chapter 7. Special Topics in Cyber Security Engineering

with Julia Allen, Warren Axelrod, Stephany Bellomo, and Jose Morales

In This Chapter

• 7.1 Introduction

• 7.2 Security: Not Just a Technical Issue

• 7.3 Cyber Security Standards

• 7.4 Security Requirements Engineering for Acquisition

• 7.5 Operational Competencies (DevOps)

• 7.6 Using Malware Analysis

• 7.7 Summary

7.1 Introduction
Earlier chapters mention some special topics for readers who want to dig a little deeper in specific
areas. Those topics are presented here:

• This chapter starts with a discussion of governance, recognizing that security is more than just
a technical issue, and describes how organizations can set clear expectations for business
conduct and then follow through to ensure that the organization fulfills those expectations.

• Then this chapter describes some findings on cyber security standards, an important area that
is still evolving.

• Organizations that perform acquisition—rather than development—can achieve an emphasis
on security requirements by using Security Quality Requirements Engineering for Acquisition
(A-SQUARE). All too often, cyber security is left to contractors, with little attention from
acquisition organizations until systems are delivered or operational. We hope to see
organizations address cyber security much earlier in the acquisition lifecycle, and security
requirements are a good place to start.

• Next, this chapter discusses DevOps. In the field we are finally seeing recognition of the
synergy of development and operations, after years of seeing them treated as disparate
activities in a stovepiped project environment.

• Finally, this chapter discusses some recent research work that seeks to identify ways
organizations can use malware analysis to identify security requirements that have led to
vulnerabilities in earlier systems. These overlooked requirements can then be incorporated
into the security requirements for future systems.

Each of these topics is unique, and you may not be interested in all of them. We offer them as a
deeper exploration in specific areas of cyber security engineering.

7.2 Security: Not Just a Technical Issue1

1. This section was contributed by Julia Allen.

7.2.1 Introduction

This section defines the scope of governance concern as it applies to security. It describes some of the
top-level considerations and characteristics to use as indicators of a security-conscious culture and to
determine whether an effective program is in place.

Security’s days as just a technical issue are over. Security is becoming a central concern for
leaders at the highest levels of many organizations and governments, and it transcends national
borders. Today’s organizations face constant high-impact security incidents that can disrupt
operations and lead to disclosure of sensitive information. Customers are demanding greater security
as evidence suggests that violations of personal privacy, the disclosure of personally identifiable
information, and identity theft are on the rise. Business partners, suppliers, and vendors are requiring
greater security from one another, particularly when providing mutual network and information
access. Networked efforts to steal competitive intelligence and engage in extortion are becoming
more prevalent. Security breaches and data disclosure increasingly arise from criminal behavior
motivated by financial gain as well as state-sponsored actions motivated by national strategies.

Current and former employees and contractors who have or had authorized access to their
organization’s system and networks are familiar with internal policies, procedures, and technology
and can exploit that knowledge to facilitate attacks and even collude with external attackers.
Organizations must mitigate malicious insider acts such as sabotage, fraud, theft of confidential or
proprietary information, and potential threats to our nation’s critical infrastructure. Recent CERT
research documents cases of successful malicious insider incidents even during the software

development lifecycle.2

2. Refer to the CERT Insider Threat website (www.cert.org/insider-threat/publications) for presentations and
podcasts on this subject.

In the United States, managing cyber security risk is becoming a national imperative. In February

2013, the U.S. president issued an executive order3 to enhance the security of the nation’s critical
infrastructure, resulting in the development of the National Institute of Standards and Technology
(NIST) Cybersecurity Framework [NIST 2014]. According to the IT Governance Institute, “boards of
directors will increasingly be expected to make information security an intrinsic part of governance,
integrated with processes they already have in place to govern other critical organizational resources”
[ITGI 2006]. The National Association of Corporate Directors (NACD) states that the cyber security
battle is being waged on two levels—protecting a corporation’s most valuable assets and the
implications and consequences of disclosure in response to legal and regulatory requirements
[Warner 2014]. According to an article in NACD Magazine, “Cybersecurity is the responsibility of
senior leaders who are responsible for creating an enterprise-wide culture of security” [Warner 2014].

At an international level, the Internet Governance Forum (IGF)4 provides a venue for discussion of
public policy issues, including security, as they relate to the Internet. Ultimately, directors and senior
executives set the direction for how enterprise security—including software security—is perceived,
prioritized, managed, and implemented. This is governance in action.

3. www.whitehouse.gov/the-press-office/2013/02/12/executive-order-improving-critical-infrastructure-
cybersecurity

4. www.intgovforum.org/cms/home-36966

The Business Roundtable (an association of chief executive officers of leading U.S. companies)
recommends the following in its report More Intelligent, More Effective Cybersecurity Protection
[Business Roundtable 2013]:

http://www.cert.org/insider-threat/publications
http://www.whitehouse.gov/the-press-office/2013/02/12/executive-order-improving-critical-infrastructure-cybersecurity
http://www.whitehouse.gov/the-press-office/2013/02/12/executive-order-improving-critical-infrastructure-cybersecurity
http://www.intgovforum.org/cms/home-36966

CEOs should develop the capabilities required to integrate cybersecurity threat and
risk information into CEO risk management.

Boards of directors, as part of their risk oversight functions, continue to
periodically review management’s business resiliency plans, including cybersecurity,
and oversee risk assessment and risk management processes, including those
applicable to cybersecurity.

As additional evidence of this growing trend, the Deloitte 2014 Board Practices Report:
Perspective from the Boardroom states the following [Deloitte 2014]:

Cybersecurity has quickly become an important topic for companies and boards,
particularly in light of recent data breaches. According to survey results, the level of
board awareness on cybersecurity is moderate (32%) to high (49%) across all
companies surveyed, with the exception of small cap companies. Most often the full
board or the audit committee is responsible for the oversight of cybersecurity
matters.

According to the Building Security In Maturity Model [McGraw 2015],

Executives and middle management, including line of business owners and product
managers, must understand how early investment in security design and security
analysis affects the degree to which users will trust their products. Business
requirements should explicitly address security needs. Any sizeable business today
depends on software to work. Software security is a business necessity.

While growing evidence suggests that senior leaders are paying more attention to the risks and
business implications associated with poor or inadequate security governance, a recent Carnegie
Mellon University survey indicates that there is still a lot of room for improvement [Westby 2012]:

• Boards are still not undertaking key oversight activities related to cyber risks, such as
reviewing budgets, security program assessments, and top-level policies; assigning roles and
responsibilities for privacy and security; and receiving regular reports on breaches and IT
risks.

• 57% of respondents are not analyzing the adequacy of cyber insurance coverage or
undertaking key activities related to cyber risk management to help them manage reputational
and financial risks associated with the theft of confidential and proprietary data and security
breaches.

Governance and Security

Governance means setting clear expectations for business conduct and then following through to
ensure that the organization fulfills those expectations. Governance action flows from the top of the
organization to all of its business units and projects. Done right, governance augments an
organization’s approach to nearly any business problem, including security. National and
international regulations call for organizations—and their leaders—to demonstrate due care with
respect to security. This is where governance can help.

Moreover, organizations are not the only entities that benefit from strengthening enterprise5

security through clear, consistent governance. Ultimately, entire nations benefit. “The national and
economic security of the United States depends on the reliable functioning of critical infrastructure.
Cybersecurity threats exploit the increased complexity and connectivity of critical infrastructure
systems, placing the nation’s security, economy, and public safety and health at risk” [NIST 2014].

5. We use the terms organization and enterprise to convey the same meaning.

Definitions of Security Governance

The term governance applied to any subject can have a wide range of interpretations and definitions.

For the purpose of this chapter, we define governing for enterprise security6 as follows [Allen 2005]:

6. As used here, security includes software security, information security, application security, cyber security,
network security, and information assurance. It does not include disciplines typically considered within the
domain of physical security such as facilities, executive protection, and criminal investigations.

• Directing and controlling an organization to establish and sustain a culture of security in the
organization’s conduct (values, beliefs, principles, behaviors, capabilities, and actions)

• Treating adequate security as a non-negotiable requirement of being in business

The NIST Cybersecurity Framework defines information security governance as follows: “The
policies, procedures, and processes to manage and monitor the organization’s regulatory, legal, risk
environmental, and operational requirements are understood and inform the management of
cybersecurity risk” [NIST 2014].

In the context of security, governance incorporates a strong focus on risk management.
Governance is an expression of responsible risk management, and effective risk management requires
efficient governance. One way governance addresses risk is to specify a framework for decision
making. It makes clear who is authorized to make decisions, what the decision-making rights are, and
who is accountable for decisions. Consistency in decision making across an enterprise, a business
unit, or a project boosts confidence and reduces risk.

Duty of Care

In the absence of some type of meaningful governance structure and way of managing and measuring
enterprise security, the following questions naturally arise (and in all of them, organization can
include an entire enterprise, a business or operating unit, a project, and all of the entities participating
in a software supply chain):

• How can an organization know what its greatest security risk exposures are?

• How can an organization know if it is secure enough to do the following:

• Detect and prevent security events that require business-continuity, crisis-management, and
disaster-recovery actions?

• Protect stakeholder interests and meet stakeholder expectations?

• Comply with regulatory and legal requirements?

• Develop, acquire, deploy, operate, and use application software and software-intensive
systems?

• Ensure enterprise viability?

ANSI has the following to say with respect to an organization’s fiduciary duty of care [ANSI
2008]:

The key to understanding the financial risks of cybersecurity is to fully embrace its
multidisciplinary nature. Cyber risk is not just a technical problem to be solved by
the company’s chief technology officer. Nor is it just a legal problem to be handed
over to the company’s chief legal counsel; a customer relationship problem to be
solved by the company’s communications director; a compliance issue for the
regulatory guru; or a crisis management problem. Rather, it is all of these and more.

As a result, director and officer oversight of information and cyber security (including software
security) is embedded within the duty of care owed to enterprise shareholders and stakeholders.
Leaders who hold equivalent roles in government, non-profit, and educational institutions must view
their responsibilities similarly.

Leading by Example

Demonstrating duty of care with respect to security is a tall order, but leaders must be up to the
challenge. Their behaviors and actions with respect to security influence the rest of the organization.
When staff members see the board and executive team giving time and attention to security, they
know that security is worth their own time and attention. In this way, a security-conscious culture can
grow.

It seems clear that boards of directors, senior executives, business unit and operating unit leaders,
and project managers all must play roles in making and reinforcing the business case for effective
enterprise security. Trust, reputation, brand, stakeholder value, customer retention, and operational
costs are all at stake if security governance and management are performed poorly. Organizations are
much more competent in using security to mitigate risk if their leaders treat it as essential to the
business and are aware of and knowledgeable about security issues.

Characteristics of Effective Security Governance and Management

One of the best indications that an organization is addressing security as a governance and
management concern is a consistent and reinforcing set of values, beliefs, principles, behaviors,
capabilities, and actions that are consistent with security best practices and standards. These measures
aid in building a security-conscious culture [Coles 2015]. These measures can be expressed as

statements about the organization’s current behavior and condition.7

7. See also “Characteristics of Effective Security Governance” [Allen 2007] for a table of 11 characteristics that
compares and contrasts an organization with effective governance practices and one where these practices are
missing.

Leaders who are committed to dealing with security at a governance level can use the following
list to determine the extent to which a security-conscious culture is present (or needs to be present) in
their organizations:

• The organization manages security as an enterprise issue, horizontally, vertically, and cross-
functionally throughout the organization and in its relationships with partners, vendors, and
suppliers. Executive leaders understand their accountability and responsibility with respect to
security for the organization, their stakeholders, the communities they serve including the

Internet community, and the protection of critical national infrastructures and economic and
national security interests.

• The organization treats security as a business requirement. The organization sees security as a
cost of doing business and an investment rather than an expense or discretionary budget-line
item. Leaders at the top of the organization set security policy with input from key
stakeholders. Business units and staff are not allowed to decide unilaterally how much
security they want. Adequate and sustained funding and allocation of adequate security
resources are given.

• The organization considers security as an integral part of normal strategic, capital, project, and
operational planning cycles. Strategic and project plans include achievable, measurable
security objectives and effective controls and metrics for implementing those objectives.
Reviews and audits of plans identify security weaknesses and deficiencies as well as
requirements for the continuity of operations. They measure progress against plans of action
and milestones. Determining how much security is enough relates directly to how much risk
exposure an organization can tolerate.

• The organization addresses security as part of any new project initiation, acquisition, or
relationship and as part of ongoing project management. The organization addresses security
requirements throughout all system/software development lifecycle phases, including
acquisition, initiation, requirements engineering, system architecture and design,
development, testing, release, operations/production, maintenance, and retirement.

• Managers across the organization understand how security serves as a business enabler (versus
an inhibitor). They view security as one of their responsibilities and understand that their
team’s performance with respect to security is measured as part of their overall performance.

• All personnel who have access to digital assets and enterprise networks understand their
individual responsibilities with respect to protecting and preserving the organization’s
security, including the systems and software that it uses and develops. Awareness, motivation,
and compliance are the accepted, expected cultural norm. The organization consistently
applies and reinforces security policy compliance through rewards, recognition, and
consequences.

The relative importance of each of these statements depends on the organization’s culture and
business context. For those who are accustomed to using ISO/IEC 27001 [ISO/IEC 2013], similar
topics can be found at a higher level.

7.2.2 Two Examples of Security Governance

Payment Card Industry

The development, stewardship, and enforcement of the Payment Card Industry (PCI) Data Security
Standard (DSS) [PCI Security Standards Council 2015] represent a demonstrable act of governance
by the PCI over its members and merchants. This standard presents a comprehensive set of 12
requirements for enhancing payment account data security and “was developed to facilitate the broad
adoption of consistent data security measures globally.” It “applies to all entities involved in payment
card processing—including merchants, processors, acquirers, issuers, and service providers” [PCI
Security Standards Council 2015].

An additional standard that is part of the PCI DSS standards suite is the Payment Application Data
Security Standard (PA-DSS) [PCI Security Standards Council 2013]. PA-DSS specifically addresses

software security. Its purpose is to assist software vendors of payment applications to develop and
deploy products that are more secure, that protect cardholder data, and that comply with the broader
PCI standard. All 14 PA-DSS practice descriptions include detailed subpractices and testing
procedures for verifying that the practice is in place. The PCI Standards Council maintains a list of
validated payment applications that meet this standard. Payment card merchants can use it to select
applications that ensure better protection of cardholder data.

U.S. Energy Sector

In response to the U.S. 2013 executive order, the U.S. Department of Energy (DOE) developed the
Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) to improve and
understand the cyber security posture of the U.S. energy sector. The 10 domains that compose the
model and the companion self-assessment method “provide a mechanism that helps organizations
evaluate, prioritize, and improve cybersecurity capabilities” [DoE 2014a]. U.S. energy sector owners
and operators are using the model to improve their ability to detect, respond to, and recover from
cyber security incidents. As a result of the successful use of ES-C2M2, the DOE developed an
equivalent model [DoE 2014b], with which the U.S. oil and natural gas subsector concurred, that is
experiencing active adoption and use. The development, use, and stewardship of these models are
strong examples of security governance for two national critical infrastructure sectors.

7.2.3 Conclusion

Most senior executives and managers understand governance and their responsibilities with respect to
it. The intent here is to help leaders expand their perspectives to include security and incorporate
enterprise-wide security thinking into their own—and their organizations’—governance and
management actions. An organization’s ability to achieve and sustain adequate security starts with
executive sponsorship and commitment. Standards such as ISO 27001 [ISO/IEC 2013] reinforce and
supplement industry initiatives.

7.3 Cyber Security Standards

7.3.1 The Need for More Cyber Security Standards8

8. This section was contributed by Warren Axelrod.

To be able to certify compliance with security standards, we clearly first need to have a set of
generally accepted standards. Although there have been quite a number of attempts to achieve
acceptable information security standards, no overarching set is being consistently followed.

Governments around the globe favor the Common Criteria for Information Technology Security
Evaluation, also known as ISO/IEC 15408. The PCI DSS [PCI Security Standards Council 2015] and
the PA-DSS [PCI Security Standards Council 2013] apply to those handling payment card
information and the vendors of software that process this information, respectively.

A subset of software systems need to be certified according to the Common Criteria or PCI
standards in order for their acquisition and/or use to be permitted. It is noteworthy that, in both these
cases, the standard-setting authorities (i.e., various government agencies and payments processing
companies) are relatively powerful in terms of purchasing power (governments) or scope of influence
(PCI).

Other compliance or certification reviews—such as auditing against International Organization for
Standardization (ISO) or International Electrotechnical Commission (IEC) standards in general as
well as specific audit reviews in particular—usually target specific departments and processes within
an organization, and the certifications mostly apply only to an examined process at a specific point in
time (for example, SSAE 16 reviews, which replaced SAS 70 Type 1 and Type 2 reviews). Such
reviews usually do not dig deeply into the particular technologies in operation, nor do they determine
whether these technologies meet a certain quality level. However, certain types of technical audits
examine program code, platforms, networks, and the like.

Some regulators require broader “policy and procedures” compliance reviews. For example, the
National Association of Securities Dealers Regulations (NASDR) requires securities firms in the U.S.
to perform and report on extensive reviews of back-office and IT policy and procedures to ensure that
they actually exist, are fully documented, and meet certain governance requirements. This situation
suggests that we must better understand what standards are and how they relate to directives, policy,
guidelines, procedures, etc. Table 7.1 provides a comparison among these various categories.

Table 7.1 Descriptions and Characteristics of Principles, Policies, Standards, etc.

Table 7.1 includes descriptions from a variety of sources. It is interesting to note that they are not
all definitions, and though some descriptions are similar, they are not entirely consistent.
Nonetheless, our intent is to show the range of descriptions—where they are the same and where they
differ. Inconsistencies might result in the misuse of definitions and terms, confusion about the
meaning of terms, and consequent misdirection. These problems could account in large part for the

inconsistent use of information security standards.9

9. A similar lack of focus and specificity exists in attempts to define policy standards and procedures for cyber
warfare, which can have much graver outcomes. Nevertheless, the lack of cyber security standards, despite
the proliferation of policies, is extremely costly in financial, economic, and social terms.

The main result of this disparity of descriptions is a hierarchy of rules, some of which are
mandatory (“must”) and some of which are optional (“should”). These rules are set at different levels
within an organization, usually apply to lower-level groups, and are enforced and audited by other
parties.

We need accepted standards and a rich compendium of baselines in order to support universal
measures of software cyber security assurance. When standards are not used, the fallback is usually
to substitute common, essential, or “best” practices, with the argument that an organization cannot be
faulted if it is as protective as or more protective than its peers in applying available tools and

technologies.10

10. Donn Parker asserts that it is impossible to calculate cyber security risk, so metrics are meaningless [Parker
2009]. Steven Lipner claims that a metric for software quality does not exist [Lipner 2015]. Parker suggests
implementing the best practices of peer organizations. Peter Tippett, who claims to have invented the first
antivirus product, stated that there is no such thing as a “best practice” and instead uses the term “essential
practice” to refer to a generally accepted approach [Tippett 2002].

This logic is somewhat questionable since it frequently leads to compliance with mediocrity: If
one organization is vulnerable, then other organizations that applied the same level of security are
vulnerable also. We see this phenomenon in action when similar organizations fall victim to similar
successful attacks.

Experts have argued that software monocultures lead to less secure systems environments. We can
consider this argument in the context of software cyber security assurance processes: When many
organizations in the same industries use similar systems and observe similar security measures, those

organizations become more vulnerable. Organizations could benefit from varying their approaches to
cyber security assurance.

7.3.2 A More Optimistic View of Cyber Security Standards

We are starting to see the emergence of cyber security standards that provide more cause for

optimism than the earlier work referred to in Section 7.3.1. For example, a recent interview11

highlighted the following cyber security standards:

11. www.forbes.com/sites/peterhigh/2015/12/07/a-conversation-with-the-most-influential-cybersecurity-guru-
to-the-u-s-government/

• NIST SP 800-160: System Security Engineering: An Integrated Approach to Building
Trustworthy Resilient Systems

• IEEE/ISO 15288: Systems and Software Engineering—System Life Cycle Processes

• The NIST TACIT approach for system security engineering: Threat, Assets, Complexity,

Integration, Trustworthiness12

12. Summarized in slide form at http://csrc.nist.gov/groups/SMA/fisma/documents/joint-
conference_12-04-2013.pdf.

Another important document is NIST SP 800-53: Recommended Security Controls for Federal
Information Systems and Organizations. This document has undergone several revisions in recent
years and is being used extensively in government software systems acquisition and development. In
addition, standards such as ISO/IEC 27001, ISO/IEC 27002, ISO/IEC 27034, and ISO/IEC 27036 all
provide useful support, and NIST Special Publication 800-161 addresses supply chain risk.

7.4 Security Requirements Engineering for Acquisition
Although much work in security requirements engineering research has been aimed at in-house
development, many organizations acquire software from other sources rather than develop it in-
house. These organizations are faced with the same security concerns as organizations doing in-house
development, but they usually have less control over the development process. Acquirers therefore
need a way to assure themselves that security requirements are being addressed, regardless of the
development process.

There have been some efforts related to acquisition of secure software. The Open Web
Application Security Project (OWASP) group provides guidance for contract language that can be
used in acquisition; the guidance includes a brief discussion of requirements [OWASP 2016]. An SEI
method is available to assist in selecting COTS software [Comella-Dorda 2004]. The Common
Criteria approach provides detailed guidance on how to evaluate a system for security [Common
Criteria 2016]. In addition, there are security requirements engineering methods, such as SQUARE
[Mead 2005], SREP [Mellado 2007], and Secure Tropos [Giorgini 2006]; some of these methods
address the acquisition of secure software. The recent NIST Special Publication 800-53, Revision 4
provides guidance for selecting security controls [NIST 2013], and NIST Special Publication
800-161 addresses supply chain risk [NIST 2015].

We next examine various acquisition cases for security requirements engineering, using the
SQUARE process model as a baseline.

http://www.forbes.com/sites/peterhigh/2015/12/07/a-conversation-with-the-most-influential-cybersecurity-guru-to-the-u-s-government/
http://www.forbes.com/sites/peterhigh/2015/12/07/a-conversation-with-the-most-influential-cybersecurity-guru-to-the-u-s-government/
http://csrc.nist.gov/groups/SMA/fisma/documents/joint-conference_12-04-2013.pdf
http://csrc.nist.gov/groups/SMA/fisma/documents/joint-conference_12-04-2013.pdf

7.4.1 SQUARE for New Development

The SQUARE process for new development is shown in Table 7.2. This process has been
documented [Mead 2005]; described in various books, papers, and websites [Allen 2008]; and used
on a number of projects [Chung 2006]. This is the process that was used as the basis for SQUARE
for Acquisition (A-SQUARE).

Table 7.2 SQUARE Steps

7.4.2 SQUARE for Acquisition

We next present various acquisition cases and the associated SQUARE adaptations.

Case 1: The Acquisition Organization Has the Typical Client Role for Newly Developed
Software

In this example, the contractor is responsible for identifying requirements. We use SQUARE as the
underlying method, but the contractor could use another method to identify the security requirements.
If SQUARE is used throughout, steps 3–9 (highlighted in italics in Table 7.3) are performed by the
contractor. This case presumes that the contract award has been made, and the contractor is on board.
The acquisition organization has the typical client role in this example. It’s important to note the
client involvement in steps 1, 2, and 10. Also note that if the acquisition organization works side by
side with the contractor, the separate review in step 10 can be eliminated, as the client inputs are
considered in the earlier steps.

Table 7.3 Process When an Acquisition Organization Has a Typical Client Role for New Software

In the event that the contractor’s security requirements engineering process is unspecified, the
resulting compressed process looks as shown in Table 7.4.

Table 7.4 Compressed Process if Security Requirements Engineering Process Is Unknown

Case 2: The Acquisition Organization Specifies the Requirements as Part of the RFP for
Newly Developed Software

If an acquisition organization specifies requirements as part of an RFP, then the original SQUARE
for development should be used (refer to Table 7.2). Note that relatively high-level security
requirements may result from this exercise, since the acquisition organization may be developing the
requirements in the absence of a broader system context. Also, the acquisition organization should
avoid identifying requirements at a granularity that overly constrains the contractor.

Case 3: Acquisition of COTS Software

In acquiring COTS software, an organization should develop a list of requirements for the software
and compare those requirements with the software packages under consideration (see Table 7.5). The
organization may need to prioritize security requirements together with other requirements [Comella-
Dorda 2004]. Compromises and trade-offs may need to be made, and the organization may have to
figure out how to satisfy some security requirements outside the software itself—for example, with
system-level requirements, security policy, or physical security. The requirements themselves are
likely to be high-level requirements that map to security goals rather than detailed requirements used
in software development.

Table 7.5 Process for Acquiring COTS Software

Note that in acquiring COTS software, organizations often do minimal trade-off analysis and may
not consider security requirements at all, even when they do such trade-off analysis. The acquiring
organization should consider “must have” versus “nice to have” security requirements. In addition,
reviewing the security features of specific offerings may help the acquiring organization identify the
security requirements that are important.

7.4.3 Summary

The original SQUARE method has been documented extensively and has been used in a number of
case studies and pilots. In addition, a number of associated robust tools exist. Academic course
materials and workshops are also available for SQUARE. SQUARE for Acquisition is not quite as
mature, as it was developed more recently. Here we have presented alternative versions of SQUARE
for use in acquisition. It has been taught in university and government settings, and there is a
prototype tool for A-SQUARE. Organizations that use SQUARE or A-SQUARE will succeed in
addressing security requirements early and will avoid the pitfalls of operational security flaws that
result from overlooked security requirements.

It is important to note that A-SQUARE is just one approach for identifying security requirements
during acquisition. We suggest exploring other existing methods before making a decision on which
one to use.

7.5 Operational Competencies (DevOps)13

13. This section was contributed by Stephany Bellomo.

7.5.1 What Is DevOps?

DevOps is a synergistic convergence of emerging concerns that stem from two separate communities:
the software development community and the operations community (release engineers and system
administrators). Prior to the birth of the DevOps movement, both communities suffered from the
inability to rapidly and reliably deploy software, and each felt the effects in different ways. From the
software development perspective, Agile teams found progress on delivery of new features grinding
to a halt as they entered the integration, certification, and deployment phases of the software
lifecycle. From the operations perspective, the release engineers suffered from unstable production
software and painful releases. Symptoms of dysfunction included a culture of finger pointing
between development (Dev) and operations (Ops) teams, delays due to late discovery of security or
resiliency issues, and error-prone/human-intensive release processes.

Problems such as these drove a handful of practitioners to talk openly about practices they apply
on their own projects to address similar problems. This discussion ultimately led to the birth of the
DevOps movement. In 2009, Flickr’s John Allspaw and Paul Hammond gave a cornerstone talk at

Velocity, titled “10+ Deploys Per Day”14 that got the attention of the operations community. They
described several practices for reducing deployment cycle time while maintaining a high degree of
operational stability/resiliency. In 2009, Patrick Debois from Belgium and Andrew “Clay” Shafer
from the United States coined the term DevOps. Debois held the first DevOpsDays event in Ghent in
2010. Today, DevOpsDays conferences are held in cities all over the world. The initial scope of the
DevOps movement focused primarily on cloud-based information technology (IT) systems; however,
the scope has since broadened. There is general agreement that the specific DevOps practices used on
each project can and should be evaluated for suitability and tailored for each project context. We are
seeing some DevOps practices applied to non-IT-based systems, including embedded and real-time
safety-critical systems, such as avionics, automobiles, and weapons systems [Regan 2014].

14. www.youtube.com/watch?v=LdOe18KhtT4

DevOps is essentially a term for a group of concepts that catalyzed into a movement. At a high
level, DevOps can be characterized by two major themes: (1) collaboration between development and
operations staff and (2) a focus on improving operational work efficiency and effectiveness. We
discuss these themes in the next sections.

http://www.youtube.com/watch?v=LdOe18KhtT4

Collaboration Between Development and Operations Staff

The focus of DevOps is to break down artificial walls between development and operations teams
that have evolved due to organizational separation of these groups. We refer to this separation as
“stovepiping.” The idea is to change the culture from one in which development teams “throw the
software over the fence” to the operations teams to a more collaborative, integrated culture.
Examples of suggested DevOps practices to break down these barriers from both sides of the fence
include earlier involvement of release engineers in the software design and assignment of production
support “pager duty” to the software developers after a new feature release to instill a sense of post-
development ownership.

Focus on Improvement in Operational Work Efficiency and Effectiveness

The focus of the trend toward improved efficiency is based on Lean principles [Nord 2012] and is
about improving efficiency and effectiveness of the end-to-end deployment lifecycle. Lean objectives
adopted by the DevOps community include reducing waste, removing bottlenecks, and speeding up
feedback cycle time. This effort requires team members to have the ability to reason about the
various stages features go through during a DevOps deployment cycle. The popular book by Humble
and Farley, Continuous Delivery, introduces the concept of deployment pipeline for this purpose
(shown in Figure 7.1). The deployment pipeline provides a mental model for reasoning where
bottlenecks and inefficiencies occur as features make their way from development through testing
and, finally, to production.

Figure 7.1 Example of a Deployment Pipeline [Bass 2015]

For many projects, software releases were high-risk events; because of this, many software
projects bundled various features together, delaying delivery of completed functionality to users.
Continuous delivery suggests a paradigm shift in which features/development changes are
individually deployed after the software has passed a series of automated tests/pre-deployment
checks. We revisit the deployment pipeline in the next section.

7.5.2 DevOps Practices That Contribute to Improving Software Assurance

The previous section provides background on the emergence of the DevOps movement and a brief
discussion of related trends and concepts. In this section, we turn our attention to emerging DevOps
practices that contribute to improving software assurance (which is defined in Chapter 1, “Cyber
Security Engineering: Lifecycle Assurance of Systems and Software”). In this section, we focus
primarily on software assurance as it relates to cyber security.

