

Data Science in R
A Case Studies Approach to
Computational Reasoning

and Problem Solving

Chapman & Hall/CRC
The R Series

John M. Chambers
Department of Statistics

Stanford University
Stanford, California, USA

Duncan Temple Lang
Department of Statistics

University of California, Davis
Davis, California, USA

Torsten Hothorn
Division of Biostatistics

University of Zurich
Switzerland

Hadley Wickham
RStudio

Boston, Massachusetts, USA

Aims and Scope
This book series reflects the recent rapid growth in the development and application
of R, the programming language and software environment for statistical computing
and graphics. R is now widely used in academic research, education, and industry.
It is constantly growing, with new versions of the core software released regularly
and more than 6,000 packages available. It is difficult for the documentation to
keep pace with the expansion of the software, and this vital book series provides a
forum for the publication of books covering many aspects of the development and
application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology,

genetics, engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear and

mixed modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and

graphics.

The books will appeal to programmers and developers of R software, as well as
applied statisticians and data analysts in many fields. The books will feature
detailed worked examples and R code fully integrated into the text, ensuring their
usefulness to researchers, practitioners and students.

Series Editors

Published Titles

Stated Preference Methods Using R, Hideo Aizaki, Tomoaki Nakatani,
and Kazuo Sato

Using R for Numerical Analysis in Science and Engineering, Victor A. Bloomfield

Event History Analysis with R, Göran Broström

Computational Actuarial Science with R, Arthur Charpentier

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

Reproducible Research with R and RStudio, Christopher Gandrud

Introduction to Scientific Programming and Simulation Using R, Second Edition,
Owen Jones, Robert Maillardet, and Andrew Robinson

Nonparametric Statistical Methods Using R, John Kloke and Joseph McKean

Displaying Time Series, Spatial, and Space-Time Data with R,
Oscar Perpiñán Lamigueiro

Programming Graphical User Interfaces with R, Michael F. Lawrence
and John Verzani

Analyzing Sensory Data with R, Sébastien Lê and Theirry Worch

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Growth Curve Analysis and Visualization Using R, Daniel Mirman

R Graphics, Second Edition, Paul Murrell

Data Science in R: A Case Studies Approach to Computational Reasoning and
Problem Solving, Deborah Nolan and Duncan Temple Lang

Multiple Factor Analysis by Example Using R, Jérôme Pagès

Customer and Business Analytics: Applied Data Mining for Business Decision
Making Using R, Daniel S. Putler and Robert E. Krider

Implementing Reproducible Research, Victoria Stodden, Friedrich Leisch,
and Roger D. Peng

Using R for Introductory Statistics, Second Edition, John Verzani

Advanced R, Hadley Wickham

Dynamic Documents with R and knitr, Yihui Xie

This page intentionally left blankThis page intentionally left blank

Data Science in R
A Case Studies Approach to
Computational Reasoning

and Problem Solving

Deborah Nolan
University of California, Berkeley

USA

Duncan Temple Lang
University of California, Davis

USA

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150310

International Standard Book Number-13: 978-1-4822-3482-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com/
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com

To our families — Zoë and Suzana, and Dave, Ben, and Sam,

and to our mentors John Chambers and Terry Speed.

This page intentionally left blankThis page intentionally left blank

Contents

Preface xv

Acknowledgments xix

Authors xxi

Co-Authors xxiii

I Data Manipulation and Modeling 1

1 Predicting Location via Indoor Positioning Systems 3
Deborah Nolan and Duncan Temple Lang
1.1 Introduction . 3

1.1.1 Computational Topics . 4
1.2 The Raw Data . 4

1.2.1 Processing the Raw Data . 8
1.3 Cleaning the Data and Building a Representation for Analysis 12

1.3.1 Exploring Orientation . 14
1.3.2 Exploring MAC Addresses . 16
1.3.3 Exploring the Position of the Hand-Held Device 18
1.3.4 Creating a Function to Prepare the Data 19

1.4 Signal Strength Analysis . 21
1.4.1 Distribution of Signal Strength . 21
1.4.2 The Relationship between Signal and Distance 26

1.5 Nearest Neighbor Methods to Predict Location 31
1.5.1 Preparing the Test Data . 31
1.5.2 Choice of Orientation . 32
1.5.3 Finding the Nearest Neighbors . 34
1.5.4 Cross-Validation and Choice of k 36

1.6 Exercises . 41

2 Modeling Runners’ Times in the Cherry Blossom Race 45
Daniel Kaplan and Deborah Nolan
2.1 Introduction . 45

2.1.1 Computational Topics . 47
2.2 Reading Tables of Race Results into R . 47
2.3 Data Cleaning and Reformatting Variables 55
2.4 Exploring the Run Time for All Male Runners 63

2.4.1 Making Plots with Many Observations 63
2.4.2 Fitting Models to Average Performance 67
2.4.3 Cross-Sectional Data and Covariates 74

2.5 Constructing a Record for an Individual Runner across Years 79
2.6 Modeling the Change in Running Time for Individuals 88

ix

x Contents

2.7 Scraping Race Results from the Web . 93
2.8 Exercises . 100

3 Using Statistics to Identify Spam 105
Deborah Nolan and Duncan Temple Lang
3.1 Introduction . 105

3.1.1 Computational Topics . 106
3.2 Anatomy of an email Message . 107
3.3 Reading the email Messages . 110
3.4 Text Mining and Naïve Bayes Classification 113
3.5 Finding the Words in a Message . 116

3.5.1 Splitting the Message into Its Header and Body 116
3.5.2 Removing Attachments from the Message Body 117
3.5.3 Extracting Words from the Message Body 124
3.5.4 Completing the Data Preparation Process 126

3.6 Implementing the Naïve Bayes Classifier 127
3.6.1 Test and Training Data . 128
3.6.2 Probability Estimates from Training Data 129
3.6.3 Classifying New Messages . 131
3.6.4 Computational Considerations . 135

3.7 Recursive Partitioning and Classification Trees 138
3.8 Organizing an email Message into an R Data Structure 140

3.8.1 Processing the Header . 141
3.8.2 Processing Attachments . 144
3.8.3 Testing Our Code on More email Data 146
3.8.4 Completing the Process . 148

3.9 Deriving Variables from the email Message 150
3.9.1 Checking Our Code for Errors . 155

3.10 Exploring the email Feature Set . 158
3.11 Fitting the rpart() Model to the email Data 160
3.12 Exercises . 164

4 Processing Robot and Sensor Log Files: Seeking a Circular Target 171
Samuel E. Buttrey, Timothy H. Chung, James N. Eagle, and Duncan Temple Lang
4.1 Description . 171

4.1.1 Computational Topics . 172
4.2 The Data . 173

4.2.1 Reading an Entire Log File . 175
4.2.2 Exploring Log Files . 179
4.2.3 Visualizing the Path . 184
4.2.4 Exploring a “Look” . 187
4.2.5 The Error Distribution for Range Values 190

4.3 Detecting a Circular Target . 194
4.3.1 Connecting Segments Behind the Robot 198
4.3.2 Determining If a Segment Corresponds to a Circle 200

4.4 Detecting the Target with Streaming Data in Real Time 213

Contents xi

5 Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 217
Michael Kane
5.1 Introduction . 217

5.1.1 Computational Topics . 218
5.2 Acquiring the Airline Data Set . 219
5.3 Computing with Massive Data: Getting Flight Delay Counts 219

5.3.1 The R Programming Environment 219
5.3.2 The UNIX Shell . 221
5.3.3 An SQL Database with R . 223
5.3.4 The bigmemory Package with R 227

5.4 Explorations Using Parallel Computing: The Distribution of Flight Delays 229
5.4.1 Writing a Parallelizable Loop with foreach 230
5.4.2 Using the Split-Apply-Combine Approach for Better Performance . 231
5.4.3 Using Split-Apply-Combine to Find the Best Time to Fly 232

5.5 From Exploration to Model: Do Older Planes Suffer Greater Delays? . . . 236

II Simulation Studies 239

6 Pairs Trading 241
Cari Kaufman and Duncan Temple Lang
6.1 The Problem . 241

6.1.1 Computational Topics . 245
6.2 The Data Format . 246
6.3 Reading the Financial Data . 247
6.4 Visualizing the Time Series . 250
6.5 Finding Opening and Closing Positions 251

6.5.1 Identifying a Position . 251
6.5.2 Displaying Positions . 254
6.5.3 Finding All Positions . 256
6.5.4 Computing the Profit for a Position 257
6.5.5 Finding the Optimal Value for k . 260

6.6 Simulation Study . 263
6.6.1 Simulating the Stock Price Series 265
6.6.2 Making stockSim() Faster . 273

7 Simulation Study of a Branching Process 277
Deborah Nolan and Duncan Temple Lang
7.1 Introduction . 277

7.1.1 The Monte Carlo Method . 279
7.1.2 Computational Topics . 281

7.2 Exploring the Random Process . 281
7.3 Generating Offspring . 284

7.3.1 Checking the Results . 286
7.3.2 Considering Alternative Implementations 287

7.4 Profiling and Improving Our Code . 289
7.5 From One Job’s Offspring to an Entire Generation 290
7.6 Unit Testing . 292
7.7 A Structure for the Function’s Return Value 293
7.8 The Family Tree: Simulating the Branching Process 294
7.9 Replicating the Simulation . 299

7.9.1 Analyzing the Simulation Results 301

xii Contents

7.10 Exercises . 306

8 A Self-Organizing Dynamic System with a Phase Transition 309
Deborah Nolan and Duncan Temple Lang
8.1 Introduction and Motivation . 309

8.1.1 Computational Topics . 310
8.2 The Model . 310

8.2.1 The Order Cars Move . 312
8.3 Implementing the BML Model . 314

8.3.1 Creating the Initial Grid Configuration 314
8.3.2 Testing the Grid Creation Function 318
8.3.3 Displaying the Grid . 321
8.3.4 Visualizing the Grid . 322
8.3.5 Simple and Convenient Object-Oriented Programming 325
8.3.6 Moving the Cars . 327

8.4 Evaluating the Performance of the Code 334
8.5 Implementing the BML Model in C . 346

8.5.1 The Algorithm in C . 348
8.5.2 Compiling, Loading, and Calling the C Code 355

8.6 Running the Simulations . 359
8.6.1 Exploring Car Velocity . 360

8.7 Experimental Compilation . 362

9 Simulating Blackjack 367
Hadley Wickham
9.1 Introduction . 367

9.1.1 Computational Topics . 368
9.2 Blackjack Basics . 368

9.2.1 Testing Functions . 370
9.3 Playing a Hand of Blackjack . 372

9.3.1 Creating Functions for the Player’s Actions 373
9.4 Strategies for Playing . 376

9.4.1 Developing the Optimal Strategy 379
9.5 Playing Many Games . 382
9.6 A More Accurate Card Dealer Shoe . 384
9.7 Counting Cards . 390
9.8 Putting It All Together . 393
9.9 Exercises . 394

III Data and Web Technologies 397

10 Baseball: Exploring Data in a Relational Database 399
Deborah Nolan and Duncan Temple Lang
10.1 Introduction . 399

10.1.1 Computational Topics . 400
10.2 Sean Lahman’s Database . 401

10.2.1 Connecting to the Baseball Database from within R 401
10.3 Aggregating Salaries into Payroll . 403
10.4 Merging Payroll Data with Information in Other Tables 408

10.4.1 Adding Team Names to the Payroll Data 409
10.4.2 Adding World Series Records to the Payroll Data 411

Contents xiii

10.5 Exploring the Extreme Salaries . 412
10.6 Exercises . 415

11 CIA Factbook Mashup 419
Deborah Nolan and Duncan Temple Lang
11.1 Introduction . 419

11.1.1 Computational Topics . 421
11.2 Acquiring the Data . 421

11.2.1 Extracting Latitude and Longitude from a CSV File 421
11.3 Integrating Data from Different Sources 423
11.4 Preparing the Data for Plotting . 424

11.4.1 Redoing the Merge of the Factbook and Location Data 428
11.5 Plotting with Google Earth™ . 430
11.6 Extracting Demographic Information from the CIA XML File 435
11.7 Generating KML Directly . 442
11.8 Additional Computational Tasks . 448

11.8.1 Creating Plotting Symbols . 448
11.8.2 Efficiency in Generating KML from Strings 448
11.8.3 Extracting Latitude and Longitude from an HTML File 450

11.9 Exercises . 451

12 Exploring Data Science Jobs with Web Scraping and Text Mining 457
Deborah Nolan and Duncan Temple Lang
12.1 Introduction and Motivation . 457

12.1.1 Computational Topics . 459
12.2 Exploring Different Web Sites . 459
12.3 Preliminary/Exploratory Scraping: The Kaggle Job List 465

12.3.1 Processing the Text . 469
12.3.2 Generalizing to Other Posts . 470
12.3.3 Scraping the Kaggle Post List . 473

12.4 Scraping CyberCoders.com . 475
12.4.1 Getting the Skill List from a Job Post 478
12.4.2 Finding the Links to Job Postings in the Search Results 482
12.4.3 Finding the Next Page of Job Post Search Results 487
12.4.4 Putting It All Together . 488

12.5 A Reusable Generic Framework for Arbitrary Sites 489
12.6 Scraping Career Builder . 492
12.7 Scraping Monster.com . 494
12.8 Analyzing the Results: The Important Skills 495
12.9 Note on Web Scraping . 503
12.10 Exercises . 503

Index 507

Colophon 515

This page intentionally left blankThis page intentionally left blank

Preface

Our aim in writing this book is two-fold. We want students to be able to read about the
computational reasoning and details of real-world data analyses. We also want to provide,
hopefully, interesting and useful material to help statistics faculty teach the important
aspects of a new, expanded curriculum to a new type of statistics and data science student.
This enhanced curriculum includes exposure to data analytic and computational reasoning,
rather than focusing primarily on statistical methodology. Our goal is not to provide short,
tidy answers and solutions, but to explore the problems, possible solutions, and the thought
process involved in addressing data science projects.
Goals of the Book
There are many different languages people commonly use to do data analysis and data
science. We focus primarily on R, but also use several other domain specific languages
(DSLs) and even touch on languages such as theUNIX shell and C. This book is not intended
to teach the syntax or semantics of the R language, or any of the other languages we use. Nor
is it written to list the large number of packages and functions that data scientists commonly
use in R. Instead, we wrote the book so that people could experience the thought process
involved in solving authentic computational problems related to data analysis problems.
There are many books that teach programming by introducing the important ideas in
a section and illustrating them with one or more examples. These are very useful and
essential starting points. However, the code in the examples in these books is the final,
polished version written by an expert, as it should be. These do not expose the reader
to the actual process of writing code, but just the final result. Our aim is to illustrate
the process by which programmers approach a problem and reason about different ways
of implementing the solution. This process is very dynamic and iterative. We write some
code, test it, change it, refine and extend it and generalize it. Often, we “start over,” having
learned from the first attempt, or prototype, and develop a more succinct, clearer version.
Along the way, we make trade-offs between simplicity, efficiency, generality, reuse, correct
and approximate results, and so on. We try to find ways to minimize changes to the code
while making it faster and more flexible. In this book, we try to illustrate this entire process
and the often implicit decisions experienced programmers make. The hope is to complement
the textbooks and provide students, researchers (and even faculty) with a glimpse into how
professional data scientists think about daily computational tasks.
Using These Case Studies in Statistical Computing Courses
Developing a new course in statistical computing (or any topic) is a very time-consuming
task for an instructor. We often have to learn some new topics, or at least their details, and
prioritize and order them to identify which ones should be in the course and in what order.
We also have to develop assignments and plenty of them so that we can swap them from
year to year. We could give synthetic programming assignments to help the students learn,
for example, vectorization and loops, or regular expressions. These are terrific introductory
exercises when the students are first learning the fundamental concepts, but do not necessar-
ily grow into significant assignments or mini-projects. We strongly favor giving the students
authentic real-world data analysis projects in our statistical computing courses that tie the
new concepts into the regular data science workflow. We want to expose the students to the

xv

xvi Preface

daily activities of data scientists. We also think the context is interesting for the students
and helps them to see the wide range of applications of data analysis. Furthermore, we want
to introduce statistical methods and concepts, along with the computational topics, that
they may not see in other courses. For these reasons, our statistical computing courses act
as a catch-all where we cover many “real world” topics necessary for a data scientist to
master for everyday work.

With all of these goals in mind, finding pedagogically interesting projects and assign-
ments that the students can actually complete and which interest them and illustrate
the particular topics is extremely challenging. When we started developing our comput-
ing courses at Berkeley and Davis, we spent many days/weeks developing assignments. We
had many ideas for possible data sets and sources. For every one we turned into an as-
signment, we “interviewed” 4 or 5 other problems. Some were interesting, but were too
simple or too complex. Some did not have an interesting statistical/data analysis question
at the end of the data processing. Others didn’t lend themselves to teaching the particular
computational and statistical topics on which we wanted the student to focus. Our hope
is that this book and its case studies will reduce the barrier for instructors to incorporate
interesting problems into statistical and computing courses that focus on data science skills.

In the current era of data science, we have many rich and interesting data sets to use
for research and teaching. The Data Expo competitions that people such as Debby Swayne,
Paul Murrell, and Hadley Wickham have organized are excellent sources of interesting,
challenging, and manageable problems. Data repositories, such as the one at University of
California, Irvine (UCI), have also grown in number and diversity. Sites such as Kaggle.com
also provide interesting problems and data. Our focus in this book is slightly different from
these. We try to start with the raw data, and identify and explore potential questions of
interest, rather than have the question prescribed for us or the data pre-processed. We feel
that it is important for students to experience both acquiring and working with unstruc-
tured or semi-structured data, and also narrowing down and carefully framing the questions
of interest about those data. This motivation comes from our experience in industrial re-
search labs (IBM and Bell Laboratories), summer schools such as Explorations in Statistics
Research (ESR), and teaching at UC Berkeley and Davis.
Broad Topics
This book is a collection of somewhat non-traditional assignments and sample solutions and
exercises. We chose problems that address various topics, technologies, and characteristics
we want the students to be exposed to and learn. These include:

• non-standard data formats (robot logs, email messages);

• text processing and regular expressions;

• newer/less-traditional technologies (Web scraping, Web services, JSON , XML, HTML,
KML and Google Earth™);

• statistical methods (classification trees, k-nearest neighbors, naïve Bayes);

• visualization and exploratory data analysis;

• relational databases and SQL;

• simulation;

• implementing algorithms;

• large data and efficiency;

http://Kaggle.com

Preface xvii

• software design, development, and testing;

• using and interfacing to other languages such as the UNIX shell, C, and Python.

There are many other computational topics we would like to cover such as modern
statistical and machine learning methods, version control, dynamic documents, parallel
computing, Hadoop and MapReduce, data technologies, advanced text processing concepts,
and so on. Space and time does not permit us to cover these in this book.

The case studies included here are are a subset of those that we have used in our classes.
They are not perfect and can be criticized for their different deficiencies. In spite of this, we
hope they are valuable to students and instructors alike. We also hope they will catalyze
us and other people to distribute more case studies, problems, data sets, and so on to help
students learn the computing and statistical reasoning skills they need. We are attempting
to collect these at http://rdatasciencecases.org. We welcome any suggestions,
corrections and contributions. Indeed, we hope to build a larger collection of pedagogical
materials, and also a community of collaborating educators.
Target Audience
Since the book does not attempt to teach the “nuts and bolts” of any of the languages used
in the case studies, it is not intended to be a standalone textbook. We do think it will serve
as a useful compendium for students at all levels who deal with processing data. It can serve
as supplementary reading for a statistical computing course at the undergraduate level and
first graduate course. We also expect people who are practicing, or emerging, data scientists
who haven’t had explicit courses in statistical computing will find the book valuable. In these
regards, we expect it to be a useful book for self-learners and undergraduate and graduate
students (and even faculty) seeking to go beyond the introductory texts. The material in
the book is for people who want to explore both the thought process and details of how
regular computing for a broad range of data science problems is done.
The Themes of the Three Parts
We have divided the book into 3 parts, with each part having a general theme. All of these
focus on computing problems, but also visualization, data technologies, and less-commonly
taught statistical/machine learning techniques.

Part I contains case studies that involve reading and transforming raw data, manipulat-
ing and visualizing them, and then using statistical techniques to try to solve a problem or
understand relationships between variables. The data are typically in non-standard format
or source (e.g., in Web pages). The statistical techniques are not very complex, but are
different from what students typically see in undergraduate courses.

Part II focuses on using simulation to understand stochastic processes for their own
sake and also explore how we can use simulation to model interesting situations. These case
studies also explore some advanced computing topics such as reference classes and efficient
idioms and computational approaches.

The final set of case studies in Part III explore different data technologies. These include
databases, visualization with KML, and scraping data from Web pages with HTTP requests
and text processing.

The division of case studies into the different sections are not precise and absolute.
For example, some of the simulation topics involve data manipulation, while some of the
data manipulation and modeling chapters involve simulation. The data technologies studies
involve a lot of data manipulation. All of the case studies involve visualization – both for
understanding and exploring data, and also debugging code.

The primary focus of this book is statistical computing and how to access, transform,
manipulate, explore, visualize, and reason about data. However, in addition to the technolo-
gies and computing, all of the case studies are based on interesting statistical, mathematical

http://rdatasciencecases.org

xviii Preface

and engineering problems that are worthy of study themselves. The chapters blend compu-
tational details with statistical and data analysis concepts. The analyses of the data and
results are intentionally short and not comprehensive. Our aim is to whet the reader’s in-
terest in the specific application and stop/suspend at a point where interested students can
do a great deal more exploration of the data and the statistical approaches to solving the
problem. The chapters provide the computational foundation for the problems and we leave
further exploration to the students and instructors, but describe many possible exercises
and different directions to pursue.
Typographic Conventions
In several case studies we use other languages in addition to R, such as SQL and C. While
the context should clearly indicate that a code block is in a language other than R, we also
specify this in the margin of the page. For example, a UNIX grep command appears as

Shell grep position2d JRSPdata_2010_03_10.log | grep -v ’ 004 ’

In the process of writing code, we introduce errors and mistakes with the idea that these
are useful for learning how best to approach and solve computational problems. For this
reason, some of the code in this book is purposefully incorrect or ill-advised (i.e., it works
but is not a good approach). We identify such code with a no-entry symbol in the page
margin, e.g.,

createGrid(c(3, 5), .5)

Error in grid[pos] = sample(rep(c("red", "blue"), numCars)) :
(converted from warning) number of items to replace is not
a multiple of replacement length

We should note that the code we present in this book for creating the figures differs
slightly from the code we actually used to create the displayed figures. In typical daily
usage, we add titles to our plots when we create them in R, either for interactive viewing
or for including in presentations and reports. However, we have not done that for this book
because the graphics are displayed in figures which include their own captions and titles. In
order to avoid redundancy, we have eliminated the specification of a plot title in our code.

One final convention pertains to the exercises. Some case studies have exercises scattered
throughout the chapter while others collect the exercises at the end of each chapter. To help
identify and locate an exercise, we have added a question mark in the margin next to the
exercise. For example,

Q.1 Write a function to include two series on the same plot. Be sure to add a title to your
figure.

Available Materials
The Web site http://rdatasciencecases.org provides data, code, and supplemen-
tary material for this book. It also provides ideas and details for additional case studies.
We hope others will contribute their case studies so that we can make these available to the
community at large.

http://rdatasciencecases.org

Acknowledgments

We, of course, want to thank all of the contributors who provided case studies included in
the book. They gave a lot of time and thought in preparing their chapters. This was a long
process and they were very patient and understanding.

The initial idea for this book of case studies came from an NSF-funded workshop we led
in 2007 to explore the role of computing in the statistics curricula. One of the ideas was to
share teaching resources, and this is one outcome of that.

We thank the numerous participants at our different NSF-funded workshops focused
on computing in the statistics curricula. These workshops were divided into a) developing
model curricula, b) creating case studies, and c) facilitating instructors to teach modern
statistical computing. The interest, enthusiasm, feedback and input from all the participants
was extremely important. We particularly thank the attendees of the 2009 workshop who
brought ideas and materials for case studies: Samuel Frame (Cal Poly, San Luis Obispo),
Robert Gould (UCLA), Albyn Jones (Reed College), Michael Kane (Yale University), Daniel
Kaplan (Macalester College), Cari Kaufman (UC Berkeley), Guy Lebanon (Purdue Univer-
sity, now Amazon), Matt Levinson (UCLA), Thomas Lumley (University of Washington,
now University of Auckland), John Monahan (NC State University), Roger Peng (Johns
Hopkins University), Andrew Schaffner (Cal Poly, San Luis Obispo), Luke Tierney (Uni-
versity of Iowa), Frances Tong (UC Berkeley, now Becton Dickinson Technologies), John
Verzani (CUNY Staten Island), Mark Daniel Ward (Purdue University), Charlotte Wick-
ham (UC Berkeley, now Oregon State University), and Hadley Wickham (Rice University,
now RStudio).

The researchers who presented one- or two-day case studies in the NSF-sponsored “Ex-
plorations in Statistics Research” (ESR) summer workshop that we have run over many
years helped shape our thinking about how to present advanced modern statistics and data
science to undergraduates. Specifically, we would like to thank Andreas Buja (Wharton
School of Business, University of Pennsylvania), Amanda Cox (New York Times), Francesca
Dominici (Johns Hopkins, now Harvard), Chris Genovese (Carnegie Mellon University),
Carie Grimes (Google), Mark Hansen (UCLA, now Columbia University), Dave Higdon
(Los Alamos National Laboratory), Diane Lambert (Bell Labs, Lucent Technologies, and
now Google), Dave Madigan (Columbia University), Doug Nychka (NCAR), Roger Peng
(Johns Hopkins), Katie Pollard (Gladstone Institute, UCSF), John Rice (UC Berkeley),
Patrick Ryan (Janssen Research and Development), Steve Sein (NCAR), Jas Sekhon (UC
Berkeley), Terry Speed (UC Berkeley and Walter and Eliza Hall Institute of Medical Re-
search), Claudia Tebaldi (Climate Central), and Chris Volinsky (AT&T Shannon Labs).

In addition to the presenters, many researchers and faculty helped at the ESR with
tutorials, career panels, etc. We thank Joe Blitzstein (Harvard University), Dianne Cook
(Iowa State University), Nick Horton (Smith College and now Amherst College), David
James (Bell Labs, Lucent Technologies, now Novartis), Cari Kaufman (UC Berkeley), and
Debby Swayne (AT&T Shannon Labs).

We also want to thank the numerous teaching assistants who have served in our courses
at Berkeley and Davis and also the ESR workshops. They helped to iron out some of
the issues with teaching some of these case studies, identifying issues and problems the

xix

xx Acknowledgments

students encountered, and providing valuable feedback. These include Gabe Becker, Neal
Fultz, Tammy Greasby, Brianna Hirst, Wayne Lee, Erin Melcon, Rakhee Patel, Nick Ulle,
and Charlotte Wickham. Thanks also go to Ann Cannon who provided helpful feedback on
an early version of Chapter 2.

We thank our editor John Kimmel for his continued support and encouragement for our
projects.

This material is based in part upon work supported by the National Science Foundation
under Grant Numbers DUE-0618865, DMS-0840001, and DUE-1043634.

Authors

Deborah Nolan has led many efforts to improve instruction in mathematics and statis-
tics and to engage undergraduates in educational outreach. She holds the Zaffaroni Family
Chair in Undergraduate Education at Berkeley, and received the University’s Distinguished
Teaching Award at Berkeley and the William R. Kenan, Jr. Visiting Professorship for Dis-
tinguished Teaching at Princeton. She is a fellow of the American Statistical Association,
and former Chair of both its Computing Section and its Education Section. She is also
a Fellow of the Institute of Mathematical Statistics. She co-directs the math and science
teacher preparation program, Cal Teach, and master teacher in-service program, Math for
America, Berkeley. She is the author of several books, including this one.

Duncan Temple Lang has been involved in the development of R and S for 20 years, and
has developed over 100 R packages. He focuses on exploring and developing new possibilities
for statistical computing, typically investigating new and ambitious paradigms and technolo-
gies from other disciplines and incorporating them, currently, into the R environment. He
is currently working on compilation for R using an LLVM-based approach; provenance for
R computations; type inference; and a fast, flexible framework for Bayesian and likelihood
computations in R (http://r-nimble.org); and graphical processing units (GPUs). He
recently became the Director of the UC Davis Data Science Initiative.

Nolan and Temple Lang are the authors of the book XML and Web Technologies for Data
Science in R. They have also organized and led several NSF-funded summer programs aimed
at attracting students to graduate studies in statistics, and short workshops in data science
topics. Together, they developed a course, Concepts in Computing with Data, on their
respective campuses, and they have collaborated on systems for interactive, reproducible,
dynamic documents, and Web-based visualization.

xxi

http://r-nimble.org

This page intentionally left blankThis page intentionally left blank

Co-Authors

Samuel E. Buttrey
Naval Postgraduate School
Monterey, CA, USA

Timothy H. Chung
Naval Postgraduate School
Monterey, CA, USA

James N. Eagle
Naval Postgraduate School
Monterey, CA, USA

Michael Kane
Yale University
New Haven, CT, USA

Daniel Kaplan
Macalester College
Saint Paul, MN, USA

Cari Kaufman
University of California, Berkeley
Berkeley, CA, USA

Hadley Wickham
RStudio
Houston, TX, USA

xxiii

This page intentionally left blankThis page intentionally left blank

Part I

Data Manipulation and
Modeling

This page intentionally left blankThis page intentionally left blank

1
Predicting Location via Indoor Positioning Systems

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
1.1 Introduction . 3

1.1.1 Computational Topics . 4
1.2 The Raw Data . 4

1.2.1 Processing the Raw Data . 8
1.3 Cleaning the Data and Building a Representation for Analysis 12

1.3.1 Exploring Orientation . 14
1.3.2 Exploring MAC Addresses . 16
1.3.3 Exploring the Position of the Hand-Held Device . 18
1.3.4 Creating a Function to Prepare the Data . 19

1.4 Signal Strength Analysis . 21
1.4.1 Distribution of Signal Strength . 21
1.4.2 The Relationship between Signal and Distance . 26

1.5 Nearest Neighbor Methods to Predict Location . 31
1.5.1 Preparing the Test Data . 31
1.5.2 Choice of Orientation . 32
1.5.3 Finding the Nearest Neighbors . 34
1.5.4 Cross-Validation and Choice of k . 36

1.6 Exercises . 41
Bibliography . 43

1.1 Introduction
The growth of wireless networking has generated commercial and research interests in sta-
tistical methods to reliably track people and things inside stores, hospitals, warehouses, and
factories. Global positioning systems (GPS) do not work reliably inside buildings, but with
the proliferation of wireless local area networks (LANs), indoor positioning systems (IPS)
can utilize WiFi signals detected from network access points to answer questions such as:
where is a piece of equipment in a hospital? where am I? and who are my neighbors? Ideally,
with minimal training, calibration, and equipment, these questions can be answered well in
near real-time.

To build an indoor positioning system requires a reference set of data where the signal
strength between a hand-held device such as a cellular phone or laptop and fixed access

3

4 Case Studies in Data Science in R

points (routers) are measured at known locations throughout the building. With these
training data, we can build a model for the location of a device as a function of the strength
of the signals between the device and each access point. Then we use this model to predict
the location of a new unknown device based on the detected signals for the device. In
this chapter, we examine nearly one million measurements of signal strength recorded at 6
stationary WiFi access points (routers) within a building at the University of Mannheim
and develop a statistical IPS.

Our first step in this process is to understand how the data were collected and formatted.
In Section 1.2, we do this by reading documentation provided by the researchers who have
recorded the data and by carrying out our own investigations. After we have a sense of the
data, we organize them into a structure suitable for analysis. We then clean the data in
Section 1.3, and before we begin our modeling, we examine signal strength more closely to
better understand its statistical properties (in Section 1.4). Then in Section 1.5 we pursue
a nearest neighbor method for predicting location and we test it on a second set of data,
also provided by the researchers at Mannheim.

1.1.1 Computational Topics
• string manipulation

• data structures and representation, including variable length observations

• aggregating data in ragged arrays

• exploratory data analysis and visualization

• modular functions

• debugging

• nearest neighbor methods

• cross-validation for parameter selection

1.2 The Raw Data
Two relevant data sets for developing an IPS are available on the CRAWDAD site (A
Community Resource for Archiving Wireless Data At Dartmouth) [2]. One is a reference
set, termed “offline,” that contains signal strengths measured using a hand-held device on
a grid of 166 points spaced 1 meter apart in the hallways of one floor of a building at the
University of Mannheim. The floor plan, which measures about 15 meters by 36 meters, is
displayed in Figure 1.1. The grey circles on the plan mark the locations where the offline
measurements were taken and the black squares mark 6 access points. These reference
locations give us a calibration set of signal strengths for the building, and we use them
to build our model to predict the locations of the hand-held device when its position is
unknown.

In addition to the (x, y) coordinates of the hand-held device, the orientation of the
device was also provided. Signal strengths were recorded at 8 orientations in 45 degree
increments (i.e., 0, 45, 90, and so on). Further, the documentation for the data indicates

Predicting Location via Indoor Positioning Systems 5

Figure 1.1: Floor Plan of the Test Environment. In this floor plan, the 6 fixed access points
are denoted by black square markers, the offline/training data were collected at the locations
marked by grey dots, and the online measurements were recorded at randomly selected points
indicated with black dots. The grey dots are spaced one meter apart.

that 110 signal strength measurements were recorded to each of the 6 access points for every
location-orientation combination.

In addition to the offline data, a second set of recordings, called the “online” data, is
available for testing models for predicting location. In these data, 60 locations and orienta-
tions are chosen at random and 110 signals are measured from them to each access point.
The test locations are marked by black dots in Figure 1.1. In both the offline and online
data some of these 110 signal strength values were not recorded. Additionally, measurements
from other hand-held devices, e.g., phone or laptop, in the vicinity of the experimental unit
appear in some offline records.

The documentation for the data [2] describes the format of the data file. Additionally,
we can examine the files ourselves with a plain text editor, and we find that each of the two
files (offline and online) have the same basic format and start with something similar to

timestamp=2006-02-11 08:31:58
usec=250
minReadings=110
t=1139643118358;id=00:02:2D:21:0F:33;pos=0.0,0.0,0.0;degree=0.0;\
00:14:bf:b1:97:8a=-38,2437000000,3;\
00:14:bf:b1:97:90=-56,2427000000,3;\
00:0f:a3:39:e1:c0=-53,2462000000,3;\
00:14:bf:b1:97:8d=-65,2442000000,3;\
00:14:bf:b1:97:81=-65,2422000000,3;\
00:14:bf:3b:c7:c6=-66,2432000000,3;\
00:0f:a3:39:dd:cd=-75,2412000000,3;\
00:0f:a3:39:e0:4b=-78,2462000000,3;\
00:0f:a3:39:e2:10=-87,2437000000,3;\
02:64:fb:68:52:e6=-88,2447000000,1;\
02:00:42:55:31:00=-84,2457000000,1

6 Case Studies in Data Science in R

Note that the fourth and subsequent lines displayed here are actually just one line in the
text file, but this one line has been formatted here on multiple lines for readability. We have
added \ to indicate a continuation of the line.

The available documentation indicates that the format of the data is:

t="Timestamp";
id="MACofScanDevice";
pos="RealPosition";
degree="orientation";
MACofResponse1="SignalStrengthValue,Frequency,Mode"; ...
MACofResponseN="SignalStrengthValue,Frequency,Mode"

where the units of measurement are shown in Table 1.1. The MAC (media access control)
variable refers to the MAC address of a hardware device, which is a unique identifier that
allows a network card for a computer, access point, or other piece of equipment to be
identified on a network [5]. By convention, this identifier is written in the form mm:mm:¬
mm:ss:ss:ss where mm and ss are 2 hexadecimal digits (0, 1, ..., 9, a, b, c, d, e, f). The
first of these 3 sets of pairs of digits, i.e., mm:mm:mm, identifies the manufacturer of the
equipment. The second set of 3 pairs (the ss) identifies the particular piece of equipment,
both the model and the unique device.

The MACofResponse1 ... MACofResponseN in these data indicate that one line con-
sists of a variable number of MAC address measurements. That is, these records are not of
equal length, but form ragged arrays that depend on the number of signals detected. For
example, consider another line (the 2,000th) in the input file:

t=1139644637174;id=00:02:2D:21:0F:33;pos=2.0,0.0,0.0;degree=45.5;\
00:14:bf:b1:97:8a=-33,2437000000,3;\
00:14:bf:b1:97:8a=-38,2437000000,3;\
00:0f:a3:39:e1:c0=-54,2462000000,3;\
00:14:bf:b1:97:90=-59,2427000000,3;\
00:14:bf:b1:97:8d=-70,2442000000,3;\
00:0f:a3:39:e2:10=-88,2437000000,3;\
00:0f:a3:39:dd:cd=-67,2412000000,3;\
02:00:42:55:31:00=-84,2457000000,1

We notice several things: this record has 8 readings; the MAC addresses appear in a different
order than in the first record; there are 2 readings from the same access point (the 8a
access point); and one of the 8 addresses belongs to an adhoc device because, according
to Table 1.1, the mode digit indicates whether the recording is for an adhoc device (1) or
access point (3). If we look at the first observation again, we notice that there are more
than 6 MAC addresses with a mode of 3. The “extras” are from other floors in the building.

Now that we have a sense of the format of the input file, we can determine how to read
the data into a structure that is conducive to analysis. Let’s think about how we want to
ultimately represent the resulting data in R [8]. There are two reasonably obvious choices.
The first is to have a row in a data frame for each row in the input file. In this case,
the variables are time, mac-id, x, y, z (for the hand-held device’s location), orientation,
and then 4 variables for each of the MAC addresses for which we have a signal. These 4
variables are signal, channel, and type of device, as well as the MAC address. Since the
raw observations have a different number of recorded signals, our data frame needs enough
columns to accommodate the largest number of recordings.

A second approach is to have the same initial variables describing the hand-held device,
i.e., time, MAC address, location, and orientation. After this, we have just 4 other variables:
the MAC address of the device from which we received a signal, the signal, the channel, and

Predicting Location via Indoor Positioning Systems 7

TABLE 1.1: Units of Measurement

Variable Units
t timestamp in milliseconds since midnight, January 1, 1970 UTC
id MAC address of the scanning device
pos the physical coordinate of the scanning device
degree orientation of the user carrying the scanning device in degrees
MAC MAC address of a responding peer (e.g., an access point or a device

in adhoc mode) with the corresponding values for signal strength
in dBm (Decibel-milliwatts), the channel frequency and its mode
(access point = 3, device in adhoc mode = 1)

This table provides the units of measurement for the variables in the offline and online data.

the type of device. In this scenario, we have a row in our data frame for each signal received.
That is, each line in the input file turns into multiple rows in the data frame, corresponding
to the number of ‘;’-separated MAC addresses in that line. For example, the first record
in the input file becomes 11 rows and the 2000th observation becomes 8 rows in the data
frame.

The first approach yields a natural representation that more directly corresponds to the
format of the input file. It also avoids repeating the time and location information and so
seems more memory efficient. One of the difficulties it presents, however, is that we have
to determine how many columns we need, or more specifically, how many MAC addresses
received the signal from the device. Even if we drop the adhoc readings, we still have to
contend with a different ordering of recordings and multiple measurements from the same
MAC address. We most likely need two passes of the data to create our data frame: one to
determine the unique MAC addresses and the second to organize the data. While we avoid
repeating some information, e.g., timestamp, we need to use NA values for the observations
that do not have recorded signals from all of the MAC addresses. If there are many of these,
then the second approach may actually be more memory efficient. The second approach
also appears simpler to create.

With the second approach, we can avoid two passes of the data and read the file into a
data frame in just one pass. And, this data structure allows us to use group-by operations
on the MAC addresses. For now, we adopt the second approach. Later in our work, we
create a data frame with the first format. For this, we do not need to return to the original
file, but create the alternative data frame from the existing one.

Another consideration in determining how to read the data into R is whether or not the
“comment” lines occur only at the beginning/top of the file. We can search in the file for
lines that start with a ‘#’ character. To do this, we read the entire document into R using
readLines() with

txt = readLines("Data/offline.final.trace.txt")

Each line in the offline file has been read into R as a string in the character vector txt. We
use the substr() function to locate lines/strings that begin with a ‘#’ character and tally
them with

sum(substr(txt, 1, 1) == "#")

[1] 5312

8 Case Studies in Data Science in R

Additionally, we use length() as follows:

length(txt)

[1] 151392

to determine that there are 151,392 lines in the offline file. According to the documentation
we expect there to be 146,080 lines in the file (166 locations × 8 angles × 110 recordings).
The difference between these two (151,392 and 146,080) is 5,312, exactly the number of
comments lines.

Generally a good rule of thumb to follow is to check our assumptions about the format
of a file and not just look at the first few lines.

1.2.1 Processing the Raw Data
Now that we have determined the desired target representation of the data in R, we can
write the code to extract the data from the input file and manipulate it into that form. The
data are not in a rectangular form so we cannot simply use a function such as read.table().
However, there is structure in the observations that we can use to process the lines of
text. For example, the main data elements are separated by semicolons. Let’s see how the
semicolon splits the fourth line, i.e., the first line that is not a comment:

strsplit(txt[4], ";")[[1]]

[1] "t=1139643118358"
[2] "id=00:02:2D:21:0F:33"
[3] "pos=0.0,0.0,0.0"
[4] "degree=0.0"
[5] "00:14:bf:b1:97:8a=-38,2437000000,3"
[6] "00:14:bf:b1:97:90=-56,2427000000,3"
[7] "00:0f:a3:39:e1:c0=-53,2462000000,3"
[8] "00:14:bf:b1:97:8d=-65,2442000000,3"
[9] "00:14:bf:b1:97:81=-65,2422000000,3"
[10] "00:14:bf:3b:c7:c6=-66,2432000000,3"
[11] "00:0f:a3:39:dd:cd=-75,2412000000,3"
[12] "00:0f:a3:39:e0:4b=-78,2462000000,3"
[13] "00:0f:a3:39:e2:10=-87,2437000000,3"
[14] "02:64:fb:68:52:e6=-88,2447000000,1"
[15] "02:00:42:55:31:00=-84,2457000000,1"

Within each of these shorter strings, the “name” of the variable is separated by an ‘=’
character from the associated value. In some cases this value contains multiple values where
the separator is a ‘,’. For example, "pos=0.0,0.0,0.0" consists of 3 position variables
that are not named.

We can take this vector, which we created by splitting on the semi-colon, and further split
each element at the ‘=’ characters. Then we can process the resulting strings by splitting
them at the ‘,’ characters. This might look something like

unlist(lapply(strsplit(txt[4], ";")[[1]],
function(x)

sapply(strsplit(x, "=")[[1]], strsplit, ",")))

Predicting Location via Indoor Positioning Systems 9

We end up with a large character vector with the names and data values from the entire
first record as individual “tokens.” We can then rearrange them into the appropriate form.
However, we can do this much more simply and generally using the fact that the split pa-
rameter for strsplit() can be a regular expression so we can split on any of several characters
in a single function call. This means we can use

tokens = strsplit(txt[4], "[;=,]")[[1]]

to split at a ‘;’, ‘=’ or ‘,’ character.
Before we proceed to write much code to read these data, we ask: Can read.table() take a

regular expression as a separator? If so, we can use it instead of readLines(). Unfortunately,
it does not. It would slow down the reading of regular text files quite considerably.

Based on the results of the strsplit(), we have all the data elements from the first row.
The first 10 elements of tokens give the information about the hand-held device:

tokens[1:10]

[1] "t" "1139643118358" "id" "00:02:2D:21:0F:33"
[5] "pos" "0.0" "0.0" "0.0"
[9] "degree" "0.0"

We can extract the values of these variables with

tokens[c(2, 4, 6:8, 10)]

[1] "1139643118358" "00:02:2D:21:0F:33" "0.0"
[4] "0.0" "0.0" "0.0"

We know these correspond to the variables time, MAC address, x, y, z, and orientation.
Let’s turn our attention to the recorded signals within this observation. These are the

remaining values in the split vector, i.e.,

tokens[- (1:10)]

[1] "00:14:bf:b1:97:8a" "-38" "2437000000" "3"
[5] "00:14:bf:b1:97:90" "-56" "2427000000" "3"
[9] "00:0f:a3:39:e1:c0" "-53" "2462000000" "3"
[13] "00:14:bf:b1:97:8d" "-65" "2442000000" "3"
[17] "00:14:bf:b1:97:81" "-65" "2422000000" "3"
[21] "00:14:bf:3b:c7:c6" "-66" "2432000000" "3"
[25] "00:0f:a3:39:dd:cd" "-75" "2412000000" "3"
[29] "00:0f:a3:39:e0:4b" "-78" "2462000000" "3"
[33] "00:0f:a3:39:e2:10" "-87" "2437000000" "3"
[37] "02:64:fb:68:52:e6" "-88" "2447000000" "1"
[41] "02:00:42:55:31:00" "-84" "2457000000" "1"

We can think of these as rows in a 4-column matrix or data frame giving the MAC address,
signal, channel, and device type, so let’s unravel these and build a matrix from the values.
Then we can bind these columns with the values from the first 10 entries. We do this with

tmp = matrix(tokens[- (1:10)], ncol = 4, byrow = TRUE)
mat = cbind(matrix(tokens[c(2, 4, 6:8, 10)], nrow = nrow(tmp),

ncol = 6, byrow = TRUE),
tmp)

10 Case Studies in Data Science in R

We confirm that we have 11 rows in the matrix, one for each MAC address, and 10 columns,
6 of which have the same value for each MAC address (e.g., position and orientation):

dim(mat)

[1] 11 10

We put all this code into a function so we can repeat this operation for each row in the
input file. That is,

processLine =
function(x)
{

tokens = strsplit(x, "[;=,]")[[1]]
tmp = matrix(tokens[- (1:10)], ncol = 4, byrow = TRUE)
cbind(matrix(tokens[c(2, 4, 6:8, 10)], nrow = nrow(tmp),

ncol = 6, byrow = TRUE), tmp)
}

Let’s apply our function to several lines of the input:

tmp = lapply(txt[4:20], processLine)

Note that we started at the fourth line of the file because the first 3 lines are comments.
The result is a list of 17 matrices and we can determine how many signals were detected at
each point with

sapply(tmp, nrow)

[1] 11 10 10 11 9 10 9 9 10 11 11 9 9 9 8 10 14

We have done the hard part. Of course, we want to turn these individual matrices into a
single data frame. We can stack the matrices together using do.call(). We might be inclined
to write a loop to concatenate the second matrix to the first, the third to the earlier result,
and so on. This would be very slow. (Try it!) However, do.call() does this stacking efficiently
and simply. We call do.call() with the name of the function to call and a list containing the
individual arguments that we ordinarily pass to that function separately. For us, this is as
simple as

offline = as.data.frame(do.call("rbind", tmp))
dim(offline)

[1] 170 10

We are now ready to try this code on the entire dataset. We discard the lines starting
with the comment character ‘#’ and then pass each remaining line to processLine().

lines = txt[substr(txt, 1, 1) != "#"]
tmp = lapply(lines, processLine)

When we run this, we get 6 warnings of the form

1: In matrix(tokens[c(2, 4, 6:8, 10)], nrow(tmp), 6,
byrow = TRUE) :

data length exceeds size of matrix

Predicting Location via Indoor Positioning Systems 11

In general, we want to be very cautious about warning messages.
We can try to find the rows to which these warning messages correspond by exploring

the result, but it is easier to catch them as they occur. We can ask R to raise an error when
a warning is issued and then browse the call stack to examine the state of the computations.
We do this by setting an option to handle errors and another to change warnings into errors:

options(error = recover, warn = 2)

We run the lapply() call again with these new options:

tmp = lapply(lines, processLine)

When the first warning occurs, we are presented with the message and the call stack

Error in matrix(tokens[c(2, 4, 6:8, 10)], nrow(tmp), 6,
byrow = TRUE) : (converted from warning)

data length exceeds size of matrix

Enter a frame number, or 0 to exit

1: lapply(lines, processLine)
2: lapply(lines, processLine)
3: FUN(c("t=1139643118358;id=00:02:2D:21:0F:33;pos=0.0,0.0,0.0...
4: cbind(matrix(tokens[c(2, 4, 6:8, 10)], nrow(tmp), 6,

byrow = TRUE), tmp)
5: matrix(tokens[c(2, 4, 6:8, 10)], nrow(tmp), 6, byrow = TRUE)
6: .signalSimpleWarning("data length exceeds size of matrix",

quote(matrix(tokens[c(2, 4
7: withRestarts({
8: withOneRestart(expr, restarts[[1]])
9: doWithOneRestart(return(expr), restart)

Selection:

We select 3, which corresponds to our processLine() function. We can issue R commands
in this call frame. For example, we can see what variables are available with ls(). Looking
at the variable x, we see its value is

[1] "t=1139671993259;id=00:02:2D:21:0F:33;pos=12.0,3.0,0.0;
degree=315.1"

What we notice about this value is that we have no signals detected for this position. This
observation is an anomalous case, which our processLine() function needs to handle.

We can modify processLine() to discard such observations or alternatively add a single
row to the data frame with the hand-held information and NA values for the MAC, signal,
channel, and type. We choose to discard these observations as they do not help us in
developing our positioning system. We change our function to return NULL if the tokens
vector only has 10 elements. Our revised function is

processLine = function(x)
{

tokens = strsplit(x, "[;=,]")[[1]]

12 Case Studies in Data Science in R

if (length(tokens) == 10)
return(NULL)

tmp = matrix(tokens[- (1:10)], , 4, byrow = TRUE)
cbind(matrix(tokens[c(2, 4, 6:8, 10)], nrow(tmp), 6,

byrow = TRUE), tmp)
}

We run the updated processLine() and see if the warnings disappear.

options(error = recover, warn = 1)
tmp = lapply(lines, processLine)
offline = as.data.frame(do.call("rbind", tmp),

stringsAsFactors = FALSE)

Indeed, we received no warning messages. Our data frame offline has over one million
rows:

dim(offline)

[1] 1181628 10

Our data frame consists of character-valued variables. A next step is to convert these
values into appropriate data types, e.g., convert signal strength to numeric, and to further
clean the data as needed. This is the topic of the next section.

1.3 Cleaning the Data and Building a Representation for Analysis
A simple first step to creating a data structure for analysis is to put meaningful names on
the variables and convert them to the appropriate data type. We begin by adding names
with

names(offline) = c("time", "scanMac", "posX", "posY", "posZ",
"orientation", "mac", "signal",
"channel", "type")

Then we convert the position, signal, and time variables to numeric with

numVars = c("time", "posX", "posY", "posZ",
"orientation", "signal")

offline[numVars] = lapply(offline[numVars], as.numeric)

We can also change the type of the device to something more comprehensible than
the numbers 1 and 3. To do this, we can make it a factor with the levels, say, "adhoc"
and "access point". However, in our analysis, we plan to use only the signal strengths
measured to the fixed access points to develop and test our model. Given this, we drop all
records for adhoc measurements and remove the type variable from our data frame. We
do this with

offline = offline[offline$type == "3",]
offline = offline[, "type" != names(offline)]
dim(offline)

Predicting Location via Indoor Positioning Systems 13

[1] 978443 9

We have removed over 100,000 records from our data frame.
Next we consider the time variable. According to the documentation, time is measured

in the number of milliseconds from midnight on January 1st, 1970. This is the origin used
for the POSIXt format, but with POSIXt, it is the number of seconds, not milliseconds. We
can scale the value of time to seconds and then simply set the class of the time element in
order to have the values appear and operate as date-times in R. We keep the more precise
time in rawTime just in case we need it. We perform the conversion as follows:

offline$rawTime = offline$time
offline$time = offline$time/1000
class(offline$time) = c("POSIXt", "POSIXct")

Now that we have completed these conversions, we check the types of the variables in
the data frame with

unlist(lapply(offline, class))

and verify that they are what we want:

time1 time2 scanMac posX posY
"POSIXt" "POSIXct" "character" "numeric" "numeric"

posZ orientation mac signal channel
"numeric" "numeric" "character" "numeric" "character"

rawTime
"numeric"

We have the correct shape for the data and even the correct types. We next verify that
the actual values of the data look reasonable. There are many approaches we can take to
do this. We start by looking at a summary of each numeric variable with

summary(offline[, numVars])

time posX posY
Min. :2006-02-10 23:31:58 Min. : 0 Min. : 0.0
1st Qu.:2006-02-11 05:21:27 1st Qu.: 2 1st Qu.: 3.0
Median :2006-02-11 11:57:58 Median :12 Median : 6.0
Mean :2006-02-16 06:57:37 Mean :14 Mean : 5.9
3rd Qu.:2006-02-19 06:52:40 3rd Qu.:23 3rd Qu.: 8.0
Max. :2006-03-09 12:41:10 Max. :33 Max. :13.0

posZ orientation signal
Min. :0 Min. : 0 Min. :-99
1st Qu.:0 1st Qu.: 90 1st Qu.:-69
Median :0 Median :180 Median :-60
Mean :0 Mean :167 Mean :-62
3rd Qu.:0 3rd Qu.:270 3rd Qu.:-53
Max. :0 Max. :360 Max. :-25

We also convert the character variables to factors and examine them with

summary(sapply(offline[, c("mac", "channel", "scanMac")],
as.factor))

14 Case Studies in Data Science in R

mac channel
00:0f:a3:39:e1:c0:145862 2462000000:189774
00:0f:a3:39:dd:cd:145619 2437000000:152124
00:14:bf:b1:97:8a:132962 2412000000:145619
00:14:bf:3b:c7:c6:126529 2432000000:126529
00:14:bf:b1:97:90:122315 2427000000:122315
00:14:bf:b1:97:8d:121325 2442000000:121325
(Other) :183831 (Other) :120757

scanMac
00:02:2D:21:0F:33:978443

After examining these summaries, we find a couple of anomalies:

• There is only one value for scanMac, the MAC address for the hand-held device from
which the measurements were taken. We might as well discard this variable from our
data frame. However, we may want to note this value to compare it with the online
data.

• All of the values for posZ, the elevation of the hand-held device, are 0. This is because
all of the measurements were taken on one floor of the building. We can eliminate this
variable also.

We modify our data frame accordingly,

offline = offline[, !(names(offline) %in% c("scanMac", "posZ"))]

1.3.1 Exploring Orientation
According to the documentation, we should have only 8 values for orientation, i.e., 0, 45,
90, ..., 315. We can check this with

length(unique(offline$orientation))

[1] 203

Clearly, this is not the case. Let’s examine the distribution of orientation:

plot(ecdf(offline$orientation))

An annotated version of this plot appears in Figure 1.2. It shows the orientation values are
distributed in clusters around the expected angles. Note the values near 0 and near 360
refer to the same direction. That is, an orientation value 1 degree before 0 is reported as
359 and 1 degree past 0 is a 1.

Although the experiment was designed to measure signal strength at 8 orientations –
45 degree intervals from 0 to 315 – these orientations are not exact. However, it may be
useful in our analysis to work with values corresponding to the 8 equi-spaced angles. That
is, we want to map 47.5 to 45, and 358.2 to 0, and so on. To do this, we take each value
and find out to which of the 8 orientations it is closest and we return that orientation. We
must handle values such as 358.2 carefully as we want to map them to 0, not to the closer
315. The following function makes this conversion:

Predicting Location via Indoor Positioning Systems 15

orientation

E
m

pi
ric

al
 C

D
F

●

●

●

●

●

●
●

●●
●●
●
●●● ● ●●●

●
●
●
●
●

●

●

●

●

●

●
●
●
●●
●●●
●●● ●●●

●●●
●●
●

●

●

●
●

●

●

●

●
●●●
●●●
● ●●

●●
●●
●

●

●

●

●

●

●

●
●

●
●
●
●●●●●●

●●
●●
●●
●
●

●

●

●

●

●

●
●
●
●●
●●
●●● ●●●●

●
●●

●
●

●

●

●

●

●
●

●

●
●
●●●
●●●●
●●● ●●●●●

●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●●
●●
●● ●●●

●
●●
●
●
●
●

●

●

●

●

●

●
●
●
●
●●●●●●
● ● ●●●●●●●

●
●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 45 90 135 180 225 270 315 360

Figure 1.2: Empirical CDF of Orientation for the Hand-Held Device. This empirical distri-
bution function of orientation shows that there are 8 basic orientations that are 45 degrees
apart. We see from the steps in the function that these orientations are not exactly 45, 90,
135, etc. Also, the 0 orientation is split into the two groups, one near 0 and the other near
360.

roundOrientation = function(angles) {
refs = seq(0, by = 45, length = 9)
q = sapply(angles, function(o) which.min(abs(o - refs)))
c(refs[1:8], 0)[q]

}

We use roundOrientation() to create the rounded angles with

offline$angle = roundOrientation(offline$orientation)

Again, we keep the original variable and augment our data frame with the new angles.
We check that the results are as we expect with boxplots:

with(offline, boxplot(orientation ~ angle,
xlab = "nearest 45 degree angle",
ylab="orientation"))

From Figure 1.3 we see that the new values look correct and the original values near 360
degrees are mapped to 0. It also shows the variability in the act of measuring.

16 Case Studies in Data Science in R

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●

●●●

●●
●●

0 45 90 135 180 225 270 315

0
50

10
0

15
0

20
0

25
0

30
0

35
0

nearest 45 degree angle

or
ie

nt
at

io
n

Figure 1.3: Boxplots of Orientation for the Hand-Held Device. These boxplots of the original
orientation against the rounded value confirm that the values have mapped correctly to 0,
45, 90, 135, etc. The “outliers” at the top left corner of the plot are the values near 360
that have been mapped to 0.

1.3.2 Exploring MAC Addresses
From the summary() information, it seems that there may be a one-to-one mapping between
the MAC address of the access points and channel. For example, the summary statistics
show there are 126,529 occurrences of the address 00:14:bf:3b:c7:c6 and the same
number of occurrences of channel 2432000000. To help us ascertain if we do have a one-
to-one mapping, we look at the relationship between the MAC address and channel.

How many unique addresses and channels do we have? There should be the same number,
if there is a one-to-one mapping. We find:

c(length(unique(offline$mac)), length(unique(offline$channel)))

[1] 12 8

There are 12 MAC addresses and 8 channels. We were given the impression from the building
plan (see Figure 1.1) that there are only 6 access points. Why are there 8 channels and 12
MAC addresses? Rereading the documentation we find that there are additional access
points that are not part of the testing area and so not seen on the floor plan. Let’s check
the counts of observations for the various MAC addresses with table():

table(offline$mac)

Predicting Location via Indoor Positioning Systems 17

00:04:0e:5c:23:fc 00:0f:a3:39:dd:cd 00:0f:a3:39:e0:4b
418 145619 43508

00:0f:a3:39:e1:c0 00:0f:a3:39:e2:10 00:14:bf:3b:c7:c6
145862 19162 126529

00:14:bf:b1:97:81 00:14:bf:b1:97:8a 00:14:bf:b1:97:8d
120339 132962 121325

00:14:bf:b1:97:90 00:30:bd:f8:7f:c5 00:e0:63:82:8b:a9
122315 301 103

Clearly the first and the last two MAC addresses are not near the testing area or were only
working/active for a short time during the measurement process because their counts are
very low. It’s probably also the case that the third and fifth addresses are not among the
access points displayed on the map because they have much lower counts than the others
and these are far lower than the possible 146,080 recordings (recall that there are potentially
signals recorded at 166 grid points, 8 orientations, and 110 replications).

According to the documentation, the access points consist of 5 Linksys/Cisco and one
Lancom L-54g routers. We look up these MAC addresses at the http://coffer.com/
mac_find/ site to find the vendor addresses that begin with 00:14:bf belong to Linksys
devices, those beginning with 00:0f:a3 belong to Alpha Networks, and Lancom devices
start with 00:a0:57 (see Figure 1.4). We do have 5 devices with an address that begins
00:14:bf, which matches with the Linksys count from the documentation. However, none
of our MAC addresses begin with 00:a0:57 so there is a discrepancy with the documen-
tation. Nonetheless, we have discovered valuable information for piecing together a better
understanding of the data. For now, let’s keep the records from the top 7 devices. We do
this with

subMacs = names(sort(table(offline$mac), decreasing = TRUE))[1:7]
offline = offline[offline$mac %in% subMacs,]

Figure 1.4: Screenshot of the coffer.com Mac Address Lookup Form. The coffer.com Web
site offers lookup services to find the MAC address for a vendor and vice versa.

Finally, we create a table of counts for the remaining MAC×channel combinations and
confirm there is one non-zero entry in each row

http://coffer.com/mac_find/
http://coffer.com/mac_find/
http://coffer.com
http://coffer.com

18 Case Studies in Data Science in R

macChannel = with(offline, table(mac, channel))
apply(macChannel, 1, function(x) sum(x > 0))

00:0f:a3:39:dd:cd 00:0f:a3:39:e1:c0 00:14:bf:3b:c7:c6
1 1 1

00:14:bf:b1:97:81 00:14:bf:b1:97:8a 00:14:bf:b1:97:8d
1 1 1

00:14:bf:b1:97:90
1

Indeed we see that there is a one-to-one correspondence between MAC address and channel
for these 7 devices. This means we can eliminate channel from offline, i.e.,

offline = offline[, "channel" != names(offline)]

1.3.3 Exploring the Position of the Hand-Held Device
Lastly, we consider the position variables, posX and posY. For how many different locations
do we have data? The by() function can tally up the numbers of rows in our data frame
for each unique (x, y) combination. We begin by creating a list containing a data frame for
each location as follows:

locDF = with(offline,
by(offline, list(posX, posY), function(x) x))

length(locDF)

[1] 476

Note that this list is longer than the number of combinations of actual (x, y) locations at
which measurements were recorded. Many of these elements are empty:

sum(sapply(locDF, is.null))

[1] 310

The null values correspond to the combinations of the xs and ys that were not observed.
We drop these unneeded elements as follows:

locDF = locDF[!sapply(locDF, is.null)]

and confirm that we now have only 166 locations with

length(locDF)

[1] 166

We can operate on each of these data frames to, e.g., determine the number of observa-
tions recorded at each location with

locCounts = sapply(locDF, nrow)

And, if we want to keep the position information with the location, we do this with

Predicting Location via Indoor Positioning Systems 19

locCounts = sapply(locDF,
function(df)

c(df[1, c("posX", "posY")], count = nrow(df)))

We confirm that locCounts is a matrix with 3 rows with

class(locCounts)

[1] "matrix"

dim(locCounts)

[1] 3 166

We examine a few of the counts,

locCounts[, 1:8]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
posX 0 1 2 0 1 2 0 1
posY 0 0 0 1 1 1 2 2
count 5505 5505 5506 5524 5543 5558 5503 5564

We see that there are roughly 5,500 recordings at each position. This is in accord with 8
orientations × 110 replications × 7 access points, which is 6,160 signal strength measure-
ments.

We can visualize all 166 counts by adding the counts as text at their respective locations,
changing the size and angle of the characters to avoid overlapping text. We first transpose
the matrix so that the locations are columns of the matrix and then we make our plot with

locCounts = t(locCounts)
plot(locCounts, type = "n", xlab = "", ylab = "")
text(locCounts, labels = locCounts[,3], cex = .8, srt = 45)

We see in Figure 1.5 that there are roughly the same number of signals detected at each
location.

1.3.4 Creating a Function to Prepare the Data
We have examined all the variables except time and signal. This process has helped us
clean our data and reduce it to those records that are relevant to our analysis. We leave the
examination of the signals to the next section where we study its distributional properties.
As for time, while this variable is not directly related to our model, it indicates the order
in which the observations were taken. In an experiment, this can be helpful in uncovering
potential sources of bias. For example, the person carrying the hand-held device may have
changed how the device was carried as the experiment progressed and this change may lead
to a change in the strength of the signal. Plots and analyses of the relationship between time
and other variables can help us uncover such potential problems. We leave this investigation
as an exercise.

Since we also want to read the online data in R, we turn all of these commands into
a function called readData(). Additionally, if we later change our mind as to how we want
to handle some of these special cases, e.g., to keep channel or posZ, then we can make a
simple update to our function and rerun it. We might even add a parameter to the function
definition to allow us to process the data in different ways. We leave it as an exercise to
create readData().

We call readData() to create the offline data frame with

20 Case Studies in Data Science in R

0 5 10 15 20 25 30

0
2

4
6

8
10

12

55
05
55
05
55
06

55
24
55
43
55
58

55
03
55
64
55
13

55
29
55
26
55
49
55
26
54
69
54
64
55
25
54
29
54
99
55
32
54
82
53
96
54
43
53
58
54
68
54
47
54
86
54
83
54
68
54
44
54
48
55
03
54
96
54
72
55
33
54
59
54
93
55
43
54
81
55
39
55
27
54
90
55
22
54
33

55
54
54
63
54
80

54
09
54
24
55
26
55
38
54
42

55
85
55
56
55
42
55
26
54
86
55
60

55
19
55
07

54
74
54
47

55
52
55
00
55
38
53
65

55
07
54
09
55
20
55
51

55
31

56
15

55
30
55
17

55
35
54
74
54
83
55
41

54
47
55
06
55
13
55
19

54
99

55
76

54
92
54
73
54
26
55
29
55
67
55
28
55
53
55
95
55
81
55
19
55
06
54
37
55
34
55
36
53
49
53
31
54
40
54
48
54
11
54
70
54
72
56
71
55
41
55
14
55
43
54
52
55
27
55
43
55
93
55
40
55
31
55
39
56
21
56
24

54
95
54
50
55
00
56
38
55
86
55
92
56
19
56
03
56
26
54
77
55
85
55
88
54
75
55
59
53
67
54
61
53
09
53
30
55
35
53
95
53
61
54
94
54
75
54
93
54
81
55
73
55
27
55
56
55
04
55
45
55
53
55
79
56
92
55
40

54
92
54
87
55
89

54
63
55
96
55
57

54
88
55
23
56
56

55
24
55
44
57
34

55
23
55
53
57
74

Figure 1.5: Counts of signals detected at each position. Plotted at each location in the
building is the total number of signals detected from all access points for the offline data.
Ideally for each location, 110 signals were measured at 8 angles for each of 6 access points,
for a total of 5280 recordings. These data include a seventh Mac address and not all signals
were detected, so there are about 5500 recordings at each location.

offlineRedo = readData()

Then we use the identical() function to check this version of the data frame against the one
that we already created:

identical(offline, offlineRedo)

[1] TRUE

This confirms that our function behaves as expected.
When we collect code into a function, it is common to forget about some of the variables

we need. The code works because they are found in the R session (i.e., globalenv()), but
the function does not work in new R sessions or gives the wrong results if we define those
global variables differently, by chance. We use the findGlobals() function in the codetools
package [10] to identify what variables are global, i.e.,

library(codetools)
findGlobals(readData, merge = FALSE)$variables

[1] "processLine" "subMacs"

Predicting Location via Indoor Positioning Systems 21

The processLine() function is a variable since it is referenced in a call to lapply() in read-
Data() so this is not a problem. The variable subMacs is also identified as global. This vari-
able was created in the global environment from the unique values of mac (see Section 1.3.2)
and we neglected to include this code in the function. We can update the function to pass
it as a parameter with a suitable default value or to create subMacs within the function;
then, subMacs is no longer a global variable.

1.4 Signal Strength Analysis
We have used visualization and statistical summaries to help clean and format the data,
and now we turn to investigating the properties of the response variable, signal strength.
We want to learn more about how the signals behave before designing a model for IPS. The
following questions guide us in our investigations.

• We have measured the signal strength to an access point multiple times at each location
and orientation. How do these signal strengths behave? That is, what is the distribution
of the repeated measurements at each location and orientation? Does signal strength
behave similarly at all locations? Or does, the location, orientation, and access point
affect this distribution?

• In a laboratory setting, signal strength decays linearly with log distance and a simple
triangulation using the signal strength from 3 access points can accurately pinpoint
the location of a device [1, 7]. In practice, physical characteristics of a building and
human activity can add significant noise to signal strength measurements. How can
we characterize the relationship between the signal strength and the distance from the
device to the access point? How does the orientation affect this relationship? Is this
relationship the same for all access points?

We consider these questions in the next two sections.

1.4.1 Distribution of Signal Strength
We want to compare the distribution of signal strength at different orientations and for
different access points, so we need to subdivide our data. We are interested in seeing if
these distributions are normal or skewed. We also want to look at their variances.

We consider the impact of orientation on signal strength by fixing a location on the
map to see how the signal changes as the experimenter rotates through the 8 angles. We
also separately examine the MAC addresses because, for example, at an orientation of 90
degrees the experimenter may be facing toward one access point and away from another.
To do this we make simple boxplots with the bwplot() function in the lattice package [9]
as follows:

library(lattice)
bwplot(signal ~ factor(angle) | mac, data = offline,

subset = posX == 2 & posY == 12
& mac != "00:0f:a3:39:dd:cd",

layout = c(2,3))

We see in Figure 1.6 that the signal strength varies with the orientation for both close and

22 Case Studies in Data Science in R

distant access points. Note we have dropped the records for the MAC address of 00:0f:¬
a3:39:dd:cd because it is identified as the extra address in the next section.

Recall from the summary statistics that signal strengths are measured in negative values.
That is,

summary(offline$signal)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-98 -67 -59 -60 -53 -25

The small values, such as -98, correspond to weak signals and the large values, such as -25,
are the strong signals.

When we examine a few other locations, we find a similar dependence of signal strength
on angle. For example, we compare the distributions of signal strength for different angles
and MAC addresses at the central location of x = 23 and y = 4; we use the densityplot()
function in the lattice package because it makes it easy to condition on these variables.
We produce 48 density curves for this one location with

densityplot(~ signal | mac + factor(angle), data = offline,
subset = posX == 24 & posY == 4 &

mac != "00:0f:a3:39:dd:cd",
bw = 0.5, plot.points = FALSE)

Many of these distributions look approximately normal, but there are some serious depar-
tures with secondary modes and skewness (see Figure 1.7). Also, the center of the distri-
bution varies with angle and MAC address, which indicates that conditioning on angle and
MAC address is warranted.

If we want to examine the distribution of signal strength for all 166 locations, 8 angles,
and 6 access points, we need to create thousands of boxplots or density curves. We can,
instead, examine summary statistics such as the mean and SD or the median and IQR of
signal strength for all location–orientation–access point combinations. For each combina-
tion, we have roughly 100 observations. To compute summary statistics for these various
combinations, we first create a special factor that contains all of the unique combinations
of the observed (x, y) pairs for the 166 locations. We can do this with

offline$posXY = paste(offline$posX, offline$posY, sep = "-")

Next, we create a list of data frames for every combination of (x, y), angle, and access point
as follows

byLocAngleAP = with(offline,
by(offline, list(posXY, angle, mac),

function(x) x))

Then we can calculate summary statistics on each of these data frames with

signalSummary =
lapply(byLocAngleAP,

function(oneLoc) {
ans = oneLoc[1,]
ans$medSignal = median(oneLoc$signal)
ans$avgSignal = mean(oneLoc$signal)
ans$num = length(oneLoc$signal)

Predicting Location via Indoor Positioning Systems 23

si
gn

al

−90

−80

−70

−60

−50

−40

0 45 90 135 180 225 270 315

● ●
●

●
● ●

●
●●

● ●●●●●●
●●●●●●●●●

●

●●●
●●●
●●●●●●●●●●●●

●●●

●
●●●

00:0f:a3:39:e1:c0

0 45 90 135 180 225 270 315

● ● ● ●

● ●
●

●

●

●

●
●●●●●
●●●●

●

●

●

●●

●

●
●
●

●●

●

●

●●

●

●●

●

●

●

00:14:bf:3b:c7:c6

●
●

●
● ● ● ●

●

●
●●●●●●
●●●●●
●

●
●●●●●

●

●●●

●
●●●●●●
●●●●
●

●●●●
●●●

●

●●
●●●●●●●●

●
●●

●

●
●

●●●●

●

●

00:14:bf:b1:97:81

−90

−80

−70

−60

−50

−40

●
● ●

●
● ● ●

●

●

●●

●

●
●
●

●

●

●

●

00:14:bf:b1:97:8a
−90

−80

−70

−60

−50

−40

● ● ●

●

● ●
●

●

●
●●●●●●●●● ●

●●●●●●●●●●●●●
●●●

●●●●●

●

●
●
●

●●●●●
●●

00:14:bf:b1:97:8d

●

●
●

●

● ●
●

●

●
●

● ●

●●●●
●

●

●●

●

●

00:14:bf:b1:97:90

Figure 1.6: Signal Strength by Angle for Each Access Point. The boxplots in this figure
represent signals for one location, which is in the upper left corner of the floor plan, i.e.,
x = 2 and y = 12. These boxes are organized by access point and the angle of the hand-held
device. The dependence of signal strength on angle is evident at several of the access points,
e.g., 00:14:bf:97:90 in the top right panel of the figure.

24 Case Studies in Data Science in R

signal

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

−80 −70 −60 −50 −40

00:0f:a3:39:e1:c0
0

00:14:bf:3b:c7:c6
0

−80 −70 −60 −50 −40

00:14:bf:b1:97:81
0

00:14:bf:b1:97:8a
0

−80 −70 −60 −50 −40

00:14:bf:b1:97:8d
0

00:14:bf:b1:97:90
0

00:0f:a3:39:e1:c0
45

00:14:bf:3b:c7:c6
45

00:14:bf:b1:97:81
45

00:14:bf:b1:97:8a
45

00:14:bf:b1:97:8d
45

0.0

0.1

0.2

0.3

0.4

0.5
00:14:bf:b1:97:90

45
0.0

0.1

0.2

0.3

0.4

0.5
00:0f:a3:39:e1:c0

90
00:14:bf:3b:c7:c6

90
00:14:bf:b1:97:81

90
00:14:bf:b1:97:8a

90
00:14:bf:b1:97:8d

90
00:14:bf:b1:97:90

90

00:0f:a3:39:e1:c0
135

00:14:bf:3b:c7:c6
135

00:14:bf:b1:97:81
135

00:14:bf:b1:97:8a
135

00:14:bf:b1:97:8d
135

0.0

0.1

0.2

0.3

0.4

0.5
00:14:bf:b1:97:90

135
0.0

0.1

0.2

0.3

0.4

0.5
00:0f:a3:39:e1:c0

180
00:14:bf:3b:c7:c6

180
00:14:bf:b1:97:81

180
00:14:bf:b1:97:8a

180
00:14:bf:b1:97:8d

180
00:14:bf:b1:97:90

180

00:0f:a3:39:e1:c0
225

00:14:bf:3b:c7:c6
225

00:14:bf:b1:97:81
225

00:14:bf:b1:97:8a
225

00:14:bf:b1:97:8d
225

0.0

0.1

0.2

0.3

0.4

0.5
00:14:bf:b1:97:90

225
0.0

0.1

0.2

0.3

0.4

0.5
00:0f:a3:39:e1:c0

270
00:14:bf:3b:c7:c6

270
00:14:bf:b1:97:81

270
00:14:bf:b1:97:8a

270
00:14:bf:b1:97:8d

270
00:14:bf:b1:97:90

270

00:0f:a3:39:e1:c0
315

−80 −70 −60 −50 −40

00:14:bf:3b:c7:c6
315

00:14:bf:b1:97:81
315

−80 −70 −60 −50 −40

00:14:bf:b1:97:8a
315

00:14:bf:b1:97:8d
315

−80 −70 −60 −50 −40

0.0

0.1

0.2

0.3

0.4

0.5
00:14:bf:b1:97:90

315

Figure 1.7: Distribution of Signal by Angle for Each Access Point. The density curves
shown here are for the signal strengths measured at the position: x = 24 and y = 4. These
48 density plots represent each of the access point × angle combinations. There are roughly
110 observations in each panel. Some look roughly normal while many others look skewed
left.

Predicting Location via Indoor Positioning Systems 25

ans$sdSignal = sd(oneLoc$signal)
ans$iqrSignal = IQR(oneLoc$signal)
ans
})

offlineSummary = do.call("rbind", signalSummary)

Let’s examine the standard deviations and see if they vary with the average signal
strength. We can make boxplots of sdSignal for subgroups of avgSignal by turning
avgSignal into a categorical variable. We do this with

breaks = seq(-90, -30, by = 5)
bwplot(sdSignal ~ cut(avgSignal, breaks = breaks),

data = offlineSummary,
subset = mac != "00:0f:a3:39:dd:cd",
xlab = "Mean Signal", ylab = "SD Signal")

We see in Figure 1.8 that the weakest signals have small standard deviations and that it
appears that the SD increases with the average signal strength. If we plan to model the
behavior of signal strength, then we want to take these features into consideration.

Mean Signal

S
D

 S
ig

na
l

2

4

6

8

(−90,−85] (−85,−80] (−80,−75] (−75,−70] (−70,−65] (−65,−60] (−60,−55] (−55,−50] (−50,−45] (−45,−40] (−40,−35] (−35,−30]

●

●

●

●
●

●
●

● ● ● ●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

Figure 1.8: SD of Signal Strength by Mean Signal Strength. The average and SD for
the signals detected at each location-angle-access point combination are plotted against each
other. The weak signals have low variability and the stronger signals have greater variability.

We examine the skewness of signal strength by plotting the difference, avgSignal
- medSignal, against the number of observations. We do this with the smoothScatter()

26 Case Studies in Data Science in R

function so that we avoid problems with over plotting and we also add a local average of
the difference between the mean and median to better help us assess its size. We do this
with:

with(offlineSummary,
smoothScatter((avgSignal - medSignal) ~ num,

xlab = "Number of Observations",
ylab = "mean - median"))

abline(h = 0, col = "#984ea3", lwd = 2)

We use loess() to locally smooth the differences between the mean and median with

lo.obj =
with(offlineSummary,

loess(diff ~ num,
data = data.frame(diff = (avgSignal - medSignal),

num = num)))

Then we use the fitted model to predict the difference for each value of num and add these
predictions to the scatter plot with

lo.obj.pr = predict(lo.obj, newdata = data.frame(num = (70:120)))
lines(x = 70:120, y = lo.obj.pr, col = "#4daf4a", lwd = 2)

From Figure 1.9 we see that these two measures of centrality are similar to each other; they
typically differ by less than 1 to 2 dBm.

1.4.2 The Relationship between Signal and Distance
One way to examine the relationship between distance and signal strength is to smooth the
signal strength over the region where it is measured and create a contour plot, similar to a
topographical map; that portion of the floor plan where there is strong signal corresponds
to the mountainous regions in the contour map. As with our previous analysis of signal
strength, we want to control for the access point and orientation. Let’s begin by selecting
one MAC address and one orientation to examine. We choose the summary statistics for an
angle×MAC address combination with, e.g.,

oneAPAngle = subset(offline, mac == subMacs[5] & angle == 0)

We can make a topographical map using color, i.e., a heat map. The fields package [6]
uses the method of thin plate splines to fit a surface to the signal strength values at the
observed locations. This package also provides plotting routines for visualizing the surface
with a heat map. The Tps() function in fields requires that we provide a unique “z” value
for each (x, y) so we must summarize our signal strengths. Rather than use offline, which
gives, in oneAPAngle, about 100 recordings of signal strength at each location, we subset
offlineSummary with

oneAPAngle = subset(offlineSummary,
mac == subMacs[5] & angle == 0)

Then, after loading fields, we call Tps() to fit a smooth surface to mean signal strength:

library(fields)
smoothSS = Tps(oneAPAngle[, c("posX","posY")],

oneAPAngle$avgSignal)

Predicting Location via Indoor Positioning Systems 27

60 80 100 120 140 160

−
6

−
4

−
2

0
2

4

Number of Observations

m
ea

n
−

 m
ed

ia
n

Figure 1.9: Comparison of Mean and Median Signal Strength. This smoothed scatter plot
shows the difference between the mean and median signal strength for each combination of
location, access point, and angle against the number of observations. These differences are
close to 0 with a typical deviation of 1 to 2 dBm.

Next, we use predictSurface() to predict the value for the fitted surface at a grid of the
observed posX and posY values, i.e.,

vizSmooth = predictSurface(smoothSS)

Then we plot the predicted signal strength values using plot.surface() as follows:

plot.surface(vizSmooth, type = "C")

Lastly, we add the locations where the measurements were taken:

points(oneAPAngle$posX, oneAPAngle$posY, pch=19, cex = 0.5)

We can wrap this plotting routine into its own function so that we can parameterize
the MAC address and angle, and if desired, other plotting parameters. Our function, called
surfaceSS(), has 3 arguments: data for the offline summary data frame, and mac and angle,
which supply the MAC address and angle to select the subset of the data that we want
smoothed and plotted. We call surfaceSS() with a couple of MAC addresses and angles to
compare them. To do this, we first modify R’s plotting parameters so that we can place
4 contour plots on one canvas, and we reduce the size allocated to the margins so more
of the canvas is dedicated to the heat maps. We save the current settings for the plotting
parameters in parCur with

28 Case Studies in Data Science in R

parCur = par(mfrow = c(2,2), mar = rep(1, 4))

Then we make 4 calls to our surfaceSS() function using mapply() as follows:

mapply(surfaceSS, mac = subMacs[rep(c(5, 1), each = 2)],
angle = rep(c(0, 135), 2),
data = list(data = offlineSummary))

Lastly, we reset the plotting parameters with

par(parCur)

In Figure 1.10 we see that we can easily identify the location of the access point as the
dark red region at the top of the “mountain.” We also confirm the effect of the orientation
on signal strength. Additionally, a corridor effect emerges. The signal is stronger relative to
distance along the corridors where the signals are not blocked by walls.

−80

−70

−60

−50

−40

 −80

 −70 −60
 −50

 −40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80

−70

−60

−50

−40

 −80

 −80

 −70

 −6
0

 −50

 −
50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80

−70

−60

−50

−40

 −60

 −58

 −5
6

 −56

 −5
4

 −
54

 −52

 −
52

 −50

 −48

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80

−70

−60

−50

−40

 −60

 −
55

 −55

 −
55

 −
55

 −50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1.10: Median Signal at Two Access Points and Two Angles. These four heat maps
provide a smooth topographical representation of signal strength. The top two maps are for
the access point 00:14:bf:b1:97:90 and the angles 0 (left) and 135 (right). The two
bottom heat maps represent the signal strength for the 00:0f:a3:39:e1:c0 and the same
two angles.

We know the locations of the access points based on the floor plan of the building, but
we have not been given their exact location and we do not know the mapping between MAC
address and access point. Fortunately, the contour maps that we just created make it easy
to connect the MAC address to the access point marked on the floor plan in Figure 1.1.

Predicting Location via Indoor Positioning Systems 29

For example, from Figure 1.10, the signals appearing in the top row of the plot clearly
correspond to the access point in the top left corner of the building. Also, according to the
documentation, the training data were measured at 1 meter intervals in the building so we
can use the grey dots on the plan to estimate the location of the access points. We find that
two MAC addresses have similar heat maps and these both correspond to the access point
near the center of the building (i.e., x = 7.5 and y = 6.3). We choose the first of these and
leave as an exercise the analysis of the impact of this decision on predicting location.

offlineSummary = subset(offlineSummary, mac != subMacs[2])

We create a small matrix with the relevant positions for the 6 access points on the floor
plan with

AP = matrix(c(7.5, 6.3, 2.5, -.8, 12.8, -2.8,
1, 14, 33.5, 9.3, 33.5, 2.8),

ncol = 2, byrow = TRUE,
dimnames = list(subMacs[-2], c("x", "y")))

Notice that we used the MAC address for the row names. That is,

AP

x y
00:0f:a3:39:e1:c0 7.5 6.3
00:14:bf:b1:97:8a 2.5 -0.8
00:14:bf:3b:c7:c6 12.8 -2.8
00:14:bf:b1:97:90 1.0 14.0
00:14:bf:b1:97:8d 33.5 9.3
00:14:bf:b1:97:81 33.5 2.8

These row names are useful when indexing the data.
To examine the relationship between signal strength and distance from the access point,

we need to compute the distances from the locations of the device emitting the signal to the
access point receiving the signal. We first compute the difference between the x coordinate
and access point’s x coordinate and the similar difference for the y coordinates. We do this
with

diffs = offlineSummary[, c("posX", "posY")] -
AP[offlineSummary$mac,]

Then we use these differences to find the Euclidean distance between the position of the
hand-held device and the access point with

offlineSummary$dist = sqrt(diffs[, 1]^2 + diffs[, 2]^2)

Finally, we make a series of scatter plots for each access point and device orientation with

xyplot(signal ~ dist | factor(mac) + factor(angle),
data = offlineSummary, pch = 19, cex = 0.3,
xlab ="distance")

The scatter plots appear in Figure 1.11. There appears to be curvature in the plots. A log
transformation might improve the relationship. However, the signals are negative values so
we need to be careful in taking a log transformation. We leave it to the reader to further
investigate this relationship between signal strength and distance.

30 Case Studies in Data Science in R

●
●

●●●
●●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●
●

●
●

●

●

●

●●
●
●

●
●
●

●

●●

●

●
●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●●

●
●●

●

●
●

●
●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●●

●

●
●
●

●●●

●●●

●

●●
●●●●
●●●
●
●●
●

●●●
●
●

●
●

●
●

●

●●●●

●

●●
●

●

●

●●●●
●

●

●

●

●

●

●
●
●

●
●

●
●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●●
●
●●

●

●
●

●

●

●
●

●● ●●

●●

●

●

●●
●

●

●
●

●
●

●
●●

●●
●

●
●

●●

●
●

●
●

●

●

●
●●

●●

●
●

●
●

●
●●

●
●
●

● ●

●
●

●
●

●

●

●

●● ●
●●

●●

●
●
●

●

●

●●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●●
●●
●●

●

●

●

●

●

●

●
●

●●
●

●●

●
●
●

●

●

●
●

●

●

●

●

●●
●
●

● ●

●

●
●●
●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●
●
●

●
●
●

●

●●

●

●

●

●

●
●
●

●
●●

●

●
●
●●●●●

●●
●
●

●
●
●

●

●
●
●
●

●

●
●

●●
●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●
●●●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●
●

●

●●●
●

●

●

●●

●
●

●

●

●
●

●
●

●
●●
●

●

●

●

●
●●

●

●
●

●●

●
●
●

●●

●●
●
●
●

●
●●

●
●

●

●
● ●

●
●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●●
●
●
●

●
●

●

●
● ●●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●●

●●

●
●

●●
●

●
●
●●
●
●

●
●

●●
●

●
●

●

●
●

●
●
●

●
●

●

●
●
●

●
● ●●●

●

●

●

●

●

●
●

●
●

●●

●

●
●
●

●●

●
●
●
●●
●●●
●

●

●
●
●●
●

●●

●
●

●
●
●

●●
●●

●●
●●

●●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●
●● ●

●
●

●

●
●

●

●
●

●●

●

●
●●

●●
●
●
●●

●
●

●

●

●
●

●●

●●●
●
●
●●●
●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●●

●
●●
●
●●
●
●
●
●●●

●●●

●

●●
●●

●

●●
●

●●
●

●

●●

●

●●

●
●
●
●

●
●

●

●

●
●

●●
●●

●

●
●

●●

●

●

●
●●
●

●
●●

●
●●

●●
●
●
●

●
●

●

●
●
●
●

●

●
●●

●
●●

● ●●
●

●
●
●

●
●
●

●

●

●
●

●

●

●
●●

●

●
●●

●●
●
●

●
●
●
●

●

●

●
●

●●●
●

●●

●
●

●

●
●

●

●

●●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●●

●

●
●
● ●●

●
●

●

●

●
●
●●●

●

●

●
●

●
●
●

●
●● ●●●

●

●
●

●●

●

●

●
●

●●

● ●

●●●
●●●

●

●

●

●
●
●●●

●
●

●
●●●●

●

●
●●

●

●
●

●

●
●

●●●

●
●●

● ●

●
●
●

●

●

●

●●

●●●

●

●●

●

●●

●

●
●

●
●

●
●●

●
●
●
●

●
●●●

●

●

●

●

●●

●

●

● ●

●

●

●

●●
●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●●
●
●
●
●

●

●

●
●
●

●

●

●
●●
●
●●

●

●

●

●●
●

●
●
●

●

●●

●

●

●●

●

●
●

●●
●●
●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●●●
●
● ●

●

●

●●
●●

●●

●
●

●●
●

●

●

●
●
●●●

●

●
●●

●

●
●●
●●
●
●

●

●

●●
●

●●

●

●

●●

●●
●

●
●

●●

●

●
●
●

●
●

●●

●●

●●

●
●

●
●
●
●●

●●●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●●●

●

●●

●

●
●●

● ●●
●
●

●
●

●

●
●●●

●

●●
●
●
●

●

●●

●●
●
●●

●

●

●
●

●

●
●●

●
●

●

●
●

●
●

●

●
●

●●
● ●

●
●

●●

● ●
●●

●
●●

●
●

●
●
●●

●

●
●●

● ●
●●

●

●●

●
●

●

●

●

●

●

●
●●
●
●

●●●

●

●

●
●
●

●●

●●●●●
●●●
●

●

●●

●●
● ●

●

●

●● ●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●
●●

●

●●● ●●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●
●●
●

●

●

●●●
●

●
●

●
●●●●
●

●

●

●

●

●
●

●

●

●
●
●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●●

●

●
●

●
●
●

●●

●

●

●●

●

●
●

●
●
●

●
●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●

●●●

●
●●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●
●●

●

●
●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●●

●●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●
●●
●

●
●
●

●

●

●
●●

●●

●●

●

●
●

●●

●●
●

●
●

●
●

●

●

●●●
●
●●●●

●
●

●

●
●

●
●
●

●
●
●
●●

●
●●

●

●

●

●
●

●●
●
●
●
●
●

●
●
●
●●
●
●
●

●
●
●●
●

●
●
●
●

●

●

●●●

●

●
●
●

●
●
●●
●
●

●
●●

●
●

●

●
●
●
●
●

●

●●
●
●

●

●

●

●●
●

● ●
●

●
●
●

● ●

●
● ●

●

●
●

●

●

● ●●

●
●●●

●●●

●●

●●

●
●●

●
●

●
●

●
●
●
●●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●
●
●
●

●

●
●

●
●●
●

●

●●

●

●
●

●●

●

●
●

●

●●

●

●●●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●
●●

●
●●

●

●

●●
●●
●
●
●

●●
●

●

●

●●
●

●
●
●
●

●
●

●

●●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●
●●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●
●

●

●●

●●

●

●●
●

●

●

●
●

●●●
●

●
●

●

●

●●

●

●
●●●

●
●

●●

●
●●

●

●

●
●

●●

●
●

●

●
●

●●

●

●

●●
●

●

●●
●●

●●

●●

●
●
●

●

●●
●

●

●
●●

●

●●
●

●
●

●

●●
● ●●●

●

●
●

●
●

●●
●
●
●●

●

●
●

●
●

●
●

●
●

●

●

●●

●

●
●

●
●

●
●

●

●

●●

●

● ●
●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●
●
●
●
●

●

●

●
●●
●

●

●

●

●
●

●
●
●
●
●

●

●
●
●

●
●

●
●

●
● ●

●

●
●
●●

●

●●●
●
●

●
●
●●

●
●

●
●

●●

●

●
●
●
●●
●
●●
●
●
●

●
●

●

●●

●●
●

●

●
●

●
●●
●

●
●●●
●●
●

●●
●

●
●
●

●

●●

●

●
●●●

●

●●

●
●
●●

●
●

●●
●●
●
●

●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●●

●
●
●

●

●
●●

●
●
●
●

●●
●

●●

●●
●

●
●
● ●
●

●

●

●
●

●●
●●

●

●
●

●

●●●
● ●

●
●●

●
●

●
●

●
●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●●
●

●

●

● ●

●
●

●

●
●

●

●●
●

●

●

●●●

●

●

●●●

●
●●
●●
●

●

●●

●

●
●●

●
●
●

●
●
●

●
●

●

●
●
●

●

●

●
●

●

●
●

●

●

●
●● ●

●

●●

●

●
●
●●
●
●●

●

●

●

●

●●
●●

●

●
●

●

●
●

●
●
●
●

●

●
●●

●

●

● ●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●●●

●●●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●
●

●●
●●

●

●

●●
●

●●
●

●

●

●
●

●

●

●●

●
●

●
●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●
●

●

●●

●

●

●
●●

●
●
●

●

●
●

●
●
●●●

●
●●●
●

●
●

●
●
●

●●

●
●

●
●
●

●●

●
●
●●

●
●
●
●●

●
●
●

●
●
●
●

●

●
●
●

●

●

●

●●●
●●
●
●

●

●

●
●
●
●

● ●

●

●
●
●

●

●
●

●●●

●
●
●

●
●

●

●
●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●
●
●
●

●

●
●
●●

●

●●
●
●●

●

●
●●

●

●●
●●

●

●

●
●●
●
●
●
●

●

●
●
●
●
●●

●

●

●

● ●

●

●
●

●

●

●●

●
●
●

●
●●

●

●●●

●

●
●

● ●

●

●
●

●● ●
●

●

●
●

●
● ●● ●

●
●
●
●●

●

●

●

●
●

●

●
●●●

●

●

●
●
●
●

●

●
●

●

●●

●
●

●

●

●●
●
●
●

●
●

●●

●

●●

●
●
●
●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●●●
●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●●●
●●

●

●

●

●
●
●

●

●

●

●
●
●

●

●●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●●

●
●●●●

●
●
●

●●
●

●

●

●● ●

●

●
●●

● ●●

●

●

●
●

●

●

●

●

●●

●

●●
●

●●
●

●

●

●
●
●
●●

●
●

●
●

●

● ●●

●●

●
● ●

●

●●●

●

●

●●

●
●●

●●
●

●
●
●

●

●

●

●
●
●

●

●
●

●
●

●

●
●●

●
●

●

●●

●

●

●
●
●

●●
●
●

●
●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●
● ●

●●

●
●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●●● ●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●
●

●
●

●●

●

●

●

●
●
●

●

●

●
●
●●
●

●

●

●●
●

●
●
●

●

●

●

●●●

●

●

●
●
●

●

●
●
●
●

●

●●
●

●●●
●
●

●
●
●

●

●●●

●
●

●●
●

●●
●
●●●

●
●
●●

●

●●
●
●●

●●

●

●
●
●

●●

●●
●

●

●

●
●
●●
●
●
●●●

●
●
●●●
●
●●●
●●
●

●

●

●●
●
●
●
●●

●●
●
●
●●
●
●●
●

●

●
●
●

●
●
●●
●
●

●

●

●

●
●
●●
●

●●

●●●
●

●

●

●

●
●
●●

●
●

●●

●

●
●●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●
●

●

●

●
●
●
●
●●
●
●

●
●●

●
●

●

●●
●
●
●
●

●

●

●

●

●

●

●●
●
●

●

●

● ●
●●

●●

●

●●

● ●
●

●
●
●

●
●
●

●● ●
●

●

●
●

●●●

●
●
●●

●
●●●

●
●●
●
●

●

●
●●

●
●

●

●
●
●

●

●
●
●●
●
●
●

●

●

●

●

●
●
●●

●

●

●

●●● ●
●

●

●

●

●
●

●
●

●
●

●

●

●
●●●
●●●
●
●
●
●

●
●
●

● ●
●●

●

●
● ●

●

●
●

●
●
●

●
●

●●

●
●
●
●

●
●
●

●●●
●
●

●●

●

●

●

●

●

●

●●

●●

●
●●

●●
●

●

●

●●

●

●

●●
●●
●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●
●
●

●

●
●

●

●

●●
●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●
●

●

●

●

●

●●
●
●

●
●
●
●

●
●

●

●
●
●

●●
●
●●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

● ●●
●
●

●

●●
●

●●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●
●
●

●
●

●
●

●●

●

●

●

●●●

●
●

●

●
●●

●●

●●
●

●
●
●

●

●

●
●

●
●●●

●●

●

●

●

●
●

●●●
●●●●●●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●
●
●

●●

●
●

●●●
●

●●
●

●

●
●

●
●●●
●
●
●
●
●●

●

●

●●
●
●●●
●

●●

●
●
●●

●
●●
●

●

●

●
●
●
●
●
●
●●
●

●●
●

●

●●

●

●

●

●

●●

●
●●

●

●

●●
●

●

●

●
●

●

● ●
●

●

●

●

●
●●

● ●
●

●

●
●

●● ●●

●
●

●●●
●

●●

●
●●●
●●●

●
●

●

●

●

●●
●●
●

●

●
●

●●
●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●
●●

●
●

●

●●

●

●
●

●

●●
●

●

●

●
●

●●
●

●
●
●
●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●
●●

●
●

●
●

●
●

●

●

●
●●
●

●

●
●

●

●●

●
●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●
●

●

●●

●

●
●

●
●
●
●●

●
●

●

●
●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●●
●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●
●

●
●● ●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

●
●●

●
●

●
●●●

●● ●
●
●
●●

●

●
●●
●
●

●
●
●●

● ●
●
●●●● ●●

●

●●
●

●

●

●

●
●

●

●
●
●

●
●
●

●
●
●●

●

● ●
●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●
●

●

●
●
●
●●●

●

●
●●

●

●

●
●●

●

●
●
●
●●

●

●
●

●
●
●

● ●

●
●
●
●

●
●●

●
●
●

●
●

●

●●●
●●

●

●

●

●●●
●
●

●●
●

●

●

●

●●●
●

●

●
●
●

●
●● ●

●
●
●●
●
●

●

●●●
●
●

●

●

●
●●
●●●

●

●
●
●

●
●
●●

●

●
●
●
●
●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●
●●●
●

●●

●

●

●●●●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●●●

●

●
●

●
●

●●

●
●●

●

●
●

●
●

●●●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●
●
●

●●

●●
●●

●

●●
●●

●●

●

●
●

●

●
●●

●

●

●
● ●

●

● ●
●

●

●
●

●
●

●●

●

●●
●●
●

●

●●
●

●

●

●●

●
●
●●

●●
●●
●

●●
●

●

●
●●
●

●
●

●
●

●●●

●

●●
●

●

●

●

●
●

●
●

●

●

●●
●

●●

● ●

●

●

●

●

● ●●●
●
●

●

●●
●
●●

●

●
●●

●

●●

●
●
●●

●

●●
●●

●●
●
●

●
●

●
●●
●

●

●

●
●●●

●●●
●

●
●

●
●
●

●

●
●
●●

●
●●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●
●

●
●●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●●

●●
●●●

●

●
●
●

●

●

●●

●

●

●
●

●
●
●
●
●
●

●●
●
●
●
●

●

●

●

●

●●

●●

●●
●
●●

●

●
●

●
●
●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●●

●
●

●

●

●
●

●●

●

●
●

●
●●

●●
●●●

●

●

●
●

●

●

●●

●

●
●

●●●

●

● ●
●
●

●●
●

●
●

●
●
●

●●●
●
●
●
●

●●
●
●
●
●

●
●
●

●

●
●

●
●

●
●●

●

● ●●

●

●

●●

●
●

●
●

●
●●

●●
●
●

●●

●

●

●●●

●
●

●

●

●

●●

●
●●

●

●●
●
●
●

●●

●●
●

●
●●
●

●

●●●●

●●

●

●
●●

●

●

●
●

●●●●

●
●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●●

●●●●
●

●●

●

●
●●
●

●
●

●

●
●

●

●
●

●

●
●
●

●
●
●

●●●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●●
●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●
●
●
●

●
●

●●●
●

●

●
●

●

●

●

●●

●

●●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●●

●

●
●
●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●●

●
●
●

●

●

●
●

●

●●
●

●●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●●

●●●

●

●●●

●

●
●

●

●

●

●

●
●

●

●●
● ●

●

●
●●● ●

●●

●
●

● ●

●
● ●●
● ●

●

● ●●
●

●●● ●●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●
●
● ●

●
●●

●
●

●●
●
●
●
●

●

●
●●●

●

●●

●●

●
●

●
●

●●

●

●
●
●
●

● ●●●
●●

●
●

●
●

●

●

●

●
●
●

●●
●

●●

●

●

●

●

●
●

●●

●
●

●

●
●●

●

●

●

●
●

●

●
●

● ●

●
●
●

●
●●

●

●

●●●●
●

●●

●●

●●
●
●

●

●

●
●

●●●

●●

●●

●

●

●

●
●

●●
●

●
●

●
●●
●
● ●
●
●●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●●

●
●

●

●●●

●
●●●

●
●

●

●
●
●
●●●
●
●
●
●

●
●●
●

●●●●
●

●

●●●
●
●
●●
●

●

●●●

●

●
●
●●
●
●

●

●
●

●●

●

●●
●

●

●

●

●
●
●
●
●●
●

●
●

●●

●
●

●●
●●

●
●●●

●

●
●
●

●
●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●●●

●

●

●
●

●
●

●●
●
●
●
●

●

●

●●
●

●

●

●

●
●
●
●

●

●

●●
●●

●

●

●
●
●
●

●

●

●

● ●
●

●
●
●

●

●

●

●

●

●

● ●
●

●●
●
●

●●●●
●

●

●●●●

●

●
●●

●
●
●

●

●●
●
●
●

●●
●
●
●
●
●
●●

●●●●

●

●

●

●●

●

●●●
●
●● ●
●

●

●
●

●

●●

●

●● ●
●
●

● ●
●

●●●●

●

●

●

●
●●

●
●●

● ●●
●

●
●

●

●

●● ●

●

●

●

●
●

●
●

●
●●●

●●●
●

●
●●

●

●

●
●

●

●
●

●●
●

●
●
●

●

●
●

●
●
●

●
●

●
●

●

●

●●●

●

●●●●

●
●

●

●

●

●●

●

●
●

●●●
●
●

●●

●
●

●

●

●

●

●
●

●●
●

●

●●
●

●
●
●

●

●

●

●
●

●
●
●
●
●

●
●●

●
●
●

●
●

●
●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●●
●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●
●●

●
●
●

●
●●●

●

●●

●

●

●

●

●●
●
●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●
●

●

●
●
●●
●

●

●

●
●●

●

●

●
●●
●

●
●
●●

●

●

●
●

●
●

●
●

●

● ●
●

●
●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●
●

●

●

●●
●

●●
●●

●

●
●
●

●
●

●

●
●

●

●
●
●
●
●●
●
●

●
●●

●

●
●

●
●

●
●
●

●●
●

●
●
●●

●

● ●●

●

●●

●

●●

●

●
●

●

●

●
●
●●●

●
●
●

●

●
●

●

●
●

●
●
●

●

●●

●●

●
●

●●●
●

●●

●

●

●

●

●

●

●
●●

●
●●
●

●
●
●

●

●
●

●●

●

●●

●

●

●
●

●
●

●

●
●

●
●
●

●●

●●
●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●●●
●
●

●

●
●
●

●
●

●

●

●

●

●

●

●
●
●

●
●
●

●
●
●

●
●

●

●
●

●

●●
●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

● ●
●●

●

●
●

●
●

● ●
●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●●

●

●●●

●●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●●

●
● ●

●●●

●

● ●
●
●

●●
●

●

●
●

●●●

●

●
●

●●●
●

●
●
●
●●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●●

●

●
●
●

●
●●
●

●●

●
●●

●

●
●
●
●

●
●
●

●●
●
●●
●
●
●
●●

●
●

●
●

●
●

●

●
●
●
●

●
●

●
●●
●

●
●

●
●●

●
●

●

●
●●●

●
●●●●●

●
●●

●

●●

●●
●●
●

●

●

●
●●

●●

●

●

●

●
●

●●
●●

●
●
●
●
●
●

●
●●
●
●

●

●

●
●
●
●●●
●
●●
●

●●
●●●
●

●
●

●
●
●

●
●
●
●

●

●
●●

●

●

●

●
●

●

●●●●

●
●
●
●
●

●●
●

●

●●

●●

●

●
●●

●
●

●

●

●●●●

●
●

●

●

●

●

●●● ●●
●

●
●

●
●
●
●

●●
●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

● ●

●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●

●●●
●●

●
●
●
●
●
●

●

●

●
●

●●

●

●
●
●
●●

●

●

●

●

●●
●●

●
●

●

●

●
●
●
●

●

●●

●
●●●

●

●
●

●

●
●

●
●

●

●

●
●

●
●
●

●

●●●●

●

● ●

●

●
●
●

●
●
●

●

●●
● ●

●
●
●

●

●

●

●●●

●
●

●

●
●
●●
●

●
●

●

●●
●

●

●
●

●

●

●

●●●
●

●

●
●
●

●

●

●
●

●

●
●

●
●
●●

●

●

●●

●
●
●

●

●
●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●●●●●
●
●

●

●●
●

●

●
●
●

●●
●
●

●

●●
●

●
●

●

●

●●
●●

●

●

●
●●

●

●
●●●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●●
●

●

●

●

●

●
●●●

●
●●

●●
●●
●

●●

●

●
●
●●

●
●

●

●●

●●

●

●
●
●●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●●

●●
●
●

●

●●

●

●
●

●
●
●
●

●
●

● ●
●

●
●

●

●
●●
●

●

●
●
●
●

●
●

●

●

●
●

●

●
●

●

●

●
●
●
●
●

●
●
●
●
●
●
●
●

●●

●
●

●

●

●

●

●

●

●

●
●●●
●●
●●
●

●

●

●

●
●
●●
●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●●●

●

●●

●●
●●

●●

●●
●●
●

●

●

●
●
●

●
●
●

●

●●●

●

●
●
●

●
●

●●

●

●
●
●
●

●
●

●

●
●●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●
●
●●

●
●

●
●●

●
●●

●
●●
●●

●
●

●

●

●
●

●

●
●●●

●
●

●

●

●

●

●
●
●●

●●

●

●

●●
●
●

●

●
●

●
●●

●

●
●

●●
●●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●
●

●●
●

●
●

●

●

●●
●●

●

●

●

●●

●

●●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●
● ●●●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●
● ●●

●

●

●● ●●

●

●

●
● ●
●●

●

●

●

●
●
●

●

●
●

●
●● ●
●
●

●●

●
●

●
●

●
●

●

●●
●●

●

●
●●

●
●
●
●
●
●

●

●
●

●

●

● ●●

●
●
●● ●●

●
●

●

●
●

●

●

●
●
●
●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●●

●
●
●
●

●

●
●

●●

●
●

●
●

●
●

●● ●●
●

●
●

●

●●
●

●

●
●

●

●

●
●
●
●

●
●

●

●

●
●

●●

●

●

●

●

●●
●
●●
●
●
●
●

●●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

● ●
●●

●

●

●

●●●●
●●

●
●

●

●●●

●
●●

●

●
●

●
●

●
●●
●●
●

●
●

●●
●

●

●●

●

●
●●
●●
●

●
●

●
●
●
●

●

●
●●●
●
●
●
●
●
●
●●●
●
●
●

●●

●

●●

●

●
●

●

●●

●
●
●

●
●
●

●●

●

●●
●
●

●

●●●

●
●
●

●●●●
●
●●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●● ●
●●●●

●
●
●

●

●●

●

●
●

●●●
●

●

●

●
●
●●

●
●

●
●●

●
●

●
●●

●
●

●
●

●

●
●

●
●

●

●

● ●●●
●
●

● ●●

●
● ●

●●

●

●●

●●
●
●
●

●

●

●

●

●
●
●

●●●

●

●●
●

●
●

●●

●
●

●

●●
●●
●
●

●●

●

●

●●
●

●

●

●
●

●
●
●

●

●●
●

●

●
● ●

●
●

●
●●

●

●
●

●
●

●

●
●

●●

●
●

●
●
●

● ●

●
● ●

●
●

●
●

●

●
●

●

● ●●

●●

●

●

●
●

●

●

●

●

●

●●

●●
●

●●

●
●
●
●●●
●
●

●●
●
●

●

●
●
●
●●
●
●

●
●
●

●

●

●

●
●
●
●●●

●

●●●
●●

●●

●

●●
●●●●

●

●
●

●
●
●

●

●
●

●

●

●
●●

●
●
●

●
●

●

●

●

●
●
●●●

●

●
●
●

●

●

●
●●
●●

●
●
●
●
●
●●

●
●●●

●●
●

●●

●

●
●

●

●●
● ●

●

●

●●

●
●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●
●

●
●●
●●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●

●
●
●
●
●

●
●
●●
●●
●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●
●

●

●

●

●
●
●

●●
●●

●●

●

●

●●
●
●●
●

●
●

●
●●
●●

●
●
●
●
●●

●●●●●
●
●

●

●
●
●

●

●●

●

●

●

●

●●
●

●
●
●
●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●
● ●

●● ●
●

●

●
●●

●
●

●
●
●

●

●●

●

●
●●

●
●

●
●●

●●

●

●

●●

●

●●

●
●
●●

●

●●
●
●
●
●

●

●
●

●

●●

●

●
●●

●

●
●

●
●●
●●

●
●●●

●

●

●●
●
●●

●●

●●
●●
●

●

●
●
●●
●●

●
●

●

●

●

●
●
●●
●
●

●

●

●

●
●
●

●●

●
●
●●

●

●
●
●●●●
●

●

●

●

●
●

●●
●

●

●● ●●
●

●

●
●

●
●
●

●

●

●
●

●

● ●
●

●

●
●●

●

●●
●

●
●
●●

●

●
●
●
●
●●●●●●

●

●

●●
●

●

●
●

●
●

●●●

●
●

●
●

●
●

●

●
●

●●
●

●
●●

●
●

●

●
●
●
●

●

●

●

●

●
●
●

●
●●

●
●
●

●●●

●

●

●

●

●
●

●●
● ●●●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●●●

●●

●
●
●●

●

● ●
●
●

●

●
●

●
●
●

●
●
●

●

●●
●

●●●●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●● ●
●

● ●●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●●

●●
●

●

Figure 1.11: Signal Strength vs. Distance to Access Point. These 48 scatter plots show the
relationship between the signal strength and the distance to the access point for each of the 6
access points and 8 orientations of the device. The shape is consistent across panels showing
curvature in the relationship.

Predicting Location via Indoor Positioning Systems 31

1.5 Nearest Neighbor Methods to Predict Location
There are numerous different statistical techniques we can use to estimate the location of
a device from the strength of the signal detected between the device and several access
points. Here, we use a relatively simple and intuitive approach, called k-nearest neighbors
or k-NN for short. The idea behind the nearest neighbor method (for k = 1) is as follows:
we have training data where the signal is measured to several access points from known
positions throughout a building; when we get a new observation, i.e., a new set of signal
strengths for an unknown location, we find the observation in our training data that is
closest to this new observation. By close we mean the signals recorded between the access
points and the new, unobserved location are close to the signal strengths measured between
the access points and an observation in the training data. Then, we simply predict the
position of the new observation as the position of that closest training observation. For
k-nearest neighbors where k is larger than 1, we find the k closest training points (in the
signal strength domain) and estimate the new observation’s position by an aggregate of the
positions of the k training points.

We naturally think of measuring the distance between two sets of signal strengths with
Euclidean distance, i.e., √

(S∗1 − S1)2 + · · ·+ (S∗6 − S6)2 ,

where Si is the signal strength measured between the hand-held device and the i-th access
point for a training observation taken at some specified location, and S∗i is the signal
measured between the same access point and our new point whose (x, y) values we are
trying to predict.

1.5.1 Preparing the Test Data
The online data are in online.final.trace.txt, and these observations form our test data. We
use the readData() function from Section 1.2 to process the raw data with

macs = unique(offlineSummary$mac)
online = readData("Data/online.final.trace.txt", subMacs = macs)

We have the locations where these test measurements were taken so that we can assess the
accuracy of our predictions. As with the offline data, we create a unique location identifier
with

online$posXY = paste(online$posX, online$posY, sep = "-")

We use this new variable to determine that we have 60 unique test locations, i.e.,

length(unique(online$posXY))

[1] 60

Also, we tally the number of signal strengths recorded at each location with

tabonlineXYA = table(online$posXY, online$angle)
tabonlineXYA[1:6,]

32 Case Studies in Data Science in R

0 45 90 135 180 225 270 315
0-0.05 0 0 0 593 0 0 0 0
0.15-9.42 0 0 606 0 0 0 0 0
0.31-11.09 0 0 0 0 0 573 0 0
0.47-8.2 590 0 0 0 0 0 0 0
0.78-10.94 586 0 0 0 0 0 0 0
0.93-11.69 0 0 0 0 583 0 0 0

This output indicates that signal strengths were recorded at one orientation for each loca-
tion.

Given that we are computing distances between vectors of 6 signal strengths, it may be
helpful to organize the data in a different structure than we have used so far in this chapter.
Specifically, rather than a data frame with one column of signal strengths from all access
points, let’s organize the data so that we have 6 columns of signal strengths, i.e., one for
each of the access points. We summarize the online data into this format, providing the
average signal strength at each location as follows:

keepVars = c("posXY", "posX","posY", "orientation", "angle")
byLoc = with(online,

by(online, list(posXY),
function(x) {

ans = x[1, keepVars]
avgSS = tapply(x$signal, x$mac, mean)
y = matrix(avgSS, nrow = 1, ncol = 6,

dimnames = list(ans$posXY, names(avgSS)))
cbind(ans, y)

}))

onlineSummary = do.call("rbind", byLoc)

We have kept in the data frame only those variables that we use for making and assessing
predictions. This new data frame should have 60 rows and 11 variables, including 6 average
signal strengths at the corresponding MAC addresses. We confirm this with:

dim(onlineSummary)

[1] 60 11

names(onlineSummary)

[1] "posXY" "posX" "posY"
[4] "orientation" "angle" "00:0f:a3:39:e1:c0"
[7] "00:14:bf:3b:c7:c6" "00:14:bf:b1:97:81" "00:14:bf:b1:97:8a"
[10] "00:14:bf:b1:97:8d" "00:14:bf:b1:97:90"

1.5.2 Choice of Orientation
In our nearest neighbor model, we want to find records in our offline data, i.e., our training
set, that have similar orientations to our new observation because we saw in Section 1.3 that
orientation can impact the strength of the signal. To do this, we might consider using all

Predicting Location via Indoor Positioning Systems 33

records with an orientation that is within a specified range of the new point’s orientation.
Since the observations were recorded in 45 degree increments, we can simply specify the
number of neighboring angles to include from the training data. For example, if we want
only one orientation then we only include training data with angles that match the rounded
orientation value of the new observation. If we want two orientations then we pick those two
multiples of 45 degrees that flank the new observation’s orientation; for three, we choose
the closest 45 degree increment and one on either side of it, and so on. That is, for m the
number of angles and angleNewObs the angle of the new observation, we find the angles to
include from our training data as follows:

refs = seq(0, by = 45, length = 8)
nearestAngle = roundOrientation(angleNewObs)

if (m %% 2 == 1) {
angles = seq(-45 * (m - 1) /2, 45 * (m - 1) /2, length = m)

} else {
m = m + 1
angles = seq(-45 * (m - 1) /2, 45 * (m - 1) /2, length = m)
if (sign(angleNewObs - nearestAngle) > -1)

angles = angles[-1]
else

angles = angles[-m]
}

Notice that we handle the case of m odd and even separately. Also, we must map the angles
to values in refs, e.g., -45 maps to 335 and 405 maps to 45, so we adjust angles with

angles = angles + nearestAngle
angles[angles < 0] = angles[angles < 0] + 360
angles[angles > 360] = angles[angles > 360] - 360

After we have the subset of the desired angles, we select the observations from
offlineSummary to analyze with

offlineSubset =
offlineSummary[offlineSummary$angle %in% angles,]

Then we aggregate the signal strengths from these angles and create a data structure that
is similar to that of onlineSummary. Rather than repeat the code again, we turn these
computations into a helper function, which we call reshapeSS():

reshapeSS = function(data, varSignal = "signal",
keepVars = c("posXY", "posX","posY")) {

byLocation =
with(data, by(data, list(posXY),

function(x) {
ans = x[1, keepVars]
avgSS = tapply(x[, varSignal], x$mac, mean)
y = matrix(avgSS, nrow = 1, ncol = 6,

dimnames = list(ans$posXY,
names(avgSS)))

cbind(ans, y)

34 Case Studies in Data Science in R

}))

newDataSS = do.call("rbind", byLocation)
return(newDataSS)

}

We summarize and reshape offlineSubset with

trainSS = reshapeSS(offlineSubset, varSignal = "avgSignal")

We leave it as an exercise to wrap the code to select the angles and the call to reshapeSS()
into a function, called selectTrain(). This function has 3 parameters: angleNewObs, the angle
of the new observation; signals, the training data, i.e., data in the format of offlineSummary;
and m, the number of angles to include from signals. The function returns a data frame
that matches trainSS from above.

We can test our function for an angle of 130 degrees and m of 3, i.e., we aggregate the
offline data for angles of 90, 135, and 180. We do this with

train130 = selectTrain(130, offlineSummary, m = 3)

The results, slightly reformatted for readability, are:

head(train130)

posXY posX posY :c0 :c6 :81 :8a :8d :90
0-0 0-0 0 0 -52 -66 -63 -36 -64 -55
0-1 0-1 0 1 -53 -65 -64 -39 -65 -59
0-10 0-10 0 10 -56 -66 -69 -45 -67 -50
0-11 0-11 0 11 -55 -67 -70 -48 -67 -55
0-12 0-12 0 12 -56 -70 -72 -45 -67 -50
0-13 0-13 0 13 -55 -71 -73 -43 -69 -54

The selectTrain() function averages the signal strengths for the different angles to pro-
duce one set of signal strengths for each of the 166 locations in the training data, i.e.,

length(train130[[1]])

[1] 166

However, we may not want to collapse the signal strengths across the m angles, and instead
return a set of m×166 signals for each access point. We leave it as an exercise to try this
alternative approach.

1.5.3 Finding the Nearest Neighbors
At this point, we have a set of training data that we can use to predict the location of our
new point. We want to look at the distance in terms of signal strengths from these training
data to the new point. Whether we want the nearest neighbor or the 3 nearest neighbors,
we need to calculate the distance from the new point to all observations in the training set.
We can do this with the findNN() function:

Predicting Location via Indoor Positioning Systems 35

findNN = function(newSignal, trainSubset) {
diffs = apply(trainSubset[, 4:9], 1,

function(x) x - newSignal)
dists = apply(diffs, 2, function(x) sqrt(sum(x^2)))
closest = order(dists)
return(trainSubset[closest, 1:3])

}

The parameters to this function are a numeric vector of 6 new signal strengths and the return
value from selectTrain(). Our function returns the locations of the training observations in
order of closeness to the new observation’s signal strength.

We can use some subset of these ordered locations to estimate the location of the new
observation. That is, for some value k of nearest neighbors, we can simply average the first
k locations. For example, if closeXY contains the x and y values returned from findNN()
(these are the ordered training locations), then we estimate the location of the new obser-
vation with

estXY = lapply(closeXY,
function(x) sapply(x, function(x) mean(x[1:k])))

Of course, we need not take simple averages. For example, we can use weights in the average
that are inversely proportional to the distance (in signal strength) from the test observation.
In this case, we also need to return the distance values from the findNN() function. This
alternative approach allows us to include the k points that are close, but to differentiate
between them by how close they actually are from the new observation’s signals. The weights
might be

1/di∑k
i=1 1/di

,

for the i-th closest neighboring observation where di is the distance from our new point
to that nearest reference point (in signal strength space). We may also want to consider
different metrics. We have used Euclidean distance, but we may want to try Manhattan
distance. We might also be inclined to use medians and not averages when combining
neighbors to predict (x, y), if the distribution of the values we are averaging are quite
skewed. We leave as exercises these alternatives to the approach presented here.

We have developed two functions, trainSelect() and findNN(), to provide the locations
in the training data that have signal strengths close to those of a test observation. We
can formalize this approach to make predictions for all of our test data. We do this with
predXY() as follows:

predXY = function(newSignals, newAngles, trainData,
numAngles = 1, k = 3){

closeXY = list(length = nrow(newSignals))

for (i in 1:nrow(newSignals)) {
trainSS = selectTrain(newAngles[i], trainData, m = numAngles)
closeXY[[i]] =

findNN(newSignal = as.numeric(newSignals[i,]), trainSS)
}

estXY = lapply(closeXY,

36 Case Studies in Data Science in R

function(x) sapply(x[, 2:3],
function(x) mean(x[1:k])))

estXY = do.call("rbind", estXY)
return(estXY)

}

We test our functions with the case of 3 nearest neighbors and 3 orientations with:

estXYk3 = predXY(newSignals = onlineSummary[, 6:11],
newAngles = onlineSummary[, 4],
offlineSummary, numAngles = 3, k = 3)

To assess the fit of the model we can make a map of the actual and predicted locations.
Figure 1.12 shows such a map for this model and the 1-NN model. Notice that in general the
errors are smaller for 3-NN. Also in the 3-NN model, the large errors seem less problematic
as they tend to follow the hallways.

In addition to the visual comparison of the predicted and actual positions, we can
compare these fits numerically. For example, we can compute the length of the line segments
in each of the figures and sum them to yield a measure of the size of the error. Or, we can
find the sum of squared errors with

calcError =
function(estXY, actualXY)

sum(rowSums((estXY - actualXY)^2))

We apply this function to our two sets of errors to find:

actualXY = onlineSummary[, c("posX", "posY")]
sapply(list(estXYk1, estXYk3), calcError, actualXY)

[1] 659 307

This confirms what we saw in the figures, that 3 nearest neighbors do a better job of
predicting location than one nearest neighbor. The question remains whether some other
value of k makes a better predictor.

1.5.4 Cross-Validation and Choice of k

The choice of k, the number of neighbors to include in the estimate of a new observation’s
position, is a model selection problem. Ideally, we want to choose the value of k independent
of our test data so that we do not overfit our model to the training data. The method of
v-fold cross-validation can help us do this. The idea behind it is quite simple: we divide our
training data into v non-overlapping subsets of equal size. Then for each subset, we build
models with the data that are not in that subset and we assess the predictive ability of the
model using the subset that was left out. We repeat this model fitting and assessment for
each of the v folds and aggregate the prediction errors across the folds.

In our nearest neighbor scenario, we use all 8 orientations and 6 MAC addresses with
each location. This means that we cross-validate on the 166 locations. Suppose that we take
v = 11; then each fold has floor(166/v), or 15, locations. We can randomly select these
locations with

v = 11
permuteLocs = sample(unique(offlineSummary$posXY))
permuteLocs = matrix(permuteLocs, ncol = v,

nrow = floor(length(permuteLocs)/v))

Predicting Location via Indoor Positioning Systems 37

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

● ●

●
●

●
●

●

●

●

Figure 1.12: Floor Plan with Predicted and Actual Locations. The red line segments shown
in the floor plan connect the test locations (black dots) to their predicted locations (asterisks).
The top plot shows the predictions for k = 1 and the bottom plot is for k = 3 nearest
neighbors. In this model, we use as training data the average signal strengths from each of
the 166 offline locations (grey dots) to the 6 access points (black squares) for the 3 closest
angles to the angle at which the test data was measured.

38 Case Studies in Data Science in R

We receive a warning message with the call to matrix() because v does not divide evenly
into 166, so permuteLocs does not contain all 166 locations. Each subset of 15 locations is
used as the “online” or test data so, e.g., the first online fold is

onlineFold = subset(offlineSummary, posXY %in% permuteLocs[, 1])

We need to summarize these data so that the data structure matches that of onlineSummary.
This includes selecting an orientation at random because each test observation has only one
orientation. (Of course, we could find the nearest neighbors for each of the 8 orientations,
but we keep things a bit simpler).

Recall from Section 1.5.1 that we summarized the online data into a structure that had
6 columns of signal strength values, one for each access point. It is easier for us to create
the test data in its entirety from offline and then divide this data structure into its folds.
We can use our function reshapeSS() to do this. However, there is one important difference
– we want to select one angle at random for each location. We can augment reshapeSS() to
conditionally perform this selection, e.g.,

if (sampleAngle) x = x[x$angle == sample(refs, size = 1),]

After we incorporate this code into reshapeSS() and augment the function definition to
include sampleAngle with a default value of FALSE, then we can summarize and format
offline with

keepVars = c("posXY", "posX","posY", "orientation", "angle")

onlineCVSummary = reshapeSS(offline, keepVars = keepVars,
sampleAngle = TRUE)

Now, our first fold is:

onlineFold = subset(onlineCVSummary,
posXY %in% permuteLocs[, 1])

This structure makes it easier to use our previous code to find the nearest neighbors. Our
training data for the first fold is

offlineFold = subset(offlineSummary,
posXY %in% permuteLocs[, -1])

This subset is also in the correct format for our earlier application of the nearest neighbor
method. That is, we can use our predXY() function with these cross-validated versions of
the online and offline data as follows:

estFold = predXY(newSignals = onlineFold[, 6:11],
newAngles = onlineFold[, 4],
offlineFold, numAngles = 3, k = 3)

Then we find the error in our estimates with

actualFold = onlineFold[, c("posX", "posY")]
calcError(estFold, actualFold)

[1] 186

Predicting Location via Indoor Positioning Systems 39

For each fold, we want to find the k-NN estimates for k = 1, 2, . . . ,K, for some suitably
largeK. And, we want to aggregate the errors over the v folds. We begin simply by wrapping
our code from above in loops over the folds and the number of neighbors. We do this as
follows, for K = 20:

K = 20
err = rep(0, K)

for (j in 1:v) {
onlineFold = subset(onlineCVSummary,

posXY %in% permuteLocs[, j])
offlineFold = subset(offlineSummary,

posXY %in% permuteLocs[, -j])
actualFold = onlineFold[, c("posX", "posY")]

for (k in 1:K) {
estFold = predXY(newSignals = onlineFold[, 6:11],

newAngles = onlineFold[, 4],
offlineFold, numAngles = 3, k = k)

err[k] = err[k] + calcError(estFold, actualFold)
}

}

Figure 1.13 shows the sum of squared errors as a function of k. We see that the errors
decrease quite a lot at first, e.g., for k = 1, 2, and 3; then the errors level out around values
of k = 5, 6, and 7; and after that, the errors begin to increase slowly because the neighbors
become too spread out geographically.

We use the value of 5 for the nearest neighbors that we obtained from cross-validation,
and we apply it to our original training and test data, i.e.,

estXYk5 = predXY(newSignals = onlineSummary[, 6:11],
newAngles = onlineSummary[, 4],
offlineSummary, numAngles = 3, k = 5)

Then we tally the errors in our predictions with

calcError(estXYk5, actualXY)

[1] 276

The earlier values for k = 1 and k = 3 were 659 and 307, respectively. The choice of k = 5
may not be the minimizing value for our online data because this value was chosen without
reference to the online data. This is the reason we use cross-validation, i.e., we do not use
the online data in both the selection of k and the assessment of the predictions.

The code to cross-validate k can take a long time to run. We probably want to examine
this code to find ways to speed it up. For example, consider the function predXY(), which
we reproduce below:

predXY = function(newSignals, newAngles, trainData,
numAngles = 1, k = 3){

closeXY = list(length = nrow(newSignals))

40 Case Studies in Data Science in R

5 10 15 20

12
00

14
00

16
00

18
00

20
00

Number of Neighbors

S
um

 o
f S

qu
ar

e
E

rr
or

s

1268

Figure 1.13: Cross Validated Selection of k. This line plot shows the sum of square errors as
a function of the number of neighbors used in predicting the location of a new observation.
The sums of squared errors are obtained via cross-validation of the offline data.

for (i in 1:nrow(newSignals)) {
trainSS = selectTrain(newAngles[i], trainData, m = numAngles)
closeXY[[i]] = findNN(newSignal = as.numeric(newSignals[i,]),

trainSS)
}

estXY = lapply(closeXY, function(x)
sapply(x[, 2:3],

function(x) mean(x[1:k])))
estXY = do.call("rbind", estXY)
return(estXY)

}

Recall that findNN() returns all of the positions for the training data, ordered according
to their distance from the new observation’s signal strengths. We use the first k positions,
but since we have all of the locations we can calculate the estimates for all values of k in
which we are interested. The cumsum() function is very helpful here, i.e., cumsum(x[1¬
:K])/(1:K) provides K means. If we modify predXY() to return all K estimates, then we
can eliminate the inner loop over k. This should speed up our code considerably. We leave
this to pursue as an exercise.

Finally, we have used the method of cross-validation to select the number of neighbors,
but we have another parameter that we have not investigated: the number of angles to
include in the training data. This parameter can be selected via cross-validation as well.
In fact, the two can be selected jointly via cross-validation. We leave this problem as an
exercise for further investigation.