In the popular book Visible Ops Security, the authors describe competing objectives between
development and operations groups that cause natural tension [Kim 2008]. Development teams are
pressured to make changes faster to respond to business needs. On the other hand, operations teams
are incentivized to reduce risk and minimize change because they are responsible for maintaining
stable, secure, and reliable IT service. The idea behind Visible Ops Security is that integrating
information security (InfoSec) staff on DevOps projects helps alleviate this conflict (see Figure 7.2).

Figure 7.2 Visible Ops Security Focuses on the Point Where IT Operations, Development, and
Information Security Objectives Overlap [Kim 2008]

The process of integrating InfoSec into the DevOps project context is described in four phases in
Visible Ops Security [Kim 2008]. In the next sections, we use these four phases to structure the
discussion of security-related DevOps practices. The term DevOpsSec refers to extending the concept
of DevOps by integrating InfoSec.

Phase 1: Integration of InfoSec Experts

The long-term goal of integrating InfoSec professionals into DevOps projects is to gain visibility into
potential software assurance risks. In Phase 1, InfoSec experts gain situational awareness by
analyzing processes supporting daily operations such as change management, access control, and
incident handling procedures. This analysis requires establishing an ongoing and trusting relationship
between InfoSec professionals and the rest of the project team (developer and operations staff) and
balancing the concerns shown in Figure 7.2. In addition, the team must establish an integration
strategy. Integration strategies may involve co-locating InfoSec personnel with the project team for
the life of the project or having a cross-functional, matrixed integration. Regardless of the integration
strategy, InfoSec teams should resist the urge to create a new stand-alone DevOpsSec team, which
can result in a new stovepipe within the organization.

Phase 2: Business-Driven Risk Analysis

Phase 2 focuses first on understanding what matters most to the business (thus the business-driven
part of the phase title). Once the team understands business priorities and key business processes, it
identifies IT controls required to protect critical resources. The team can apply several practices in
this phase to address security concerns; examples include threat modeling and analysis and
DevOpsSec requirements and design analysis. We discuss these practices in the next sections.

Threat Modeling and Analysis

Risk analysis approaches, such as those described in the Resilience Management Model analysis
method [Caralli 2011b], may be applied in this phase to identify critical resources. Critical resources
may be people, processes, facilities, or system artifacts, such as databases, software processes,
configuration files, etc. After identifying critical resources, the team applies a structured analysis
method to identify ways to protect those assets. In the spirit of Lean, threat modeling and analysis
activities should give special consideration to protecting resources related to the business processes
that provide the highest value to the organization. (Value depends on the business objectives and may
take many forms, such as monetary assets, user satisfaction, mission goal achievement, etc.)

DevOpsSec Requirements and Design Analysis

Because architectural design decisions can have broad implications, InfoSec should factor into early
reviews of emerging requirements and architectural design decisions. Context-specific design
choices, in the form of architecture design tactics, can have a significant impact on resiliency and/or
security posture. For example, a recent research study of architecture tactics used on real software
projects to enable deployability revealed the use of several security-related design tactics, including
fault detection, failover, replication, and module encapsulation/localization tactics [Bellomo 2014].
InfoSec professionals can leverage feasibility prototypes—in addition to document-driven
analysis—to experiment with options for high-risk architectural changes and to analyze potential
runtime threat exposure for new design concepts.

Phase 3: Integration and Automation of Information Security Standards/Controls

In Phase 3, the objective is to improve the quality of releases by integrating and automating
information security standards compliance checks into projects and builds. In the spirit of improving
efficiency, teams should use automation to replace manual and/or error-prone tasks as much as
possible. There are several opportunities for automation at each stage throughout the deployment
pipeline. The earlier a deficiency is detected in the deployment pipeline, the less costly (and painful)
it is to address. For example, a secure coding error found at build or check-in time can usually be
fixed by the developer quickly with little impact to others, whereas that same coding change made in
a later stage could impact other components using that code. Automated tests may be executed
against a variety of software and environmental artifacts such as code files, runtime software
components, configuration files, etc. Many types of tests can be automated; for our purposes, we
focus on automated tests that teams can leverage for security analysis and detection purposes. Test
artifacts become available at different stages in the deployment pipeline; therefore, we have
organized the discussion of the following information security automation tests according to the
stages shown in Figure 7.1.

Pre-Commit Tests

For code-level security conformance checking, teams can run static analysis tests against code or
other artifacts prior to checking in code. (Figure 7.1 refers to checking in code as “committing
code.”) Common static analysis approaches used in the DevOps context include code complexity
analysis, secure coding standards conformance checking, IT/web secure coding best practices
conformance checking, and code-level certification control/policy violations checking. The results of
these tests can provide greater insight into the overall health of the system for risk analysis. In
practice, some project teams also integrate static analysis tests into the continuous build and
integration cycle.

Build and Integration Tests

In addition to static analysis, an increasingly common DevOps best practice involves integrating
security compliance tests into the continuous integration build cycle. These automated compliance
tests run every time the developer checks in code or initiates a new build of the software. If a
violation is detected, the build fails and the offending developer is notified immediately. Ideally,
work does not continue until the build is fixed to avoid pushing the problem downstream.

The following Twitter case study provides an example of a success story about an InfoSec team
that successfully integrated a suite of security tests into the continuous build and integration lifecycle.

Case Study: Put Your Robots to Work: Security Automation at Twitter15

15. Summarized from the article “Here’s How the Amazing Twitter InfoSec Team Helps DevOps,” by
Gene Kim. http://itrevolution.com/heres-how-the-amazing-twitter-infosec-team-helps-devops/.

The birth of the Twitter InfoSec program was triggered by the hacking of the
@barackobama account, which resulted in an FTC injunction requiring Twitter to be
secure for the next 15 years. Hence, successful Twitter InfoSec was born.

Even though they were using automated tools when they started, team members
were still doing a lot of manual work. For example, the static code analysis step was
“automated,” but InfoSec team members still had to do a lot of waiting—waiting for
a scan to complete, get back the big stack of reports, interpret the reports, and then
find the person responsible for fixing it. And when the code changed, they had to do
it all over again!

Team members wanted to put their robots to work, so they built static code
analysis into the Jenkins continuous integration process and, after that was done, they
set out to build the Security Automation Dashboard (SADB—the logo is, of course, a
sad bee). SADB takes input from several tools, such as Brakeman, Phantom Gang,
CSP, ThreatDeck, and Roshambo, and produces outputs such as email alerts to
developers. In typical Twitter development, Brakeman runs on each code commit
(i.e., git push), and when vulnerabilities are found, SADB emails the developer about
how to fix it. Better yet, when the fix is committed, SADB emails the developer
again, congratulating him or her for fixing it!

By taking this approach, Twitter InfoSec enforces the practice of continuous
feedback by testing the code early and often. The team members characterized their
journey as follows:

• From manual to automated

• From low visibility to trending/reports

• From late discovery of issues to auto notification

• From constant emergency mode to operating more strategically

User Acceptance Testing/Staging/Performance Tests

User acceptance tests and performance tests can provide a variety of InfoSec insights. During user
acceptance testing (UAT), InfoSec team members can observe live usage patterns to see if they reveal
any new security concerns. Because the staging environment (ideally) reflects the configuration of
the production environment, the InfoSec team can analyze the runtime configuration for
vulnerabilities that are hard to detect in design documents (staging is a pre-production testing
environment). Results of nonfunctional tests (e.g., resiliency, performance, or scalability tests) may
provide new insights into how well the system responds or performs under strenuous circumstances.
In addition, the DevOps community advocates complete—or as complete as possible—test coverage
to maintain confidence as the system evolves.

http://itrevolution.com/heres-how-the-amazing-twitter-infosec-team-helps-devops/

Deploy to Production

Several DevOps practices improve assurance posture while code is in the process of being deployed.
However, before we discuss these practices, let’s first visit some of the practices that should be
applied before the deployment stage. For example, Infrastructure as Code (IaC) is a recommended
practice. IaC refers to use of automated scripts and tooling for provisioning of infrastructure and
environment setup. A benefit of the IaC approach to building infrastructure is that the InfoSec team
can examine the automation scripts to ensure conformance to security controls rather than manually
evaluating disparate individual environments for configuration violations. The practice of building
infrastructure from scripts also helps enforce configuration parity across all environments (e.g.,
development, staging, production), which helps to minimize vulnerabilities introduced by manual
configuration changes. Regular checks should done to ensure that open source software patches are
up to date and known vulnerabilities are addressed prior to release.

Once the pre-deployment environment conformance checks are clean and all tests have passed, it
is time to deploy code into production. We highly recommend using automated scripts for releasing
code into production. These automated scripts, and associated configuration files, are also useful
artifacts for InfoSec analysis. They can be used by InfoSec team members to validate that the
software deployment configuration conforms to the approved design document.

Phase 4: Continuous Monitoring and Improvement

Visible Ops Security primarily focuses on the need for the operations community to embrace
continuous process improvement and monitoring. In the following sections we discuss those needs as
well as two other dimensions, deployment pipeline metrics and system health and resiliency metrics,
which have received a lot of attention in the DevOps community in recent years.

DevOpsSec and Process Improvement

Continuous monitoring and improvement is a fairly well-accepted practice in the software
community; however, according to some practitioners, a move in this direction poses some challenge
for the operations community. During a roundtable interview for a 2015 IEEE Software Magazine
Release Engineering special issues article, we interviewed release engineers from Google, Facebook,
and Mozilla. They explained that the shift toward organizational process improvement requires a
mindset change for release engineers to move from a triage/checklist mentality (rewarded by
managers for years) toward institutionalized processes [Adams 2015]. From an InfoSec perspective,
this shift is useful and necessary. It is very difficult, if not impossible, for InfoSec personnel to
determine whether operational processes are secure when they are executed in an ad hoc manner.

Use of Deployment Pipeline Metrics to Minimize Security Bottlenecks

Another key concept behind DevOps is the idea of monitoring end-to-end deployment pipeline cycle
time and individual stage feedback cycle time. The development, operations, and security
stakeholders (shown on the left side of Figure 7.3) gain insight about the quality at each stage of the
deployment pipeline by monitoring feedback results. Some examples of metrics for each stage are
shown in Figure 7.3. At the Pre-commit Tests stage, DevOpsSec stakeholders get feedback from
static analysis or code-level secure coding results; at the Commit stage, stakeholders get feedback on
commit failures; at the Build and Integration stage and at the Testing stages, stakeholders get
feedback on automated compliance tests; at the Deploy to Production stage, stakeholders get
feedback on deployment cycle time (or deployment failures and rollbacks); and at the Production
stage, stakeholders get feedback on performance, outages, audit logs, etc. If any of these feedback
loops break down or become bottlenecks that slow down deployment, teams must perform analysis to
address the issue. In this way, DevOpsSec teams have targeted metrics and insight to continuously
improve deployment cycle time, focusing attention where the real problems are.

Figure 7.3 Deployment Pipeline Feedback Loops and Metrics

System Health and Resiliency Metrics

Because of the emphasis on improving workflow efficiency, a key DevOps practice area is
monitoring and metrics. These capabilities benefit InfoSec professionals in two ways: (1) They
provide additional data to improve “situational awareness” during early risk analysis and (2) once the
software is in production, the metrics and logs produced through DevOps processes can be used for
cyber-threat analysis. DevOps metrics are commonly used for purposes such as reducing end-to-end
deployment cycle time and improving system performance/resiliency. The interest in metrics such as
these has led to the emergence of tools and techniques to make operational metrics more visible and
useful. A popular mechanism for improving data visibility, bolstered by the DevOps vendor
community, is the DevOps dashboard. DevOps dashboards are tools that usually come configured
with a set of canned metrics and a way to implement custom metrics. Most dashboards can also be
programmed to send alerts to administrators when a threshold is exceeded; some dashboards also
suggest threshold boundaries based on normal historic system usage.

A key source of input for DevOps dashboards and alerts is log files (e.g., audit, error, and status
logs). As with traditional system development, log data is typically routed to a common location,
where it can be accessed for dashboard display and other analysis purposes. As with traditional
projects, audit logs—particularly information about changing privileges or roles—continue to be
useful artifacts for InfoSec analysis. These logs can also be used to support anomaly detection

analysis, which involves monitoring for deviation from normal usage patterns. Operations staff use
approaches such as anomaly detection analysis to monitor for issues ranging from software
responsiveness to cyberattack. In fact, at DevOps DC in June 2015, there was much talk of work that
focused on developing complex algorithms leveraging metrics generated from various DevOps tools
to identify patterns of deviation and malicious behavior.

7.5.3 DevOpsSec Competencies

The previous section describes several DevOps practices that promote software assurance. This
section describes several InfoSec competencies needed to support these DevOps practices.
Traditional InfoSec competencies are still necessary to provide a strong foundation for supporting
DevOps projects. However, due to the focus on automation and rapid feature delivery, some
additional skills (or, in some cases, refreshing of skills) are required. In the sections that follow, we
list examples of DevOpsSec-specific competencies; for consistency, we organize these skills around
the four phases for integrating InfoSec into DevOps projects.

Phase 1: Integrating InfoSec Experts

People Skills

Successful DevOps InfoSec professionals must be capable of establishing and maintaining an
ongoing trusting relationship between developers and operations groups. They must also be able to
balance competing goals, as shown in Figure 7.2.

DevOpsSec Integration Strategy

It is not always easy to change the mindset of an organization that has lived with a stovepiped
information security operating model for many years. Successful InfoSec professionals need to
understand the organizational context, including opportunities and limitations, and must be able to
formulate successful integration strategies. Depending on the situation, they may also need creativity
and a positive attitude to devise and implement integration strategies that can work in their
environment.

Security Analysis for Daily Operations

To obtain situational awareness with respect to daily operations, DevOps InfoSec professionals need
skills to analyze processes and identify risks related to daily operational support. These skills and
processes address topics such as security risks in current change management, access control, and
incident handling procedures.

Phase 2: Business-Driven Risk and Security Process Analysis

Business-Aligned Threat Modeling

InfoSec professionals must have the skills to apply risk/threat-based analysis approaches (e.g., RMM)
to identify and protect critical resources. This requirement is not new; however, there are several new
challenges with respect to DevOps. Functionality may be delivered more frequently (e.g., multiple
times per day), so InfoSec professionals must perform risk analysis faster and more efficiently than
ever before. Constantly changing software means InfoSec professionals are working with a moving
target. There is little tolerance for big, lengthy risk assessments, so risk analysis methods must be
tailored to fit within this operating context. In addition, the deployment pipeline itself is a set of
integrated tools that must be operationally resilient and protected from cyberattack. The virtualized
environments on which many of the software systems developed by DevOps projects are deployed
are increasingly software intensive (e.g., virtual machines, container technology). So, the scope of a
risk assessment may need to extend beyond the software to be deployed. The deployment pipeline
and the visualized infrastructure the software is running on may need to be included in risk
assessments.

DevOpsSec Requirements and Design Analysis

InfoSec professionals need skills to rapidly and competently review architectural designs for
potential vulnerabilities in a fast-paced environment. Ideally, InfoSec professionals integrated with
DevOps teams have technical skills to provide guidance to developers as they consider design
options. For example, design tactics should be considered to promote security and resiliency.

Phase 3: Integration and Automation of Information Security Standards/Controls

Security Tool Automation

As described in the Twitter case study, successful DevOps InfoSec professionals have strong
technical capabilities that allow them to develop, or at least interpret, results from security
automation tools. Opportunities exist at all stage of the development pipeline for InfoSec
professionals to help develop and/or set up automation tools. As shown in Figure 7.3, examples of
security-related automation tools include build and integration tests; UAT, staging, and performance
tests; pre-deployment tests; and post-deployment anomaly detection and monitoring.

Enforcing Environment Conformance

With the advent of virtual machine technology, infrastructure has migrated from being primarily
hardware intensive to being largely software intensive. This change has enabled the creation of the
infrastructure environment through automation (generally using scripts). DevOps InfoSec
professionals should have sufficient technical skills and depth to understand the risks related to using
these technologies as well as the benefits. A benefit of the move toward IaC and script-driven
provisioning is that environment configuration and policy conformance checking can be more easily
automated. This benefit is possible because conformance-checking tools can run the verification tests
against the automated scripts. Leveraging capabilities such as these speeds up the certification
process and reduces the risk of vulnerabilities related to environment inconsistency/nonconformance.

Patches and Open Source

At this writing, the majority of DevOps projects are still IT projects and typically use a significant
amount of COTS (e.g., virtual machine software, containers, middleware, databases, and libraries) as
well as open source components. Consequently, InfoSec professionals should be capable of verifying
that all necessary security patches are applied and that known vulnerabilities in third-party software
are mitigated.

Phase 4: Continuous Monitoring and Improvement of Competencies

Process Institutionalization and Continuous Measurement/Monitoring

DevOps InfoSec professionals should have sufficient skills to evaluate process effectiveness and
provide guidance and assistance when needed. They should also be capable of measuring process
deviation and interpreting results.

Deployment Process Streamlining to Minimize Security Bottlenecks

InfoSec professionals must be able to analyze end-to-end deployment pipeline processes with an eye
toward minimizing information security process-related bottlenecks. They must have the creativity to
bring new options to the table for streamlining and improving efficiency of traditional information
security tasks (e.g., automating manual tasks) as well as willingness to challenge the status quo. For
this analysis, InfoSec professionals (shown on the left side of Figure 7.3) should understand what
metrics are generated as a natural byproduct of the deployment lifecycle and be capable of proposing
data-driven improvements.

DevOps Metrics for Security Analysis (e.g., Dashboards and Logs)

InfoSec professionals should be capable of using data from mining of dashboards and logs to gain a
better sense of situational awareness with respect to the overall health and resiliency of the system.
They should also understand what production metrics are available, or can be easily made available,
for ongoing cyber-threat analysis. For example, audit logs are useful artifacts for monitoring privilege
or role-escalation attacks.

7.6 Using Malware Analysis16

16. This section was written by Nancy Mead with Jose Morales and Greg Alice.

Hundreds of vulnerabilities are publicly disclosed each month [NIST 2016]. Exploitable
vulnerabilities typically emerge from one of two types of core flaws: code flaws and design flaws. In
the past, both types of flaws have facilitated several cyberattacks, a subset of which manifested
globally.

We define a code flaw as a vulnerability in a code base that requires a highly technical, crafted
exploit to compromise a system; examples are buffer overflows and command injections. Design
flaws are weaknesses in a system that may not require a high level of technical skill to craft exploits
to compromise the system. Examples include failure to validate certificates, non-authenticated
access, automatic granting of root privileges to non-root accounts, lack of encryption, and weak
single-factor authentication. A malware exploit is an attack on a system that takes advantage of a
particular vulnerability.

A use case [Jacobson 1992] describes a scenario conducted by a legitimate user of the system.
Use cases have corresponding requirements, including security requirements. A misuse case
[Alexander 2003] describes use by an attacker and highlights a security risk to be mitigated. A
misuse case describes a sequence of actions that can be performed by any person or entity to harm
the system. Exploitation scenarios are often documented more formally as misuse cases. In terms of
documentation, misuse cases can be documented in diagrams alongside use cases and/or in a text
format similar to that of a use case.

Several approaches for incorporating security into the software development lifecycle (SDLC)
have been documented. Most of these enhancements have focused on defining enforceable security
policies in the requirements gathering phase and defining secure coding practices in the design phase.
Although these practices are helpful, cyberattacks based on core flaws have persisted.

Major corporations, such as Microsoft, Adobe, Oracle, and Google, have made their security
lifecycle practices public [Lipner 2005; Oracle 2014; Adobe 2014; Google 2012]. Collaborative
efforts, such as the Software Assurance Forum for Excellence in Code (SAFECode) [Bitz 2008],
have also documented recommended practices. These practices have become de facto standards for
incorporating security into the SDLC.

These security approaches are limited by their reliance on security policies, such as access control,
read/write permissions, and memory protection, as well as on standard secure code writing practices,
such as bounded memory allocations and buffer overflow avoidance. These processes are helpful in
developing secure software products, but—given the number of successful exploits that occur—they
fall short. For example, techniques such as design reviews, risk analysis, and threat modeling
typically do not incorporate lessons learned from the vast landscape of known successful
cyberattacks and their associated malware.

The extensive and well-documented history of known cyberattacks can be used to enhance current
SDLC models. More specifically, a known malware sample can be analyzed to determine whether it
exploits a vulnerability. The vulnerability can be studied to determine whether it results from a code
flaw or a design flaw.

For design flaws, we can attempt to determine the overlooked requirements that resulted in the
vulnerability. We make this determination by documenting the misuse case corresponding to the
exploit scenario and creating the corresponding use case. Such use cases represent overlooked
security requirements that should be applied to future development and thereby avoid similar design
flaws leading to exploitable vulnerabilities. This process of applying malware analysis to ultimately
create new use cases and their corresponding security requirements can help enhance the security of
future systems.

7.6.1 Code and Design Flaw Vulnerabilities

Two types of flaws lead to exploitable vulnerabilities: code flaws and design flaws. A code flaw is a
weakness in a code base that requires specifically crafted code-based exploits to compromise a
system; examples are buffer overflows and command injections. More specifically, code flaws result
from source code being written without the implementation of secure coding techniques.

Design flaws result from weaknesses that do not necessarily require code-based exploits to
compromise the system. More specifically, a design flaw can result from overlooked security
requirements. Examples are failure to validate certificates, non-authenticated access, root privileges
granted to non-root accounts, lack of encryption, and weak single-factor authentication. Some design
flaws can be exploited with minimal technical skill, leading to more probable system compromise.

The process leading to a vulnerability exploit or remediation via software update is shown in Figure
7.4 [Mead 2014]. We focus on vulnerabilities resulting from a design flaw. In these cases, the
overlooked requirements can be converted to a use case applicable to future SDLC cycles.

Figure 7.4 Creation of a Vulnerability

A large body of well-documented and studied cyberattacks is available to the public via multiple
sources. In this section, we describe some publicly disclosed cases of exploited vulnerabilities that
facilitated cyberattacks and arose from design flaws. For each case, we describe the vulnerability and
the exploit used by malware. We also present the overlooked requirement(s) that led to the design
flaw that created the vulnerability. By learning from these cases and analyzing associated malware,
we can create use cases that can be included in SDLC models.

Case 1: D-Link Routers

In October 2013, a vulnerability was discovered that granted unauthenticated access to a backdoor of
the administrative panel of several D-Link routers [Shywriter 2013; Craig 2013]. Each router runs as
a web server, and a username and password are required for access. The router’s firmware was
reverse engineered, and the web server’s authentication logic code revealed that a string comparison
with “xmlset_roodkcableoj28840ybtide” granted access to the administration panel.

A user could be granted access by simply changing his or her web browser’s user-agent string to
“xmlset_roodkcableoj28840ybtide.” Interestingly, the string in reverse partially reads
“editby04882joelbackdoor.” It was later determined that this string was used to automatically
authenticate configuration utilities stored within the router.

The utilities needed to automatically reconfigure various settings and required a username and
password (which could be changed by a user) to access the administration panel. The hardcoded
string comparison was implemented to ensure that these utilities accessed and reconfigured the router
via the web server whenever needed, without requiring a username and password.

The internally stored configuration utilities should not have been required to access the
administration panels via the router’s web server, which is typically used to grant access to external

users. A non-web-server-based communication channel between internally stored proprietary
configuration utilities and the router’s firmware could have avoided the specific exploit described
here, although further analysis could have led to a more general solution.

Case 2: Android Operating System

In 2014, Xing et al. [Xing 2014] discovered critical vulnerabilities in the Android operating system
(OS) that allowed an unprivileged malicious application to acquire privileges and attributes without
user awareness. The vulnerabilities were discovered in the Android Package Manager and were
automatically exploited when the operating system was upgraded to a newer version.

A malicious application already installed in a lower version of Android OS would claim specific
privileges and attributes that were available only in a higher version of the Android OS. When the OS
was upgraded to the higher version, the claimed privileges and attributes were automatically granted
to the application without user awareness.

The overlooked requirement in this case was to specify that during an upgrade of the Android OS,
previously installed applications should not be granted privileges and attributes introduced in the
higher OS without user authorization.

Case 3: Digital Certificates

In March 2013, analysts discovered that malware authors were creating legitimate companies for the
sole purpose of acquiring verifiable digital certificates [Kitten 2013]. These certificates are used by
malware to be authenticated and allowed to execute on a system since they each possess a valid
digital signature.

When an executable file starts running on an operating system such as Windows, a check for a
valid digital signature is performed. If the signature is invalid, the user receives a warning that
advises him or her not to allow the program to execute on the system. By possessing a valid digital
signature, malware can execute on a system without generating any warnings to the user.

The reliance on a digital signature to allow execution of binaries on a system is no longer
sufficient to avoid malware infection. The overlooked requirement in this case was to, along with
verifying the digital signature, carry out multiple security checks before granting execution privilege
to a file, such as the following:

• Scanning the file for known malware

• Querying whether the file has ever been executed in the system before

• Checking whether the digital signature was seen previously in other legitimate files executed
on this system

Examining the Cases

In each of the cyberattack cases described here, the vulnerabilities could have been avoided had they
been identified during requirements elicitation. Using risk analysis and/or good software engineering
techniques, teams can identify all circumstances of use and craft appropriate responses for each case.
These cases can also be generalized and applied as needed.

The following abstracts can lead to requirements statements:

• Case 1: Identify all possible communication channels—Designate valid communication
channels and do not permit other communication channels to gain privileges.

• Case 2: Do not automatically transfer privileges during an upgrade—Request validation
from the user that the application or additional user should be granted privileges.

• Case 3: Require multiple methods of validation on executable files—In addition, as a
default, consider asking for user confirmation prior to running an executable file.

In addition to the specific cases of exploited vulnerabilities discussed above, there have been
several other cyberattacks on software systems that used one or more exploited vulnerabilities
resulting from either a code flaw or a design flaw. These vulnerabilities are defined in a hierarchical
structure using the Common Weakness Enumeration (CWE) [Kitten 2013; MITRE 2014].

The CWE provides a common language to discuss, identify, and handle causes of software
security vulnerabilities. These vulnerabilities can be found in source code, system design, or system
architecture. An individual CWE represents a single vulnerability type. A subset of CWEs can be
attributed to design flaws resulting from overlooked requirements; some of the design flaw CWEs
pertinent to the cases above are listed in Table 7.6.

Table 7.6 Sampling of Design Flaw CWEs [Mead 2014]

The lessons learned from previous cyberattacks and the underlying CWEs can be used to better
understand overlooked requirements and resulting security implications. Analyzed and publicly
disclosed cyberattacks provide details about how attackers implemented an exploit on a specific
vulnerability. CWEs provide a better understanding of security vulnerabilities underlying a
cyberattack. Combining information from these two sources facilitates the creation and inclusion of
use cases that capture the overlooked requirements that lead to design flaws.

7.6.2 Malware-Analysis–Driven Use Cases

Malware exploits vulnerabilities to compromise a system. Vulnerabilities are normally identified by
analyzing a software system or a malware sample. When a vulnerability is identified in a software
system, it is documented and remedied via a software update.

Vendors inform the public of vulnerabilities that are considered critical and that impact a large
user base; the OpenSSL Heartbleed vulnerability is an example of such a vulnerability [Wikipedia
2014a]. A vulnerability is usually identified via malware analysis after the malware has entered the
wild and compromised systems. Sometimes the discovered exploited vulnerability in the analyzed
malware is a zero-day vulnerability.

Zero-day [Wikipedia 2014b] vulnerabilities are some of the biggest threats to cyber security today
because they are discovered in private. They are typically kept private and exploited by malware for
long periods of time. “Zero-days” afford malware authors time to craft exploits. Zero-days are not
guaranteed to be detected by conventional security measures, making their threat even more serious.

One approach to avoid creating vulnerabilities is to implement secure lifecycle models. These
models can be enhanced with the inclusion of use cases that are derived from previously discovered
vulnerabilities that resulted from design flaws. Analyzing malware that exploits a vulnerability
provides details of the vulnerability itself and, more importantly, provides details of the exploit
implementation. The exploit details can offer additional insight into the vulnerability and the
underlying design flaw.

The previous examples indicate that standard secure lifecycle practices may not be adequate to
identify all avenues for potential attacks. Potential attacks must be addressed at requirements
collection time (and at every subsequent phase of the lifecycle).

The selected case studies illustrate that malware analysis can reveal needed security requirements
that may not be identified in the normal course of development, even when secure lifecycle practices
are used. At present, malware discovery is often used to develop patches or address coding errors but
not necessarily to inform future security requirements specification. We believe that failure to
exercise this feedback loop is a serious flaw in security requirements engineering, which tends to
start with a blank slate rather than use lessons learned from prior successful attacks. We recommend
that secure lifecycle practices be modified to benefit from malware analysis.

Examining techniques that are focused on early security development lifecycle activities can
reveal how malware analysis might be applied. We recommend a process for creating malware-
analysis–driven use cases that incorporates malware analysis into a feedback loop for security
requirements engineering on future projects and not just into patch development for current systems
[Mead 2014]. Such a process can be implemented using the following steps (also illustrated in Figure
7.5 [Mead 2014]:

1. A malicious code sample is analyzed both statically and dynamically.

2. The analysis reveals that the malware is exploiting a vulnerability that results from either a
code flaw or a design flaw.

3. In the case of a design flaw, the exploitation scenario corresponds to a misuse case that should
be described. The misuse is analyzed to determine the overlooked use case.

4. The overlooked use case corresponds to an overlooked security requirement.

5. The use case and corresponding requirements statement is added to a requirements database.

6. The requirements database is used in future software development projects.

Figure 7.5 Malware-Analysis–Driven Use Case Creation

Steps 1 and 2 include standard approaches to analyzing a malicious code sample. The specific
analysis techniques used in steps 1 and 2 are beyond the scope of this paper. In step 2, the analysis is
used to determine whether the exploited vulnerability is the result of a code flaw or a design flaw.
Typically, the source of the vulnerability can be determined through detailed analysis of the exploit
code. Of course, these steps presume that the malware is detected, which in itself is a challenge.