Predicting Location via Indoor Positioning Systems 41

1.6 Exercises
Q.1 Write the code to read the raw training data into the data structure in the first

approach described in Section 1.2. That is, the data structure is a data frame with a
column for each MAC address that detected a signal. For the column name, use the last
two characters of the MAC address, or some other unique identifier.

Q.2 Compare the size of two data structures: the data frame created in Section 1.2 and
the data frame created in the previous problem. Which uses less memory? What is
the dimension of each? How might this change with different numbers of devices in
the building? different number of signals from the less commonly detected devices? Use
object.size() and dim() to address these questions.

Q.3 Compare the total time it takes to read the raw data and create the data frame,
for the two approaches described in Section 1.2. Do this for different size subsets of
the data (chosen at random) and draw a curve of time against input size for each of
the approaches. Also, comment on the memory and speed for the two approaches. Use
system.time() and Rprof() to make these comparisons.

Q.4 Examine the time variable in the offline data. Any change over time in the charac-
teristics of the signal caused by, e.g., reduced battery power in the measuring device as
time goes by, or measurements taken on different days may be made by different people
with different levels of accuracy. Also, examination of time can give insight into how the
experiment was carried out. Were the positions close to each other measured at similar
times? Do you see any change in the signal strength variability or mean over time? Try
controlling for other variables that might affect this relationship.

Q.5 Write the readData() function described in Section 1.3.4. The arguments to this func-
tion are the file name, filename and the MAC addresses to retain, subMacs. Determine
whether these parameters should have default values or not. The return value is the data
frame described in Section 1.3. Use the findGlobals() function available in codetools
to check that the function is not relying on any global variables.

Q.6 In Section 1.4.1 we calculated measures of center and location for the signal strengths
at each location × angle × access point combination. (See for example Figure 1.9.)
Another possible summary statistic we can calculate is the Kolmogorov-Smirnov test-
statistic for normality. If the signal strengths are roughly normal, then we expect the
p-values to have a uniform distribution. This leads to about 5% of the p-values for the
8000 tests to fall below 0.05.

Q.7 Write the surfaceSS() function that creates plots such as those in Figure 1.10. This
function takes 3 arguments: data for the offline summary data frame, mac, and angle.
The parameters mac and angle are used to specify which MAC address and angle are
to be selected from the data for smoothing and plotting.

Q.8 Consider the scatter plots in Figure 1.11. There appears to be curvature in the signal
strength–distance relationship. Does a log transformation improve this relationship, i.e.,
make it linear? Note that the signals are negative values so we need to be careful if we
want to take the log of signal strength.

Q.9 The floor plan for the building (see Figure 1.1) shows 6 access points. However, the
data contain 7 access points with roughly the expected number of signals (166 location

42 Case Studies in Data Science in R

× 8 orientations × 110 replications = 146,080 measurements). With the signal strength
seen in the heat maps of Figure 1.10), we matched the access points to the corresponding
MAC address. However, two of the MAC addresses seem to be for the same access point.
In Section 1.3.2 we decided to keep the measurements from the MAC address 00:0f¬
:a3:39:e1:c0 and to eliminate the 00:0f:a3:39:dd:cd address. Conduct a more
thorough data analysis into these two MAC addresses. Did we make the correct decision?
Does swapping out the one we kept for the one we discarded improve the prediction?

Q.10 Write the selectTrain() function described in Section 1.5.2. This function has 3 pa-
rameters: angleNewObs, the angle of the new observation; signals, the training data, i.e.,
data in the format of offlineSummary; and m, the number of angles to include from
signals. The function returns a data frame that matches trainSS, i.e., selectTrain()
calls reshapeSS() (see Section 1.5.2 for this function definition).

Q.11 We use Euclidean distance to find the distance between the signal strength vectors.
However, Euclidean distance is not robust in that it is sensitive to outliers. Consider
other metrics such as the L1 distance, i.e., the absolute value of the difference. Modify
the findNN() function in Section 1.5.3 to use this alternative distance. Does it improve
the predictions?

Q.12 To predict location, we use the k nearest neighbors to a set of signal strengths. We
average the known (x, y) values for these neighbors. However, a better predictor might
be a weighted average, where the weights are inversely proportional to the “distance”
(in signal strength) from the test observation. This allows us to include the k points
that are close, but to differentiate between them by how close they actually are. The
weights might be

1/di∑k
i=1 1/di

for the i-th closest neighboring observation where di is the distance from our new test
point to this reference point (in signal strength space). Implement this alternative pre-
diction method. Does this improve the predictions? Use calcError() to compare this
approach to the simple average.

Q.13 In Section 1.5.4 we used cross-validation to choose k, the number of neighbors. An-
other parameter to choose is the number of angles at which the signal strength was
measured. Use cross-validation to select this value. You might also consider selecting
the pair of parameter, i.e., k and the number of angles, simultaneously.

Q.14 The researchers who collected these data implemented a Bayesian approach to pre-
dicting location from signal strength. Their work is described in a paper that is avail-
able from http://www.informatik.uni-mannheim.de/pi4/publications/
King2006g.pdf. Consider implementing this approach to building a statistical IPS.

Q.15 Other statistical techniques have been developed to predict indoor positions from
wireless local area networks. These include [3, 4, 11]. Consider employing one of their
approaches to building and testing a statistical IPS with the CRAWDAD data.

http://www.informatik.uni-mannheim.de/pi4/publications/King2006g.pdf
http://www.informatik.uni-mannheim.de/pi4/publications/King2006g.pdf

Predicting Location via Indoor Positioning Systems 43

Bibliography
[1] Daniel Faria. Modeling Signal Attenuation in IEEE 802.11 Wireless LANs - Vol. 1.

Technical Report TR-KP06-0118, Kiwi Project, Stanford University, 2005.

[2] Thomas King, Stephan Kopf, Thomas Haenselmann, Christian Lubberger, and Wolf-
gang Effelsberg. CRAWDAD data set mannheim/compass: v. 2008-04-11. http:
//crawdad.org/mannheim/compass/, 2008.

[3] P. Krishnan, A.S. Krishnakumar, W.H. Ju, C. Mallows, and S. Gani. A system for lease:
Location estimation assisted by stationery emitters for indoor rf wireless networks. In
Proceedings IEEE INFOCOM 2004, the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies, Hong-Kong, China, March 7–11., 2004.

[4] D. Madigan, W.H. Ju, P. Krishnan, A. Krishnakumar, and I. Zorych. Location es-
timation in wireless networks: A Bayesian approach. Statistica Sinica, 16:495–522,
2006.

[5] Bradley Mitchell. The MAC Address: An Introduction to MAC Address-
ing. http://compnetworking.about.com/od/networkprotocolsip/l/
aa062202a.htm, 2011.

[6] Doug Nychka, Reinhard Furrer, and Stephan Sain. fields: Tools for spatial data.
http://cran.r-project.org/web/packages/fields, 2014. R package ver-
sion 7.1.

[7] Theodore Rappaport. Wireless Communications: Principles and Practices. Prentice
Hall, New York, 1996.

[8] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[9] Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. Springer-
Verlag, New York, 2008. http://lmdvr.r-forge.r-project.org/figures/
figures.html.

[10] Luke Tierney. codetools: Code Analysis Tools for R. http://cran.r-project.
org/web/packages/codetools, 2014. R package version 0.2-9.

[11] M. Youssef and A. Agrawala. On the optimality of WLAN location determination sys-
tems. In Proceedings of the Communication Networks and Distributed Systems Modeling
and Simulation Conference., 2004.

http://crawdad.org/mannheim/compass/
http://crawdad.org/mannheim/compass/
http://compnetworking.about.com/od/networkprotocolsip/l/aa062202a.htm
http://compnetworking.about.com/od/networkprotocolsip/l/aa062202a.htm
http://cran.r-project.org/web/packages/fields
http://www.r-project.org
http://lmdvr.r-forge.r-project.org/figures/figures.html
http://lmdvr.r-forge.r-project.org/figures/figures.html
http://cran.r-project.org/web/packages/codetools
http://cran.r-project.org/web/packages/codetools

This page intentionally left blankThis page intentionally left blank

2
Modeling Runners’ Times in the Cherry Blossom Race

Daniel Kaplan
Macalester College

Deborah Nolan
University of California, Berkeley

CONTENTS
2.1 Introduction . 45

2.1.1 Computational Topics . 47
2.2 Reading Tables of Race Results into R . 47
2.3 Data Cleaning and Reformatting Variables . 55
2.4 Exploring the Run Time for All Male Runners . 63

2.4.1 Making Plots with Many Observations . 63
2.4.2 Fitting Models to Average Performance . 67
2.4.3 Cross-Sectional Data and Covariates . 74

2.5 Constructing a Record for an Individual Runner across Years 79
2.6 Modeling the Change in Running Time for Individuals . 88
2.7 Scraping Race Results from the Web . 93
2.8 Exercises . 100

Bibliography . 102

2.1 Introduction
In this era of ‘free and ubiquitous data,’ there is tremendous potential in seeking out data to
bring insight to a problem we are working on professionally or to a topic of personal interest.
For example, we are interested in understanding how people’s physical performance changes
as they age. One source of data about this comes from road races. Hundreds of thousands of
people participate in road races each year; the race organizers collect information about the
runners’ times and often publish individual-level data on the Web. These freely accessible
data may provide us with insights to our question about performance and age.

One example of the many annual road races is the Cherry Blossom Ten Mile Run
held in Washington D.C. in early April when the cherry trees are typically in bloom.
The Cherry Blossom started in 1973 as a training run for elite runners who were plan-
ning to compete in the Boston Marathon. It has since grown in popularity and in 2012
nearly 17,000 runners ranging in age from 9 to 89 participated. The race has become so
popular that entrants are chosen via a lottery or they guarantee a spot by raising $500
for an official race charity. After each year’s race, the organizers publish the results at
http://www.cherryblossom.org/ (see Figure 2.1). These data offer a tremendous
resource for learning about the relationship between age and performance.

45

http://www.cherryblossom.org/

46 Case Studies in Data Science in R

Figure 2.1: Screen Shot of Cherry Blossom Run Web site. This page contains links to each
year’s race results. The year 1999 is the earliest for which they provide data. Men’s and
women’s results are listed separately.

The publicly available race results from the Cherry Blossom Ten Mile Run can be scraped
from the Web and read into R [3] for analysis. The currently published results include all
years from 1999 to 2012. The task of scraping the Web site and formatting the results in a
way that can be analyzed in R is a bit challenging because the information reported and
the format of this information changes from year to year. Some simple differences in format
occur in the format of the table header and the use of footnotes. The tables also include
many mistakes, e.g., values that begin in the wrong column, missing headers, and so on. All
in all, the acquisition of the data is quite straightforward, but it is an iterative process as
we uncover several small errors. We do this statistically, i.e., we examine summary statistics
and plots of the data we have read into R, find anomalies, such as all the runners in 2003
being under 9, cross check sample observations with the original tables, modify our code
to handle these problem cases in a way that is as general as possible, recreate our data,
and repeat. This is the story of “messy” data. It is the focus of Section 2.2 and Section 2.3
of this chapter. Additionally, Section 2.7 covers the topic of scraping the Web for the race
results, for those who are interested in the entire process of data acquisition.

After the data have been successfully read into R and cleaned, we study the relationship
between run time and age in Section 2.4. Given the popularity of the race, simple tasks such
as visualizing the data present challenges, and we consider how to display tens of thousands
of observations in an informative manner.

For any one year of race results, we have a cross-sectional view of the performance-
age relationship. That is, we are looking at different groups of people of various ages and
their run times; we are not viewing an individual’s race performance as he or she gets
older. However, we do have race results for 14 years and many runners have participated in
multiple races. If we can associate run times over years with an individual runner, we can
examine how performance changes for an individual as he or she ages. The data include the

Modeling Runners’ Times in the Cherry Blossom Race 47

runner’s name, age, and hometown, so we consider how we might use this information to
construct longitudinal views of run times for individuals. This is the subject of Section 2.5.

If we study those runners who have competed in multiple years, then we have a longitu-
dinal view of performance. However, we have results for a runner for at most 14 years, so we
are unable to view performance for an individual over the full range of participant ages from
18 to 89. Can we piece together these longitudinal data to get estimates for performance as
a function of age? We explore approaches for this in Section 2.6.

2.1.1 Computational Topics
• Use regular expressions to extract and clean messy data from pre-formatted text tables

and to create unique identifiers for matching records that belong to the same individual.

• Employ statistical techniques to identify bad data and to confirm these problems have
been corrected.

• Visualize data that have a large number of observations (~150,000 records).

• Gain experience with the R formula language for plots and modeling.

• Fit piecewise linear models using least squares and non-parametric curves using local
averaging.

• Compare data structures, e.g., a data frame and a list of data frames, for holding and
working with longitudinal data. This includes the application of ‘apply’ functions such
as tapply(), mapply(), sapply(), and lapply().

• Develop strategies for debugging code with recover() for browsing active function calls
after an error.

• Scrape simple Web pages for text content.

2.2 Reading Tables of Race Results into R
Our goal in this section is to transform the raw text tables of race results into data that
can be analyzed in R. These tables have been downloaded from the Web and stored in
files, named 1999.txt, ..., 2012.txt in a directory called MenTxt for men and WomenTxt for
women. The task of downloading the Web pages and extracting the tables is addressed in
Section 2.7. If you want to start this project from the “beginning,” then skip ahead to that
section and return after you have obtained the text files from the Internet.

Let’s examine these text tables to get a sense of their format. After that we should have
a few ideas about how we might extract information contained in these tables into variables
for statistical analysis. Figure 2.2 and Figure 2.3 provide screenshots of two tables as they
appear on the Web. By inspection, we see that a call to read.table() will not properly read
the text into a data frame because the information, e.g., place and division, are separated by
blanks but blanks also appear in the data values, i.e., blanks also occur where they are not
being used as variable separators. For example, for the runner’s hometown, we see values
of Kenya, Tucson AZ, and Blowing Rock NC. The blanks between the different parts
of hometown will confuse read.table(). We confirm this when we try to use read.table() to
input the data:

48 Case Studies in Data Science in R

m2012 = read.table(file="MenTxt/2012.txt", skip = 8)

Error in scan(file, what, nmax, sep, dec, quote,
skip, nlines, na.strings) : line 1 did not have 12 elements

Note that we skipped the first 8 lines of the file because we observed in Figure 2.2 that
these belong to the header of the file.

We need a customized approach to reach this ‘table.’ From the figures, it appears that
the variables are formatted to occupy particular positions in each line of text. That is, the
runner’s finishing place occupies the first 5 characters, then comes a blank character, the
runner’s place in his or her division appears in the next 11 spaces, and so on. While the
first 2 columns of the 2011 and 2012 male results line up, we see that the columns are
not identical across these tables. Given the changes in formats from year to year, we can
extract the values from the tables either by programmatically interpreting the format or
by using year-dependent fixed-width formats. We take the first approach here and figure
out which column is which by programmatically inspecting the table header. We leave the
second approach as an exercise. There you examine all 28 tables, determine the start and
end position of each column of interest, and use read.fwf() to input the data into R.

Figure 2.2: Screen Shot of the 2012 Male Results. This screenshot shows the results, in race
order, for men competing in the 2012 Cherry Blossom 10 Mile Run. Notice that both 5-mile
times and net times are provided. We know that the Time column is net time because it is
so indicated in the header of the table.

Rather than view the Web pages to determine the file format, we can get a better sense
of the format if we examine the raw text itself. We use readLines() to read the contents of
the file into R, where the return value is a character vector with one string per line of text
read. We start by reading the 2012 men’s file with

els = readLines("MenTxt/2012.txt")

The first 10 rows of the 2012 Men’s table are

els[1:10]

Modeling Runners’ Times in the Cherry Blossom Race 49

Figure 2.3: Screen Shot of Men’s 2011 Race Results. This screenshot shows the results, in
race order, for men competing in the 2011 Cherry Blossom road race. Notice that in 2011,
3 times are recorded – the time to complete the first 5 miles and the gun and net times for
the full run. In contrast, the results from 2012 do not provide gun time.

[1] ""
[2] " Credit Union Cherry Blossom Ten Mile Run"
[3] " Washington, DC Sunday, April 1, 2012"
[4] ""
[5] " Official Male Results (Sorted By Net Time)"
[6] ""
[7] "Place Div /Tot Num Name ... Time Pace "
[8] "===== =========== ====== =========... ======= ===== "
[9] " 1 1/347 9 Allan Kip... 45:15 4:32 "
[10] " 2 2/347 11 Lani Kipl... 46:28 4:39 "

We also read in and display the first 10 rows of the 2011 male results so we have another
table to compare with the 2012 table. We find the following:

els2011 = readLines("MenTxt/2011.txt")
els2011[1:10]

[1] ""
[2] " Credit Union Cherry Blossom Ten Mile Run"
[3] " Washington, DC Sunday, April 3, 2011"
[4] ""
[5] " Official Male Results"
[6] ""
[7] "Place Div /Tot Num Name ... Gun Tim Net Tim Pace "
[8] "===== =========== ====== ======... ======= ======= ===== "
[9] " 1 1/401 3 Lelisa... 45:36 45:36 4:34 "
[10] " 2 2/401 13 Allan ... 45:41 45:41 4:35 "

50 Case Studies in Data Science in R

What do we find with this simple inspection?

• Both of the tables have a header.

• The last line of the header is a row of ‘=’ characters, i.e., a separation line.

• There are blanks inserted in the row of ‘=’ characters that mark the start and end of a
column of information, e.g., the Pace column occupies 5 spaces.

• The row above the ‘=’ characters gives column names.

• There are two times reported in 2011 (called Gun Tim and Net Tim) and only one
time reported in 2012 (Time). The header of the 2012 file tells us that Time is net time.

If we examine a few more years of race results, we find other differences between how the
data are organized. Some years have column names that are all capitalized; do not include
the time at 5 miles; contain a rightmost column that holds some sort of annotation, e.g., #;
have headers consisting of 3 lines instead of 8, etc.

Let’s use the 2012 men’s results as our test case for developing the code to read in all
the files. However, we will try to write the code in a general way so that it can potentially
be used for all 28 files. Our first step is to find the row with the equal signs. The rows below
it contain the data, the row above it holds the column headers, and the row itself supplies
the spacings for the columns. We saw earlier that the ‘=’ characters are in the eighth row
of the 2012 table. Since the organization of the tables differs a bit from year to year, we use
a programmatic search for the equal signs. We use grep() to search through the character
strings in els for one that begins with, say, 3 equal signs as follows:

eqIndex = grep("^===", els)
eqIndex

[1] 8

Note that an alternative to regular expressions and the grep() function is to use substr() to
extract the first 3 characters from each row and compare them to the string "===". That
is,

first3 = substr(els, 1, 3)
which(first3 == "===")

[1] 8

The choice of 3 ‘=’ characters is somewhat arbitrary. We could have used just one as the
equal sign does not appear elsewhere in the document.

Now that we have located this key row in the table, we extract it and the row above it
and discard earlier rows with

spacerRow = els[eqIndex]
headerRow = els[eqIndex - 1]
body = els[-(1:eqIndex)]

Our next task is to extract the various pieces of information from each string in body,
i.e., the content of the table. How might we extract the runner’s age? From inspection, a
runner’s age appears in the column labeled Ag or AG so we first convert the column names
to lower case so we need not search separately for Ag and AG. We use tolower() to do this
with

Modeling Runners’ Times in the Cherry Blossom Race 51

headerRow = tolower(headerRow)

We can search through headerRow for this two letter sequence as follows:

ageStart = regexpr("ag", headerRow)
ageStart

[1] 49
attr(,"match.length")
[1] 2
attr(,"useBytes")
[1] TRUE

The return value from regexpr() tells us a match was found in position 49 of the character
string. If no match is found, then regexpr() returns -1. Now we have the information about
the location of runner’s age: it begins in position 49 and ends at the 50th position in each
row of the table. We use this information to extract each runner’s age using substr() as
follows:

age = substr(body, start = ageStart, stop = ageStart + 1)
head(age)

[1] "22" "23" "36" "27" "24" "31"

summary(as.numeric(age))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
9.00 29.00 35.00 37.75 45.00 89.00 1

It appears that we have located the runner’s age correctly. The youngest male runner in
2012 was 9 and the oldest 89, and there was one runner who did not have an age reported.

We can extract all of our variables in this manner, but the width of a column might
change from one year to the next so we generalize our code to search the row of equal signs
for blank spaces and use the position of these to determine the locations of the columns.
This approach is better than searching for variable names to find the starting position of
the column of values. We find the locations of all of the blanks in the line of ‘=’ characters
with

blankLocs = gregexpr(" ", spacerRow)
blankLocs

[[1]]
[1] 6 18 25 48 51 72 80 88 94
attr(,"match.length")
[1] 1 1 1 1 1 1 1 1 1
attr(,"useBytes")
[1] TRUE

Here the g in gregexpr() stands for “global,” which means that the function searches for
multiple matches in the string, not just the first match. Blank spaces are found at the 6th,
18th, 25th, 48th, 51st, etc. positions.

In general, we want to write our code so that it does not depend on a variable name
starting or ending in a particular column. We can extract all the columns of values using
blankLocs to determine the start and end positions of the columns. The starting position
of a column is one character past a blank and the ending position is one character before a
blank. In order to properly handle the first column, we can augment blankLocs with 0 so
the first column starts one character after 0, i.e.,

52 Case Studies in Data Science in R

searchLocs = c(0, blankLocs[[1]])

We can extract all the columns using substr() with

Values = mapply(substr, list(body),
start = searchLocs[-length(searchLocs)] + 1,
stop = searchLocs[-1] - 1)

We encapsulate the task of finding the starting and ending positions of the columns
into a function, which we call findColLocs(). In the function, we safeguard against the last
character in the row of ‘=’ characters not being a blank, we add an additional element to
the end of the vector of locations that is one character more than the length of the string.
Our function appears as:

findColLocs = function(spacerRow) {

spaceLocs = gregexpr(" ", spacerRow)[[1]]
rowLength = nchar(spacerRow)

if (substring(spacerRow, rowLength, rowLength) != " ")
return(c(0, spaceLocs, rowLength + 1))

else return(c(0, spaceLocs))
}

We can extract all 10 columns of data from the 2012 file, but do we want to keep all of
these variables? Do we want to keep the union of all variables across the 14 years? Or, use
only a subset? For now, we extract name, age, hometown, and all 3 times, i.e., gun time, net
time, and time, and ignore the rest, e.g., place, div, and the 5-mile run time. We encapsulate
into a function the code to extract the locations of the desired columns. We need, as inputs
to this function, the names of the desired columns, the header row that contains the column
names, and the locations of the blanks in the separator row. Our function follows:

selectCols =
function(colNames, headerRow, searchLocs)
{

sapply(colNames,
function(name, headerRow, searchLocs)
{

startPos = regexpr(name, headerRow)[[1]]
if (startPos == -1)

return(c(NA, NA))

index = sum(startPos >= searchLocs)
c(searchLocs[index] + 1, searchLocs[index + 1] - 1)

},
headerRow = headerRow, searchLocs = searchLocs)

}

Notice that the function is simply a wrapper to a call to sapply(). However, this encapsu-
lation makes it easy for us to test our code on individual column names and to extract a
subset of columns. For example, we can find the age variable with

Modeling Runners’ Times in the Cherry Blossom Race 53

searchLocs = findColLocs(spacerRow)
ageLoc = selectCols("ag", headerRow, searchLocs)
ages = mapply(substr, list(body),

start = ageLoc[1,], stop = ageLoc[2,])

summary(as.numeric(ages))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
9.00 29.00 35.00 37.75 45.00 89.00 1

Our more general extraction matches the earlier one.
Another advantage to creating selectCols() and findColLocs() is that these functions

make our code modular so our code is easier to follow and to modify in the context of the
larger data extraction and cleaning process.

Since the column names vary somewhat from year to year, we use only the first few
characters that uniquely identify the desired columns, e.g.,

shortColNames = c("name", "home", "ag", "gun", "net", "time")

Also, if a file does not have one of the desired variables, then we want the values for that
variable to be NA. We can anticipate this situation because we have seen that the 2011 file
has gun time and net time, but not time, and the 2012 file has a column labeled time, but
no gun or net times.

locCols = selectCols(shortColNames, headerRow, searchLocs)

Values = mapply(substr, list(body), start = locCols[1,],
stop = locCols[2,])

Let’s examine the return value. First we check the type of the return value with

class(Values)

[1] "matrix"

The results form a matrix of character strings. (We have not yet converted any values such
as age to numeric.) We see that the first few rows of the matrix are

colnames(Values) = shortColNames
head(Values)

name home ag gun net time
[1,] "Allan Kiprono " "Kenya " "22" NA NA " 45:15"
[2,] "Lani Kiplagat " "Kenya " "23" NA NA " 46:28"
[3,] "John Korir " "Kenya " "36" NA NA " 47:33"
[4,] "Ian Burrell " "Tucson AZ " "27" NA NA " 47:34"
[5,] "Jesse Cherry " "Blowing Rock NC " "24" NA NA " 47:40"
[6,] "Ketema Nugusse " "Ethiopia " "31" NA NA " 47:50"

The 2012 table has a column for time and not gun and net times so the gun and net values
are NA. We also check the last few lines with

tail(Values)[, 1:3]

54 Case Studies in Data Science in R

name home ag
[7188,] "Dana Brown " "Randallstown MD " "41"
[7189,] "Jurek Grabowski " "Fairfax VA " "39"
[7190,] "Larry Hume " "Arlington VA " "56"
[7191,] "Sean-Patrick Alexander" "Alexandria VA " "35"
[7192,] "Joseph White " "Forestville MD " " "
[7193,] "Lee Jordan " "Herndon VA " "48"

Here we see the one runner who did not report an age. It appears that we have successfully
captured the information from the table in MenTxt/2012.txt.

We wrap up the process of extracting the columns into a function so we can apply it to
each year’s data. This function calls our helper functions findColLocs() and selectCols().
Our function might look like

extractVariables =
function(file, varNames =c("name", "home", "ag", "gun",

"net", "time"))
{

Find the index of the row with =s
eqIndex = grep("^===", file)

Extract the two key rows and the data
spacerRow = file[eqIndex]
headerRow = tolower(file[eqIndex - 1])
body = file[-(1 : eqIndex)]

Obtain the starting and ending positions of variables
searchLocs = findColLocs(spacerRow)
locCols = selectCols(varNames, headerRow, searchLocs)

Values = mapply(substr, list(body), start = locCols[1,],
stop = locCols[2,])

colnames(Values) = varNames

invisible(Values)
}

We are ready to create the data frames for each year, but the extractVariables() function
expects the file passed to it for the extraction to be a character vector. We first must read
the lines of the tables into R. We do this with:

mfilenames = paste("MenTxt/", 1999:2012, ".txt", sep = "")
menFiles = lapply(mfilenames, readLines)
names(menFiles) = 1999:2012

Similarly, we can read the women’s results into womenFiles. These two objects, menFiles
and womenFiles, are lists where each list contains 14 character vectors, one for each year.
Each of these character vectors contains one string for every row in the corresponding file.

We can now apply the extractVariables() function to menFiles and womenFiles to obtain
a list of character matrices. We do this for the men’s list with

menResMat = lapply(menFiles, extractVariables)
length(menResMat)

Modeling Runners’ Times in the Cherry Blossom Race 55

[1] 14

sapply(menResMat, nrow)

1999 2000 2001 2002 2003 2004 2005 2006 2007
3190 3017 3622 3724 3948 4156 4327 5237 5276
2008 2009 2010 2011 2012
5905 6651 6911 7011 7193

We see that we get reasonable values for the number of rows in our matrices. Our next task
is then to convert these character matrices into a format that we can readily analyze. As
we do this, we use statistics to check the results and find that additional data cleaning is
necessary. This is the topic of the next section.

2.3 Data Cleaning and Reformatting Variables
In this section, we consider how to convert the list of character matrices, menResMat, into
an appropriate format for analysis. Currently, the data values are all character, which is not
conducive to, e.g., finding the median age of the runners. However, we can easily reformat
age into numeric values with the as.numeric() function. Do we want to turn the entire matrix
into a numeric matrix? Not really. It doesn’t make sense to try to convert the runner’s name
into a numeric value. For this reason, we want to create a data frame because it allows our
variables to be different types. We have 6 variables: the runner’s name, home town, age, and
3 versions of time. As just mentioned, we want to convert age to a numeric and leave name
as character. What about the other variables? We probably want to also keep hometown as
character.

Time is stored as a string in the format: hh:mm:ss. We want time in a numeric format
so it can be more easily summarized and modeled. One possibility is to convert it to minutes,
i.e., hh * 60 + mm + ss/60. To carry out this computation, we must split the time field
up into its constituent pieces and convert each to numeric values. The strsplit() function
can be very helpful for splitting strings at, e.g., colons. We also need to reconcile the 3
different recorded times (gun, net, and plain time). Net time is considered more accurate
than gun time so we can simply use net time when available and otherwise use gun time or
time, whichever is reported. Of course, we can keep all 3 versions of time around and let
the analyst explore relationships between them and decide which to use, but we keep things
simple for now and just report one time for each runner.

Before we begin converting our character strings into numeric values, we also consider
whether there are any new variables we might want to create. If we are to combine all the
data from the 14 years of records into one data frame, then we should keep track of the
year. Likewise, if we are to combine the men’s and women’s results then we also want a
variable that indicates the sex of the runner. These can be simply made using rep().

We begin with the task of creating the numeric variable age with as.numeric(), e.g., for
the 2012 males,

age = as.numeric(menResMat[[’2012’]][, ’ag’])

Note that we subsetted the list to work with the 2012 matrix and then subsetted this matrix
to work with the column named ‘ag’. We check a few age values with

56 Case Studies in Data Science in R

tail(age)

[1] 41 39 56 35 NA 48

These values look reasonable, but let’s check more thoroughly that our data extraction
works as expected by summarizing each year’s ages with

age = sapply(menResMat,
function(x) as.numeric(x[, ’ag’]))

Warning messages:
1: In FUN(X[[14L]], ...) : NAs introduced by coercion
2: In FUN(X[[14L]], ...) : NAs introduced by coercion
3: In FUN(X[[14L]], ...) : NAs introduced by coercion

We received a warning message that our conversion of the character values for age into nu-
meric resulted in NA values, meaning that some of the values do not correspond to numbers.
We want to look into the specific cause of these messages, but first we examine age.

We create side-by-side boxplots of the yearly distribution of the age of the runners to
give a quick check on the reasonableness of the values.

boxplot(age, ylab = "Age", xlab = "Year")

Figure 2.4 reveals problems with 2 years. All of the runners in 2003 were under 10 and more
than 1 in 4 runners in 2006 were under 10! Clearly something has gone wrong.

●●
●●
●●
●

●
●

●
●●
●
●

●

●

●
●

●
●

●

●

●●

●
●
●

●
●

●

●

●

●
●

●

●
●
●●

●●●

●●

●●

●●●●

●●

●●●

●●

●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●●●●
●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●●●●● ●
●●●●●
●

●

●●●

●
●●●●

●
●●●
●●
●

●

●

● ●●●

●
●

●
●
●
●
●
●

●

●

●
●
●
●

●
●
●
●●●

●

●
●●●●

●●
●●●

●

●

●●●

●
●

●●
●

●
●

●
●●

●

●
●
●●●
●●

●

●
●

●

●

●●
●●●●

●

●
●●●
●

●

●

●●
●●
●

●

●●
●
●
●

●●

●
●●●●●●●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●
●
●
●

●

●
●
●

●

●

●

●
●

●

●
●●●
●

●

●

●●●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●
●
●

●
●●

●

●

●●●

●

●

●
●●
●
●

●
●

●
●

●●

●●
●

●

●
●●
●●
●

●●
●

●

●

●●

●

●

●●

●●
●

●

●
●

●
●●
●
●●

●

●●
●●●
●
●●

●

●

●
●
●

1999 2001 2003 2005 2007 2009 2011

0
20

40
60

80

Year

A
ge

Figure 2.4: Box Plot of Age by Year. These side-by-side boxplots of age for each race
year show a few problems with the data for 2003 and 2006. The runners in these years are
unusually young.

Let’s examine the original text for 2003 and 2006:

Modeling Runners’ Times in the Cherry Blossom Race 57

head(menFiles[[’2003’]])

[1] ""
[2] "Place Div /Tot Num Name Ag Homet..."
[3] "===== ========= ===== ===================...== == ======..."
[4] " 1 1/1999 6 John Korir 27 KEN ..."
[5] " 2 2/1999 1 Reuben Cheruiyot 28 KEN ..."
[6] " 3 3/1999 8 Gilbert Okari 24 KEN ..."

menFiles[[’2006’]][2200:2205]

[1] " 2192 1263/2892 1475 Matt Curtis 39 Vienna ..."
[2] " 2193 94/279 1437 Joe McCloskey 59 Columbia..."
[3] " 2194 257/590 7062 Donald Hofmann 48 Princeto..."
[4] " 2195 1264/2892 7049 Claudio Petruzziello 23 Princet..."
[5] " 2196 339/746 3319 Robert Morrison 40 South Bo..."
[6] " 2197 1265/2892 9345 Larry Cooper 32 Arlingt..."

We see that in 2003, the age values are shifted to the right one space in comparison to the
location of the ‘=’ characters. This means that we are picking up only the digit in the tens
place. In 2006, some but not all of the rows have values that are off by one character.

We can easily solve both of these problems by including the value in the “blank” space
between columns. We can do this by changing the index for the end of each variable when
we perform the extraction. That is, we modify the line in selectCols() that locates the end
of a column to include the blank position, i.e.,

c(searchLocs[index] + 1, searchLocs[index + 1])

When we use this revised calculation in selectCols(), we pick up the blank character after
each field. This should not matter when we convert our text data to numeric and if we
don’t want trailing blanks in our character-valued variables, we can easily remove them
with regular expressions.

In the process of confirming our conversion of age from character to numeric, we uncov-
ered problems with our extraction process. We need to modify our helper function select-
Cols() from Section 2.2 to address the problem. This process is iterative as we continue to
check that our data make sense. When we uncover nonsensical results, we investigate them
further, which possibly leads to retracing our steps to clean up messy data.

After we modify this one line of code in selectCols() and reapply this updated version
of the function to the tables of race results, we check again the summary statistics with
boxplots. We find that the problem with too many young runners has cleared up (see
Figure 2.5).

We now turn to the warning messages that occurred when we converted the charac-
ter strings for age to numeric values. We were given several messages ‘NAs introduced by
coercion’. We count the number of NA values in each year with

sapply(age, function(x) sum(is.na(x)))

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
1 1 61 3 2 0 13 2 5 0

2009 2010 2011 2012
2 6 0 1

58 Case Studies in Data Science in R

●●
●●
●●
●

●
●

●
●●
●
●

●

●

●
●

●
●

●

●

●●

●
●
●

●
●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●●
●
● ●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●●●●● ●●●

●

●●

●

●
●
●
●●
●●●●●●
●
●●

●

●
●●●●●
●

●

●●●

●
●●●●

●
●●●
●●
●

●

●

● ●●●

●
●

●
●
●
●
●
●

●

●

●
●
●
●

●
●
●
●●●

●

●
●●●●

●●
●●●

●

●

●●●

●
●

●●
●

●
●

●
●●

●

●
●
●●●
●●

●

●
●

●

●

●●
●●●●

●

●
●●●
●

●

●

●●
●●
●

●

●●
●
●
●

●●

●
●●●●●●●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●
●
●
●

●

●
●
●

●

●

●

●
●

●

●
●●●
●

●

●

●●●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●
●
●

●
●●

●

●

●●●

●

●

●
●●
●
●

●
●

●
●

●●

●●
●

●

●
●●
●●
●

●●
●

●

●

●●

●

●

●●

●●
●

●

●
●

●
●●
●
●●

●

●●
●●●
●
●●

●

●

●
●
●

1999 2001 2003 2005 2007 2009 2011

0
20

40
60

80

Year

A
ge

Figure 2.5: Box Plot of Age by Year. These side-by-side boxplots of age for each race
year show a reasonable age distribution. For example, the lower quartile for all years range
between 29 and 32. The problems identified earlier for 2003 and 2006 have been addressed.

In 2001, we have 61 NAs for age. We need to investigate. To make our work simpler, let’s
assign the 2001 ages to a vector called age2001. We do this with

age2001 = age[["2001"]]

Let’s examine the original rows in the file that correspond to an NA in age2001. Recall that
we dropped the header of the file before extracting the variables so we need to add an offset
to the location of the NAs in age2001 in order to pick out the correct rows in the original
table. We find the offset with

grep("^===", menFiles[[’2001’]])

[1] 5

We then find the lines in the original file that have the bad age values with

badAgeIndex = which(is.na(age2001)) + 5
menFiles[[’2001’]][badAgeIndex]

[1] " "
[2] " "
[3] " "
[4] ""
[5] " "
[6] ""
...
[60] ""
[61] "# Under USATF OPEN guideline..."

Modeling Runners’ Times in the Cherry Blossom Race 59

With one exception, all of these rows are blank/empty. The one exception is the row that
corresponds to the footnote that defines the meaning of the ‘#’ annotation. Where in the
table are these rows located?

badAgeIndex

[1] 1756 1757 1758 1759 1760 1761 1762 1763 1814 ...
[22] 1877 1878 1879 1930 1931 1932 1933 1934 1935 ...
[43] 2898 2899 2900 2901 2902 2903 2904 2955 2956 ...

These blank lines are scattered throughout the file. We can modify the extraction by check-
ing for blank rows and removing them. The regular expression,

blanks = grep("^[[:blank:]]*$", menFiles[[’2001’]])

locates all rows that are entirely blank. The first argument to grep uses several meta
characters to specify the pattern to search for. The ^ is an anchor for denoting the start of
the string, the $ anchors to the end of the string, the [[:blank:]] denotes the equivalence
class of space and tab characters, and the * indicates that the blank character can appear 0
or more times. All together the pattern ^[[:blank:]]*$ matches a string that contains
any number of blanks from start to end, i.e., only blank lines.

A simpler expression locates the footnote rows, i.e., rows that begin with # or *. We
leave as an exercise the task of modifying extractVariables() to remove these unwanted rows.
After adding this code to carry out the additional cleaning of the tables, the 61 NAs in 2001
are gone as well as many but not all of the other NAs in other the years.

Continued inspection of Figure 2.5 uncovers another problem – the minimum values for
age in 2001, 2002, and 2003 remain small, i.e., close to 0. That’s clearly not possible! Let’s
find which runners have an age under 5 and look at their records in the original table. For
2001, we have

which(age2001 < 5)

[1] 1377 3063 3112

menFiles[[’2001’]][which(age2001 < 5) + 5]

[1] " 1377 5629 Steve PINKOS 0 Wash..."
[2] " 3003 5033 Jeff LAKE 0 Clar..."
[3] " 3052 5637 Greg RHODE 0 Wash..."

Apparently there are runners with an age entered as 0! Since these are the actual values
in the table, we leave the decision as to what to do with these runners for later when we
analyze the data. At this point, it appears we have successfully taken care of the creation of
the age variable. However, we typically clean the variables simultaneously as an error in one
variable often leads to errors in others based on position. As we clean the other variables,
we may need to re-examine age to ensure that the values for age remain valid.

Next, we turn to the creation of the time variable. As mentioned at the beginning
of this section, the time appears as hh:mm:ss and we wish to convert it to minutes.
However, to carry out this computation, we must split the time field up into its constituent
pieces. Also, some runners completed the race in under one hour so their times appear in a
slightly different format, i.e., mm:ss, and we need to be able to handle both formats in our
processing. For simplicity, we again start with converting the time variable for one year, say
2012. We create a vector to develop our code as follows:

60 Case Studies in Data Science in R

charTime = menResMat[[’2012’]][, ’time’]
head(charTime, 5)

[1] " 45:15 " " 46:28 " " 47:33 " " 47:34 " " 47:40 "

tail(charTime, 5)

[1] "2:27:11 " "2:27:20 " "2:27:30 " "2:28:58 " "2:30:59 "

We split each character string up into its parts using strsplit() with

timePieces = strsplit(charTime, ":")

The : characters are discarded in the process, and the return value from strsplit() is a list
of character vectors. We have one vector for each input string, where the elements of the
vector contain the pieces of the string separated by each : character. We confirm that the
splitting worked properly by examining the first and last times, i.e.,

timePieces[[1]]

[1] " 45" "15 "

tail(timePieces, 1)

[[1]]
[1] "2" "30" "59 "

We convert these elements to numeric values and combine them into one value that reports
time in minutes with

timePieces = sapply(timePieces, as.numeric)

runTime = sapply(timePieces,
function(x) {

if (length(x) == 2) x[1] + x[2]/60
else 60*x[1] + x[2] + x[3]/60

})

We check our conversion with

summary(runTime)

Min. 1st Qu. Median Mean 3rd Qu. Max.
45.2 77.6 87.5 88.4 97.8 151.0

It appears that our time conversion works. We saw earlier that the fastest runner completed
the 2012 race in 45 minutes and 15 seconds, which is 45.25 minutes, and the slowest com-
pleted it in 2 hours 30 minutes and 59 seconds, which is nearly 151 minutes. We leave it as
an exercise to encapsulate this conversion into a function called convertTime().

Let’s wrap these conversions into a function to apply to the character matrices in
menResMat and return a data frame with variables for analysis. We call this function creat-
eDF(). In addition to the conversion of character strings to numeric, we also create two new
variables, year and sex. To do this, we must have input arguments to tell us which year we
are cleaning and whether the results are for men or women. Lastly, we also choose which
time variable to include in the data frame from among the 3 available, with a preference
for net time. The function appears as

Modeling Runners’ Times in the Cherry Blossom Race 61

createDF =
function(Res, year, sex)
{

Determine which time to use
useTime = if(!is.na(Res[1, ’net’]))

Res[, ’net’]
else if(!is.na(Res[1, ’gun’]))

Res[, ’gun’]
else

Res[, ’time’]

runTime = convertTime(useTime)

Results = data.frame(year = rep(year, nrow(Res)),
sex = rep(sex, nrow(Res)),
name = Res[, ’name’],
home = Res[, ’home’],
age = as.numeric(Res[, ’ag’]),
runTime = runTime,
stringsAsFactors = FALSE)

invisible(Results)
}

We apply our new function, createDF(), to all of the male results as follows:

menDF = mapply(createDF, menResMat, year = 1999:2012,
sex = rep("M", 14), SIMPLIFY = FALSE)

There were 50 or more warnings
(use warnings() to see the first 50)

We check the warnings we received with

warnings()[c(1:2, 49:50)]

Warning messages:
1: In lapply(X = X, FUN = FUN, ...) : NAs introduced by coercion
2: In lapply(X = X, FUN = FUN, ...) : NAs introduced by coercion
3: In lapply(X = X, FUN = FUN, ...) : NAs introduced by coercion
4: In lapply(X = X, FUN = FUN, ...) : NAs introduced by coercion

It is likely that the conversion problems are coming from the conversion of time from a
character string into minutes because we have already handled the conversion of age. We
can check the number of NA values for runTime with

sapply(menDF, function(x) sum(is.na(x$runTime)))

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0 0 0 0 0 0 0 5232 83 0 164

2010 2011 2012
68 0 0

62 Case Studies in Data Science in R

There are a large number of NAs in 2007, 2009, and 2010, and it appears that all of the run
time values for 2006 are NA.

Let’s begin by examining a few of the records in 2007, 2009, and 2010 that have an NA
in run time. We find that these are caused by runners who completed half the race but have
no final times and by runners who have a footnote after their time, e.g.,

" 1 1/54 13 Tadesse Tola 19
Ethiopia 46:01# 4:37 28:47 "

" 5273 309/309 16370 Stephen Peterson 57
Washington DC # 1:36:29 "

We can easily modify createDF() to eliminate the footnote symbols (# and *) from the times
and drop records of runners who do not complete the race. These revisions are

Remove # and * and blanks from time
useTime = gsub("[#*[:blank:]]", "", useTime)

Drop rows with no time
Res = Res[useTime != "",]
runTime = convertTime(useTime[useTime != ""])

After we apply this revised function to menResMat to create our data frame, all missing
values in time are gone, except for 2006.

sapply(menDF, function(x) sum(is.na(x$runTime)))

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0 0 0 0 0 0 0 5232 0 0 0

2010 2011 2012
0 0 0

Close inspection of the header for the 2006 file reveals the problem, but for brevity’s sake,
we leave that problem to the exercises as well.

At last, we combine the race results for all years and men into one data frame using the
do.call() function to call rbind() with the list of data frames as input. That is,

cbMen = do.call(rbind, menDF)
save(cbMen, file = "cbMen.rda")

The do.call() function is very convenient when we have the individual arguments to a
function as elements of a list. For example, the rbind() function’s first argument is . . . , i.e.,

args(rbind)
function (..., deparse.level = 1)

The . . . argument allows the caller to provide an arbitrary number of arguments that, in
the case of rbind(), are bound together into one object. We could call rbind() as follows:

rbind(menDF[[1]], menDF[[2]], menDF[[3]], menDF[[4]],
menDF[[5]], menDF[[6]], menDF[[7]], menDF[[8]],
menDF[[9]], menDF[[10]], menDF[[11]], menDF[[12]],
menDF[[13]], menDF[[14]])

Modeling Runners’ Times in the Cherry Blossom Race 63

That’s a lot of typing and it requires us to know that there are 14 data frames in menDF.
With do.call() we supply the inputs to rbind() as a list and do.call() puts together the
rbind() function call for us.

We check the dimension of our amalgamated data frame with

dim(cbMen)

[1] 70070 6

We also examine a summary of the variables in cbMen to check whether any problems arose,
e.g., with coercion, in the binding together of the data frames.

Over these 14 years, 70,070 male runners completed the Cherry Blossom race. In ad-
dition, more than 70,000 female runners completed the race. We leave it as an exercise to
handle the women’s race results. In the next section we take a closer look at the race results.

2.4 Exploring the Run Time for All Male Runners
Now that we have completed the extraction of our data from the tables published on the
Cherry Blossom Web site, we can begin to study the relationship between age and run
time. Typically, we first examine our data graphically in a scatter plot with run time on the
y-axis and age on the x-axis. We can make such a scatter plot for the male runners with
the following call to plot()

plot(runTime ~ age, data = cbMen, ylim = c(40, 180),
xlab = "Age (years)", ylab = "Run Time (minutes)")

Here we included ylim to screen out the runner with a run time of 1.5 minutes.
The first argument in this call to plot() is an R formula. The formula language is very

powerful as it can be used to succinctly express complex relationships and a variety of R
functions can interpret a formula and carry out an analysis appropriate for the data. In our
case, the formula is very simple, runTime ~ age, and it indicates that we are interested
in how runTime depends on, or varies with, age. The plot() function builds the visual model
based on the representation of the data. Since runTime and age are both numeric variables,
plot() makes a scatter plot with runTime on the y-axis and age on the x-axis. Later in this
section, we see other formulas containing more variables including categorical variables, and
we see formulas used with other functions such as lm() and loess().

The resulting plot appears in Figure 2.6. Most of the points appear as a black blob in
the scatter plot because so many points have been plotted on top of each other. The shape
of the distribution is obscured because we cannot see which regions of the (age, run time)
space are more densely populated. Notice also the vertical stripes in the plot. These are
the result of runner’s age being reported to the nearest year, which results in more over
plotting. In the next section, we consider a few alterations to this default scatter plot that
address the problem of over plotting.

2.4.1 Making Plots with Many Observations
There are several modifications we can make to the plot in Figure 2.6 to ameliorate the
effect of over plotting. We can reduce the size of the plotting symbol, use transparent colors
for the plotting symbol, and add a small amount of random noise to the age variable.

64 Case Studies in Data Science in R

●● ●●●●●
● ●●●● ● ●● ●● ●●● ●● ●●● ●● ● ●●● ●● ●●●● ●●● ●●● ●●● ●●●●● ●●● ●● ● ●●●●● ●●● ●● ●●● ● ● ●●●● ●● ●● ●● ●●●● ●●●●● ●●● ●●● ● ●● ●● ●● ●●● ●● ● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●● ● ●● ● ●●●●● ●●● ●●● ●● ●●● ●●● ●●● ● ●●● ●● ●●● ● ●●●● ●●● ●● ● ● ●●●●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●● ● ● ●● ●●●● ●● ●● ● ●●● ●● ● ● ●● ●● ●● ●●● ●● ● ●●● ● ●● ●●● ●●● ●●● ●● ●●● ●● ●●●● ● ●●● ● ●● ●●● ● ●● ● ●●●●● ●●● ●●● ●●●● ● ●●● ● ●●● ●● ● ●●●●● ●● ●● ●● ●●●●● ●● ●● ●● ● ●● ●● ●● ●●●● ●● ●●● ●● ●●●●●● ●● ● ●●● ●● ● ●● ●●● ●● ● ●● ●●●● ●●●● ● ●● ●● ●● ●● ●● ●●● ● ●● ●●●● ●● ●● ●● ●● ●●● ●●●● ● ●●●●● ●● ●●● ● ● ● ●●● ●● ● ●●● ● ●● ●● ●●● ●●●● ● ●●●●●● ● ● ●●● ●●● ● ● ●● ● ●● ●● ●● ● ●●● ●●●● ●●● ●●● ●● ●● ●●● ● ●●●● ●● ●●● ● ●● ● ●● ● ● ●● ● ●●●● ●● ● ●● ●● ●● ● ●● ● ●●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ● ●●●● ● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ● ●●●●● ●● ●●●● ●● ●● ●●● ●●● ●● ● ●●● ●●●● ●● ●● ●● ●● ● ●● ●● ●● ● ●●● ● ● ● ●●● ●●●● ● ●● ●● ● ●●● ● ●●● ● ●● ●●●● ●● ● ●● ●●● ●● ● ● ●● ●●●● ● ●● ●●● ● ●● ●● ●● ●●●● ●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ● ●● ●● ●● ● ●●●● ●● ● ● ● ● ●●● ●●●● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ●●●●● ●●● ●●● ●●●● ●●●● ●●●● ●● ●●●●● ●● ● ● ●●●● ● ●● ●●● ●● ● ●●● ●● ● ● ●●●● ●●●● ● ● ●● ● ●● ●● ●● ● ●●● ●● ●●● ●●● ● ● ●● ● ● ●● ●● ●● ●● ●●● ● ●●● ●●●● ●● ● ●●● ●●● ●●● ●● ●● ●●● ●●● ●●● ●● ●●●● ●●● ● ●●● ●●● ● ●● ● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ●●●● ●●● ● ●●● ● ● ●● ●● ● ●●●● ●●●● ●●● ● ● ●● ●● ●● ● ●● ●● ● ●●● ● ●● ●●●● ●●●●● ●● ● ●● ● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ●● ●●● ●● ●● ●●● ● ●● ●●● ● ●●● ● ●● ●● ● ●●●● ● ●●● ●●●● ●●● ●●● ● ●● ●●● ●●● ● ●●●●● ● ●● ●● ●● ● ●●● ● ●●● ●●● ●●●●● ● ●●● ●● ●● ●●●● ●● ●●● ●● ●● ●● ● ● ●●● ●● ●●●● ●● ● ●● ●● ●●● ●●● ● ●● ●● ●● ● ●● ●●● ● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●●●●● ● ●● ●●● ●● ●● ●●●● ●●● ●●● ●●●●●●●●● ● ●● ●●●● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ●● ●● ●● ● ●● ● ●●● ●●● ●●● ● ●● ●●● ●● ● ●● ●●●● ● ●● ● ●● ●●● ●●● ● ●●● ●●● ● ●● ●●●● ●● ●● ●●● ● ●● ●●● ● ●●●●● ●● ●● ●● ●● ● ●● ● ●●●● ●●● ●●● ● ● ●●●● ●● ●●● ●●● ●●● ● ●●● ● ●●● ●●●● ● ●● ● ●●● ●● ● ●● ●● ●● ●●●● ● ●●● ●● ●●● ●●●●●● ● ●● ● ●●● ●●● ●●● ●● ●● ●●● ●●●●●● ●●● ●●● ●● ● ●● ● ●● ●● ● ●● ● ●● ● ● ●● ● ●● ●● ● ●●● ●●● ●● ●● ●●●● ●● ●●● ● ● ●●●● ●● ● ●● ● ● ●●●● ● ● ●●●● ● ●● ●● ●● ● ● ●●● ●●●● ●●●● ●● ● ●● ●●● ● ● ●● ● ●●● ●● ●● ●●●● ●● ● ● ●●●● ●●● ●●●●● ●●● ● ●●● ●● ●● ●● ● ● ●●●●●● ●●● ●●●● ● ●● ● ●●● ● ●●● ●●●● ● ●● ●● ● ●● ●●● ●● ●● ●● ● ●●●● ●● ●● ●● ●●● ●●● ●●●● ●●● ●●● ● ●● ●●● ●● ●●●●●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●●●●● ● ●●● ● ●● ●● ●●● ●● ●● ● ●●● ●●● ●●● ●● ● ● ●●● ●●● ●● ●● ●●● ● ●●● ●●● ● ●● ●● ● ● ●● ●●● ●●●● ●● ●●● ●●●● ●● ●● ●● ●●● ● ●● ● ●●● ● ●●● ●●●● ●●●● ● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ●●●●●● ●● ● ●●●●●● ● ● ●● ●● ●●● ●● ●●● ●●● ● ●● ● ● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ● ● ● ●●● ●● ●● ●●● ●●●● ●● ●● ● ●●●●● ●●● ●●● ● ●●●●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ● ● ●●●●●●● ●●●● ●● ●●●● ●● ● ●● ● ●●●● ●●● ● ●● ●●● ●●●● ● ●● ● ● ●● ●● ●●● ●● ●●● ●● ●● ●● ●●●● ●● ● ●●● ●●● ●●● ●● ●●● ●● ●●●● ●●●● ●● ● ●● ● ●●● ● ●● ● ●● ●● ●●●● ●●●● ●●● ●●● ● ● ● ●●● ●●●● ●●● ●● ●● ● ●● ●● ● ●● ● ●●● ● ● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●●● ●●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ● ●● ●● ● ●●● ●● ● ●●●●● ●● ●●●● ● ● ●● ●●● ● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●●●●●●● ●●● ●● ● ● ●● ●● ● ● ●● ●●● ●●● ●●● ●●● ●● ● ● ●●●● ●●● ●●● ●●●●● ● ●● ●●●● ●●● ●● ●● ●● ●●●● ●●● ● ●● ●● ● ●● ●● ● ●●●● ●●●● ●● ●●●● ●● ● ●●● ●●●●● ● ●● ●●● ● ●● ●●● ●● ●● ●●●●● ●●● ●●●● ●● ●● ● ● ●● ● ●●●● ●● ●●● ● ●● ● ●● ●● ●●● ● ●●● ●●●● ●●● ● ● ●●● ●●● ●●● ● ●●● ● ● ●●● ●● ●●● ●● ●● ● ●●●● ● ● ●●● ● ●● ● ●●● ●●●● ●●●● ● ●●●● ● ●●● ● ●● ●● ● ●● ● ● ● ●● ● ●● ● ●● ●● ● ●●●● ●●●●● ● ●● ●● ●● ●● ●● ●●●●● ●●● ● ●● ●●● ● ●●●● ● ●● ●● ● ●●● ●●●●● ●● ●● ● ● ●● ●● ●● ● ●● ●●●● ● ● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●●●● ●● ● ● ●● ●● ●● ●●● ●●● ● ●●● ●●● ● ● ●● ● ●● ● ● ●● ● ●●●● ● ●● ●●● ●●● ●●● ●● ● ●●●●● ● ● ●● ●● ●● ●●● ● ● ●●● ● ●●●● ● ●● ● ●● ● ●● ●● ●●● ●● ● ●●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●●●● ●●● ●● ●●● ●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ● ●● ●● ● ●●●● ● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●●● ●● ●●● ● ●● ●●●● ●● ● ●●● ● ●● ●●● ●●● ● ●● ●●● ●● ●● ●●●●● ●●● ● ●● ●●● ● ●● ●● ●●● ●● ●●●● ●● ●●● ●● ●●● ● ● ●●● ●● ●● ●●● ●● ●●●● ●●● ●●● ● ●●● ●● ● ● ●● ●● ●● ●●●● ● ● ●●● ●● ●● ●● ● ●●● ●●●● ●●● ●●● ●● ●● ●● ● ●●●● ● ● ● ●● ●● ●● ● ●●● ●●● ●● ●● ● ●● ● ● ●●● ●● ●●● ●● ●● ●●●● ● ●●●●● ●●● ●● ●●● ● ● ●● ●● ● ●●● ●●●●● ● ●● ●●● ●●● ●● ●● ●● ● ● ● ●●● ● ●● ●●●● ● ●● ● ●● ●●●● ●● ● ●●●● ● ●● ●● ●● ●● ● ●●● ●●● ●● ●●● ●●● ●●● ●● ● ●● ●●● ●●● ●●

● ●
● ●● ●●

● ●

●

●
●

●
●

●

●

●●● ●●●●● ●●●●●● ●●●● ●●●●● ●●● ● ●●●●● ●●●● ● ●● ● ●● ●●● ●● ●● ●● ●●● ● ●● ●● ● ●● ●● ●● ●●● ●● ● ●● ● ●●●●●● ●● ●● ●●●● ●● ● ●● ● ●● ●●●● ●●●● ●● ●● ● ●●● ●● ●● ● ●●●●● ● ●●●●● ● ●●● ● ●● ● ●●● ● ●●● ●●● ●● ●●●● ●● ● ● ●●● ●●●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●●●●● ●● ● ●● ●●● ● ●● ●●● ●●● ●●● ●● ● ●● ●●● ● ●● ●● ● ●● ●● ● ●●●● ●● ●● ● ●●●●●● ● ●● ●●●● ●● ●●● ● ● ●●●● ●● ● ●● ●●●● ●●● ●● ●●
●● ● ●● ● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ●●● ●● ● ●●●● ●● ● ●●● ●●● ●●●● ● ● ●● ●●● ●● ●● ●● ●●●●● ●●● ●●●●● ●● ●● ●●● ●● ●●● ●● ●

●
● ●●● ● ●● ● ●● ●●● ●● ●●●● ●● ●● ● ●●●●● ● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●● ●● ●● ●●● ●● ●●●●● ●●●● ●●● ●

●
●● ● ●●● ●●● ● ●

●

●
●

●● ●● ●● ●● ●●
●

●●● ●
● ●● ● ●● ●● ●●● ● ●●●●●● ●●● ●●● ●

●
●●

●●
●●●●●●

● ●●● ● ●●●
●

●
●
● ●●●●● ● ●● ●●

● ● ● ●
● ●● ●● ● ● ●● ●● ● ●●● ● ● ●● ●●●● ● ● ●●● ●

●● ●● ● ●● ●● ●
●

● ●● ●●● ●●
● ●● ● ● ●● ● ●●●● ●● ● ● ●● ●

●
●● ● ●●

● ●
●● ●

●
● ●● ●

●
●● ●●●● ● ● ●● ●● ● ● ●● ●

● ●● ●
● ● ● ●

●
●●●● ●●● ●● ●● ●● ● ●●● ●● ●

●
● ● ●● ●● ●● ●● ●● ●●● ●

●
● ●●●● ●●● ●● ● ●●

●
● ●● ● ●

●
● ●● ● ●

●
● ●●

●● ● ●●
●
● ●● ●●● ● ●●●

●●● ●
●

●
●

●● ●● ● ●● ●● ●● ● ●●
●

● ●
●

● ●● ● ●● ●● ● ●
●

●● ●●● ●●●●
●

●● ●● ●●● ●●
●
● ●● ●

●
●

● ●●●● ● ●● ●● ●● ●●●●●
●

●● ●● ●
● ●● ● ● ●● ● ● ●●●● ●●● ● ●●● ●●● ●● ● ● ●● ●

●● ● ●●●●●● ●
●● ● ●●●● ●●● ●● ●●

●●
● ●●● ●

●
● ●● ●●● ●●

● ●● ●
●● ●●● ●

●
●●●● ●● ● ●

● ●● ● ●
●

●
●●●●

●●● ●● ●
●● ●● ●● ●● ●●● ● ●● ●● ● ● ●●

●
● ●●●● ● ●● ● ●● ●● ●

●
●● ● ●● ● ●●

● ●● ●● ●● ●
●●

● ● ●● ●● ● ● ●● ●● ● ●●●●●● ●● ●●● ● ●●● ● ●
●● ● ●● ●●● ●●● ●●

●
● ●●● ●● ●● ●● ●● ●● ●● ●●●

●●
●

● ●
●● ●● ●

●
●● ●● ●

●
●●● ● ● ●●● ●

●
●●

●● ●●●
●●●●●● ● ●● ●

● ●●
● ●● ●●

●
●●

●
●●●● ●●●●

●●● ●● ●●● ●● ●●● ●●
●

● ●
●●

●
●● ● ● ●●●

●
●● ●● ● ● ● ●●● ● ●●● ● ●●●● ● ●

●● ●
●

●
● ●●● ●●●

●● ●●● ●●● ●●
●●

●●●● ●
●

●●
● ●●● ●●● ●● ●●●● ●

●●
●●

●
●●● ●●● ●●● ●

● ●● ●
●

● ●
●● ●

● ●● ●
●

●●●● ●
● ● ●

●●● ●● ● ●● ●
●●● ●●● ●● ●●●●

●●●
●

● ●●●
●

●● ●●●● ●
●

● ●
●

●● ● ●● ● ●●●
●

●● ●●● ●● ●
● ●● ● ●●

●
●

●
●●

●● ●●
●● ●●
● ●

● ●
● ●

●● ●
●

●

●● ● ●●
●

● ●● ●● ●● ●● ●● ●
●

● ●
●

● ●● ● ●● ●
●

● ●
●● ●●● ●●● ●●●

●
●● ● ●● ●● ● ●

●
● ●

●
●●
●

●
●

●● ●
●

●● ●●● ●● ●
●

●
● ●●

● ●
●● ●● ●●

●● ●●●
●

● ●● ●
● ●●● ● ● ●●

●● ● ●● ●

●
●●

● ●● ● ●● ●●
●●

●
●

●● ●
●

●●
●● ● ●

● ●●●
●

●
●●

●●
●●●● ●● ● ●●● ●

●
●

● ●●● ●
●● ● ● ●●● ●

●
●

● ●●● ●● ●● ●●
●

●
● ●

●
●

● ●●
●● ●●● ● ● ●● ●

●● ●●
●● ●●

●● ●
●

●● ●
●● ● ●●● ●●●

●
● ●● ●●● ●

●
●

● ● ● ●
●

●● ●
●

●
●

● ● ●●
●

●●● ●●● ● ●●●
● ●
● ● ●●●●●

●
● ●● ● ●

●
●

●
●●

●● ●● ●●●● ●
● ● ●● ●● ● ●●

●
● ●●

●● ●
●●●

●
● ●●

●●
●

●● ●● ●● ●● ● ●● ● ● ●
●●● ●●● ●● ● ●

●
●● ●●

●
●

●
● ●●● ●

●

●● ●●
●

●
●

●● ●
●

●
●

●
●●●●

●● ●● ●● ●●
●

● ● ●●● ●
● ●

● ●
● ●

● ●●●●
● ●●●

●
●● ●

● ●●● ●
●● ●● ●

●
● ●●

●●
● ● ●●

●
● ●

●●●
●

●● ●● ● ●●
●

●● ●●
●●●●

●
●● ●

● ● ●●
●●● ● ●● ● ● ●● ●●● ●●●

●●●● ●
●

●
●●●

●●●
● ●● ●● ●●●

●
● ●●

●
●

●●
● ●

● ● ●● ●
●

●● ●●
●●●

●●
●

●
●

●● ● ●● ● ● ● ●●
●● ●

●
●●●

●
●

●
● ●● ●

●
● ●

●●● ●
●● ●●● ● ●● ●●● ●● ●●● ●●

● ●● ● ●●● ● ●●●● ●
● ●

● ●
●

●●
● ●

●●
●● ●●● ● ●● ●●●

●
● ●●

●●
●●

●
●●

●
●● ● ●

●
●●● ●

● ● ●
● ●●

● ●●
●● ●● ●● ●●

●●
●● ●

●

●● ●● ●● ● ●● ●● ●
●

●●● ●●● ●
●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ●

●
●●

● ●
●● ●● ●● ● ●

● ● ●●●
● ●●

●●
● ●● ●●●
●● ●

● ●● ● ● ●●●
●

●
●

●
●

●
●

●
●● ●

●● ●●● ●● ●
●
● ● ●●● ●● ●● ●●

●●●● ●●●● ●
●

●● ●●
●●

●
●

●●● ●
● ●● ● ●●

●●
●●

●
● ●
● ●

●
●●● ●●

●
●

●
● ●●

●
●●● ●●

● ●● ●● ●●
● ●

●
● ●●

●
●

●●●
● ●● ●

● ●● ●● ●●
●

●●●●
● ●

● ●● ●● ●
● ●● ●●

● ● ●●●● ● ●● ●● ●● ●●●● ● ●●●● ● ●● ●●
● ●

●

●
●●

●
●

●
●●

● ● ●
●

●
●

●
●

●● ●●● ●
●

●
●

● ●● ●●●
●●

●
● ●●● ●●● ● ●

●●
●●●

●
●

●
● ●

●● ●●
●

●
●

● ●● ●●● ●
●●● ●●

● ●● ●
●

●
●● ● ●● ●●●●

● ●●●
●

●
●●●

●
●●● ● ●● ●● ●

●
● ● ●●

●
●●

● ● ●
●
● ●
●
●

●●● ●●● ●
●

●●● ● ● ●
●
● ●

● ●● ● ●● ● ●
●

●●
●

●●
●●
●●

●● ●
●

●● ●
● ●

●

●●
● ●●● ● ●●

● ●
●

●
● ●●

●●●●
● ●

●
● ●●● ●●● ●● ●

● ● ●● ● ●● ● ● ●
●

● ● ●
●●● ●● ●● ●

● ●●●
●●●

●
● ●

●

●
●

●
● ●

●
●● ● ●●●

●●
●●● ●● ● ● ●●

●
●●● ●● ● ●●

● ●●
●●● ●

● ●● ●●
● ●●●● ● ● ●●

●
●● ●

●
● ●● ●● ●

●●● ●
●

● ●● ● ● ●● ●●
● ●● ● ●●● ● ●●

●
●● ●

●
● ●● ● ●●

●●● ●● ● ●

●
●

● ● ●
● ●● ● ●● ● ●

●
●

●
● ●●● ●

●
●

●
●●●

●
●● ●

●●●●
●●●

●● ●●
●

● ●● ●
●

●
●●

● ●
●

● ●● ●● ● ●● ●●
●

●
● ● ●

● ●
●● ●

●
●● ●●

● ●●
● ●● ● ●●● ●● ● ●

●
● ●● ●●●

● ●●
● ●● ●

●

●
● ●●● ●●

●
●●● ●

●

●
●●

● ●
●

●
●

●
●

●

●

●●
●
●● ●● ●● ●● ●

●●●
●

●
●● ●●
●●●●● ● ●● ●●●●● ●

●
●

●●●●
●

●● ● ● ● ●●●
●●●● ● ● ●●●

● ●●
● ●

●●

●

●
●

●● ●●●●●
●●

● ●
●

● ●●●
●

● ●●
●

●
● ●●● ●●●

●●
● ● ●

●● ●●● ●
●

● ●● ●
●

● ● ●● ● ●● ●● ●●●● ●●
●●

● ● ●● ●● ●
●

●
● ●●●

●● ●
● ●●

●●
●●● ●●● ●● ●●●● ● ●●

●
● ●●●●●● ● ●● ●●● ●

●●●
●● ●●

● ● ●●
●● ●● ●●

●●● ●
●● ●

●
● ●●
● ● ●● ● ●●

●●● ●●

●

●●

●
●

●
●● ●●●● ● ● ●●

●

●
● ●

●
● ●●

●
● ●● ●●

● ●● ●● ●●
● ●●

●● ●
●● ●

●
●● ● ●● ●

●
●● ● ● ●● ● ●

●
●

●● ●●●●
●

●●

●
● ● ●●

●● ●●
●

●● ●

●

●

●●●●● ●●● ●●● ● ●●● ●●●●● ● ●●●● ●● ●●● ● ● ●● ●●● ● ●● ●● ● ●●●● ● ●●● ● ●●●● ● ●● ●●● ●●● ●● ● ●●● ●●●● ● ●●● ● ●● ●● ●●● ●●● ● ●●● ●● ●●● ● ●●● ● ● ●● ●
●

●●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ●●● ●● ●● ● ●● ● ●●● ● ●●● ● ●● ● ●●●● ●●●● ● ● ●● ●● ● ●● ●●● ●●● ●●● ●●● ● ●● ●●●●●● ● ● ●● ●●● ●●● ●●● ●●●●●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ●●● ●● ●● ● ●● ● ●●●●● ●●●●●
●

●●●● ●● ● ●● ●● ●●● ●●●● ● ●●● ●● ● ●● ●● ●●●●● ●● ●●● ●●●●●● ● ●
●

● ●● ●● ●●● ●● ●●● ●● ●●
●

● ●●● ●●● ●● ●●● ●● ●
● ●● ●● ● ● ●● ● ●● ●● ●●

●
● ●●● ●● ●●● ● ●● ● ●●● ●● ● ●

●● ●● ●● ●● ●●●● ●● ●● ● ●●● ● ●●●● ● ● ●● ●● ●●●●● ●●● ● ●● ●● ● ●●● ● ●
●

●●● ●● ●●● ● ●● ● ● ●●
●

●● ● ● ●●● ●●●● ● ●●● ●●
●
● ●● ●● ● ● ●● ●●● ● ●●● ● ●● ●● ●●●●● ● ● ●● ● ●●●●●● ● ●●● ●●● ●

●
● ● ●●

●
●●●

●● ●● ●●
●

●● ●●● ●● ●●●

●

●● ●● ● ●●
● ●● ●● ●●● ●●●

●● ●● ●●
●● ●●●●●
●● ● ● ●

●
●

●●●● ●
●

●● ● ●● ●
●

●● ●● ●● ● ●●● ●
●

● ●
● ●

●
● ● ●● ●● ●●●● ●● ●● ●●● ● ●● ●● ● ●● ● ●

●
● ●●

●

● ●● ●●●
●

●● ●●● ● ●●● ●●● ●●

●
● ●● ●●●●●● ●●●●● ● ●● ● ●● ●●● ●●● ●

●
● ●

●● ●●●
●●

●●

●

●●●
●● ●●● ●

●

● ●● ● ● ● ●● ●● ● ●●●● ● ●●● ●● ● ●● ●● ●●●●●
●●●

● ●● ●● ●
●

● ●● ● ●● ●
● ●● ●●● ●● ●● ●

● ●● ●● ●●
●

●●● ●●
●

● ● ●● ●●● ●●
● ●●

●● ●● ●●●●

●

● ●● ● ●● ●● ● ●● ●●
●

●
●

●● ● ●● ●●● ● ●●●

●

●●● ●●
●● ●

● ●
●

●

●●●
●

●●● ●● ●●● ●
●

●● ●●●
●

●

●

●●● ●●
●●● ●●

●● ●●●● ● ●●●
●● ●● ●●● ● ● ●● ●● ●●●●● ● ●

●●
●● ●●● ●● ●●

●●
●

●● ● ●
●

●●
●

●
●

● ●●● ●● ●●● ●●●
●●●● ●● ● ●●● ● ●● ●●● ●●

●
● ●●● ● ● ●●●

●● ●●●● ●●●

●
●

●
●

●
●

●● ●●● ●●● ● ● ●
● ●

●

● ●● ●● ●●● ●● ●● ● ●●
● ●

●
● ●

●●●●● ● ● ●●

●

●
●

●● ●●●

● ●
●

●
●● ●

●●● ●●● ●

●

● ●●

●

●

●
●● ●

●

●
●

●

●
●

●
●

●●●●●● ● ●●● ●●
●

● ●●●
●

● ●● ●
●● ●● ●

●

●●● ●● ●● ●● ●● ●●●
●●● ●

●
● ● ●

● ●●
●

●

●●● ● ●
●

● ●● ● ●
● ●

● ●
●

●● ●●● ●●
●

● ●
●

●● ●● ●
●

●

●●●
●

● ● ● ●
● ●●

●
●● ●

●
●

●●
●●●● ●●●●

●

● ●●● ●● ● ●● ●
●

● ●●● ●● ●●●● ● ●●

●

●●

●

● ●●● ●
●●

●
● ●

●●
●

●
●● ●

●

● ●
● ●

● ●●● ● ●
●●●● ● ●● ●

●
● ●

●● ●
●

●●● ●
●

● ● ●● ● ●

●●
●●●

●●
●

●●●
● ● ●●

●●
● ●● ●

●
● ●

●
●●

●
●

●

●
●

●●
●

●● ● ●●
● ●● ●●● ● ●●

● ●

●

●
●

●●
●● ●● ● ● ●●●

●
●

●
●● ●

●
● ●

●●●●
●●● ●

●

●
●
●●● ●

●●
●

●●●●
●

●●●●● ●●● ● ●
●

●●
●● ● ●

●●●●
●●● ●

●●●●
●

●●
● ● ●●

●
●●● ● ●●●● ●●

● ●● ●● ●●● ●●
●

●●
●

●
●

●
●

●
●

●
●

●● ●●
●

●●●
●

● ●● ●●
●

●●
●●●

●●●● ●
●

●●

●
●●

●
● ●

●
● ●

●
● ●● ●●

●

●

●

●● ● ●

●
●●●

● ●●● ● ●

● ●●● ●●●
● ●

●
●

●●
●

●
●

● ●●●●●●
●

● ● ●●

●

●
●

●

●
● ●● ●●

●

●

● ●
●

● ●
● ●

●●
●

●
●●● ●● ●● ●●

● ●●● ● ●● ●● ●
●

●
●●●

●●
● ●

●
●● ●●

● ● ●● ●● ●● ●
●

●
●
●

●
●

●
●

●●●
●●●

●● ● ● ●●●
●

●
●
● ●●

● ●
●

●
●
●

● ●● ●
●●

●
● ● ●● ●

●

●

●

●●
●● ●

●●
●

●●
●
● ●

●
●

●
●

● ●● ●●
●
● ●●●● ●

●●●
●

● ●●
●

● ●
●

●● ●● ●
●

●
●●● ●●

●
●

●
●● ●● ●

●
● ●● ●

●● ●●
●

●● ●
●

●● ●●
●

●● ●● ● ●
●

●●
●

●●● ●●
●

●
● ●

●
● ●

●

●
●

●●●● ●● ●●
●

●
●

● ● ●
●● ●

● ●
●

●
●● ●●

●

●● ●● ●
●

● ●● ●●● ●●
●

●
●●

●

●
●

●
●

●●●●
●● ●● ●●●

●●● ●

●

●
●

●●● ●●●
●

●●
●

●

●
●●●●

●
●

●
●●

●●● ●●
●●

●●
●

●●
●

●
●

● ●●
● ●

●
● ●

●

● ●
●●

● ● ●● ●

●

●

●

●● ●●
●

● ●
●

●

● ● ●
●

●

●● ●● ●● ●

●

● ●
●

● ●
●

● ● ● ●●
●●

●

●

● ● ●● ●
●

●
●●●

●
●
●●

●

● ●
●●

● ●●

●

● ● ●
●

●
●

●● ● ●
●● ●●

●●
●●● ●● ●●

●

●● ●●
● ●●

●●
●●

●●

●

●
● ●

●
● ●●

● ●●
●

●
●●

●
●

●

●

●
●

●
●

●
●

● ●● ●●
●●●● ●●

● ●●●
● ●● ●●

● ●●
●

●
●

●
●

●
●

●●● ●● ●●
●●

●

● ●

●

● ●

●

● ● ●●
●

● ●● ●●
●●● ●

●
●●●●

●● ●● ●●
● ●

● ●●●● ● ●●
●

●
●

●
●

●●
●

●
●●

●
●

●●
●●

●
●

● ●
●

●
●

●
●

● ●●
●

●● ●
●

●
●

●
●●●

●● ●● ●●
●● ●●

●●

●

●
●

●●
●

●● ●
●

●●
●●

●●
●●
●●● ●●
●

●
●● ●

●
●● ●

●●
●●

●
● ●●●● ●●

●
●

● ●
●●● ● ●●●●

●

● ●● ●●

●

● ● ●
● ●

●●●● ●
● ●

●●●

●

●
●●

●
● ● ●● ●●

●●●
●

● ●●
●

● ●
● ●● ●● ●●●

●
● ●●

● ●●
● ●●

●● ●
● ●● ●●

●●
●

●
●

●● ●
● ●

●
●

●

●
● ●●● ●● ● ●

●
●●

●
●●●

●

●●●● ●
●

●
● ●

●
●

●
●●

●

●
●

●
●●

●

●●
●

● ●●● ●
●

●● ●
● ●

●
●●●

●

●●●
●

●
●●● ●

●

●●
● ● ●●

●●
●

●
● ●

●
●

●● ●

●

●
●

●● ●●● ●
●●●

●
●

●
●●

● ●

●
● ●

●
●

●
●

●● ●●● ●
●

● ●● ●
●

●●
●

●
●●

●
●

●
●●

●●● ●
●●

● ● ●●
●

●● ●

●

● ●

●

●
●●

●

●●●
●●● ●

● ●
●

●
●

● ●● ●● ●●● ●●
●

●●●
● ● ●●

●● ●●

●

●

● ●

●
●● ●●●● ● ● ● ● ●

●
●

●● ●
●●

●

● ●
●●●● ●●●●

●
●

●
●●

●
●●

●
●

●●●
●

●
●

●
●●

●
●●

●
●

●●
● ●●●

●
●● ●

● ●
●

● ● ● ●
●

●
●

● ●
●●

●
●●●

●
● ●●

●
●

●
●

●
●

●

●
●

●

● ●
● ●● ●●●

●

●●
● ●●

●

●●● ●●● ●●

● ●
●

●
● ●

●●
●

●
●● ●

●● ●● ●● ●●
●●

●●
●●●

● ●●
●●

●●● ●
● ●

●
●

●

●
●●

● ● ●
●

● ● ●●

●
●

●

●
●

●●● ●● ●
●

● ●
●

●
●

●
●

●
● ●

●
●● ●

● ●

●●
●

●●
● ●● ●●

●● ●●
●

●
●

●

●●●

●

●● ●● ● ●●
●

●
●

●
●●

●

●

●

●●
●●

● ●

●

●
●

●●

●

●●
●●●●

●

● ●● ●
● ●● ●●

●●
●●●● ●●● ● ●●

●● ●●●
● ● ●

●
●

●●

● ●● ●● ●● ●
●●

●

●

●

●
●

●
● ●●

● ●

●

●
● ●●

● ●●

●

●
● ● ● ●●

●
● ● ●

●

● ●●
●

●

● ●
●

●

●●
●

●
●

●●

●
●●● ●

●

●
● ●

●
● ●●

●

●●
● ● ● ●● ●●

●

●

●● ● ●●

●

●
● ●
●

●● ●

●
●●

●●●
●●

●

●●●●
●

●

●

●● ●● ● ●● ● ●●
●

●

●● ●● ●● ●
●●

●
● ● ●

●
●

●● ●●● ●
●

●
●●●●●

●●

●●
● ● ●

●
●●● ●

● ●
● ●●● ●

●
● ●

●
●

●●
●

● ●●
●

● ●

●

●● ●
●

● ●●
●

● ●
●

●

●●
●

●
● ●

●
●

●●
●

●● ●●
●●

●●●
●

● ● ●● ●●
● ●

●
● ● ●

●● ●

●

●
●●●

●
● ● ●●

●
●

●●

● ●
● ●●

●●
●●

●● ●
●● ●● ●

●

●●
●

●

●●
●

● ●
●

●

●
●

●
●●

●

●
●

●

●●
●

●
●

●●●●
●

● ●●

●

●
●

● ●●
● ●

● ●
●●● ●

●

●

●●

●
●

●●
● ●
●

●
●

● ●

●●
●

● ●●●

●

●●
●

●

●
●● ●

●
● ●

●
●

●

●

●
●●

● ●●●
● ●

●
●
●

● ●

●
● ●●●

●● ●
●●

●

●

●●
● ●

●

●
●●●● ●

●● ●●
●

●

●
● ●● ●●●

●

● ● ●
●

●●
●

● ●
●

● ●

●

●● ●● ● ●
● ●

●

●

●● ●●●● ● ●

●●●
● ●

●●
●

●

●

●●
●●
●

● ● ●●● ●● ● ●● ● ●
●

● ●●
● ●●

●
●●

●●
●

●
●

●
●

●● ●
● ●

●

● ● ●●●
●

●

●
●

●

●● ●●
●

●

● ● ●● ● ● ●
●

●

●

●●
●●

●
●●

●

●
●●

●
●

●

●

●
●●

●
● ●● ●●

●● ●
●

● ●●
●

●
●

●
●

●

●
● ●

●●
● ●● ●● ●●

●● ●
●

●
●●●

●

●●●
● ●

●

●

●

●

●

●

●
●

●
● ●●

● ●
●●

●

● ●
●

● ●
●

●● ●●● ● ●
● ●

●

● ●
●

●
● ●

●

●

●●

●●

●
●

●●●
●●

●

●

●

● ● ●●
●

●

●
● ●●

●
●

●

●
●●●
●

●● ●
●

● ●
● ●

● ● ●
● ●

● ●
● ●●

●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

● ● ●●●●

●

● ● ●●
●

●
●● ● ●● ●●●

●
●

●●
● ●● ●

●

●●
● ● ●

● ●●● ●
●

●●

●

●● ● ●● ●●

●

●

●
● ●

●
●

●

● ●
●

●
● ●● ●

●

●
●

● ●●

●

● ●●

●
●● ●●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●
●●

●

●●● ●● ●●

●

●
●

●

●
● ●● ●

●

●
●

●

●

●●●● ● ●

●

●

●

●

● ● ● ●
●

●
● ●●●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●●● ●●● ●● ●●●● ● ●●●● ●●●●●● ●●● ●●●● ●● ●● ●● ●●● ●●● ●●●●● ●●● ●●● ●●●● ●● ●● ● ●●●●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ● ● ●● ●● ●●● ●● ● ●● ● ●● ● ●●●● ● ●● ● ●●● ●●● ●●●● ● ●● ● ● ●● ●● ●● ●● ●●● ● ●● ●● ● ● ●● ●●● ●●● ● ●● ●● ● ● ● ●●●●●● ● ●● ●●● ● ●● ● ● ● ●
●

● ●● ●● ●
●

●●●● ●● ●● ● ●● ●● ●●●● ●●● ●●●● ●●●● ●● ●● ● ●
●

● ●●
●

● ● ●●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ● ● ●● ●●● ● ●
●

● ●●● ● ● ●● ●●● ●●● ●●● ●●● ● ●● ●●●● ●● ● ●●● ●
●●●●● ● ●

● ●●
●

● ● ●● ●● ●●● ●

●

●● ●● ● ●● ●●● ●● ● ● ● ●● ●●
●

●● ●
● ● ●● ● ●● ●● ● ● ●●● ●●●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●●

●
●

●
●● ●●● ●● ● ●●● ● ●●● ● ● ●● ●● ●●● ●●

●
●● ● ●● ●●● ● ●●● ●●

●
●●● ●●● ●●●

●
● ●● ●●

●
●

● ● ● ● ●● ●●● ● ●
● ●

●

● ●●●●●●● ● ●●● ● ●●●● ●●●● ● ●●● ●● ●●● ●● ● ● ●
●

● ●● ●● ● ●
●
● ●●●● ●●● ●●

●
●●● ● ● ●● ● ●●● ●● ●●●●●● ● ●●

●

●● ●● ●●
● ●●

●● ●●●● ● ●● ●● ●● ●
●
●

●
● ●●●●
●

● ●●● ● ●
●

●
●

●●● ●●● ●●● ●● ●● ●
●

● ●●
●
●●●

●
●

●● ●● ● ●● ●● ●●● ●● ●●● ●● ●●● ●● ●
●

●● ●● ●●
●

●
●●●●

●● ● ●
●

●

●●●
●

●● ●● ● ●●● ●●
●● ●● ●●● ●●●●

●●

●● ●● ●●● ●
●● ●

● ●● ● ●● ● ●
●
●●

●
●●● ● ●

●●
●

● ●● ●● ● ●●●
●

●●
●

● ●● ●
●
●

●
●

● ●● ●

●

●●●
●

●
●

● ● ●●● ● ●●● ●● ● ●●● ●● ●●●●●
●

●● ● ●●
●

●●● ●
●

●●●●● ●● ●●
●

●● ●● ●
●
● ●●● ● ●

●
●● ●

●

●●
●

● ●● ●●
●● ●● ●●●

●
●

●
●

●
●●

●
●

●●●
●

●
●

● ●● ●
●

●●
●
●●●

●
● ●● ● ●● ●

●
●

●
●

●● ● ●
●

●●
● ●● ●

●
●●

●
● ●●

●

●● ●
●

●● ●
●

● ●● ●● ●● ●● ●●
●●

●●● ● ●●●
●

● ●
● ●● ● ● ●● ● ●

●● ● ●
●
●● ●● ● ● ●

●
●●

●
● ●●● ● ●

●
●

●

●● ●
●

●●● ●●● ●● ● ●●

●

●
●● ● ●●●●● ●

●
●

● ●● ●● ●
●

● ●
●

●
●● ●● ●● ● ●● ●● ●●● ● ●● ●●● ●● ●

● ●
●● ● ●●●

●
●
●

● ●● ●
●●●

● ● ● ●

●

● ● ●● ●
● ● ●●●

●●
●

●● ●●● ●
● ●● ●● ●● ●●●

●●●
● ● ●●

●
●●●● ●

●
●● ●

●
● ●●

●

●● ●
● ●
● ●● ●

●●
● ●● ● ●

●
●

●
●
● ● ●●● ●

●
●●

●
●

●
●●●● ●

●

● ●●
●●

●
●

● ● ●●●● ●
●

● ●
● ●● ● ●

●

●
●

●●●
● ●

●●●● ●● ●
●

●
●

●
● ● ●● ●●● ● ●

●
●●

●

●
●

● ●
●

●
●

● ●●● ●● ●●● ●● ● ● ●●●
●

● ●●● ●● ● ●●●● ●
●

●●●● ● ●● ● ●●● ●● ●● ●●● ●
●

●● ●●
●

● ●● ● ●●● ●●
●

●●●
●

●● ●● ●
●● ●● ●●

●●
●

●
●

●●● ●● ●
●

●●● ●
●

●● ●
●● ●●●● ● ●

● ●● ●● ●● ●●● ● ●●
● ●

●
● ●

●
● ● ●

●
●●

●● ●
●

●
● ●
● ●●●
●

●●
● ●● ● ●

●
●●● ●● ●

●●●●
●● ●●●

●

●
●

●

●
●

●
●

● ●●

●

● ●●●●
●● ●● ● ● ●● ●●● ●● ●

●
● ● ●● ● ●

●

●

●
●

●
●

●
●

●●● ●
●

●● ●●

●
●

●● ●

● ●
●● ● ●

● ●●●●
●

●
●●● ●

●
●● ● ●

●
●● ●

●
●

●
●●● ●●●

●

●●●
● ●● ●

●

●
●

● ●
●

●
●

●
●● ●

●●
● ●

●●

●

●
●●

●●
●

● ●●
●●

● ● ●●●
●

● ●
● ●● ● ●●

●● ●
●●●

●
● ● ● ●

● ●
● ● ●●
●

●
●●

●●
●

●●
●

● ●
●

● ●● ●
●

●
●● ●●

●
●

●
●

●
● ●●

●● ●●●●
●

●
● ●●●

●●● ●
● ●●● ●● ●● ●●● ●● ●● ● ●● ●

●

●●
●

● ●● ●●●
●● ●

● ●● ●
●●

●
●●●

●●
●

●● ● ●●

●

●● ●● ●●● ●
● ●

●●
● ●● ● ●

●
●● ●●●

●● ●

●●● ●

●

●●
● ●

● ●
● ●●

● ●●● ●●●●
●

●

● ●●● ●●

●●
●

● ●
●

● ● ●

●● ●● ●
●

●
●●

●

● ●●
●

●●
●

● ●● ●●
●

●●
● ●

●
●

●● ●●
●

●
●

●
●

●
●
●

●

●
● ●

● ● ●
●

●
●●

●
● ●● ●

●● ●
●

●
● ●●

●
●

● ●●● ●●
●●● ●

● ●
● ●

●
●● ●● ●
●

●
●●

● ●● ●●
●

●
●

●●
●

●●●
●● ● ●●

●●
●

● ●●●
●●

●●
●

● ●●

●
●

●

●
●●

●

●

● ● ●●● ●● ●
●

●●
●
● ●

●
●●

●● ●
● ●●

●
● ●●

●
● ●●

●
●● ●

●
● ●●

●
● ●

●

●●
●

● ● ●

● ●

●● ●
● ● ●

●
● ●● ● ●●
●

●●
●

●●
●● ●

● ●● ●● ●
●

●
● ●

●
● ●●● ●

●

●● ●
●

●
●

● ●● ●● ●
●

● ●
●●●

●

●
●●

●
●●

●

●●●●
●●

●

● ●
●

● ●
●●

●
●●● ●

●●
●●

●
●

●

● ●●
●

●
●● ●

●
●

●●
●

●
●

●
●●

● ●●
●●

●●● ●
●
●

●
●● ●

●
●●

●●
●

● ●● ●
●●

●
●

●●
●●

●
● ●●

●
● ●

●● ● ●●
●● ● ●

●

●●●
●

●
●●●● ●

●
● ● ● ●● ●●

●
●

● ● ●●
●

●
● ●

●

●

● ●●
●●

●●●
●
●●

●
●

●
●

●● ●● ●●
●

●●● ●●
● ● ●●

●●● ●
●● ●●●

●

●
●●●

●●
● ●

●
●●

●●
●

●● ●●● ●●
● ●

●
●

●
●● ●●

●

●
● ●●

●
●

●
● ●●● ●

●●

●
● ●

●
●

●
●● ●● ●●

●

●
● ●

●
●

●
●● ●●●

●
●

●● ●
●●

●

●
●

●
● ●

●
● ●

●●
●●

●●
● ●

●●
●

● ●● ●● ●●●
● ●

●●
●●

● ●●
●

●
●●

●

●●
● ●● ●

●

●
●

●

●
●

●●●
● ●

●

● ●
●●

●
●

●●
●
● ●
●

●
●●

●● ●
●●●● ●

● ●
●

●
●

●

●

● ●
●

● ●
●●
● ●

●
●

●
●

●
●

●
● ●

●● ●● ●●
●

● ● ●● ●●●
●

●
●

●
●● ●
●●●

●
●

●
●● ●

●● ●●● ●
●

● ●
●●

●● ● ●
●●●● ●●

●
●

●
●

●
● ●

●

● ●
●● ●

● ●
●

● ●
●

●
● ●

●● ●
●

●●
●

●

● ●
● ●

●
● ● ●● ●

●
●

●

●

●
●

●

●●
●

● ●
● ● ●● ●

●● ●●
●

●
● ●●●

●
●

● ●●

●● ●

●●
● ●
● ●

●
● ●●

●
●●

●
● ●●

● ●●●●
●

●●●
● ●

●
●

●
●

●
● ●●

●
●

●●
●

●●
●

● ● ●●
● ●●

●
●●● ●●

● ● ● ●
●

● ●
●

●
●

●
●

●
● ●●

● ●
● ●● ●●

●

●

●
●●

●

●
●●● ●

●
●

●
● ●

●●
●

●
●● ●● ●

●
● ●

●

● ●●●● ●● ●
●●●

●

●
●

●●●
●●

●●

●●
●●

●

●

●●● ●
●●

●● ●
●●

●
●

●
●

●
●●

● ●
●

●
●

●
● ●

●
●

● ●
●

●
● ●● ●

● ●
●
●
●

●● ● ●●●
●

●●●
●

●●●
●

●
● ●

●

●●●● ●
● ●●

●

●
●●● ●

●

●●
● ●

●●
●

●●●
●

● ● ●
●

●●
● ●

●
●

●
● ●● ●●●

●
● ●

●
●

●●● ●

●
●

● ● ●
●●

●● ●●●

●
●

●
●

●

●
●● ● ●

●
●

●●
●● ● ●

●
●

● ●

●
●

●
●● ●● ●

●●
●

●
●●

●

●
●● ●

● ●●●
●●●

● ●●
●

●

●
●

● ●
●

● ●

●
● ●●

●
●

●

●

●
● ●

●

●

●
●

● ●●● ●
●

●●●
●● ●

●● ● ●●●
● ●

●

●●● ●●● ●
●

●●
● ●● ● ●●● ●

● ●● ●
●● ●●● ●

●
● ●●

●

●● ●
● ● ●

●●
●

●● ●
●

●
●●● ●

●
●

●
●●

● ●● ●●● ● ●●
● ●● ●●

●
●● ●

●● ●●

● ●
● ●●

●
●●

●
●

● ●● ●●

●
●●● ●● ●●● ●● ●●● ●●

● ●●
●●

●
●

●● ●
● ●●

● ●●
●

●

● ●● ●
● ●

● ●
●

●
●

●
●

●
●

●●
●

●
● ●

● ●●
●●● ●

●

●
●

●
● ●●●

●
● ●● ●

●
●

●
●●● ●●

●

●
● ●

●● ● ●●
● ●●● ●

●●
●

●
●

● ●
●

● ●
●●●●●

●
● ●

●
●

●
● ●● ●●● ●● ● ●

● ● ●
●

●● ●● ●● ●
●

●
●

●● ●
●

●
●

●

●

● ●●
●

●
● ●●

●
●●●

●

●
●

● ●
●●

●● ●

●

●●
●

●
●●

● ●●● ●
●●

●
● ●

●

●● ●●
●

● ●● ●●
●●

● ●●● ● ●● ●
● ●●

●●●
●

● ●●

● ●●●
●

●
●

●● ●● ●
●●●

● ●
●● ● ●● ● ●●

● ●●
● ●

● ●
●

●●
●

●●● ●
● ● ●● ●●

●
●

● ●

●
● ●●

● ●●●●
●

●
● ●● ● ●

●
● ●● ●● ●●●

●
● ●●●
● ●● ●●● ●

●

●
●●●●

●
● ●●

● ●
●
●

●●● ●●●
●

●
●●

●●
●●● ●

●
● ●● ● ●● ●● ●●●

●
● ●

●● ●●
●

●● ●
● ●

●●●
●

●● ●●
●

●●

●●
●● ●

● ●●
●

●●
●●

●

● ●

●
● ●●● ●

● ● ● ● ●●
●

●
●●

●● ●●

●

● ●●
●●

●
●● ●

● ●
●● ● ●● ●●

●
● ●

● ●
●

● ●●● ●
●●

●

●

●● ●●●
●

●● ●
●● ●

● ●
●

●● ●

●

●●
●

●●

● ●
● ●● ●●●● ● ●

●●● ● ●●
●

●
●

●
●

●
●

●
●●

● ● ●
●

●●
●

●● ●
●

●

● ●

●
● ●● ●●● ●● ●

●●
● ●●●

●
●

●

●

● ●
●

●
●

●

●

●
● ● ●●

● ●●
● ●

●●
●

●

●● ●
●● ●

● ●
● ● ●●●● ● ●

●
●●●

●

●●
●

●

●

●●
● ●● ●●

●

●● ●● ● ●
●

●●● ●
●

●
●

● ●●
●

●
●

●
●●

●● ●●

●
●●

●
●

●
●

●
●

● ●

●
● ● ● ●●●

●●
●

● ●
●●

● ●

●
● ●

● ●

●
●●●●● ● ●●

● ●
● ● ●● ● ●● ●

●●
●

●
●

●
●●

●

●
●● ●●

●●
●●

●●● ●
●

●●● ●
●

●
●● ●

●●
●● ●

●●●
●

● ● ●
●

● ●●●
●

●
●

●● ●●

●

●● ●●
●

● ●
●●

●
●●●

●●
●●●

●

●● ● ● ●● ●● ●●

●

●● ●●
●●

●

●●
●● ●

●● ●
●●

●●
● ●

●●
● ●

●
● ●●

●
●●● ●●●

● ●
●●

●● ●
●

●● ●
●

●
●

●
●

●
●●● ● ●●● ● ●

●
● ●

●● ●●

●

●
●

●
●● ●●●

●
● ●●

●
●

●
● ●●

●●●
●

●
●●●

● ●
● ●

● ●● ●
● ●

●
●

●
●●

●
●

● ●

● ●
●

●
●

●
●

●

●●● ●● ●●● ●● ●● ●●● ●●● ●●● ● ●●● ●●● ●● ●●● ●●● ●● ●●● ● ●●● ●● ●● ●● ● ● ●●●●●● ●● ● ●●●●●● ● ●● ●● ●● ●●●● ●● ●● ● ●● ●● ●● ●●●● ●● ● ●● ● ●●●● ●● ●● ●●● ●● ●● ● ●● ●● ● ●●● ● ●● ●● ●●● ●●● ● ●● ●●● ● ●●● ●● ● ●● ●● ●● ● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●●●●● ●
●

● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●●●●● ●● ● ●● ● ●●● ● ● ●● ● ●● ●●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●● ● ●●● ● ●●● ●● ●● ● ● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ●●●●● ● ●●● ● ●●●●● ● ● ●● ● ●● ● ●●● ●● ● ●● ● ●●●● ●●●● ● ●●●● ● ● ●●●● ●●● ● ●●● ●● ●●●●● ●● ●● ●●●● ●● ●● ●● ● ●●●●●● ●● ●
●

● ●● ●● ● ● ●● ●●●●● ● ●●● ● ●● ●●●
●● ●●● ● ● ●●● ●●●●● ●● ●●● ●●● ●●● ● ● ● ●● ●●

●
●●●● ●●● ●● ●●● ●● ●●● ●●●● ●

●● ●●● ●● ●
●

●● ●● ●● ● ●●● ●●●● ●●● ● ●● ● ● ●●●● ●●● ●● ● ● ●●●● ●● ●● ●
● ●●● ●● ●● ●●●●● ● ●●● ●●● ●● ●●

●

●●● ●● ●● ●● ● ● ●●● ●● ●●● ● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ●● ●
●
● ●● ●●● ● ●● ●● ●●

●●
● ● ●●●● ●● ● ● ●● ● ●●●●

●
● ● ●●● ● ●●● ● ●●● ●● ● ● ●●● ● ●● ● ●●● ●● ● ●●●●

● ●● ●● ●● ●● ●●●● ●● ● ●●● ● ●●● ●● ●● ●● ●●● ● ● ●● ● ●●●
●

●● ●

●

● ● ●● ● ●●● ●●● ●● ●
● ●● ●●● ●● ●● ● ●● ● ●

● ●●● ● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●●● ● ● ●
●

● ● ●●●
● ●● ● ●

●
● ●●● ● ●● ●

● ●
● ●●● ●● ●● ● ●● ●●● ●● ● ●●● ●●

● ●● ● ●●● ●● ●● ●●●●● ●● ●●● ●
● ●

●●●
●

● ● ● ●

●

● ●

●

●● ● ● ●●
●● ●●●● ●

●●● ●●
● ●● ●● ●● ●●

●
●

●
● ●● ● ●● ● ●●●● ●● ●● ●●● ●

● ●● ●
●

●●● ●●● ●● ●●●● ●●
●

●●● ●●● ●● ● ●●

●

●● ●● ●● ● ●●● ●●
●

● ●●● ●● ●●● ●●●
●

● ●● ●●●
●●

●
●

●●●● ●● ●●●● ●● ●
●●

●●
●

● ●● ● ● ●● ● ● ●
●● ●●● ● ●● ●

●
● ●

●
● ●● ● ●●●● ●● ●● ●

●
●

●
●● ● ●

●

● ●● ●●
● ●●●●● ●● ● ●

●
● ●● ● ●

●

●● ● ●
●● ●● ●● ● ●●● ● ●

●●● ●
●

● ●●
●●●● ●●●● ●●● ● ●● ●●● ●● ●●●

●

●● ●●● ● ●● ●●● ●●●● ● ●●
●

● ●● ●●●
●

● ●● ● ●● ●
●

● ● ● ●●● ●●● ●●● ●● ● ●● ●●● ●● ● ●● ●● ●●
● ● ●●

● ●● ●
●● ● ● ●●●

●
●

●
●●● ●●●●● ●● ●

●
● ●

●
●● ● ●●●

●●● ●● ●

●
●

●● ●
●● ●● ●●● ●

●●● ● ●●● ●●●
●
●
●●● ●

●● ●● ●●● ●●●
●● ● ●● ● ● ●

●
●

●

● ●●● ●● ●●
●

●
●● ●●● ●●● ●

●●● ●●● ●● ● ●
●

●●
●

●

●●
● ● ●●● ●

●● ●
●● ●● ●● ●● ●● ●● ●

●

●
● ●●● ●●●● ●

●● ●●●● ●
●

●●● ●● ●●● ●

●
●

● ●● ●● ● ●●● ●

●

● ●
●

●● ● ●●● ●●
●

●
● ● ●
●

● ●● ●
●

●● ●

●
●

● ●● ●
●●

● ● ●● ● ●●
● ●●●

●

●
●

●
●

●●

●
● ●●
●

●
●●

●● ●

●
●● ●

●

●

●●●
●

●●● ●●● ● ●●● ● ●●
●

●
● ●

●
●●● ●●●

●

●●● ● ● ●
● ●

●
● ●●

●
●● ●● ●

●

●● ● ●● ●●

●

● ●● ● ●
●

● ● ●●
●

●

● ●● ● ●● ● ●● ●
●●

●●●
●

●●

●
● ● ●● ●

●

●
●●

●
●

●● ●
●

●

●
● ●● ●●● ●● ●●

●
●●● ●

● ●● ● ●● ●●
●●●

●

● ●
●

●
● ●

●
● ●

●

●

●●● ●●●
●

●
●●● ●●

●
● ●

●
●●● ●●

● ●●●
●

●● ● ●
●●

● ●
●● ●●● ●

●●●●● ● ●● ● ●●

● ●

●●
● ●●

● ●● ●
●●

● ●●
●●● ●●●●

● ● ● ●●

●

●●●●
●

●
●

●
● ●

●

●
●

●
●

●
●

● ● ●●
●●

●

● ● ● ●
●

●
●●● ●● ●

●

●
●

●●

●

●● ●● ● ●●
●●

●
● ●● ●● ● ●● ● ●●●

●●
●● ●● ●

●
●

●

●
●

●

●

● ● ●

●

●
●

● ●
●

●● ●●●● ●●●

●
●

● ●

●

●●●●
●● ● ●●● ● ●

●
●

●●
●●● ●

●
●

●
●●● ● ●●●●

●
● ●

●● ● ●● ●●
●

●●
●

●

●●
●●● ●●

● ●
● ●●

●●
●

●
●● ●

●
●

●

●
●

●
●● ●●● ● ●●

●
●●

●

●●●
●

●
●

●● ●● ●● ●
●

●● ● ●
●

●●
● ●

●
●

● ●●
●

●
●

●●
●● ●●●

● ●●● ●● ●

●

●
● ●● ● ●

●

●
●●●

●●
●

● ● ●
●

● ●●
●●

● ●
●

●
● ● ●●

●

●●
● ●● ●●●● ●● ●● ●

● ●
●● ●

● ●● ●● ● ● ●● ●●●
●

● ●
●●● ●● ● ●●

●●
●● ●● ●

● ●
●●● ●●

●●
●

●
●●

●
●● ●●

●
● ●

●
●

●●
●●

●

●
●

● ●●
●

●
●●

●
●

●

●● ●●● ●
●
●

●
● ●

●

●
●

●●●●● ●
●

●●
●

●
●●

●

●
●

●● ●●
●

●

●

●
● ●

●
●● ●

●
●

● ●
●

●
●

●
● ●

●●
●● ●

●
●

●●
●

●● ●●

●

●
●

●
●

● ●●
●

●●● ●●
●

●
● ●●

●●
● ● ●●● ●

●
●●

●● ●● ●●●
●●

● ●● ●
● ●● ●

●
●

● ●●
●● ●● ●

●

●
●

● ●

●

●

●
●●●

●
● ●●

●
●●

●●●
●

●
●
●
● ●●●●

●
●●

●
●

●
●

●
● ● ●

●●

●
● ●●●

●
●●

●
●

● ● ●

●●● ●
●●

●
●●
● ●

●
●

●● ● ●●● ●
●

● ●
●

●
●●●● ●

●
●●

● ●

●
●

●●
●

●

●●
● ●

●
●●●● ●●

● ●
● ●●

●
●● ●● ●● ●●●● ● ●●●

●
●● ●●

● ●● ● ●● ● ●
●

● ●
●

●

●●●
●● ●

● ●
●

● ● ●●● ●
●●

●
●

● ●
●● ●

●● ● ●
●

●

●
●

●
● ●● ●

●
●●●

●

● ●
●● ● ●

● ●
● ●

●● ●● ●● ●
●

●
●

● ●● ●●
●● ●

●
●

●● ●● ●●●● ●●
●

●

●●
●

●●
● ●

● ●●
●

● ●●
●

●● ●

●
● ●

●●
● ●●●●● ●● ● ●●

●
● ●

●

●

●
● ●

● ●●●
● ●

●

●
●●

●
●

●

●
●

● ●●● ●
●●

●

●●●● ●● ●●
●

●
●

●
● ●

●

●
●● ●

●●●
●●

●
●

● ●

●
●

●
●

● ●
●

● ●
● ●●

●●●
●

●
●

●●
●

●
●

●
● ●

●

●
●

●
●

●
●● ● ●●

● ●●● ● ●
●

● ●●● ●● ●
●●

●●
●

●
● ●

●
●●

●●
●

●●
● ●

●
●

●
●

●
●

●

●● ●●
●

● ●● ●●
●

●● ●● ●● ●
●

●
●● ● ●● ●●

●
●

●
●● ●

●

●
● ●

● ●●● ●● ●
●

● ●

●

●
●

● ●
● ●

●

●

●●
●●●

●
●

●
● ● ●●

●
●●
●

●●

●
●

● ●●●●
●

●
● ●

●

● ●● ●
● ●

●●●●
● ●●

●
●●●

● ●
●

●

● ●●
●● ● ●

●

●

●●
●● ● ●

●

● ●
●

●

●

●
● ●

●
● ●● ●

●
●

● ●
● ●

●● ●●●● ●●● ●
●

●●
●

●
●

●
●●

● ●●
●

●
● ●

●
●

●

●
●

●●
●

●● ●
●●●

●
●●

● ●

●
●

●
●●● ●

● ●● ●
●

●
● ●● ●

●
●● ●●

●
●

● ●

●

●
●●●

●● ●●
● ●
●

●
●●

●
●● ● ●

●
●●

●● ●●
●

●
● ●

●
●

●
●

● ●●●
●●●

●●

●
● ●●

●
●

●●
●●●

●●
● ●● ●

●● ●
●

●
●
● ●●●

● ●● ●●●
●

●●
●●

●● ●●

●

●●
●

●● ●● ●
●

●●
●

●
●●●●

●
● ●●

●
●

●●●
●● ●

●
● ●

● ●●

●

●●●●

●

●
● ●●

●
●

●
●

●●
●

●●
●

●● ●
● ●

●● ●
●

●●
●

●

●

● ● ●●
● ●

●
● ●

●
●

● ●
●●●

●
●● ●

● ●● ●
●

●●●

●

●●●● ●● ●●
●●●

●●
●●

●●
●

●
●●

●●
● ● ●

●
●

●
●●

●●
● ●

●
● ● ●

●
●

●●
●

●
●

●
●● ●●

● ●●
●●

●
●
●

●
●●●

●
●

●●●
● ●

●
●●

●
● ●●●●●

●

●
●

●

●
●

●
●

●●
●

●● ●●●
●

● ●●
●

● ●●● ● ●
●●

● ●

●

●
●● ●●
●●

●
●● ●●● ● ●

●
●

● ● ●●
●

●● ●
● ●

●
●

●
●

●

●

● ●
●●●●● ●● ●

●
●

●
● ●● ●● ●

● ●●● ●●
●

●● ●

●

● ●
●

●
●

●
● ●● ●●

●

●
●

●●
●

● ● ● ●●● ●
●

●
●● ●●

● ●
●●●

●●

●
●

●
●● ●

●
●● ●●

●

●
●

● ●● ●
●

●●●● ●
●

●● ●

● ●
●

●● ●
●●

●
● ●●

●●● ●
●

●●● ●
●

●● ●● ●● ●
● ●

●
●●●● ●●

●●

● ●

● ●● ●
●●

●●

● ●●
●●● ●●●●

● ●●● ●
●● ● ●● ●●

●
●

●
●●

●●
●

●
● ●

●

●
●

●
●●● ●

●●
●

●●● ●
●

●●● ●●
● ●● ●

● ●
●

● ●● ●

●●
●

●

●● ●
●

● ●
●●

●●
●● ●● ●

●
● ●

●
●● ●

●
● ● ●●●

●
●● ●

●

●●
● ●

● ●
●

●
● ●● ● ● ●

●
●●
●● ●

● ●

●

●
● ●

● ●● ● ●●

●

●
●

●
● ●●● ●

●●● ●
● ● ●● ● ●

●
●

●
●●●

●●
●

●● ●
●

●
● ●●

●
●● ●

●
●

● ●
●

●●● ●

●
●●●

●
●●●●

●
●● ●●
●

● ●
●

●●
●

●
● ●

●
●

●
●

●
● ● ● ●● ●

●●● ●● ●● ●
● ●● ●● ●●
●●●

●
●●

●
● ●●

●
● ●●

●
● ●● ●●●●●● ●
● ● ●

●
●● ● ●

●
● ●●● ● ●●

●●●

● ●●
●●

●
● ●●●

●●
●

●●
●

●
● ●●

● ●● ●
● ●

●● ●
●

●

●
●●

●
●●

●

●●●
●●

●●
●

●●
●

●●●●● ●
● ●

●
●

● ●● ●●●
●

●

●
●

●

● ●● ●
●

●
● ●

●●●
●

●

●●
●

● ●● ●
●

●
●

●

●
●

● ● ●●
●●

● ●
●● ●● ●

●

● ●
●

●
●

●● ● ●● ●●● ●
●

●
●● ●

● ● ●●
●

●●
●

●●
● ●

●

●

●

●
●

● ●
●●

●
● ● ●● ●●

●●
●● ●● ● ●●

● ●●●●
●

●
●

●● ● ●●
●

● ●●
● ●● ●●

●

● ●●

●

●●●
●

●
●

●
●

● ●●

●

● ● ●
●

●●●● ●●● ●
● ●● ●●

●

●●
●●

●●
●● ●

●
● ●

● ●● ●
●● ● ●

● ● ●●
●●

●●
● ●

●
● ● ● ●

●
●

● ●●●
● ●●

● ●
●● ●●

●
● ●●● ● ● ● ●

●●
●●●● ●● ●● ●

● ● ●●●
●

● ●
●●

● ●●
●

● ● ●● ●
● ●● ●

●● ● ●
●

●●● ●● ●
●

●
● ●

●
●

●
● ●

●
●●

● ● ●●

●

●●

●
● ●

● ●●
● ● ●● ● ●

● ●●● ●●● ●●
●●

●●●
●

●● ●●
●

● ● ● ●●
●●

● ● ●● ● ●●
●

● ●● ●

●

●● ●

●

● ●●●
● ●

●●
●

●● ●● ●●
●●

●
● ● ●●

● ●
●●

●●
●

●
● ●●●●

●
● ● ●●

●●
●

●
●

● ● ●● ●● ● ●
●

●●●
●

●

●

● ●●
● ●

● ●●●
●

●●● ●●●●● ●● ●●● ●● ●● ●●● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●● ●●● ● ●●●● ●● ● ●● ● ●● ●●● ●● ●●● ● ●● ● ●● ●● ● ●●●● ● ●●● ●● ●● ● ●● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●●●● ● ●●● ●● ●● ●●● ● ●● ●●● ● ●● ●●● ● ● ● ●● ● ●● ● ● ●●● ● ●● ●●●● ●●● ●●● ● ●●● ●●●●● ●● ● ●●● ●●● ●●● ● ●● ●● ● ●● ● ●● ●● ● ● ● ●●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ● ●● ●● ●●● ● ●● ●●● ●● ● ●●●● ●● ●●● ●●● ●● ●●●● ●●●●● ●● ●●● ●●●● ●●● ●● ●● ●●● ● ● ●●● ●● ●● ●●
●●● ●●● ●●●● ●

●● ●●● ●● ●● ● ●●●●● ● ●● ●● ●●

●

● ●●●● ●● ●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●●
●●● ● ● ●●● ●● ●●

● ● ●●●● ● ●●●● ●● ●●●●● ● ●● ● ●●●● ●●● ● ● ●●● ● ●●●●● ●●● ●● ●●●●● ●●● ● ●●●
● ●

●
●● ●●●●● ● ●● ●● ●●● ●● ●● ●●●

●● ●●●● ●● ●● ● ●● ● ●●● ● ●● ●●●● ●
●● ●

● ● ●●● ●●●● ● ●●
●

● ●● ● ● ●● ●● ●●●● ● ●● ● ● ●
●

● ●●● ● ●
●

●●● ●●●●●● ●●
●

●●●●● ●● ●● ●● ● ●● ●● ●● ●●● ● ●
●●●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●● ●● ● ●●●

●
●● ●●● ●● ●● ● ●●●● ●●● ● ●● ●● ●● ●●● ●●● ●●●● ● ●●●●●● ●●● ● ●

●
●● ●●● ● ● ●●●●● ● ●● ●●● ●

●
●
● ●●●● ●●

●
●● ●● ●● ● ●●

●
● ● ● ●●● ●● ●

●●
●● ●● ●●●●● ●● ●●● ● ●●●

● ●●● ●●● ●●● ● ●● ● ●●
●

● ● ● ●● ●●
●●

●
●● ● ●●● ● ●● ●● ●●●● ●● ● ● ●

●

●
●

● ● ●● ● ●●● ●● ●● ●● ●●●● ●●●● ●● ● ●●
●

●●● ●●
●

●

●
●

●●● ●●● ●
●

●●●● ●● ●
●●

● ●● ●● ●

●●

●● ● ●● ● ●●● ●● ●● ●● ●●● ●●●
●

● ●●●● ● ●
●

● ●● ●●●● ●● ● ●● ●● ● ● ●●
●

● ●● ●

●

● ●●● ● ●● ●● ● ●
●

●

● ●●●
●●● ● ●●● ●●● ●●● ●●●●● ● ●●●●● ●● ●

●
● ●

●
●●●● ● ●●●● ● ●●●

●
●●
●

●
● ●● ●●●

●
●●●● ● ●●

●

● ●●

●

●
●

● ●● ●●● ● ● ●●●●●
●● ●● ● ● ●

●

● ● ●●● ●
●

●
●

● ● ●● ●●
●● ●●● ●

●
● ●●● ● ●● ● ●● ●●● ●●● ●● ●●●●● ●● ● ●

●
●● ●●● ●●● ●● ●● ● ●● ●

●
●

●
●●● ●● ●●●●●● ●● ●● ● ● ●●

●
●
● ●

●●● ● ● ● ●●● ● ●●● ●●● ● ●● ● ● ●●● ● ●●● ●● ●
●
●● ● ● ● ●● ● ● ●

● ● ●● ●
● ●●● ●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ● ● ●●● ● ● ●●●

●
●

●

●
● ●

● ●
●

● ●● ●
● ●

● ●● ● ●● ● ●●
● ●●● ●● ●●● ●●●

●
● ● ●●●●●

●
● ●● ● ●●● ● ● ●

●

● ●●● ●●● ●

●

●
●●

●● ●●●
●●●

●

● ●

●

● ●●● ●●
●

●● ●●●●
●● ●

● ●●●
●

●
●

●
●

●●
● ● ●

●

●
●

●● ● ● ●●
● ●● ●●● ●●

● ● ● ● ●● ●
● ● ●● ●
●● ● ●● ● ●● ●●● ●●

● ● ●● ●● ●
●

●●● ● ●●● ●●
● ●●● ●●

● ●●
●

● ● ● ●●
●●

● ● ●●●
● ●●●

●
●● ● ●● ●

●
●

●
●

● ●
●●

●
●

●
●●● ● ●

●

●
● ●

● ●
●●

●●● ●●
●●●●● ●●● ● ●

● ●●●● ● ● ●●
●

● ●
●

●
● ●

● ●●●

●
●

●

● ●
●●

●
● ●●

●●●
●● ●● ● ●●

●● ●● ●● ●● ● ●●
●

● ●● ●●● ●●
●

● ●
●

● ●●
●

●●

●
●

● ●●
●

●
●● ● ●

●

● ●
●● ●

● ●● ● ●
●

●

●●● ●● ●●●●● ● ●●●● ●
●

●

● ●●●● ● ●
●

●● ● ●●●
●

●
●

● ● ●● ●● ●●
●● ●● ●

●

● ●
●●

●

● ●● ●
●

● ● ●●
●●

● ●●

●
●

●●
● ●●● ●●● ●● ● ●

●●
●● ●●

●●
● ●

●●
●

●

●
●

●●
●

●● ●
●● ●●
●

● ●

●

●
●● ●●●

●●●
●

● ●
●

● ●●
●●

● ●● ●
●●

●
●●● ●

●
●

●●●
●●

●

● ● ●●
●
●

●●● ●●● ●● ● ●●
●

●● ●●
●

●●
●

●

●
●

● ●
● ●● ●●

●
●

● ● ●●

●

● ●●● ●●● ●
●

●●

●

●● ●●
●

●● ●●
● ●
●
●

●● ● ●
●●

●

● ●● ●
●● ●

●
●

●
● ●●

●

●●●
● ●

●●
●

●

●
● ●●

●●
●

●
●●

●● ● ●●
● ●●● ●●

●●
●●
● ●

● ●● ● ●●● ●
●

●

●

● ●
●● ● ●

●
●●●●

●
●

●● ●●
●

●●● ●
●●

●
●

●

● ●

●
●

●
●●● ●

●

●

●

● ●●
●

●●
●

●
●●

● ●
●●

●●●
●● ●● ●

●
● ●

●
●

●
●

●
● ●

●
●●●

●
● ● ● ●●● ●● ●● ●●●● ●

●
●

● ●●
●

● ●
● ●

●
●● ●

●
●

●
● ●

●

●
●●

●●

●

●

●

●
●

●●

●

●●● ●
●

●
●●●●●

●●● ●
●

●
●

● ●
● ●

●
●●

●

● ●
●
● ●

●● ●
●

●

●
●

●
●

●
●

●●
●

● ● ●
●

●

●

●
●

●● ●
●

●
●

●
● ●

● ●●

●● ●●●
●

●
●●●●

● ●

●

●●
● ●●

●
●

● ●
● ●
●

● ●

●

●
●●

●
● ●

●
●●

●
●

●
● ●

● ●●
●

●

●
●

● ●●● ●●●
● ●

●
●● ● ●●

●
●
●

●
●
●

●●
● ●● ●
●

●
●

● ●●
●

● ●
●

●

● ●
●

●
●

●
●●●● ●●

●
● ●

● ●●●
●●

●
●

● ●
●

● ●
●

●
●

●● ●●
●

● ●
●

●●● ●
●

●●
●●

● ●
●

● ●
● ● ●

●
●●

●

●

● ●
●●

●
●● ● ●

●
● ● ● ●●●●●●

●

●
●●

●

● ●
●●● ●

●

●

●
● ●

●
●

● ●
●●● ●

●●
●

●
●● ●● ●

● ● ●●
●

● ●● ●
●

●
●

●
●

●

●
●● ●

●
●● ●

●●

●●
●

●●●
● ●

●
●●● ●

●
●

●● ● ●
●

● ●

●
●● ●●

●
●● ●●

● ●
●●

●●● ●
●● ●●

●● ● ●●
●

●
●

●●

● ●
●

●

● ●

●
●●●●

●
●●

●

● ●●
●●

●● ●●

●●
●●

● ●●●
●

●

● ●
●
● ●●

●
●

●● ●
●

●

●
●●● ●

●
● ●

●● ●
●

●
●
● ●● ●

●
●

●
●

●
●● ●

● ●

●●●● ●
●

●
●

●● ●●
●

●●
●

● ●
●

●●
●● ● ●●● ●●

●
●

●
●

●
●

●
●

● ●
● ●

●
●

●
●

●
● ●

●

●●
●● ●

●
●

● ●

●
●

●
●●● ●

●

● ●
●

●
●

●●●
●

●

●

●

●
●
● ●

●●

●
●●● ●

●
●
●

● ●
●

●
●● ●

● ●●
●

●●

●
●● ● ●

● ●
●●

●
●

●
●
●●
●

●
●

●

●
●● ●

●
●

●
●

●
●

●
●●

●● ●
●

● ●
●● ●

●●●

●●● ●

●
● ●

●●

● ● ●

●

●
●

●
●

●● ●
● ●

●
●

●
●

● ●● ●●

●
●● ●

●

●

●
●●

●
●

●
● ●

●
●

●●
●●

●
●

●●
●
● ●
● ● ●● ●

●●●
●

● ● ●●
● ● ●

● ●

●
●

●
●

●●
●

●

●
● ●

● ●

●
●

●
● ●● ●●

● ●
●● ●
● ●● ● ●

●

● ● ●
●● ● ●●● ●

●
●

●●●
●

●
●

●
●● ●

●
●

● ●●
●

●
●●

● ●
●

●
●

● ● ●

●

●
●

●●●
●

●

●
● ●

●

●

●
●●●●●

●
●

● ●
● ●

● ●
●

●
●

●

●

●
● ●●

●●●
●

●

●
●

●

●

●

●
●

●

●
●●

● ●● ●●●

●
●● ● ●

●
●

●
● ●

● ●
●

●

●
●

●
●● ●

●
●

● ●● ●

●●
●

●
●

●

●

●
●

●●

●

●
●

●
● ● ●●● ●

● ●●

●
●●●

●
●●

● ●
●

●●
● ●●

●
●● ●●

●
●●●

●
●

●
● ●● ●●

●● ●

●

●●
● ●

●

●
● ●● ●

●
●

●●● ●

●● ●

●
●

● ●● ●
●

●
●● ●
●

●
● ●●●

● ● ●●●● ●

●

●
●

● ●

●

●●
● ●●

●
●

●● ●

●

●

●
●

●●
●● ●

●
●

●

●

●

●
●
●

●●
●

●

●

●

●
● ●●●

●

●
●●

●
● ●

●● ●● ●
●

● ●
●

● ●
●

●●
●

●

●●●

● ●●
●●

● ●●●
●

●

●●
●● ●

●

●

● ●

●

● ●●● ● ●●●

●●
●

●● ●
●

●
●

●●
●

●
●

●
● ●● ●● ●● ●●

● ●●

● ●●
●

●

●
●

● ●
● ●

●

●
●

●

●

●
●

● ●●●● ●●
●

●

● ●
●

●

● ●

●
● ●●● ●

●●

●

●

●
● ●

●
● ●

●●

●

● ●

●●

●●

●●●
●

●
●

● ● ● ●● ●● ●●
●● ●

●
● ●●

●
●

●

●

● ●●●
●

●
●

●
●

●●●
●

●
●

●

● ●
● ●

●●
●

●
●●● ● ●●

●

●

● ●●
●

●
● ●
●

●
●●

●
●

●

●
●

●●

●

●
● ●

●
●

●

●

● ●

●●●
●

●
●

●

●
●

● ●
●●

●
●

●
●●

●
●

● ●
●

●
●

●
●

●● ●
●

●
●

●●● ● ●

● ●

●

●
● ●●

●
●
●
●

●

●●
●

●
●

●● ●●
● ●

●●

● ●
●

●
●●●

●●●●
●

● ●●
●

●
● ●●

●●

● ●
●●

●
●● ● ●

●

●●
●

●●
●

●
●

●
●

● ●
●

●

●
●●

●
●

●●
●

●

●●●●
● ●

●
●● ● ●

●
●

●

●
●

●
●●

●●●●●
●

●
●

● ● ●
●

●
●

●●
● ● ●●● ●

●

● ● ●
●

●● ●
●●

●● ●● ●●
●

●

●

●
●

● ●
●

●
●●

● ●

●
●

●
●

●
●

●

●
●●● ●

●
● ● ●

●●
●●

●

●

●

●
●

●
● ●

● ●
●●

●
●

● ●

●

●●
●

●●
●

● ●
●●

● ● ●
●● ●

●

● ●

●
●

●●
●●

●● ● ●
●

●
●

●●●

●● ●● ●● ●

●

● ●● ●●● ●
● ●●

●

● ● ●● ●

●
● ●

●●●● ●●
●●●●

● ●
●

●●●

●
● ● ●●● ●

●

● ●
● ●●

●
●

●● ●

●
●

●

●

●

●● ● ●
●

●
● ●

●
●

●
● ●● ●● ●●
● ●●

●

●
●●●

●

●● ●●
●

●●
●

●
●●●

●
● ●

●● ● ●
●

●

●

●
●●

●
● ●

●
● ●

●
●

●
●

● ●

●
●●

● ●●●
● ●

● ●

●
●●

●

●

●

●
●

●●
●

●●●
● ●

●

●●
●●●

●

●●
●

● ●

●

●●
●

●

●● ●●●
●●●

●
●●
●

●

●

● ●
●

●
●●

● ●● ●
●

●

●●

● ●●●
●

●
●

● ●
●

●● ●●
●

●●
● ●

● ●
●

● ●●● ●
●●

●
●

●
●●

●

●

●

●●

●●●
●

●
●

● ●●
●●

● ●

●
● ●● ●

●
●●

●
●●●

●
●

●● ●● ●●
●

● ●●●

●

● ● ●
●

●

●
●● ●
● ●

●
●

●
●

●●
●

●
●

●● ●
●

●
●●● ●

●
●

●
●

●
●

●

● ●●

●
●

●
●

●●
●

●
● ●●

●
●

●
●

●

●●
●● ●

●

●
●

●
●●

●● ●●● ●

●
●

● ●●●
●

●
●

●

●

●● ● ●●●●●
●

●
● ●

●
●●

●
●●

●
●●

●●

●

●
●●●●●●

●
● ●

●

●
●

● ●
● ●

●●
● ●

●

●

●

●
●●● ●

●● ●
● ●

● ●

● ●
●

●
●●●● ●

●●●
●

●
●

●
●●● ●

● ● ●● ●
●

●● ● ●
●

●
●

●●
●

●● ●
●

●
●

●●

●

●

● ●
●

●●
●

●
●

●
●●●

●
●

●
●●● ●●

●
●

●
● ●

●

●

● ●
● ●

● ●
●

●
●

● ●● ●●●●●

●
●●

● ●
●● ●

●
●

●

●
●● ●

●
●

●
●

●

●●
●● ● ●●●

● ●● ●●

●

● ● ●●● ●●
●

●
● ●● ●

●
●

●
●

●
●● ● ●●●● ●

●
●●●

●
●

●●

● ● ●
●

●

●

●●

●
● ●

● ● ●● ●●
●●

●
●

●● ●
●●

●
●
●

●
●●

●
●●

●
●

● ●●
●

●● ●●

●

●●●
● ●● ●●

●
●

●● ●●● ●

●
●

●

●
●

● ● ●●

●

●●
● ●

●
● ●●

●● ●
●

●
●

●●
●

●

●●

● ●●
●●

●

●
●

●●
●

● ●

●●
●●

●
●●

● ●
● ●

●
●

●
●●●● ●

●●●

●

● ●●
● ●

●

●●
●●

●● ●●● ●
● ●

●
●

●

● ●

● ●
●

●

●

●

●●
●●

●

●●● ●
●

●● ●
●

●

●

●

● ●

●
●

●
● ●

●●
●

●
●

● ●
●

●●

●

●

●● ●
●

●
●●● ●● ●

●
●

●

●
●●

●●

● ●●
●

● ● ●●

●

●
●

●●

●●● ●● ●●● ● ●●● ●●● ●●●● ●●● ●● ●● ●● ●●●● ●● ●● ●●● ●● ●●●● ● ● ●●● ● ●● ●● ● ●●●● ● ●●●● ●● ● ● ●●● ●● ● ●●● ● ●● ●● ●●● ●●● ●● ●● ● ● ●●●●● ●● ●●● ●●● ●● ●●●● ● ●● ●●
●