Step 2 illustrates the advantage of malware analysis by leveraging the exploit code to determine
the flaw type. Standard vulnerability discovery and analysis without malware analysis excludes
exploit code and may make flaw type identification less straightforward.

Step 3 details how the exploit was carried out in the form of a misuse case, which provides the
needed information to determine the overlooked use case that led to the design flaw.

In step 4, the overlooked use case is the basis for deciding what may have been the overlooked
requirement(s) at the time the software system was created that led to the design flaw. These are the
requirements that should have been included in the original SDLC of the software system, which
would have prevented creation of the design flaw that led to the exploited vulnerability.

Steps 5 and 6 record the overlooked use case and corresponding requirement(s) for use in future
SDLC cycles. This process is meant to enhance future SDLC cycles in a simplified manner by
providing known overlooked requirements that led to exploited vulnerabilities. By including these
requirements in future SDLC cycles, the resulting software systems can be made more secure by
helping to avoid the creation of exploitable vulnerabilities.

7.6.3 Current Status and Future Research

We recommend incorporating the feedback loop described in this chapter into the secure software
development process as a standard practice. We have described the process steps to support such a
feedback loop. Researchers have studied Security Quality Requirements Engineering (SQUARE)
[Mead 2005] and proposed modifications to incorporate malware analysis. In one pilot study,
researchers found that requirements developed to mitigate a successful prior attack on an existing
system in the same domain were given higher priority by the customer of the new system under
development.

As mentioned earlier in this chapter, an extended case study explored the proposed process of
analyzing a malware sample. Using a sample of malware that steals data from Android mobile
devices, we determined the exploitation scenario that was used by the malware exploit. Our
investigation into the consequences of this malware exploit revealed a design flaw in a mobile
application that could compromise user data. We studied the design flaw to determine the applicable
misuse cases and used those misuse cases to ascertain the missing security requirements to be used
on future mobile applications for the Android platform [Alice 2014; Mead 2015].

A prototype tool has been developed to support the process of enhancing exploit reports to include
misuse cases, use cases for mitigation, and overlooked security requirements. These enhanced reports
are then stored in a database that can be used by requirements engineers on future systems. The
source code for the MORE tool (Malware Analysis Leading to Overlooked Security Requirements) is
available for free download from www.cert.org/cybersecurity-engineering/research/security-
requirements-elicitation.cfm.

Exploit kits [McGraw 2015] are often used by malware in a plug-and-play fashion to infect a
system. An exploit kit is a piece of software that contains working exploits for several vulnerabilities.
It is designed to run primarily on a server (an exploit server) to which victim machines are redirected
after a user clicks a malicious link, either in a webpage or an email. The victim machine is scanned
for vulnerabilities. If a vulnerability is identified, the exploit kit automatically executes any
applicable exploit to compromise the machine and infect it with malware. In general, malware either
has exploits built into its binary or relies on exploit kits to initially compromise a machine. The
implications of exploit kits is another area of exploration that may provide code samples for use in
the process.

http://www.cert.org/cybersecurity-engineering/research/security-requirements-elicitation.cfm
http://www.cert.org/cybersecurity-engineering/research/security-requirements-elicitation.cfm

An open question for consideration: Do specific types of malware exist that are likely to occur in
specific kinds of critical systems, such as control systems? Analysis of historical and current malware
incidents may help to identify exploits that target specific types of applications. Knowing these
exploit types in advance could help requirements engineers identify standard misuse cases and the
needed countermeasures for their specific application types.

These misuse cases would again lead to corresponding use cases and security requirements. It may
be wishful thinking to expect all developers of future systems to give priority to security
requirements and apply the methods that we are postulating. However, developers of mission-critical
systems, financial systems, and other essential systems, such as critical infrastructure systems,
recognize the importance of security and should be willing to invest in it throughout the development
process.

7.7 Summary
At this point this book has discussed a sequence of activities, starting with risk analysis, proceeding
through management/organizational models, engineering/competency models, gap analysis, and
ultimately metrics. Here in Chapter 7, we have additionally provided special topics that are worth
consideration. This leaves us in a good position to consider how to develop an action plan to address
cyber security in Chapter 8.

Chapter 8. Summary and Plan for Improvements in Cyber
Security Engineering Performance

In This Chapter

• 8.1 Introduction

• 8.2 Getting Started on an Improvement Plan

• 8.3 Summary

8.1 Introduction
The following topics exhibit varying levels of maturity and use differing terminology, but they all
play a role in building assured systems:

Effective cyber security engineering requires the integration of security into the software
acquisition and development lifecycle. For engineering to address security effectively, requirements
that establish the target goal for security must be in place. Risk management must include
identification of possible threats and vulnerabilities within the system, along with ways to accept or
address them. There will always be cyber security risk, but an engineer needs to be able to plan for
the ways in which a system should avoid as well as recognize, resist, and recover from an attack.

Mechanisms that ensure correctness and compliance can be excellent tools if they are applied by
teams and individuals with cyber security expertise and linked to appropriate and complete cyber
security requirements.

Throughout this book, we have provided ways in which practitioners, managers, faculty, and
students can address cyber security engineering throughout the lifecycle. In addition, we provide
mechanisms for addressing each of the key principles introduced in Chapter 1, “Cyber Security
Engineering: Lifecycle Assurance of Systems and Software”: risk, trusted dependencies, interactions,
attacker, coordination and education, well planned and dynamic, and measurable. Risk
considerations should be part of each decision made throughout the lifecycle, and cyber security risk
modeling can be addressed using methodologies such as the Security Risk Assurance Methodology
(SERA) discussed in Chapter 2, “Risk Analysis—Identifying and Prioritizing Needs.” Interactions
among the technologies that support a mission must be monitored and managed for effective cyber
security. Just because technology elements can be connected does not mean they should be, and
effective cyber security engineering supports appropriate choices.

The various chapters provide support for the underlying principles. Developing an understanding
of mission risk (see Chapter 2) and addressing cyber security engineering (see Chapters 2 and 7,
“Special Topics in Cyber Security Engineering”) provide mechanisms for addressing this area of
concern. Means for defining, evaluating, and managing dependencies; linking integration choices
with protection needs; and mechanisms for managing interactions are provided (see Chapter 3,
“Secure Software Development Management and Organizational Models”). Education underlies all
of our work and is specifically part of the basis for Chapters 3, 4, “Engineering Competencies,” and
5, “Performing Gap Analysis.” Planning is discussed throughout but forms an integral part of
methods discussed in Chapters 3, 4, and 5. Measurement is the focus of Chapter 6, “Metrics.”
Attacker considerations are proposed throughout but most specifically when developing requirements
that drive technology choices early in the lifecycle. The A-SQUARE methodology introduced in

Chapter 7 is particularly valuable in supporting the development of good security requirements
during acquisition.

It’s not enough to write about cyber security engineering, however. We want to see good cyber
security engineering models and methods put into practice. We recognize that each organization or
project may be at a different point when it comes to improvement plans. Some organizations are
already doing a lot in terms of implementing cyber security engineering strategy. Others may just be
starting to think about it. Either way, the material presented in this book can help in developing a new
cyber security engineering strategy or refining an existing one. As noted earlier, for purchasers of this
book, we are providing free access to our online course: Software Assurance for Executives. This
course provides an excellent overview of software assurance topics for busy managers and
executives. To obtain access to Software Assurance for Executives, please send an email to:

stepfwd-support@cert.org

RE: SwA Executive Course

In addition, the resources on our accompanying website, and the reference material we have
provided all will contribute to developing a strategy.

Website for Cyber Security Engineering http://www.cert.org/cybersecurity-engineering/

The order of the chapters provides the suggested order of implementation of a cyber security
engineering strategy and program:

• Risk analysis (Chapter 2)—The first step toward lifecycle assurance, cyber security risk
analysis can be performed using techniques such as the Mission Risk Diagnostic (MRD) and
SERA.

• Organizational competencies (Chapter 3)—Next comes the identification and development
of competencies that support management (this includes the organization’s ability to address
cyber security).

• Engineering competencies (Chapter 4)—Identification and development of competencies
from an engineering perspective form the next step.

• Methods (Chapter 5)—Models can be used for benchmarking cyber security capabilities and
performing gap analysis; the SEI’s Software Assurance Competency Model and the Building
Security In Maturity Model (BSIMM) are two examples.

• Measurement (Chapter 6)—Measurement involves the methods and mechanisms needed not
only to evaluate cyber security but to properly balance it with other operational needs such as
performance and reliability.

• Special topics (Chapter 7)—Topics such as governance and other organizational and
engineering capabilities may be needed to provide a well-planned and dynamic approach to
cyber security engineering.

8.2 Getting Started on an Improvement Plan
In Chapter 3, we discussed maturity levels that we developed for use in our earlier work [Allen
2008]. In this chapter, we show how these maturity levels can be used to categorize the approaches
presented in this book:

• L1—The approach provides guidance for how to think about a topic for which there is no
proven or widely accepted approach. The intent of the area is to raise awareness and aid the

http://stepfwd-support@cert.org
http://www.cert.org/cybersecurity-engineering/

reader in thinking about the problem and candidate solutions. The area may also describe
promising research results that may have been demonstrated in a constrained setting.

• L2—The approach describes practices that are in early pilot use and that demonstrate some
successful results.

• L3—The approach describes practices that have been successfully deployed (i.e., they are
mature) but are in limited use in industry or government organizations. They may be more
broadly deployed in a particular market sector.

• L4—The approach describes practices that have been successfully deployed and are in
widespread use. Readers can start using these practices today with confidence. Experience
reports and case studies are typically available.

When an organization is developing an improvement plan, the maturity levels can help assess
whether to play it safe with approaches at higher maturity levels or whether to take the risk of using
less mature approaches. For a less mature approach, say at maturity level 1 or 2, we suggest initially
trying the approach on a less critical pilot project rather than adopting it across the organization.
Tables 8.1 through 8.6 show the approaches presented in each chapter and their maturity levels.

Table 8.1 Risk Analysis (Chapter 2)

Table 8.2 Management and Organizational Models (Chapter 3)

Table 8.3 Engineering Competencies (Chapter 4)

Table 8.4 Gap Analysis (Chapter 5)

Table 8.5 Metrics (Chapter 6)

Table 8.6 Special Topics in Cyber Security Engineering (Chapter 7)

8.3 Summary
The choice is not whether to develop a cyber security engineering strategy but rather when and how
to implement it. In our connected world, it is vital for organizations and projects to come up with
their own tailored plans to address cyber security engineering. As professionals, each of us should
have our own plan to improve our cyber security engineering competencies. This book, along with
the associated website, executive overview course, and reference material, provide you with the tools
to get started.

References

[Abran 2004]

Abran, Alain, Moore, James W., Bourque, Pierre, & Tripp, Leonard L., eds. Guide to the Software
Engineering Body of Knowledge. IEEE Computer Society. 2004. www.computer.org/web/swebok/
index.

[Adams 2015]

Adams, Bram, Bellomo, Stephany, Bird, Christian, Marshall-Keim, Tamara, Khomh, Foutse, & Moir,
Kim. The Practice and Future of Release Engineering: A Roundtable with Three Release
Engineers. IEEE Software: Special Issue on Release Engineering. Volume 32. Number 2. March/
April 2015. Pages 42–49.

[Adobe 2014]

Adobe Systems, Inc. Proactive Security | Adobe Security. 2014. www.adobe.com/security/proactive-
efforts.html.

[Alberts 2002]

Alberts, Christopher, & Dorofee, Audrey. Managing Information Security Risks: The OCTAVE
Approach. Addison-Wesley. 2002. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=30678.

[Alberts 2006]

Alberts, Christopher. Common Elements of Risk. CMU/SEI-2006-TN-014. Software Engineering
Institute, Carnegie Mellon University. 2006. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=7899.

[Alberts 2010]

Alberts, Christopher J., Allen, Julia H., & Stoddard, Robert W. Integrated Measurement and Analysis
Framework for Software Security. CMU/SEI-2010-TN-025. Software Engineering Institute,
Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9369.

[Alberts 2012a]

Alberts, Christopher & Dorofee, Audrey. Mission Risk Diagnostic (MRD) Method Description.
CMU/SEI-2012-TN-005. Software Engineering Institute, Carnegie Mellon University. 2012.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10075.

[Alberts 2012b]

Alberts, Christopher J. Allen, Julia H., & Stoddard, Robert W. Deriving Software Security Measures
from Information Security Standards of Practice. Software Engineering Institute, Carnegie Mellon
University. 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=28784.

http://www.computer.org/web/swebok/index
http://www.computer.org/web/swebok/index
http://www.adobe.com/security/proactive-efforts.html
http://www.adobe.com/security/proactive-efforts.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30678
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30678
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=7899
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=7899
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9369
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9369
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10075
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=28784

[Alberts 2014]

Alberts, Christopher, Woody, Carol, & Dorofee, Audrey. Introduction to the Security Engineering
Risk Analysis (SERA) Framework. CMU/SEI-2014-TN-025. Software Engineering Institute,
Carnegie Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=427321.

[Alexander 2003]

Alexander, Ian. Misuse Cases: Use Cases with Hostile Intent. IEEE Software. Volume 20. Number 1.
January–February 2003. Pages 58–66.

[Alice 2014]

Alice, Gregory Paul, & Mead, Nancy R. Using Malware Analysis to Tailor SQUARE for Mobile
Platforms. CMU/SEI-2014-TN-018. Software Engineering Institute, Carnegie Mellon University.
2014. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=425994.

[Allen 2005]

Allen, Julia. Governing for Enterprise Security. CMU/SEI-2005-TN-023. Software Engineering
Institute, Carnegie Mellon University. 2005. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=7453.

[Allen 2007]

Allen, Julia, & Westby, Jody R. Governing for Enterprise Security (GES) Implementation Guide.
CMU/SEI-2007-TN-020. Software Engineering Institute, Carnegie Melon University. 2007.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8251.

[Allen 2008]

Allen, Julia H., Barnum, Sean, Ellison, Robert J., McGraw, Gary, & Mead, Nancy R. Software
Security Engineering: A Guide for Project Managers. Addison-Wesley Professional. 2008.

[Allen 2011]

Allen, Julia H., & Curtis, Pamela D. Measures for Managing Operational Resilience. Software
Engineering Institute, Carnegie Mellon University. CMU/SEI-2011-TR-019.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10017.

[ANSI 2008]

American National Standards Institute (ANSI) & Internet Security Alliance (ISA). The Financial
Impact of Cyber Risk: 50 Questions Every CFO Should Ask. 2008. www.isalliance.org/
publications/.

[Axelrod 2004]

Axelrod, C. Warren. Outsourcing Information Security. Artech House. 2004.

[Axelrod 2012]

Axelrod, C. Warren. Engineering Safe and Secure Software Systems. Artech House. 2012.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=427321
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=427321
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=425994
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7453
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7453
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8251
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10017
http://www.isalliance.org/publications/
http://www.isalliance.org/publications/

[Babylon 2009]

Babylon, Ltd. Definition of Framework. June 15, 2016 [accessed]. http://dictionary.babylon-
software.com/framework/.

[Backus 1957]

Backus, J. W., Beeber, R. J., Best, S., Goldberg, R., Haibt, L. M., Herrick, H. L., Nelson, R. A.,
Sayre, D., Sheridan, P. B., Stern, H., Ziller, I., Hughes, R. A., & Nutt, R. The FORTRAN
Automatic Coding System. 1957. http://archive.computerhistory.org/resources/text/Fortran/
102663113.05.01.acc.pdf.

[Bartol 2008]

Bartol, Nadya. Practical Measurement Framework for Software Assurance and Information Security,
Version 1.0. Practical Software & Systems Measurement (PSM). 2008. www.psmsc.com/
Prod_TechPapers.asp.

[Bartol 2009]

Bartol, Nadya, Bates, Bryan, Goertzel, Karen M., & Winograd, Theodore. Measuring Cyber Security
and Information Assurance, State-of-the-Art Report (SOAR). Department of
Defense—Information Assurance Technology and Assurance Center (IATAC). 2009.
https://buildsecurityin.us-cert.gov/sites/default/files/MeasuringCybersecurityIA.PDF.

[Basili 1984]

Basili, Victor R., & Weiss, David M. A Methodology for Collecting Valid Software Engineering
Data. IEEE Transactions on Software Engineering. Volume SE-10. Number 6. November 1984.
Pages 728–738.

[Basili 1988]

Basili, Victor R., & Rombach, H. Dieter. The TAME Project: Towards Improvement-Oriented
Software Environments. IEEE Transactions on Software Engineering. Volume 14. Number 6. June
1988. Pages 758–773.

[Bass 2015]

Bass, Len, Ingo Weber, & Liming Zhu. DevOps: A Software Architect’s Perspective. Addison-Wesley
Professional, 2015.

[Behrens 2012]

Behrens, Sandra, Alberts, Christopher J., & Ruefle, Robin. Competency Lifecycle Roadmap: Toward
Performance Readiness. CMU/SEI-2012-TN-020. Software Engineering Institute, Carnegie
Mellon University. 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=28053.

[Bellomo 2014]

Bellomo, Stephany, Ernst, Neil, Nord, Robert, & Kazman, Rick. Toward Design Decisions to Enable
Deployability—Empirical Study of Three Projects Reaching for the Continuous Delivery Holy

http://dictionary.babylon-software.com/framework/
http://dictionary.babylon-software.com/framework/
http://archive.computerhistory.org/resources/text/Fortran/102663113.05.01.acc.pdf
http://archive.computerhistory.org/resources/text/Fortran/102663113.05.01.acc.pdf
http://www.psmsc.com/Prod_TechPapers.asp
http://www.psmsc.com/Prod_TechPapers.asp
https://buildsecurityin.us-cert.gov/sites/default/files/MeasuringCybersecurityIA.PDF
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=28053

Grail. Dependability and Security of System Operation (DSSO) Workshop. Atlanta, Georgia. June
2014. http://resources.sei.cmu.edu/asset_files/conferencepaper/2014_021_001_424904.pdf.

[Bitz 2008]

Bitz, Gunter, et al. Edited by Stacy Simpson. Fundamental Practices for Secure Software
Development—A Guide to the Most Effective Secure Development Practices in Use Today.
SAFECode. 2008. www.safecode.org/publications/SAFECode_Dev_Practices1108.pdf.

[Bosworth 2002]

Bosworth, Seymour, & Kabay, Michel E. Computer Security Handbook, 4th ed. John Wiley and
Sons. 2002.

[Business Roundtable 2013]

Business Roundtable. More Intelligent, More Effective Cybersecurity Protection. 2013.
http://businessroundtable.org/resources/more-intelligent-more-effective-cybersecurity-protection.

[Caralli 2016]

Caralli, Richard A., Allen, Julia H., Curtis, Pamela D., White, David W., & Young, Lisa R. CERT
Resilience Management Model, Version 1.0: Resilient Technical Solution Engineering (RTSE).
2011. www.cert.org/resilience/products-services/cert-rmm/index.cfm.

[Caralli 2011]

Caralli, Richard A., Allen, Julia H., & White, David W. CERT Resilience Management Model
(CERT-RMM): A Maturity Model for Managing Operational Resilience. Addison-Wesley
Professional, 2010.

[CCRA 2012]

Common Criteria Recognition Arrangement (CCRA). Common Criteria for Information Technology
Security Evaluation—Part 1: Introduction and General Model, Version 3.1, Revision 4.
CCMB-2012-09-001. 2012. www.commoncriteriaportal.org/files/ccfiles/
CCPART1V3.1R4_marked_changes.pdf.

[CERN 2010]

European Council for Nuclear Research (CERN). Computer Security: Mandatory Security Baselines.
CERN Computer Security Information. 2010. https://security.web.cern.ch/security/rules/en/
baselines.shtml.

[Charette 1990]

Charette, Robert N. Application Strategies for Risk Analysis. McGraw-Hill Book Company. 1990.

[Chew 2008]

Chew, Elizabeth, Swanson, Marianne, Stine, Kevin, Bartol, Nadya, Brown, Anthony, & Robinson,
Will. Performance Measurement Guide for Information Security. National Institute of Standards

http://resources.sei.cmu.edu/asset_files/conferencepaper/2014_021_001_424904.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices1108.pdf
http://businessroundtable.org/resources/more-intelligent-more-effective-cybersecurity-protection
http://www.cert.org/resilience/products-services/cert-rmm/index.cfm
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4_marked_changes.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4_marked_changes.pdf
https://security.web.cern.ch/security/rules/en/baselines.shtml
https://security.web.cern.ch/security/rules/en/baselines.shtml

and Technology. NIST SP 800-55 Rev 1. 2008. http://csrc.nist.gov/publications/nistpubs/
800-55-Rev1/SP800-55-rev1.pdf.

[Chung 2006]

Chung, Lydia, Hung, Frank, Hough, Eric, Ojoko-Adams, Don, & Mead, Nancy. Security Quality
Requirements Engineering (SQUARE): Case Study Phase III. CMU/SEI-2006-SR-003. Software
Engineering Institute, Carnegie Mellon University. 2006. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=7799.

[CMMI Institute 2015]

CMMI Institute. CMMI Institute. July 2015 [accessed]. http://cmmiinstitute.com.

[CMMI Product Team 2010a]

CMMI Product Team. CMMI for Acquisition, Version 1.3. CMU/SEI-2010-TR-032. Software
Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=9657.

[CMMI Product Team 2010b]

CMMI Product Team. CMMI for Development, Version 1.3. CMU/SEI-2010-TR-033. Software
Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=9661.

[CMMI Product Team 2010c]

CMMI Product Team. CMMI for Services, Version 1.3. CMU/SEI-2010-TR-034. Software
Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=9665.

[CMMI Product Team 2013]

CMMI Product Team. Security by Design with CMMI® for Development, Version 1.3. (CMMI-DEV,
V1.3) [SEI 2010 a]. Software Engineering Institute, Carnegie Mellon University. 2013.
http://cmmiinstitute.com/resources/security-design-cmmi-development-version-13.

[CNSS 2015]

Committee on National Security Systems (CNSS). Committee on National Security Systems (CNSS)
Glossary. CNSSI Number 4009. Revised April 2015. www.cnss.gov/CNSS/issuances/
Instructions.cfm.

[Coles 2015]

Coles, Robert, Barsade, Sigal, & Mehta, Sheetal. Embedding a “Culture of Security” Is the Best
Defense. Knowledge@Wharton. 2015. http://knowledge.wharton.upenn.edu/article/embedding-
culture-security-best-defense/.

[Comella-Dorda 2004]

http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7799
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7799
http://cmmiinstitute.com
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9657
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9657
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9665
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9665
http://cmmiinstitute.com/resources/security-design-cmmi-development-version-13
http://www.cnss.gov/CNSS/issuances/Instructions.cfm
http://www.cnss.gov/CNSS/issuances/Instructions.cfm
http://knowledge.wharton.upenn.edu/article/embedding-culture-security-best-defense/
http://knowledge.wharton.upenn.edu/article/embedding-culture-security-best-defense/

Comella-Dorda, Santiago, Dean, John, Lewis, Grace, Morris, Edwin J., Oberndorf, Patricia, &
Harper, Erin. A Process for COTS Software Product Evaluation. CMU/SEI-2003-TR-017.
Software Engineering Institute, Carnegie Mellon University. 2004. http://resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=6701.

[Common Criteria 2016]

Common Criteria. Common Criteria for Information Technology Security Evaluation. June 24, 2016
[accessed]. www.commoncriteriaportal.org.

[Craig 2013]

Craig. Reverse Engineering a D-Link Backdoor [blog post]. /DEV/TTYS0. October 12, 2013.
www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/.

[Curtis 2002]

Curtis, Bill, Hefley, William E., & Miller, Sally A. The People Capability Maturity Model:
Guidelines for Improving the Workforce. Addison-Wesley Professional, 2001.

[Deloitte 2014]

Deloitte. 2014 Board Practices Report: Perspective from the Boardroom. 2014. www2.deloitte.com/
us/en/pages/regulatory/board-practices-report-perspectives-boardroom-governance.html.

[DHS 2008]

U.S. Department of Homeland Security (DHS). Software Assurance (SwA) Processes and Practices
Working Group—Process Reference Model for Assurance Mapping to CMMI-DEV V1.2. 2008.
https://buildsecurityin.us-cert.gov/swa/procwg.html.

[DHS 2010]

U.S. Department of Homeland Security (DHS). Software Assurance (SwA) Measurement Working
Group. 2010. https://buildsecurityin.us-cert.gov/swa/measwg.html.

[DHS 2012]

U.S. Department of Homeland Security (DHS). Software Assurance Professional Competency Model.
2012. https://buildsecurityin.us-cert.gov/sites/default/files/
Competency%20Model_Software%20Assurance%20Professional_%2010_05_2012%20final.pdf.

[DoD 2012]

U.S. Department of Defense (DoD). Department of Defense Instruction Number 5200.44—Protection
of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN). DoD Instruction
Number 5200.44. 2012. www.dtic.mil/whs/directives/corres/pdf/520044p.pdf.

[DoE 2014a]

U.S. Department of Energy (DoE). Electricity Subsector Cybersecurity Capability Maturity Model
(ES-C2M2), Version 1.1. 2014. http://energy.gov/oe/downloads/electricity-subsector-
cybersecurity-capability-maturity-model-v-11-february-2014.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6701
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6701
http://www.commoncriteriaportal.org
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/
http://www2.deloitte.com/us/en/pages/regulatory/board-practices-report-perspectives-boardroom-governance.html
http://www2.deloitte.com/us/en/pages/regulatory/board-practices-report-perspectives-boardroom-governance.html
https://buildsecurityin.us-cert.gov/swa/procwg.html
https://buildsecurityin.us-cert.gov/swa/measwg.html
https://buildsecurityin.us-cert.gov/sites/default/files/Competency%20Model_Software%20Assurance%20Professional_%2010_05_2012%20final.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/Competency%20Model_Software%20Assurance%20Professional_%2010_05_2012%20final.pdf
http://www.dtic.mil/whs/directives/corres/pdf/520044p.pdf
http://energy.gov/oe/downloads/electricity-subsector-cybersecurity-capability-maturity-model-v-11-february-2014
http://energy.gov/oe/downloads/electricity-subsector-cybersecurity-capability-maturity-model-v-11-february-2014

[DoE 2014b]

U.S. Department of Energy (DoE). Oil and Natural Gas Subsector Cybersecurity Capability Maturity
Model (ONG-C2M2), Version 1.1. 2014. http://energy.gov/oe/downloads/oil-and-natural-gas-
subsector-cybersecurity-capability-maturity-model-february-2014.

[DoLETA 2012]

U.S. Department of Labor—Employment and Training Administration (DoLETA). Information
Technology Competency Model. 2012. www.careeronestop.org/CompetencyModel/competency-
models/information-technology.aspx.

[Giorgini 2006]

Giorgini, Paolo, Mouratidis, Haralambos, & Zannone, Nicola. Modelling Security and Trust with
Secure Tropos. Integrating Security and Software Engineering: Advances and Future Visions. IGI
Global. 2006. Pages 160–189. www.igi-global.com/chapter/modelling-security-trust-secure-
tropos/24055.

[Google 2012]

Google. Google’s Approach to IT Security: A Google White Paper. 2012. https://cloud.google.com/
files/Google-CommonSecurity-WhitePaper-v1.4.pdf.

[Hadfield 2011]

Hadfield, Steve, Schweitzer, Dino, Gibson, David, Fagin, Barry, Carlisle, Martin, Boleng, Jeff, &
Bibighaus, Dave. Defining, Integrating, and Assessing a Purposeful Progression of Cross-
Curricular Initiatives into a Computer Science Program. Frontiers in Education Conference.
Rapid City, South Dakota. October 2011. http://archive.fie-conference.org/fie2011/papers/
1545.pdf.

[Hadfield 2012]

Hadfield, Steve. Integrating Software Assurance and Secure Programming Concepts and Mindsets
into an Undergraduate Computer Science Program. Department of Homeland Security Semi-
Annual Software Assurance Forum. McLean, Virginia. March 2012. https://buildsecurityin.us-
cert.gov/sites/default/files/
Integrating%20Software%20Assurance%20and%20Secure%20Programming%20Concep.pdf.

[Hilburn 2013a]

Hilburn, Thomas B., Ardis, Mark A., Johnson, Glenn, Kornecki, Andrew J., & Mead, Nancy R.
Software Assurance Competency Model. CMU/SEI-2013-TN-004. Software Engineering Institute,
Carnegie Mellon University. 2013. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=47953.

[Hilburn 2013b]

Hilburn, Tom B., & Mead, Nancy R. Building Security In: A Road to Competency. IEEE Security &
Privacy. Volume 11. Number 5. September/October 2013. Pages 89–92. http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?reload=true&arnumber=6630006.

http://energy.gov/oe/downloads/oil-and-natural-gas-subsector-cybersecurity-capability-maturity-model-february-2014
http://energy.gov/oe/downloads/oil-and-natural-gas-subsector-cybersecurity-capability-maturity-model-february-2014
http://www.careeronestop.org/CompetencyModel/competency-models/information-technology.aspx
http://www.careeronestop.org/CompetencyModel/competency-models/information-technology.aspx
http://www.igi-global.com/chapter/modelling-security-trust-secure-tropos/24055
http://www.igi-global.com/chapter/modelling-security-trust-secure-tropos/24055
https://cloud.google.com/files/Google-CommonSecurity-WhitePaper-v1.4.pdf
https://cloud.google.com/files/Google-CommonSecurity-WhitePaper-v1.4.pdf
http://archive.fie-conference.org/fie2011/papers/1545.pdf
http://archive.fie-conference.org/fie2011/papers/1545.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/Integrating%20Software%20Assurance%20and%20Secure%20Programming%20Concep.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/Integrating%20Software%20Assurance%20and%20Secure%20Programming%20Concep.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/Integrating%20Software%20Assurance%20and%20Secure%20Programming%20Concep.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47953
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47953
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6630006
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6630006

[Howard 2006]

Howard, Michael, & Lipner, Steve. The Security Development Lifecycle. Microsoft Press. 2006.

[Humphrey 1989]

Humphrey, Watts S. Managing the Software Process. Addison-Wesley Professional. 1989.

[IEEE 2000]

Institute of Electrical and Electronics Engineers (IEEE). The Authoritative Dictionary of IEEE
Standards Terms, 7th ed. http://ieeexplore.ieee.org/servlet/opac?punumber=4116785.

[IEEE-CS 2014]

Institute of Electrical and Electronics Engineers (IEEE) Computer Society. Software Engineering
Competency Model, Version 1.0 (SWECOM). 2014. www.computer.org/web/peb/swecom.

[IPRC 2006]

International Process Research Consortium (IPRC). A Process Research Framework. Software
Engineering Institute, Carnegie Mellon University. 2006. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=30501.

[ISACA 2014]

Information Systems Audit and Control Association (ISACA). Cybersecurity Fundamentals
Glossary. 2014. www.isaca.org/pages/glossary.aspx.

[ISO/IEC 2007]

International Organization for Standardization & International Electrotechnical Commission. Systems
and Software Engineering—Measurement Process. ISO/IEC 15939. 2007.

[ISO/IEC 2008a]

International Organization for Standardization & International Electrotechnical Commission (ISO/
IEC). Information Technology—Security Techniques—Evaluation Criteria for IT Security—Part
2: Security Functional Components. ISO/IEC 15408-2. 2008.

[ISO/IEC 2008b]

International Organization for Standardization & International Electrotechnical Commission (ISO/
IEC). Information Technology—Security Techniques—Evaluation Criteria for IT Security—Part
3: Security Assurance Components. ISO/IEC 15408-3. 2008.

[ISO/IEC 2009]

International Organization for Standardization & International Electrotechnical Commission (ISO/
IEC). Information Technology—Security Techniques—Evaluation Criteria for IT Security—Part
1: Introduction and General Model. ISO/IEC 15408-1. 2009.

[ISO/IEC 2011]

http://ieeexplore.ieee.org/servlet/opac?punumber=4116785
http://www.computer.org/web/peb/swecom
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30501
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30501
http://www.isaca.org/pages/glossary.aspx

International Organization for Standardization & International Electrotechnical Commission (ISO/
IEC). Information Technology—Security Techniques—Application Security—Part 1: Overview
and Concepts. ISO/IEC 27034-1. 2011.

[ISO/IEC 2013]

International Organization for Standardization & International Electrotechnical Commission (ISO/
IEC). Information Technology—Security Techniques—Information Security Management
Systems—Requirements. ISO/IEC 27001. 2013.

[ISO/IEC 2015]

International Organization for Standardization & International Electrotechnical Commission (ISO/
IEC). Information Technology—Security Techniques—Application Security—Part 2: Organization
Normative Framework. ISO/IEC 27034-2. 2015.

[ISSA 2004]

Information Systems Security Association (ISSA). Generally Accepted Information Security
Principles, GAISP V3.0, Update Draft. 2004. https://citadel-information.com/wp-content/uploads/
2010/12/issa-generally-accepted-information-security-practices-v3-2004.pdf.

[ITGI 2006]

IT Governance Institute (ITGI). Information Security Governance: Guidance for Boards of Directors
and Executive Management, 2nd ed. 2006. www.isaca.org/knowledge-center/research/documents/
information-security-govenance-for-board-of-directors-and-executive-
management_res_eng_0510.pdf.

[Jacobson 2008]

Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley Professional, 2008.

[Jaquith 2007]

Jaquith, Andrew. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison-Wesley
Professional, 2007.

[Kelly 1998]

Kelly, Tim P. Arguing Safety—A Systematic Approach to Managing Safety Cases [Doctoral Diss.].
University of York. 1998. www-users.cs.york.ac.uk/tpk/tpkthesis.pdf.

[Kelly 2004]

Kelly, Tim, & Weaver, Rob. The Goal Structuring Notation: A Safety Argument Notation.
Proceedings of the Dependable Systems and Networks 2004 Workshop on Assurance Cases.
Florence, Italy. July 2004. www-users.cs.york.ac.uk/tpk/dsn2004.pdf.

[Khajenoori 1998]

https://citadel-information.com/wp-content/uploads/2010/12/issa-generally-accepted-information-security-practices-v3-2004.pdf
https://citadel-information.com/wp-content/uploads/2010/12/issa-generally-accepted-information-security-practices-v3-2004.pdf
http://www.isaca.org/knowledge-center/research/documents/information-security-govenance-for-board-of-directors-and-executive-management_res_eng_0510.pdf
http://www.isaca.org/knowledge-center/research/documents/information-security-govenance-for-board-of-directors-and-executive-management_res_eng_0510.pdf
http://www.isaca.org/knowledge-center/research/documents/information-security-govenance-for-board-of-directors-and-executive-management_res_eng_0510.pdf
http://www-users.cs.york.ac.uk/tpk/tpkthesis.pdf
http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf

Khajenoori, S., Hilburn, T., Hirmanpour, I., Turner, R., & Qasem, A. Software Engineering
Competency Study: Final Report. ERAU-FAA Project, Federal Aviation Administration.
December 1998.

[Kim 2008]

Kim, Gene, Love, Paul, & Spafford, George. Visible Ops Security. IT Process Institute, Inc. 2008.

[Kissel 2013]

Kissel, Richard, ed. Glossary of Key Information Security Terms, NISTIR 7298, Revision 2. U.S.
Department of Commerce. 2013. www.nist.gov/manuscript-publication-
search.cfm?pub_id=913810.

[Kitten 2013]

Kitten, Tracy. Digital Certificates Hide Malware—Fraudsters’ Fake Companies Fool Cert
Authorities. BankInfoSecurity.com. March 11, 2013. www.bankinfosecurity.com/digital-
certificates-hide-malware-a-5592/op-1.

[Leveson 2004]

Leveson, Nancy. A New Accident Model for Engineering Safer Systems. Safety Science. Volume 42.
Number 4. April 2004. Pages 237–270. http://sunnyday.mit.edu/accidents/safetyscience-
single.pdf.

[Lipner 2005]

Lipner, Steve, & Howard, Michael. The Trustworthy Computing Security Development Lifecycle.
March 2005. http://msdn.microsoft.com/en-us/library/ms995349.aspx.

[Lipner 2015]

Lipner, Steven B. Privacy and Security—Security Assurance—How Can Customers Tell They Are
Getting It? Communications of the ACM. Volume 58. Number 11. November 2015. Pages 24–26.

[McGraw 2015]

McGraw, Gary, Migues, Sammy, & West, Jacob. Building Security In Maturity Model, Version 6
(BSIMM6). 2015. www.bsimm.com/download/.

[Mead 2005]

Mead, Nancy, Hough, Eric, & Stehney, Ted, II. Security Quality Requirements Engineering. Software
Engineering Institute, Carnegie Mellon University. 2005. http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=7657.

[Mead 2010a]

Mead, Nancy R., Allen, Julia H., Ardis, Mark A., Hilburn, Thomas B., Kornecki, Andrew J., Linger,
Richard C., & McDonald, James. Software Assurance Curriculum Project Volume I: Master of
Software Assurance Reference Curriculum. CMU/SEI-2010-TR-005. Software Engineering

http://www.nist.gov/manuscript-publication-search.cfm?pub_id=913810
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=913810
http://www.bankinfosecurity.com/digital-certificates-hide-malware-a-5592/op-1
http://www.bankinfosecurity.com/digital-certificates-hide-malware-a-5592/op-1
http://sunnyday.mit.edu/accidents/safetyscience-single.pdf
http://sunnyday.mit.edu/accidents/safetyscience-single.pdf
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://www.bsimm.com/download/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7657
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7657

Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=9415.

[Mead 2010b]

Mead, Nancy, & Allen, Julia. Building Assured Systems Framework. CMU/SEI-2010-TR-025.
Software Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=9611.

[Mead 2010c]

Mead, Nancy R., Hilburn, Thomas B., & Linger, Richard C. Software Assurance Curriculum Project,
Volume II: Undergraduate Course Outlines. CMU/SEI-2010-TR-019. Software Engineering
Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=9543.

[Mead 2011a]

Mead, Nancy R., Allen, Julia H., Ardis, Mark A., Hilburn, Thomas B., Kornecki, Andrew J., &
Linger, Richard C. Software Assurance Curriculum Project Volume III: Master of Software
Assurance Course Syllabi. CMU/SEI-2011-TR-013. Software Engineering Institute, Carnegie
Mellon University. 2011.

[Mead 2011b]

Mead, Nancy R., Hawthorne, Elizabeth K., & Ardis, Mark A. Software Assurance Curriculum
Project, Volume IV: Community College Education. CMU/SEI-2011-TR-017. Software
Engineering Institute, Carnegie Mellon University. 2011.

[Mead 2013a]

Mead, Nancy R., & Shoemaker, Dan. The Software Assurance Competency Model: A Roadmap to
Enhance Individual Professional Capability. CERT. 2013. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=299147.

[Mead 2013b]

Mead, Nancy R., Shoemaker, Dan, & Woody, Carol. Principles and Measurement Models for
Software Assurance. International Journal of Secure Software Engineering. Volume 4. Number 1.
April 2013. www.igi-global.com/article/principles-measurement-models-software-assurance/
76352.

[Mead 2014]

Mead, Nancy R., & Morales, Jose Andre. Using Malware Analysis to Improve Security
Requirements on Future Systems. Evolving Security & Privacy Requirements Engineering
(ESPRE) Workshop, IEEE International Requirements Engineering Conference Proceedings.
August 2014. Pages 37–42. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?reload=true&arnumber=6890526.

[Mead 2015]

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9611
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9611
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9543
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9543
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=299147
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=299147
http://www.igi-global.com/article/principles-measurement-models-software-assurance/76352
http://www.igi-global.com/article/principles-measurement-models-software-assurance/76352
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6890526
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6890526

Mead, Nancy R., Morales, Jose Andre, & Alice, Gregory Paul. A Method and Case Study for Using
Malware Analysis to Improve Security Requirements. International Journal of Secure Software
Engineering. Volume 6. Number 1. January–March 2015. Pages 1–23. www.igi-global.com/
article/a-method-and-case-study-for-using-malware-analysis-to-improve-security-requirements/
123452.

[Mellado 2007]

Mellado, Daniel, Fernández-Medina, Eduardo, & Piattini, Mario. A Common Criteria Based Security
Requirements Engineering Process for the Development of Secure Information Systems.
Computer Standards & Interfaces. Volume 29. Number 2. February 2007. Pages 244–253.

[Microsoft 2010a]

Microsoft. Microsoft Security Development Lifecycle. 2010. www.microsoft.com/security/sdl/about/
process.aspx.

[Microsoft 2010b]

Microsoft. Microsoft Security Development Lifecycle Version 5.0. 2010.
http://download.microsoft.com/download/F/2/0/F205C451-C59C-4DC7-8377-9535D0A208EC/
Microsoft%20SDL_Version%205.0.docx.

[NIST 2008]

National Institute of Standards and Technology (NIST). Performance Measurement Guide for
Information Security. 2008. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-55r1.pdf.

[NIST 2014a]

National Institute of Standards and Technology (NIST). Assessing Security and Privacy Controls in
Federal Information Systems and Organizations: Building Effective Assessment Plans. Special
Publication 800-53A. December 2014. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-53Ar4.pdf.

[MITRE 2014]

MITRE. Common Weakness Enumeration: A Community-Developed Dictionary of Software
Weakness Types. 2014 [accessed]. http://cwe.mitre.org.

[MITRE 2016]

MITRE. Making Security Measurable. June 14, 2016 [accessed]. http://measurablesecurity.mitre.org.

[Moreno 2012]

Moreno, Ana M., Sanchez-Segura, Maria-Isabel, Medina-Dominguez, Fuensanta, & Carvajal, Laura.
Balancing Software Engineering Education and Industrial Needs. The Journal of Systems and
Software. Volume 85. Issue 7. July 2012. Pages 1607–1620.

[NASA 2004]

http://www.igi-global.com/article/a-method-and-case-study-for-using-malware-analysis-to-improve-security-requirements/123452
http://www.igi-global.com/article/a-method-and-case-study-for-using-malware-analysis-to-improve-security-requirements/123452
http://www.igi-global.com/article/a-method-and-case-study-for-using-malware-analysis-to-improve-security-requirements/123452
http://www.microsoft.com/security/sdl/about/process.aspx
http://www.microsoft.com/security/sdl/about/process.aspx
http://download.microsoft.com/download/F/2/0/F205C451-C59C-4DC7-8377-9535D0A208EC/Microsoft%20SDL_Version%205.0.docx
http://download.microsoft.com/download/F/2/0/F205C451-C59C-4DC7-8377-9535D0A208EC/Microsoft%20SDL_Version%205.0.docx
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-55r1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-55r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53Ar4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53Ar4.pdf
http://cwe.mitre.org
http://measurablesecurity.mitre.org

National Aeronautics and Space Administration (NASA). Software Assurance Standard. NASA-
STD-8739.8. 2004. www.hq.nasa.gov/office/codeq/doctree/87398.htm.

[NASA 2016]

National Aeronautics and Space Administration (NASA). Systems Engineering Competencies. June
20, 2016 [accessed]. http://appel.nasa.gov/developmental-programs/seldp/program/
se_competencies-html/.

[NDIA 1999]

National Defense Industrial Association Test and Evaluation Division (NDIA). Test and Evaluation
Public-Private Partnership Study. 1999. www.ndia.org/resources/pages/publication_catalog.aspx.

[NIST 2013]

National Institute of Standards and Technology (NIST). Recommended Security Controls for Federal
Information Systems and Organizations. Special Publication 800-53, Revision 4. 2013.
http://csrc.nist.gov/publications/PubsSPs.html#800-53.

[NIST 2014]

National Institute of Standards and Technology (NIST). Framework for Improving Critical
Infrastructure Cybersecurity Version 1.0. February 2014. www.nist.gov/cyberframework/
index.cfm.

[NIST 2015]

National Institute of Standards and Technology (NIST). Supply Chain Risk Management Practices
for Federal Information Systems and Organizations. Special Publication 800-161. 2015.
http://csrc.nist.gov/publications/PubsSPs.html#800-161.

[NIST 2016]

NIST. National Vulnerability Database. June 24, 2016 [accessed]. https://nvd.nist.gov.

[Nord 2012]

Nord, Robert L., Ozkaya, Ipek, & Raghvinder, S. Sangwan. Making Architecture Visible to Improve
Flow Management in Lean Software Development. IEEE Software. Volume 29. Number 5.
September–October 2012. Pages 33–39.

[OMG 2013]

Object Management Group (OMG). How to Deliver Resilient, Secure, Efficient, and Easily Changed
IT Systems in Line with CISQ Recommendations. 2013. www.omg.org/
CISQ_compliant_IT_Systemsv.4-3.pdf.

[Oracle 2014]

Oracle. Importance of Software Security Assurance. 2014. www.oracle.com/us/support/assurance/
development/secure-coding-standards/index.html.

http://www.hq.nasa.gov/office/codeq/doctree/87398.htm
http://appel.nasa.gov/developmental-programs/seldp/program/se_competencies-html/
http://appel.nasa.gov/developmental-programs/seldp/program/se_competencies-html/
http://www.ndia.org/resources/pages/publication_catalog.aspx
http://csrc.nist.gov/publications/PubsSPs.html#800-53
http://www.nist.gov/cyberframework/index.cfm
http://www.nist.gov/cyberframework/index.cfm
http://csrc.nist.gov/publications/PubsSPs.html#800-161
https://nvd.nist.gov
http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf
http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf
http://www.oracle.com/us/support/assurance/development/secure-coding-standards/index.html
http://www.oracle.com/us/support/assurance/development/secure-coding-standards/index.html

[Oracle 2016]

Oracle. Security Solutions. June 6, 2016 [accessed]. www.oracle.com/us/technologies/security/
overview/index.html.

[OWASP 2015]

OWASP. OWASP SAMM Project. Open Web Application Security Project (OWASP). 2015
[accessed]. www.owasp.org/index.php/OWASP_SAMM_Project.

[OWASP 2016]

Open Web Application Security Project (OWASP). OWASP Secure Software Contract Annex. March
2, 2016. www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex.

[Parker 2009]

Parker, Donn B. Making the Case for Replacing Risk-Based Security. Enterprise Information
Security and Privacy. Artech House. 2009. Pages 91–101.

[PCI Security Standards Council 2013]

Payment Card Industry (PCI) Security Standards Council. Payment Card Industry (PCI) Payment
Application Data Security Standard, Requirements and Security Assessment Procedures, Version
3.0. 2013. www.pcisecuritystandards.org/document_library.

[PCI Security Standards Council 2015]

Payment Card Industry (PCI) Security Standards Council. Payment Card Industry (PCI) Data
Security Standard, Version 3.1. 2015. www.pcisecuritystandards.org/document_library.

[Regan 2014]

Regan, Colleen, Lapham, Mary Ann, Wrubel, Eileen, Beck, Stephen, & Bandor, Michael. Agile
Methods in Air Force Sustainment: Status and Outlook. CMU/SEI-2014-TN-009. Software
Engineering Institute, Carnegie Mellon University. 2014. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=312754.

[Royce 1970]

Royce, Winston. Managing the Development of Large Software Systems. Pages 1–9. In Proceedings,
IEEE WESCON. Los Angeles, California. August 1970. Not publicly available. Reprinted in ICSE
'87 Proceedings of the 9th International Conference on Software Engineering. IEEE Computer
Society Press. March 1987, pp 328–338.

[SAE 2004]

SAE International. Software Reliability Program Standard. JA1002_200401. 2004.
http://standards.sae.org/ja1002_200401/.

[SAFECode 2010]

SAFECode. Software Assurance Forum for Excellence in Code (SAFECode). June 15, 2016
[accessed]. www.safecode.org.

http://www.oracle.com/us/technologies/security/overview/index.html
http://www.oracle.com/us/technologies/security/overview/index.html
http://www.owasp.org/index.php/OWASP_SAMM_Project
http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
http://www.pcisecuritystandards.org/document_library
http://www.pcisecuritystandards.org/document_library
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=312754
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=312754
http://standards.sae.org/ja1002_200401/
http://www.safecode.org

[Saltzer 1974]

Saltzer, Jerome H., & Schroeder, Michael D. The Protection of Information in Computer Systems.
Communications of the ACM. Volume 17. Issue 7. 1974.

[SANS 2015]

SANS. Information Security Policy Templates. SANS Information Security Training. November 8,
2015 [accessed]. www.sans.org/security-resources/policies.

[Shoemaker 2013]

Shoemaker, Dan, & Mead, Nancy R. Software Assurance Measurement—State of the Practice. CMU/
SEI-2013-TN-019. Software Engineering Institute, Carnegie Mellon University. 2013.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=72885.

[Shunn 2013]

Shunn, Arjuna, Woody, Carol, Seacord, Robert, & Householder, Allen. Strengths in Security
Solutions. Software Engineering Institute, Carnegie Mellon University. 2013.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77878.

[Shywriter 2013]

ShyWriter. SECURITY ALERT: Back Door Found in D-Link Routers. Malwarebytes Forums.
October 14, 2013. https://forums.malwarebytes.org/index.php?showtopic=134875.

[Stevens Institute of Technology 2009]

Stevens Institute of Technology. Graduate Software Engineering 2009 (GSwE2009)—Curriculum
Guidelines for Graduate Degree Programs in Software Engineering. 2009. www.acm.org/binaries/
content/assets/education/gsew2009.pdf.

[Swanson 1996]

Swanson, Marianne, & Guttman, Barbara. NIST Special Publication 800-14, Generally Accepted
Principles and Practices for Securing Information Technology Systems. National Institute of
Standards and Technology. 1996. http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf.

[TechTarget 2015]

TechTarget. What Is Best Practice? TechTarget SearchSoftwareQuality. November 8, 2015
[accessed]. http://searchsoftwarequality.techtarget.com/definition/best-practice.

[Tippett 2002]

Tippett, Peter. Viewpoint Discussion—Calculating Your Security Risk. The Washington Post.
December 4, 2002. www.washingtonpost.com/wp-srv/liveonline/advertisers/
viewpoint_tru120402.htm.

[TSI 2014]

http://www.sans.org/security-resources/policies
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=72885
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77878
https://forums.malwarebytes.org/index.php?showtopic=134875
http://www.acm.org/binaries/content/assets/education/gsew2009.pdf
http://www.acm.org/binaries/content/assets/education/gsew2009.pdf
http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf
http://searchsoftwarequality.techtarget.com/definition/best-practice
http://www.washingtonpost.com/wp-srv/liveonline/advertisers/viewpoint_tru120402.htm
http://www.washingtonpost.com/wp-srv/liveonline/advertisers/viewpoint_tru120402.htm

Trustworthy Software Initiative & British Standards Institution. Software
Trustworthiness—Governance and Management—Specification. PAS 754. British Standards
Institution. 2009.

[Veracode 2012]

Veracode. Study of Software Related Cybersecurity Risks in Public Companies, Feature Supplement
of Veracode’s State of Software Security Report. 2012. https://info.veracode.com/state-of-
software-security-volume-4-supplement.html.

[Warner 2014]

Warner, Judy, & Epstein, Adam J. Playing for Keeps: Keeping Your Cyber Issues in Check. NACD
Magazine. September 25, 2014. www.nacdonline.org/Magazine/Article.cfm?ItemNumber=11730.

[Westby 2012]

Westby, Jody R. Governance of Enterprise Security Survey: CyLab 2012 Report—How Boards &
Senior Executives Are Managing Cyber Risks. Carnegie Mellon University. 2012.
www.cylab.cmu.edu/education/governance.html.

[White House 2013]

White House. Improving Critical Infrastructure Cybersecurity. Executive Order 13636. February 12,
2013. www.whitehouse.gov/the-press-office/2013/02/12/executive-order-improving-critical-
infrastructure-cybersecurity.

[Wikipedia 2011a]

Wikipedia. Morris Worm. June 2011 [accessed]. http://en.wikipedia.org/wiki/Morris_worm.

[Wikipedia 2011b]

Wikipedia. IBM System/370. June 2011 [accessed]. http://en.wikipedia.org/wiki/System/370.

[Wikipedia 2014a]

Wikipedia. Heartbleed. April 2014 [accessed]. http://en.wikipedia.org/wiki/Heartbleed.

[Wikipedia 2014b]

Wikipedia. Zero-Day Attack. April 2014 [accessed]. http://en.wikipedia.org/wiki/Zero-day_attack.

[Wood 1999]

Wood, Charles Cresson. Information Security Policies Made Easy: Version 7. Baseline Software.
1999.

[Woody 2014]

Woody, Carol, Ellison, Robert J., & Nichols, William. Predicting Software Assurance Using Quality
and Reliability Measures. CMU/SEI-2014-TN-026. Software Engineering Institute, Carnegie
Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589.

https://info.veracode.com/state-of-software-security-volume-4-supplement.html
https://info.veracode.com/state-of-software-security-volume-4-supplement.html
http://www.nacdonline.org/Magazine/Article.cfm?ItemNumber=11730
http://www.cylab.cmu.edu/education/governance.html
http://www.whitehouse.gov/the-press-office/2013/02/12/executive-order-improving-critical-infrastructure-cybersecurity
http://www.whitehouse.gov/the-press-office/2013/02/12/executive-order-improving-critical-infrastructure-cybersecurity
http://en.wikipedia.org/wiki/Morris_worm
http://en.wikipedia.org/wiki/System/370
http://en.wikipedia.org/wiki/Heartbleed
http://en.wikipedia.org/wiki/Zero-day_attack
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589

[Xing 2014]

Xing, Luyi, Pan, Xiaorui, Wang, Rui, Yuan, Kan, & Wang, XiaoFeng. Upgrading Your Android,
Elevating My Malware: Privilege Escalation Through Mobile OS Updating. Presented at 2014
IEEE Symposium on Security and Privacy. May 2014. www.informatics.indiana.edu/xw7/papers/
privilegescalationthroughandroidupdating.pdf.

http://www.informatics.indiana.edu/xw7/papers/privilegescalationthroughandroidupdating.pdf
http://www.informatics.indiana.edu/xw7/papers/privilegescalationthroughandroidupdating.pdf

Bibliography

Alberts, Christopher J., Dorofee, Audrey J., Higuera, Ron, Murphy, Richard L., Walker, Julie A.,
& Williams, Ray C. Continuous Risk Management Guidebook. Software Engineering
Institute, Carnegie Mellon University. 1996. Pages 7–9. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=30856.

Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE). BKCASE.
June 29, 2016 [accessed]. www.bkcase.org.

Chrissis, Mary Beth, Konrad, Mike, & Moss, Michele. Ensuring Your Development Processes
Meet Today’s Cyber Challenges. CrossTalk. Volume 26. Number 2. March/April 2013. Pages
29–33. www.crosstalkonline.org/issues/marchapril-2013.html.

Committee on National Security Systems (CNSS). National Information Assurance (IA) Glossary.
CNSSI Number 4009. 2009. www.ncsc.gov/nittf/docs/
CNSSI-4009_National_Information_Assurance.pdf.

Elahi, Golnaz, Yu, Eric, & Zannone, Nicola. A Vulnerability-Centric Requirements Engineering
Framework: Analyzing Security Attacks, Countermeasures, and Requirements Based on
Vulnerabilities. Requirements Engineering Journal. Volume 15. Number 1. March 2010.
Pages 41–62. http://dl.acm.org/citation.cfm?id=1731695.

Ellison, Robert J., Goodenough, John B., Weinstock, Charles B., & Woody, Carol. Evaluating and
Mitigating Software Supply Chain Security Risks. CMU/SEI-2010-TN-016. Software
Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=9337.

Haley, Charles, Laney, Robin, Moffett, Jonathan, & Nuseibeh, Bashar. Security Requirements
Engineering: A Framework for Representation and Analysis. IEEE Transactions on Software
Engineering. Volume 34. Number 1. January–February 2008. Pages 133–153.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4359475.

Humphrey, Watts S. A Discipline for Software Engineering. Addison-Wesley Professional, 1995.

Jacobson, Ivar, & Lawson, Harold Bud, eds. Software Engineering in the Systems
Context—Addressing Frontiers, Practice and Education. College Publications, Kings College,
London. 2016. www.collegepublications.co.uk/systems/?00007.

Krigsman, Michael. Six Types of IT Project Failure. TechRepublic. September 29, 2009.
www.techrepublic.com/blog/tech-decision-maker/six-types-of-it-project-failure/.

Levinson, Meredith. Project Management: The 14 Most Common Mistakes IT Departments
Make. CIO. July 23, 2008. www.cio.com/article/2434788/project-management/project-
management-the-14-most-common-mistakes-it-departments-make.html.

Mead, Nancy R., & Hilburn, Thomas B. Building Security In: Preparing for a Software Security
Career. IEEE Security & Privacy. Volume 11. Number 6. November–December 2013. Pages
80–83. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6682937.

Merrell, Samuel A., Moore, Andrew P., & Stevens, James F. Goal-Based Assessment for the
Cybersecurity of Critical Infrastructure. 2010 IEEE International Conference on Technologies
for Homeland Security (HST). 2010. Pages 84–88. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=5655090.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30856
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30856
http://www.bkcase.org
http://www.crosstalkonline.org/issues/marchapril-2013.html
http://www.ncsc.gov/nittf/docs/CNSSI-4009_National_Information_Assurance.pdf
http://www.ncsc.gov/nittf/docs/CNSSI-4009_National_Information_Assurance.pdf
http://dl.acm.org/citation.cfm?id=1731695
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9337
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9337
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4359475
http://www.collegepublications.co.uk/systems/?00007
http://www.techrepublic.com/blog/tech-decision-maker/six-types-of-it-project-failure/
http://www.cio.com/article/2434788/project-management/project-management-the-14-most-common-mistakes-it-departments-make.html
http://www.cio.com/article/2434788/project-management/project-management-the-14-most-common-mistakes-it-departments-make.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6682937
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5655090
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5655090

MITRE. Common Attack Pattern Enumeration and Classification. June 29, 2016 [accessed].
http://capec.mitre.org.

Open Web Application Security Project (OWASP). Software Assurance Maturity Model: A Guide
to Building Security into Software Development. June 29, 2016 [accessed].
www.opensamm.org.

Romero-Mariona, Jose. Secure and Usable Requirements Engineering. 24th IEEE/ACM
International Conference on Automated Software Engineering, 2009. Pages 703–706.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5431703.

Sharp, Alec, & McDermott, Patrick. Workflow Modeling: Tools for Process Improvement and
Application Development, 2nd ed. Artech House. 2008.

U.S. Department of Defense. Information Assurance Workforce Improvement Program. DoD
8570.01-M. 2005. http://dtic.mil/whs/directives/corres/pdf/857001m.pdf.

http://capec.mitre.org
http://www.opensamm.org
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5431703
http://dtic.mil/whs/directives/corres/pdf/857001m.pdf

Appendix A. WEA Case Study: Evaluating Security Risks

Using Mission Threads1

1. Originally published in CrossTalk September/October 2014.

by Carol Woody, PhD, and Christopher Alberts

Importance of Systems of Systems
Everything we do these days involves system and software technology: Cars, planes, banks,
restaurants, stores, telephones, appliances, and entertainment rely extensively on technology. Much
of this capability is supported by systems of systems—independent heterogeneous systems that work
together to address desired functionality through complex network, data, and software interactions.
The Wireless Emergency Alerts (WEA) service is a good example of a system of systems.

WEA enables local, tribal, state, territorial, and federal public safety officials to send
geographically targeted text alerts to the public. The U.S. Department of Homeland Security Science
and Technology (DHS S&T) Directorate partners with the Federal Emergency Management Agency
(FEMA), the Federal Communication Commission (FCC), and commercial mobile service providers
(CMSPs) to enhance public safety through the deployment of WEA, which permits emergency
management organizations nationwide to submit alerts for public distribution by mobile carriers
[FEMA 2015]. Alert originators can send three types of messages:

• Presidential alerts, issued by the president of the United States to reach any region of the
nation or the nation as a whole

• Imminent threat alerts

• AMBER (America’s Missing: Broadcast Emergency Response) alerts

CMSPs relay these alerts from FEMA’s Integrated Public Alert and Warning System (IPAWS) to
mobile phones using cell broadcast technology, which does not get backlogged during times of
emergency, unlike wireless voice and data services. Customers who own WEA-capable mobile
phones automatically receive these alerts during an emergency if they are located in the affected
geographic area.