●●●●●● ●● ●● ●● ●● ●● ●●● ●● ● ●●● ● ● ● ●●●●●●● ●●● ● ●● ●●● ● ●●● ●● ●● ●●●● ●●● ● ●● ● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●● ●● ●●●● ● ●● ● ●●● ●●●● ●● ●● ●●● ●●● ●● ●● ●●●●●● ● ●●● ● ●●●●● ●● ●● ●●●●● ●● ●● ● ●●●● ●●● ●● ●●● ●● ●● ●●●●●● ●●● ●●● ●● ● ●● ●● ● ●●● ●●●●● ● ●●● ●●● ● ●● ● ●● ●● ●
●● ●● ● ●●●●●● ●●●● ●● ● ●●●

●
●● ●●● ●● ●●●●

●

●● ● ●● ●● ● ●● ●
●

●● ● ● ●●● ● ●●● ●
●

●● ●● ●
●

● ●●● ● ●● ●

●
● ●● ● ●● ●●● ●●●●● ●●

●
● ●● ●●● ●●● ●●●●●●●● ●●● ● ●●● ●● ●●● ● ●●

●
●● ●●● ●● ●●●● ●● ●●●● ● ●● ●● ●

●

●●●● ●●● ●● ●● ●
●

●●● ●● ●●
●● ● ●●● ●● ●●● ●●●●● ●● ●

●
●●● ●●

●

● ●● ●●●● ●● ●●
●

●● ●● ●● ●●●● ●●● ●● ● ● ●●● ●● ● ●● ● ●● ●● ●● ●●●● ●●●
●● ●● ●● ● ●● ●● ●●
●

●● ●●● ●●● ●● ●●● ● ●●● ● ●● ●● ● ● ●● ●●● ●● ● ●●●
●

●●
●

●● ●●
●

●● ●●●
●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●
● ●● ●● ●

●
●● ● ●● ●●●● ●● ●

● ●● ●●
●

● ●● ●●●●● ●
●

●●●●● ●●● ●● ●● ●●●●● ● ●● ●● ● ●● ●● ● ●
●
● ●● ● ●●

●
● ●●● ●

●
● ●●● ●●●●● ●

●
●●●● ● ●●●

●

●● ● ●●
●●
● ●●

●
●● ● ● ●
●

●● ●
●

●● ●●
●● ●● ● ●

●●
●

●● ● ●● ●●● ●●
●
● ●●●

●
●●●● ●●

●
●● ●

●
●●● ●● ●● ●

●
●

●
●

● ● ●● ●● ●
●

●●
●

●
● ●

●●

●

●●● ● ● ● ●● ●●●●
● ●

● ●
●

●
● ●

●● ●● ●
●

●●
●●

● ●●● ●●
● ● ●●

●
● ●●
●

●
●

●● ●● ●● ● ●● ●

●

● ● ●● ●
●

●●● ● ●●●● ●● ● ● ●● ●●● ●
●

● ●●●●
●

●● ●● ●●●●
● ●●●●● ●

●

●●
● ●●

●

●

●
●●

●

●
●

●

●

● ● ●
●

●

●

● ●● ● ●● ●● ●
●

●

●●● ●
●

●● ●● ●●● ●● ●
●

●●●● ● ●●
●

●

● ●
●

● ●●
●●

● ●
●

●

●

● ●●

●

●● ● ●● ● ●●
●

● ●

●
● ●● ●●●● ● ●● ●

●
● ●●● ●●● ●● ●●●● ●

● ●

● ●●● ● ●

●

●
● ●

●

● ●●●
● ●● ●

●

●
● ● ● ●●●●● ●

●

● ● ●●
●
●●●

●

●●●
● ●

● ●●● ● ● ●
●

●
●

●

●

●●
●●

●● ●●●
●

●●● ●

●

●●

● ●
●

●

●●●

●●
●

●
●

●

●

●● ●●
●●

● ●

●

●
●

● ●●

●
●

●
●●

●
●

●
●●● ●

● ●●●
●●

●●

●
● ●●

●
● ●● ●● ● ●

●●
●●

●
●●● ●●●● ●● ● ●● ● ●● ●

●

●●

●

● ● ●

●

●

●

●
●

●● ●
●

● ●

●

●● ●●
●

●
●

●

●

● ●
● ●

● ●
●

●●●
●

●●

●●

●●●● ●
● ●●

●
●● ●

●●
●

●

●●
●

●● ●● ●
●

●● ●
● ●●●
●

●● ● ●● ●●
●●

●

●
●

●

●

●
● ● ●● ●● ●●● ● ●

●
● ●● ●●●

●

●

● ●
●●

●
● ●

●
● ● ●

●

● ●
●

● ●●

●

● ● ●● ●

●
●

●

●●● ●

●
●●●● ●

●●● ●
●

●

●● ●●
●
●

● ●●
●

●
●

●

● ●

●
●

●●

●
●

●
●

● ● ●● ●● ●

●

● ●

●●

●

●
●● ● ●

●
●

●
●
●

● ●
●● ● ●● ● ●●● ●

●
●

●

● ●

●
●

● ●
●

●
●●

●
● ●●

●

●●
●

●
●

●●
●● ●● ●

●
●

●

●
●

●

●
●●

●
●

● ●●●
●●●

●●● ●

●
●

● ●● ●● ●●
●

● ●
●

●

● ●

●●
●

●● ●● ● ●
●

●

●

●●● ●● ●●●
●

●●
● ● ●●●

●
●

●● ●
● ●●

●

●●
●
● ●●

●
●

●
●

●
●
●●
● ● ●● ●

●
●

●

●

● ●●●
●

●
●

●
●

●● ● ●

●

●
●
●

●

●

●

● ●
●

●●
●

●
●

● ●

●●
●

●

●
●

●

● ●
● ●

●
●

●●
●

●
●●● ●

●
●

●

●●
● ●

● ●●● ●
●● ●

●
●

●

●

●●
●
●

● ●

● ●●
●

●

●
●

●●

●

●
●

●
●●
●

●●

●● ●●

●

● ●●

●

●

●
●
●● ●● ●

●

● ● ●●●

● ●
●

●
● ●●

●
● ●

●
●

●

●

●●●
●●

●
●

●
●

● ● ●
●●●●

●
●

●
●

●
●●

●

●

●

●

●●● ● ●● ●
●●

●

●
●

●
●

●
●

● ●
●● ●●●

●
●●

●●
●
●

●
●

●
●● ●●

●

●
●

● ●

●

●
● ●

●

●●

● ●
●

●

●
●

●●●
● ●●

●
● ●

●● ●● ●●
●

●
●

●
●

●
●

●
● ●● ●●● ● ●●

●

● ●
●

●●

● ●
●

●●
●

● ● ●
● ●

●

●

●●

●
●●

●

●
●● ●
● ●● ●

● ●

●● ●
●

●

●

●

●
●

●●●

●● ●

● ●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●
● ●

●●
●●● ●●●●● ●●

● ●

● ●
●

● ●● ●

●
● ● ● ● ●●● ●

●

●

●●

●

●
●●

●
●

●

●

●
● ●

● ●

●
●

●●

●

●

●

●
● ● ● ●

●
●

●●● ●●●
● ●

● ●

●
●

●●
●

●

●
●

●●

●
●● ●●

●
●●

● ● ●

●

●
●

●
● ●

●

●

●
● ●

●
● ●

●
●

●
●

●
● ●●

●

●
●

●●

●● ●
●

●●

●

●
●

●

●

●● ●
●

●●
●

●
●

●
● ●

●

●
●

●●
●●

●
●●●

●
● ●● ●

●
●

●

●
●

● ●
● ●

●

●
●

● ● ●●

●

●

● ●

● ●
●

●

●

●
● ●

●●

●
● ●●

●●●
●●

● ● ● ●●
● ● ●●

●

●

●

●
● ●●

●
●

●
●●●

●
●● ●●

●
●

●●
●

●

●
● ●

●●
●

●

●● ●

●

●
●

●

●

●
●

●
● ●

●

● ● ●
●

●●

● ●
●

●
●

●●

●

●
●

●

●
●

●● ● ●●●
● ● ●

●

●

●●
● ●

●
●
●

●
●

● ●●

●

●
●

●
●

●
●

●
●

●● ●●
●● ●● ●

●

●● ● ●●

●

● ●
●

●

●
●

●
●

●
●●

●
●

●

●

●
●●

●

●

●

●

● ●
●

●

●
●● ●●

●
●

●

●●
●

● ●

●

● ● ●
● ●

●

●●
●

● ●●
●● ●

●●
●

●●

●
●

● ●●

●
●

●●
●

●●●
●● ●●

●
●●● ●●● ●●

●

●
●

●

● ● ●
●

● ●

●

●● ● ●
●

●●●

● ●
●

●
●

●
●

●
●

●●
●

●●●
●

●●
●

●●●
● ● ● ●

●

● ●
●

●
●

●
● ●

● ●

●
● ● ●

●
●●

●
● ●●●

●
●

●
●●● ●

● ● ●

●

● ●●

●

●

●

●

●
●

●●

● ●
●

● ●●●
● ●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
●
●

●

●

●

● ●●
●

● ●
●●

●
● ●

●

●
● ●

●
●●

●

●
●

●

●
●●

● ●
●

●●

●
●

● ●
●

● ●
●

●
●

● ●
●

●●
●

●
●●

●
●●

●

●

●●
●●

●● ●
●

● ●
● ●●

●

●
●

●

●
●

●
●● ●●

●● ●
●●

● ●

●
●

● ●
●

●

●●●

●
●

●

●
●● ●

●
●

●

●●

● ● ●●●
●

●

●

●
●

●
●

●
●

●

●
● ●

●
●

●●● ●
●

●
●

●
●●

●

●
●●●

● ●
●

●
●

●

●
●

●●

●
● ●●

●● ●

●

● ●
●

●● ●●
●

●●
●

●
●

●● ● ● ●
●

●

●
●

●

●

●
●●

●
●●

●
●

●

●●
●

●
●

●

●
●

●●

●

●

●
●●

● ●
●

● ●
●

●●

● ●

●
●

●●
●●

● ●
●

●
● ●

●

●●
●

● ●

● ● ●
●

●
●

● ●
●

●
●

●
●●

●
●

●

●
●

●
●

●
● ●

●
●
●

●

●●● ●

●

●

●

●
●

● ●●
● ●

●●
●

●
● ●

●

●●●

●
● ●● ●

●
●

● ●●
●

●

● ●●
● ●●

●

●
●●

●●

●

● ●●
●●

●●

●

●●
●●

●

●

●
●

●

●

●
●

●

●
● ●

● ●
●

● ●
●

●● ●
●

●
●

●●
●

●
●

● ●
●

●

● ●
●

●●
●

●● ●●
●●

● ●●
●

●

●
● ●●●

●
●

●
●

●
● ●●

●

●●
●

●

●
●●

●

●

●●
●

●●●
●

● ●
●

● ●
●●

●
●●

●
●

● ●

● ●
●

●●
●

●

●●
●●

●
●

●
●

●
●●

●

●

●●
●● ●●●

● ●

●●
●

●●
●

●●
●

●
●

● ●
●● ●

●

●●

●

●

●
●●

● ●
● ●●

●
●●

●● ●● ●
●

●

●
●

●●●
● ●

●●

●
●

●

●

● ●

●
●

●
●●

●
●

●
●●

●
●

●
●● ●

●
●

●
●●

● ●
● ●

●
●
●

●
●

●
●

●
●

●
●

●

●

●
●

●●

● ●
●
● ●●

●
●

●
●

●●●
●

● ●● ●●

●
●

●

●●
● ●

●●
●●

●● ●●●●
●
●

●
●

●●

●●

●
●

●

●

●

●

● ●
●

● ●●

●

●● ●
●

●
●

●

●

●● ● ●

●

● ● ●●
●

●● ●

●

●

●

●●●
●

●

●

●
● ●

●● ●

●●● ●

●
●●

●
●

●
●

●
●

●● ●
●

●●
● ●

●
●

● ● ●
●

●
● ●

●
●●● ●

●
●

●●
●

●

●●

●
●
● ●●

●
●●

●
●

● ●
●

●
●

●●
●

●●

●
●

●
●●

●
● ●

● ●
●

●

●
● ●

●
●

●●

●

● ●
●●

●
●

●●
● ●

●●
●

●
●

●
●

●

●
●● ●

● ●●

● ●
●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●●

●
●

●●
●

●

●

●

●●
●

● ●
●

●
●

●
●

●

●
●

●

●

● ●
●

●●

● ●●

●●

● ●
●●

●
●●●

●
●

●●
● ●

●●● ●●

●

●
● ●

●

●
●

●●●
●

●

●●

●

●●●

●
●

●

● ●●

●

●
●

●
●

●
●●

●● ●

●●
● ●●

●
●

● ●
●

●
●● ●

● ● ●
●

●●● ●
●

●

●

●

●

●
●●●

●
●

●

●
● ●● ●●

●

●● ●
●●

●

● ●
●

●
●

● ●

●

●
●

●●
●●

●
●

● ●● ●
●

●
●●

●

●●●
●

●
●

●
●

● ●
●

●

●
●

●
● ●

●● ●● ●

● ●

●●
●● ●

●●● ●●
●●

●● ●

●● ●●

●
●

●

●● ●●
● ●

●

●
●●●● ●

●

● ●● ● ●
● ●

●
●

●

● ●

●●● ●● ●
●

●● ● ●

●

● ●
●●

●

●

●

● ●
●● ● ●●●●

●

●●
●

●
●

●
●

●●
●●

●

●

●

●

●

●
●

● ●●
●

●
●

●
●

●● ●
●

●●
●●● ●●

●●

●

●
● ●●●

●
● ●●

●
●

●

●
●

●
●

●
●

●

●

●●
●

●●
●● ●

●

●
●

●

● ●
● ●

●●

● ● ● ●
●

●●●
●● ●●

●

●

●

●
●

● ●
●

●
●

● ●● ●●●
●●

● ●●
●

●

●
●

●
●

●●

●

●●

●

●

●
● ●●●● ● ●●

●
●

●

●● ●

●
●

●

●

●

●
● ●

●

●

●
●
● ●●

●

●●
●

●
● ●

●
●

●
●

●

●●
●●

●
●● ●●

●● ●

●● ●
● ●

●
●● ●

●
●

●

●
● ●

●

●
●

●
●

●

●
●

●
●●

●●

●
●

●

●
●

●
●

●●
● ●

●
●
●

●
● ●

●●●
●● ● ●

●

●

● ●
● ●●●

●
●

●
●

●
●

●

●
●●

● ● ●
●

●

●

●
●

●
●

●● ● ●
●

●

● ●
●●

● ●●
●

●

●
●

● ●
●● ●

●
●

● ●
●

●
● ●●

● ●

●

●

●●
●

●

●
●

●

●●● ●
●

●

●

● ●

●
●● ●●

●
●

●
● ●●

●

●

●

●
●

●

●
●

●
●

●●●

●
●

●

●
●

●
● ●

●● ●
●

●

●

● ●●

●

●

●

●
● ●

● ●
●

●
●

●

●
●●

●
●
●

●

●●●

●

●

●
●

●● ●

●●
●

●●
●

●
●●

●

●

●
● ●

●

●
●

●

●

● ●
● ●●

●

● ● ●
●

●
●

●

●●

● ●
● ●

●
● ●

●●●
●●

●

●●

●

● ●● ●

●

●
●

●
● ●●● ●●

●
●● ●
●

●
●

●● ●
●

● ●●
●

●●●

●
●

●

●●

●

●
● ● ●● ●

● ●●
●● ●

●

●

● ●●
●●

●
●

● ●

●

●
●

●

●
●

●

●

●
● ●

● ●

●

●●
●

●

●
●●

●
●

●
●

●● ●

● ●

●
●● ●

●

●

●
● ●

●

●● ●●
●

● ●
●

●●
●

●●
●

●●
●

●

● ● ●●
●

●

●
●

●
●

●

●
●

●
●●

●
●

●
●● ●●● ●● ● ●

●
● ●

● ●

●
●● ●●

● ●
●

●●
●●

●
●●
●● ●●

● ●

●

●

●

●

●

●

●
●
●

●●
●

●

●●
●

●

●●

●●
●

●

●
●● ●

●

●

●

● ● ●

● ●

●

● ●

●●● ●

●
●

●
●

●
●

●

●

●
●

●●
●

●
●

●

●
● ●●

● ● ●
●

●
●

●●
●

●
●

●
● ● ●●

● ●● ● ●

●
● ● ●

●
●

●
●

●●●

● ●
●

●

● ●
●●

●●

●

● ●
● ● ●

●
●

● ●● ●

●
●●

●● ●●

●

●
●● ●

● ●●
●

●
●

●

●
●

● ●● ●●

●

● ●●
● ●

● ●
● ●

●

●●
●●

●
● ●

●

●
●

●
●●

● ●
●

●
●

●
●●

●
●

●●

●

●
●

●

●
●●

● ●
●●● ●

●

●

●

●

●

●
●

●●●

●

● ●●
●

●

● ●

●● ●

●

●●

●●

● ●
●
●

●

●
●

●
●

● ●●

●

●

●
●●

●
●● ●

●
●

●●

●

●●●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●●●

●

●

●● ●

● ●

●

●

●
●●

● ●●●

●

●
●

●

●●

●

● ●● ●●●●● ● ●●●● ●● ●● ●●● ●●●●● ● ●● ●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ● ●● ●●● ●● ● ●● ●●● ●●● ●● ●● ● ● ●● ● ●● ●● ● ●●● ●● ●●● ● ●● ●● ●● ● ●●● ●●●● ● ●● ●●●● ● ● ●●●● ● ●●● ●●
●

●● ●● ● ● ●●●● ●● ● ●●●●● ●● ● ●●● ●●●●● ●● ● ●● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ●● ●●●●● ●●●● ●● ● ●● ● ●● ●● ●●
●

●● ● ●●● ●●● ●●●● ●● ● ● ●●●● ●● ●●●● ● ●
●

●●●● ●● ●
●

●● ● ●●
●

● ●● ●● ●● ●● ●● ● ●●●●● ●● ●● ●●●●● ●●
●

●● ●● ● ●● ●●●● ●●
● ●● ●● ●●

●
● ●●●● ● ● ●●●● ●●

● ●● ●●●●●● ● ● ● ●● ●●● ●
●

●● ● ●●
●

●● ●● ● ● ●●●● ●● ●● ●●●
●

● ●●● ● ●●● ●
●

● ●●● ●●● ●●●● ● ●● ●●●● ● ● ● ● ● ●●●● ● ●● ●● ● ●● ●
●

● ●●
●●● ●

●
●● ●●●

●
●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●●●●● ●● ● ●●●● ●● ●●

●
●

●
●● ● ●●● ● ●●● ● ●●●● ●● ●

● ● ●●●● ● ●●●

●

● ●●●
● ● ●●●●●●●

●
●

●●●● ●●●● ●●● ●●
●

●
● ● ●●●
●

●●
●●

●●
●●

●●● ● ●●●● ●●●●
●●● ● ●● ● ●● ●● ●●● ●●

●
●● ●●● ● ● ●●

●● ●●
●● ●●

●
●● ● ●

● ● ●● ●● ● ●●● ● ●
●● ●●●● ●● ●

● ●●●
●

●
● ●● ● ●●●● ● ●● ●●

●

●
●

● ●●● ● ●
●

● ●● ●
●

●

●
●●

●

●
●

●● ●●● ●●● ●
●

●●●
●

●● ●
●

● ●●● ●● ●● ● ●● ●● ●●
●

●● ●
●

●●● ●●● ● ●●● ●●●● ● ●
●●● ●●●

●●●● ● ●
●

●
●

● ●● ●
●

●●● ●
●●

●

●●● ●● ●
●

● ●●
●

●
●

● ●●
●

●
●● ●●●

● ●
●

●
●

●● ●●● ●● ● ●●●
●●● ● ●● ●●● ●●●● ●● ●

●
●●● ●●●●

●
●● ●● ●● ●●● ●

●
● ●● ●
● ● ●●

●
●● ● ●●

●
● ●●

●
●●●

●
● ●●● ●● ●

●
●

●● ●●
●

●
●

● ●
●

●●
●

● ●● ●●● ●
●

● ●
●

●●● ●● ● ●●
●

●● ●● ●●● ●●
●

●● ●
●

●● ●
●●
●●● ●

●● ●
●●● ●●●

●●● ●● ● ●●● ● ●●● ● ● ●●● ●
●● ●

● ●
●

●
● ●●●● ●●● ●

●
●

●
● ● ●●●

●● ●
●●

●●●
●● ●

●
● ●●

●
●

●●
●● ● ●●● ●●● ●●

● ●● ●

●

●
● ● ●●● ●

●
●●●

● ●
●●●

●
●
●●

●
● ●● ● ●● ●●

●
●

●
● ●● ●●●
●●

●● ●
●

●● ●● ● ●
●

● ●●
●● ●

●●
● ●

● ●

●●

●

●
● ●●● ●

●● ●● ●●●
●

●●●●
●

● ● ● ●● ●● ●● ●
●

● ●● ●● ●●●● ●●● ● ●● ● ●●● ●●● ●
●

●
●

●
●

●
●

●
●

●
●● ●●●

●
● ●●●

●
●● ● ●

● ●
●●●

● ●● ●● ●●● ●
●●

● ●
●

●

● ● ●
● ● ●

●
●●
●

●
● ● ●●

●
●● ●●●● ●●
●● ●●● ●

●
● ●●● ●

● ●●
●●

●

●
●●
●● ●●

● ● ●● ●● ●● ●● ● ●● ● ●
●

●● ●
● ●

●

●● ●● ●
●●● ●● ●

●●
● ●

● ●
●

●● ●●
●

●
●

● ●● ●
●● ●●● ●●●●

●
●

● ●
●

● ●●● ●●●
●

● ● ●
●●

● ●●● ●
●

●●● ●● ● ●
●

● ●● ●●
●

●

● ●●
● ●●

●
●

● ●

●

● ●●
●●

●
●●● ●● ●● ●

●
●●●

●
●

●
●

●

●●
●● ● ● ●●

●
● ●

●
●●

●
● ● ●

●
●●● ● ●

●

●●●●
●

●●
●
●●

●●● ●
● ● ●

●
● ● ●

● ●●
● ●

●
●

● ● ●● ●● ●
●

●●● ●
●●● ●

●●● ● ●●● ●

●

●
● ●● ●

● ● ●●●●●
●

●●●● ● ●
● ●● ●●

●●
●

●
●●

●●
● ●

●
● ●

●
●● ●● ●●

●●
●

● ●
●

●
●

●
●

●● ●●● ●●
●

●
●

●●●● ●●
●

●
●

● ●●
●

●
●

●
● ●

●

●

● ●●
● ●

●

●● ●

●

●●
●

●
●●●●

●●
●

●● ●● ●● ●● ●
●

●
● ●

●
●

●

●

●

●

●● ● ●●
●

●

●●●●
● ●●●

●● ●
●●

●● ●●
● ●●●● ● ●

●

●
●●

●
●

●
● ● ●

●●
●●

● ●
●

●

●● ●● ● ●●
● ●
● ● ●● ●●

●●
●

●

●
●● ●●● ●

● ●●● ● ●
●

●●

●

● ●
●●●● ●●

●
●●●● ● ●

●

● ●●●

●

●
●●

● ●
●●

●

●
●●

●
●

●
●●

●
●

● ●

●
●

●
●● ●

●
● ●●

●

●
● ●

●
●

●
● ●●

●

●● ●● ●
●

●
●●

● ● ●
●● ●

● ●●● ● ●●●●●
●

●● ● ●
●● ● ●

● ●
●

● ●●
●

●
●

● ●
●

●

●
●●

● ●●
● ●● ●

●

●
●●

●

●
● ●●

●
●●● ●

●

●
●●

●●
● ●● ● ●●● ●●●

●
●● ●●● ●●

●

●●● ●
●

●●●
●

● ●

●

●
●

●
●

●● ●●
●

● ●●
●●● ● ● ● ●●● ● ●● ●●

●
●

●● ●
●●●
●●

●● ●●●
●

●
●

●
●

●

●
●●

●● ● ● ●
●

●

●
●

●
●● ●●●● ●● ●

● ●●
●

●

●●
●

●
●

●
●

●
●●

●●●●
●
●

●
●●●

●●●
●

●
● ●● ●●

● ●
●

●●
● ●

●
● ●●

●
●●

●
●

● ●
● ●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

●●
●

●
●●●

●●
●

●
●

●

●● ●
●

● ●
●●●●

●
● ●● ● ●●●

● ●●●

●

●
●

●●
●● ●●

●
●●● ●●

●
●

●●
●● ●

●
● ●

●
●

●●
● ●

●

●

●
● ●● ●

●
●

●
● ●

●

●

●●
●● ●

●
●

●
●● ●●●

●●●
● ●

● ●●
●

● ● ●●● ●
●

●

●●●

●●
●

●

●
● ●

●
●

●
●

● ●
●

●●

●● ● ●

● ●

●●

●

●
●

●
●● ● ●

●

●
●

●
●●

●
●

●
● ●●

●
●

●● ●
●●

● ●
●

●
● ●●

● ●
●

●

● ●● ●● ●●●● ●
●●

● ●●
● ●

●

●

●●●
●

● ●
●●●●

●

●●
● ●
●

●
●

●
●

● ●●
●

●
●● ●

●
●

●

●●
●

●●
●

●

●
● ●●●

●● ●
●●

●
● ●

●
●●

●●

●

●● ●
●

●●
●●●

●●● ●
●

●
● ●

●
●

●● ●●
●● ●●

● ●
● ●● ●●●

●
●

● ●

●●

● ●● ●●
● ●
● ●

●●

●●●

●●
● ●●● ● ● ●

●
●

●●●

●

●

● ●
●
●

●●● ●

●

●●
●●

●
●●
●

● ● ●● ●●
● ●●

●
●

●●●● ●●●●
●●● ●●

●

●

●

●● ●●
●

●

●

●● ●
●

●

●
●

● ● ●●
●● ●

● ●
●●

●
● ●●● ●

● ●●● ● ●●●
●

● ●
●

●
●

●
●

● ● ●●
●

●
●

●
●●

●

●

●

●● ●●

●

● ●
●

●

●
●
●

●●● ●● ●
●

● ●
●

● ●

●

●
●

●●●●
● ●

●

●
● ●

● ●●
●●

●
● ●

●

●

●
●
●●

● ●● ● ●● ●●
●

●●

●

●●
●

● ●●●●
●● ●●●

● ●● ● ●
● ●● ● ● ●

● ●●

●
● ●● ●

●
●

●

● ●
●●

●

●●
●●●●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●●
●

●

●
●

● ●●
● ●● ●●

●●
●

●
●

●
●

●●
●

●● ●● ● ●
●●

●
●

●
● ●
●

●
●

●
●

●

●
●

●●
● ●

●●
● ●

●

●● ●●
●

●
● ● ●● ● ●●

● ●
● ●●

●
●

●
●●●

●
●●

●
●●

●●
●

●
●

●

●
●●●

●
●

●
●

●

●

●● ●
●

● ●
●●●

●

●
●●

●
● ●

●

●
● ●

●
●

●
●

●● ●● ●
●

●
● ●

●
●
● ●●●● ●

● ●
●● ●

●
●

● ● ●●●
● ●

●

● ●●

●
● ●●

●
●

●
● ●

● ●

● ●
●●●

●

●
●

●
●●

● ●● ●
●

● ●
● ● ●●● ●

● ●

●

●
●● ● ●●

●
●●

●●

●

●

●

●
●

●● ●

●
●

●

●●
●●

●
●

●
●●● ●

●

●

●
●

●
● ●●

●
●

●
●

●
● ●

●● ●
●

● ●
● ●●

●●
●

● ●
●● ●

●
●

● ●

●● ●
●

●
●

● ●
● ● ●●● ●

●

●
●● ● ●

● ●
●●● ●●●

●
●

●●
●

●●
●●

●

●
●
●

●
●

● ●
●

● ●
●

●●
●

●

●●

●

●● ●● ●●● ●●
●

●●
● ●●● ●

●

●
●●

●●
●

●
●● ●● ●

●
●

●
●● ●

● ●●
●

● ●

●

●●● ●●
● ●●●

●
●●●

●
●●

●

● ●

●
●

●

● ●
●●●

●
●

●●
●
●●

●
●

●●● ● ●
●

●●

●

●

●
●● ●

●
●

●

●

●● ● ●
●● ●

●
●

●
●

●
●

●●

●

●
●

●

●
●

●●
●

●
●

●

●
●

● ● ●
●

●●
●

●
● ● ●●

●
●

●●●●● ● ● ● ●
●

●● ●● ●
● ●
●● ●

●●
●●

●
●

● ●●●
●

●●
●

●

●
●●

●●
●

● ●
●

●
● ●●

●

● ●● ●
●

●
● ● ●

●

●

●

●

●
● ●●

●
●

●

●

●●●

●

●
●

● ●
●

●
●

●●●

●

●
●

●
●

●●
●●

●
●●● ●●

●●
●

●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●

● ●●● ●●●
●

●

●
●● ●

●
●

●
●●

●
● ●

●●
●

● ●●

●
●

●
● ●

●

● ●
●

● ●

●

● ●
●

●
●

●

●
● ●●●

● ●● ● ● ●

●
●●

●

●●
● ●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●●
●

●●●●

●

● ●

●●

●

●

●
●

●
●

●●
●●

●

●
●● ●● ●

●●

●
●

●
●

● ●
●

●●

●

●
● ●

●

●
●● ●

●●●
●

●

●
● ●●

●

●

●
●

● ●
●●

●

●

●●
●

●

●

●
●

●

●

●
● ●●
● ●●

●
●

● ●●
●

●
●

●
●

● ●●

● ●

●●
●

●

●
●

●
●

●
●

●

●

●●

● ●
●●

●

●
●

●
●●●

●
●

●
● ●

● ●●

●

●
● ●
● ●

●

● ●
●●

● ●

●

● ●
● ●

●
●

●
● ●

●

●
●

●

●

●●●●
● ●

●

●
●

●

●
●

●

● ●

●●
●

● ●

●
●

●
●

●●
●

● ●
●

●

●

●
●● ● ●●

●●
●

●●
● ● ●

●●

●
●

●
●

●

●●
●

●
●

●
● ●

● ● ● ●●
●

●●●● ●●
●

●
● ●●

●
●

●

● ●●
●

● ●
●

●● ●

●
●
● ●

●
●

●

●
●

●●
● ●

●●●
●

●● ●
●

● ●●

●
● ●

●

●

●●
●

●
●

●

●

●

●
●

●

●
●●●

●
●

●

●

●
●● ● ●

●

●
●

●
● ●●

●
●

● ●

●

●

●
●

●
●

●

●
●

●●

●
●● ●

●
●
● ●

●
●●

●

●

●

●
● ●●

●
●●●

●

●
●●● ●
●

●●● ●
●

●
● ●

●●●
●

●
●

●
●

●●

● ● ● ●
●

●
●●
●●●

●● ●
●
●

● ●●

●

●●
●●

●
●

●●

● ●●
● ● ●

●●● ●
●

●●

●

●
●

●

● ● ● ●
●

●
●

● ●

●
● ●

●

●● ●
●● ●●

●

●
●

●
●

●
●

●
●●●

●
● ●●

●
●●

●

●
●

●

●

●

●●

●

● ●
●

●

●
●●

●
●

●●
●

●
●●●

●
●

●●
●

●
●

●
●

●●
●

●

●

● ●

●
●

● ●
●● ●●

●
●

●● ●●
●● ●● ●

● ● ●●●
●

●
●

●

●●

●
● ●

● ●
●

●
●

●

●

●●●

● ●
●

●

●●

●

●
●

●

●

●● ●
●●
●

●
●●
●●

●●
●● ●

●
● ● ●

● ●

●
● ●

●

●

●
●

●●
●

●
●

●
● ●

●

● ●
● ●

● ●●● ●
●●

● ●●●

●

● ●●

●

●
● ●● ● ●

●
●

●
●

● ●

●

●
●

●

●

●●
●

●
●

●● ●●
●

●●

●
● ●●

●

●●
●

● ● ●
●

●
●

●●
●
●

●
●

●●

●

●●● ●

●

●● ●●
●

●
● ●

●

●
●

●
●● ●

●
●

●●
●

● ●●

●
● ●

●●● ●
●

●●
●
● ●

●
●

●
●●

● ●
●● ●●●

●
●●

●

●
●●

●

●

●●
●

●
●●● ● ● ●

●

● ● ●●

●

●
●

●
●

●
●

●
●

●

● ●
●

●

● ●● ●
●

●

●
●

●
●

●

●
●

● ●

●●

●

●

●
● ●

●
●
●●● ●

●

●

●

● ●
●

●

● ●
●

●
● ●

●
●

●
●

● ●

●
●●● ●

●●●
●●

●
●●

●

●
●●●

●

●
●●

●

●
●●

●

●

●
●

●
●●

●
●

●
●●

●●

●

●
● ●●

●
●

●● ●● ●

●

●
●

●●

●

●

●
● ●

● ●
●●

● ●●

●
● ●● ●

●

● ● ●
● ●

●

●

●
● ●

●

● ●
●

●
●

● ●
● ●

●

●
●

● ●

●

●

●
● ● ●●

●
●

●
●

● ●●
●

●
●●

● ●
●

●

●

●
●

●● ●● ●
●● ● ●

●
●●●

●
●

●

●
●●

●
●

●
● ●

●

● ●

●

● ●●
●● ●

●
●

●●

●● ● ●
●

●
●

●
●

●●

●

●
●

●

●
●

● ●
●●

●
●

●
●

● ●

●

●
●

●
●●

●

●

●

●

●

●

● ●●
●

●

●●
● ●

●

● ●●

●●

●

● ● ●● ●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●
● ●

●
●

●
●

●

● ●●● ●
●

● ●●
●●

●●

●

●
●●●

●
● ●●●

●
●

●
●

● ●

●

●● ●●

●

●● ●●
● ●

●

●●
●● ●

●

●
●

● ●● ● ●●
● ●●

●

●●
● ●

●

●
●●

● ●● ●

●
●
●

●

●●
●

●●●
●

●
●

● ●●

●

●
●● ●●

●
●

●

●

●

●●● ●●

●
●

● ●

●
● ●

●

●
●● ●●

●
● ●●●●

●

●
●

●

● ●

● ●●

● ●

●
●

●● ●●

●

● ●
●●

●

●● ●●
●

●

●

● ●
● ●

●

●
●● ●●

●

●
●

●
●

●
●● ●

●

● ●
● ●

●
●

●
●

●

●
●

● ●●●●

●

●

●

● ●

●●
●

● ●
●

●● ●
●

●
● ● ●● ●

●
●●● ●

●

●
●

●
●

●●

●
●●

●

● ● ●
● ●

●
●●

●
●

● ● ●●
● ●● ●

●

●●● ● ●
●●

●
●

● ●

●

●
● ●

● ●
●

● ●●
●

●●
●

●
●

●

●● ●
●

●●●

●

● ●
●

●●

●
● ●

●

●
●

●●
● ●●● ● ●

●

●

●
● ●

●

●

●

● ●
●

●

●

●

● ●

●

●
●

●● ●
●●●

●

●

●

●
●

●

●

●

●●
●

●
● ● ●●

●
●

● ●●

●

●
● ●
● ●

●
● ●

●
●● ●●●

●

●

●

● ●● ● ●●●
●● ●●

●

●

●
● ●

●
●●● ●●

●

●
●

●
●

● ● ●
●

●
●●● ●●

●
●

●
●●

●

●

●

●

● ●●●

●

●
●

●

●
●

●
●

●
●

●
● ●●●

●

●
●

● ●
●

●
●

●
●

●
● ●

●●

●

●
● ●●

●
●

● ●

●

●

●
● ● ●

● ● ●
●

●
●● ●● ●●

● ●
●

●
●

●
●

●
●● ●

● ●●

●

● ●●●
●●

●● ● ● ●
●

●●

● ●● ●

●

●

●
●

● ●
●

●●

● ●
● ●

●●
●

●
●●

●●

●
●●

●
●

● ●
●● ●

●
●●

● ●

●

●

● ●
●

●
●

●●
●● ●

●
●●● ●

●
●

●
●

●●
●●●

●
● ●

● ●●
●

●●
●●

● ●●● ●

●
●

●●●
●

●
●● ●●

●

● ●
● ●

●

●● ●
●

●

● ●
●

●
●

●
●

●
●●

● ●●● ●●●
●●

●
●

●

●

●
●

●● ●●●
●

●

●
●

●
●

●● ●
●

●
●

●

●

●● ●

●

●

●

● ●
●

●

●

● ●

●●● ●

●

●
●

● ●
●

●● ●
●●

● ●● ●●
●

● ● ●
●

●●●
●

●● ● ● ●
●

●●
●

●●
●●

●
●

●●
●

●●

●

●●●

●

● ●

●

● ●

●
● ●●

●● ●●
● ●●

●●
●

●●
●

●●● ● ● ●● ●● ●
●●●

●

●

●

●●

●●●
●

●
●

●
● ●

●

●
●● ●

●
●

●

●
●

●
●

●

●

●● ●
●●●● ●

●
●

●●
●

●

●
●●●

●
● ●●● ● ● ●

●
●●

●
● ●

●

●

● ●● ●● ●● ●● ●
● ●

●
●

●
●● ● ●●

●● ● ● ●● ●
●●

●
● ● ●

●

● ●●●
● ●● ●

●
●

● ●
●

● ●
● ● ●

● ●
●●

●

●
●

● ●
● ●

● ●

●

● ● ●●
●

●●
●● ●

●
●

●●●● ●●
●

●

●●
● ●

●●
●

●
● ●●● ●● ●● ● ●●

●

●
● ●● ● ●

●● ●

●

● ●
●●

●●
●

●
●

●

●
● ●●

●●

●

●●
●

●

●

●
●

●● ●●
●

● ●●

●

●●
●

●

●

●

●●

●

●
●● ●

●
●● ●●

●● ●●●
●

●
●● ●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

● ●

●
●

●
●● ●● ●●● ●●

●● ●●
●●● ●

●
●

● ●●
●

●● ●●● ●

●

●
●●

●

●
●

●

●

●●

●
●

●

● ● ●●
●

●●
● ● ●

●

●

●
● ●

●

● ● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●● ●●● ●●●● ●● ●● ● ● ●● ●●● ●● ● ●● ●●● ●● ●● ● ●●● ●●● ●●● ● ● ●● ●●●● ●● ● ● ●●● ● ●●● ●● ●●● ●● ●●● ●● ● ●● ●● ●● ● ●● ●● ●● ●● ●●● ●● ●●● ● ●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ● ● ●●●● ● ●● ●● ● ●● ●● ● ●●●● ●●●● ● ● ●●● ●● ● ●● ●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●●●● ●● ●● ● ● ●● ●● ●● ● ●●● ● ●● ●● ●●●● ● ●● ●● ● ●● ●●● ● ●●●● ●● ●● ●● ●● ●●●● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●●● ●●●● ●● ● ●● ● ●● ● ●● ●● ● ●●●● ●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ●● ●●● ●●●● ● ●●●● ● ●●●●● ●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●●● ●●● ●● ●● ● ●● ●● ● ●● ● ●●● ● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●● ●●●● ● ● ●● ●● ●●● ● ●●●● ● ●● ●● ●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●●●●● ●● ●●● ●●●● ● ●● ●● ●● ●●●● ●● ● ● ●●● ● ●● ●● ●●● ●●● ● ●●● ● ● ●●● ● ●● ●●● ●● ●●● ●●● ● ●●● ● ●●● ● ● ● ●● ●●●●● ●●●● ●●● ●● ●● ● ●● ●●● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ● ●●●● ●●● ● ●● ● ●●● ● ● ●● ●● ●●● ● ●●● ●● ●●●● ●●● ●● ●● ● ●●●●● ●● ●● ●●●●● ● ●● ●● ● ●●● ●● ● ●●● ● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●●●●●● ● ● ●●● ●●●● ●●● ●● ● ●●●●●● ● ●●● ●● ● ●● ● ● ● ●●●● ●● ●● ●● ●●●● ● ● ● ●● ●● ●● ● ●● ● ●●● ● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ● ● ●● ●● ●●● ● ●● ●●● ●● ● ●●● ●● ● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ●●●●● ●● ●● ●● ●●● ● ●●●●● ●●●●●● ● ●●●●● ●●● ●● ●● ●● ●● ● ● ●●●●● ●●●●●● ● ●● ●●●●● ●● ●●●●● ●●● ●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●●● ● ●●● ● ●● ● ●●●● ●●● ●●● ● ●●● ●●●● ●●● ● ● ●●●● ●● ● ●● ● ●● ●● ●● ● ●● ●● ●●● ● ●●● ●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●●● ● ●● ●●● ● ●● ●●●● ●● ●● ●●●● ● ●● ●●●● ●● ●●● ●● ● ●●● ●● ●● ● ●●●● ●●●●● ● ●● ●●● ●● ● ● ●● ●●●● ●●● ●●● ●● ●●● ●● ●● ●● ● ●● ●● ● ● ●●● ●●● ● ●● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ● ●●●● ●● ●● ●● ●●● ●● ●● ● ● ●●● ●● ●● ●●●●●● ●●● ●● ●● ●● ● ● ●●● ●● ●●● ●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●●●●●● ●●● ●● ● ●● ● ●● ●●● ● ●●● ● ●● ● ● ●● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●● ● ●● ●●● ●● ●● ●●●● ●●●● ●●●● ● ●● ●● ●● ●●●● ● ●● ● ● ●● ●●● ● ●● ● ●●● ●● ● ● ●●● ●● ●●● ● ●● ●● ●●● ●● ●● ●● ●●● ● ●● ●● ●●●●●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ● ●●●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●● ● ● ●● ●● ●● ● ●● ● ●●● ●● ●● ● ●● ● ● ●●● ●●●● ●●● ●●● ● ●●● ● ●●●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●●● ● ●● ● ●● ● ●●● ●●●● ●●● ●● ● ● ●● ●●●● ●● ● ● ●●●● ● ●● ●● ● ● ●● ●●● ● ●●● ●● ●●● ●● ●●●●● ●●● ●●● ●● ● ●●● ●● ●● ●●●● ●●●● ● ●●● ●● ● ● ●●●● ●●●● ●●●●● ●●●● ●●● ● ●●● ●● ●●● ● ●●● ●●●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ● ● ●●● ●● ●● ●●●●●● ●●●●●●● ●● ● ● ●●● ●● ●●●● ●●● ●●● ● ●● ●● ●● ●● ●● ●●● ●● ● ●● ● ●● ● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●● ●● ● ●● ●● ● ●● ●●● ● ●● ●●● ●●●● ●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ● ●● ● ●●● ● ●● ●●● ●●●●●● ● ●● ●● ● ●●●● ●● ●● ● ●●● ●● ●● ●●● ● ● ●●● ● ● ●●● ● ● ●● ●●●● ● ● ●● ●●● ● ●● ●●●● ●●● ● ●●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●●● ● ●●● ●●●●● ● ●●●● ●● ● ● ● ●●●●●● ●● ●●● ● ●●●●● ●● ● ●● ●●●● ● ●●● ● ● ●●● ●● ●●● ● ●●● ● ● ●● ●● ●● ● ●● ●●●● ●● ● ●● ● ●● ●●● ●●● ● ● ●●● ● ●● ●●●● ●● ● ●● ●●● ●● ● ●●● ● ● ●●● ●●●● ● ●● ●● ●●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●●●● ●● ● ●● ● ●●● ●● ●● ● ●● ●●● ● ● ●● ●●● ●●● ● ● ●●● ●● ● ●● ●●● ●● ●●● ●● ●● ●●● ● ● ●● ●● ●●● ●● ●● ●●●● ● ●●●●● ● ●●● ● ●● ●●● ●● ● ●● ●● ● ●● ●●●● ● ●● ● ●● ●●● ●● ●●● ● ● ● ● ●●● ●●●● ●● ●● ● ●●●● ● ●●● ● ● ●●● ●● ●●● ●● ●● ●● ● ●●● ●●●●● ● ● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●● ●● ● ●●● ●●●● ●●● ●● ●● ● ●●● ●● ● ●● ● ●●●● ●●● ●● ●● ●●● ●●● ●● ● ●●● ●● ● ●●● ● ● ●● ●● ●●● ● ●●●● ●● ●● ● ● ●● ●●●●●● ● ●● ●●●●● ●● ●● ● ●● ●●●● ●●●● ●● ●●●● ●●●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●●●● ● ●● ●● ●● ●●● ● ●●●● ● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ● ● ● ●● ●●●●● ● ●● ● ●●● ● ●● ●● ●● ● ●●● ●● ● ●●●● ●●●● ● ●● ●●●●● ● ●●●● ●● ● ●●● ●● ●● ●●● ●●●● ● ● ● ●●●●● ●●●● ● ●● ● ●● ● ●●● ●●● ●●●●● ●●●●● ● ●●●● ●● ●● ●●● ●●●● ●●● ● ●● ●● ●● ●●● ●● ●●● ● ●● ●● ●●● ●● ●●●● ●●● ● ●●●● ●● ●● ● ●●● ●● ●● ●● ● ●● ●● ●●● ● ●● ● ●●● ●●● ●●●● ●● ● ● ●● ●●●● ● ●●● ● ● ● ●● ● ● ●● ●● ●●● ● ●●● ● ●●● ●●● ●●● ●●●● ●●● ● ●● ●● ● ●● ● ● ● ● ●● ● ● ●● ●● ● ●● ●●● ● ● ● ●● ●●●● ● ● ●● ●● ● ●●● ●●● ●●● ● ●● ● ●●●● ●● ●●●● ●● ●● ●●● ● ● ●●●● ●●●● ●● ●● ●● ● ● ● ●● ● ●●● ● ●●● ● ● ●● ●●● ●● ●●●● ● ● ●●● ●●●● ●●●● ●●● ●● ● ● ●● ●● ●● ●● ●● ● ●●●● ●●● ●●● ●● ●● ●●● ●●●●● ●● ●●● ● ● ●● ●●● ●● ● ● ●● ●●● ● ●● ●●●● ● ●● ●● ●● ●●● ● ●● ● ●●● ● ● ●● ●●● ●● ● ●● ●● ●● ● ●● ● ●●●● ● ●●● ● ● ●●● ● ●●● ● ●● ●● ●●● ●●●● ● ●●●● ● ●●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ● ●● ● ●● ●● ●●● ● ●●● ● ●● ●●●●● ●●● ● ●●●● ●●● ●● ●●●● ●●● ● ●●●● ●●● ● ● ●●●●● ●● ●●● ●●● ● ●● ●● ●● ●●● ●● ●● ●●●● ●● ●●●●● ●●●● ● ●● ● ●● ● ●●● ●●● ● ●●●● ●●● ●●●● ●● ●● ●●●● ●●● ●● ● ●● ●● ●●● ● ●● ●●● ●●●● ●● ●● ● ●● ●● ● ● ●●●● ● ●●● ● ●● ●●● ● ●● ●● ●●● ● ●● ●●● ● ●● ●● ●●● ●● ●● ●●●● ●● ●●● ●● ● ● ● ●● ●● ●●●● ● ● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ● ●● ●● ●● ●●●●● ●●● ● ●●● ● ●● ●●● ● ●● ●● ●● ● ●●● ● ●● ●● ●●●●● ● ●●●●● ●●● ●● ●● ● ●●●● ●●●● ● ●●● ●●● ●●● ● ●● ●●●●● ● ● ●● ● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ● ●● ●● ● ●●● ●● ●●●● ● ● ●● ●●●● ●● ●● ●●● ● ●● ● ●●● ●●● ● ●●● ●● ● ●● ● ●● ●● ●●●● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●●● ●● ●●● ● ● ●●● ●●● ●●● ● ●● ●● ●●●● ● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●●●● ●● ● ●● ●● ●●●●●●● ● ●●●●● ●● ●● ●●● ● ● ●●● ●● ●● ●● ●● ● ● ●● ●● ●●●●●● ●●● ●● ●● ●● ● ●●●● ● ● ●● ●●● ● ●●● ●● ● ●●● ●●● ● ●●●●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●●●● ●● ●●● ● ●● ●● ● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●●●●● ●●● ●●● ● ● ●● ●●● ●●●● ●● ●●● ● ●●●● ●● ●●● ●● ●●●● ●●●●● ●●● ●●● ●● ●● ●● ●●●● ● ●●● ● ●● ●● ● ●● ●●● ●●● ●● ●● ● ●● ●●● ● ●●● ●●● ● ●●● ●●● ●● ●● ● ●● ●● ●● ●● ●●●● ●●● ●●●● ● ●●●●● ●● ●●● ●●●● ●●● ●● ● ●●●● ●●●● ●● ● ●●● ● ●●● ● ●●● ●● ●● ● ●● ●● ● ●● ●●● ●●●●● ●● ● ●●●● ●● ●●●● ●●●● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ● ●●● ●● ●●● ●●● ●●●● ●● ●●● ●●●●● ● ● ●● ●● ●● ●●● ●● ●● ●● ●●●●● ●●●● ● ●● ● ●● ●●●●● ● ●●● ●● ● ●● ●● ●● ●● ● ● ●● ●●● ●● ●●● ●●● ● ●● ● ●● ●● ●●●● ●●●● ●●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●● ●●● ●●●●● ● ●●●● ●●●● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ● ●● ●● ● ● ●● ● ●●●● ●●● ●● ●● ●● ●●● ●●● ● ●● ●●● ●●●● ●●●● ●● ●● ●●● ●● ● ●● ● ●● ●● ● ●●● ●●●● ● ●●● ●● ●● ● ●●●● ●● ●●●●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●● ●●● ● ●●● ●● ● ●● ● ●● ●●● ● ●● ● ●● ●● ●●●● ● ●● ●●●● ● ●● ●● ● ●●● ●●●● ● ●●● ● ● ●●● ●●● ●●● ●● ●● ● ●● ● ●● ●●●● ●● ●●● ●●● ●● ●●● ● ●●● ●● ●● ●● ● ● ● ●●● ● ●●● ● ●● ●● ●● ●● ●● ● ●● ●●● ●●●● ● ● ●● ●●● ●●● ●●● ●●●● ● ●●● ●● ●●● ●●●●● ●● ●● ● ●●● ●● ●●● ●● ● ●● ●● ●● ● ●●● ●●● ●● ●●●● ● ●●●●●● ●● ● ●●●● ● ●● ●● ● ●●● ● ●● ●● ● ●●● ●● ●● ● ● ●● ●● ●● ●● ● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●●● ●●●● ●●●● ●●●● ●●● ●●●● ●●● ●● ●● ● ●●● ● ●● ●● ● ●●● ●●● ●● ● ●● ●●● ●● ●● ●● ● ● ●● ● ●●● ●● ●● ● ●● ●●● ● ●●●● ● ●● ●●● ●● ●●●●● ●● ●●● ● ●● ●●● ●● ●● ●●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●● ●●●● ●● ●● ●● ●●●● ●● ● ●● ●●●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●●● ● ●● ●● ●●●●●●●● ● ●●●● ● ●●● ●●●● ● ● ● ●●● ● ●●●● ●●● ●● ●● ● ●●● ●●● ●●● ●● ● ●● ●● ●● ●●● ●● ●● ●●● ● ●● ●●● ●●● ● ●●●●● ●● ●● ● ●●● ● ● ●●●● ● ●●● ● ●●● ● ●● ●● ●●● ● ●● ● ●●● ●●● ●●●● ●● ●● ●● ● ●●●●● ●● ●●● ●● ● ●●● ● ●●● ●● ● ●●● ●●● ●● ●●● ●● ●●●●● ● ●● ● ●● ● ●● ●●●● ●●●● ● ●● ● ● ●● ● ●● ●● ●● ●● ●● ● ●●● ● ●● ●● ● ●●● ●● ● ●● ●●●● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●●● ●● ● ●● ●● ●● ● ●● ● ●●● ●● ●● ●●●● ●● ● ●● ●● ● ●●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●●●● ●● ●● ● ●●●● ● ●● ● ●●● ● ●● ●●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●●● ● ●●● ● ●●● ● ● ●●● ● ● ●●● ●● ●●●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ● ● ●●● ● ●● ●●● ● ●●● ●● ●● ●● ●●●● ●● ● ● ●● ●● ●●● ●● ●●●● ●● ●●●● ● ●● ● ●●● ●●● ●●●● ● ●●● ●
●● ●● ● ●● ●● ●● ●●● ● ●

● ●● ●● ● ●● ●●● ●● ●
● ● ●●

●●
●

●

●● ●● ●● ●●● ●●● ●●●●● ● ●● ●●● ● ●● ●●● ● ●●● ●●● ●● ●● ●● ●● ●●●●●● ● ●●●● ●● ●●●● ●●● ● ●●● ●●● ● ●●●● ●●● ● ●●● ● ●● ●● ●● ●●●●●●●●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●●●● ●● ●●●●● ●● ●●● ●●●● ● ●● ● ●●● ● ● ●● ●●● ●● ●●● ●● ● ●●●●● ● ●●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ● ●●● ●●● ● ● ●●● ●●● ● ●● ●●● ● ●●●● ●● ●●● ● ●●● ●● ● ●●●● ● ●●● ●●● ●● ●●● ●●● ● ●●● ●●● ● ●●● ●●●●●● ●●●● ●● ●●● ●● ●● ●● ●●● ● ●● ●● ●●●●●● ●● ● ●● ●● ● ●●● ●●● ● ●●● ● ●● ● ●●● ●● ● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●● ● ● ●● ● ●● ● ● ●● ●● ● ●● ●●●● ●●● ●●●●● ● ●●●● ●● ●●● ●● ● ● ● ● ●●●● ●● ● ●●● ● ●● ●● ● ●● ● ●● ●● ●●● ● ●●● ● ●●● ●●●● ●●●● ●●●● ●● ●● ● ●● ●● ●● ●●●● ● ● ●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ● ● ●● ●● ●● ●●●●● ●●● ●●● ●● ● ●●● ● ● ●●●●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ● ●●● ●● ●● ● ●● ●● ● ●●● ●● ●●●●● ●● ●● ●● ● ●● ● ●●● ●●● ● ●●● ●●● ● ●●● ●●● ●● ●●● ●●● ●● ● ●● ●● ●●●● ●● ●● ● ●● ● ●● ● ● ●● ● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●●● ●● ● ●● ●●● ● ● ● ●● ●●● ●●●● ●●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●●● ●● ●●● ● ●● ● ●●● ●●●●● ● ●●● ●●● ● ●● ●● ●● ●● ●●● ●● ●●● ● ● ●●●● ● ●● ● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●● ● ● ●●● ● ●●● ● ●●●● ● ●●●● ● ●● ● ●● ● ●●● ●●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ●●●● ●●●● ●●● ●●● ●●●● ● ●● ●● ● ●●● ●●●● ●●● ● ●● ● ●● ●●● ●●●●● ● ●●● ● ●●● ● ●●● ● ●●● ● ● ●● ● ●●● ●●● ●● ●● ●● ● ●● ●●● ●●● ●● ●●● ● ●● ●●● ● ● ● ●● ●●●● ●●● ●●● ●●●● ●●● ● ●●●● ●● ● ●● ● ●● ●●● ●●●● ● ● ●● ● ●● ● ●● ●● ●●●● ● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ●●● ●● ●● ●● ●● ● ● ●● ● ●●●● ●●● ● ●●●● ● ●● ●● ●● ●●●●● ●●● ●● ●● ● ●●● ● ●●● ●●●● ●●● ● ● ●● ● ●●●● ●●● ● ●● ●● ● ●● ● ●● ●●●● ● ● ●● ●● ●● ●●●●●● ●●● ● ●● ● ● ●● ●● ●● ●●●● ●● ●●● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ● ●● ●● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ● ●●● ● ●● ●●● ● ● ● ●● ●● ●●● ● ●●● ●● ●● ● ●●●●● ●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ● ●●● ● ● ●●●●●●● ●●●● ● ● ● ●● ●● ● ●● ● ●● ●● ●● ● ●● ●● ● ● ●● ●● ● ●● ● ●● ● ● ●● ●●● ●●● ●●● ● ●● ●●● ●●●●●● ●● ●●● ●● ●●● ●● ● ●● ●● ● ●● ●●●● ●●● ●● ●● ●●● ●●● ● ●● ●● ●●●● ● ●● ●● ● ●●● ●● ●●●● ● ●● ●● ● ●●● ●●● ● ●● ●●● ●●● ● ●●●●●● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ● ●●●● ● ●●● ●● ● ●●● ●● ● ● ●●● ● ●● ●●● ●●● ●● ●● ●●● ● ● ●● ●● ● ●●● ●● ●●● ●● ● ●●●● ●● ● ●●● ●● ●● ●● ● ● ●● ● ●●●● ●● ● ● ●●●● ●●● ● ●● ●●● ●●● ●● ● ●● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ● ●● ● ●●● ● ● ● ●● ●● ● ●● ●●● ●●● ● ●●●●●● ●● ● ●●● ●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ● ●●● ● ●●●● ● ● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ● ● ● ●● ●● ●●● ●● ●●●● ●●● ●●● ● ●● ● ●● ●● ● ●● ● ● ●●●● ● ●●●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ● ● ●●● ●● ● ●● ● ● ●● ●● ● ●● ●● ●●● ● ● ●●● ●● ● ●●● ●●● ● ●●● ●● ●●●● ●●●● ●● ● ●●● ●●● ● ●● ● ●● ● ● ●● ●● ●●● ●●● ●● ●●● ● ●●● ●●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ●●●●● ● ●●● ●●●● ●●●● ●● ●●●● ●●● ● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ● ●●●● ● ●● ● ●●● ●● ● ●●●●● ● ●●●● ● ● ●● ● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ● ●●● ●● ● ● ●● ●● ●●● ● ●● ●● ● ●●● ●● ●●● ●●● ●●● ●● ●● ● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ● ●● ●● ● ● ●● ●● ●● ● ●●● ●●●● ● ● ●●● ● ●●● ● ●●● ● ●● ●●●● ●● ● ●● ● ●● ● ●● ●●● ● ●●● ●●● ●●●●● ● ●●●●●● ●● ● ●● ●● ●● ● ●●●● ●● ● ●● ●● ● ●●● ● ● ●● ● ●● ●● ●●● ●●● ● ●●●● ● ●● ●● ●● ● ●● ●●●● ● ●● ●●● ●● ● ●● ●● ● ●●● ●● ● ●● ● ● ● ●●● ● ●● ●●● ● ●●● ●●●● ● ●● ●●●● ● ●●● ●● ●●● ● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●●● ● ● ●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●● ●●●● ● ●● ● ● ●● ●●●● ●●●● ● ●●●● ●● ●● ●● ● ●● ● ●●● ●● ● ●● ● ●●● ● ●●●● ● ●●● ●● ●●● ●● ● ●●● ●●● ●● ● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ● ●●●● ● ●● ●● ●● ● ●●●● ● ●● ● ●● ●● ●●● ● ●●● ●● ●● ●● ●●●● ●●● ●●● ● ● ●●●●● ● ●● ●● ● ●●● ● ●● ● ●●● ● ●● ●●● ●●● ●●● ● ● ● ●● ●● ●●●●● ●● ● ●●●● ●● ●● ● ● ●● ●● ●●● ●●● ●●●●● ●●● ● ●●● ● ●● ● ●●● ●●● ●● ●●● ●● ●●● ● ●● ●●●●● ●● ●● ●● ●●● ●● ● ●●●●● ● ●● ●● ● ●●●● ●● ●● ●● ●● ●●● ●●●● ●● ● ●●● ●● ●● ●● ●●●●● ●● ● ●● ●●● ● ● ● ●● ●● ●● ●● ●●● ● ●● ●● ● ● ●●● ● ● ●● ●● ●● ●● ●● ● ● ●● ● ●●●● ●● ● ● ●● ●●●● ●● ● ●● ● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ● ●●● ●●●● ●● ●●● ●●●● ●● ●●● ● ●● ●●●●● ●● ● ●● ●●● ●● ●●● ●●●●● ● ●●● ●● ● ●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●● ●●●● ● ●● ●●● ● ●● ●●●● ●● ● ●●●● ●● ●● ● ● ●● ● ●●● ●● ●● ●●● ● ●●● ● ● ●● ●●● ●●●● ●● ●● ● ●● ●● ●● ● ● ●●● ● ● ●● ●●●● ● ●●● ●●● ●●● ●● ●● ● ● ●● ●●● ● ●●● ●● ● ●●● ● ●● ● ● ●● ●●● ●● ●● ● ●● ●● ●●● ●●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ● ●●● ● ●● ●●●●● ●●● ●● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ● ●● ● ●● ●●● ●● ● ●●● ● ●●●●● ● ●● ●●● ●● ● ●●● ●● ●●●●●● ●● ●●● ●● ● ●● ●● ●● ●●● ●● ●●●● ●● ●● ● ●●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●●●● ●●● ●●● ●● ●● ● ●● ●● ●● ●●● ●●●● ● ●● ● ●●● ● ●● ●● ●● ● ●●●●●● ●●●● ● ●● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●●● ●●●● ●● ● ●●● ●● ● ● ●●● ● ●●● ● ●●● ●●●● ●●●●● ● ●●●● ●● ● ●●● ● ● ●● ● ●● ●● ● ● ● ●● ●●● ●● ●● ●● ●●● ●● ● ●●● ● ●● ●● ●●●●● ●●● ● ● ●● ●●●● ● ●●●●● ●● ●●● ●●●● ● ●●● ●●● ● ● ●●●● ●●● ● ● ●●●● ● ●● ●● ●●● ●●● ● ●●● ● ●●●● ● ●●●●● ●● ●● ●●● ●● ●●●●●● ●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●●●●● ●●● ● ● ●●● ● ● ●●● ●● ● ●●●●●●● ●● ●●● ● ●●● ● ●● ●● ●●● ●●● ● ●● ● ●●●● ●●●● ● ●● ● ● ●● ● ●●● ●●●● ●● ●●● ● ●● ●● ● ● ●● ●●● ●●● ●●●●● ● ●● ●●● ●● ● ●● ●● ● ● ●●● ● ●● ● ● ●● ●●●●● ●●● ●● ●●● ●●●● ● ●●● ●● ●●● ● ●● ●● ● ● ●● ●● ●● ● ●●● ●●● ● ●● ●●●● ● ●● ● ●● ●●●● ●●● ●● ●● ●●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ●●● ●●● ●● ●●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●●●● ●● ● ● ●● ● ●● ● ●●● ●●● ●● ●● ●● ● ●●●● ● ●● ●● ●●●● ●●● ● ●●● ●●●● ● ●● ● ● ●● ●●● ● ●●●● ●●● ● ●●● ●● ● ●● ●●● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●●● ●●●● ●● ●● ● ●● ● ● ●●● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●●●●●●● ● ●● ●●●● ●● ●● ●● ●● ● ● ●● ● ●● ● ●● ●●● ●● ● ●●●● ●● ●●● ● ● ●●●● ●●● ● ● ● ●●●● ● ●● ●●●● ● ●● ● ●●● ● ● ●● ●●●● ●● ●● ●●● ●● ●● ●●●● ●● ● ●●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ●●● ●●● ● ●● ● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●● ● ●●● ●● ●● ● ●● ●●●● ●● ●●● ● ●●●●● ●● ●● ●● ● ●● ●●●● ●●● ● ● ●● ●● ●● ● ●● ●●●● ●● ● ●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●● ●● ● ●● ●●● ●● ●● ● ● ●● ● ●● ● ●● ●●● ●● ●● ● ● ●● ●●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●●●● ●● ●● ●●● ● ●● ● ● ●● ●●●●● ● ●●●● ●● ●● ● ●●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ●●●● ● ● ●●● ● ●● ● ●● ●● ●● ●● ●● ●●● ●●●● ● ●●● ●●●● ● ●●● ●● ●● ● ● ● ●●● ● ● ●●●●● ●● ● ●● ●●● ● ● ● ●●● ●● ●● ●● ●● ● ●● ● ● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ● ●● ●●●●● ●● ● ●● ● ●● ●●● ●● ●● ● ● ● ●●●● ●● ● ●● ●● ●●● ●●●● ●●● ● ●●● ●●●● ●● ●●●● ●● ● ●●● ●● ● ●●● ● ● ●● ● ●●●● ●● ●●● ●●● ●●● ●● ● ● ●●●●● ●●● ●●● ● ●●● ●● ●●● ●● ● ●●●● ●●●●● ●●● ● ●●● ● ● ●●● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●●● ●●●● ● ●● ●● ●● ●● ●●● ●●● ●●●● ● ●● ● ●● ●● ● ●●● ●● ●● ●● ●●●●● ●● ●● ●●●● ●● ●●● ●●●● ●●● ● ●●●● ● ●● ●●● ● ●● ● ●● ● ●● ●●● ●● ●● ●● ●●●● ●●● ● ●● ●● ●● ●●●● ●●● ● ●●● ●●●● ●●● ●●●● ●●● ●●●● ●●● ●●●● ●●●● ● ●●● ●●●● ● ●●● ●● ●● ●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ● ●● ● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●● ●●● ● ●● ●●●● ●●● ●● ●● ● ●●● ●●●●● ● ● ●● ● ● ●●● ●● ●● ● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●●● ● ●● ●●● ● ●● ●● ●●●● ●●● ●● ●●● ●● ●● ●●● ●●●● ● ● ●●● ● ●● ●● ●●● ●●● ●●●● ●● ●● ● ●●● ●●● ●● ●●●● ● ●● ●● ●● ●●●●● ●● ●●● ●● ●●● ● ●●● ●● ● ●● ● ●●●● ● ● ●●●●● ● ●● ●●● ● ●●● ●● ●● ● ●●● ●●● ●●●● ● ●● ● ●●● ● ●●●● ●●● ● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●●●● ●●●● ● ●●● ●● ● ●●● ●● ● ● ●● ●● ● ●● ● ● ●●●● ●● ● ●● ●●●● ● ●● ●●●● ● ●● ●●● ● ●● ● ●●● ●●●● ●● ●● ●● ●●● ●● ● ● ●●●● ● ●● ●● ●●● ●●●● ●● ●● ●●●● ● ● ●● ●● ●●● ● ●● ● ●●●● ● ●● ●● ●●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ● ● ● ●●●● ● ●●● ● ●●● ● ●● ● ●●● ● ●●● ●● ●●● ●● ●● ● ● ● ●● ●●●●● ●● ● ●●●● ●● ●● ●● ●● ● ●● ●●●● ● ● ●● ●● ●● ●●●● ●●●●●● ●● ●●● ●● ● ●● ●● ● ●● ● ●● ●●●● ●●● ●●● ● ● ●● ● ●● ● ●● ●●● ● ●●● ●●● ●●●● ●●● ● ●● ●●● ●● ●●● ●● ● ●● ● ●● ●● ●● ● ● ● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ●● ● ●● ●● ●●● ●●●●● ● ●● ●●●● ● ●● ●● ● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ●●● ● ●●● ●● ● ●●● ●● ● ●● ● ●● ● ●● ●● ●●●● ●● ●● ●●● ● ●●● ● ● ●● ●● ●● ●●●● ●● ●● ● ●● ●●●● ● ●●●●●● ● ● ●●● ● ● ●● ●● ●●● ●● ● ● ●●● ●●● ●● ● ●● ●●● ● ●● ● ● ● ●●● ● ● ●● ● ● ● ● ●● ●●●● ● ●●● ●● ● ●● ●● ●●●● ● ● ●● ● ●●●●● ●● ●● ● ●●● ●● ●● ●●●● ●● ●●● ●● ● ● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●● ●● ● ●● ●● ● ●●●● ●●● ● ●● ● ●● ●●● ●●● ● ●● ●●●●● ●● ● ● ●● ●● ●● ●● ●●●● ●● ● ●● ●● ●●●● ● ● ●●● ●●● ● ●● ●● ● ● ●● ●● ●●● ●● ● ●● ●● ● ● ●● ●● ●● ●● ●●● ●●●● ● ●●●● ● ● ●● ● ●● ●● ●●●●●●● ●● ● ●● ●● ● ● ●●●● ●● ● ● ●●● ●●● ●● ●● ●●● ● ●●● ●●●●● ●●●● ● ● ●● ● ● ●●● ●● ●●● ●● ●● ● ●● ●●● ● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●●●● ●● ● ●● ● ●●● ●●●● ●●● ● ●● ●●●● ●●● ●●●● ●● ●● ●●● ●● ●● ● ●● ●●●●● ●● ● ●● ● ●● ●● ● ●● ●●● ●● ●● ●●● ● ● ●● ●● ●● ●● ● ●●●●● ● ● ●● ● ●● ●● ● ●●● ● ●●● ●●● ●● ●
●