Alert originators already have extensive alert dissemination capability through the Emergency
Alert System, highway signage systems, Internet websites, and telephone dialing systems, just to
mention a few widely used alerting channels. The WEA system, shown in Figure A.1, expands these
options to mobile devices. FEMA established the message structure along with the approvals needed
to have the Alert Aggregator system disseminate messages to mobile devices. Many alert originators
plan to integrate this capability with systems already in place for other dissemination channels.

Figure A.1 WEA System of Systems

The Systems Engineering Handbook describes the following challenges for the development (and
sustainment) of systems of systems [Haskins 2010]:

• Each participating system operates independently.

• Each participating system has its own update, enhancement, and replacement cycle.

• Overall performance of the desired functionality depends on how the various participating
systems can interact, which is not always known in advance.

• Missing or conflicting standards can make the design of data exchanges among the
participating systems complex and difficult to sustain.

• Each participating system has its own management, and the coordination of requirements,
budget constraints, schedules, interfaces, and upgrades can have a major impact on the
expected capability of the system of systems.

• Fuzzy boundaries can cause confusion and error; no one really owns the interface, but one of
the participants needs to take leadership to ensure some level of shared understanding.

• The system of systems is never finished because as each system grows, expands, and ages,
there is a constant need for adjustment.

Public safety officials and alert recipients want to be able to rely on WEA capabilities and need to
have confidence that the alerts are accurate and timely. Effective security is required to support this
confidence. The risk that an attacker could create false alerts or cause valid alerts to be delayed,
destroyed, or modified is a critical issue. Such actions could place the alert-originating organization’s
mission—and the lives and property of the citizens it serves—at risk.

DHS S&T asked a team of security experts at the Carnegie Mellon University’s Software
Engineering Institute (SEI) to research this problem and identify a means for evaluating WEA alert
originator security concerns. The team selected mission thread analysis as a means for developing a
view of the system of systems that could be used for evaluating security risks.

An analysis approach was needed to prepare alert originators to address the following critical
security questions [Allen 2008]:

• What do alert originators need to protect? Why does it need to be protected? What happens if
it is not protected?

• What potential adverse consequences do alert originators need to prevent? At what cost? How
much disruption can they stand before they take action?

• How do alert originators determine and effectively manage the residual risk?

In addition, alert originators needed to consider the local, state, and federal compliance standards
that the organization must address to ensure that the planned choices for security also meet other
mandated standards.

Preparing for Mission Thread Analysis

Drawing on SEI security expertise, initial questions were assembled to assist the alert originator in
gathering information about the current environment and preparing for WEA (or any new technology
capability).

The alert-originating organization should compose answers to the following questions:

• What WEA capability do we plan to implement (types of alerts to issue, geographic regions to
cover)?

• Can we expand existing capabilities to add WEA, or do we need new capabilities?

• Are good security practices in place for the current operational environment? Is there any
history of security problems that can inform our planning?

• Will we use current resources (technology and people), or do we need to add resources?

Responses to these questions begin to frame the target operational context and the critical
functionality that organizations must evaluate for operational security. Each organization has a
different mix of acquired technology and services, in-house development components, and existing
operational capability into which the WEA capability will be woven. With the use of mission threads,
responses to these questions can be described in a visually compelling form that management, system
architects, system and software engineers, and stakeholders can share and refine.

A mission thread is an end-to-end set of steps that illustrate the technology and people resources
needed to deliver expected behavior under a set of conditions and provide a basis for identifying and
analyzing potential problems that could represent risks. For each mission step, the expected actions,
outcomes, and assets are assembled. Confirmation that the components appropriately respond to
expected operational use increases confidence that the system will function as intended, even in the
event of an attack [Ellison 2008].

Mission threads provide a means to identify and evaluate the ways, intentional or unintentional,
that component system failures could occur and how such failures would impact the mission. Next, a
WEA example is provided to demonstrate how the SEI used a mission thread to analyze security.

WEA Mission Thread Example
Mission thread analysis begins with the development of an operational mission thread. For WEA,
typically 25 steps take place from the determination of the need for an alert to the receipt of that alert
by cell phone owners:

1. First responder contacts local alerting authority via an approved device (cell phone, email,
radio, etc.) to state that an event meets criteria for using WEA to issue, cancel, or update an
alert and provides information for message.

2. Local alerting authority (person) determines that the call or email from the first responder is
legitimate.

3. Local alerting authority instructs Alert Origination System (AOS) operator to issue, cancel, or

update an alert using information provided by first responder.2

2. In some cases, the alerting authority and the AOS operator may be the same person.

4. AOS operator logs on to the AOS.

5. AOS logon process activates auditing of the operator’s session.

6. AOS operator enters alert, cancel, or update message.

7. AOS converts message to a format compliant with the Common Alerting Protocol (CAP, a
WEA input standard).

8. CAP-compliant message is signed by a second person for local confirmation.

9. AOS transmits message to the IPAWS Open Platform for Emergency Networks (OPEN)
Gateway.

10. IPAWS-OPEN Gateway verifies3 message and returns status message to AOS.

3. In this list of steps, message verification includes authentication and ensuring that the message is correctly
formatted.

11. AOS operator reads status message and responds as needed.

12. If the message was verified, IPAWS-OPEN Gateway sends message to WEA Alert
Aggregator.

13. WEA Alert Aggregator verifies message and returns status to IPAWS-OPEN Gateway.

14. IPAWS-OPEN Gateway processes status and responds as needed.

15. WEA Alert Aggregator performs additional message processing as needed.

16. If the message was verified, WEA Alert Aggregator transmits alert to Federal Alert Gateway.

17. Federal Alert Gateway verifies message and returns status to WEA Alert Aggregator.

18. WEA Alert Aggregator processes status and responds as needed.

19. If the message was verified, Federal Alert Gateway converts message to CMAC (Commercial
Mobile Alert for Interface C) format.

20. Federal Alert Gateway transmits message to CMSP gateway.

21. CMSP Gateway returns status to Federal Alert Gateway.

22. Federal Alert Gateway processes status and responds as needed.

23. CMSP Gateway sends message to CMSP Infrastructure.

24. CMSP Infrastructure sends message via broadcast to mobile devices in the designated area(s).

25. Mobile device users (recipients) receive the message.

Although many of these steps do not involve technology, they can still represent security risks to
the mission. Mission thread analysis, unlike other techniques such as Failure Mode and Effect
Analysis [Stamatis 2003], allows consideration of the people and their interactions with technology
in addition to the functioning of a system itself. Also, most security evaluations consider only
individual system execution. However, effective operational execution of a mission must cross
organizational and system boundaries to be complete. The use of mission thread analysis for security
provides a way to confirm that each participating system is secure and does not represent a risk to all
others involved in mission execution.

Figure A.2 provides a picture of the WEA mission thread and includes step numbers from the list
to link each step to the appropriate system area. Successful completion requires flawless execution of
four major system areas—alert originator, FEMA IPAWS system, CMSPs, and cell phone
recipients—each shown in a row of the figure. Each area operates independently, and they are
connected only through the transmission of an alert.

Figure A.2 WEA Mission Thread Diagram

WEA Security Analysis
Using the mission thread illustrated in Figure A.2, potential security concerns can be identified
through possible security threats. For the WEA example, the SEI selected the STRIDE threat method
for threat evaluation. STRIDE, developed by Microsoft, considers six typical categories of security
concerns: spoofing, tampering with data, repudiations, information disclosure, denial of service, and
elevation of privilege [Microsoft 2013]. The name of this threat method is derived from the first letter
of each security concern [Howard 2006]. As an illustration of how STRIDE can be applied, focus on
steps 4–9 of the mission thread, which represent the transition across two major system areas from
the alert originator to the FEMA system and provide an opportunity for mission failure if interaction
between the system areas is not secure. Table A.1 shows the result of the STRIDE analysis on the
selected steps.

Table A.1 STRIDE Analysis for Selected WEA Mission Thread Steps

For each step, the team analyzed technology assets critical to step execution to determine ways
that STRIDE threats can compromise each asset used in that step [Howard 2006]. Security and
software experts as well as individuals familiar with the operational mission must participate in this
portion of the analysis. The security and software experts have an understanding of what can go
wrong and the potential impact of each possible failure on the analysis. Those knowledgeable about

the operational execution can ensure that the scenarios are realistic and valid. Available
documentation can provide a start for the development of the mission threads, but there is a tendency
to document the desired operational environment and not the real one. Effective security risk analysis
requires access to realistic operational information.

Based on this input, security experts (individuals with operational security training and
experience) identified at least two security risks that could lead to mission failure:

• Authentication of the individual using the AOS in step 4

• Validation and protection of the digital signatures applied to the alert approved for submission
to the Alert Aggregator in step 8

To analyze these risks in greater detail and help alert originators understand how a security risk
could materialize, mission threads for each specific risk were assembled. Figure A.3 provides a
picture of the risk scenario that describes the second security risk (validity of the digital signature)
noted from the analysis of the WEA operational mission thread. The following paragraphs provide a
dialogue that describes ways in which the security threat could materialize and why the alert
origination organization should consider possible mitigations.

Figure A.3 Security Risk Scenario

An outside attacker with malicious intent decides to obtain a valid certificate and use it to send an
illegitimate CAP-compliant message. The attacker’s goal is to send people to a dangerous location,

hoping to inflict physical and emotional harm on them. The key to this attack is capturing a valid
certificate from an alert originator. The attacker develops two strategies for capturing a valid
certificate. The first strategy targets an alert originator directly. The second strategy focuses on AOS
vendors. Targeting a vendor could be a particularly fruitful strategy for the attacker. The number of
vendors that provide AOS software is small. As a result, each vendor controls a large number of
certificates. A compromised vendor could provide an attacker with many potential organizations to
target.

No matter which strategy is pursued, the attacker looks for vulnerabilities (i.e., weaknesses) in
technologies or procedures that can be exploited. For example, the attacker tries to find
vulnerabilities that expose certificates to exploit, such as the following:

• Unmonitored access to certificates

• Lack of encryption controls for certificates during transit and storage

• Lack of role-based access to certificates

The attacker might also explore social engineering techniques to obtain a certificate. Here, the
attacker attempts to manipulate someone from the alert originator or vendor organization into
providing access to a legitimate certificate or to get information that will be useful in the attacker’s
quest to get a certificate.

Obtaining a certificate is not a simple endeavor. The attacker must be sufficiently motivated and
skilled to achieve this interim goal. However, once this part of the scenario is complete, the attacker
is well positioned to send an illegitimate CAP-compliant message. The attacker has easy access to
publicly documented information defining how to construct CAP-compliant messages.

The attacker’s goal in this risk is to send people to a location that will put them in harm’s way. To
maximize the impact, the attacker takes advantage of an impending event (e.g., weather event, natural
disaster). Because people tend to verify WEA messages through other channels, synchronizing the
attack with an impending event makes it more likely that people will follow the attacker’s
instructions. This scenario could produce catastrophic consequences, depending on the severity of the
event with which the attack is linked.

Through the use of mission thread analysis, security expertise can be integrated with operational
execution to fully describe and analyze operational security risk situations. While there may be many
variations of operational execution, an exhaustive study of all options is not necessary. Building a
representative example that provides a detailed view of a real operational mission from start to finish
has proven to be of value for security risk identification.

Conclusion
The process of developing a well-articulated mission thread that operational and security experts can
share and analyze provides an opportunity to uncover missing or incomplete requirements as well as
differences in understanding, faulty assumptions, and interactions across system and software
boundaries that could contribute to security concerns and potential failure [Ellison 2008].

The mission thread analysis connects each mission step with the technology and human assets
needed to execute that step and provides a framework to link potential security threats directly to
mission execution. Mission thread diagrams and tables assemble information in a structure that can
be readily reviewed and validated by operational and technology experts from various disciplines,
including acquisition, development, and operational support. Mission thread security analysis can be

an effective tool for improved identification of security risks to increase confidence that the system of
systems will function with appropriate operational security.

References

[Allen 2008]

Allen, Julia; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy. Software Security
Engineering: A Guide for Project Managers. Addison-Wesley. 2008.

[Ellison 2008]

Ellison, Robert J.; Goodenough, John B.; Weinstock, Charles B.; & Woody, Carol. Survivability
Assurance for System of Systems. CMU/SEI-2008-TR-008. Software Engineering Institute,
Carnegie Mellon University. 2008. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=8693.

[FEMA 2015]

Federal Emergency Management Agency. Wireless Emergency Alerts. Federal Emergency
Management Agency. June 21, 2015. http://www.fema.gov/wireless-emergency-alerts.

[Haskins 2010]

Haskins, Cecilia, ed. Systems Engineering Handbook: A Guide for System Life Cycle Processes and
Activities, version 3.2. Revised by Kevin Forsberg, M. Krueger, & R. Hamelin. International
Council on Systems Engineering (INCOSE). 2010.

[Howard 2006]

Howard, Michael & Lipner, Steve. The Security Development Life Cycle. Microsoft Press. 2006.

[Microsoft 2013]

Microsoft. The STRIDE Threat Model. Microsoft Developer Network. 7 June 2013 [accessed].
http://msdn.microsoft.com/en-US/library/ee823878%28v=cs.20%29.aspx.

[Stamatis 2003]

Stamatis, D. H. Failure Mode and Effect Analysis: FMEA from Theory to Execution. 2nd ed. ASQ
Quality Press. 2003.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8693
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8693
http://www.fema.gov/wireless-emergency-alerts
http://msdn.microsoft.com/en-US/library/ee823878%28v=cs.20%29.aspx

Appendix B. The MSwA Body of Knowledge with Maturity
Levels Added

The following content comes from the Master of Software Assurance Reference Curriculum report
[Mead 2010a], with maturity levels added for each BoK component.

1. Assurance Across Life Cycles

Outcome: Graduates will have the ability to incorporate assurance technologies and
methods into life-cycle processes and development models for new or evolutionary
system development, and for system or service acquisition.

1.1. Software Life-Cycle Processes

1.1.1. New development [L4]

Processes associated with the full development of a software system

1.1.2. Integration, assembly, and deployment [L4]

Processes concerned with the final phases of the development of a new or
modified software system

1.1.3. Operation and evolution [L4]

Processes that guide the operation of the software product and its change over
time

1.1.4. Acquisition, supply, and service [L3]

Processes that support acquisition, supply, or service of a software system

1.2. Software Assurance Processes and Practices

1.2.1. Process and practice assessment [L3]

Methods, procedures, and tools used to assess assurance processes and
practices

1.2.2. Software assurance integration into SDLC phases [L2/3]

Integration of assurance practices into typical life-cycle phases (for example,
requirements engineering, architecture and design, coding, test, evolution,
acquisition, and retirement)

2. Risk Management

Outcome: Graduates will have the ability to perform risk analysis and tradeoff assessment
and to prioritize security measures.

2.1. Risk Management Concepts

2.1.1. Types and classification [L4]

Different classes of risks (for example, business, project, technical)

2.1.2. Probability, impact, severity [L4]

Basic elements of risk analysis

2.1.3. Models, processes, metrics [L4] [L3—metrics]

Models, process, and metrics used in risk management

2.2. Risk Management Process

2.2.1. Identification [L4]

Identification and classification of risks associated with a project

2.2.2. Analysis [L4]

Analysis of the likelihood, impact, and severity of each identified risk

2.2.3. Planning [L4]

Risk management plan covering risk avoidance and mitigation

2.2.4. Monitoring and management [L4]

Assessment and monitoring of risk occurrence and management of risk
mitigation

2.3. Software Assurance Risk Management

2.3.1. Vulnerability and threat identification [L3]

Application of risk analysis techniques to vulnerability and threat risks

2.3.2. Analysis of software assurance risks [L3]

Analysis of risks for both new and existing systems

2.3.3. Software assurance risk mitigation [L3]

Plan for and mitigation of software assurance risks

2.3.4. Assessment of Software Assurance Processes and Practices [L2/3]

As part of risk avoidance and mitigation, assessment of the identification and
use of appropriate software assurance processes and practices

3. Assurance Assessment

Outcome: Graduates will have the ability to analyze and validate the effectiveness of
assurance operations and create auditable evidence of security measures.

3.1. Assurance Assessment Concepts

3.1.1. Baseline level of assurance; allowable tolerances, if quantitative [L1]

Establishment and specification of the required or desired level of assurance for
a specific software application, set of applications, or a software-reliant system
(and tolerance for same)

3.1.2. Assessment methods [L2/3]

Validation of security requirements

Risk analysis

Threat analysis

Vulnerability assessments and scans [L4]

Assurance evidence

Knowledge of how various methods (such as those above) can be used to
determine if the software or system being assessed is sufficiently secure within
tolerances

3.2. Measurement for Assessing Assurance

3.2.1. Product and process measures by life-cycle phase [L1/2]

Definition and development of key product and process measurements that can
be used to validate the required level of software assurance appropriate to a
given life-cycle phase

3.2.2. Other performance indicators that test for the baseline as defined in 3.1.1, by
life-cycle phase [L1/2]

Definition and development of additional performance indicators that can be
used to validate the required level of software assurance appropriate to a given
life-cycle phase

3.2.3. Measurement processes and frameworks [L2/3]

Knowledge of range of software assurance measurement processes and
frameworks and how these might be used to accomplish software assurance
integration into SDLC phases

3.2.4. Business survivability and operational continuity [L2]

Definition and development of performance indicators that can specifically
address the software/system’s ability to meet business survivability and
operational continuity requirements, to the extent the software affects these

3.3. Assurance Assessment Process (collect and report measures that demonstrate the
baseline as defined in 3.1.1.)

3.3.1. Comparison of selected measurements to the established baseline [L3]

Analysis of key product and process measures and performance indicators to
determine if they are within tolerance when compared to the defined baseline

3.3.2. Identification of out-of-tolerance variances [L3]

Identification of measures that are out of tolerance when compared to the
defined baselines and ability to develop actions to reduce the variance

4. Assurance Management

Outcome: Graduates will have the ability to make a business case for software assurance,
lead assurance efforts, understand standards, comply with regulations, plan for business
continuity, and keep current in security technologies.

4.1. Making the Business Case for Assurance

4.1.1. Valuation and cost/benefit models, cost and loss avoidance, return on
investment [L3]

Application of financially-based approaches, methods, models, and tools to
develop and communicate compelling cost/benefit arguments in support of
deploying software assurance practices

4.1.2. Risk analysis [L3]

Knowledge of how risk analysis can be used to develop cost/benefit arguments
in support of deploying software assurance practices

4.1.3. Compliance justification [L3]

Knowledge of how compliance with laws, regulations, standards, and policies
can be used to develop cost/benefit arguments in support of deploying software
assurance practices

4.1.4. Business impact/needs analysis [L3]

Knowledge of how business impact and needs analysis can be used to develop
cost/benefit arguments in support of deploying software assurance practices,
specifically in support of business continuity and survivability

4.2. Managing Assurance

4.2.1. Project management across the life cycle [L3]

Knowledge of how to lead software and system assurance efforts as an
extension of normal software development (and acquisition) project
management skills

4.2.2. Integration of other knowledge units [L2/3]

Identification, analysis, and selection of software assurance practices from any
knowledge units that are relevant for a specific software development or
acquisition project

4.3. Compliance Considerations for Assurance

4.3.1. Laws and regulations [L3]

Knowledge of the extent to which selected laws and regulations are relevant for
a specific software development or acquisition project, and how compliance
might be demonstrated

4.3.2. Standards [L3]

Knowledge of the extent to which selected standards are relevant for a specific
software development or acquisition project, and how compliance might be
demonstrated

4.3.3. Policies [L2/3]

Knowledge of how to develop, deploy, and use organizational policies to
accelerate the adoption of software assurance practices, and how compliance
might be demonstrated

5. System Security Assurance

Outcome: Graduates will have the ability to incorporate effective security technologies
and methods into new and existing systems.

5.1. For Newly Developed and Acquired Software for Diverse Systems

5.1.1. Security and safety aspects of computer-intensive critical infrastructure [L2]

Knowledge of safety and security risks associated with critical infrastructure
systems such as found, for example, in banking and finance, energy production
and distribution, telecommunications, and transportation systems

5.1.2. Potential attack methods [L3]

Knowledge of the variety of methods by which attackers can damage software
or data associated with that software by exploiting weaknesses in the system
design or implementation

5.1.3. Analysis of threats to software [L3]

Analysis of the threats to which software is most likely to be vulnerable in
specific operating environments and domains

5.1.4. Methods of defense [L3]

Familiarity with appropriate countermeasures such as layers, access controls,
privileges, intrusion detection, encryption, and code review checklists

5.2. For Diverse Operational (Existing) Systems

5.2.1. Historic and potential operational attack methods [L4]

Knowledge of and ability to duplicate the attacks that have been used to
interfere with an application’s or system’s operations

5.2.2. Analysis of threats to operational environments [L3]

Analysis of the threats to which software is most likely to be vulnerable in
specific operating environments and domains

5.2.3. Designing of and plan for access control, privileges, and authentication [L3]

Design of and plan for access control and authentication

5.2.4. Security methods for physical and personnel environments [L4]

Knowledge of how physical access restrictions, guards, background checks,
and personnel monitoring can address risks

5.3. Ethics and Integrity in Creation, Acquisition, and Operation of Software Systems

5.3.1. Overview of ethics, code of ethics, and legal constraints [L4]

Knowledge of how people who are knowledgeable about attack and prevention
methods are obligated to use their abilities, both legally and ethically,
referencing the Software Engineering Code of Ethical and Professional
Conduct [ACM 2016]

5.3.2. Computer attack case studies [L3]

Knowledge of the legal and ethical considerations involved in analyzing a
variety of historical events and investigations

6. System Functionality Assurance

Outcome: Graduates will have the ability to verify new and existing software system
functionality for conformance to requirements and to help reveal malicious content.

6.1. Assurance Technology

6.1.1. Technology evaluation [L3]

Evaluation of capabilities and limitations of technical environments, languages,
and tools with respect to creating assured software functionality and security

6.1.2. Technology improvement [L3]

Recommendation of improvements in technology as necessary within project
constraints

6.2. Assured Software Development

6.2.1. Development methods [L2/3]

Rigorous methods for system requirements, specification, architecture, design,
implementation, verification, and testing to develop assured software

6.2.2. Quality attributes [L3—depends on the property]

Software quality attributes and how to achieve them

6.2.3. Maintenance methods [L3]

Assurance aspects of software maintenance and evolution

6.3. Assured software analytics

6.3.1. Systems analysis [L2 architectures; L3/4 networks, databases (identity
management, access control)]

Analysis of system architectures, networks, and databases for assurance
properties

6.3.2. Structural analysis [L3]

Structuring the logic of existing software to improve understandability and
modifiability

6.3.3. Functional analysis [L2/3]

Reverse engineering of existing software to determine functionality and
security properties

6.3.4. Analysis of methods and tools [L3]

Capabilities and limitations of methods and tools for software analysis

6.3.5. Testing for assurance [L3]

Evaluation of testing methods, plans, and results for assuring software

6.3.6. Assurance evidence [L2]

Development of auditable assurance evidence

6.4. Assurance in acquisition

6.4.1. Assurance of acquired software [L2]

Assurance of software acquired through supply chains,1 vendors, and open
sources, including developing requirements and assuring delivered
functionality and security

1. For more information about software security supply chain risk, download the SEI report Evaluating and
Mitigating Software Supply Chain Security Risks [Ellison 2010].

6.4.2. Assurance of software services [L3]

Development of service level agreements for functionality and security with
service providers and monitoring compliance

7. System Operational Assurance

Outcome: Graduates will have the ability to monitor and assess system operational
security and respond to new threats.

7.1. Operational Procedures

7.1.1. Business objectives [L3]

Role of business objectives and strategic planning in system assurance

7.1.2. Assurance procedures [L3]

Creation of security policies and procedures for system operations

7.1.3. Assurance training [L4]

Selection of training for users and system administrative personnel in secure
system operations

7.2. Operational Monitoring

7.2.1. Monitoring technology [L4]

Capabilities and limitations of monitoring technologies, and installation and
configuration or acquisition of monitors and controls for systems, services, and
personnel

7.2.2. Operational evaluation [L4]

Evaluation of operational monitoring results with respect to system and service
functionality and security

7.2.3. Operational maintenance [L3]

Maintenance and evolution of operational systems while preserving assured
functionality and security

7.2.4. Malware analysis [L2/3]

Evaluation of malicious content and application of countermeasures

7.3. System Control

7.3.1. Responses to adverse events [L3/4]

Plan for and execution of effective responses to operational system accidents,
failures, and intrusions

7.3.2. Business survivability [L3]

Maintenance of business survivability and continuity of operations in adverse
environments (See also Outcome 3, Assurance Assessment.)

References

[ACM 2016]

Association of Computing Machinery & Institute of Electrical and Electronics Engineers. Software
Engineering Code of Ethics and Professional Practice. Association of Computing Machinery. June
9, 2016 [accessed]. http://www.acm.org/about/se-code.

[Ellison 2010]

Ellison, Robert J.; Goodenough, John B.; Weinstock, Charles B.; & Woody, Carol. Evaluating and
Mitigating Software Supply Chain Security Risks. CMU/SEI-2010-TR-016. Software Engineering
Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=9337.

[Mead 2010]

http://www.acm.org/about/se-code
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9337
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9337

Mead, Nancy R.; Allen, Julia H.; Ardis, Mark A.; Hilburn, Thomas B.; Kornecki, Andrew J.; Linger,
Richard C.; & McDonald, James. Software Assurance Curriculum Project Volume I: Master of
Software Assurance Reference Curriculum. CMU/SEI-2010-TR-005. Software Engineering
Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=9415.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9415

Appendix C. The Software Assurance Curriculum Project

The SEI established the Software Assurance Curriculum Project in 2009. The project has developed
four documents that correlate well with the objective to enhance SwA curriculum guidance (see Table
C.1).

Table C.1 Software Assurance Curriculum Project Documents

The courses listed in Table C.1 go well beyond secure coding and SwA at the implementation
level. They cover security issues throughout the life cycle, as part of requirements analysis,
architecture and module design, implementation, testing, and operation and maintenance. The

graduate level includes additional SwA topics in such traditional areas as management and process,
requirements engineering, design, construction, testing, and sustainment. These areas include SwA
topics such as security policy and security functionality requirements; attack methods to damage
software; analysis of threats to software; appropriate countermeasures such as layers, access controls,
privileges, intrusion detection, and encryption; and designing and planning for access control,
privileges, and authentication.

Because no SwA body of knowledge existed, one of the project team’s first tasks was to establish
one. After extensively reviewing software security reports, books, and articles and after surveys of
and discussions with industry and government SwA professionals, the curriculum team developed the
SwA Core Body of Knowledge (CorBoK). The CorBoK covers the spectrum of SwA practices
involved in software system acquisition, development, operation, and evolution. It’s the source for
the content of the courses listed for Volumes II, III, and IV in Table C.1. Table C.2 lists the CorBoK’s
principal components and knowledge areas (KAs) and describes the principal MSwA student
outcomes associated with each KA.

Table C.2 SwA CorBoK Knowledge Areas

Based on the KAs, the project team created the MSwA Curriculum Architecture (see Table C.3).
This architecture is compatible with software engineering master’s degree programs because software
engineering courses can incorporate the SwA-specific topics. Note that the MSwA core and the
capstone experience in Table C.3 list the courses in the Volume III document; in total, they cover all
the knowledge areas listed in Table C.2. The architecture provides a structural basis for programs that
deliver the outcomes described in Table C.2. Of course, programs may cover the SwA body of
knowledge and the corresponding outcomes using a different organization and set of courses, as
listed in Table C.3. Table C.3 also lists the three preparatory areas students need to pursue the
MSwA: computing foundations, software engineering, and security engineering. Volume I describes
these areas in detail.

Table C.3 The Master in Software Assurance Curriculum Architecture

Appendix D. The Software Assurance Competency Model

Designations1

1. This chapter includes major contributions to the SEI’s Software Assurance Competency Model from our
collaborators Mark Ardis, Glenn Johnson, and Andrew Kornecki.

Table D.1 presents the CorBoK knowledge areas and second-level units, along with a description of
the appropriate knowledge and skills for each competency level and the effectiveness attributes. Each
level builds on the previous one: a designation of L1 applies to L1 through L5, a designation of L2
applies to L2 through L5, and so on. The level descriptions indicate the competency activities that are
demonstrated at each level.

Table D.1 SwA Competency Designations

Appendix E. Proposed SwA Competency Mappings

When the model was developed, as part of our review process, several organizations mapped actual
organizational positions to the competency model designations. This provided us with a checkpoint
showing that our model designations were applicable to real organizations, and not just a theoretical
exercise. These mappings are shown in Tables E.1 and E.2.

Table E.1 Proposed SwA Competency Mappings from the (ISC)2 Applications Security Advisory

Board—Initial List of Job Titles1

1 From Software Assurance Competency Model [Hilburn 2013a].

Table E.2 Proposed SwA Competency Mappings from (ISC)2 Application Security Advisory
Board Reviewers—Comprehensive List of Job Titles

References

[Hilburn 2013]

Hilburn, Thomas B.; Ardis, Mark A.; Johnson, Glenn; Komecki, Andrew J.; & Mead, Nancy R.
Software Assurance Competency Model. CMU/SEI-2013-TN-004. Software Engineering Institute,
Carnegie Mellon University. 2013. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=47953.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47953
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47953

Appendix F. BSIMM Assessment Final Report

April 1, 2016

Prepared for:
FakeFirm
123 Fake Street
Anytown, USA 12345

Prepared by:
Cigital, Inc.
21351 Ridgetop Circle
Suite 400
Dulles, VA 20166

Copyright © 2008-2016 by Cigital, Inc. ® All rights reserved. No part or parts of this Cigital, Inc.
documentation may be reproduced, translated, stored in any electronic retrieval system, transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without
prior written permission of the copyright owner. Cigital, Inc. retains the exclusive title to all
intellectual property rights relating to this documentation.