●● ●●●●● ●● ●●●● ● ●●●●
● ●● ●●●●● ● ●●●● ●●●●●● ●● ●● ●● ●● ● ● ●●● ●●● ●●● ● ●● ●● ●● ●●● ●●●● ●● ● ●● ●● ● ●● ●● ●● ●●●● ●●● ●● ●● ● ● ●● ●● ● ●● ●●●● ●● ●● ●● ● ●●● ●●● ●●● ● ●●● ●● ● ●●●● ●● ●● ● ●●● ●●●● ● ●●● ●●●●● ●● ● ●● ●●●●●● ●●●●● ● ●●● ● ●● ●●● ● ●● ● ●●● ● ●●● ● ●● ●●● ● ●●●● ●●●●●● ●●● ●● ● ●● ●● ●● ●● ●●● ● ● ●● ●● ●● ●●●● ●● ●●● ●●● ●●●● ● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ● ● ●● ●●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●●●●● ●●● ● ●● ●●● ● ●●● ● ●● ●● ● ●●●●● ● ●● ●● ●●● ●●● ●● ●●● ● ●● ●●● ● ●●●● ●●● ●●●● ●● ● ●●●● ● ●●● ● ● ●●●●● ●● ●●● ● ●● ● ●●●● ●● ●●● ●●● ●● ● ●●● ●●● ● ●●●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●●●●● ●● ●●● ● ●●● ● ●● ●● ● ●●● ●●● ●●●● ● ●●● ●●● ●● ● ●● ●●●● ●● ●● ●● ● ●● ●●● ●●●●● ●●●● ● ●●● ● ●●●● ●●● ● ●●● ●● ● ● ●● ●● ●●●● ●● ●● ●● ● ●●●●●●● ●● ●●● ● ●●● ● ●● ● ●●●●● ●●● ●●● ● ●● ●● ●● ●●●● ●●●●● ● ●●●● ●● ● ●● ●●● ●●●● ●●● ● ●●● ●●●● ●● ●●● ●● ●●● ●●● ●●●● ●● ●● ● ●● ●● ● ●●●● ● ● ●● ●● ●●● ●● ● ●● ● ● ●● ●●● ● ●● ● ●●● ●● ●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●● ●● ●●●●● ●● ●● ● ● ● ●● ●●●● ● ●● ● ● ●●●● ●● ● ●● ●● ●● ●●● ●● ● ● ●●● ●● ●● ●●●● ● ●● ●●● ●● ● ●●● ●●● ● ●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ●●● ● ●● ●●● ●●● ● ●●● ●● ● ●●●● ●●●● ●● ● ●● ●● ● ●●● ● ●●●● ● ● ●● ●● ●● ●● ●●● ● ●●●● ●●●● ●●●● ● ● ●●●●● ● ● ●●● ● ●● ●● ●● ●●● ● ●●● ●● ●●● ● ●●● ● ●●● ●● ●● ●●● ● ●● ● ●●● ●● ●● ●●● ● ●●●● ●●● ●● ● ●●● ● ●●● ● ●● ● ●●●● ●● ● ● ●●●●● ●● ●● ●●● ●●● ●● ●● ● ●●●● ● ●●● ●●● ● ● ●● ●● ● ●● ●● ●● ● ●●●● ●●● ●● ●● ●● ● ●●● ● ●● ● ●● ●●● ● ●●● ● ●●● ●● ●● ●● ●● ● ●●● ● ●● ● ●●●● ●●● ●● ●● ● ●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ●●● ● ● ●●● ●● ●● ● ●●●●● ●●●● ● ●● ●● ●● ●● ● ● ●●●●●● ● ●●● ●● ● ●● ●●●● ● ●●● ●●● ●●●●●● ●● ● ●● ●● ●● ●● ● ● ●●● ●● ●●● ●● ● ● ●●●●●●●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●●● ●●●● ●●● ●● ● ●● ●● ●●● ●●● ●●● ● ●●●●● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ●● ● ●●●● ●●●● ● ● ●●●● ● ●●●●● ● ● ●● ●● ● ●●● ●●● ●● ●●● ●●● ●● ● ●●● ●●● ●●● ● ●● ●● ● ●● ●● ●●● ● ●●● ●●●● ●●● ●● ●● ●● ●● ●●●● ●●● ●●● ●●●● ●● ●●● ●● ●●●● ●● ●● ● ●● ●●● ●●● ● ●● ● ●●●● ● ●● ●●●● ●● ●● ● ●● ●● ● ● ●● ●●●●● ●●●● ●● ● ●●● ●● ●●● ●● ● ●●● ● ●●● ●● ●●● ● ●● ●● ● ●● ●●● ●● ●● ●●●● ●●● ●●●● ●● ●● ●● ●● ●● ● ● ●●● ●●● ● ●● ●● ●●● ●●● ●● ● ● ●● ●● ●● ● ●●● ● ●● ●●●●●● ●● ● ●● ●● ● ●●● ● ●● ●●●● ●●● ● ●● ● ●●● ●● ● ●●●●●● ●● ●● ●● ● ●● ● ●● ● ●● ●●● ●●● ● ●●●● ● ● ●● ●●● ● ●● ●● ● ●●● ●●●● ●●● ●●● ●●● ● ●●● ●● ●● ●● ● ●●● ● ● ●● ● ●●● ●● ● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ● ●●●● ●●● ● ●●● ● ●●● ● ●●● ●● ●●● ● ●●●●●● ●● ●● ●●● ● ● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ●● ●● ● ● ●● ●● ●●● ●●●● ●● ●● ● ●●● ● ●●● ● ●● ●●● ●● ●●●●● ● ●●●●● ●●● ● ●● ● ●● ● ● ●●● ● ●●● ●●● ●●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ● ●●● ●●● ●●●● ●●● ●●● ●● ●●●● ● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ● ●● ● ● ●●● ●● ●●● ●● ●●● ● ●● ●●● ●●● ●●● ●● ● ●●● ●●● ● ●●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●● ●●● ● ●● ●● ●● ●●● ●●● ● ● ● ●●● ●● ●●● ●● ● ● ●●● ● ●●● ● ● ●● ●●●● ●● ● ● ●●● ● ●● ●●● ●● ●● ●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●● ● ●● ●●●● ●●●● ● ●● ●● ●●● ● ●● ●●●●●● ● ●● ●●● ● ●● ●● ●● ● ●● ● ●●● ●● ● ●● ● ●●● ●●●● ●●●● ● ●●● ● ●●● ● ● ●● ●● ●●●● ● ●●●● ●● ● ● ●●●●● ●●● ●● ● ●●●● ●●●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ● ●●● ●● ●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ● ● ●●●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●●● ●● ●● ● ●●● ●●●●● ●● ●● ●●●● ● ●●● ●●● ●●● ●● ●●●●●● ● ●●● ●● ●●●● ● ●● ● ● ●● ●● ●● ● ●●●● ● ●●●●● ●● ●● ●●●● ●● ●●● ● ●●● ●●●● ●● ● ● ●●● ● ●●● ●● ● ●● ●● ● ● ● ●● ● ●● ●● ●●● ● ●● ● ●●● ●●● ● ●● ● ●●● ●● ● ●● ● ●●●●●●● ● ●●● ●● ●● ●● ● ●●● ●●● ● ● ●●● ●●● ●● ● ●●● ● ●● ●● ●●●● ● ●● ●● ●●● ●● ● ● ●●● ● ●● ●●●● ● ● ●● ●●●● ●●● ●●● ●● ●●● ●● ●● ● ● ●● ●●●● ●●●●●● ●● ● ●●● ●●● ● ●● ● ●● ●●●●● ● ● ●●●● ●●● ● ● ●●●● ● ●●● ●● ●● ●● ●●●● ●●● ●● ● ●●● ●●●● ●● ● ●●●● ● ●● ●● ●● ● ●●●●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●●●●●● ● ●●●● ●● ●● ●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●●●●● ● ●● ● ●●●● ●●●●● ●● ● ●● ●●● ●● ●●● ●●● ●● ●● ● ●● ●● ● ●● ● ● ● ●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●● ● ● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●●● ●● ●●● ● ● ●● ● ●●●●● ● ●● ● ● ● ●●● ●●● ●● ●●● ● ●● ●● ● ●● ● ● ●● ●●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●● ●●● ●● ●●● ●●●● ●● ●● ●●●● ●●●●● ●●●●● ● ● ●●● ●● ●● ●● ●●●●● ● ●● ● ●●●● ●●● ●●● ●● ● ●● ●●●●● ●●●● ●● ● ●●● ●● ● ●● ●● ● ●● ● ● ●● ●● ● ●● ●●● ● ●● ●●● ● ●●● ●● ●●● ● ●●● ●● ● ●● ● ● ●● ●●● ●● ● ●● ●●●● ●● ●●● ●●●● ●●● ●●●● ●●●●● ● ●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●●● ●● ● ●● ●● ● ● ●●● ●●●●●● ●● ● ●●●●● ● ● ●●● ● ●●● ●●● ●●● ●●● ● ● ●●●●● ● ● ●● ●● ●● ●● ●● ●● ●● ● ●●●●●● ●●● ●● ● ●●● ● ●● ●● ●● ●● ● ●● ●●●●●● ●● ●●● ●●●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ● ●●●●● ● ●●● ●● ● ●●● ●● ●●● ● ● ●● ●●●●●●● ● ●●●●● ●●●●● ● ●● ● ●● ●●● ●●● ●● ●●●●●● ● ●●● ●●● ●● ● ●●● ● ●● ●●●●● ●● ● ●●●● ●● ●● ●●●● ● ● ●●●● ● ●●● ●●●● ●●● ● ●● ●● ● ●●● ● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●● ●● ● ● ●●● ●●● ●●● ● ●●●●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●●● ●● ●●● ● ●●●●●● ● ●●●● ● ●● ● ●●●● ● ●● ●●●● ●● ●●● ●●● ●● ●● ●● ●●● ●● ● ●●●● ●●●● ●● ● ●●● ●●● ●●●● ●●● ●●● ● ● ●●●● ●● ●● ● ●● ●●● ● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ● ●● ● ●● ●● ●●●●● ● ●● ●● ● ●●● ●●●● ● ●● ●● ●●● ● ●●●● ●● ● ● ●●●● ●● ●● ● ● ●● ●● ●●● ● ●● ●● ● ●● ●●● ●● ●●● ● ●●●● ●●●● ● ●●● ●●● ● ●● ●● ● ●● ●● ●● ●●● ●● ●●●●● ●● ●● ● ●●●● ●● ● ●● ●●●● ●● ●●● ●● ● ●● ●●●● ●●● ● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ● ● ●● ●●● ● ●● ●●●● ●● ●● ● ●● ● ●●●● ● ●●●●● ●● ●●● ● ●●● ●● ●●● ● ● ●● ● ●●● ●●●●● ●● ●●●● ● ●● ●● ●● ● ●● ● ●●● ● ● ●●●● ● ●● ● ●● ●● ●● ●●● ● ●● ● ●● ●●●●● ● ●●●●● ● ●●● ●●●● ● ● ●●●●● ●● ● ●●● ● ●● ● ●● ● ●● ● ●● ●● ●●● ● ●●●●● ●● ● ●●●● ● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ● ●●● ●●● ● ●●●● ●●● ●●● ● ●● ●● ● ●● ● ●● ●●● ●●● ● ● ● ●●● ●● ●● ●●● ● ●● ●●●● ●●● ● ●● ● ●● ● ● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●●● ● ● ●● ●● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●● ●● ●●●● ●● ●● ●●● ●● ● ● ●●● ●● ●● ●●●● ● ●●●● ●●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ● ●● ● ●● ●● ●● ●●●● ● ●● ●● ● ●●●● ● ●● ●● ●●● ●● ●● ●●● ●● ●●●● ● ●● ●●●● ●●● ●●●●●● ● ●● ●● ● ●●● ●●● ●● ● ● ●●● ●● ●● ● ● ●●●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●●●● ●● ●●●● ● ●●● ●● ●●●● ●●●●● ●● ●●● ● ●●● ●●●● ●●● ● ●●● ●●● ● ●● ●● ● ●● ●● ●●● ● ● ●● ● ●● ● ● ●●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●● ● ● ●●● ●● ●● ● ●●● ●● ● ●●● ●● ●●●● ●●● ●● ● ● ●●● ●●● ●●●●●● ● ●●● ●● ●●● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●●●● ● ●● ●●● ●● ●●●● ●●● ● ●● ● ●● ●● ●●● ● ●●● ● ●●●● ●● ●● ●●● ●● ●● ●● ● ●●●● ●● ●●● ● ●●●●● ●● ●●●●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ● ● ●● ●●● ●●● ●● ● ●●● ● ●● ●● ●●● ●●●●● ●● ● ● ●●● ●●●● ● ●● ●●● ●● ●●●● ●● ●●● ● ●●●● ●●● ●● ●●●● ●● ● ●●● ●●● ●● ●●●● ● ●● ●● ● ●● ●● ●● ●●● ●●● ● ● ●● ●●●● ●● ● ● ●● ●●● ● ● ●●● ● ●●● ● ● ●● ●●●●● ● ●● ● ●●● ●● ●●●● ●●● ●●● ●● ●● ●●●● ●●●● ● ●● ● ●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●● ●●● ● ●● ●● ● ●●●● ● ● ●●● ● ●●● ●●● ●● ●● ● ●●● ●● ●●● ●● ● ●● ● ●● ●● ● ●● ●●● ● ●●● ●● ●●● ●● ● ● ●● ● ●● ● ● ● ●● ●●● ●● ●●●● ●●● ●● ● ●● ● ●●● ● ●●● ●● ●●● ●●●● ●● ● ● ●●● ● ●●● ● ●●● ●●● ● ●● ●●● ● ●● ●●●● ●● ●● ●●● ● ●●●● ●● ●● ● ● ●● ● ●● ●● ● ●● ●● ● ●● ●●●● ●● ●●●● ●● ● ● ● ● ●●●● ●● ●●● ●●●●●● ● ●●● ●● ●●● ●● ●● ●● ● ●● ●●●● ● ● ●● ●●● ●●● ● ●● ● ● ●●● ● ●●● ● ●● ●● ● ●● ●●● ● ●●● ●●● ●● ● ●● ●●●● ● ● ●● ●●● ● ●● ●● ● ●●●● ●●● ● ●● ●●●●●● ● ●● ●●●● ● ●● ● ●●● ● ●● ● ●● ●●●●● ●●● ● ●●●● ●● ●●●●● ● ●●●●● ●● ●● ●● ● ● ●● ●●●● ●●● ●● ●●●● ● ●● ●● ●●● ● ● ●● ●● ●●●● ● ●●●●● ●●●●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ● ●● ●● ● ●●●● ●● ●●●●● ●● ●●● ●●● ● ●● ●●● ●●● ●● ●●● ●● ●● ● ●● ● ●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ● ●● ●●● ●●● ● ●●● ●● ●●●● ●● ●●● ●● ●●●● ● ● ●●● ●● ●● ● ●●● ● ●● ●● ●● ● ● ●● ●● ●● ● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●● ● ●●● ●●● ●●● ●● ●● ●●● ●●●● ●● ●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●● ●●● ●●● ● ●●● ●● ● ●● ●● ●● ● ●● ● ● ●●● ● ●● ●● ● ●●●●● ●●●●●●●● ●● ●●● ● ●●● ●●● ●●●● ● ●● ●●● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●●●● ● ●●● ●● ●● ●● ●●● ●● ● ●● ● ●●●● ●● ● ●●● ● ●●● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●●●●● ●●● ● ●● ● ●●● ●● ●●●●● ● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●●●● ●● ●●● ●● ● ●●●● ●● ●● ●●● ● ● ●● ●● ●●● ● ●● ●●● ●● ●● ● ●●● ●●●● ●● ● ●●● ●● ●●●● ●● ●●● ●● ● ●●●●● ● ●●● ●●● ● ●●●● ● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ● ●●●● ●● ●●● ●●●●●●●● ● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ● ●●● ●●●● ●● ●●● ●● ● ●● ●●● ●● ● ●● ● ● ●● ● ●●●● ●● ●●● ● ●● ●● ●● ●●●● ●●● ● ● ●● ●●●●●● ●● ● ●●● ●●●● ● ●●● ●● ●●●●● ● ● ●● ●● ● ● ●●● ● ●● ●● ●● ●●●● ●● ● ● ●● ● ●●● ●● ● ●●●● ●● ●●● ● ●● ●● ● ●●● ●●● ●● ●● ●●●● ● ●● ● ●●● ●● ●● ●●●●● ●● ● ● ●●● ●●●●● ● ● ● ●● ●● ● ●●● ●● ●● ● ●● ● ●● ●● ●●● ● ● ●●●● ● ●●●● ●●● ●● ● ● ●● ●● ● ●●● ●● ● ●● ●● ●● ●● ●●● ● ●●●● ●●●● ● ● ●● ●●● ●●●● ● ●●●● ●● ● ●● ●●● ● ●●● ●●● ●● ● ●●●●● ● ●● ●● ●●● ● ●● ● ●● ● ●● ●●●● ● ●● ● ●●●● ●●● ●●●● ●●● ●●●●● ●● ●● ●● ● ●●● ● ● ●●●● ● ● ●● ● ●●● ●●● ●● ●● ● ● ●●● ● ●●● ● ● ●●●● ●● ● ● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ● ●●●●●● ● ●● ●● ●●● ●●● ● ●●● ●● ● ●● ● ●●●● ●● ●●● ●● ●● ●●● ●●● ●● ●●●●● ● ●●●● ● ●● ●● ●●● ●● ● ●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ● ●●● ●●● ●●● ●● ● ●● ●●●● ● ● ●●● ●● ● ● ●●● ●● ●● ●●● ●● ●●● ●● ● ●● ● ●●● ●● ● ●●●● ●● ● ●● ●● ●● ●● ●● ● ● ●●●● ● ● ●● ● ●●● ●●● ●● ●● ● ●●● ● ● ● ●●● ● ● ●● ●● ● ●● ●●●●● ●● ●●● ●● ●●● ● ●●● ●●●● ●● ●●● ●●●●●●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●●●●● ● ●●●● ● ●● ●●● ● ●● ●● ●● ● ●●●●● ●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●●●●●● ●● ● ●● ● ● ●●● ●● ●●●● ● ●● ●● ● ● ●●●●● ●● ●●●●● ●● ●● ●● ● ●●● ●●●●●● ●●● ● ● ●●● ●● ●●●● ●● ●● ●●● ● ●●● ● ●● ●● ●●●● ● ●● ●●● ●●● ● ●●● ● ● ●●● ●● ●● ●● ●●● ●●● ● ●● ● ●●●● ● ●● ● ● ●● ●●● ● ● ●● ● ●●●● ● ●● ● ●● ●●●●● ● ●●● ● ●● ●● ●●● ●●●●● ●● ●● ●● ●●●●● ●● ●●● ●● ●●●● ●● ●● ●●● ● ●● ●● ● ●● ● ●●● ●● ●● ● ●●●●● ● ●●●● ● ●● ●●● ● ●●●● ●● ● ●●●●● ●● ●● ●● ●● ●●●●● ●● ● ●● ●●● ●● ● ●● ●

●●●●
●

● ●

●

●●● ●● ●●●● ● ●●● ●●●● ● ●
● ●●●● ● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●●● ●●●●● ●●● ●●●● ●● ●● ● ● ● ●● ●● ●●● ●●● ●●● ●● ● ●● ●● ●● ● ●● ●● ●●●● ●● ● ●● ●● ●● ●●●● ●●● ●●● ●●● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●●●● ●● ● ●●●●●● ● ●● ●●●● ●● ●●● ●●● ●● ●● ● ●● ●●●● ●● ●●●● ●●●●● ●●● ● ●● ●●● ●● ●●●● ● ●● ●●● ● ●●● ● ● ● ● ●●●● ●● ● ●● ●● ● ●● ●●● ● ●●● ● ● ●● ● ●● ●●● ●●● ●● ●● ●● ● ●●● ●●● ● ● ●●● ●● ●● ●● ●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ●●● ● ●●●● ●● ●●● ● ●● ●●● ● ● ●● ●● ● ●● ●● ●●●●● ●● ●● ●● ●● ● ● ●●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ● ●●● ●●●● ●● ●● ●●● ●● ●●●● ●●● ●●● ● ●● ● ●● ●●● ●● ●●● ● ●● ●● ●● ● ● ●● ●● ● ●● ●●● ●● ● ●●● ●●● ●●●● ●● ● ● ●●●● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ● ● ● ●●●●● ●●● ● ●●● ●●● ●● ●●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●●●● ● ● ●● ●●● ●● ●● ● ●●● ● ●●● ●●●● ●● ●● ●●●● ●●● ●● ●● ● ●● ● ●● ● ●● ●●● ● ●●● ●●● ●●● ●● ● ● ●●● ● ●●● ●● ●●●● ● ●● ●● ●● ●● ● ●● ● ●●● ●●●●● ●●●● ● ●● ●● ●●● ●●●● ●● ●●●● ●● ●●●● ●●●● ● ● ●●● ● ●●● ●●●● ●● ●●● ●● ●●●● ● ●● ●●●●●● ● ●●● ●●●● ●●● ● ● ●●●●● ●●● ●●● ●● ● ●● ●●●● ● ● ●●● ●● ●●●●●● ●●● ● ●● ●●● ●● ●● ●●● ●●● ●●● ●● ● ●● ●●●● ● ●●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●●● ● ●●●● ●● ●●● ● ●● ●● ●● ●●● ● ● ●●●● ● ●●● ● ●● ● ●● ● ●● ●●●● ● ●● ●● ●● ●●●● ●●● ●●● ● ●● ●●●● ●●● ●● ●● ●●● ●●● ●●●● ●●●● ●● ●● ● ●● ●● ●●●● ● ●● ● ●●● ●● ● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ● ●●● ●● ●●● ●● ●●●● ●● ● ●●● ●●● ● ● ●● ●● ● ●● ●●● ● ● ●●● ●● ● ●●● ● ●●● ●● ●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●●●●● ● ●● ●● ● ●● ●●● ●● ●●●● ●● ●● ● ● ●● ●● ●●●● ●●● ●●●● ●● ●● ● ● ●● ● ● ●● ●● ● ●● ●● ●●● ●● ●●●●●● ●● ●●●● ●●● ● ●● ●●● ● ●● ●●● ●● ● ●●● ●●● ● ●● ●● ●● ●●●●● ● ●● ● ●● ●● ● ● ●● ●●● ●●●● ● ●● ●●● ● ●● ● ●●●● ●●● ●● ● ●● ●●●● ● ●●●● ●●● ●●● ● ●●● ●● ●●● ● ●●● ●●●● ● ●●●●● ● ●●●● ●●● ●● ●● ●●●● ●●●●● ●● ●● ●●●●● ●●● ●● ●● ● ●●● ●● ●● ● ● ●●●● ● ●●●● ● ●●● ●● ● ●●●● ● ●● ●● ●●●● ● ●● ●●● ● ●● ●●●● ●●●● ●● ●●● ●●● ●● ●● ●● ●● ● ● ●● ●● ●● ●●● ● ● ● ●●●● ● ●● ●●● ●●●●● ● ●●● ● ● ●●● ●● ●●● ● ●●●● ● ●● ●●● ●● ●● ●●●● ●●●●● ● ●●●●●● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●●●●●● ●●● ● ●● ● ●● ●● ●● ●● ●●● ●●●●● ●● ● ●● ●●● ●●●● ● ●●●●● ●● ●● ●● ●●● ●●● ●●● ●●●● ●● ●● ●●● ●● ● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●●●● ● ● ●● ● ●● ●● ●●● ●●●● ● ● ● ●●● ●● ● ●● ● ●●● ●●● ●●●● ●● ● ● ● ●●●●● ●●● ● ●●● ● ●● ●● ● ●● ● ●●● ●● ●●●●● ●● ● ●●●● ●●● ●● ● ●● ●● ● ●● ●● ●● ● ●●● ● ●● ●● ● ●●●●● ●● ●● ●●●●● ●● ●●● ● ●● ●●● ●●● ●●● ●● ● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●● ●●●●● ●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ● ● ●● ●●●● ● ●●● ●● ●● ● ● ●● ● ●● ● ● ●●● ●●●●● ● ● ●● ●● ●● ● ●●●● ● ● ●●● ● ●●● ● ●●● ●●● ●● ●●● ●●● ●● ●●● ● ●● ●●● ●●●● ● ●●● ● ● ● ●●● ● ●●● ●● ● ● ●●●● ●●● ●●● ● ●● ●●● ●● ●●● ●●●●●● ●● ●●●● ●● ●●●●● ● ●● ●● ●● ●● ● ●●●● ●● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●●● ● ●● ●● ● ●● ●● ●●● ● ●●● ●●●● ● ●● ● ● ●●● ●● ●●●●● ●●●● ●●● ●●●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ● ●● ● ●●● ●●● ● ●●● ● ●● ● ●● ●● ●●●● ●●● ● ●● ●●● ●●●●● ●●● ●● ●● ●●● ●●● ●●●●● ●●● ●● ●● ●● ● ●●●●● ● ●●●●●● ● ●● ● ●● ●●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●●● ● ●●●● ●● ● ●● ● ●●●● ● ●●● ●● ●●● ● ●● ● ●●● ●●● ●●● ●● ●●●● ●●● ●● ●● ●● ● ● ●●● ●● ● ●●● ● ●● ●●●●● ●● ●● ●●● ●●●● ● ●● ●●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●●● ●● ●●● ●●●● ●● ● ● ● ●●● ● ●●●● ●● ●● ●●●● ●●● ●●● ● ●● ●●● ●● ●● ● ●●● ●●● ●●● ● ● ●● ● ●●● ● ●●● ● ●●●●● ●● ●●● ●●●●● ●●●● ● ●● ●● ●●● ●●●● ●●● ●●● ●●● ●● ●●●● ●●● ● ●●● ●●● ● ●● ● ●●● ●● ●● ●● ● ●●●●● ●● ●● ●●● ●●●● ● ●● ● ●● ●●● ●●●●● ●● ●●● ● ● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ●●● ● ●●●●●●●● ● ● ● ● ●● ●●● ● ●● ● ●● ●● ● ●● ●●● ●●● ● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ● ●●● ●● ●●● ●● ●●● ● ●●● ● ●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●●●● ● ●●●● ● ●●● ● ● ● ●● ●●● ●●● ●● ●● ● ●●● ●● ●●● ●● ●●● ●● ●●● ● ●●● ●● ● ●● ● ● ●● ●●● ●● ●●●● ● ● ●●● ●●●● ● ●●●● ●●●●● ● ●●● ●● ●● ● ●●● ●● ● ●● ●● ● ●●● ● ●● ● ●● ●●● ● ● ●● ●●●● ●● ●●●● ●● ● ●●● ●● ●●● ●● ●●● ● ●● ●●● ●●●●●● ● ●● ● ●● ●●● ●● ●● ●●●● ● ●●● ●● ● ● ●●● ● ●● ● ●●● ● ●● ● ● ●●● ●●● ●●● ● ●●● ● ●● ●● ●● ●● ● ● ●● ●● ●●● ●● ●●●●● ●● ●● ●● ●●● ●●●● ●● ●● ● ●●●● ●● ●●●● ●● ●●● ●●●● ●●● ● ●● ●● ● ● ●● ●●● ●●● ● ● ●● ●● ●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●●●● ● ●●●● ●● ●●● ●● ● ●●● ● ●● ● ●● ●●● ●●● ● ●●●● ●● ●● ●● ●●● ●●● ●● ● ● ●●● ● ●● ● ●● ● ●●● ●● ●●● ● ●● ●● ● ● ●●● ●● ●● ●●● ● ●● ●● ●●● ● ●●●●● ● ●●●● ●●●●● ● ●●● ●● ●●●● ● ●●●● ● ●● ● ●● ●●●● ● ● ● ●●●● ● ●● ●● ● ●● ●● ● ● ●● ● ●●● ● ●● ● ● ●● ●● ● ●● ●● ● ●● ● ●● ●●● ●● ●● ●● ●● ●● ● ●●●● ●● ●●●● ●● ●● ● ●● ●●● ●● ●●● ●●●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ● ●●● ●● ●●●●●●●●●●● ● ● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●● ●●● ●●●●● ● ●●●● ●●● ●●● ● ●● ●● ● ●● ● ●●● ●● ●●● ●●●●● ●● ●● ●● ●●● ●●●●● ●●● ● ●● ●● ●● ●●● ●● ●●● ●● ● ●● ●● ●● ●● ● ●● ● ●●● ●●●● ●● ●● ●●●● ●● ● ●●● ●● ●●● ● ●● ● ●● ● ● ●● ●●●●● ●● ●● ●●● ●● ●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ● ●●● ●● ●●● ●●●●● ●● ●●●● ● ●●●●● ● ●● ●● ● ● ● ●●●● ●●●● ●● ●● ●● ●● ●● ● ●●●●●● ●●● ●●● ●● ●● ●● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●●●● ●●● ● ●● ● ●●● ●● ● ●●● ● ●● ●● ● ●● ●● ●●● ●●● ● ●●● ●●● ●●● ● ● ●●● ● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●●● ● ●●● ●● ● ● ●● ●●●●● ● ●●● ● ●●● ● ●● ●●●● ●●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ●●● ● ●● ●●● ● ●●● ● ● ● ● ●● ● ●● ●● ● ●● ●●● ● ●● ● ●● ● ●●● ●●● ● ● ●● ●●● ● ●● ●● ●● ●● ● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ●●● ● ● ●●● ●●●●● ● ● ●● ●●● ●● ●●● ●●● ●● ●●●● ● ●● ● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ● ●● ● ●●●●● ●●●● ●● ● ●● ●● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●● ●●●● ●●● ● ●● ●● ● ●●● ●●● ●● ● ●● ● ●● ●● ● ●●● ●● ● ●● ●●●● ●●● ●●●● ● ● ●● ●●●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●● ●● ●● ● ●●● ● ●●● ●●● ●● ●●●● ● ● ●● ● ●●●● ● ●●● ●● ●● ●●●●●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ● ●● ● ●● ●●● ●● ● ●● ● ●● ● ● ●●● ●●● ●● ● ● ●●●● ● ●● ● ●● ●●●● ●●●● ●● ●● ● ●● ●● ● ●●● ●● ● ●●● ●● ●● ●● ●●●● ● ● ●● ●●●●● ●● ● ●● ●● ●● ● ●●●● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ●●● ●● ●● ●● ● ●●● ● ●● ● ●● ● ●●● ●●● ●● ●● ●●● ● ● ● ●●●●● ● ●●●●● ●●● ●● ●● ● ●●● ● ● ●● ●● ●●●● ●●● ● ●●●● ● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ● ● ● ●● ●●● ●● ●● ●●● ●● ●●●● ●●●● ● ●●●● ●● ●● ●●●●● ●●●● ●●●●●● ●●● ●● ● ●● ●●● ●● ●●● ●● ●●●●● ●●● ● ●● ● ●● ●●● ● ●●● ●●● ●●● ● ●●● ● ●● ●● ●● ●●● ● ●● ● ●●●●● ●●●● ●● ●●● ●● ●●● ● ●●● ●●●● ●● ●●● ● ●● ●●● ●● ● ●● ●● ● ● ●●● ●● ●●● ● ●●● ●● ● ●●●● ●● ●●● ●●●● ●● ●● ●●●● ● ● ●● ●●● ●●● ● ●●●● ●●● ●●●● ●●● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●●●● ● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●●● ●●● ●●● ●● ● ●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●●● ●●●● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ● ●● ●●● ● ●●● ●● ●●● ●●●● ● ●●● ●●● ● ●● ●● ● ● ● ●●●● ● ● ●● ● ● ●●● ●●● ●● ●● ●●●● ●●● ● ●●●●● ●● ●● ●●●● ●● ●● ●● ●●● ● ● ●● ●● ● ●● ●●● ● ● ●●● ●● ●● ●● ●●● ●●●● ● ●● ●●● ● ● ●● ●●● ●●● ● ● ● ●● ●● ●●●●●● ●● ●●●●● ●● ●● ●● ●●● ● ● ●●● ● ●● ●●●● ●● ● ● ●●●●● ●● ●●● ●●●● ●● ●● ●●● ●●●● ● ●● ●●● ●● ●●● ●●● ●●● ● ● ●●●● ● ● ●● ●● ● ●● ● ●●● ●●● ●● ● ● ●●● ● ●●●● ●● ●●●● ● ●●●●● ● ●●● ●● ●● ●● ●●●● ● ● ●● ●●● ● ●● ● ●● ●● ●●●● ● ●●● ● ● ●●● ●●● ●● ●● ● ●● ●● ●● ●●●●● ●● ●●●● ●●● ●● ● ●●● ●●●● ●● ●● ● ● ●●● ●●● ● ●● ●● ●●● ● ●●● ●●● ●● ● ●● ●● ● ●● ●● ● ● ●●●● ●● ●●● ● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●●● ●●● ●● ●● ●●● ●●●● ● ●●●●●● ●● ● ●●● ● ●●●●● ● ● ● ●● ●● ● ●●● ●● ●● ● ●● ●● ● ●● ●●● ● ● ●● ●●●●● ●●● ●● ● ●●●● ● ● ●● ●●● ●● ●●● ● ●● ● ●● ● ●● ●● ● ●●●● ● ● ● ●●● ● ●●●●● ●● ●●● ●● ● ●● ● ●●● ●● ●●● ● ●●● ●●● ●● ●●●● ● ●● ● ●●● ●● ● ●● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●●● ●●● ● ●●● ●●● ● ● ●● ●● ●● ● ●● ● ●● ●●●● ● ● ● ●● ● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ● ●●●● ●●●●● ●●● ● ● ●●● ● ●●●●● ●● ●●● ● ● ●●●● ● ●●● ● ●● ●● ●● ●● ● ●●● ●● ●●● ● ●●● ●●●● ●● ●● ●● ●● ●●● ● ● ●● ●●●● ●● ● ●● ●● ●●● ● ●● ●● ●● ● ●●● ● ●●●● ●● ●●● ●●● ● ●●●●● ● ● ●● ●● ●●●● ● ●● ●●● ● ●● ● ●●●● ●●● ●● ● ● ●●● ●● ●● ●● ●● ● ●●●● ●●●● ●● ●● ●●● ●●● ● ●● ●●● ● ●● ●● ● ●●● ●● ●● ●● ● ●●● ●● ●●●●●●● ● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●●●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ●●● ● ● ●● ●● ●● ●●●●● ●●● ●● ●●●● ●● ●●● ● ● ●●● ●● ●● ● ●●●● ● ●●●●●● ●●● ●● ●● ●● ● ●● ●●●●●● ●● ● ●●● ● ●●●●●● ● ● ●●●● ●●● ●● ●● ● ●● ●● ●●●● ●● ● ●●● ●● ●● ●● ●●● ● ● ●●● ●●● ●● ● ●● ●●●● ● ●● ●● ●● ●● ● ●●●●● ●● ●●●● ●● ●● ● ●●● ●● ●● ● ●●● ● ●● ●●● ● ●● ●●● ● ●● ● ● ●●● ●●●●● ● ●●●● ●● ● ●● ●●● ●●●● ●●● ● ●●●● ● ●● ● ●●●● ● ●● ●●●● ●●● ●●● ●● ●● ● ●●●●● ●● ●●●● ●● ●●●● ●● ●●● ●●●● ● ●●● ● ●●● ●● ●● ●● ●●● ●●●● ●● ●●● ●● ●●●● ● ●●●●● ●● ●●●●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●●● ● ●●●●● ●● ●● ● ●● ●●● ●● ● ●● ●●● ● ●● ●●●● ●●● ●●● ● ●●● ● ● ●●●●● ●● ●●● ● ●● ● ● ●●●●● ●● ● ●● ●●● ● ●● ● ●● ●●● ●●● ● ●● ●●●● ●●● ●● ● ●●● ● ●●●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●●● ● ● ● ●●●● ●●●●● ●● ●●● ●●●● ●● ● ●●● ●● ●●●●●● ● ●●● ●● ●● ●●● ● ●●●● ●● ●●● ●● ●● ●● ●●●●●● ●●● ●●●● ●●● ● ●●●● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●● ●●●● ● ●●● ●●● ●● ● ●●● ● ●●● ● ● ●●● ● ●● ●●●●●● ● ●●●● ●● ● ●● ●●● ● ●●● ● ●● ● ● ●●● ●●●●● ● ●●● ●●● ● ●●● ●●● ●●● ●● ●● ● ●● ●●● ●● ●●●● ●● ●●● ●● ●● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●●● ● ●● ●●● ●●●● ●●● ● ●●● ●●●● ●●● ● ● ●● ●● ●● ●● ● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ● ●● ●● ● ●●● ● ●●● ●● ● ●●● ●● ●●●● ●●● ● ●●● ●● ● ● ●● ● ●●● ●● ●● ●● ●●● ● ●● ● ●● ● ● ●● ●● ●●● ●● ●● ●● ●● ● ●●●●●●●● ● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ●● ●●● ●● ●●● ●● ● ●●●● ●●●● ● ● ● ●● ●●●●● ● ● ●●● ●● ● ● ● ●●●●● ●●●● ●●●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ● ●● ●● ● ●● ●● ●●●● ● ●● ●●● ●● ● ●● ●● ● ●● ●●● ● ● ●● ●●● ●● ●● ●●●●● ●● ● ●●● ●● ●● ●●● ●●● ● ●● ● ●● ●● ●●●● ●● ●● ●● ● ●●●●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ●●● ●●●● ●● ● ●● ●●●● ●● ●●● ●● ●●● ●● ● ●●● ●● ●●● ●● ● ● ●● ● ● ● ●● ● ● ● ●●●● ● ●●● ●● ● ●● ●●● ●● ●● ●●● ● ●● ●● ● ●● ●● ● ● ● ●● ●● ● ●● ●● ● ● ●● ● ●● ●● ●● ●●●● ●●●● ●● ●● ● ● ● ●●● ● ●●● ● ●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●● ● ●● ● ● ●●●● ●●● ● ● ●● ●●● ● ● ●● ●●●●●●● ●● ● ●● ● ●● ● ● ●● ●● ●●● ● ● ● ●● ● ● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●●● ●●●● ●● ● ●● ●●●● ●●●● ●● ● ●●●● ●●●● ●● ●●● ●●●●● ●● ●● ● ●●● ●● ●● ● ● ●● ●● ●●●● ●● ●●● ● ●●● ● ●● ● ●● ●●●● ●●●●● ●●● ●● ●●●●● ●● ●●● ●●● ●● ● ●● ● ●●● ● ●● ● ● ●● ●●●● ●●● ●●● ●● ● ●● ● ● ●●● ●● ●●● ●● ●● ● ● ●●●● ●●● ●● ●●● ●● ●●●● ●● ● ● ●● ●● ● ●● ●● ● ●●●●

●●
●

●● ●● ● ●●● ● ●● ●●● ●● ●●● ●● ●●●● ●●●● ●●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ● ●● ●●●● ●●●●● ●●●● ● ●●● ●● ●● ● ●●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●●● ● ●● ●● ● ● ●●● ●●● ● ●● ●●●● ●● ●● ●●● ●● ●● ●●● ● ● ●● ●● ●● ●●● ●● ● ●●● ●● ●●●● ●● ●● ●● ● ●● ●●●● ●●● ● ●●● ●●● ●●● ● ●●● ●●● ● ●●●● ● ●●● ●●● ● ●● ●●● ●● ●● ●● ● ●●● ● ●● ● ● ●● ●●●● ● ●●●● ●●●● ● ●●●●●● ● ●●● ● ●● ● ●● ●●● ● ●●● ●●● ●● ● ●● ● ●●●●● ●● ● ●●●●● ●●● ●● ●● ●●● ●● ● ● ●●●●● ●● ● ● ●●● ● ●● ●● ●● ● ●●● ●●● ● ● ●●● ●●●●● ●●● ●● ●● ●● ● ● ●● ●● ●● ● ● ●● ●●● ●● ●● ●●● ●●● ●●● ●● ● ● ●●●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●●●●● ● ●●●● ●● ● ●● ●● ●● ●● ●● ● ●● ● ●●● ● ●●● ●● ● ●● ● ●●● ●● ●● ● ● ●● ● ●● ●●● ●●● ●●● ●● ● ●●● ● ●● ● ●●● ● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ● ●● ● ●●● ●● ● ●●● ●●● ●●● ● ●●● ●● ● ●● ● ●●● ● ● ●● ●●●● ●● ● ●●● ●●●●● ● ●●● ●●● ●● ● ●● ● ●● ●●● ●● ●● ● ●● ● ●● ●●● ●●●● ●●● ●●● ●● ●●●●● ●●●●● ● ●● ● ●●● ● ●● ●●● ● ●●● ●●● ●●● ●●●● ● ●●● ● ●●● ● ● ●● ●● ● ●●● ●●● ● ●●● ●●● ●● ●●● ●● ● ●●● ●●● ● ●● ●● ● ●●● ●● ● ● ●●●●● ● ●● ●● ●●● ●● ●● ●● ●●●●● ●● ●● ● ● ●●●●●● ●● ●●●●● ●● ●● ●● ●●●● ●●● ●● ●●●● ● ●● ●● ●● ●●●● ●●● ●● ● ●● ●● ●●● ● ●●● ● ● ● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●●●● ●●● ● ●● ● ●●● ● ● ●●● ●● ●● ●●●●●● ●● ● ●● ●●● ● ●● ●●●● ●● ● ●●● ●● ●● ●● ●●●● ● ●●●● ● ●●●● ●●●●● ● ●●●● ●●●● ●● ●● ●●● ●●● ●● ●●●● ● ●●●●●● ● ●●● ●●● ● ● ● ● ●● ●● ●●● ●●● ● ●●● ●●● ● ●●●● ●●● ● ●●●● ● ●●●●●● ●●● ● ●●● ●● ●● ●● ●● ●●●●● ● ●●● ●●● ●● ● ●●● ●● ●●● ●● ● ●●● ●●● ● ●●● ●●● ● ●● ●●●● ● ● ●●●● ●● ●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●●● ●●● ● ●● ●●●● ● ● ●●●● ●●● ●● ●● ● ●●● ● ●●● ●●● ●● ●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●●● ●●● ● ●● ●● ●● ●●● ●●● ● ●● ●● ●● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ● ●●● ●●● ● ● ●● ● ●●●● ●● ●●● ●● ●●● ● ●●● ● ●●● ●●●● ● ● ●● ●● ● ●●● ● ●●● ● ●●● ● ● ●●● ●●●● ●● ●● ●● ●●●● ●●● ●●● ●● ●● ●● ●●●● ●● ● ●●●● ● ●● ●● ● ●●●● ● ●●● ●●● ●● ●●●● ●●● ●● ● ●●●● ●●● ● ●●● ●● ● ● ●● ●●●●● ●●● ● ●●● ●●●●●● ● ●●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ●●● ●●●● ●●● ●●● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●● ● ● ●●●● ● ●●●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●● ● ● ●●● ● ●● ● ●● ●● ●●● ● ● ● ●● ●●●● ● ●●●● ●●●● ●●●●● ●● ● ●● ● ●● ●●●● ●● ● ●● ●● ●●●● ● ●● ●● ●●● ●●● ● ●●● ● ●● ●●●●●● ●●● ● ●●●● ●● ●● ● ● ●●● ● ●● ● ●●● ● ●● ●● ●● ● ● ● ●●● ●● ●● ●●●● ●● ● ● ●●● ●● ●● ●● ●●● ●● ● ●● ● ●● ● ●●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●●● ●● ●● ●●●●●● ●● ●●● ●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ●● ● ●● ●● ● ●●● ●● ● ● ● ●● ● ●● ●● ●● ● ●● ●● ● ● ●●●● ●●● ●●● ●●●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●●● ● ●● ●●●●● ●●● ●● ●●● ●● ● ●●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●●● ● ● ●●● ●● ● ● ●● ● ●●● ●● ●●● ● ●●●● ●●●● ● ●● ●● ●●●● ●●● ●● ●●●● ● ●● ● ●●● ●● ●● ● ●●●●● ● ●● ●●● ●● ●●● ●● ● ●● ●● ● ● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●● ● ●● ● ●●●● ● ● ●● ●● ●●●● ●● ● ●● ●●●● ● ●●● ● ●● ●●●● ● ●●●● ●● ●● ● ●●● ●● ●●●● ● ●●●● ●● ●● ●● ●●● ●● ● ●●●● ● ●● ●●●●●● ●● ● ●● ●● ● ●● ●●● ● ●●● ●●●●● ●● ● ●● ● ●● ● ●●● ● ●● ● ●●● ●●●●●●● ●● ●● ●● ● ● ●●● ●● ●●● ●●● ●●●● ●●● ●● ● ● ●●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●●●●● ●●● ● ●●● ● ● ●●● ●●●● ● ●● ●●● ● ● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ● ● ●● ●●● ●●● ● ●●● ●●● ●● ●●● ●● ● ● ●● ●●● ●● ●● ● ●●● ● ● ●● ●● ●● ●●● ● ●●●●● ● ●● ● ● ●● ●● ● ●●● ●●●● ● ● ●●● ● ●● ●●● ●● ●●● ●●● ●●● ●● ● ● ●●● ● ●● ● ●●● ● ●●●●● ● ●●●●● ●●● ●● ● ●● ●● ●● ●●● ● ●● ●● ●●● ●●●● ●●● ● ●● ● ●● ● ●●● ●●●● ●●● ●● ●● ●●● ●● ●● ● ●● ● ●● ●●● ●●● ●● ● ●● ●●● ●● ●●●● ● ●● ●● ●●● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ●● ●●●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●●● ●● ● ●●●● ● ●● ●●● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●●● ●● ●● ●● ●● ● ● ●● ●● ●● ● ●● ● ●● ●● ●●● ● ●●●● ●● ● ● ●● ● ●● ●● ●●● ●●● ●● ●●●●● ● ●●● ●●● ●● ● ●● ● ●●● ●● ●●● ● ●● ● ● ●●● ● ● ●●● ● ●● ●●●● ● ● ●●●● ● ●●● ●● ● ●● ●● ● ● ●●● ●● ● ● ●● ●● ●● ● ●● ●●●● ● ●●● ●●● ● ●● ●●● ●●●● ●●●● ● ●● ●● ● ●● ●●● ●● ●● ●●● ●●● ● ●●● ● ●● ●● ● ●● ● ●● ●●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ●●● ● ●●●● ●●● ●●● ● ●●●● ●●●● ●●● ● ● ●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●●● ● ●● ●● ●●● ●● ●●●● ●●● ●● ● ●● ● ●● ●● ●●● ●● ● ●●● ● ● ● ●●● ● ●● ● ●●● ● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ● ●●●● ●● ●● ● ● ●●● ●●● ●● ●●● ●● ●● ● ●● ● ●● ●● ●● ●●● ●● ● ● ●●● ● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ●● ● ●●● ●● ● ●● ●● ● ●●● ●● ●● ●● ●●●● ● ● ●●●●● ●● ●● ●● ●●● ●● ●● ●●●● ●● ● ● ●●● ● ●● ●●●● ●● ●● ● ●● ●● ●●●● ●● ● ●●●● ●●● ● ●●●● ●●● ●● ●●● ●●●● ● ●●● ●● ●● ● ●●● ●● ●● ● ● ●●●● ●● ● ● ●●●● ●●●●● ● ● ●●● ● ● ●● ● ●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●●●● ●● ●●● ●● ● ●● ●●● ●●●● ●● ●● ●●●● ● ●●●●● ●●● ● ●● ●● ●● ●●●● ●●●● ● ●● ● ●● ● ●● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●●●●● ● ●● ●● ● ●● ● ●●●●● ●● ● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●●● ●● ● ●● ●●● ●●●● ●●● ● ●●● ●● ● ●● ●●● ●● ● ●●● ●●● ● ●●●●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ● ●●●● ●●● ● ●●●● ● ● ●●●● ● ●● ●●● ●●● ● ● ●●●●● ● ●●● ● ●● ●●● ● ●● ●● ●● ●● ●●●● ●●● ● ●●● ●● ●●● ●●● ●●●●● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ●●●● ● ●●● ●●● ● ●● ● ●●● ● ● ● ●●● ●●● ●●● ● ●● ●●●● ●●●●● ●●●● ● ●● ● ●● ● ●●● ●●●● ● ●●● ●● ● ●●● ● ●●●●● ●● ●●●● ●● ●● ●● ● ● ●●● ●● ● ●●● ● ●●● ● ●● ● ● ●●● ● ●●● ●● ●● ●● ●●● ● ● ●●●● ● ●●● ●●● ● ●●● ●●●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●● ●●● ●●●● ● ●●●● ● ●● ●● ●● ● ●●● ●●● ●● ● ●●● ●● ● ●● ● ● ●●● ●●● ●●● ●●●● ● ●● ● ●●● ●● ● ●● ●● ● ●● ●●●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●● ● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●●● ● ●●● ●●●●● ●● ●●●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ● ●● ●● ● ●●●● ●● ●● ●●●● ●● ●●● ● ● ●● ● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●●●● ●● ●●● ●● ●● ● ●● ●●● ● ●● ●●● ● ●●● ● ●● ● ● ●●● ●● ●●● ●● ●●●● ● ●●●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●●● ● ● ●●●●●●● ●● ● ●● ●● ●● ●● ●● ●●●● ● ● ●● ● ● ●● ●●●●● ●●● ●● ●●●●●● ●● ● ●●●● ● ●●● ● ●●● ●● ●● ● ●● ● ●●●● ●● ● ●● ● ●● ●●● ●● ●● ●● ● ●●●● ●●●● ●● ●● ● ● ● ●● ●● ●●● ●●● ● ●● ●● ●●● ●● ●● ●●●● ●● ●● ●● ●●●● ●●●●● ●●● ●● ●● ●● ●● ●●●● ●● ●●●● ● ●● ● ●●● ● ●● ● ●●● ●●● ● ● ●● ●● ●●● ●●● ●● ●●● ● ● ●● ● ●● ●●●● ●● ● ● ●●● ●●●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ● ● ●● ● ●● ●● ●●● ●●● ●● ●●● ● ● ●● ● ●●● ●●● ●● ● ●●● ●●● ● ●●●● ●●● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ● ● ● ●● ●●● ● ● ●●● ●●● ●●● ●● ●●●●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ● ●●● ●●● ● ● ●●●●● ●●●● ● ● ●● ●● ●●● ● ●● ●● ●● ● ● ●●● ●● ●●● ●●● ● ●● ●● ●● ●●● ●● ●● ●● ● ● ●●● ●●● ●●● ●● ●●● ●● ●● ● ● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ● ● ● ●● ●●●●● ● ● ●● ●●●● ● ●●● ●●● ●●● ● ●● ●● ● ● ●● ●● ●●● ● ● ● ●● ● ●●●● ● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●●●● ● ●● ● ●● ●●●●● ● ●●●● ● ●● ● ● ●●●● ● ●●● ●● ●● ● ● ●●● ●● ●● ● ● ●●● ● ●●●●● ● ●●●●● ●●● ● ● ●●●● ● ●●● ●● ● ● ●● ●● ●●● ● ●● ● ●● ●●● ●● ● ●●●● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●●●● ●● ●● ●● ●●●● ● ● ●●● ●● ●● ● ●●●● ●● ●● ● ● ●● ●● ●● ●● ●●● ● ● ●●● ●●●●●● ● ●● ● ●●● ● ● ●●● ●● ●● ●● ●● ●●● ●●●● ●●●● ●●● ●●● ●● ●●● ●● ● ●●● ●● ● ●●● ● ●● ●● ● ●●● ●●● ●● ●● ● ●● ● ●●● ● ●● ●●●● ● ●● ●●● ●●●●● ●● ●● ● ●● ●● ● ●● ●●● ●●●● ●●● ● ●● ●●● ●● ●● ●●●● ● ● ●● ●●● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ● ● ●● ●●● ● ●● ●● ●●●●● ●●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ● ● ●●● ● ●● ●●●●●● ●●● ●● ●●● ● ● ●● ●● ● ●● ●● ●●●● ●●● ● ● ●● ●● ● ●● ● ● ●●● ●● ● ●● ● ● ●● ●● ●● ● ●● ● ●●●● ● ●●● ●● ● ● ●●● ●● ●● ●●●● ●● ● ●● ●● ● ●●●●● ● ●●●●● ●●●●● ●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ● ●●●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●●● ● ●● ●●●● ● ●● ●●● ● ●● ●●● ● ●●● ●● ● ●●● ● ● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●●● ●● ●●● ●● ●● ●●●●● ●● ● ●● ●● ●● ● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●●●● ● ●● ●●●● ●●● ●●● ● ●● ●● ●●●● ● ● ●●●● ●●● ●●● ●● ●●● ● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●●●● ● ●● ●●●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●●● ●● ● ●●● ●● ● ● ●●●● ● ● ●● ●● ● ●●● ● ●● ●●● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●●●● ● ●●●● ●●● ●●●● ●●●● ● ●● ●●●● ● ●●● ●● ●●● ●● ● ● ●● ●● ●●● ● ● ●● ● ● ●●●●●●● ●●● ●● ●● ● ●●● ● ● ●● ●● ●● ●● ● ●●● ●●●●● ●● ●●● ● ● ●● ●● ● ● ●●● ●●● ● ●● ●●● ●●●● ● ●●● ●●● ●● ●●● ●● ●● ● ● ● ●● ● ●● ● ●●●● ●● ●● ●● ●●●●● ● ●●● ●●●● ● ●●●● ●● ●● ●● ●●●● ●● ● ●● ● ● ●●● ●●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ● ● ● ●●● ● ●● ●● ● ●● ● ●●●● ●● ● ● ●●● ● ● ●● ●● ●● ●●● ●● ●●●● ●● ●●● ●●● ●● ● ●●● ●●● ●●●● ●●● ●●● ●● ●●● ● ●● ●●● ●●●● ●● ● ●● ● ●● ●●●● ● ●●● ● ● ● ●●●● ●●● ●● ●●● ● ●●●●● ●●● ● ●● ●●●●● ●●●● ●● ●● ● ●●● ●● ●● ●● ● ●●● ● ●●● ● ● ●●● ●● ●●● ● ●●●● ● ●● ●● ●●● ● ●● ●●● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ●● ●●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ●●●● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●●● ● ●● ●● ●●●●●●● ●● ● ●●● ●●●● ●●●●● ● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●● ●●●● ●● ●●● ● ●●●●● ●● ● ●● ● ●●●● ●●● ● ●● ●●● ● ● ●●● ● ●●● ●● ● ●● ●●●● ●● ● ●●● ●●● ●●● ●● ● ● ● ●● ●● ●●● ●● ●●● ● ●● ● ● ●● ●●● ●● ●●● ● ●●● ● ●●●● ●●● ●●● ● ●● ●●●● ● ●● ●● ●● ●● ●● ● ● ● ●● ●● ●●●● ● ● ●● ●● ● ●● ●●●● ●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ● ●● ●●●● ● ●●●● ● ● ●● ● ●● ●● ●● ● ●● ● ● ●●●●●● ● ●● ●● ●●●●● ●● ●●● ●● ●● ● ● ●● ● ●● ●●● ●● ●●● ● ● ●●● ● ● ● ●● ●●● ●●● ●● ● ●●● ● ● ● ●● ●● ●● ●●● ● ●● ●●● ● ● ●●●● ●● ●● ● ● ●●● ● ●● ●●● ●● ●● ●● ●● ●●● ● ● ●●● ●●●● ●●● ● ●● ●● ● ●● ●●●●● ● ●●● ●●● ●● ● ● ● ●●●● ●● ● ●●●●●●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ● ● ●● ●●● ●● ●● ●●●●● ●● ●● ● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ● ●● ●● ●●● ●●●● ●● ●● ●● ●● ● ●● ●●●●● ●●● ●●● ●● ● ●●● ●●● ●● ●● ●●● ● ●●● ●● ●●● ●● ●●●●● ● ●● ● ●●● ●●● ●● ● ● ●●●● ●● ●● ●●● ●●● ● ● ●● ●● ● ●● ● ●●●● ●● ●●● ● ●● ● ●● ●●● ● ●●●● ●●●● ● ●●● ●●● ● ●● ● ●●●●●● ● ●●● ● ●●● ●●● ●● ● ●● ● ●● ●● ● ●● ● ● ●● ●● ●● ●●● ●● ●● ● ●●●● ● ●● ●●●● ● ●● ● ●●● ●● ● ●●● ●● ●●● ●●● ●●● ●● ●● ●●● ● ●●● ● ●● ●●●● ●● ●●●● ●●● ●●●●● ●● ● ● ●● ●● ● ●● ●●●●● ●●● ●●● ●●●●● ●● ●● ●●● ●●●● ● ● ●● ●● ● ●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●●● ● ●● ● ●●●● ●●● ●● ● ●●●● ●●● ●●●●● ●● ●● ●● ● ●● ●●● ●● ● ●●●● ●●● ●● ● ●● ●●●● ● ●●● ● ●●●● ● ● ●●●● ● ●●● ●●●● ● ●● ● ●●●● ● ●●● ●● ● ● ●● ● ●● ●●●● ●● ●● ●●● ●● ●● ●● ● ●●● ● ●●●● ●●● ●●●● ●●● ●● ● ●● ● ●●●● ●● ● ●● ●● ●● ● ● ●●● ● ●● ●●● ●● ●●● ●● ● ●● ●●●●● ● ●●● ● ● ●●● ●● ●● ●●● ● ●● ●● ● ●●● ●● ●● ● ●●●● ●● ●●●●●● ●● ● ● ● ●● ●●●●● ●●● ●● ●● ● ●●● ●●● ●●● ●● ●●●● ● ●●● ●● ●● ●●● ● ●●● ●● ●● ●● ●●● ●● ●●●● ● ● ●● ●● ●●● ●● ●●●
● ● ●