The information in this Cigital, Inc. documentation is subject to change without notice and should not
be construed as a commitment by Cigital, Inc. Cigital, Inc. makes no representations or warranties,
express or implied, with respect to the documentation and shall not be liable for any damages,
including any indirect, incidental, consequential damages (such as loss of profit, loss of use of assets,
loss of business opportunity, loss of data or claims for or on behalf of user’s customers), that may be
suffered by the user.

Cigital, Inc. and the Cigital, Inc. logo are trademarks of Cigital, Inc. Other brands and products are
trademarks of their respective owner(s).

Cigital, Inc.

21351 Ridgetop Circle
Suite 400
Dulles, VA 20166
Phone: + 1 (703) 404-9293

www.cigital.com

http://www.cigital.com

Table of Contents

1 Executive Summary

2 Data Gathering

3 High-Water Mark

4 BSIMM Practices

5 BSIMM Scorecard

6 Comparison within Vertical

7 Conclusion

Appendix A: BSIMM Background

Appendix B: BSIMM Activities

About Cigital

List of Figures
Figure F.1: BSIMM Software Security Framework

Figure F.2: Normalized Percentage of Activities Observed in each BSIMM Practice (Spider)

Figure F.3: Normalized Percentage of Activities Observed in each BSIMM Practice (Bar)

Figure F.4: BSIMM6 Assessment Score Distribution

Figure F.5: High-Water Mark per Practice Compared to Average of 78 BSIMM6 Firms

Figure F.6: Activities Observed per Practice

Figure F.7: Activities Observed per Level

Figure F.8: BSIMM Scorecard with Earth Data

Figure F.9: High-Water Mark per Practice Compared to Participants in a Vertical

Figure F.10: BSIMM Scorecard with Vertical Data

Preface

Purpose

This document contains Cigital’s final report on the FakeFirm BSIMM assessment.

Audience

This document is intended for FakeFirm employees who will lead the software security group (SSG)
and related software security initiative (SSI) activities.

Contacts

The following are the primary Cigital staff to contact with questions regarding this assessment.

1 Executive Summary

The Building Security In Maturity Model (BSIMM) is a unique tool built from our observation-based
approach to capturing the collective activities in diverse software security initiatives (SSIs). An SSI is
an executive-sponsored, proactive effort comprising all activities aimed at building, acquiring,
running, and maintaining secure software. It establishes a formal ability to balance the risk and cost
associated with software engineering processes to ensure the firm meets business objectives safely. In
addition, an SSI ensures a firm’s software routinely meets applicable regulatory, statutory, and audit
requirements while also ensuring clients can meet theirs when using the firm’s software.

To build BSIMM, we initiated data research and analysis in 2008 by assessing software security
efforts in nine firms and using those results to create BSIMM1. As of September 2015, we’ve
performed BSIMM assessments for 104 firms of various sizes in diverse vertical markets. In that
time, we continually adjusted the model to reflect our real-world observations, adding or moving
activities to reflect current reality. Over time, we also drop old data to keep the model fresh.
Therefore, the BSIMM stands as the only useful and current reflection of actual practices in software
security.

There are 78 firms represented in BSIMM6. As a confirmation of BSIMM’s usefulness, 26 of
those firms have had two BSIMM assessments and 10 have had three or more assessments. Though
initiatives differ in some details, all share common ground that the BSIMM captures and describes. It
therefore functions as a universal yardstick, capable of measuring any SSI and facilitating strategic
planning by the SSI leadership. As a general term, we call these SSI leaders the software security
group (SSG).

Figure F.1 below shows the Software Security Framework (SSF) we use as the BSIMM
foundation. It includes four broad domains of Governance, Intelligence, SSDL Touchpoints, and
Deployment. See Appendix A: BSIMM Background for additional detail on BSIMM history and the
SSF domains.

Figure F.1 BSIMM Software Security Framework

Within the four SSF domains are 12 practices (e.g., Strategy & Metrics) that collectively contain
the 112 software security activities in BSIMM6. Within each practice, we divide these activities into
three levels based primarily on observation frequency across all participants. See Appendix B:
BSIMM Activities for summaries of each practice, including the activities and their assigned levels.
We provide comprehensive activity descriptions in the BSIMM report at http://bsimm.com. Because
BSIMM is an observational model and records our research, the activity set it contains changes over
time.

Any such attestation-based, time-limited engagement will prevent detailed business process
analysis. However, it is important to understand that a BSIMM scorecard is neither an audit finding
nor a report card. It is simply a snapshot of current software security effort through the BSIMM lens.
Part of its value lies in the fact that, as of BSIMM6, we have conducted 235 assessments in the same
manner, making all the results over time directly comparable to each other.

In this assessment for FakeFirm, Cigital interviewed individuals representing various software
security roles. In some cases, we also reviewed artifacts that clarified a given topic. Our team then
analyzed the resulting data until reaching unanimous agreement on whether we observed in
FakeFirm’s environment each of the 112 BSIMM6 activities. Given a final list of observations, we
were able to produce the data representations provided in this report. This knowledge helps SSG
owners understand where their initiative stands with respect to other real-world SSIs and clarifies
possible strategic steps to mature the firm’s efforts.

For this April 2016 BSIMM assessment, Cigital interviewed 11 individuals. At this time, the
software security group (SSG), known in FakeFirm as the Application Security Team (AST), has
been active for about two years and includes five full-time people. The AST leader has the following
reporting chain to FakeFirm’s CEO: Director (AST Lead) → CISO → CIO → CEO. There are
currently six people in the AST’s satellite, referred to as “S-SDLC Risk Managers.” The AST and
Risk Managers support 850 developers in creating, acquiring, and maintaining a portfolio of 250
applications. FakeFirm uses a spreadsheet to track the software portfolio and the inventory is
currently incomplete.

http://bsimm.com

FakeFirm has centralized the AST in a corporate group outside the various business units. The
AST embodies its high-level approach to software security governance in a documented secure
SDLC with two software security gates, one at beginning of the SDLC to establish testing
expectations and one at the end of the SDLC to do testing. However, adherence to the gates is
voluntary at this time. The AST supplements the secure SDLC with policies and standards, including
some secure coding standards. It works directly with Legal, Risk, and Compliance groups to ensure
the FakeFirm also meets privacy and compliance objectives related to software. It also works with IT
to specify and maintain operating system, server, and device security controls. New developers,
testers, and architects receive software security training via a brief in-person session during
onboarding. The AST does outreach to executives and other groups, but only through informal
meetings and data sharing.

The AST works directly with engineering teams to discover software security defects through
architecture analysis, penetration testing, and static analysis. While the AST manages these efforts
centrally, much of the labor is out-sourced. The AST usually enhances such testing by taking
advantage of attack intelligence. Processes ensure most security defects receive an assigned a
severity level and the AST tracks those security defects scheduled for remediation.

Other important SSI characteristics include:

• A relatively mature static source code analysis process that uses customized rules

• A mature process to capture information about attacks against FakeFirm software and create
developer training

• Black-box security testing for Web applications embedded in the quality assurance process,
helping to ensure security defects are caught during the development cycle

• Service-level agreement boilerplate for software security responsibilities, but limited use in
vendor contracts

• Data classification that is informal and effectively equates to “everything is important”

From FakeFirm’s software security efforts summarized above, Cigital observed 37 BSIMM
activities in this assessment. Figure F.2 shows in dark gray (blue in eBook) the distribution of the
observed activities across the 12 SSF practices, normalized to a 100% scale. For example, if we
observed half of the activities in a given practice, the chart would display that as 50%. To allow for
comparison, the light gray (orange in eBook) area shows the normalized averages for the entire
BSIMM6 participant pool.

Figure F.2 Normalized Percentage of Activities Observed in each BSIMM Practice (Spider)

To aid in visualization, Figure F.3 below shows the same data, but as a bar chart.

Figure F.3 Normalized Percentage of Activities Observed in each BSIMM Practice (Bar)

Recall that the SSF shown in Figure F.1 above forms the BSIMM foundation. The SSF comprises
12 practices, each of which contains several BSIMM activities, for a total of 112. After a BSIMM
assessment, we create a scorecard showing the number of activities observed out of 112 (37 for this
assessment). To allow comparisons, Figure F.4 shows the distribution of scores for the 78 firms in the
BSIMM6 data pool along with the average age of the SSIs in each group.

Figure F.4 BSIMM6 Assessment Score Distribution

From a planning perspective, our experience shows that it is better to have a well-rounded effort
distributed across the SSF practices. It is also important to remember that we have never observed all
112 activities in a single firm and such a feat is probably not a reasonable goal. A firm should always
base activity selection—resource allocation in the SSI—on actual need.

While a BSIMM assessment provides an unbiased inventory of the software security activities
underway, this targeted review alone cannot provide a complete measurement of SSI sufficiency or
effectiveness. That requires additional data and analysis.

In the following sections, Cigital provides additional representations of FakeFirm’s BSIMM
assessment results. FakeFirm can use these results and accompanying recommendations to guide SSI
improvements.

2 Data Gathering

A BSIMM assessment objectively creates a scorecard depicting current software security activity,
thereby facilitating internal analysis, decision support, and budgeting. To gather this information,
Cigital conducts interviews to get a detailed understanding of FakeFirm’s approach to and execution
of its SSI. Cigital may also review artifacts that explain important software security processes. Cigital
then analyzes the resulting data to give credit in a BSIMM scorecard for each software security
activity observed out of 112.

Typically, we conduct our primary interviews with the SSG owner and one or more of his or her
direct reports. We usually follow this with interviews of others directly involved in planning,
instantiating, or executing the SSI. These individuals may be in any of several roles, including SSG

executive sponsor, business analysis, architecture, development, testing, operations, audit, risk, and
compliance.

For this BSIMM assessment, Cigital interviewed the following individuals:

• Person, CIO

• Person, CISO and SSG Leader

• Person, SSG member

• Person, SSG member

• Person, SSG member

• Person, Security Architecture Head

• Person, Security Operations Head

• Person, Quality Assurance Head

• Person, Mobile Development Head

• Person, Web Development Head

• Person, Risk, and Compliance

3 High-Water Mark

As seen in Appendix B: BSIMM Activities, each of the 112 BSIMM6 activities is assigned a level of
1, 2, or 3. Cigital used interview data to create a scorecard and then chart the highest level
activity—the “high-water mark”—observed in each of the twelve BSIMM practices. We assign the
high-water mark with a very simple algorithm. If we observed a level 3 activity in a given practice,
we assign a “3” without regard for whether level 2 or 1 activities were also observed. We assigned a
high-water mark of 2, 1, or 0 similarly.

Figure F.5 below compares FakeFirm high-water marks with the average high-water marks for the
BSIMM6 participant pool. Because the spider diagram shows only a single data point per practice, it
is a very low-resolution view of software security effort. However, this view provides useful
comparisons between firms, between business units, and within the same firm over time.

Figure F.5 High-Water Mark per Practice Compared to Average of 78 BSIMM6 Firms

Compared to the average high-water marks of all BSIMM6 participants, FakeFirm marks appear
above the average in Training, Attack Models, Architecture Analysis, Code Review, and Penetration
Testing. FakeFirm marks appear near the average in Compliance & Policy, Standards &
Requirements, Security Testing, Software Environment, and Configuration Management &
Vulnerability Management. FakeFirm marks appear below the average in Strategy & Metrics and in
Security Features & Design.

4 BSIMM Practices

Recall that the spider diagram in Figure F.5 above shows only the high-water mark level reached in
each BSIMM practice. While useful for comparing groups or visualizing change over time,
performing a single high-level activity in a practice—and few or no other activities—skews the
spider diagram such that it may not accurately reflect true effort within a given practice.

To overcome this and facilitate additional analysis, the two diagrams below provide a higher
resolution view of the 37 BSIMM6 activities observed at FakeFirm. This type of diagram makes
evident the “activity density” by showing the observed activities segregated vertically into their
respective practices and then horizontally into their respective levels.

Figure F.6 below facilitates analysis by practice to clarify where Cigital may have observed
higher-level activities with few or no associated lower-level activities. From a vertical practice
perspective, FakeFirm achieved a high-water mark of “3” in two practices: Code Review and
Penetration Testing. In Penetration Testing, we also observed a majority of lower level activities,
indicating practice maturity, but we did not observe such a majority of lower level activities in Code
Review. Similarly, FakeFirm achieved a high-water mark of “2” in eight practices and here we
observed a majority of lower level activities in four practices, with Training, Attack Models,
Software Environment, and Configuration Management & Vulnerability Management being the
exceptions. We observed a majority of activities in one of the two practices where FakeFirm achieved
a high-water mark of “1,” with Security Features & Design being the exception.

Figure F.6 Activities Observed per Practice

Figure F.7 below facilitates analysis by level to highlight where the current SSI does not include
foundational level 1 activities. From a horizontal software security foundation perspective, we
observed activities in all practices at level 1, but we did not observe a majority of level 1 activities in
Training, Attack Models, Security Features & Design, Software Environment, and Configuration

Management & Vulnerability Management. We observed level 2 activities in nine of 12 practices;
however, we observed only a single level 2 activity in nearly every practice, with Standards &
Requirements being the exception. For the two practices where we observed a level 3 activity, each
has a single observation.

Figure F.7 Activities Observed per Level

To facilitate an additional level of analysis, Cigital provides below the assessment scorecard
containing data on each of the activities observed as well as comparable observation data from other
firms.

5 BSIMM Scorecard

Figure F.8 below provides detailed information about FakeFirm’s SSI. Primarily, it lists in the four
columns marked “FakeFirm” the 37 activities Cigital observed during this assessment. In the
“BSIMM6 Firms” columns, the scorecard provides the count of firms (out of 78) in which Cigital
observed each activity. See the table on the following page for more explanation. In addition, see
Appendix B: BSIMM Activities for the short name associated with each BSIMM activity (e.g.,
SM1.3 is “Educate executives”).

Figure F.8 BSIMM Scorecard with Earth Data

The following is an explanation of the scorecard shown in Figure F.8 above:

It is important to remember that this scorecard represents Cigital’s observations specific to
software security activity as measured by the BSIMM. Observation—or the lack of observation—of a
given activity is inherently neither good nor bad. Judging sufficiency and effectiveness for the
activities observed requires a deeper analysis of FakeFirm’s business objectives, processes, and
software. Results of such an analysis can form a cornerstone for strategic broadening and deepening
of the current SSI.

6 Comparison within Vertical

Figure F.9 below summarizes the level reached by FakeFirm in each practice and compares it to the
subset of BSIMM6 participants in the financial industry (FI) vertical.

Figure F.9 High-Water Mark per Practice Compared to Participants in a Vertical

Compared to the average high-water marks of all current financial industry BSIMM6 participants,
FakeFirm marks appear above the average in Training, Attack Models, Architecture Analysis, Code
Review, Security Testing, Penetration Testing, and Software Environment. FakeFirm marks appear
near the average in Compliance & Policy, Standards & Requirements, and Configuration
Management & Vulnerability Management. FakeFirm marks appear below the average in Strategy &
Metrics and Security Features & Design.

Compared to the averages shown in Figure F.5 above for the entire BSIMM data pool, the most
significant changes are in Strategy & Metrics, Compliance & Policy, Training, and Standards &
Requirements, where the high-water mark average is higher amongst FIs than for the entire data pool
(BSIMM Earth), and Software Environment, where the average is lower.

Figure F.10 below provides detailed information about FakeFirm’s SSI. Primarily, it lists in the
four columns marked “FakeFirm” the 37 activities Cigital observed during this assessment. In the
“BSIMM6 FI” columns, the scorecard provides the count of financial firms (out of 33) in which
Cigital observed each activity.

Figure F.10 BSIMM Scorecard with Vertical Data

The following is an explanation of the scorecard shown in Figure F.10 above:

7 Conclusion

FakeFirm is performing the single most important activity related to improving software security: it
has a dedicated software security group that can get resources and drive organizational change.

Compared to the average high-water marks of all BSIMM6 participants, FakeFirm marks appear
above the average in Training, Attack Models, Architecture Analysis, Code Review, and Penetration
Testing. FakeFirm marks appear near the average in Compliance & Policy, Standards &
Requirements, Security Testing, Software Environment, and Configuration Management &
Vulnerability Management. FakeFirm marks appear below the average in Strategy & Metrics and in
Security Features & Design.

From a vertical practice perspective, FakeFirm achieved a high-water mark of “3” in two
practices: Code Review and Penetration Testing. In Penetration Testing, we also observed a majority
of lower level activities, indicating true practice maturity, but we did not observe such a majority of

lower level activities in Code Review. Similarly, FakeFirm achieved a high-water mark of “2” in
eight practices and here we observed a majority of lower level activities in four practices, with
Training, Attack Models, Software Environment, and Configuration Management & Vulnerability
Management being the exceptions. We observed a majority of activities in one of the two practices
where FakeFirm achieved a high-water mark of “1,” with Security Features & Design being the
exception.

From a horizontal software security foundation perspective, we observed activities in all practices
at level 1, but we did not observe a majority of level 1 activities in Training, Attack Models, Security
Features & Design, Software Environment, and Configuration Management & Vulnerability
Management. We observed level 2 activities in nine of 12 practices; however, we observed only a
single level 2 activity in nearly every practice, with Standards & Requirements being the exception.
For the two practices where we observed a level 3 activity, each has a single observation.

Using the BSIMM assessment data, FakeFirm might choose one or more of the following to
broaden and deepen its SSI:

• Determine whether it is appropriate to begin doing the remaining four activities (those marked
with slashes in Figure F.8) from the 12 common activities.

• Perform a more complete risk, compliance, and needs analysis for the SSI. These results of
such an analysis can drive the larger strategy for comprehensive top-down enhancements.

• Perform a software security business process analysis focusing on sufficiency, efficiency, and
maturity. The results of such an analysis can drive tactical changes that increase effectiveness
and reduce cost.

• Commission a detailed analysis of a set of SDLC artifacts, such as the requirements, design,
code, and deployed module for one or more critical applications. Determining the root causes
(e.g., lack of a given BSIMM activity) for the software security defects discovered can drive
targeted bottom-up SSI enhancements.

Independent of the general choices above and based on our experience in similar environments,
we recommend FakeFirm consider the following when choosing its next set of SSI improvements.

• Secure SDLC—FakeFirm has created an SDLC overlay that includes two security gates, one
for “Permit to Build” and one for “Permit to Deploy.” However, the SSG is not involved in all
development projects. In addition, the software security gates are voluntary even in large,
critical projects. Over the next 12 months, FakeFirm should institute process improvements
that ensure the SSG is aware of all development and software acquisition projects worldwide.
At the same time, FakeFirm should phase in mandatory compliance with various aspects of
the SDLC security gates. For example, mandatory remediation of critical security defects
within a given timeframe could be required immediately, while phasing in remediation of high
and medium security defects over a period of months. Similarly, static analysis and
penetration testing should quickly become mandatory for all critical applications, and should
become mandatory for all applications over the next 12-18 months.

• Inventory—FakeFirm does not have a robust inventory of applications, PII, or open source
software. Ensuring all software flows appropriately through various SDLC gates becomes
complicated when the inventory is unknown. Without a data classification scheme,
prioritizing projects and making a PII inventory is effectively impossible. FakeFirm should
immediately begin an inventory initiative that accounts for all applications in the SSG’s
purview, ensures each application receives a criticality rating, and associates each application
with the levels of data levels. Over the next 12 months, expand the inventory to include the

open source used and the current security status for each application. In addition, begin
including software security waiver information for each application.

• Training—FakeFirm has a small amount of software security training that it uses to improve
awareness. However, FakeFirm provides the training only in person, only to developers, and
only at onboarding time. Over the next six months, FakeFirm should begin providing on-
demand, role-based software security training to all roles involved in the SDLC. This will
increase global awareness and increase technical skill in the major engineering roles such as
requirements analysis, architecture, development, and testing. FakeFirm should also
investigate the opportunity to provide training in the developer environment using IDE-based
tools.

In our experience, it is better to have a well-rounded effort distributed across the SSF practices
than to focus on a small number of practices. It is also important to remember that we have never
observed all 112 activities in a single firm and such a feat is probably not a reasonable goal. A firm
should always base activity selection—that is, resource allocation in the SSI—on actual need.

Appendix A: BSIMM Background

Where did BSIMM come from? The Building Security In Maturity Model (BSIMM) is the result of
a multi-year study of real-world software security initiatives. We present the model as built directly
out of data observed in 78 software security initiatives from firms including: Adobe, Aetna, ANDA,
Autodesk, Bank of America, Black Knight Financial Services, BMO Financial Group, Box, Capital
One, Cisco, Citigroup, Comerica, Cryptography Research, Depository Trust and Clearing
Corporation, Elavon, EMC, Epsilon, Experian, Fannie Mae, Fidelity, F-Secure, HP Fortify, HSBC,
Intel Security, JPMorgan Chase & Co., Lenovo, LinkedIn, Marks & Spencer, McKesson, NetApp,
NetSuite, Neustar, Nokia, NVIDIA, PayPal, Pearson Learning Technologies, Qualcomm, Rackspace,
Salesforce, Siemens, Sony Mobile, Symantec, The Advisory Board, The Home Depot, Trainline,
TomTom, U.S. Bank, Vanguard, Visa, VMware, Wells Fargo, and Zephyr Health.

By quantifying the practices of many different organizations, we can describe the common ground
they share as well as the variation that makes each unique. Our aim is to help the wider software
security community plan, carry out, and measure initiatives of their own. The BSIMM is not a “how
to” guide, nor is it a one-size-fits-all prescription. Instead, the BSIMM is a reflection of the software
security state of the art.

We recorded observations from these firms using our Software Security Framework (SSF, see
Figure F.1) as the basis for our interviews. The SSF comprises four domains and 12 practices.

• In the governance domain, the strategy and metrics practice encompasses planning, assigning
roles and responsibilities, identifying software security goals, determining budgets, and
identifying metrics and gates. The compliance and policy practice focuses on identifying
controls for compliance regimens such as PCI DSS and HIPAA, developing contractual
controls such as service level agreements to help control COTS and out-sourced software risk,
setting organizational software security policy, and auditing against that policy. Training has
always played a critical role in software security because software developers and architects
often start with very little security knowledge.

• The intelligence domain creates organization-wide resources. Those resources are divided into
three practices. Attack models capture information used to think like an attacker: threat
modeling, abuse case development and refinement, data classification, and technology-
specific attack patterns. The security features and design practice is charged with creating

usable security patterns for major security controls (meeting the standards defined in the next
practice), building middleware frameworks for those controls, and creating and publishing
other proactive security guidance. The standards and requirements practice involves eliciting
explicit security requirements from the organization, determining which COTS to
recommend, building standards for major security controls (such as authentication, input
validation, and so on), creating security standards for technologies in use, and creating a
standards review board.

• The SSDL Touchpoints domain is probably the most familiar of the four. This domain
includes the essential software security best practices integrated into the SDLC. Two
important software security capabilities are architecture analysis and code review.
Architecture analysis encompasses capturing software architecture in concise diagrams,
applying lists of risks and threats, adopting a process for review (such as STRIDE or
Architectural Risk Analysis), and building an assessment and remediation plan for the
organization. The code review practice includes use of code review tools, development of
tailored rules, customized profiles for tool use by different roles (for example, developers
versus auditors), manual analysis, and tracking/measuring results. The security testing
practice is concerned with pre-release testing including integrating security into standard
quality assurance processes. The practice includes use of black box security tools (including
fuzz testing) as a smoke test in QA, risk-driven white box testing, application of the attack
model, and code coverage analysis. Security testing focuses on vulnerabilities in construction.

• By contrast, in the deployment domain, the penetration testing practice involves more standard
outside—in testing of the sort carried out by security specialists. Penetration testing focuses
on vulnerabilities in final configuration, and provides direct feeds to defect management and
mitigation. The software environment practice concerns itself with OS and platform patching,
web application firewalls, installation and configuration documentation, application
monitoring, change management, and ultimately code signing. Finally, the configuration
management and vulnerability management practice concerns itself with patching and
updating applications, version control, defect tracking and remediation, and incident handling.

What is the BSIMM’s purpose? The BSIMM quantifies the activities carried out by real
software security initiatives. Because these initiatives make use of different methodologies and
different terminology, the BSIMM requires a framework that allows us to describe all of the
initiatives in a uniform way. Our Software Security Framework (SSF) and activity descriptions
provide a common vocabulary for explaining the salient elements of a software security initiative,
thereby allowing us to compare initiatives that use different terms, operate at different scales, exist in
different vertical markets, or create different work products.

We classify our work as a maturity model because improving software security almost always
means changing the way an organization works—something that doesn’t happen overnight. We
understand that not all organizations need to achieve the same security goals, but we believe all
organizations can benefit from using the same measuring stick.

We created the BSIMM in order to learn how software security initiatives work and to provide a
resource for people looking to create or improve their own software security initiative. In general,
every firm creates their software security initiative with some high-level goals in mind. The BSIMM
is appropriate if your business goals for software security include:

• Informed risk management decisions

• Clarity on what is “the right thing to do” for everyone involved in software security

• Cost reduction through standard, repeatable processes

• Improved code quality

By clearly noting objectives and by tracking practices with metrics tailored to your own initiative,
you can use the BSIMM as a measurement tool to guide your own software security initiative.

Why do you call it BSIMM6? BSIMM is an “observational” model for which we started
gathering data in 2008. That is, it is a descriptive model rather than a prescriptive model. BSIMM
does not tell you what you should do; rather, it tells you what the BSIMM community is doing. Put
another way, BSIMM is not a set of “best practices” as defined by some committee for some generic
problem. Rather, BSIMM is a set of “actual practices” being performed on a daily basis by forward-
thinking firms. We update the model approximately every year and BSIMM6 is the sixth such update.

What new terminology have you introduced? Nomenclature has always been a problem in
computer security, and software security is no exception. A number of BSIMM terms have particular
meanings for us and here are some of the most important:

• Activity—Actions carried out or facilitated by the SSG as part of a practice. We divide
activities into three levels. Each activity is directly associated with an objective.

• Domain—One of the four major groupings in the Software Security Framework. The domains
are governance, intelligence, SSDL touchpoints, and deployment.

• Practice—One of the twelve categories of BSIMM activities. Each domain in the Software
Security Framework has three practices. Activities in each practice are divided into three
levels corresponding to maturity.

• Satellite—A group of interested and engaged developers, architects, software managers, and
testers who have a natural affinity for software security and are organized and leveraged by a
software security initiative.

• Secure Software Development Lifecycle (SSDL)—Any SDLC with integrated software
security checkpoints and activities.

• Security Development Lifecycle (SDL)—A term used by Microsoft to describe their Secure
Software Development Lifecycle.

• Software Security Framework (SSF)—The basic structure underlying the BSIMM, comprising
twelve practices divided into four domains.

• Software Security Group (SSG)—The internal group charged with carrying out and
facilitating software security. We have observed that step one of a software security initiative
is forming an SSG.

• Software Security Initiative—An organization-wide program to instill, measure, manage, and
evolve software security activities in a coordinated fashion. Also known in the literature as an
Enterprise Software Security Program (see Chapter 10 of the book, Software Security).

How should I use the BSIMM? The BSIMM is a measuring stick for software security. The best
way to use the BSIMM is to compare and contrast your own initiative with the data we present. You
can then identify goals and objectives of your own and look to the BSIMM to determine which
further activities make sense for you.

The BSIMM data show that high maturity initiatives are well rounded—carrying out numerous
activities in all twelve of the practices described by the model. The model also describes how mature
software security initiatives evolve, change, and improve over time.

Instilling software security into an organization takes careful planning and always involves broad
organizational change. By using the BSIMM as a guide for your own software security initiative, you
can leverage the many years of experience captured in the model. You should tailor the
implementation of the activities the BSIMM describes to your own organization (carefully
considering your objectives). Note that no organization carries out all of the activities described in the
BSIMM.

The following are the most common uses for the BSIMM:

• As a measuring stick to facilitate apples-to-apples comparisons between firms, business units,
vertical markets, and so on

• As a way to measure an initiative’s improvement over time

• As a way to objectively gather data on current software security activity and use it to drive
budgets and change

• As a way to understand software security maturity in vendors, business partners, acquisitions,
and so on

• As a way to understand how the software security discipline is evolving worldwide

• As a way to become part of a private community that discusses issues and solutions

Who should use the BSIMM? The BSIMM is appropriate for anyone responsible for creating
and executing a software security initiative. We have observed that successful software security
initiatives are usually run by senior executives who report to the highest levels in an organization.
These executives lead an internal group that we call the Software Security Group (SSG), charged
with directly executing or facilitating the activities described in the BSIMM. We wrote the BSIMM
with the SSI and SSG leadership in mind.

How do I construct a software security initiative? Of primary interest is identifying and
empowering a senior executive to manage operations, garner resources, and provide political cover
for a software security initiative. Grassroots approaches to software security sparked and led solely
by developers and their direct managers have a poor record of accomplishment in the real world.
Likewise, initiatives spearheaded by resources from an existing network security group often run into
serious trouble when it comes time to interface with development groups. By identifying a senior
executive and putting him or her in charge of software security directly, you address two management
101 concerns—accountability and empowerment. You also create a place in the organization where
software security can take root and begin to thrive.

The second most important role in a software security initiative after the senior executive is that of
the Software Security Group. Every single one of the 78 programs we describe in the BSIMM has an
SSG. Successfully carrying out the activities in the BSIMM successfully without an SSG is very
unlikely (and we haven’t observed this in the field), so create an SSG as you start working to adopt
the BSIMM activities. The best SSG members are software security people, but software security
people are often impossible to find. If you must create software security types from scratch, start with
developers and teach them about security.