●

●●
●●● ●●●

● ●●● ● ●●●● ●●●●●● ●●● ●● ●● ●●●● ●● ●●● ● ●●●● ●● ● ●●●●●● ● ●● ● ●● ●●● ●●●●● ●●●● ●● ●●● ● ●●● ●●● ●●● ●●●●● ● ●●● ● ● ●●● ●● ●● ●●●● ●● ●●● ● ●● ●●● ●● ●●● ● ● ●●●● ● ●●● ●● ●● ● ●● ●● ●● ●●●● ●●● ●●● ● ●●●● ● ●●●●● ● ●● ●● ●●● ● ● ●● ●●● ● ● ● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ●●●●● ●●● ● ● ●●● ●●● ●●● ●● ●● ●● ●●● ● ● ●●● ●● ●●● ● ●●●●●● ●●●● ●● ● ●● ● ●●●● ●● ●● ● ●●●● ●●● ●● ●●● ●●● ●● ● ●●●● ● ●●●● ●● ●● ● ●●● ●●●●● ●●● ● ●●● ●● ●●● ● ●● ●● ●● ●● ● ●● ●●●● ● ●●● ●● ● ● ●●●●● ● ●● ● ●●●● ● ●●●●● ● ●●●● ●● ●●● ●● ●● ● ●●●●● ● ●● ● ●● ● ●●● ●● ●● ● ●● ● ●●●● ●● ●●● ●● ●●●● ● ●● ● ●● ●● ●● ●● ●● ●●●● ●●● ●●●● ● ●●●●●●● ●● ●● ● ●● ●● ● ● ●● ●● ● ●● ●● ●● ● ●●● ●● ● ●● ● ● ●●● ●● ●● ● ●● ●● ●●● ● ● ●● ●●● ●● ●● ●● ● ●●● ●●● ● ● ●●● ●●●● ● ●● ● ●●● ● ●● ● ●● ●●● ●●● ● ●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●●● ●●●● ●● ● ●● ●●● ●●● ●● ● ●●● ● ●● ●● ●● ●●●● ● ●● ●●●●●● ●● ● ● ●● ●●● ●● ●●●●● ●●● ● ●● ● ●●● ●●●●● ● ●● ●●● ●● ● ●●●●● ● ●● ● ●●●● ● ●● ●● ●● ●●●● ●● ● ● ●● ● ●● ●●● ●●● ● ●●●● ●● ● ●● ●● ●● ●●● ● ●● ●● ●● ● ● ●●●● ●●●● ●● ● ●●●● ●●● ●●● ●●●● ●● ● ● ●● ●● ●●● ●●● ●●● ● ●● ● ●●●●● ● ●● ●●●● ●●● ● ● ●● ●●● ●● ●●● ● ●● ● ●●●● ● ● ●● ●● ●●●● ●●● ●●● ●● ● ●● ●●● ●● ● ●●●● ●●● ●● ●● ●●●● ● ● ●●●● ● ●● ●●● ● ●● ●● ●● ●● ● ●●● ● ●● ● ●●● ●●●●●● ●● ●●●● ● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●●● ● ●● ●●● ●●● ●●● ●●● ●● ●●●● ●● ● ●● ● ●●●●●●● ●● ●●● ● ● ●●● ● ●● ● ●●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●● ● ●● ●● ●● ●●● ●●●● ● ●●●● ●● ●● ●●● ●●●● ● ●● ●●● ●● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ●● ● ● ●●● ● ●●● ●●● ●● ● ●● ● ●●● ●● ●●●● ●●● ●●●●● ● ●●●● ●●● ●● ● ●●● ●● ●●● ● ●●●●● ● ●● ●● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ●●●● ● ●● ● ● ●●● ● ●●● ●●●● ● ●● ●● ●●●● ● ●●●● ●●● ● ●● ●● ● ●●●● ●● ●● ●● ●●● ● ● ●●● ● ●● ●● ●● ●● ●● ● ●●●●● ●● ●● ●● ●●●● ●● ●●● ●●● ●● ●●● ● ●● ●●●● ●● ●● ●●● ●●● ●● ● ●● ●● ● ●● ●● ● ●●● ●● ●●● ●● ● ●●● ● ●●●●● ●● ●●●● ●● ●●●● ●● ●●● ●● ●●●● ●●●●● ●● ●● ●● ●● ●● ● ●● ●● ● ● ●● ●● ●● ●● ●● ●●● ●● ● ●●● ●● ●●●● ●● ●●● ●●●●● ● ● ●●● ●● ● ● ●●● ● ● ●● ●● ● ●● ●●● ● ●● ●● ●●● ● ● ●●● ●●● ● ●●●● ● ●● ● ●● ● ●● ●●● ● ●● ●●●● ●●● ●●● ●●● ●●● ● ●● ● ●●● ●● ● ● ●● ●●● ●●● ● ●● ●● ●● ●● ● ●●● ● ●● ● ●●● ●●●● ●●● ● ●●● ●●●● ● ●●● ●●● ●●●●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●●● ● ●●● ●●●●● ● ●●●● ●● ● ●● ●● ●●●● ● ●●● ● ●● ●●● ●● ●● ● ●●●●● ● ● ●●● ●●● ● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●●● ●●● ● ●●●● ● ●●● ●●●● ● ● ●●● ●●● ● ●●●● ● ●● ●● ●● ●●●● ● ●●● ●●●● ● ●● ●● ●●●●● ●●● ● ● ●● ●●●● ●●● ●● ● ● ●●● ●● ●● ● ●● ●● ●●● ●●●●● ●●●● ●●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ●●● ● ● ● ●●● ● ●● ●●● ●●●● ● ●●● ● ●● ● ●●● ●● ● ●● ● ● ● ●● ●● ● ● ●● ● ●● ●●● ●● ●●●● ●● ●● ●● ●●● ●●●● ●●● ●●● ● ● ●●● ●● ●● ●● ●●●● ●●● ● ●● ●● ●●●● ●●● ● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●● ● ● ●● ●●●● ●●●● ●●● ●● ●● ●●● ● ● ●● ● ●● ●●● ●● ●● ●●● ● ●●● ●●●●●●● ●●● ● ● ●●●● ●●● ● ●●●● ●●●●● ●●●● ● ●●● ● ●● ●●● ●●● ● ● ● ● ●●● ●● ●●● ● ● ● ●● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ●●● ●●● ●●● ● ●● ● ● ●● ●●● ●●● ●●●● ● ●●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●●● ●●● ● ●● ● ●● ●● ● ●●● ●● ●●●● ● ●● ●● ●● ●● ●● ● ●●● ●●●● ●●● ●● ●● ●● ●●●● ● ●●●●● ● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●● ● ● ●●● ●●● ●● ●● ●●● ● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●● ● ● ●● ● ●● ●● ● ●● ● ● ●● ● ●●● ● ●●● ● ● ● ●●●●● ●●● ● ●●● ●●● ●● ●● ●●●● ●● ● ●● ●●● ●● ●●● ● ● ●●●●● ●● ● ●●●● ●●● ●●● ● ●●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ● ●●● ● ● ●●●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●●●● ●● ● ● ●●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●●●● ●● ● ●● ● ●● ●●● ●● ● ●●● ●●●● ● ●● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●●●●●● ●●● ●● ●● ●● ●● ●●●● ●●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●● ● ●● ●● ● ●●● ●● ●●●●● ●● ● ●●● ● ●● ●●● ●●● ● ●●● ● ●●●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●● ● ●●● ●●●● ●●● ● ● ● ●● ●● ●● ●● ●● ●● ● ●●●● ●● ● ● ●● ●● ● ● ●● ● ● ●● ●●● ● ●● ● ●●●●●●● ●●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ● ●● ●●● ●● ●● ●● ● ●● ●● ● ●● ●●● ●● ● ●● ●●● ● ●● ●●● ●● ●● ●●● ●●● ● ●● ●● ●●●● ● ● ●●● ● ● ●●● ● ●●● ● ●●● ● ●● ● ● ● ●●●● ● ●●● ● ●●● ● ●●●●● ●● ●●● ●●● ●●● ●● ●●●● ●●● ●● ● ● ●●● ●●●● ● ●●● ● ●●●● ●● ●● ●● ●●● ●● ●●●●●● ● ● ●● ●●● ●● ● ●● ●●●● ● ● ●●● ●●● ●●●● ●● ●● ● ●●● ●●● ●●● ●● ● ●●● ● ●●● ●● ●● ● ●●● ● ●●● ● ●●● ●● ● ●● ● ●● ●●●● ●●● ●●● ●●● ● ● ●● ●●●●● ●●● ●● ●● ●● ●● ●●●●● ●●●● ●● ●● ●●● ● ●● ●●●● ●●● ●● ●●●● ●● ●●● ●●●● ●●●● ●●● ● ● ● ●● ● ●● ● ●●●● ●● ●● ●●● ● ●●● ●●● ●● ●●● ● ●● ● ● ●●● ●●●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ● ●●●●● ●● ● ●●● ●● ●● ●● ●● ●●● ● ●● ●●●●● ●● ●● ●●● ● ●● ●● ●●● ●● ●●●● ● ●●●●● ●●● ● ● ●● ● ●● ● ● ●●●● ● ●●● ●●●●●● ● ●● ●● ●● ●●●● ●● ●●● ● ● ●● ● ● ● ●● ● ●●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●●● ● ● ●●●● ●●●● ●●● ●●● ● ● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ●●●● ● ●●● ● ●●●● ●● ● ●● ● ●●● ●● ● ●●●● ●●●●●● ●● ●●●●● ● ●● ●● ● ●●● ●●●●● ●● ● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●●●●● ● ●●● ● ● ●● ● ●●● ●●●● ●●●● ●● ● ● ●●● ● ●● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ●● ● ●●●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●●●● ●●● ●● ●● ● ●● ● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●● ● ● ●●● ● ●● ●● ● ●●●● ●● ● ● ●● ●● ●● ●● ●●● ●● ● ●●●● ● ●●●● ●●● ● ● ●●●● ● ● ●● ● ●● ●● ●● ● ●● ● ●●● ●● ●●● ●● ●●● ●●● ● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●●● ● ●●● ● ●●● ●● ●● ●●● ●●●●● ● ●● ●● ● ●● ●●● ●●●● ● ●● ● ● ●●●● ●● ●●● ● ● ●●● ●● ●●● ●●● ●●●●● ●●●● ● ●●● ●● ● ●● ●●● ●● ●● ● ●● ● ●● ● ●● ●●● ● ● ●● ● ●● ●● ●● ●●● ●● ●●● ●●● ● ●●●●● ●●● ● ●●● ●●● ● ●● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ● ● ●●● ●●● ●● ●●●●● ●●●●●● ●●● ●● ●● ●●● ●● ●●● ●●●● ● ●● ●● ● ●● ●●●●● ●● ●● ● ●●●● ● ●●● ● ●●● ●● ●● ● ●● ●●● ●●● ● ● ●●● ●●●● ● ●● ● ●● ● ●● ● ●●● ● ● ●●● ● ●● ●●● ● ●● ●● ● ●● ● ●● ● ● ●● ● ●●●● ●●●● ●●● ●●● ●●● ●●● ● ● ●●● ●●● ● ●● ●● ●●●● ●● ●●● ● ●●●● ● ●●●● ●● ● ●●● ●●● ● ●●● ●●● ●●● ● ● ●● ●● ●● ●● ●● ● ●●● ● ● ●●●● ● ●●● ●●●● ● ● ● ●●●● ●● ● ●●●●● ● ●●● ●● ● ●● ●● ● ●● ●●●● ●●● ●●● ●● ● ●●● ● ●● ●● ●●●● ●● ● ●● ● ●●● ●● ● ●● ●● ●●●● ●● ● ●● ●●●● ●● ● ●●● ● ●● ● ●● ● ●● ●● ●● ●●● ●● ●● ● ● ●●●● ● ●● ●● ● ●● ●● ●● ●● ● ●●● ● ●●●●●● ● ● ●● ●● ●● ●●● ● ●● ●●● ●●● ●● ●● ●●●● ●● ● ●●●●● ●● ● ●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ● ●●●●● ●● ●● ●● ●●●●● ●● ●●● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●● ●● ●●●●● ●● ●● ●● ●●● ● ●●●● ●● ● ●● ●●● ●●● ●● ●● ●● ● ●●●● ●●● ●●● ●● ●●● ● ● ●●● ●●● ●● ●● ●● ●● ● ●●●● ●●● ●●● ●● ●●● ●●●●● ● ●●● ●●● ● ●●● ●●● ● ●● ●●● ● ●●●● ●● ●● ●● ●●● ●●● ●● ● ●●● ●● ●●●● ●● ● ●●● ● ●●● ●● ● ●●● ●●●● ●● ●● ●● ● ● ●●●● ●● ● ● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ●● ●●● ● ●●●● ●●●●● ●● ●● ● ●● ●● ● ● ●●● ● ● ●● ● ●● ●●● ● ●● ●● ● ●● ●● ●●● ●● ●● ● ●●●● ●● ●●● ●● ● ●●●● ●●●● ●● ●●●● ● ●● ● ● ●● ●●●● ● ●●●● ● ●● ● ●● ●● ●●● ●●●● ●●●● ● ●●● ● ● ●●●● ●● ● ●●● ● ●● ●●●●● ●● ● ● ●●● ●●● ●● ● ●●●●● ● ●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●● ●● ●●●● ●● ● ●● ●●● ●●●● ● ●●● ●● ● ● ● ● ●●● ●● ● ● ●●● ●●●●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●● ● ●● ● ● ●● ●● ●● ●● ●●● ● ●●● ●●●● ●●● ●●● ● ●● ●●● ●●● ● ●●●● ●● ●●●● ●● ●●● ●● ● ●●● ●●●● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ● ●●● ●●● ● ●●● ● ●●● ●●● ●●● ● ●● ●●● ●● ●●● ●●●●● ● ● ●● ●●●● ●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●●●● ●●● ●●● ● ●●● ● ●● ●● ●●●● ●● ●● ●●●●● ●● ●●● ●● ● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●● ●●● ● ●● ●● ●● ● ●●● ● ● ●●● ● ●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●● ●● ● ●●●● ●●●● ●●● ●●● ●●●●● ●● ● ●● ● ● ●● ●● ● ●●●● ●● ●● ●●● ● ● ● ●●●● ● ●● ●● ● ● ●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●●●● ● ●● ● ●●● ● ●● ●●● ● ●● ● ●●● ●● ●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●●● ●●● ● ●● ● ● ●● ●● ●● ●●●● ●● ●● ●●● ●● ●● ●●●● ●●●● ●● ●● ●●● ● ●●● ●● ●● ● ●●●● ●● ●● ● ●● ●●●● ●●● ● ●● ●●●● ●● ●● ●● ● ●●● ●● ●● ● ● ● ● ●●●● ●● ●●● ● ●●●● ● ● ●●● ●●● ●●● ●●●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●● ●●● ● ●● ● ●● ●●● ●●● ● ●●●● ●●● ●●● ●● ●● ●●● ●● ● ●●● ●●● ●● ●● ● ●● ● ●●● ●● ●●● ●● ● ● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ●●● ●● ●● ● ●● ● ● ● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●●● ●● ●● ●● ●● ●●●● ●●● ● ●● ●● ●●●● ●● ●● ●● ● ●● ● ●● ● ●●● ● ●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●●●● ● ●●●● ● ●●● ● ●● ● ● ●●● ●● ●● ● ●● ●● ●●●● ● ●● ●●● ●●●●● ●● ●● ●● ●● ●●● ●● ● ● ● ●●●● ●● ●●●● ● ●● ● ●●●●● ●● ● ●● ● ●●● ● ● ●●● ● ●●● ●● ●● ●● ●● ● ●●● ● ●●● ●●● ●● ● ●● ●●● ●●● ●●● ●●● ●● ● ●●● ●●●● ● ● ●● ● ●●●● ● ● ●●● ●● ●● ●● ●● ● ●●●● ● ●●●● ● ●●● ●● ●●● ●●●●● ●●●●● ●●●● ● ●●●● ●● ● ●●●● ● ●●● ● ●● ● ● ●●● ●● ●●● ● ●● ● ●●●● ●● ● ● ●● ●● ●●● ●● ●●●●● ●●●● ● ● ● ●●● ● ●● ●●● ● ●● ●● ● ●●● ● ●● ● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●●●● ● ●●●● ● ● ●● ●●●●● ●● ●●● ● ●●●●●● ● ●● ● ●● ●● ● ●● ●●● ● ●●● ●●● ●●● ● ●● ●● ● ●●●● ●● ● ●●●●● ●● ●● ●● ●●●● ●●● ●● ●● ● ●●● ● ●●● ● ●● ●●● ●● ● ●● ● ●●● ●● ●● ● ●● ● ●● ●●●●● ● ●● ●●● ●● ●● ●● ●● ● ●● ●●●● ● ●●● ●●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●●●●● ●●●● ● ●●● ●●● ●●● ●● ● ●● ●● ●●● ● ●● ● ●● ● ●●● ●● ●●● ● ●● ●● ● ●● ●● ●● ●●● ●● ● ●●● ● ●● ●● ●●●● ● ●●● ● ●● ●●● ●●● ●●●● ●●●● ● ●●●● ● ●● ● ● ●●● ●●●●● ● ● ●●● ● ●● ●● ●● ●● ●● ●●●● ● ●●●● ●● ●● ●● ●●● ●● ● ●●● ● ●● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●●●●● ● ●●●● ● ●●● ●● ●● ●● ● ●●● ●●● ●●● ●● ●●● ●●●●●● ● ● ●●● ● ●● ●● ●●● ●● ● ●●● ● ● ●●● ●●● ●● ● ●● ●●● ●● ● ●● ●● ●●●● ●●● ●●● ●●● ●●●● ●●●● ● ●● ●● ●●● ●●●●● ●●●●●●●● ● ●● ●● ● ●●● ●●●● ● ●●● ●● ●● ●●●● ●●● ●● ●●● ● ●●● ●● ●● ● ●● ●● ● ● ●● ●● ●● ● ●● ●● ●● ●●●●●● ● ●● ●●● ● ●●● ● ● ●● ●●● ●● ●●● ●● ● ●● ● ●● ●●● ●● ●● ●● ●● ● ●●●● ● ●●● ●● ●● ●●●● ● ●● ●●● ● ●● ●● ● ●●● ●● ●●● ●●● ●●● ● ●● ● ● ●●● ●●●● ●● ● ●● ● ●● ● ● ●●●●● ●● ● ●● ●● ● ●●● ● ●●●● ● ●● ●●●●● ●●● ●●●● ●● ●●●● ●●● ● ●●● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●●●●● ● ●● ●●●●● ●●● ● ●●● ●● ●●● ● ● ●●●● ●●● ● ●●● ●●● ●●●● ●●●● ● ●● ●●● ●● ● ● ● ● ●●●● ● ●●●●●● ● ●● ● ●● ● ●●● ● ●● ●●●● ●● ●● ● ● ●● ● ●● ●●● ●● ● ●●● ● ●●● ●● ●●●● ●●● ● ●●● ● ●● ●● ●●● ●●● ●●● ● ●● ●● ●●● ●● ●● ●●●● ●●● ●●● ●●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●●●●●● ● ●● ●● ●●● ● ●●● ●●●● ●●● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●● ● ● ●● ●● ● ●● ●● ●● ● ● ●● ●●● ● ● ●● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ●●●●● ●● ● ● ●●● ●● ● ●● ●● ●●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●●●● ●● ●●● ●● ●●●● ●● ●● ●●● ● ●● ●● ●●●● ● ●●●● ● ●● ●● ●● ●● ● ●● ● ●● ●●● ●●● ●●●● ● ●●●● ●●●● ●●● ●● ● ●●● ●● ●● ●●● ●●●●● ●● ● ●● ● ● ●● ●● ● ● ●●● ● ●●●● ● ●● ●●● ● ● ●● ● ●● ● ● ●● ●● ●● ●● ●● ●●● ● ● ●●● ● ●● ● ●●●● ●●● ● ● ●● ●●●● ● ● ●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●●●● ● ● ●● ●●● ●● ● ●● ●● ● ●●● ●●● ●● ●●●● ● ●● ●●● ● ●●●● ●●● ●●● ● ●●● ●● ●●● ●●● ● ●●● ●● ● ●●●● ● ●● ● ●● ●●● ●●● ●●●●● ●● ●●●● ● ● ●● ●●● ● ●● ●● ● ●●●●● ●● ●●●●●● ●● ● ● ●●● ●●● ●● ● ●● ●●● ●● ● ●● ●● ●● ● ●●●● ● ●●● ●● ●● ● ●● ● ●●● ●●
●

0 20 40 60 80

40
60

80
10

0
12

0
14

0
16

0
18

0

Age (years)

R
un

 T
im

e
(m

in
ut

es
)

Figure 2.6: Default Scatter Plot for Run Time vs. Age for Male Runners. This plot demon-
strates that a simple scatter plot of run time by age for the 70,000 male runners leads to
such severe over plotting that the shape of the data is not discernible.

Alternatively, we can create a plot that reveals a smoothed version of the density of the
points in each region. We can also make a series of boxplots instead of a scatter plot. We
demonstrate each of these approaches in this section.

We first modify the call to plot() to change the plotting symbol from a circle to a disk,
and we shrink the size of the disk as well. We also use a transparent blue as the color for the
disk. If we use a transparent color for the plotting symbol, then when two symbols overlap,
their color appears darker. This way, regions with a higher density of observations appear
darker than low density areas.

Colors can be specified in many ways in R and other systems too. The RGBA specifica-
tion provides a triple of red-blue-green components that combine to make a color. The fourth
component in the RGBA specification provides the amount of transparency. For our color,
we choose one from Cindy Brewer’s color palettes that are available in the RColorBrewer
package [2]. We load the package and display the objects in the package with

library(RColorBrewer)
ls("package:RColorBrewer")

[1] "brewer.pal" "brewer.pal.info"
[3] "display.brewer.all" "display.brewer.pal"

These are the names of the 4 functions available in the package. After reading the help

Modeling Runners’ Times in the Cherry Blossom Race 65

information on display.brewer.all(), we see that it is a good starting place because it displays
all of the palettes available in the package. We call it with

display.brewer.all()

and choose the blue in the Set3 palette as follows

Purples8 = brewer.pal(9, "Purples")[8]
Purples8

[1] "#54278F"

The color is stored in hexadecimal format, where red is 54, blue is 27, and green is 8F.
This color does not include an alpha transparency, which means that it is an opaque color.
However, we can create a transparent version of this color by pasting a transparency value
to the end of Purples8 with

Purples8A = paste(Purples8, "14", sep = "")

We use this color for our plotting symbol.
Additionally, we change the ages of the runners by a small random amount between -0.5

and 0.5. This operation is called jittering, and we jitter the age values with jitter(age,
amount = 0.5).

Our resulting plot appears in Figure 2.7. This plot is much improved from the initial
one in Figure 2.6. We can see where the bulk of the runners are, including what appears
to be a slight upward curvature in run time as age increases and a skew distribution of run
time given age. We can also see the small group of runners with very fast run times. We
leave the creation of this plot as an exercise.

The smoothScatter() function provides a more formal approach to jittering and using
transparency for visualizing the density of runner’s time-age distribution. This function
produces a smooth density representation of the scatter plot using color, much like in
Figure 2.7, but with a more statistical approach to building regions that vary by color
intensity. With smoothScatter(), the color at an (x, y) location is determined by the density
of points in a small region around that point. This averaging process yields a smoother
plot with dark shades corresponding to high density regions. We call smoothScatter() with
cbMen as follows:

smoothScatter(y = cbMen$runTime, x = cbMen$age,
ylim = c(40, 165), xlim = c(15, 85),
xlab = "Age (years)", ylab = "Run Time (minutes)")

The resulting plot in Figure 2.8 shows a very similar shape to our plot in Figure 2.7. It has
the addition of small black dots to indicate individual points that are far from the main
point cloud.

A very different approach to these scatter plots is to graphically display summary statis-
tics of run time for subgroups of runners with roughly the same age. Here, we group the
runners into 10-year age intervals and plot the summaries for each subgroup in the form
of a boxplot (see Figure 2.9). With these side-by-side boxplots, the size of the data does
not obscure the main features, e.g., the quartiles and tails for an age group. To make these
boxplots, we categorize age using the cut() function. We first remove those runners under
15 or who have unrealistic run times with

cbMenSub = cbMen[cbMen$runTime > 30 &
!is.na(cbMen$age) & cbMen$age > 15,]

66 Case Studies in Data Science in R

20 30 40 50 60 70 80

60
80

10
0

12
0

14
0

16
0

Age (years)

R
un

 T
im

e
(m

in
ut

es
)

Figure 2.7: Revised Scatter Plot of Male Runners. This plot revises the simple scatter plot
of Figure 2.6 by changing the plotting symbol from a circle to a disk, reducing the size of
the plotting symbol, using a transparent color for the disk, and adding a small amount of
random noise to age. Now we see the shape of the high density region containing most of
the runners and the slight upward trend of time with increasing age.

The we categorize age with

ageCat = cut(cbMenSub$age, breaks = c(seq(15, 75, 10), 90))
table(ageCat)

ageCat
(15,25] (25,35] (35,45] (45,55] (55,65] (65,75] (75,90]

5804 25434 20535 12212 5001 751 69

This new variable, ageCat, is a factor that categorizes age into 10-year intervals with the
exception of all of those over 75 being lumped together into one interval.

We use the formula runTime ~ ageCat in the call to plot() as follows:

plot(cbMenSub$runTime ~ ageCat,
xlab = "Age (years)", ylab = "Run Time (minutes)")

We see in Figure 2.9 that the plot() function has created a series of boxplots rather than
a scatter plot. The difference between this function call and the earlier one that produced
Figure 2.6 is in the formula provided. Since ageCat is a factor, the default plot for the

Modeling Runners’ Times in the Cherry Blossom Race 67

20 30 40 50 60 70 80

40
60

80
10

0
12

0
14

0
16

0

Age (years)

R
un

 T
im

e
(m

in
ut

es
)

Figure 2.8: Smoothed Scatter Plot of Male Runners Race Times vs. Age. This plot offers
an alternative to the scatter plot of Figure 2.7 that uses jittering and transparent color to
ameliorate the over plotting. Here there is no need to jitter age because the smoothing action
essentially does that for us by spreading an individual runner’s (age, run time) pair over a
small region. The shape of the high density region has a very similar shape to the earlier
plot.

formula time ~ ageCat is a series of side-by-side boxplots with one boxplot of run time
per level of the age factor. We observe in this plot that the upper quartile increases faster
with age than the median and lower quartile. In the next section, we try summarizing this
relationship between age and run time more formally.

2.4.2 Fitting Models to Average Performance
As seen in Figure 2.9, the average performance seems to curve upward with age. A simple
linear model may be inadequate to describe this relationship. To see how well the simple
linear model captures the relationship (or not) between run time and age, we fit the model
with

lmAge = lm(runTime ~ age, data = cbMenSub)

Here again we use R’s formula language to express the relationship we want fitted to the
data. Our formula runTime ~ age indicates we want to fit time as a function of age. The
lm() function performs least squares to find the best fitting line to our data, which we see
has the following intercept and slope:

68 Case Studies in Data Science in R

●
●

●

●

●

●
●

●
●
●

●
●

●

●
●
●●●
●

●

●●●●
●

●●
●●●
●●
●

●●●

●
●

●

●
●

●
●●

●●
●●

●
●

●

●
●

●●●

●
●●
●

●●●●●

●

●

●●●●●

●
●●

●
●
●

●

●

●

●●
●

●●

●●●
●●●

●
●

●●

●

●

●
●
●
●●●

●
●●

●

●
●

●

●

●
●●●●●●
●

●●

●

●

●

●●
●
●●●
●●●
●●●●●●
●

●

●

●

●●●

●●
●

●●
●●
●
●●
●

●
●

●

●●●●●

●●●●
●●
●
●●●●
●●●
●●●●

●●●●●●

●●●●●●
●●●●●●●●
●●
●●●●
●●●●●
●●●●
●

●
●

●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●
●●
●●●●
●
●●●
●
●●
●●

●

●●●

●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●
●●●●●
●●●●●●
●●
●

●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●
●●●●●
●
●
●

●

●
●

●

●

●

●●
●
●
●●

●
●

●●
●
●●
●
●

●
●●

●●●●
●●●

●

●●

●
●
●

●

●●
●
●
●
●
●●

●●
●

●

●

●

●
●
●●

●●●

●

●

●●

●
●●
●●
●
●

●
●

●

●

●●●●●●
●
●
●●
●
●●

●

●

●●●●●●●
●●●
●●
●
●●●●●●
●●
●
●
●
●
●

●

●●●●●●●
●●●●●
●●
●●●
●
●●●
●

●

●●●●●
●●●●●
●●●
●●●●●
●●●●●●
●●●●
●
●●
●
●●
●●

●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●
●●●●
●●●
●
●
●●●
●●●
●

●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●
●●●●●
●●●
●
●●●●
●●
●
●

●

●●●●
●●●●●●
●●●
●●●●
●●●●●
●●●●●●
●●
●●
●
●●
●
●● ●

●
●

●
●
●

●

●

●
●●●
●

●●
●●

●

●

●●●
●●
●

●●

●●

●

●
●

●

●

●
●
●
●
●

●

●
●

●

●●
●
●●●

●
●●●
●

●
●●
●

●
●

●●

●
●
●●●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●●
●●
●

●●●●●
●●●●
●●●
●
●●●●
●

●●●●●●●●
●●
●●●●●
●
●●●●
●
●●

●●●

●

●●
●●●●●●●
●●
●●●●
●
●●●●
●●
●●

●●●●●●
●●●
●●●●●
●●●●●
●●●
●
●

●

●

●

●

●

●

●

●●
●●

●●

●
●

●
●
●●●

●●●

●

●●●
●
●

●

●

●

●

●●

●

●

●●●●
●
●●

●

●
●●
●●

●●
●●

●
●

●

●●
●
●●●
●

●●
●●

●●
●●●
●●●●

●
●

●
●●
●●●
●
●●
●
●

●

●

●
●●

●

●

●

(15,25] (25,35] (35,45] (45,55] (55,65] (65,75] (75,90]

60
80

10
0

12
0

14
0

16
0

18
0

Age (years)

R
un

 T
im

e
(m

in
ut

es
)

Figure 2.9: Side-by-Side Boxplots of Male Runners’ Run Time vs. Age. This sequence
of boxplots shows the quartiles of time for men grouped into 10-year age intervals. As age
increases, all the quartiles increase. However, the box becomes asymmetrical with age, which
indicates that the upper quartile increases faster than the median and lower quartile.

lmAge$coefficients

(Intercept) age
78.76 0.23

We have assigned the return value from lm() to lmAge. This object contains the coefficients
from the fit, predicted values, residuals, and other information about the linear least squares
fit of run time to age. We can retrieve a brief summary of the fit with a call to summary()
as follows:

summary(lmAge)

Call:
lm(formula = runTime ~ age, data = cbMenSub)

Residuals:
Min 1Q Median 3Q Max

-40.33 -10.22 -0.95 9.10 82.42

Coefficients:

Modeling Runners’ Times in the Cherry Blossom Race 69

Estimate Std. Error t value Pr(>|t|)
(Intercept) 78.75672 0.20770 379.2 <2e-16 ***
age 0.22529 0.00517 43.6 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15 on 69804 degrees of freedom
Multiple R-squared: 0.0265, Adjusted R-squared: 0.0265
F-statistic: 1.9e+03 on 1 and 69804 DF, p-value: <2e-16

Note that the summary() function does not produce the typical quantiles, extreme values,
etc. This is because we have passed it an lm object, i.e.,

class(lmAge)

[1] "lm"

The summary method for class lm provides a different set of summary statistics that are
more appropriate for a fitted linear model.

To help us assess how well the simple linear model fits the data we plot the residuals
against age. As with the original scatter plot of run time against age, we need to address
the issue of over plotting. We use smoothScatter() to do this. Further, to help us see any
curvature in the residuals, we add to the plot a horizontal line at 0. We do this with

smoothScatter(x = cbMenSub$age, y = lmAge$residuals,
xlab = "Age (years)", ylab = "Residuals")

abline(h = 0, col = "purple", lwd = 3)

To help us further discern any pattern in the residuals, we augment this residual plot
with a smooth curve of local averages of the residuals from the fit. That is, for a particular
age, say 37, we take a weighted average of the residuals for those runners with an age in a
small neighborhood of 37. Such a locally fitted curve allows us to better see deviations in
the pattern of residuals. We fit the curve using loess() with

resid.lo = loess(resids ~ age,
data = data.frame(resids = residuals(lmAge),

age = cbMenSub$age))

Notice that the loess() function also accepts a formula object to describe the relationship to
fit to the data. Here we request a fit of the resids variable to age. The data frame provided
via the parameter data contains these two variables; it may contain others as well, but we
have created this data frame specially so that it has only the residuals from lmAge and the
ages of runners in cbMenSub. Similar to lm(), the return value from loess() is a special object
that contains fitted values as well as other relevant information about the curve fitted to
the data.

To add the fitted curve to the smooth scatter of the residuals, we can predict the average
residual for each year of age and then use lines() to “connect the dots” between these
predictions to form an approximation of the fitted curve. We start by making a vector of
age values from 20 to 80 with

age20to80 = 20:80

Now, if we have the predicted average residual for each of these ages in a vector called, say,
resid.lo.pr, then we can add the curve to the smooth scatter with

70 Case Studies in Data Science in R

lines(x = age20to80, y = resid.lo.pr,
col = "green", lwd = 3, lty = 2)

We can obtain these predicted values from the predict.loess() function. This function takes
the loess object from a fit, e.g., resid.lo and a data frame with variables matching those
used in the loess curve fitting, in this case age. That is, we create resid.lo.pr with

resid.lo.pr =
predict(resid.lo, newdata = data.frame(age = age20to80))

Notice that we called predict() rather than predict.loess(). The predict() function is a wrap-
per that allows us to write code that is not dependent on the form of the fit. It takes an
object returned from a fit, such as that returned from lm() or loess(), and depending on
which class of object it is, predict() calls the relevant function, i.e., predict.lm() for lm
objects and predict.loess() for loess objects.

The augmented smoothed scatter plot appears in Figure 2.10. We see that the simple
linear model tends to underestimate the run time for men over 60. This confirms our obser-
vations from the boxplot and smooth scatter plot of the nonlinear trend in run time. The
simple linear model is not able to capture the change in performance with age.

20 40 60 80

−
40

−
20

0
20

40
60

80

Age (years)

R
es

id
ua

ls

Figure 2.10: Residual Plot from Fitting a Simple Linear Model of Performance to Age.
Shown here is a smoothed scatter plot of the residuals from the fit of the simple linear model
of run time to age for male runners who are 15 to 80 years old. Overlaid on the scatter plot
are two curves. The “curve” in purple is a solid horizontal line at y = 0. The green dashed
curve is a local smooth of the residuals.

Modeling Runners’ Times in the Cherry Blossom Race 71

We consider two approaches to a more complex fit: a piecewise linear model and a non-
parametric smooth curve. For the latter, we simply take local weighted averages of time as
age varies, just as we smoothed the residuals from the linear fit. We use loess() again to do
this with

menRes.lo = loess(runTime ~ age, cbMenSub)

and we make predictions for all ages ranging from 20 to 80 with

menRes.lo.pr = predict(menRes.lo, data.frame(age = age20to80))

The curve appears in Figure 2.11.

20 30 40 50 60 70 80

85
90

95
10

0
10

5

Age (years)

R
un

 T
im

e
P

re
di

ct
io

n

Piecewise Linear
Loess Curve

Figure 2.11: Piecewise Linear and Loess Curves Fitted to Run Time vs. Age. Here we have
plotted the fitted curves from loess() and a piecewise linear model with hinges at 30, 40, 50,
and 60. These curves follow each other quite closely. However, there appears to be more
curvature in the over 50 loess fit that is not captured in the piecewise linear fit.

Next we fit a piecewise linear model, which consists of several connected line segments.
This is similar to the idea of the locally smoothed curve from loess() in that it allows us to
bend the line at certain points to better fit the data. The difference is that the fit must be
linear between the hinges. We place hinges at 30, 40, 50, and 60 and thus allow the slope
of the line to change at these decade markers. The fitted “curve” appears in Figure 2.11.

How do we fit such a model to our data? Before we fit the full piecewise model, we
consider a simpler model with one hinge at 50. We first create an over50 variable that takes

72 Case Studies in Data Science in R

on the value 0 for ages 50 and under and otherwise holds the number of years over 50, e.g., 1
for someone who is 51, 2 for someone who is 52, and so on. If our fit is a+b×age+c×over50
then for an age below 50 this is simply a+ b× age and for an age over 50 it is equivalent to
(a − 50c) + (b + c)age. We see that the coefficient c is the change in the slope from below
50 to above 50, and the intercept makes the line segments connect.

Our first task then is to create this over50 variable. We use the pmax() function, which
performs an element-wise or “parallel” maximum. We find the maximum of each element
of menRes$age - 50 and 0 with

over50 = pmax(0, cbMenSub$age - 50)

We then fit this augmented model as follows

lmOver50 = lm(runTime ~ age + over50, data = cbMenSub)

summary(lmOver50)

Call:
lm(formula = runTime ~ age + over50, data = cbMenSub)

Residuals:
Min 1Q Median 3Q Max

-40.27 -10.10 -0.88 9.06 79.04

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.75489 0.26504 312.2 <2e-16 ***
age 0.10569 0.00715 14.8 <2e-16 ***
over50 0.56387 0.02337 24.1 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15 on 69803 degrees of freedom
Multiple R-squared: 0.0345, Adjusted R-squared: 0.0345
F-statistic: 1.25e+03 on 2 and 69803 DF, p-value: <2e-16

Now the slope of the line for those under 50 is less steep than in our original simple linear
model, and for ages over 50, the model indicates the average man slows by 0.67 minutes
over the entire race, which is an additional 0.56 minutes a year compared to those under
fifty.

We can create the over30, over40, etc. variables as follows:

decades = seq(30, 60, by = 10)
overAge = lapply(decades,

function(x) pmax(0, (cbMenSub$age - x)))
names(overAge) = paste("over", decades, sep = "")
overAge = as.data.frame(overAge)
tail(overAge)

over30 over40 over50 over60
69801 36 26 16 6
69802 11 1 0 0

Modeling Runners’ Times in the Cherry Blossom Race 73

69803 9 0 0 0
69804 26 16 6 0
69805 5 0 0 0
69806 18 8 0 0

Now that we have each of these variables, we can create the model,

runTime ~ age + over30 + over40 + over50 + over60

This model has an interpretation similar to the model with just age and over50. That
is, the coefficient for, say, over40 is the change in the slope for ages in (30, 40] to ages in
(40, 50]. We find the least squares fit with

lmPiecewise = lm(runTime ~ . ,
data = cbind(cbMenSub[, c("runTime", "age")],

overAge))

Here we have used the . in the formula to indicate that the model should include all of the
variables in the data frame (other than runTime) as covariates.

When we call summary() with the lm object lmPiecewise, we obtain the coefficients,
their standard errors, and other summary statistics for the fit:

summary(lmPiecewise)

Call:
lm(formula = time ~ .,

data = cbind(menRes[, c("time", "age")], overAge))

Residuals:
Min 1Q Median 3Q Max

-40.92 -10.12 -0.89 9.02 78.96

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.2286 0.9153 81.10 < 2e-16 ***
age 0.4243 0.0332 12.78 < 2e-16 ***
over30 -0.4770 0.0478 -9.98 < 2e-16 ***
over40 0.2216 0.0407 5.45 5.1e-08 ***
over50 0.4944 0.0529 9.34 < 2e-16 ***
over60 -0.0036 0.0776 -0.05 0.96

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15 on 69800 degrees of freedom
Multiple R-squared: 0.0359, Adjusted R-squared: 0.0359
F-statistic: 520 on 5 and 69800 DF, p-value: <2e-16

Notice that the coefficient for over60 is essentially 0, meaning that those over 60 do not
slow down any faster than those in their fifties, i.e., about 0.494 minutes more per year for
each year over 50 for a total of about 0.66 minutes for the 10-mile race per year.

How do we plot this piecewise linear function that we have fitted? As with the loess curve,
we can use predict() to provide fitted values for each age value from 20 to 80. However, we
need to provide predict() with all of the covariates used in making the fit, i.e., age, over30,
over40, over50, and over60. We can create a data frame of these covariates just as we did
for the full data set as follows:

74 Case Studies in Data Science in R

overAge20 = lapply(decades, function(x) pmax(0, (age20to80 - x)))
names(overAge20) = paste("over", decades, sep = "")
overAgeDF = cbind(age = data.frame(age = age20to80), overAge20)

tail(overAgeDF)

age over30 over40 over50 over60
75 75 45 35 25 15
76 76 46 36 26 16
77 77 47 37 27 17
78 78 48 38 28 18
79 79 49 39 29 19
80 80 50 40 30 20

Then we call predict() passing it the lm object, i.e., lmPiecewise, with the details of the
fit and also the covariates to use to make the predictions, i.e., overAgeDF. That is, we call
predict() with

predPiecewise = predict(lmPiecewise, overAgeDF)

We plot this fitted piecewise linear function with

plot(predPiecewise ~ age20to80,
type = "l", col = "purple", lwd = 3,
xlab = "Age (years)", ylab = "Run Time Prediction")

And we add the loess curve with

lines(x = age20to80, y = menRes.lo.pr,
col = "green", lty = 2, lwd = 3)

legend("topleft", col = c("purple", "green"),
lty = c(1, 2), lwd= 3,
legend = c("Piecewise Linear", "Loess Curve"), bty = "n")

The two fitted curves appear in Figure 2.11. We see that they follow each other quite
closely. The main deviation is in the over 70 group. We did not include a hinge at 70 so
our fitted model is unable to capture the sharper increase for those over 70. We may want
to consider adding this additional hinge to our model to see if it improves the fit. It may
seem that we have made great progress in modeling the average performance, but we must
interpret these results with care. For example, suppose, as seems likely, that younger runners
who are slow tend to drop out of racing as they age so older runners who do participate are
those who tend to be faster. This can bias our estimate of how running speed changes with
age. Additionally, these data consist of 14 cross-sectional snapshots of runners. We might
ask ourselves whether or not the composition of the participants has changed over this time
period. These concerns are the topics of the next two sections.

2.4.3 Cross-Sectional Data and Covariates
In our earlier analysis, we examined the average performance for runners of different ages.
That is, we looked at average performance for, e.g., 30-39 year olds and 40-49 year olds
in the Cherry Blossom road race. However, we have not seen how a runner’s performance
changes as he or she ages. These two groups (30-39 and 40-49 year olds) are composed
of different people and if these groups of people differ from each other in some significant

Modeling Runners’ Times in the Cherry Blossom Race 75

ways, e.g., those in their 30s are more likely to be world class runners and those in their 40s
are more likely to be local amateur athletes, then we might be misled by comparing these
two group’s average performances. To further complicate the matter, we have data from 14
different races so we are also averaging across the participants in these different races. We
expect the average performances to be the same across the years. However, each year we
have a self-selected group of participants, and we might wonder whether the composition
of the participants has changed over the years. If it has, that could further complicate
inference.

We know that the Cherry Blossom 10-mile run has been increasingly popular. Figure 2.12
indicates that the number of male runners has more than doubled over the 14 years. It seems
reasonable to question if the demographics of the participants have changed over this time
period.

2000 2002 2004 2006 2008 2010 2012

30
00

40
00

50
00

60
00

70
00

Years

N
um

be
r

of
 R

un
ne

rs

Figure 2.12: Line Plot of the Number of Male Runners by Year. This plot shows that the
number of male runners in the Cherry Blossom 10-mile race has more than doubled from
1999 to 2012.

Historically, the race was used as a preparation for the Boston Marathon. The fastest
runners in the Cherry Blossom primarily come from Ethiopia, Kenya, and Tanzania. And,
their times are within a minute or two of the world record of 44:24 set in 2005 by Haile
Gebrselassie from Ethiopia, who was 32 at the time (see http://inglog.com/tools/
world-records/). Professional runners continue to compete in the Cherry Blossom road
race.

Let’s compare the distribution of performance for the earliest and latest years, i.e., the
1999 and 2012 races. We see below that while the fastest man has gotten faster from 1999

http://inglog.com/tools/world-records/
http://inglog.com/tools/world-records/

76 Case Studies in Data Science in R

to 2012, the quartiles of the 2012 distribution are each about 3 minutes slower compared to
1999:

summary(cbMenSub$runTime[cbMenSub$year == 1999])

Min. 1st Qu. Median Mean 3rd Qu. Max.
47.0 74.8 84.3 84.3 93.1 171.0

summary(cbMenSub$runTime[cbMenSub$year == 2012])

Min. 1st Qu. Median Mean 3rd Qu. Max.
45.2 77.6 87.5 88.4 97.8 151.0

Could it be that the men competing in 2012 are older and therefore slower than their
counterparts in 1999? We can compare the age distributions of the runners in the two races.

For simplicity, we make two vectors of age for the 1999 and 2012 runners with

age1999 = cbMenSub[cbMenSub$year == 1999, "age"]
age2012 = cbMenSub[cbMenSub$year == 2012, "age"]

We next superpose the density curves for the two sets of ages. We do this as follows:

plot(density(age1999, na.rm = TRUE),
ylim = c(0, 0.05), col = "purple",
lwd = 3, xlab = "Age (years)", main = "")

lines(density(age2012, na.rm = TRUE),
lwd = 3, lty = 2, col="green")

legend("topleft", col = c("purple", "green"), lty= 1:2, lwd = 3,
legend = c("1999", "2012"), bty = "n")

Note that the first time we made this plot we used the default horizontal and vertical
axis limits in the call to plot(). We found that the vertical axis was not large enough to
include the peak of the second density when we added it to the first density plot so we
remade this plot and specified ylim = c(0, 0.05) to accommodate the higher peak of
the 2012 density. We can also use the densityplot() function in the lattice package [5],
and this function automatically scales the axes correctly for all the density curves plotted.
Nonetheless, typically the visualization process is iterative. We make plots using the default
settings for most of the arguments, and as we uncover interesting structure, we remake the
plots to adjust the scale and to add information, e.g., axis labels, titles, legends, color, line
type and thickness, etc.

The density curves in Figure 2.13 are surprising. The males in 2012 are not older. In
fact, the opposite is the case. There are many more younger men in 2012 in comparison
to 1999, as evidenced by the sharp peak in the 2012 distribution at about 30. We can also
compare these two distributions with a quantile-quantile plot. We leave this as an exercise.
The difference in performance between 1999 and 2012 is more subtle than having an aging
population of runners. We need to control the covariates, age and year, simultaneously when
we analyze race performance.

In the previous section, we saw how the average performance was flat for runners in their
30s and rose slightly in the 40s and more sharply in the 50s and 60s. We make separate
smooth curves of time versus age for the 1999 and 2012 runners and plot them together as
follows:

Modeling Runners’ Times in the Cherry Blossom Race 77

20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Age (years)

D
en

si
ty

1999
2012

Figure 2.13: Density Curves for the Age of Male Runners in 1999 and 2012. These two
density curves have quite different shapes. The 1999 male runners have a broad, nearly flat
mode where they are roughly evenly distributed in age from 28 to 45. In contrast, the 2012
runners are younger with a sharper peak just under 30 years and a skew right distribution.

mR.lo99 = loess(runTime ~ age, cbMenSub[cbMenSub$year == 1999,])
mR.lo.pr99 = predict(mR.lo99, data.frame(age = age20to80))

mR.lo12 = loess(runTime ~ age, cbMenSub[cbMenSub$year == 2012,])
mR.lo.pr12 = predict(mR.lo12, data.frame(age = age20to80))

plot(mR.lo.pr99 ~ age20to80,
type = "l", col = "purple", lwd = 3,
xlab = "Age (years)", ylab = "Fitted Run Time (minutes)")

lines(x = age20to80, y = mR.lo.pr12,
col = "green", lty = 2, lwd = 3)

legend("topleft", col = c("purple", "green"), lty = 1:2, lwd = 3,
legend = c("1999", "2012"), bty = "n")

We see in Figure 2.14 that the two curves are similar in shape but the curve for 2012
is higher than the 1999 curve. There appears to be a consistent difference between these
two groups of runners. Figure 2.15 shows the difference in predicted run times for these two

78 Case Studies in Data Science in R

20 30 40 50 60 70 80

80
85

90
95

10
0

10
5

11
0

Age (years)

P
re

di
ct

io
n

(m
in

ut
es

)
1999
2012

Figure 2.14: Loess Curves Fit to Performance for 1999 and 2012 Male Runners. This loess
fit of run time to age for 2012 male runners sits above the fit for 1999 male runners. The
gap between these curves is about 5 minutes for most years. The exception is in the late
40s to early 60s where the curves are within 2–3 minutes of each other. Both curves have a
similar shape.

curves. This difference narrows to 2 minutes for men in their 50s and gradually widens for
men in their 60s, 70s, and 80s from 2.5 to 8.5 minutes. We leave it as an exercise to compare
the run time age relationship for all 14 years of data.

We mention one last idea for comparing these two distributions of runners, and we leave
it to the exercises to carry out this comparison. In track, there is a performance standard
called age grading that measures an individual’s performance based on his or her age. It
normalizes the individual’s run time by the world record for that distance for that age
group [1]. Since the fastest runners in the Cherry Blossom road race perform close to the
world record, we might use the fastest runner in each age category to normalize the times.
To minimize the year-to-year fluctuations, we can smooth the fastest times and use these
smoothed times to normalize each runner’s time. When we do this, we find the age graded
performances roughly follow the Normal distribution. However, the 1999 runners tend to
be better than their 2012 counterparts as evidenced by the peak at 1.4 rather than 1.5 and
a smaller IQR.

The run time distribution appears to have changed over the years, and this points out
the main issue with cross-sectional studies. However, there is an advantage to having 14
years’ worth of race results. It is possible that some runners have participated in the race

Modeling Runners’ Times in the Cherry Blossom Race 79

20 30 40 50 60 70 80

2
3

4
5

6
7

8

Age (years)

D
iff

er
en

ce
 in

 F
itt

ed
 C

ur
ve

s
(m

in
ut

es
)

Figure 2.15: Difference between Loess Curves. This line plot shows the difference between
the predicted run time for 2012 and 1999 male runners.

over several years and we can study how each runner’s performance changes as he or she
grows older. In order to do this, we need to connect runners across the years.

2.5 Constructing a Record for an Individual Runner across Years
We want to match records from runners who have participated in more than one Cherry
Blossom run. The race results do not have unique identifiers for each person so we need
to construct these from the information we have on each race entrant. Ideally we use all
of the information, i.e., the runner’s name, home, age, race time, and the year of the race.
However, if this information is reported inconsistently from one year to the next, then this
can reduce the number of matches. On the other hand, even using all of this information
we may be incorrectly matching records from two different athletes. Whatever approach
we devise will not be completely accurate, and the purpose of this section is to investigate
several possibilities and settle on one that we think is reasonable.

We consider the following questions:

• How many entrants are there over the 14 years?

• How many unique names are there among these entrants?

80 Case Studies in Data Science in R

• How many names appear twice, 3 times, 4 times, etc. and what name occurs most often?

• How often does a name appear more than once in a year?

Answering these questions gives us a sense of the magnitude of the matching problem.
Additionally, we consider how to improve the matching by cleaning the name and home
values. For example, recall that we picked up some trailing blanks when we parsed the
text tables. Now might be a good time to eliminate them. We also noted earlier that
capitalization was inconsistent. This can prove problematic for matching records. Other
issues with cleaning the character strings crop up as we begin to examine the records more
carefully. Before we answer these questions let’s clean the names.

Any blanks appearing before or after a name can be dropped. Also, if there are multiple
blanks between, e.g., the first and last name, we can convert them to one blank. The gsub()
function is helpful here. We create a helper function, trimBlanks() to do this as follows:

trimBlanks = function(charVector) {
nameClean = gsub("^[[:blank:]]+", "", charVector)
nameClean = gsub("[[:blank:]]+$", "", nameClean)
nameClean = gsub("[[:blank:]]+", " ", nameClean)

}

The first substitution eliminates all beginning blanks, the second all trailing blanks, and
the third substitutes multiple contiguous blanks with a single blank. Notice that we use the
meta character [:blank:] so that we find all forms of space including tabs. We clean the
names with

nameClean = trimBlanks(cbMenSub$name)

Now we can begin to answer the questions about the uniqueness of the names. We do
this by examining summary statistics and sets of records.

How many entrants are there over the 14 races? We use length() to find out:

length(nameClean)

[1] 69806

Recall, we have dropped those records with a run time under 30 minutes, and age under 16.
How many unique names are there?

length(unique(nameClean))

[1] 42884

How many names appear once, twice, etc.? We can determine this by two calls to table(),
i.e.,

table(table(nameClean))

1 2 3 4 5 6 7 8 9 10
29293 7716 2736 1386 712 417 249 149 92 56

11 12 13 14 15 17 18 19 30
44 19 7 3 1 1 1 1 1

Modeling Runners’ Times in the Cherry Blossom Race 81

What does this table tell us? We see that over 7000 names appear 2 times throughout the
14 races. One name appears 30 times, and we know this name must correspond to at least
3 people because we have only 14 years of race results.

Which name appears 30 times? We can find that with

head(sort(table(nameClean), decreasing = TRUE), 1)

Michael Smith
30

Let’s examine other information about these 30 Michael Smiths. We extract them from our
data frame with

mSmith = cbMenSub[nameClean == "Michael Smith",]

The home towns include:

head(unique(mSmith$home))

[1] "Annapolis MD " "Bethesda MD "
[3] " Annapolis MD " " Chevy Chase MD "
[5] " Annandale VA " "Annapolis MD "

There are several version of Annapolis MD that differ due to extra blanks. Clearly we need
to clean the home field as well.

Thinking ahead, we might ask: can we do more cleaning to potentially improve the
matching? We have seen that the column headers have inconsistent capitalization. The
same is undoubtedly the case for the name. We can check this, but we can also simply
proceed to make all characters lower case letters with

nameClean = tolower(nameClean)

We check the most common name again:

head(sort(table(nameClean), decreasing = TRUE), 1)

michael smith
33

This additional cleaning picked up 3 more Michael Smiths.
Additionally, we can remove punctuation such as a period after someone’s middle initial

and any stray commas. We do this in one call to gsub() with

nameClean = gsub("[,.]", "", nameClean)

With so many duplicate names, let’s figure out how many times a name appears in the
same year. We can create a table of year-name combinations with

tabNameYr = table(cbMenSub$year, nameClean)

and then call max() to find the cell in the table with the greatest count, i.e.,

max(tabNameYr)

[1] 5

82 Case Studies in Data Science in R

Is this Michael Smith again? It takes a bit of work to find the name associated with this
maximum. The table saved in tabNameYr is of class table, which we see is a numeric vector
with 3 attributes, dim, dimnames, and class. Calls to class(), mode(), and attributes(), help
us figure this out, i.e.,

class(tabNameYr)

[1] "table"

mode(tabNameYr)

[1] "numeric"

names(attributes(tabNameYr))

[1] "dim" "dimnames" "class"

There are several implications of this data structure. First, some matrix functions work on
a table, e.g., we can call dim() and colnames() and find

dim(tabNameYr)

[1] 14 39077

head(colnames(tabNameYr), 3)

[1] "8illiam maury" "a gudu memon" "a miles simmons"

Notice we have uncovered another piece of messy data! To find out which cell has a count
of 5, we can use which(), but to find the row and column location, we need to include the
arr.ind argument in our call. That is,

which(tabNameYr == max(tabNameYr))

[1] 356034

which(tabNameYr == max(tabNameYr), arr.ind = TRUE)

row col
2012 14 25431

Finally, we locate the name(s) with

indMax = which(tabNameYr == max(tabNameYr), arr.ind = TRUE)
colnames(tabNameYr)[indMax[2]]

[1] "michael brown"

It’s Michael Brown, not Michael Smith!
Now that we have a cleaned version of runner’s name, we add it to our data frame with

cbMenSub$nameClean = nameClean

Modeling Runners’ Times in the Cherry Blossom Race 83

We use this format of the name to create our unique person identifier.
We can also derive an approximation to year of birth because we have the runner’s

age and the year of the race. The difference between these two is an approximation to age
because the race is held on the first Sunday in April every year. Those runners who have
a birthday in the first 7 days of April may have their age reported inconsistently from one
race year to the next. What fraction of the records can we expect to have this problem? We
create a new variable yob in our data frame with

cbMenSub$yob = cbMenSub$year - cbMenSub$age

Also, we uncovered an issue with blanks and capitalization in names of the hometowns.
We leave it as an exercise to clean the values for home and add the cleaned version of home
to cbMenSub as homeClean.

Let’s look closer at the values for these new and cleaned variables for the Michael Browns
in our data frame. We do this with

vars = c("year", "homeClean", "nameClean", "yob", "runTime")
mb = which(nameClean == "michael brown")
birthOrder = order(cbMenSub$yob[mb])
cbMenSub[mb[birthOrder], vars]

year homeClean nameClean yob runTime
2000 tucson az michael brown 1939 96.88
2010 north east md michael brown 1953 92.27
2011 north east md michael brown 1953 85.95
2012 north east md michael brown 1953 88.43
2009 oakton va michael brown 1957 99.73
2008 ashburn va michael brown 1958 93.73
2009 ashburn va michael brown 1958 88.57
2010 ashburn va michael brown 1958 99.75
2012 reston va michael brown 1958 89.95
2006 chevy chase michael brown 1966 84.57
2010 chevy chase md michael brown 1966 79.35
2012 chevy chase md michael brown 1966 95.82
2004 berryville va michael brown 1978 76.32
2008 arlington va michael brown 1984 84.68
2010 new york ny michael brown 1984 110.88
2011 arlington va michael brown 1984 81.70
2012 arlington va michael brown 1984 70.93
2012 clifton va michael brown 1988 84.88

What observations can we make about these various michael brown rows?

• The 3 entries for michael brown born in 1953 seem to be the same person because
all have a hometown of "north east md". Additionally, the 3 race times are within
7 minutes of each other.

• The 4 entries for michael brown born in 1958 have race years of 2008, 2009, 2010,
and 2012. The most recent entry lists Reston, VA for a hometown while the other 3
show Ashburn, VA. Do we have 1, 2, 3, or 4 different michael browns here? The 2010
entrant ran the slowest of the 4 races by about 11 minutes and the other 3 times are
closer. An Internet search reveals that Reston and Ashburn are within 22 km of each
other. It is conceivable that these 4 records belong to the same individual who moved
from Ashburn to Reston between April 2010 and 2012. We can’t know for sure.

84 Case Studies in Data Science in R

• Another 3 michael brown entries have 1966 for a birth year. All 3 list Chevy Chase as
the hometown, except that for 2006, the state (MD) is not provided. When we examine
more locations for other runners in 2006, we find that none of them list a state. These
3 michael brown records also have a range of 11 minutes for time with the middle
year (2010) being the fastest. These records are likely for the same person, but we have
uncovered an inconsistency in how home is reported for 2006 compared to the other
years.

• Next, we have 4 records for michael brown born in 1984, with races in 2008, 2010,
2011, and 2012. Of these, the 2010 record seems to be a different person as his home
is listed as New York, NY and his race time is 25 to 40 minutes slower than the other
3 records. The other 3 all have the same hometown of Arlington, VA. They also have
increasingly better times with a 2008 time of 84 and a 2012 time of 71 minutes. It is
not unreasonable to think that these 3 records belong to the same person who has been
training and running faster as he ages. Again, we cannot know this for sure.

• Lastly, notice that the 5 michael browns who registered for the 2012 race have differ-
ent years of birth (1953, 1958, 1966, 1984, and 1988) and 5 different home towns. These
are 5 different people.

We summarize our various observations to make a first attempt to create an identifier
for individuals. We might paste together the cleaned name and the derived year of birth.
We do this with

cbMenSub$ID = paste(nameClean, cbMenSub$yob, sep = "_")

We have ignored the information provided by the hometown and the run times and so have
created the least restrictive identifier.

Since our goal is to study how an athlete’s time changes with age, let’s focus on those
IDs that appear in at least 8 races. To do this, we first determine how many times each ID
appears in cbMenSub with

races = tapply(cbMenSub$year, cbMenSub$ID, length)

Then we select those IDs that appear at least 8 times with

races8 = names(races)[which(races >= 8)]

and we subset menRes to select the entries belonging to these identifiers with

men8 = cbMenSub[cbMenSub$ID %in% races8,]

Finally, we organize the data frame so that entries with the same ID are contiguous. This
makes it easier to manually examine records, etc. We can do this with

orderByRunner = order(men8$ID, men8$year)
men8 = men8[orderByRunner,]

An alternative organization for the data is to store them as a list with an element for
each ID in races8. In this list, each element is a data frame containing only those results
for the records with the same ID. We can create this list with

men8L = split(men8, men8$ID)
names(men8L) = races8

Modeling Runners’ Times in the Cherry Blossom Race 85

Which data structure is preferable? That depends on what we want to do with the data.
In the following we show how to accomplish a task using both approaches to help make a
comparison between the two structures. In the next section, we find it easiest to work with
the list of data frames as we often need to apply a function of multiple arguments to each
runner’s entries.

How many IDs do we have left?

length(unique(men8$ID))

[1] 480

This is the same as length(men8L). We might also want to discard matches if the per-
formance varies too much from year to year. How large a fluctuation would make us think
that we have mistakenly connected two different people? Of course, we don’t want to bias
our results by eliminating an individual whose run times vary a lot. Let’s look at a few
records where the year-to-year difference in time exceeds, say, 20 minutes. We determine
which satisfy this constraint with

gapTime = tapply(men8$runTime, men8$ID,
function(t) any(abs(diff(t)) > 20))

or with

gapTime = sapply(men8L, function(df)
any(abs(diff(df$runTime)) > 20))

How many of these runners have gaps of more than 20 minutes?

sum(gapTime)

[1] 49

Slightly reformatted displays of the first two of these athletes are

lapply(men8L[gapTime][1:2], function(df) df[, vars])

$‘abiy zewde_1967‘
year homeClean nameClean yob runTime
1999 gaithersburg md abiy zewde 1967 96.52
2000 montgomery vill md abiy zewde 1967 96.63
2001 montgomery vill md abiy zewde 1967 89.10
2002 montgomery vill md abiy zewde 1967 123.00
2003 gaithersburg md abiy zewde 1967 97.68
2004 montgomery vill md abiy zewde 1967 100.37
2006 gaithersburg abiy zewde 1967 108.40
2008 montgomery vill md abiy zewde 1967 98.78
2009 montgomery villag md abiy zewde 1967 98.50
2010 montgomery villag md abiy zewde 1967 99.92
2011 montgomery villag md abiy zewde 1967 113.10
2012 montgomery villag md abiy zewde 1967 84.88

$‘adam hughes_1978‘
year homeClean nameClean yob runTime
2005 washington dc adam hughes 1978 80.38

86 Case Studies in Data Science in R

2006 washington adam hughes 1978 85.17
2007 washington dc adam hughes 1978 77.78
2008 washington dc adam hughes 1978 74.23
2009 washington dc adam hughes 1978 108.07
2010 washington dc adam hughes 1978 103.07
2011 washington dc adam hughes 1978 77.12
2012 washington dc adam hughes 1978 77.77

The name abiy zewde seems unusual enough to most likely be the same person par-
ticipating in 12 of the 14 races even though the hometown has changed over the years
and the race results differ by nearly 40 minutes with one of the fastest times being the
most recent when he was 45 years old. In fact, a Google search locates a Web page
at http://storage.athlinks.com/racer/results/65866776 with his published
race times from several different runs. A screenshot of this page appears in Figure 2.16.
Clearly these entries all belong to the same person.

Do we want to further restrict our matching to those with the same hometown? This
eliminates, e.g., the abiy zewde records, even though we’re quite certain the records all
belong to the same individual. We could identify the mismatches and manually examine
them for potentially false matches. We need to eliminate the state abbreviation from the end
of those records that have one because the 2006 records do not have it. We can substitute
a blank followed by 2 letters occurring at the end of the string with an empty string, i.e.,

gsub("[[:blank:]][a-z]{2}$", "", home)

This may result in matches that are too liberal, e.g., matching Springfield IL and Springfield
MA. We leave it as an exercise to determine how to limit the matches to those where the
entries have the same hometown and to assess whether this additional restriction should be
added to the matching process.

Here, we consider a less strict matching where we match only those records that have
the same values for the state of residence. To do this, we create a new variable that holds
the 2 letter abbreviation for the state. We return to work with cbMenSub because the data
structure is simpler and we maintain consistency. We extract the last 2 characters from
each home string. This is the state, if it is present. We know that in 2006, the state was not
present so we set these to NA. For athletes who come from outside the US, we pick up the
last two letters of either the country or province, but these should not dramatically affect
our matches.

We first determine how many characters are in each value for home with

homeLen = nchar(cbMenSub$homeClean)

Then we use it to extract the last two characters and add them back to our data frame with

cbMenSub$state = substr(cbMenSub$homeClean,
start = homeLen - 1, stop = homeLen)

And, we set the 2006 values to NA:

cbMenSub$state[cbMenSub$year == 2006] = NA

Next, we recreate the new ID so that it includes state. We do this with

cbMenSub$ID = paste(cbMenSub$nameClean, cbMenSub$yob,
cbMenSub$state, sep = "_")

http://storage.athlinks.com/racer/results/65866776

Modeling Runners’ Times in the Cherry Blossom Race 87

Figure 2.16: Screen Shot of One Runner’s Web Page of Race Results. This Web page at
http://storage.athlinks.com contains the race results of one runner who partici-
pated in the Cherry Blossom run for 12 of the 14 years for which we have data. Notice that
his fastest time was from his most recent run in 2012 where he completed the race in under
85 minutes. He was 45 at that time. Also, his slowest time was 123 minutes in 2002 at the
age of 35.

Then, we again select those IDs that occur at least 8 times with

numRaces = tapply(cbMenSub$year, cbMenSub$ID, length)
races8 = names(numRaces)[which(numRaces >= 8)]
men8 = cbMenSub[cbMenSub$ID %in% races8,]
orderByRunner = order(men8$ID, men8$year)
men8 = men8[orderByRunner,]

men8L = split(men8, men8$ID)
names(men8L) = races8

In the next section we work solely with the list structure.

http://storage.athlinks.com

88 Case Studies in Data Science in R

This addition to the runner id further reduces the number of runners who have completed
8 races, i.e.,

length(races8)

[1] 306

We now have 306 athletes who have the same name, year of birth, and state and who have
run in 8 of the 14 races. We carry on with this set of matches we have obtained thus far,
and in the next section, we examine how each runner’s performance changes as he grows
older.

2.6 Modeling the Change in Running Time for Individuals
The Cherry Blossom race results include recordings for athletes from 20 to 80 years old.
However, we don’t have records for any one person that covers this 60-year span. That’s
not possible because we have only 14 years of race results so we can at most observe a 20
year old until he turns 33 or an 80 year old when he was 67. This means when we examine
the performance of an individual over time, we are looking at short time series that are at
most 14 years long. To examine performance from 20 to 80 necessarily means that we rely
on the cross-sectional aspect of the data, but there is information to be gleaned in these
short time series.