Though no two of the 78 firms we examined had exactly the same SSG structure (suggesting that
there is no one set way to structure an SSG), we did observe some commonalities that are worth
mentioning. At the highest level of organization, SSGs come in three major flavors: those organized
according to technical SDLC duties, those organized by operational duties, and those organized
according to internal business units. Some SSGs are highly distributed across a firm, and others are
very centralized and policy-oriented. If we look across all of the SSGs in our study, there are several

common “subgroups” that are often observed: people dedicated to policy, strategy, and metrics;
internal “services” groups that (often separately) cover tools, penetration testing, and middleware
development plus shepherding; incident response groups; groups responsible for training
development and delivery; externally-facing marketing and communications groups; and, vendor-
control groups.

Of course, all other stakeholders also play important roles. These include:

• Builders, including developers, architects, and their managers must practice security
engineering, ensuring that the systems that we build are defensible and not riddled with holes.
The SSG will interact directly with builders when they carry out the activities described in the
BSIMM. As an organization matures, the SSG usually attempts to empower builders so that
they can carry out most of the BSIMM activities themselves with the SSG helping in special
cases and providing oversight. In this version of the BSIMM, we often don’t explicitly point
out whether a given activity is to be carried out by the SSG or by developers or by testers,
although in some cases we do attempt to clarify responsibilities in the goals associated with
activity levels within practices. You should come up with an approach that makes sense for
your organization and takes into account workload and your software lifecycle.

• Testers concerned with routine testing and verification should do what they can to keep a
weather eye out for security problems. Some of the BSIMM activities in the Security Testing
practice can be carried out directly by QA.

• Operations people must continue to design reasonable networks, defend them, and keep them
up. As you will see in the Deployment domain of the SSF, software security does not end
when software is shipped, deployed, or otherwise made available to clients and partners.

• Administrators must understand the distributed nature of modern systems and begin to
practice the principle of least privilege, especially when it comes to applications they host or
attach to as services in the cloud.

• Executives and middle management, including Line of Business owners and Product
Managers, must understand how early investment in security design and security analysis
affects the degree to which users will trust their products. Business requirements should
explicitly address security needs. Any sizeable business today depends on software to work.
Software security is a business necessity.

• Vendors, including those who supply COTS, custom software, and software-as-a-service, are
increasingly subjected to SLAs and reviews (such as vBSIMM) that help ensure products are
the result of a secure SDLC.

Am I now part of a BSIMM group? The firms participating in the BSIMM Project make up the
BSIMM Community. A moderated private mailing list allows participating SSG leaders to discuss
solutions with those who face the same issues, discuss strategy with someone who has already
addressed an issue, seek out mentors from those are farther along a career path, and band together to
solve hard problems.

The BSIMM Community also hosts annual private conferences where representatives from each
firm gather in an off-the-record forum to discuss software security initiatives.

The BSIMM website (http://bsimm.com) includes a credentialed BSIMM Community section
where we post some information from the conferences, working groups, and mailing list-initiated
studies.

http://bsimm.com

Appendix B: BSIMM Activities

This appendix contains a summary table of activities for each of the 12 BSIMM practices.

The assigned levels are also embedded in the activity numeric identifiers (e.g., SM“2”.1 is a
Strategy & Metrics activity at level 2). For more detail on each activity, read the BSIMM document
at https://www.bsimm.com/download/ (registration not required). Level assignment for each activity
stems from its frequency of occurrence in the BSIMM data pool. The most frequently observed
activities are generally in level 1, while those activities observed infrequently are in level 3. Changes

https://www.bsimm.com/download/

in the BSIMM data pool over time may result in promoting or demoting activities to other levels,
such as promoting from level 2 to level 3 or demoting from level 2 to level 1.

When an activity moves to a new level, it receives a new numeric identifier and its previous
identifier is retired. For example, if XX2.2 is promoted to level 3, XX2.2 is not reused later.

Each BSIMM activity is unique. There are no cases where, for example, one activity requires the
SSG to do something to 80% of the portfolio and another activity requires the SSG to do the same
thing to a larger percentage of the portfolio. Therefore, regardless of the total effort expended,
focusing on only one or two activities in a practice will not improve the total BSIMM score because
we aren’t observing any additional activities.

As we observe new software security activities in the field, they become candidates for inclusion
in the model. If we observe a candidate activity not yet in the model, we determine based on
previously captured data and BSIMM mailing list queries how many firms probably carry out that
activity. If the answer is multiple firms, we take a closer look at the proposed activity and figure out
how it fits with the existing model. If the answer is only one firm, we table the candidate activity as
too specialized. Furthermore, if the candidate activity replicates an existing activity or simply refines
an existing activity, we drop it from consideration. If several firms carry out the activity today and the
activity is not simply a refinement of an existing activity, we will consider it for inclusion in the next
BSIMM release.

The list below provides all changes to the BSIMM model since inception:

From BSIMM to BSIMM2, we made the following changes:

• T2.3 Require annual refresher became T3.4

• CR1.3 was removed from the model

• CR2.1 Use automated tools along with manual review became CR1.4

• SE2.1 Use code protection became SE3.2

• SE3.1 Use code signing became SE2.4

From BSIMM2 to BSIMM3, we made the following changes:

• SM1.5 Identify metrics and drive initiative budgets with them became SM2.5

• SM2.4 Require security sign-off became SM1.6

• AM2.3 Gather attack intelligence became AM1.5

• ST2.2 Allow declarative security/security features to drive tests became ST1.3

• PT2.1 Use pen testing tools internally became PT1.3

From BSIMM3 to BSIMM4, we made the following changes:

• T2.1 Role-based curriculum became T1.5

• T2.2 Company history in training became T1.6

• T2.4 On-demand CBT became T1.7

• T1.2 Security resources in onboarding became T2.6

• T1.4 Identify satellite with training became T2.7

• T1.3 Office hours became T3.5

• AM2.4 Build internal forum to discuss attacks became AM1.6

• CR2.3 Make code review mandatory became CR1.5

• CR2.4 Use centralized reporting became CR1.6

• ST1.2 Share security results with QA became ST2.4

• SE2.3 Use application behavior monitoring and diagnostics became SE3.3

• CR3.4 Automate malicious code detection added to model

• CMVM3.3 Simulate software crisis added to model

From BSIMM4 to BSIMM-V, we made the following changes:

• SFD2.3 Find and publish mature design patterns from the organization became SFD3.3

• SR2.1 Communicate standards to vendors became SR3.2

• CR3.1 Use automated tools with tailored rules became CR2.6

• ST2.3 Begin to build and apply adversarial security tests (abuse cases) became ST3.5

• CMVM3.4 Operate a bug bounty program added to model

From BSIMM-V to BSIMM6, we made the following changes:

• SM1.6 Require security sign-off became SM2.6

• SR1.4 Create secure coding standards became SR2.6

• ST3.1 Include security tests in QA automation became ST2.5

• ST3.2 Perform fuzz testing customized to application APIs became ST2.6

On the following pages are tables showing the activities included in each BSIMM6 practice.

About Cigital

Cigital is one of the world’s largest application security firms. We go beyond traditional testing
services to help organizations find, fix, and prevent vulnerabilities in the applications that power their
business. Our holistic approach to application security offers a balance of managed services,
professional services, and products tailored to fit your specific needs. We don’t stop when the test is
over. Our experts also provide remediation guidance, program design services, and training that
empower you to build and maintain secure applications.

Our proactive methods helps clients reduce costs, speed time to market, improve agility to respond
to changing business pressures and threats, and focus resources where they are needed most. Cigital’s
managed services maximize client flexibility, while reducing operational friction and cost. Cigital
gives organizations of any size access to the scale, security expertise, and practices needed to build a
successful software security initiative.

Cigital is headquartered near Washington, D.C. with regional offices in the U.S., London, and
India.

For more information, visit us at www.Cigital.com

http://www.cigital.com

Appendix G. Measures from Lifecycle Activities, Security
Resources, and Software Assurance Principles

Measures are selected to provide justification that the steps performed to build a software system or
product sufficiently address software assurance. Sampling from each lifecycle phase is one approach
to determine that expectations are being met. Table G.1 provides examples for these measurements.
Interviews with resources responsible for addressing security can provide evidence and example
questions to solicit useful data are listed in Table G.2.

Table G.1 Examples of Lifecycle-Phase Measures

Table G.2 Prototype Set of Questions for Software Security1

1. From Integrated Measurement and Analysis Framework for Software Security [Alberts 2010].

Confirmation that the principles for software assurance are appropriately addressed through
security activities in the lifecycle can be verified using Table G.3. In addition, the principles can
indicate measures that could be collected to provide evidence that a lifecycle is appropriately
addressing software assurance (Table G.4).

Table G.3 Mapping Between Security Risk Focus Areas and Principles for Software Security2

2. From “Principles and Measurement Models for Software Assurance” [Mead 2013b].

Table G.4 The Seven Principles of Evidence3

3. From Common Weakness Enumeration: A Community-Developed Dictionary of Software Weakness Types
[MITRE 2014].

References

[Alberts 2010]

Alberts, Christopher J.; Allen, Julia H.; & Stoddard, Robert W. Integrated Measurement and Analysis
Framework for Software Security. CMU/SEI-2010-TN-025. Software Engineering Institute,
Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9369

[Mead 2013]

Mead, Nancy R.; Shoemaker, Dan; & Woody, Carol. Principles and Measurement Models for
Software Assurance. International Journal of Secure Software Engineering. Volume 4. Number 1.
April 2013.

[MITRE 2014]

MITRE. Common Weakness Enumeration: A community-developed dictionary of software weakness
types. June 9, 2016 [accessed]. http://cwe.mitre.org/.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9369
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9369
http://cwe.mitre.org/

Index

A
access paths, 31
ACM (Association for Computing Machinery), 12
acquirers, 57
acquisition. See software acquisition
acquisition cases

acquisition of COTS software, 151–158
acquisition organization that specifies requirements as RFP, 151
acquisition organization with typical client role, 151–156

activities (BSIMM), 310, 315–318
ADM (Asset Definition and Management) process area, 66
Alberts, Christopher, 13
alert originators (AOs), 14
alerts, emergency

definition of, 14
WEA (Wireless Emergency Alerts) case study

description, 13–14
mission thread example, 217–219
preparation for mission thread analysis, 213–215
security analysis, 219–224
systems of systems, 213–215

alignment of risk, 8
Allspaw, John, 160
analysis. See gap analysis; malware analysis; risk analysis
analytics, Software Assurance Competency Model, 246
Android operating system, 175
AOs (alert originators), 14
Applications Security Advisory Board, proposed SwA competency mappings

comprehensive list of job titles, 259–277
initial list of job titles, 249–258

architecture, security measures for, 40, 326
Assessment Final Report (BSIMM)

audience, 283
comparison within vertical, 300–304
conclusion, 305–307
contacts, 283
copyright page, 279–280
data gathering, 290

executive summary, 284–289
high-water mark, 291–292
list of figures, 282
overview, 108–113
practices, 293
purpose, 283
scorecard, 293
table of contents, 281

assessment of risk, 21
Asset Definition and Management (ADM) process area, 66
Association for Computing Machinery (ACM), 12
assurance. See software assurance (SwA)
assurance cases, 10–13
assurance models, 121
assured systems, 40–42
attacks

attacker interest, measures of, 330
expecting, 8–9

audience (BSIMM Assessment Final Report), 283
audits, 9
automation of information security standards

DevOps practices, 164–166
DevOpsSec competencies, 170–171

availability, 29
avoidance of risk, 28

B
“Balancing Software Engineering Education and Industrial Needs”, 77
@barackobama account, 165–166
Bartol, Nadya, 55
baselines, 132–133, 147
BASF (Building Assured Systems Framework), 60–62
to-be state, determining. See gap analysis
behavioral indicators (DHS competency model), 80
bibliography, 211–212
boards of directors, oversight of cybersecurity, 137–138
BoK (Body of Knowledge)

MSwA (Master of Software Assurance) Reference Curriculum
assurance across life cycles, 227–228
assurance assessment, 228–229
assurance management, 230–231

maturity levels, 60–61
risk management, 61–62, 228
system functionality assurance, 232–233
system operational assurance, 233–234
system security assurance, 103–105, 231–232

Software Assurance Curriculum Project, 236–237
bottlenecks, minimizing, 167–168, 171
BSIMM (Building Security In Maturity Model)

activities, 315–318
background on, 106–108
BSIMM Community, 314
BSIMM6, 310
GoFast Automotive case study, 107
history of, 308–309
how to use, 311–312
purpose of, 309–310
sample BSIMM Assessment Final Report

audience, 283
comparison within vertical, 300–304
conclusion, 305–307
contacts, 283
copyright page, 279–280
data gathering, 290
executive summary, 284–289
high-water mark, 291–292
list of figures, 282
overview, 49–50
practices, 293
purpose, 283
report overview, 108–113
scorecard, 293, 296–299
table of contents, 281

software security initiatives, constructing, 312–314
SSF (software security framework), 50–51
terminology, 310–311
when to use, 312

BSIMM Community, 314
build and integration tests, 164–165
Building Assured Systems Framework (BASF), 60–62
Building Security In Maturity Model. See BSIMM (Building Security In Maturity Model)
business processes, 29

Business Roundtable, 137
business-aligned threat modeling, 169–170
business-driven risk analysis

DevOps practices, 163–164
DevOpsSec competencies, 169–170

C
Capability Maturity Model Integration models. See CMMI® (Capability Maturity Model Integration)
models
care, duty of, 140
case studies

code and design flaw vulnerabilities
Android operating system, 175
CWE (Common Weakness Enumeration), 176–177
digital certificates, 175
D-link routers, 173–174
overview, 173–174

Fly-By-Night Airlines
description, 14–15
gap analysis, 105–106

GoFast Automotive
description, 15
gap analysis, 102, 107

project staffing, 95
Twitter security automation, 165–166
WEA (Wireless Emergency Alerts)

description, 13–14
mission thread example, 217–219
preparation for mission thread analysis, 213–215
risk management, 131
security analysis, 219–224
systems of systems, 213–215

CERT Resilience Management Model (CERT-RMM), 63–67
certainty versus uncertainty, 18
certificates, digital, 175
CERT-RMM (CERT Resilience Management Model), 63–67
Cigital (BSIMM sample report), 323
CMMI® (Capability Maturity Model Integration) models

CMMI assurance process reference model, 50–52
CMMI-ACQ (CMMI for Acquisition), 45–47
CMMI-DEV (CMMI for Development), 44–45

CMMI-SVC (CMMI for Services), 47–48
overview, 42–43
uses, 48

CMSPs (commercial mobile service providers), 213
code and design flaw vulnerabilities

Android operating system, 175
CWE (Common Weakness Enumeration), 176–177
definition of, 173–174
digital certificates, 175
D-link routers, 173–174

coding, security measures for, 326
commercial mobile service providers (CMSPs), 213, 214
commercial off-the-shelf (COTS) software, 4, 151–158
Common Vulnerability Enumeration (CVE), 122
Common Weakness Enumeration (CWE), 125, 176–177
communications

Microsoft SDL (Security Development Lifecycle), 59–60
SD3+C, 59

comparison within vertical (BSIMM Assessment Final Report), 300–304
competencies. See also competency models

competency attributes of effectiveness, 88
competency designations, 88–90
DevOps operational competencies

collaborative culture of, 160–161
definition of, 159–160
deployment pipeline, 161
efficiency and effectiveness of, 161
practices for software assurance, 161–168

DevOpsSec competencies
business-driven risk analysis, 169–170
continuous monitoring and improvement, 171
InfoSec expert integration, 169
integration/automation of information security standards, 170–171
overview, 169

proposed mappings from (ISC)2 Application Security Advisory Board
abridged table, 98
augmented by project needs, 100–102
comprehensive list of job titles, 259–277
initial list of job titles, 249–258

Competency Lifecycle Roadmap: Toward Performance Readiness (Software Engineering Institute),
78

competency models. See also competencies
DHS Software Assurance Professional Competency Model

behavioral indicators, 80
NICE (National Initiative for Cybersecurity Education), 80–81
organization of competency areas, 79
overview, 77, 78
proficiency targets, 80
purpose, 78–79
SwA competency levels, 79

improvement plans, 186
influential sources, 77–78
Software Assurance Competency Model

advantages of, 94
competency attributes of effectiveness, 88
competency designations, 88–90, 239–248
endorsements of, 94
examples in practice, 91–94
KAs (knowledge areas), 85–87
levels of competency, 82–84
overview, 81–82
professional growth and career advancement and, 91–93
project staffing case study, 95

software engineering profession and, 75–77
complete mediation, 6
compliance, Software Assurance Competency Model, 243
components of risk, 21–23
Conclusion section (BSIMM Assessment Final Report), 305–307
conditions, 19–23
confidence gap, 10–11
confidentiality, 29
conformance (environment), enforcing, 170–171
consequences, 19–23, 28
Contacts section (BSIMM Assessment Final Report), 283
containment, 40
continuous monitoring

DevOps practices, 167–168
DevOpsSec competencies, 171

control plan development, 37–38
controlling risk, 21
coordination, 9, 330
CorBoK (Core Body of Knowledge) areas

Software Assurance Competency Model
competency attributes of effectiveness, 85–88
competency designations, 88–90
KAs (knowledge areas), 84–87

Software Assurance Curriculum Project, 236–237
COTS (commercial off-the-shelf) software, 4, 151–158
critical data, 31
Curriculum Architecture (MSwA), 237–238
CVE (Common Vulnerability Enumeration), 122
CWE (Common Weakness Enumeration), 125, 176–177
cyber security assurance, 3–6
cyber security standards

characteristics of, 144–149
need for, 144–149
optimistic view of, 149–150

cybercrime, increase in, 2

D
daily operations, security analysis for, 169
dashboards (DevOps), 165, 168
data gathering (BSIMM Assessment Final Report), 290
Data Security Standard (DSS), 142–143
Debois, Patrick, 160
default, security by (SD3+C), 58–59
Department of Homeland Security. See DHS (Department of Homeland Security)
Department of Labor Information Technology Competency Model, 77
dependencies, trusted, 8, 126, 330
deployment

DevOps
deployment pipeline, 161
metrics, 167–168
to production, 166
streamlining, 171

Microsoft SDL (Security Development Lifecycle), 59
security in (SD3+C), 59

design, security by (SD3+C), 58
design analysis, 163–164
design flaw vulnerabilities

Android operating system, 175
CWE (Common Weakness Enumeration), 176–177
definition of, 173–174

digital certificates, 175
D-link routers, 173–174

development. See software development
DevOps

collaborative culture of, 160–161
dashboards, 168
definition of, 159–160
deployment pipeline, 161
DevOpsSec competencies

business-driven risk analysis, 169–170
continuous monitoring and improvement, 171
InfoSec expert integration, 169
integration/automation of information security standards, 170–171
overview, 169
requirements, 163–164

efficiency and effectiveness of, 161
practices for software assurance

business-driven risk analysis, 163–164
continuous monitoring and improvement, 167–168
integration of InfoSec experts, 162–163
integration/automation of information security standards, 164–166
overview, 161–162

DevOpsSec competencies
business-driven risk analysis, 169–170
continuous monitoring and improvement, 171
InfoSec expert integration, 169
integration/automation of information security standards, 170–171
overview, 169
requirements, 163–164

DHS (Department of Homeland Security)
DHS S&T (Department of Homeland Security Science and Technology), 213
DHS SwA Measurement Work, 55–58
Software Assurance Professional Competency Model

behavioral indicators, 80
NICE (National Initiative for Cybersecurity Education), 80–81
organization of competency areas, 79
overview, 77, 78
proficiency targets, 80
purpose, 78–79
SwA competency levels, 79

SwA (Software Assurance) working group, CMMI assurance process reference model, 50–52

digital certificates, 175
directives, 145
diverse operational systems, 92, 244
D-link routers, 173–174
documents, Software Assurance Curriculum Project, 235–236
domains (BSIMM), 311
Dorofee, Audrey, 13
doubts, role of, 12
drivers

analysis, 25–27
definition of, 25
failure state, 25
identification, 25–26
success state, 25

DSS (Data Security Standard), 142–143
duty of care, 140
dynamic evidence, 330

E
economy of mechanism, 6
effectiveness

competency attributes of, 88
of DevOps, 161
effective governance, 141–142

efficiency of DevOps, 161
Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2), 143
emergency alerts

definition of, 14
WEA (Wireless Emergency Alerts) case study

description, 13–14
mission thread example, 217–219
preparation for mission thread analysis, 213–215
security analysis, 219–224
systems of systems, 213–215

enforcing environment conformance, 170–171
entities, 19
environment

conformance, 170–171
security risk, 29–30

ES-C2M2 (Electricity Subsector Cybersecurity Capability Maturity Model), 143
ethics, Software Assurance Competency Model, 93, 245

evaluating evidence, 129–130
evidence

evaluating, 129–130
mapping between security risk focus areas and principles for software security, 125
product evidence, 127–129
seven principles of, 125–126, 329–331
software security questions, 125, 327–328
from standards, 127

Executive Summary section (BSIMM Assessment Final Report), 284–289
executives

decision makers, 57
oversight of cybersecurity, 137–138

exploit kits, 180

F
facilitated assessments, 33
fail-safe defaults, 6
failure, 122
failure state (drivers), 25
Fairley, Dick, 94
FakeFirm BSIMM sample report. See Assessment Final Report (BSIMM)
FCC (Federal Communication Commission), 213
FEMA (Federal Emergency Management Agency), 213
files, log, 168
Final Report (BSIMM). See Assessment Final Report (BSIMM)
Fly-By-Night Airlines case study

description, 14–15
gap analysis, 105–106

A Framework for PAB Competency Models, 77
frameworks

BASF (Building Assured Systems Framework), 60–62
BSIMM (Building Security In Maturity Model). See BSIMM (Building Security In Maturity
Model)
CMMI assurance process reference model, 50–52
DHS SwA Measurement Work, 55–58
IRPC (International Process Research Consortium) roadmap, 67–70
Microsoft SDL (Security Development Lifecycle)

CERT research and, 62–64
communications, 59–60
overview, 58
security by default, 58–59

security by design, 58
security in deployment, 59

National Cybersecurity Workforce Framework, 80–81
NIST Framework for Improving Critical Infrastructure Cybersecurity, 67–72
overview, 12–13, 48–49
RTSE (Resilient Technical Solution Engineering) process area, 63–67
SAMM (Software Assurance Maturity Model), 53–55
uses, 72

frequency structure, 129–130
functional correctness, 118

G
gap analysis

with BSIMM (Building Security In Maturity Model)
background, 106–108
BSIMM Assessment Final Report, 108–113, 279–307
GoFast Automotive case study, 107
history of, 308–309

improvement plans, 186
overview, 97–98
with Software Assurance Competency Model

competency mappings from (ISC)2 Application Security Advisory Board, 98–102
Fly-By-Night Airlines case study, 105–106
GoFast Automotive case study, 102
system security assurance KA specification, 103–105

Goal-Question-Metric (GQM), 116
GoFast Automotive case study

description, 15
gap analysis

with BSIMM (Building Security In Maturity Model), 107
with Software Assurance Competency Model, 102

governance
definition of, 138–139
examples of, 142–143
scope of

characteristics of effective governance, 141–142
duty of care, 140
leading by example, 140–141
overview, 135–138

GQM (Goal-Question-Metric), 116
guidelines, 147

H
Hammond, Paul, 160
high-water mark, 108, 291–292
Hilburn, Tom, 14
Homeland Security. See DHS (Department of Homeland Security)

I
IaC (Infrastructure as Code), 166
identification of mission risk

driver analysis, 25–27
driver identification, 25–26
mission/objective identification, 24–25
SERA (Security Engineering Risk Analysis) framework, 33–35

IEEE (Institute of Electrical and Electronics Engineers)
endorsement of frameworks, 12
A Framework for PAB Competency Models, 77
PAB (Professional Advisory Board), 94
SWICOM (Software Engineering Competency Model), 78

IGF (Internet Governance Forum), 137
impact, 20
implemented information security management system (ISMS), 120
improvement plans

engineering competencies, 186
gap analysis, 186
management and organizational models, 184–186
metrics, 186
order of implementation, 183
risk analysis, 184
special topics in cyber security engineering, 187

Improving Critical Infrastructure Cybersecurity, 67–71
Information Technology Competency Model, 77
InfoSec experts, integration of

DevOps practices for, 162–163
DevOpsSec competencies, 169

Infrastructure as Code (IaC), 166
Institute of Electrical and Electronics Engineers. See IEEE (Institute of Electrical and Electronics
Engineers)
integration

build and integration tests, 164–165
DevOps integration strategy

DevOps practices, 164–166

DevOpsSec competencies, 170–171
overview, 169

of InfoSec experts, 162–163, 169
integrity, 29, 93, 245
interactions, 329
International Organization for Standardization (ISO), 12
International Process Research Consortium (IRPC) roadmap, 67–70
Internet Governance Forum (IGF), 137
IPAWS (commercial mobile service providers), 214
IRPC (International Process Research Consortium) roadmap, 67–70
as-is state, documenting, 100

(ISC)2 Application Security Advisory Board, proposed SwA competency mappings
abridged table, 98
augmented by project needs, 100–102
comprehensive list of job titles, 259–277
initial list of job titles, 249–258

ISMS (implemented information security management system), 120
ISO (International Organization for Standardization), 12

J-K
job titles, proposed SwA competency mappings

comprehensive list of job titles, 259–277
initial list of job titles, 249–258

KAs (knowledge areas)
Software Assurance Competency Model

assurance across life cycles, 240
assurance assessment, 242
assurance management, 243
overview, 85–87
risk management, 241
system functionality assurance, 245–246
system operational assurance, 247–248
system security assurance, 244–245

Software Assurance Curriculum Project, 236–237

L
L1 maturity level, 60, 73
L2 maturity level, 60, 73
L3 maturity level, 60, 73
L4 maturity level, 60, 73
leading by example, 140–141

least common mechanism, 7
least privilege, 7, 58
levels, maturity. See maturity levels
lifecycle, 10
lifecycle assurance

assurance cases, 10–13
definition of, 3–6
lifecycle-phase measures, 325–326
MSwA BoK (Body of Knowledge), 227–228
Software Assurance Competency Model, 89, 240–248

lifecycle-phase measures, 124, 325–326
List of Figures section (BSIMM Assessment Final Report), 282
log files (DevOps), 168

M
macrocycle, 6
malware analysis

code and design flaw vulnerabilities
Android operating system, 175
CWE (Common Weakness Enumeration), 176–177
definition of, 173–174
digital certificates, 175
D-link routers, 173–174

future research, 179–180
overview, 172–173
status of, 179–180
use cases, 177–179

Malware Analysis Leading to Overlooked Security Requirements (MORE), 180
malware exploits, 172
management. See also models

assured systems, 40–42
challenges, 39–40
measurement management, 132–133
ORM (operational resilience management), 134
software security frameworks

BASF (Building Assured Systems Framework), 60–62
BSIMM (Building Security In Maturity Model). See BSIMM (Building Security In Maturity
Model)
CMMI assurance process reference model, 50–52
IRPC (International Process Research Consortium) roadmap, 67–70
linkages between CERT research and Microsoft SDL, 62–64

Microsoft SDL (Security Development Lifecycle), 58–60
NIST Framework for Improving Critical Infrastructure Cybersecurity, 67–72
overview, 48–49
Practical Measurement Framework, 55–58
RTSE (Resilient Technical Solution Engineering) process area, 63–67
SAMM (Software Assurance Maturity Model), 53–55
uses, 72

mappings

proposed mappings from (ISC)2 Application Security Advisory Board
abridged table, 98
augmented by project needs, 100–102
comprehensive list of job titles, 259–277
initial list of job titles, 249–258

security risk focus areas and principles for software security, 125, 328–329
Master of Software Assurance Reference Curriculum. See MSwA (Master of Software Assurance)
Reference Curriculum
maturity levels

improvement plans and
engineering competencies, 186
gap analysis, 186
management and organizational models, 184–186
metrics, 186
overview, 183–184
risk analysis, 184

MSwA (Master of Software Assurance) Reference Curriculum
assurance across life cycles, 227–228
assurance assessment, 228–229
assurance management, 230–231
overview, 60–61, 73–73
risk management, 228
system functionality assurance, 232–233
system operational assurance, 233–234
system security assurance, 231–232

measurable evidence, 331
measurement baselines, 132–133
measures

assurance, measuring, 9
attacker interest, 330
definition of, 115
DHS Practical Measurement Framework, 55–58
evidence

evaluating, 129–130
mapping between security risk focus areas and principles for software security, 125, 328–329
overview, 127
process evidence, 123–127
product evidence, 127–129
seven principles of, 329–331

lifecycle-phase measures, 325–326
measurement baselines, 132–133
measurement management, 132–133

Measures for Managing Operational Resilience (Allen), 134
mediation, 6
metrics

characteristics of good metrics, 116–117
for cyber security engineering, 117–120
definition of, 115
deployment pipeline metrics, 167–168
DevOps, 171
evidence

evaluating, 129–130
mapping between security risk focus areas and principles for software security, 125, 328–329
overview, 127
process evidence, 123–127
product evidence, 127–129
questions for software security, 125, 327–328
seven principles of, 125–126, 329–331

GQM (Goal-Question-Metric), 116
importance of, 9
improvement plans, 186
measurement models, 121–122
measures

attacker interest, 330
definition of, 115
lifecycle-phase measures, 325–326
measurement baselines, 132–133
measurement management, 132–133

system health and resiliency metrics, 168
when to use, 122–123

Microsoft
SDL (Security Development Lifecycle)

communications, 59–60
overview, 58

security by default, 58–59
security by design, 58
security in deployment, 59

STRIDE analysis, 219–224
minimizing security bottlenecks, 167–168, 171
mission risk

definition of, 23
MRD (Mission Risk Diagnostic)

core tasks summary, 23–24
driver analysis, 25–27
driver identification, 25–26
mission/objective identification, 24–25

WEA (Wireless Emergency Alerts) case study
mission thread example, 217–219
preparation for mission thread analysis, 213–215
security analysis, 219–224

mission threads
overview, 29
WEA (Wireless Emergency Alerts) case study

mission thread example, 217–219
preparation for mission thread analysis, 213–215
security analysis, 219–224

misuse cases, 172
mitigation of risk, 28
models

CMMI (Capability Maturity Model Integration) models
CMMI-ACQ (CMMI for Acquisition), 45–47
CMMI-DEV (CMMI for Development), 44–45
CMMI-SVC (CMMI for Services), 47–48
overview, 42–43
uses, 48

DHS competency model
organization of competency areas, 79
overview, 77, 78
proficiency targets, 80
purpose, 78–79
SwA competency levels, 79

improvement plans, 184–186
Information Technology Competency Model, 77
secure lifecycle models, 177
Software Assurance Competency Model

advantages of, 94
competency attributes of effectiveness, 88
competency designations, 88–90, 239–248
endorsements of, 94
examples in practice, 91–94
influential sources, 77–78
KAs (knowledge areas), 85–87
levels of competency, 82–84
overview, 81–82
professional growth and career advancement and, 91–93
project staffing case study, 95

software engineering profession and, 75–77
software security frameworks

BASF (Building Assured Systems Framework), 60–62
BSIMM (Building Security In Maturity Model). See BSIMM (Building Security In Maturity
Model)
CMMI assurance process reference model, 50–52
IRPC (International Process Research Consortium) roadmap, 67–70
linkages between CERT research and Mic, 62–64
Microsoft SDL (Security Development Lifecycle), 58–60
NIST Framework for Improving Critical Infrastructure Cybersecurity, 67–72
overview, 48–49
Practical Measurement Framework, 55–58
RTSE (Resilient Technical Solution Engineering) process area, 63–67
SAMM (Software Assurance Maturity Model), 53–55
uses, 72

threat modeling, 169–170
MON (Monitoring) process area, 66
monitoring

continuous monitoring and improvement
DevOps practices, 167–168
DevOpsSec competencies, 171

MON (Monitoring) process area, 66
Software Assurance Competency Model, 247

Monitoring (MON) process area, 66
MORE (Malware Analysis Leading to Overlooked Security Requirements), 180
More Intelligent, More Effective Cybersecurity Protection (Business Roundtable), 137
Morris worm, 7
Moss, Michelle, 55
MRD (Mission Risk Diagnostic)

core tasks summary, 23–24

driver analysis, 25–27
driver identification, 25–26
mission/objective identification, 24–25

MSwA (Master of Software Assurance) Reference Curriculum
BoK (Body of Knowledge)

assurance across life cycles, 227–228
assurance assessment, 228–229
assurance management, 230–231
maturity levels, 60–61
risk management, 61–62, 228
system functionality assurance, 232–233
system operational assurance, 233–234
system security assurance, 103–105, 231–232

Curriculum Architecture, 237–238
Software Assurance Curriculum Project, 237–238

MVS (Multiple Virtual Storage), 7

N
National Cybersecurity Workforce Framework, 80–81
National Initiative for Cybersecurity Careers and Studies (NICCS), 80
National Initiative for Cybersecurity Education (NICE), 80–81
National Institute of Standards and Technology. See NIST (National Institute of Standards and
Technology)
NICCS (National Initiative for Cybersecurity Careers and Studies), 80
NICE (National Initiative for Cybersecurity Education), 80–81
NIST (National Institute of Standards and Technology)

endorsement of frameworks, 12
NIST Framework for Improving Critical Infrastructure Cybersecurity, 67–72, 120, 137
System Security Engineering: An Integrated Approach to Building Trustworthy Resilient Systems,
150
TACIT approach, 150

O
Obama, Barack, 67–71
OODA (Observe, Orient, Decide, and Act) framework, 22
open design, 7
open source software

overview, 4
patches, 171

Open Web Application Security Project (OWASP), 53–55
OpenSSL Heartbleed vulnerability, 177
operational competencies (DevOps)

collaborative culture of, 160–161
definition of, 159–160
deployment pipeline, 161
DevOpsSec competencies

business-driven risk analysis, 169–170
continuous monitoring and improvement, 171
InfoSec expert integration, 169
integration/automation of information security standards, 170–171
overview, 169

efficiency and effectiveness of, 161
practices for software assurance

business-driven risk analysis, 163–164
continuous monitoring and improvement, 167–168
integration of InfoSec experts, 162–163
integration/automation of information security standards, 164–166
overview, 161–162

operational context, establishing, 34
operational monitoring, Software Assurance Competency Model, 247
operational resilience management (ORM), 134
operational risk analysis, 38
operational system model (SERA), 31–33
organizational models. See models
ORM (operational resilience management), 134
OWASP (Open Web Application Security Project), 53–55

P
PAB (Professional Advisory Board), 77, 94
PA-DSS (Payment Application Data Security Standard), 143
patches, 171
Payment Application Data Security Standard (PA-DSS), 143
PCI (Payment Card Industry), 142–143
PDCA (Plan, Do, Check, Act) model, 21–22
People CMM (People Capability Maturity Model), 43, 76
people skills, 169
Performance Measurement Guide for Information Security (NIST), 120
performance tests, 166
Plan, Do, Check, Act (PDCA) model, 21–22
planning

control plans, 37–38
importance of, 9
improvement plans

engineering competencies, 186
gap analysis, 186
management and organizational models, 184–186
metrics, 186
order of implementation, 183
risk analysis, 184
special topics in cyber security engineering, 187

risk management, 21
potential events, 19
Practical Measurement Framework, 55–58
Practical Measurement Framework for Software Assurance and Information Security (Bartol), 122,
127
practices

BSIMM Assessment Final Report, 293, 311
characteristics of, 148
RTSE (Resilient Technical Solution Engineering), 66

practioners, 57
pre-commit tests, 164–165
Predicting Software Assurance Using Quality and Reliability Measures (Woody), 123
principles

characteristics of, 145
of evidence, 329–331
for software assurance, 6–9

privilege
least privilege, 7, 58
separation of, 7

probability, 20
procedures, 148
process areas, 44. See also process models (CMMI)
process evidence, 123–127
process improvement, 167
process institutionalization, 171
process models (CMMI)

CMMI-ACQ (CMMI for Acquisition), 45–47
CMMI-DEV (CMMI for Development), 44–45
CMMI-SVC (CMMI for Services), 47–48
overview, 42–43
uses, 48

processes, 29, 147
product evidence, 127–129
Professional Advisory Board (PAB), 77, 94

proficiency targets, 80
program structure models, 121
project staffing case study, 95
“The Protection of Information in Computer Systems” (Saltzer and Schroeder), 3
psychological acceptability, 7
purpose of BSIMM Assessment Final Report, 283

Q-R
questions for software security, 125, 327–328
recovery, 29
references, 189–209
reports, BSIMM Assessment Final Report

audience, 283
comparison within vertical, 300–304
conclusion, 305–307
contacts, 283
copyright page, 279–280
data gathering, 290
executive summary, 284–289
high-water mark, 291–292
list of figures, 282
overview, 108–113
practices, 293
purpose, 283
scorecard, 293
table of contents, 281

requirements engineering, security measures for, 326
research in malware analysis, 179–180
Resiliency Requirements Development (RRD), 66
Resiliency Requirements Management (RRM), 66
resilient systems

overview, 40
system health and resiliency metrics, 168

Resilient Technical Solution Engineering (RTSE) process area, 63–67
resisting risk, 29
risk alignment, 8
risk analysis

certainty versus uncertainty, 18
definition of risk, 18
DevOps business-driven risk analysis

DevOps practices, 163–164

DevOpsSec competencies, 169–170
improvement plans, 184
mission risk. See also WEA (Wireless Emergency Alerts) case study

definition of, 23
MRD (Mission Risk Diagnostic), 23–27

operational risk, 38
overview, 17–18
risk management

components of risk, 21–23
MSwA BoK (Body of Knowledge), 61–62, 228
Software Assurance Competency Model, 90, 241
WEA (Wireless Emergency Alerts) case study, 131

security risk
components of, 27–29
definition of, 27
mapping between security risk focus areas and principles for software security, 125, 328–329
risk environment, 29–30
SERA (Security Engineering Risk Analysis) framework, 31–38

value of, 7–8
risk exposure, 20
risk management

components of risk, 21–23
MSwA BoK (Body of Knowledge), 61–62, 228
Software Assurance Competency Model, 90, 241
WEA (Wireless Emergency Alerts) case study, 131

roadmaps. See frameworks
routers, D-link, 173–174
RRD (Resiliency Requirements Development), 66
RRM (Resiliency Requirements Management), 66
RTSE (Resilient Technical Solution Engineering) process area, 63–67

S
SADB (Security Automation Dashboard), 165
SAFECode (Software Assurance Forum for Excellence in Code), 172
safety cases. See assurance cases
SAMM (Software Assurance Maturity Model), 53–55
satellites (BSIMM), 311
SC (Service Continuity) process area, 66
scope of governance

characteristics of effective governance, 141–142
definition of governance, 138–139

duty of care, 140
leading by example, 140–141
overview, 135–138

scorecard (BSIMM Assessment Final Report), 293
SD3+C, 58–60
SDL (Security Development Lifecycle)

communications, 59–60
overview, 58, 311
security by default, 58–59
security by design, 58
security in deployment, 59

Secure by Design, Secure by Default, Secure in Deployment, and Communications (SD3+C), 58–60
secure coding, 63
secure lifecycle models, 177
Secure Software Development Lifecycle (SSDL), 309, 311
secure software engineering, 40–41
Security Automation Dashboard (SADB), 165
security competency models. See competency models
Security Development Lifecycle. See SDL (Security Development Lifecycle)
Security Development Lifecycle (SDL), 311
Security Engineering Risk Analysis (SERA) framework. See SERA (Security Engineering Risk
Analysis) framework
Security Quality Requirements Engineering. See SQUARE process
Security Quality Requirements Engineering for Acquisition (A-SQUARE), 135–136
security requirements for acquisition overview, 150

SQUARE process
for acquisition of COTS software, 151–158
for acquisition organization that specifies requirements as RFP, 151
for acquisition organization with typical client role, 151–156
steps, 151–153
summary, 159

security risk
components of, 27–29
definition of, 27
mapping between security risk focus areas and principles for software security, 328–329
risk environment, 29–30
SERA (Security Engineering Risk Analysis) framework

control plan development, 37–38
operational context, establishing, 34
operational system model, 31–33
overview, 31

risk analysis, 36
risk identification, 33–35

security standards
characteristics of, 144–149
integration/automation of, 164–166
need for, 144–149
optimistic view of, 149–150

security tool automation, 170
SEI (Software Engineering Institute)

Competency Lifecycle Roadmap: Toward Performance Readiness, 78
endorsement of frameworks, 12
research in relation to Microsoft SDL, 62–64
Software Assurance Competency Model

advantages of, 94
competency attributes of effectiveness, 88
competency designations, 88–90, 239–248
endorsements of, 94
examples in practice, 91–94
KAs (knowledge areas), 85–87
levels of competency, 82–84
overview, 81–82
professional growth and career advancement and, 91–93
project staffing case study, 95

Software Assurance Curriculum Project
MSwA (Master in Software Assurance) Curriculum Architecture, 237–238
project documents, 235–236
SwA CorBoK (Core Body of Knowledge) areas, 236–237

separation of privilege, 7
SERA (Security Engineering Risk Analysis) framework

control plan development, 37–38
operational context, establishing, 34
operational system model, 31–33
overview, 31
risk analysis, 36
risk identification, 33–35

Service Continuity (SC) process area, 66
seven principles of evidence, 329–331
SFIA (Skills Framework for the Information Age), 78
Shafer, Andrew “Clay”, 160
Skills Framework for the Information Age (SFIA), 78
software acquisition

acquisition cases
acquisition of COTS software, 151–158
acquisition organization that specifies requirements as RFP, 151
acquisition organization with typical client role, 151–156

CMMI (Capability Maturity Model Integration) models
CMMI-ACQ (CMMI for Acquisition), 45–47
CMMI-DEV (CMMI for Development), 44–45
CMMI-SVC (CMMI for Services), 47–48
overview, 42–43
uses, 48

SQUARE process, 151–158
Software Assurance Competency Model

advantages of, 94
competency attributes of effectiveness, 88
competency designations

assurance across life cycles, 240
assurance assessment, 242
assurance management, 243
overview, 88–90
risk management, 241
system functionality assurance, 245–246
system operational assurance, 247–248
system security assurance, 244–245

endorsements of, 94
examples in practice, 91–94
gap analysis

competency mappings from (ISC)2 Application Security Advisory Board, 98–102
Fly-By-Night Airlines case study, 105–106
GoFast Automotive case study, 102
system security assurance KA specification, 103–105

KAs (knowledge areas), 85–87
levels of competency, 82–84
overview, 81–82
professional growth and career advancement and, 91–93
project staffing case study, 95

software assurance competency models. See competency models
Software Assurance Curriculum Project

MSwA (Master in Software Assurance) Curriculum Architecture, 237–238
project documents, 235–236
SwA CorBoK (Core Body of Knowledge) areas, 236–237

Software Assurance Forum for Excellence in Code (SAFECode), 172

Software Assurance Maturity Model (SAMM), 53–55
Software Assurance Professional Competency Model (DHS)

behavioral indicators, 80
NICE (National Initiative for Cybersecurity Education), 80–81
organization of competency areas, 79
overview, 77, 78
proficiency targets, 80
purpose, 78–79
SwA competency levels, 79

software assurance (SwA). See also competency models; software development
assurance across life cycles

MSwA BoK (Body of Knowledge), 227–228
Software Assurance Competency Model, 89, 240

assurance assessment
MSwA BoK (Body of Knowledge), 228–229
Software Assurance Competency Model, 242

assurance cases, 10–13
assurance management

MSwA BoK (Body of Knowledge), 230–231
Software Assurance Competency Model, 243

assured systems, 40–42
definition of, 3–6
DevOps practices for

business-driven risk analysis, 163–164
continuous monitoring and improvement, 167–168
integration of InfoSec experts, 162–163
integration/automation of information security standards, 164–166
overview, 161–162

DHS CMMI assurance process reference model, 50–52
DHS competency model

behavioral indicators, 80
NICE (National Initiative for Cybersecurity Education), 80–81
organization of competency areas, 79
overview, 78
proficiency targets, 80
purpose, 78–79
SwA competency levels, 79

DHS Practical Measurement Framework, 55–58
mapping between security risk focus areas and principles for software security, 328–329
MSwA (Master of Software Assurance) Reference Curriculum BoK

assurance across life cycles, 227–228

assurance assessment, 228–229
assurance management, 230–231
maturity levels, 60–61
risk management, 61–62, 228
system functionality assurance, 232–233
system operational assurance, 233–234
system security assurance, 231–232

principles for, 6–9
proposed competency mappings

comprehensive list of job titles, 259–277
initial list of job titles, 249–258

Software Assurance Competency Model
advantages of, 94
competency attributes of effectiveness, 88
competency designations, 88–90, 239–248
examples in practice, 91–94
KAs (knowledge areas), 85–87
levels of competency, 82–84
overview, 81–82
professional growth and career advancement and, 91–93
project staffing case study, 95

Software Assurance Curriculum Project
MSwA (Master in Software Assurance) Curriculum Architecture, 237–238
project documents, 235–236
SwA CorBoK (Core Body of Knowledge) areas, 236–237

software engineering profession and, 75–77
software security frameworks

BASF (Building Assured Systems Framework), 60–62
BSIMM (Building Security In Maturity Model), 49–51
CMMI assurance process reference model, 50–52
IRPC (International Process Research Consortium) roadmap, 67–70
Microsoft SDL (Security Development Lifecycle), 58–60
NIST Framework for Improving Critical Infrastructure Cybersecurity, 67–72, 120, 137
overview, 48–49
Practical Measurement Framework, 55–58
RTSE (Resilient Technical Solution Engineering) process area, 63–67
SAMM (Software Assurance Maturity Model), 53–55
SEI (Software Engineering Institute), 60–62

software development. See also software assurance (SwA)
assured systems, 40–42
CMMI (Capability Maturity Model Integration) models

CMMI-ACQ (CMMI for Acquisition), 45–47
CMMI-DEV (CMMI for Development), 44–45
CMMI-SVC (CMMI for Services), 47–48
overview, 42–43
uses, 48

control plans, 37–38
management challenges, 39–40
software security frameworks

BASF (Building Assured Systems Framework), 60–62
BSIMM (Building Security In Maturity Model). See BSIMM (Building Security In Maturity
Model)
CMMI assurance process reference model, 50–52
IRPC (International Process Research Consortium) roadmap, 67–70
Microsoft SDL (Security Development Lifecycle), 58–60
NIST Framework for Improving Critical Infrastructure Cybersecurity, 67–72, 120, 137
overview, 48–49
Practical Measurement Framework, 55–58
RTSE (Resilient Technical Solution Engineering) process area, 63–67
SAMM (Software Assurance Maturity Model), 53–55
SEI (Software Engineering Institute), 60–62

Software Engineering Competency Model (SWECOM), 78
Software Engineering Institute. See SEI (Software Engineering Institute)
software error detection models, 121
Software Security Engineering (Allen), 41
Software Security Framework (SSF), 311
software security frameworks

BASF (Building Assured Systems Framework), 60–62
BSIMM (Building Security In Maturity Model). See BSIMM (Building Security In Maturity
Model)
CMMI assurance process reference model, 50–52
IRPC (International Process Research Consortium) roadmap, 67–70
linkages between CERT research and Mic, 62–64
Microsoft SDL (Security Development Lifecycle)

communications, 59–60
overview, 58
security by default, 58–59
security by design, 58
security in deployment, 59

National Cybersecurity Workforce Framework, 80–81
NIST Framework for Improving Critical Infrastructure Cybersecurity, 67–72, 120, 137
overview, 48–49
Practical Measurement Framework, 55–58

RTSE (Resilient Technical Solution Engineering) process area, 63–67
SAMM (Software Assurance Maturity Model), 53–55
uses, 72

Software Security Group (SSG), 49, 311
software security initiatives (SSI), 108, 311, 312–314
software security questions, 125, 327–328
A-SQUARE (Security Quality Requirements Engineering for Acquisition), 135–136
SQUARE process

for acquisition of COTS software, 151–158
for acquisition organization that specifies requirements as RFP, 151
for acquisition organization with typical client role, 151–156
steps, 151–153
summary, 159

SSDL (Secure Software Development Lifecycle), 309, 311
SSF (software security framework), 311
SSG (software security group), 49, 311
SSI (software security initiatives), 108, 311, 312–314
staging, 166
stakeholders, 30
standards

cyber security standards
characteristics of, 144–149
integration/automation of, 164–166
need for, 144–149
optimistic view of, 149–150

evidence from, 127
states of drivers, 25
stovepiping, 160–161
STRIDE analysis, 219–224
structural correctness, 118
success state (drivers), 25
suppliers, 56–57
SwA. See software assurance (SwA)
SwA Competency Model. See Software Assurance Competency Model
SWICOM (Software Engineering Competency Model), 78
system control, Software Assurance Competency Model, 248
system functionality assurance

MSwA BoK (Body of Knowledge), 232–233
Software Assurance Competency Model, 245–246

system health and resiliency metrics, 168
system operational assurance

MSwA BoK (Body of Knowledge), 233–234
Software Assurance Competency Model, 247–248

system security assurance
MSwA (Master of Software Assurance) Reference Curriculum, 103–105
MSwA BoK (Body of Knowledge), 231–232
Software Assurance Competency Model, 244–245

System Security Engineering: An Integrated Approach to Building Trustworthy Resilient Systems
(NIST), 150
systemic risk. See mission risk
Systems Engineering Handbook (Haskins), 214
systems of systems, 213–215

T
table of contents (BSIMM Assessment Final Report), 281
TACIT approach, 150
Technology Management (TM) process area, 66
testing

build and integration tests, 164–165
performance tests, 166
pre-commit tests, 164–165
software security measures, 326
user acceptance testing, 166

Thompson, William (Lord Kelvin), 115
threats

overview, 27
threat modeling, 163, 169–170
threat outcomes, 31–32

time frame, 20
TM (Technology Management) process area, 66
training catalog (NICCS), 81
transfer of risk, 28
trusted dependencies, 8, 126, 330
Twitter security automation, 165–166

U
uncertainty, 18
US energy sector, 143
use cases

definition of, 172
malware analysis, 177–179

user acceptance testing, 166

V
vertical data (BSIMM Assessment Final Report), 300–304
Visible Ops Security (Kim), 162
vulnerabilities

code and design flaw vulnerabilities
Android operating system, 175
CWE (Common Weakness Enumeration), 176–177
definition of, 173–174
digital certificates, 175
D-link routers, 173–174

CVE (Common Vulnerability Enumeration), 122
definition of, 10
OpenSSL Heartbleed vulnerability, 177

overview, 27
pervasiveness of, 2
vulnerability analysis, 63
zero-day vulnerabilities, 177

W-X-Y-Z
WEA (Wireless Emergency Alerts) case study

description, 13–14
mission thread example, 217–219
preparation for mission thread analysis, 213–215
risk management, 131
security analysis

security risk scenario, 222–224
STRIDE analysis, 219–222

systems of systems, 213–215
well planned evidence, 330
wireless emergency alerts

definition of, 14
WEA (Wireless Emergency Alerts) case study

description, 13–14
mission thread example, 217–219
preparation for mission thread analysis, 213–215
risk management, 131
security risk scenario, 222–224
STRIDE analysis, 219–222
systems of systems, 213–215

work processes, 29
workflows, 29

worms, Morris, 7
zero-day vulnerabilities, 177

	About This E-Book
	Cyber Security Engineering
	Praise for Cyber Security Engineering
	Contents at a Glance
	Contents
	Acknowledgments
	About the Authors
	Foreword
	Preface
	The Goals and Purpose for This Book
	Audience for This Book
	Organization and Content
	Additional Content

	Chapter 1. Cyber Security Engineering: Lifecycle Assurance of Systems and Software
	1.1 Introduction
	1.2 What Do We Mean by Lifecycle Assurance?
	1.3 Introducing Principles for Software Assurance
	1.4 Addressing Lifecycle Assurance3
	1.5 Case Studies Used in This Book
	1.5.1 Wireless Emergency Alerts Case Study5
	1.5.2 Fly-By-Night Airlines Case Study6
	1.5.3 GoFast Automotive Corporation Case Study

	Chapter 2. Risk Analysis—Identifying and Prioritizing Needs
	2.1 Risk Management Concepts
	2.2 Mission Risk
	2.3 Mission Risk Analysis
	2.3.1 Task 1: Identify the Mission and Objective(s)
	2.3.2 Task 2: Identify Drivers
	2.3.3 Task 3: Analyze Drivers

	2.4 Security Risk
	2.5 Security Risk Analysis12
	2.6 Operational Risk Analysis—Comparing Planned to Actual
	2.7 Summary

	Chapter 3. Secure Software Development Management and Organizational Models1
	3.1 The Management Dilemma
	3.1.1 Background on Assured Systems

	3.2 Process Models for Software Development and Acquisition
	3.2.1 CMMI Models in General
	3.2.2 CMMI for Development (CMMI-DEV)
	3.2.3 CMMI for Acquisition (CMMI-ACQ)
	3.2.4 CMMI for Services (CMMI-SVC)
	3.2.5 CMMI Process Model Uses

	3.3 Software Security Frameworks, Models, and Roadmaps
	3.3.1 Building Security In Maturity Model (BSIMM)
	3.3.2 CMMI Assurance Process Reference Model
	3.3.3 Open Web Application Security Project (OWASP) Software Assurance Maturity Model (SAMM)
	3.3.4 DHS SwA Measurement Work
	3.3.5 Microsoft Security Development Lifecycle (SDL)
	3.3.6 SEI Framework for Building Assured Systems
	Maturity Levels
	MSwA2010 BoK with Outcomes and Maturity Levels

	3.3.7 SEI Research in Relation to the Microsoft SDL
	3.3.8 CERT Resilience Management Model Resilient Technical Solution Engineering Process Area
	3.3.9 International Process Research Consortium (IPRC) Roadmap
	3.3.10 NIST Cyber Security Framework
	3.3.11 Uses of Software Security Frameworks, Models, and Roadmaps

	3.4 Summary

	Chapter 4. Engineering Competencies
	4.1 Security Competency and the Software Engineering Profession1
	4.2 Software Assurance Competency Models2
	4.3 The DHS Competency Model4
	4.3.1 Purpose
	4.3.2 Organization of Competency Areas
	4.3.3 SwA Competency Levels
	4.3.4 Behavioral Indicators
	4.3.5 National Initiative for Cybersecurity Education (NICE)

	4.4 The SEI Software Assurance Competency Model8
	4.4.1 Model Features
	4.4.2 SwA Knowledge, Skills, and Effectiveness
	4.4.3 Competency Designations
	4.4.4 A Path to Increased Capability and Advancement9
	4.4.5 Examples of the Model in Practice10
	4.4.6 Highlights of the SEI Software Assurance Competency Model11

	4.5 Summary

	Chapter 5. Performing Gap Analysis
	5.1 Introduction
	5.2 Using the SEI’s SwA Competency Model
	5.3 Using the BSIMM
	5.3.1 BSIMM Background
	5.3.2 BSIMM Sample Report

	5.4 Summary

	Chapter 6. Metrics
	6.1 How to Define and Structure Metrics to Manage Cyber Security Engineering
	6.1.1 What Constitutes a Good Metric?
	6.1.2 Metrics for Cyber Security Engineering
	6.1.3 Models for Measurement6
	What Decisions About Cyber Security Need to Be Supported by Metrics?

	6.2 Ways to Gather Evidence for Cyber Security Evaluation
	6.2.1 Process Evidence
	6.2.2 Evidence from Standards
	Product Evidence
	Evaluating the Evidence

	6.2.3 Measurement Management12
	Managing Through Measurement Baselines

	Chapter 7. Special Topics in Cyber Security Engineering
	7.1 Introduction
	7.2 Security: Not Just a Technical Issue1
	7.2.1 Introduction
	Governance and Security
	Definitions of Security Governance
	Duty of Care
	Leading by Example
	Characteristics of Effective Security Governance and Management

	7.2.2 Two Examples of Security Governance
	Payment Card Industry
	U.S. Energy Sector

	7.2.3 Conclusion

	7.3 Cyber Security Standards
	7.3.1 The Need for More Cyber Security Standards8
	7.3.2 A More Optimistic View of Cyber Security Standards

	7.4 Security Requirements Engineering for Acquisition
	7.4.1 SQUARE for New Development
	7.4.2 SQUARE for Acquisition
	Case 1: The Acquisition Organization Has the Typical Client Role for Newly Developed Software
	Case 2: The Acquisition Organization Specifies the Requirements as Part of the RFP for Newly Developed Software
	Case 3: Acquisition of COTS Software

	7.4.3 Summary

	7.5 Operational Competencies (DevOps)13
	7.5.1 What Is DevOps?
	Collaboration Between Development and Operations Staff
	Focus on Improvement in Operational Work Efficiency and Effectiveness

	7.5.2 DevOps Practices That Contribute to Improving Software Assurance
	Phase 1: Integration of InfoSec Experts
	Phase 2: Business-Driven Risk Analysis
	Threat Modeling and Analysis
	DevOpsSec Requirements and Design Analysis

	Phase 3: Integration and Automation of Information Security Standards/Controls
	Pre-Commit Tests
	Build and Integration Tests
	User Acceptance Testing/Staging/Performance Tests
	Deploy to Production

	Phase 4: Continuous Monitoring and Improvement
	DevOpsSec and Process Improvement
	Use of Deployment Pipeline Metrics to Minimize Security Bottlenecks
	System Health and Resiliency Metrics

	7.5.3 DevOpsSec Competencies
	Phase 1: Integrating InfoSec Experts
	People Skills
	DevOpsSec Integration Strategy
	Security Analysis for Daily Operations

	Phase 2: Business-Driven Risk and Security Process Analysis
	Business-Aligned Threat Modeling
	DevOpsSec Requirements and Design Analysis

	Phase 3: Integration and Automation of Information Security Standards/Controls
	Security Tool Automation
	Enforcing Environment Conformance
	Patches and Open Source

	Phase 4: Continuous Monitoring and Improvement of Competencies
	Process Institutionalization and Continuous Measurement/Monitoring
	Deployment Process Streamlining to Minimize Security Bottlenecks
	DevOps Metrics for Security Analysis (e.g., Dashboards and Logs)

	7.6 Using Malware Analysis16
	7.6.1 Code and Design Flaw Vulnerabilities
	Case 1: D-Link Routers
	Case 2: Android Operating System
	Case 3: Digital Certificates
	Examining the Cases

	7.6.2 Malware-Analysis–Driven Use Cases
	7.6.3 Current Status and Future Research

	7.7 Summary

	Chapter 8. Summary and Plan for Improvements in Cyber Security Engineering Performance
	8.1 Introduction
	8.2 Getting Started on an Improvement Plan
	8.3 Summary

	References
	Bibliography
	Appendix A. WEA Case Study: Evaluating Security Risks Using Mission Threads1
	Importance of Systems of Systems
	Preparing for Mission Thread Analysis

	WEA Mission Thread Example
	WEA Security Analysis
	Conclusion
	References

	Appendix B. The MSwA Body of Knowledge with Maturity Levels Added
	References

	Appendix C. The Software Assurance Curriculum Project
	Appendix D. The Software Assurance Competency Model Designations1
	Appendix E. Proposed SwA Competency Mappings
	References

	Appendix F. BSIMM Assessment Final Report
	Table of Contents
	List of Figures
	Preface
	Purpose
	Audience
	Contacts
	1 Executive Summary
	2 Data Gathering
	3 High-Water Mark
	4 BSIMM Practices
	5 BSIMM Scorecard
	6 Comparison within Vertical
	7 Conclusion
	Appendix A: BSIMM Background
	Appendix B: BSIMM Activities
	About Cigital

	Appendix G. Measures from Lifecycle Activities, Security Resources, and Software Assurance Principles
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