It’s reasonable to imagine that over a short period of time, say 8 to 10 years, a runner’s
performance is roughly linear with age. (We saw this with the piecewise linear model for
the cross-sectional data). We can make plots to ascertain if this is the case. We have over
300 runners to plot so to limit the effect of over plotting, we make several plots of different
subsets of the data. We begin by dividing the runners into 9 groups to make 9 plots in a
3-by-3 grid. We assign roughly the same number of runners to each group with

groups = 1 + (1:length(men8L) %% 9)

To make each plot, we create a blank canvas with, e.g.,

plot(x = 40, y = 60, type = "n",
xlim = c(20, 80), ylim = c(40, 160),
xlab = "Age (years)", ylab = "Run Time (minutes)")

Then we add the lines for each runner in the group. We make the lines different colors and
line types to help distinguish between the runners. The addRunners() function below adds
a line for each runner:

addRunners = function(listRunners, colors, numLty)
{

numRunners = length(listRunners)
colIndx = 1 + (1:numRunners) %% length(colors)
ltys = rep(1:numLty, each = length(colors), length = numRunners)

mapply(function(df, i) {
lines(df$runTime ~ df$age,
col = colors[colIndx[i]], lwd = 2, lty = ltys[i])

}, listRunners, i = 1:numRunners)
}

Modeling Runners’ Times in the Cherry Blossom Race 89

We can create the 9 blank canvases and add the runners’ lines with

colors = c("#e41a1c", "#377eb8","#4daf4a", "#984ea3",
"#ff7f00", "#a65628")

par(mfrow = c(3, 3), mar = c(2, 2, 1, 1))
invisible(

sapply(1:9, function(grpId){
plot(x = 0, y = 0, type = "n",

xlim = c(20, 80), ylim = c(50, 130),
xlab = "Age (years)", ylab = "Run Time (minutes)")

addRunners(men8L[groups == grpId], colors, numLty = 6)
}))

The invisible() function hides the return value from sapply(). Since our function adds lines
to the canvas, it returns NULL for each iteration, which we can safely ignore.

In Figure 2.17 we see 9 line plots, each containing about 30 athletes. Some of the ath-
letes fluctuate quite a bit, and we might want to revisit the notion of dropping runners
that may be the combination of two different people’s records because they fluctuate more
than expected. We leave this as an exercise. Otherwise, fitting a line to each individual’s
performance seems a reasonable approach.

A longitudinal analysis of each individual runner implicitly controls for covariates that
may influence performance, e.g., gender. One exception is the race condition in any given
year – some years might be slow and some fast due to changes in the course or weather.
However, it seems plausible that such an effect is uncorrelated with age and so amounts to
measurement noise.

Now that we have our list of runners, we wish to fit a line to each runner’s performance.
If we write a function that carries out this work for one runner, then we can apply it to all
of the runners in our list. What do we need this function to do? We can have it fit a line
via lm(). What do we want the function to return? We are interested in the coefficient for
age, but we need to be able to interpret it in the context of age. Since we have multiple
ages for each runner, let’s return a middle value for age. And, while we are at it, let’s also
return a predicted value for the runner’s performance at that age. What inputs do we need
for our function? Really just the runner’s run time and age. We can pass these into our
function as separate parameters or we can pass in our data frame. If we do the latter, then
we need to know the names of the variables to fit. Let’s do this. Let’s also have our function
add the fitted line segment to a plot. We can make this an optional operation by adding a
parameter that has a default value of FALSE so the function only adds the line when the
call specifies this parameter as TRUE. This function appears below:

fitOne = function(oneRunner, addLine = FALSE, col = "grey") {
lmOne = lm(runTime ~ age, data = oneRunner)
if (addLine)

lines(x = oneRunner$age, y = predict(lmOne),
col = col, lwd = 2, lty = 2)

ind = floor((nrow(oneRunner) + 1) / 2)
res = c(coefficients(lmOne)[2], oneRunner$age[ind],

predict(lmOne)[ind])
names(res) = c("ageCoeff", "medAge", "predRunTime")
return(res)

}

90 Case Studies in Data Science in R

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80

60
80

10
0

12
0

20 30 40 50 60 70 80
60

80
10

0
12

0

Figure 2.17: Run Times for Multiple Races. These line plots show the times for male runners
who completed at least 8 Cherry Blossom races. Each set of connected segments corresponds
to the run times for one athlete. Looking at all line plots, we see a similar shape to the
scatter plot in Figure 2.7, i.e., an upward curve with age. However, we can also see how an
individual’s performance changes. For example, many middle-aged runners show a sharp
increase in run time with age but that is not the case for all. Some of them improve and
others change more slowly.

We leave it as an exercise to augment this function to also return the SD of the errors and
the SE of the coefficient for age. We also leave as an exercise an alternative approach that
fits all of the athletes’ lines together so that the noise is pooled across athletes.

We call fitOne() to add the fitted lines to one of the line plots for the runners in Fig-
ure 2.17:

plot(x = 0, y = 0, type = "n",
xlim = c(20, 80), ylim = c(50, 130),
xlab = "Age (years)", ylab = "Run Time (minutes)")

addRunners(men8L[groups == 9], colors, numLty = 6)
lapply(men8L[groups == 9], fitOne, addLine = TRUE, col = "black")

See the black dashed line segments in Figure 2.18. These line segments seem to capture
each runner’s performance.

Next, to examine the runner-to-runner variability, we fit lines to all 306 athletes with
the following call:

Modeling Runners’ Times in the Cherry Blossom Race 91

20 30 40 50 60 70 80

60
80

10
0

12
0

Age (years)

R
un

 T
im

e
(m

in
ut

es
)

Figure 2.18: Linear Fits of Run Time to Age for Individual Runners. Here we have aug-
mented the bottom-right line plot from Figure 2.17 with the least squares fit of run time for
each of the athletes. These are the 30 or so black dashed line segments plotted on each of
the individual runner’s times series.

men8LongFit = lapply(men8L, fitOne)

We can extract the 306 coefficients for age and each runner’s representative age with

coeffs = sapply(men8LongFit, "[", "ageCoeff")
ages = sapply(men8LongFit, "[", "medAge")

Now we have a single coefficient that represents the relationship between run time and age
for each runner who ran at least 8 times (and who resided in the same state over those
race years). This coefficient has units of minutes in run time for the 10-mile race per year.
A positive coefficient means that the runner is slowing down by that number of minutes a
year.

We see in Figure 2.19 how these coefficients vary with age. There is plenty of individual
variation in performance with a few in their 50s and 60s getting faster and many in their
30s slowing down. However, we also see a relationship between age and run time. There
appears to be a positive linear trend in the coefficients. We fit this with

longCoeffs = lm(coeffs ~ ages)

The summary from the fit appears below

summary(longCoeffs)

92 Case Studies in Data Science in R

Call:
lm(formula = coeffs ~ ages)

Residuals:
Min 1Q Median 3Q Max

-4.403 -0.638 -0.025 0.565 3.354

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.95844 0.30549 -6.41 5.5e-10 ***
ages 0.05526 0.00618 8.95 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1 on 304 degrees of freedom
Multiple R-squared: 0.209, Adjusted R-squared: 0.206
F-statistic: 80.1 on 1 and 304 DF, p-value: <2e-16

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

30 40 50 60 70

−
1

0
1

2
3

4
5

Median Age (years)

C
oe

ffi
ci

en
t (

m
in

ut
es

 p
er

 r
ac

e
/ y

ea
r)

Figure 2.19: Coefficients from Longitudinal Analysis of Athletes. This scatter plot displays
the slope of the fitted line to each of the 300+ runners who competed in at least 8 Cherry
Blossom road races. A negative coefficient indicates the runner is getting faster as he ages.
The plot includes a least squares fitted line and a loess fitted curve. Notice that nearly all
of the coefficients for those over 50 are positive. The typical size of this coefficient for a
50-year old is about one minute per year.

We have added to the plot this fitted line along with a horizontal reference line at 0 and

Modeling Runners’ Times in the Cherry Blossom Race 93

a smooth curve fit to the coefficients using loess(). This graph suggests that, on average,
performance improves for people who are younger than about 35. That is, the age coefficient
is negative for ages under 35. The hypothetical “average” runner who is older than 35 slows
down. By age 60, the typical runner slows by about 1.3 minutes per year, about twice as
fast as indicated by the cross-sectional analysis.

2.7 Scraping Race Results from the Web
The race results for the Cherry Blossom Ten Mile Run are available at http://www.
cherryblossom.org. Figure 2.1 shows a screen shot of the site’s main Web page with
links leading to each year’s results. The results for men in, e.g., 2012, are displayed in
the screen shot in Figure 2.2 and again in Figure 2.20. We see that the data are simply
formatted in what appears to be a block of plain text arranged in fixed-width columns. We
can examine the source code for the Web page to check if this is the case. We do this in,
e.g., a Google Chrome browser by clicking on View -> Developer -> View Source.
When we do this we see that the table itself contains no HTML markup, and it has been
inserted into a <pre> node within the document. (The HTML source for the page shown
in Figure 2.2 is shown in Figure 2.20.) It should be very easy to extract this “table” from
the HTML for further processing.

Figure 2.20: Screen Shot of the Source for Men’s 2012 Cherry Blossom Results. This screen
shot is of the HTML source for the male results for the 2012 Cherry Blossom road race.
While the format is not quite the same as the female results for 2011 (see Figure 2.21), both
are plain text tables within <pre> nodes in an HTML document.

We examine one more year to ascertain if the format is the same. When we view the
source for the page of 2011 women’s results, we see that the basic format is the same.
A screen shot of the source for 2011 female results appears in Figure 2.21. However, the
columns are not identical. In 2011, a net time is reported as well as a time. And, following
the pace column there is a column labeled S, which has an exclamation mark for the first
few runners and nothing for the rest. Our task here is simply to extract the text table so
we need only locate the table and extract it as a block of text. The functions in Section 2.3
take care of turning the columns of information into variables.

We use the htmlParse() function in the XML package [6] to scrape the 2012 male’s page
from the site.

http://www.cherryblossom.org
http://www.cherryblossom.org

94 Case Studies in Data Science in R

Figure 2.21: Screen Shot of the Source for Women’s 2011 Cherry Blossom Results. This
screen shot is of the HTML source for the female results for the 2011 Cherry Blossom road
race. Notice that times given are for the midpoint of the race (5 Mile) and for two finish
times (Time and Net Tim). Also notice the leftmost column labeled S. While the format
is different than the male results for 2012, both are plain text tables within <pre> nodes in
an HTML document.

library(XML)
ubase = "http://www.cherryblossom.org/"
url = paste(ubase, "results/2012/2012cucb10m-m.htm", sep = "")
doc = htmlParse(url)

We saw from the HTML source that we want to extract the text content of the <pre>
node. We can access all <pre> nodes in the document with the simple XPath expression,
//pre. We do this with

preNode = getNodeSet(doc, "//pre")

The getNodeSet() function returns a list where each element corresponds to one of the
<pre> nodes in the document. In our case, there is only one such node. Next, we use the
xmlValue() function to extract the text content from this node as follows:

txt = xmlValue(preNode[[1]])

Let’s examine the contents of txt. We first determine how many characters it contains and
then examine the start and end. We do this with

nchar(txt)

[1] 690904

substr(txt, 1, 50)

[1] "\r\n Credit Union Cherry Blossom Ten "

substr(txt, nchar(txt) - 50, nchar(txt))

[1] " 48 Herndon VA 1:09:06 2:30:59 15:06 \r\n"

It appears that we have successfully extracted the information from the Web page. We also
see that the individual lines end with \r\n. We can use these characters to split up the
690904 characters into separate strings corresponding to lines in the table. That is,

http://www.cherryblossom.org/

Modeling Runners’ Times in the Cherry Blossom Race 95

els = strsplit(txt, "\\r\\n")[[1]]

Now we have 7201 lines of information, i.e.,

length(els)

[1] 7201

The first few of these contain the header information, i.e.,

els[1:3]

[1] ""
[2] " Credit Union Cherry Blossom Ten Mile Run"
[3] " Washington, DC Sunday, April 1, 2012"

and the last line contains information for one of the runners:

els[length(els)]

[1] " 7193 648/648 6555 Lee Jordan
48 Herndon VA 1:09:06 2:30:59 15:06 "

We have succeeded in extracting the rows of the table as elements of a character vector.
Let’s formalize our code into a function that we can apply to each of the 28 Web pages

(a page for each of the men’s and women’s races from 1999 to 2012). We want our function
to take as input the URL for the Web page and return a character vector with one element
per line, including the header lines and the rows in the table of results. We arrange our
previous code into a function as

extractResTable =
Retrieve data from web site, find preformatted text,
return as a character vector.

function(url)
{

doc = htmlParse(url)
preNode = getNodeSet(doc, "//pre")
txt = xmlValue(preNode[[1]])
els = strsplit(txt, "\r\n")[[1]]

return(els)
}

Let’s try our function with the 2012 men’s results.

m2012 = extractResTable(url)

identical(m2012, els)

[1] TRUE

Our function has extracted the same results as before. Let’s now apply it to all of the men’s
results across the years.

If we have a vector of all the URLs then we can simply apply our function to the vector.
We make this vector by pasting together the base URL to the year-specific information as
follows:

96 Case Studies in Data Science in R

ubase = "http://www.cherryblossom.org/"
urls = paste(ubase, "results/", 1999:2012, "/",

1999:2012, "cucb10m-m.htm", sep = "")

Now we can apply extractResTable() to urls with

menTables = lapply(urls, extractResTable)

Error in preNode[[1]] : subscript out of bounds

We have an error that indicates there is a problem with preNode.
To find more information about what is causing this error, we turn on the error handling

by setting the error option to the recover() function object so that when an error occurs,
recover() is called. This function gives us access to the active call frames so that we can
examine the objects and see if they are what we expect. We set the options() and call the
extractResTable() again:

options(error = recover)
menTables = lapply(urls, extractResTable)

Error in preNode[[1]] : subscript out of bounds

Enter a frame number, or 0 to exit

1: lapply(urls, extractResTable)
2: FUN(c("http://www.cherryblossom.org/results/1999/...
3: #13: xmlValue(preNode[[1]])

Selection:

This presents us with a simple view of the current set of function calls in effect when the
error occurred. This is the “call stack”. The first is our top-level call to lapply(). The second
entry is the actual call to our extractResTable() function. lapply() calls this for us but uses
the name FUN since that is the name of the parameter in lapply() containing the function
we want to call for each element of the first argument to lapply(). extractRestTable() calls
several functions, but the error occurred in the third expression xmlValue(preNode[[¬
1]]). This is the third and final element in the current call stack.

The recover() function allows us to select which of these calls we want to examine. At
the Selection: prompt, we enter that number, e.g., 2 and the return key. This will put
is directly in call frame of this particular call to the function. We will be able to examine
(and modify) the current values of arguments and local variables and execute arbitrary code
there.

We choose the second element of the call stack as this is the function call to extrac-
tResTable(). We do this with

Selection: 2
Called from: lapply(urls, extractResTable)
Browse[1]>

After selecting this frame, we use R’s browser capabilities to examine the objects in this
environment. We find:

Browse[1]> ls()

http://www.cherryblossom.org/
http://www.cherryblossom.org/results/1999/

Modeling Runners’ Times in the Cherry Blossom Race 97

[1] "doc" "preNode" "url"

Browse[1]> url

[1] "http://www.cherryblossom.org/results/1999/1999cucb10m-m.htm"

Browse[1]> length(preNode)

[1] 0

It appears that there is no <pre> node in the 1999 race results Web page.
Let’s check this out by visiting the site. When we paste the URL

http://www.cherryblossom.org/results/1999/1999cucb10m-m.htm

into the Web browser, we find that it takes us to the main page shown in Figure 2.1, not to
the page we were expecting. When we use the navigation system on the main Web page to
go to the 1999 men’s results we see the problem. The URL is not as we expected. Instead,
it is

http://www.cherryblossom.org/cb99m.htm

This is a quite different format of the URL from what we created based on the 2011 and
2012 URLs. It tells us that we need to determine all 28 URLs by using the Web site’s
navigation system. We can do this programmatically, but here we simply gather the URLs
for the male results into a character vector called menURLs, i.e.,

menURLs =
c("cb99m.htm", "cb003m.htm", "results/2001/oof_m.html",

"results/2002/oofm.htm", "results/2003/CB03-M.HTM",
"results/2004/men.htm", "results/2005/CB05-M.htm",
"results/2006/men.htm", "results/2007/men.htm",
"results/2008/men.htm", "results/2009/09cucb-M.htm",
"results/2010/2010cucb10m-m.htm",
"results/2011/2011cucb10m-m.htm",
"results/2012/2012cucb10m-m.htm")

We include only the portion of the URL that follows the base: http://www.
cherryblossom.org/.

We reconstruct the urls vector so that it contains the proper Web addresses. We paste
the URLs together with

urls = paste(ubase, menURLs, sep = "")

urls[1:3]

[1] "http://www.cherryblossom.org/cb99m.htm"
[2] "http://www.cherryblossom.org/cb003m.htm"
[3] "http://www.cherryblossom.org/results/2001/oof_m.html"

We again try to read the results into R with

menTables = lapply(urls, extractResTable)
names(menTables) = 1999:2012

http://www.cherryblossom.org/results/1999/1999cucb10m-m.htm
http://www.cherryblossom.org/results/1999/1999cucb10m-m.htm
http://www.cherryblossom.org/cb99m.htm
http://www.cherryblossom.org/
http://www.cherryblossom.org/
http://www.cherryblossom.org/cb99m.htm
http://www.cherryblossom.org/cb003m.htm
http://www.cherryblossom.org/results/2001/oof_m.html

98 Case Studies in Data Science in R

This time, we receive no error messages. Of course, simply because we didn’t run into any
errors, does not mean that we have properly extracted the data. We need to check the
results to see if they contain the information expected.

Let’s first check the length of each of the character vectors. From the Web site we
have seen that several thousand runners compete each year so we expect several thousand
elements in our vectors.

sapply(menTables, length)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
3193 1 3627 3727 3951 4164 4335 5245 5283 5913
2009 2010 2011 2012

1 6919 7019 7201

Hmmm, the 2000 and 2009 extractions resulted in vectors with a single element.
The file names for these two years are correct so this requires digging deeper. We view

the source of the 2000 Web page to see if it is formatted as expected. Below are the first
few lines of the 2000 document:

<html>
<body bgcolor="#CCFFFF">
<p align="center">
Nortel Networks Cherry Blossom 10mile Road Race

Washington, DC *** April 9, 2000

<h3 align="center">
Official Results, MEN *** Gun Time Is The Official Time
</h3>

<PRE>

PLACE DIV /TOT NUM NAME AG ...
===== ========= ===== ===================== == ...

Let’s rearrange the HTML tags and use indentation to see if there is a problem with the
format of the document. Below is the same content displayed in a more readable format:

<html>
<body bgcolor="#CCFFFF">
<p align="center">

Nortel Networks Cherry Blossom 10mile Road Race

Washington, DC *** April 9, 2000

<h3 align="center">

Official Results, MEN *** Gun Time Is The Official Time

</h3>

Modeling Runners’ Times in the Cherry Blossom Race 99

<PRE>

PLACE DIV /TOT NUM NAME AG ...
===== ========= ===== ===================== == ...

This document is not well-formed HTML. The htmlParse() function can fix many problems
with malformed documents, e.g., closing a
 tag and matching case for tag names.
However, this function can only do so much. Notice that the and <h3> tags are
not properly nested, and similarly the closing tag that appears after the <pre>
tag is problematic. If htmlParse() closes the <pre> tag so that the tags in the document
are properly nested, then the <pre> node does not contain the table of race results.

We can programmatically edit the HTML so that it is well formed. Alternatively, we can
try another XPath expression for locating the content for this particular file. We proceed
with the second of these options and leave the first as an exercise.

If we want to handle one of the years differently than the others, then we need a way
to distinguish between the two approaches. One way to do this might be to add a second
argument to the function definition that indicates with which year we are working. Then
our code can check the year, and if it is 2000, we can extract the table of results differently.
We supply a default value to year so that if we don’t specify this argument then the function
carries out the default extraction. We provide a modified extractResTable() to do this:

extractResTable =
Retrieve data from web site,
find the preformatted text,
and return as a character vector.

function(url, year = 1999)
{

doc = htmlParse(url)

if (year == 2000) {
Get text from 4th font element
File is ill-formed so <pre> search doesn’t work.
ff = getNodeSet(doc, "//font")
txt = xmlValue(ff[[4]])

}
else {

preNode = getNodeSet(doc, "//pre")
txt = xmlValue(preNode[[1]])

}

els = strsplit(txt, "\r\n")[[1]]
return(els)

}

Since we now have two arguments to our function, we use mapply() to call extrac-
tResTable():

years = 1999:2012
menTables = mapply(extractResTable, url = urls, year = years)

100 Case Studies in Data Science in R

names(menTables) = years
sapply(menTables, length)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
3193 3019 3627 3727 3951 4164 4335 5245 5283 5913
2009 2010 2011 2012

1 6919 7019 7201

We have cleared up the problem with 2000, but the problem with 2009 remains. We leave
it as an exercise to modify extractResTable() to handle this special case. Once modified, we
find that there are 6659 rows in the 2009 table.

Now that we have the function working for the Web pages of men’s results, we can try
it on the women’s pages. When we do, we find that all works fine except for the year 2009.
As it happens, we don’t need any special handling for the women’s results for that year. We
leave it as an exercise to modify the function again so that the 2009 women’s results use
the default processing, rather than the special 2009 processing needed for the men’s results.

We save the data for further processing.

save(menTables, file = "CBMenTextTables.rda")

Lastly, an alternative to saving the list of character vectors in an R data format is to write
the character vectors out as plain text files. We can use writeLines() to do this. In fact, we
can modify extractResTable() to accept a file argument. If supplied, the function writes the
results to a file with that name, and if NULL then the function returns the character vector.
Again, we leave this enhancement as an exercise.

2.8 Exercises
Q.1 Write a function that uses read.fwf() to read the 28 text tables in MenTxt/ and

WomenTxt/ into R. These are called 1999.txt, 2000.txt, etc., and are described in greater
detail in Section 2.2. Examine the tables in a plain text editor to determine the start and
end position of each column of interest (name, hometown, age, and gun and net time).
Use statistics to explore the results and confirm that you have extracted the information
from the correct positions in the text.

Q.2 Revise the extractVariables() function (see Section 2.2) to remove the rows in
menTables that are blank. In addition, eliminate the rows that begin with a ‘*’ or
a ‘#’. You may find the following regular expression helpful for locating blank rows in a
table

grep("^[[:blank:]]*$", body)

The pattern uses several meta characters. The ^ is an anchor for the start of the string,
the $ anchors to the end of the string, the [[:blank:]] denotes the equivalence class
of any space or tab character, and * indicates that the blank character can appear 0 or
more times. All together the pattern ^[[:blank:]]*$ matches a string that contains
any number of blanks from start to end.

Q.3 Find the record where the time is only 1.5. What happened? Determine how to handle
the problem and which function needs to be modified: extractResTable(), extractVari-
ables(), or cleanUp(). In your modification, include code to provide a warning message
about the rows that are being dropped for having a time that is too small.

Modeling Runners’ Times in the Cherry Blossom Race 101

Q.4 Examine the head and tail of the 2006 men’s file. Look at both the character matrix
in the list called menResMat and the character vector in the list called menFiles (see
Section 2.2). (Recall that the desired character matrix in menResMat and the character
vector in menFiles both correspond to the element named "2006"). What is wrong
with the hometown? Examine the header closely to figure out how this error came about.
Modify the extractVariables() function to fix the problem.

Q.5 Write the convertTime() function described in Section 2.3. This function takes a string
where time is in either the format hh:mm:ss or mm:ss. The return value is the time
as a numeric value of the number of minutes. Design this function to take a character
vector with multiple strings and return a numeric vector.

Q.6 Modify the createDF() function in Section 2.3 to handle the formatting problem with
the 2006 male file. You will need to carefully inspect the raw text file in order to deter-
mine the problem.

Q.7 Follow the approach developed in Section 2.2 to read the files for the female runners
and then process them using the functions in Section 2.3 to create a data frame for
analysis. You may need to generalize the createDF() and extractVariables() functions to
handle additional oddities in the raw text files.

Q.8 Modify the call to the plot() function that created Figure 2.6 to create Figure 2.7.
To do this, read the documentation for plot() to determine which parameters could be
helpful; that is, ?plot.default contains helpful information about the commonly
used graphical parameters.

Q.9 Modify the piecewise linear fit from Section 2.4.2 to include a hing at 70. Examine
the coefficients from the fit and compare the fitted curve to the loess curve. Does the
additional hing improve the fit? Is the piecewise linear model closer to the loess curve?

Q.10 We have seen that the 1999 runners were typically older than the 2012 runners.
Compare the age distribution of the runners across all 14 years of the races. Use quan-
tile–quantile plots, boxplots, and density curves to make your comparisons. How do the
distributions change over the years? Was it a gradual change?

Q.11 Normalize each male runner’s time by the fastest time for the runner of the same
age. To do this, find the fastest runner for each year of age from 20 to 80. The tapply()
function may be helpful here. Smooth these times using loess(), and find the smoothed
time using predict(). Use these smoothed times to normalize each run time. Use density
plots, quantile–quantile plots, and summary statistics to compare the distribution of the
age-normalized times for the runners in 1999 and 2012. What do you find? Repeat the
process for the women. Compare the women in 1999 to the women in 2012 and to the
men in 1999 and 2012.

Q.12 Clean the strings in home in menRes to remove all leading and trailing blanks and
multiple contiguous blanks. Also make all letters lower case and remove any punctuation
such as ‘.’ or ‘,’ or ‘’’ characters from the string. Assign the cleaned version of home
into menRes. Call it homeClean.

Q.13 In Section 2.5 we created an id for a runner by pasting together name, year of birth,
and state. Consider using the home town instead of the state. What is the impact on
the matching? How many runners have competed in at least 8 races using this new id?
What if you reduced the number of races to 6? Should this additional restriction be
used in the matching process?

102 Case Studies in Data Science in R

Q.14 Further refine the set of athletes in the longitudinal analysis by dropping those IDs
(see Section 2.5) who have a large jump in time in consecutive races and who did not
compete for two or more years in a row. How many unique IDs do you have when
you include these additional restrictions? Does the longitudinal analysis in Section 2.6
change?

Q.15 Follow the procedures developed in Section 2.5 to clean the female runners’ names and
hometowns, and create longitudinal records for the females. Then follow the modeling
of Section 2.6 to investigate the run time-age relationship for women who competed in
multiple races.

Q.16 Consider adapting a non-parametric curve fitting approach to the longitudinal anal-
ysis. Rice [4] suggests modeling an individual’s behavior as a combination of an av-
erage curve plus an individual curve. That is, the predicted performance for an indi-
vidual comes from the sum of the average curve and the individual’s curve: Yi(t) =
µ(t) + fi(t) + ε, where Yi(t) is the performance of individual i at age t. He suggests a
“two-step” process to do this: (a) take a robust average of all of the smoothed curves
for the individuals; (b) subtract this average smoothed curve from the individual data
points and smooth the residuals.
Rather than using only the individual’s run times to produce the individual’s curve, Rice
also suggests smoothing over a set of nearest neighbors’ times. Here a nearest neighbor
is a runner with similar times for similar age.

Q.17 In Section 2.7, we discovered that the HTML file for the male 2000 results was so
poorly formatted that htmlParse() was unable to fix it to allow us to extract the text
table from the <pre> tag. In this exercise, we programmatically edit this HTML file
so that we can use htmlParse() as desired. To do this, begin by reading the HTML
file located at http://www.cherryblossom.org/cb003m.htm using readLines().
Carefully examine the HTML displayed in Section 2.7 and come up with a plan for
correcting it. Consider whether you want to drop s or close them properly.
Once you have fixed the problem so that the <pre> tag contains the text table, pass
your corrected HTML to htmlParse(). You may want to use a text connection to do this
rather than writing the file to disk and reading it in.

Q.18 Revise the extractResTable() function in Section 2.7 so that it can read the male 2009
results. Carefully examine the raw HTML to determine how to find the information
about the runners. Work with XPath to locate <div> and <pre> tags and extract
the text value. The female 2009 results do not need this special handling. Modify the
extractResTable() function to determine whether to perform the special processing of
the <div> and <pre> tags.

Q.19 Revise the extractResTable() function in Section 2.7 so that it takes an additional
parameter: file. Give the file parameter a default value of NULL. When NULL, the parsed
results are returned from extractResTable() as a character vector. If not NULL, the results
are written to the file named in file. The writeLines() function should be helpful here.

Bibliography
[1] Owen Barder. Running for Fitness. Owen Barder, Addis Ababa, 2010.

http://www.cherryblossom.org/cb003m.htm

Modeling Runners’ Times in the Cherry Blossom Race 103

[2] Erich Neuwirth. RColorBrewer: ColorBrewer palettes. http://cran.r-project.
org/web/packages/RColorBrewer, 2011. R package version 1.0-5.

[3] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[4] John Rice. Functional and Longitudinal Data Analysis: Perspectives on smoothing.
Statistica Sinica, 14:631–647, 2004.

[5] Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag,
New York, 2008. http://lmdvr.r-forge.r-project.org/figures/figures.
html.

[6] Duncan Temple Lang. XML: Tools for parsing and generating XML within R and
S-PLUS. http://www.omegahat.org/RSXML, 2011. R package version 3.4.

http://cran.r-project.org/web/packages/RColorBrewer
http://cran.r-project.org/web/packages/RColorBrewer
http://www.r-project.org
http://lmdvr.r-forge.r-project.org/figures/figures
http://www.omegahat.org/RSXML

This page intentionally left blankThis page intentionally left blank

3
Using Statistics to Identify Spam

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
3.1 Introduction . 105

3.1.1 Computational Topics . 106
3.2 Anatomy of an email Message . 107
3.3 Reading the email Messages . 110
3.4 Text Mining and Naïve Bayes Classification . 113
3.5 Finding the Words in a Message . 116

3.5.1 Splitting the Message into Its Header and Body . 116
3.5.2 Removing Attachments from the Message Body . 117
3.5.3 Extracting Words from the Message Body . 124
3.5.4 Completing the Data Preparation Process . 126

3.6 Implementing the Naïve Bayes Classifier . 127
3.6.1 Test and Training Data . 128
3.6.2 Probability Estimates from Training Data . 129
3.6.3 Classifying New Messages . 131
3.6.4 Computational Considerations . 135

3.7 Recursive Partitioning and Classification Trees . 138
3.8 Organizing an email Message into an R Data Structure . 140

3.8.1 Processing the Header . 141
3.8.2 Processing Attachments . 144
3.8.3 Testing Our Code on More email Data . 146
3.8.4 Completing the Process . 148

3.9 Deriving Variables from the email Message . 150
3.9.1 Checking Our Code for Errors . 155

3.10 Exploring the email Feature Set . 158
3.11 Fitting the rpart() Model to the email Data . 160
3.12 Exercises . 164

Bibliography . 169

3.1 Introduction
People are terrific at spotting spam in their mail reader with a quick glance at the sub-
ject line and sender, and when that approach is not conclusive, a glimpse at the contents

105

106 Case Studies in Data Science in R

of the message is usually enough to classify the message. But how do we design an auto-
mated procedure to classify and eliminate these unwanted messages to save us the time
and irritation of having to sort through them in our inbox? Spam filters used by mail
readers examine various characteristics of an email before deciding whether to place it in
your inbox or spam folder. This decision is in part based on a statistical analysis of a large
amount of email that has been hand classified as spam (unwanted) or ham (wanted). In
this chapter, we examine over 9000 messages that have been classified by SpamAssassin
(http://spamassassin.apache.org) for the purpose of developing and testing spam
filters.

Before we can begin to analyze the information present in the SpamAssassin corpus, we
need to process the messages into a form conducive to statistical analysis. The content of
the message itself might be useful for analysis, but how do we organize and quantify this
information? We can take a text mining approach where we tally up all the words occurring
in a message and compare the frequencies of these words in ham and spam. Alternatively,
or additionally, we can derive variables from characteristics of the message and use these to
classify email. For example, the amount of capitalization in the subject line may be useful
in ascertaining whether or not the message is spam.

Clearly we need to do a lot of text processing to get these thousands of messages into
shape for either type of analysis. A first task is to bring the email into R [4] for processing.
To do this we need to read thousands of files as each message is in its own file. This is the
topic of Section 3.3. Then for each message, we locate its various parts: a) the header, which
contains information about, e.g., the sender and subject; b) the message itself; and c) any
attachments. However, before we can design the data extraction, we need to know more
about the organization and format of a general email message. We describe the structure
of email messages in Section 3.2.

We also need to know more about the analysis we want to perform. For text mining,
we use the naïve Bayes method to approximate the likelihood a message is spam given the
message content. This approach requires processing the message content to locate the words
within the message, clean them up, e.g., handle punctuation and capitalization, and tally
them. We describe the naïve Bayes technique in Section 3.4, then we prepare the email for
analysis in Section 3.5, and carry out the analysis in Section 3.6. Alternatively, we employ
a decision tree that uses derived variables, which represent characteristics of a message, to
classify the messages. In order to derive these variables, we need to process the header and
body of the email message to extract information. For example, we can count the number
of characters in the message or look for excess capitalization and punctuation in the subject
line. We follow the same sequence of tasks for this approach as we do with text mining.
That is, in Section 3.7, we describe decision trees; then we process the email in Section 3.8
and derive the variables and explore them in Section 3.9 and Section 3.10, respectively; and
lastly, we apply a recursive partitioning method in Section 3.11 to build a decision tree from
the derived set of features. The presentations of these two approaches do not depend on
one another so the reader may choose to focus on one approach only.

3.1.1 Computational Topics
The computational work in this chapter involves extensive text processing, which includes
the following types of computations.

• Locate and process thousands of files by programmatically finding the names of the files
and reading them into R in a general and automated manner.

• Manipulate strings and apply regular expressions to strings to turn the unstructured
text in a message into structured information for analysis.

http://spamassassin.apache.org

Using Statistics to Identify Spam 107

• Use cross-validation to select among competing models, e.g., by varying parameters
in fitting a model, and evaluate the selected model using independent test data. This
includes finding the Type I and II errors incurred when applying different model fits to
test data.

• Efficiently and accurately compute with vectors containing large numbers of small val-
ues.

• Explore the email to design variables and develop intuition for what may be useful
features in predicting spam and ham.

• Classification trees and recursive partitioning.

• Debugging techniques.

• Complex data structures, e.g., lists of lists of vectors and data frames.

• Writing modular functions to process the email files.

3.2 Anatomy of an email Message
An electronic mail message has two parts, a header and body. Analogous to surface mail,
the header acts as an envelope, and the body is the letter that contains the contents for
the recipient. In addition to the date, sender, and subject, the header has many other
pieces of information, such as the message id, the carbon-copy (cc) recipients, and routing
information as the message is relayed. These pieces of information are provided in a key:
value format. That is, the key is the name of the kind of information being provided, and
the value for that key follows the colon. For example, From: debnolan@gmail.com has
a key of From and the value is the address of the sender. Sometimes the value contains more
than one piece of information, and when this occurs, the pieces are separated by semicolons,
e.g., Content-Type: TEXT/PLAIN; charset=US-ASCII.

The body of the message is separated from the header by a single empty line. When an
attachment is added to a message, the attachment is included in the body of the message.
That is, even with attachments, email messages still consist only of these two basic parts –
header and body. They may not appear that way when you see them in your email reader,
but that is because your email application displays the message in a way that makes it
easy for you to read. To figure out what portion of the body is the message and what is
an attachment, mail readers use an Internet standard called MIME (Multipurpose Internet
Mail Extensions). When attachments are present, the Content-Type key in the header
has a MIME type value of multipart, which indicates there are several documents in the
body of the message. In addition, a boundary string is provided in the value. The boundary
is a unique string not otherwise in the message, and it marks the start and end of the
attachments. The receiving email reader looks for this string in the message body and uses
it to divide the message into its various pieces.

We provide two sample messages as examples. The first is a plain text message with
no attachments. It consists of an instructor’s response to an inquiry sent by a student.
The header includes 14 key: value pairs. Note the Date key includes a time-zone offset, the
Message-ID key gives the unique ID to track the message from the stat.berkeley.edu
email server, and the Content-Type key indicates a MIME type of TEXT/PLAIN; that is,

mailto:debnolan@gmail.com

108 Case Studies in Data Science in R

the message is plain text with no attachments. Notice also that there is an additional line
at the start of the message that is not in the key: value format, i.e.,

From nolan@stat.Berkeley.EDU Sun Feb 2 22:16:19 2014 -0800
Date: Sun, 2 Feb 2014 22:16:19 -0800 (PST)
From: nolan@stat.Berkeley.EDU
X-X-Sender: nolan@kestrel.Berkeley.EDU
To: Txxxx Uxxx <txxxx@uclink.berkeley.edu>
Subject: Re: prof: did you receive my hw?
In-Reply-To: <web-569552@calmail-st.berkeley.edu>
Message-ID:
<Pine.SOL.4.50.040202216120.2296-100000@kestrel.Berkeley.EDU>
References: <web-569552@calmail-st.berkeley.edu>
MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII
Status: O
X-Status:
X-Keywords:
X-UID: 9079

Yes it was received.

On Sun, 2 Feb 2014, txxxx wrote:

> hey prof .nolan,
>
> i sent out my hw on sunday night. i just wonder did you receive
> it because i am kinda scared thatyou didnt’ receive it.
> like i just wonder how do i know if you got it or not, since
> the cal mail system is kinda weird sometimes. thanks
>
> txxxx
>

The second message consists of a text message and 2 attachments. It was sent by a
student to the instructor and then forwarded by the instructor to the teaching assistant.
We display only a small part of each attachment. The first attachment is a PDF file and
the second is an HTML file.

From nolan@stat.Berkeley.EDU Sun Feb 2 22:18:56 2014 -0800
Date: Sun, 2 Feb 2014 22:18:55 -0800 (PST)
From: nolan@stat.Berkeley.EDU
X-X-Sender: nolan@kestrel.Berkeley.EDU
To: Gxxx <lxxx@stat.Berkeley.EDU>
Subject: Assignment 1 sorry (fwd)
Message-ID:

<Pine.SOL.4.50.040202218470.2296-201000@kestrel.Berkeley.EDU>
MIME-Version: 1.0
Content-Type: MULTIPART/Mixed;

BOUNDARY="_===669732====calmail-me.berkeley.edu===_"

mailto:nolan@stat.Berkeley.EDU
mailto:nolan@stat.Berkeley.EDU
mailto:nolan@kestrel.Berkeley.EDU
mailto:txxxx@uclink.berkeley.edu
mailto:web-569552@calmail-st.berkeley.edu
mailto:Pine.SOL.4.50.040202216120.2296-100000@kestrel.Berkeley.EDU
mailto:web-569552@calmail-st.berkeley.edu
mailto:nolan@stat.Berkeley.EDU
mailto:nolan@stat.Berkeley.EDU
mailto:nolan@kestrel.Berkeley.EDU
mailto:lxxx@stat.Berkeley.EDU
mailto:Pine.SOL.4.50.040202218470.2296-201000@kestrel.Berkeley.EDU

Using Statistics to Identify Spam 109

Content-ID: <Pine.SOL.4.50.040202218471.2296@kestrel.Berkeley.EDU>
Status: RO
X-Status:
X-Keywords:
X-UID: 9080

--_===669732====calmail-me.berkeley.edu===_
Content-Type: TEXT/PLAIN; CHARSET=US-ASCII; FORMAT=flowed
Content-ID: <Pine.SOL.4.50.040202218472.2296@kestrel.Berkeley.EDU>

---------- Forwarded message ----------
Date: Sun, 02 Feb 2014 21:50:47 -0800
From: Yyyy Zzz <Zzz@uclink.berkeley.edu>
To: nolan@stat.Berkeley.EDU
Subject: Assignment 1 sorry

I am sorry to send this email again, but my outbox told
me that the last email only send 1 attached file.
I am sending this again to make sure you recieve all
the necessary files.
Thank You and sorry for the inconvenience.

--_===669732====calmail-me.berkeley.edu===_
Content-Type: APPLICATION/PDF; CHARSET=US-ASCII
Content-Transfer-Encoding: BASE64
Content-ID: <Pine.SOL.4.50.040202218473.2296@kestrel.Berkeley.EDU>
Content-Description:
Content-Disposition: ATTACHMENT; FILENAME="PLOTS.pdf"

JVBERi0xLjEKJYHigeOBz4HTDQoxIDAgb2JqCjw8Ci9DcmVhdGlvbkRhdGUgKEQ6Mj
MDIxMTIwMTEpCi9Nb2REYXRlIChEOjIwMDQwMjAyMTEyMDExKQovVGl0bGUgKFI...

--_===669732====calmail-me.berkeley.edu===_
Content-Type: TEXT/HTML; CHARSET=US-ASCII
Content-Transfer-Encoding: BASE64
Content-ID: <Pine.SOL.4.50.040202218474.2296@kestrel.Berkeley.EDU>
Content-Description:
Content-Disposition: ATTACHMENT; FILENAME="Stat133HW1.htm"

PGh0bWwgeG1sbnM6bz0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6b2
Ig0KeG1sbnM6dz0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6d29...

--_===669732====calmail-me.berkeley.edu===_--

The first part of the body is the forwarded message, which is a regular part of the body.
Note that it has its own short header indicating the content type is plain text. Next comes
the PDF attachment, which the owner has named PLOTS.pdf, and the third part of the
email is an HTML attachment. According to the header for the attachments, they are both
encoded in base64, which is an encoding designed for representing binary data in an ASCII
string format.

mailto:Pine.SOL.4.50.040202218471.2296@kestrel.Berkeley.EDU
mailto:Pine.SOL.4.50.040202218472.2296@kestrel.Berkeley.EDU
mailto:Zzz@uclink.berkeley.edu
mailto:nolan@stat.Berkeley.EDU
mailto:Pine.SOL.4.50.040202218473.2296@kestrel.Berkeley.EDU
mailto:Pine.SOL.4.50.040202218474.2296@kestrel.Berkeley.EDU

110 Case Studies in Data Science in R

The Content-Type key in the header provides the boundary string for separating
the attachments. This string is _===669732====calmail-me.berkeley.edu===_.
We find 4 occurrences of the boundary in the email: at the start of the message, between
the message and first attachment, between the first and second attachment, and at the end
of the last attachment. Notice that the actual separator is the boundary string preceded
by 2 hyphens, i.e., --_===669732====..., except at the end of the message where the
boundary is both preceded and followed with 2 hyphens.

Now that we have a more complete understanding of the anatomy of an email message,
we can better determine how to convert email into data that can be analyzed. In the next
section, we tackle the job of reading email into R, and in Section 3.5 and Section 3.8 we use
the information about a general email message to store the email in data structures that
are appropriate for further processing and analysis.

3.3 Reading the email Messages
In order to read the raw text messages into R, we need to know where they are located and
how they are organized in the file system on our computer. As mentioned already, these
messages are made available by SpamAssassin (http://spamassassin.apache.org),
but for convenience they also have been placed in the R package RSpamData [5]. After we
know how the information is organized in the package, we can develop a function to read
the email into R.

We can use a file finder, such as Spotlight, to check the organization of the messages or
use simple command-line shell tools to examine the contents of the RSpamData package.
Alternatively, we can use R to perform these operations. This is the approach that we take.
In order to find the files in a machine-independent manner, we can use the system.file()
function. We begin by finding the full path name to the RSpamData/ directory with

spamPath = system.file(package = "RSpamData")

We can list the files in RSpamData with list.files() and the directories with list.dirs(). We
list the directories as follows:

list.dirs(spamPath, full.names = FALSE)

[1] "" "help"
[3] "html" "latex"
[5] "man" "messages"
[7] "messages/easy_ham" "messages/easy_ham_2"
[9] "messages/hard_ham" "messages/spam"
[11] "messages/spam_2" "Meta"
[13] "R" "R-ex"

Note this listing is recursive, unless we turn off recursion with recursive = FALSE. The
directory named messages/ has 5 subdirectories. We list only those files and directories
in messages/ with

list.files(path = paste(spamPath, "messages",
sep = .Platform$file.sep))

http://spamassassin.apache.org

Using Statistics to Identify Spam 111

[1] "easy_ham" "easy_ham_2" "hard_ham"
[3] "spam" "spam_2"

Notice that we specify the file separator in a machine-independent manner The names of
these directories suggest that the ham messages have been organized into those that are
easy or difficult to detect. The file names are a bit more inscrutable. We examine a few file
names in easy_ham/ with

head(list.files(path = paste(spamPath, "messages", "easy_ham",
sep = .Platform$file.sep)))

[1] "00001.7c53336b37003a9286aba55d2945844c"
[2] "00002.9c4069e25e1ef370c078db7ee85ff9ac"
[3] "00003.860e3c3cee1b42ead714c5c874fe25f7"
[4] "00004.864220c5b6930b209cc287c361c99af1"
[5] "00005.bf27cdeaf0b8c4647ecd61b1d09da613"
[6] "00006.253ea2f9a9cc36fa0b1129b04b806608"

We check that the names of the messages in the spam directories look the same as those
in the ham directories with

head(list.files(path = paste(spamPath, "messages", "spam_2",
sep = .Platform$file.sep)))

[1] "00001.317e78fa8ee2f54cd4890fdc09ba8176"
[2] "00002.9438920e9a55591b18e60d1ed37d992b"
[3] "00003.590eff932f8704d8b0fcbe69d023b54d"
[4] "00004.bdcc075fa4beb5157b5dd6cd41d8887b"
[5] "00005.ed0aba4d386c5e62bc737cf3f0ed9589"
[6] "00006.3ca1f399ccda5d897fecb8c57669a283"

The SpamAssassin Web page at http://spamassassin.org/publiccorpus/ gives a
description of the naming convention for these files. According to the Web site, the messages
are named by a message number and their MD5 checksum. The MD5 checksum is a unique
identifier derived from the contents of the file.

How many files are there all together? We use length() and list.files() to find out with

dirNames = list.files(path = paste(spamPath, "messages",
sep = .Platform$file.sep))

length(list.files(paste(spamPath, "messages", dirNames,
sep = .Platform$file.sep)))

[1] 9353

There are over 9000 messages in the 5 directories combined. These are not equally divided
between the 5 directories, i.e.,

sapply(paste(spamPath, "messages", dirNames,
sep = .Platform$file.sep),

function(dir) length(list.files(dir)))

messages/easy_ham messages/easy_ham_2 messages/hard_ham
5052 1401 501

messages/spam messages/spam_2
1001 1398

http://spamassassin.org/publiccorpus/

112 Case Studies in Data Science in R

There are only 501 messages in hard_ham and about one quarter of the email is spam.
Given the organization and volume of files, we cannot simply read the files into R by

writing calls such as

readLines("messages/easy_ham/00006.3ca1f399ccda5d897fecb8c57...")

How do we read the contents of the files into R in a more general, automated, machine-
independent manner? And, is readLines() the function we should use?

Let’s address the second question first. The manual, R Data Import/Export [3] describes
several functions available to us in R for reading input from files. Depending on what we
want to end up with, different functions are easier to use; they all have different purposes
and some provide greater control at the expense of additional complexity. Since our email
is free-formatted text, it is probably easiest to import the contents of each file as a sequence
of lines. In other words, when we read a message, we want to obtain a character vector with
one string per line in the file. The readLines() function offers this capability so we use it.

Now to automate the process, we want to avoid typing the file name ourselves. If a file’s
name has been assigned to a string, say, in the variable fileName, then we can pass the file
name to readLines() with

readLines(fileName)

In our case this string might be

~/RPackages/RSpamData/messages/easy_ham/
00006.3ca1f399ccda5d897fecb8c57669a283

In order to find the file names in a machine-independent manner, we again use the
list.files() function. Recall that spamPath contains the full path name to RSpamData and
dirNames contains the names of the 5 subdirectories in messages/ that contain the mes-
sage files. We construct the full name for these directories by pasting together these strings
with

fullDirNames = paste(spamPath, "messages", dirNames,
sep = .Platform$file.sep)

We obtain the full names of the files within the first directory with

fileNames = list.files(fullDirNames[1], full.names = TRUE)
fileNames[1]

[1] "/Users/nolan/RPackages/RSpamData/messages/easy_ham/
00001.7c53336b37003a9286aba55d2945844c"

Then, we can read the first message in easy_ham with

msg = readLines(fileNames[1])
head(msg)

[1] "From exmh-workers-admin@redhat.com Thu Aug 22 12:36:23..."
[2] "Return-Path: <exmh-workers-admin@spamassassin.taint.org>"
[3] "Delivered-To: zzzz@localhost.netnoteinc.com"
[4] "Received: from localhost (localhost [127.0.0.1])"
[5] "\tby phobos.labs.netnoteinc.com (Postfix) with ESMTP id..."
[6] "\tfor <zzzz@localhost>; Thu, 22 Aug 2002 07:36:16 -0400..."

mailto:exmh-workers-admin@redhat.com
mailto:exmh-workers-admin@spamassassin.taint.org
mailto:zzzz@localhost.netnoteinc.com
http://phobos.labs.netnoteinc.com

Using Statistics to Identify Spam 113

We have successfully located the email files and determined how to programmatically
read them into R as character vectors, but before we attempt to wrap this code into a
function and read all the email into R, let’s consider how to prepare each message for
analysis. To do this, we want to think about what we want to end up with. What parts of
the message do we want to keep? How do we want to analyze the email? If we just start
writing code, there is a danger that we will get confused and the code will become inter-
twined with doing several different things. The answers to these questions depend on the
kind of analysis we want to perform. In the next section, we provide a brief summary of the
naïve Bayes approach to classifying email that uses only the content of the message. After
we understand how to carry out this statistical analysis, we will be able to answer these
questions about how to process and store the email.

Lastly to assist us, we select a small set of email messages to use as test cases as we
develop our code. We have chosen, by manual inspection, 15 ham message files from the
first directory that exhibit different characteristics of email. We read them into R as follows:

indx = c(1:5, 15, 27, 68, 69, 329, 404, 427, 516, 852, 971)
fn = list.files(fullDirNames[1], full.names = TRUE)[indx]
sampleEmail = sapply(fn, readLines)

Of course, we have no spam or hard ham in our sample. We may want to revisit this selection
later to ensure that we have email that are representative of the different cases our code
needs to be able to handle.

3.4 Text Mining and Naïve Bayes Classification
Naïve Bayes is a probability-based approach to classification. This approach begins by
studying the content of a large collection of email messages that have already been read
and classified as spam or ham. Then when a new message comes to us, we use the information
gleaned from our “training” set to compute the probability that the new message is spam.
For example, suppose we receive a new message that says, “Are your taxes too high?”. We
use the probability:

P(message is spam |message content: "Are your taxes too high?")

to determine how likely it is that a message with this content is spam. We can also include
in this probability computation other information about the email such as the number of
attachments and the percentage of letters that are capitals, but our focus in this section is
only on the text of the message. To compute this probability, we re-express it using Bayes’
Rule as follows:

P(message is spam | message content) = P(message content | spam)P(spam)
P(message content)

At first glance, it doesn’t look as though Bayes’ Rule has simplified the probability cal-
culations at all. Now we have 3 probabilities to compute instead of one. However, the
probability of spam is easily estimated by the proportion of spam messages in the training
set of messages. And, we soon see that we do not need to calculate P(message content).

We do need to compute the probability that a spam message has the new message’s
content. This is where the “naïve” simplification of Bayes’ Rule comes into play. We assume

114 Case Studies in Data Science in R

that the chance a particular word is in the message is independent of all other words in the
message. That is, the probability that high appears in a spam message is independent of
the probability that taxes appears in the message, i.e., P(high|taxes) = P(high). Clearly
this is not the case, but making this assumption greatly simplifies the computations and
turns out to still be effective in identifying spam.

Suppose the set of unique words in all of the training messages ranges from apple to
zebra. Then this naïve assumption says that the likelihood of our message content is the
following product of probabilities for all words:

P(message content | spam) ≈ P(not apple| spam)× · · · ×
P(high | spam)× · · · × P(taxes | spam)×
· · · × P(not zebra| spam).

That is, each probability in the product on the right-hand side of the above approximation
is either the probability that an individual word is present given the message is spam
or the probability that the word is absent given the message is spam. To estimate these
probabilities we have only to find the frequencies of these words in the spam portion of
the training set. For example, we approximate P(high | spam) by the empirical fraction of
spam messages containing the word high in the training set.

Similarly, we can estimate P(message content | ham) using Bayes’ Rule and the naïve
simplification. That is,

P(message content |ham) ≈ P(not apple|ham)× · · · ×
P(high |ham)× · · · × P(taxes |ham)×
· · · × P(not zebra|ham).

And, we estimate each of the probabilities on the right-hand side of the approximation
with the empirical proportion, e.g., we approximate P(high |ham) by the fraction of ham
messages that contain the word high.

The classification of a message depends on the likelihood ratio:

P(spam | message content)
P(ham | message content)

The possible values of this ratio range between 0 and ∞. The ratio is 1 when spam and
ham are equally likely, greater than 1 when the probability the message is spam is more
likely than the probability it is ham, and less than 1 when it is less likely.

It is often easier to work with this ratio in part because it eliminates the need to com-
pute P (message content). Applying the naïve Bayes approximation to the numerator and
denominator yields:

P(spam|message content)
P(ham|message content)

≈ P(not apple| spam)
P(not apple| ham) × · · · ×

P(high| spam)
P(high| ham) × · · · ×

P(not zebra|spam)
P(not zebra |ham) ×

P(spam)
P(ham)

Our calculation has been reduced to a product of ratios of probabilities that are simple to
estimate from the training data.

Using Statistics to Identify Spam 115

One further mathematical convenience we use is to take the log of the ratio of the
conditional probabilities above. Two benefits to taking the log are that the product becomes
a sum, and values between 0 and 1 get “stretched out” between −∞ and 0. This latter fact
often means that the logged values have good statistical properties. The log odds ratio
appears as:

log
(
P (spam | message content)
P (ham | message content)

)
≈ log

(
P (not apple|spam)
P (not apple|ham)

)
+ · · ·+ log

(
P (high|spam)
P (high|ham)

)
+

· · ·+ log
(
P (not zebra|spam)
P (not zebra|ham)

)
+ log

(
P (spam)
P (ham)

)
One last computational consideration arises when a word appears solely in ham. In this

situation, our estimate is 0 for the probability of this word given a message is spam, which
is problematic when we take logs. To remedy this, we “smooth” all of the word counts by
adding 0.5 to them, i.e.,

P(high | spam) ≈ # of spam messages with high + 1/2
of spam messages + 1/2

We use the approximate log odds to classify messages. Our simple classification rule
uses the training data to estimate probabilities like the one above; then we compute
the log odds on test messages. That is, we include, e.g., either logP (high | spam) or
logP(not high | spam) in the sum depending on whether or not the test message contains
the word high. When the log likelihood ratio for a new message exceeds some threshold,
it is classified as spam. Otherwise, it is classified as ham.

Now that we understand the naïve Bayes approach to text mining and classification, we
can determine how to process the email for this kind of analysis. From each message, we
need the set of words it contains, and we need the collection of unique words across all the
messages. This all-encompassing set is called a “bag of words” (BOW). The probabilities
that we compute are based on the presence and absence in a message of each word in the
bag of words. Our tasks then are to:
• Transform a message body into a set of the words.

• Combine the words across messages into a bag of words.
After we have prepared each message in this way, we can carry out our analysis. For this

analysis, we need to:
• Tally the frequencies in the training data of words in spam and ham separately to

estimate the probability a word appears in a message given it is spam (or ham) from
the proportion of spam (or ham) messages containing that word.

• Estimate the likelihood that a new test message is spam (or ham) given its contents,
i.e., given the message’s words compute the naïve Bayes version of the log likelihood
ratio.

• Find a threshold for the log likelihood ratio, where a message with a value above the
threshold is classified as spam. We choose this threshold by examining the error rates
for the test data.
Since we do not have test messages, we divide our email corpus into 2 parts and use

one part as our pseudo test set and the other as our training set. We do this after we have
simplified all of the email into their word sets.

116 Case Studies in Data Science in R

3.5 Finding the Words in a Message
We need to access the body of the message in order to extract its words. Also, we need
to eliminate the attachments from the body as we are not interested in this portion of
the body. (We leave it as an exercise to extract the words from any text attachments and
include them in the set of a message’s words.) Once we have located the relevant portion
of the message body, our task is to extract its words. We tackle each of these 3 steps in
turn and place the code in functions, splitMessage(), dropAttach(), and findMsgWords(),
respectively.

3.5.1 Splitting the Message into Its Header and Body
Recall from Section 3.2 that the header and body of the message are separated by an empty
line. This should be the first empty line in the email. We can find this line by finding all
the empty lines and then choosing the first of these. We work with the first message in
sampleEmail and find the index of the first empty line with

msg = sampleEmail[[1]]
which(msg == "")[1]

[1] 63

An alternative way to do this is to use the match() function. It returns the position of the
first matching element in the specified object. If we look for "" in our lines, we get the
location of the line separating the header and body:

match("", msg)

[1] 63

Let’s assign this location to splitPoint, i.e.,

splitPoint = match("", msg)

To confirm that we have correctly found the division between the header and body, we
examine a few lines in msg on either side of splitPoint with

msg[(splitPoint - 2):(splitPoint + 6)]

[1] "List-Archive: <https://listman.spamassassin.taint.org/..."
[2] "Date: Thu, 22 Aug 2002 18:26:25 +0700"
[3] ""
[4] " Date: Wed, 21 Aug 2002 10:54:46 -0500"
[5] " From: Chris Garrigues <cwg-dated-1030377287..."
[6] " Message-ID: <1029945287.4797.TMDA@deepeddy.vircio.com>"
[7] ""
[8] ""
[9] " | I can’t reproduce this error."

This may be a bit confusing because we have an indented header from another message
within the body of this message, but it appears we have correctly located the empty line
that marks the beginning of the body.

Simple subsetting gives us the header and the body. The header is the first, second,
third, etc. lines up to but not including splitPoint, and the body includes all lines past
splitPoint. That is,

mailto:1029945287.4797.TMDA@deepeddy.vircio.com
https://listman.spamassassin.taint.org/...

Using Statistics to Identify Spam 117

header = msg[1:(splitPoint-1)]
body = msg[-(1:splitPoint)]

We close this section by collecting the code we have written into the splitMessage()
function. The input to this function is the character vector returned from readLines() (see
Section 3.3), and the output is a list of 2 character vectors comprising the header and body.
Our simple function is

splitMessage = function(msg) {
splitPoint = match("", msg)
header = msg[1:(splitPoint-1)]
body = msg[-(1:splitPoint)]
return(list(header = header, body = body))

}

We apply this function to our sample messages with

sampleSplit = lapply(sampleEmail, splitMessage)

We have found the body of the message, and we next tackle the removal of any attachments.

3.5.2 Removing Attachments from the Message Body
We saw in Section 3.2 that when an email message has attachments, the MIME type is
multipart and the Content-Type field provides a boundary string that can be used to
locate the attachments. In the example provided there, the Content-Type field is

Content-Type: MULTIPART/Mixed;
BOUNDARY="_===669732====calmail-me.berkeley.edu===_"

It seems our first step is to find the Content-Type key and use its value to determine whether
or not an attachment is present. If so, then we find the boundary string and use this string
to locate the attachments.

We work with the first message in our sample and use the grep() function to locate
Content-Type in the header with

header = sampleSplit[[1]]$header
grep("Content-Type", header)

[1] 46

We have successfully found the Content-Type key in the 46th element of header. We next
use this Content-Type’s value to determine whether the message has any attachments,
i.e., we check whether or not the Content-Type is "multipart". When we examine the
messages in sampleEmail we see that the MIME type is not consistently capitalized so we
convert header[46] to lower case before searching for the term multipart. We again
use grep() to do this, i.e.,

grep("multi", tolower(header[46]))

integer(0)

It appears this message has no attachments. We double check with

118 Case Studies in Data Science in R

header[46]

[1] "Content-Type: text/plain; charset=us-ascii"

Indeed, it has only a plain text body.
We can apply this call to grep() to all of the headers in the list of sample messages with

headerList = lapply(sampleSplit, function(msg) msg$header)
CTloc = sapply(headerList, grep, pattern = "Content-Type")
CTloc

[[1]]
[1] 46
...
[[6]]
[1] 54

[[7]]
integer(0)
...

The sapply() did not return a vector as expected because the seventh element has no
Content-Type key. To remedy this, we can check for a missing Content-Type field and
return 0 or NA in this case so that we have a numeric vector to work with, i.e.,

sapply(headerList, function(header) {
CTloc = grep("Content-Type", header)
if (length(CTloc) == 0) return(NA)
CTloc

})

[1] 46 45 42 30 44 54 NA 21 17 52 31 52 52 27 31

Finally, we add the check for a multipart MIME type with

hasAttach = sapply(headerList, function(header) {
CTloc = grep("Content-Type", header)
if (length(CTloc) == 0) return(FALSE)
grepl("multi", tolower(header[CTloc]))

})

hasAttach

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
[10] TRUE TRUE TRUE TRUE TRUE TRUE

Note that grepl() returns a logical indicating whether there was a match or not. Several of
the messages in our sample have attachments.

We have used grep() and grepl() to search for specific literals in our header strings. For
example, grepl("multi", header) searches in each element of the character vector
header for an m followed by a u then by an l and so on. This sequence of 5 literals can
appear anywhere in the string, and if it does, grep() returns the indices of the elements
where it found a match. This is a very simple example of pattern matching using regular
expressions. The first argument to grep() is a regular expression and the second is the vector

Using Statistics to Identify Spam 119

of strings in which to search. Regular expression matching is far more powerful and flexible
than this simple example demonstrates. We use more of the features of regular expressions
next as we search for the boundary string.

We need to extract the boundary string from those messages that have attachments
in order to locate and remove the attachments. There are several ways to extract the
boundary string from the Content-Type value. We leave a string manipulation approach
to the exercises and use regular expressions and the sub() function here. Essentially we
want to discard all of the string except for the boundary so our goal is to create a regular
expression that identifies that part of the string which is the boundary. We locate the
boundary string in our sixth message as follows:

header = sampleSplit[[6]]$header
boundaryIdx = grep("boundary=", header)
header[boundaryIdx]

[1] " boundary=\"==_Exmh_-1317289252P\";"

The boundary string begins after ‘boundary="’ and ends before the ‘;’ character.
In pseudocode, we want to create a pattern like the following:

any characters followed by
boundary="(string we are looking for)"; any characters

The actual pattern we use is ’.*boundary="(.*)";.*’. This pattern uses many of the
special characters available in the regular expression language. The pattern begins with a
‘.; character, which stands for any literal. It is followed by the ‘*; quantifier, meaning any
number of times so the pattern ‘.*’ matches any number of arbitrary literals. However,
these must be followed by the literals ‘boundary=’ and a quotation mark. The boundary
value is the string that follows, up to a quotation mark, followed by a semicolon and then any
characters. That part of the pattern within the parentheses is our boundary string. That is,
the pattern (.*) does not match the literal parentheses, but uses them to group together
the characters that match the pattern within them. Note that it matches any characters any
number of times, but it must be followed by a quotation mark and a semicolon. The use of
the parentheses to identify a sub-pattern gives us access to these matching characters later.
They can be referred to using a variable, specifically \\1. In the following call to sub(), we
use the contents of this variable as a substitute for the entire string. That is,

sub(".*boundary=\"(.*)\";.*", "\\1", header[boundaryIdx])

[1] "==_Exmh_1547759024P"

The first argument to sub() is the pattern that we search for in header[boundaryIdx],
and the second argument contains the substitution for the matching substring. The sub()
function allows us to modify part of the input string. Here we are processing all of it to
remove the pieces we do not want. That is, if we have written our first pattern correctly,
we match the entire string and replace it with the piece that contains the boundary string.

Although our first application of our pattern successfully extracted the boundary string
from the header, pattern matching can be tricky and we want to try it on other strings. For
example, we apply the call to sub() to the ninth message in our sample, i.e.,

header2 = headerList[[9]]
boundaryIdx2 = grep("boundary=", header2)
header2[boundaryIdx2]

120 Case Studies in Data Science in R

[1] "Content-Type: multipart/alternative;
boundary=Apple-Mail-2-874629474"

Notice that the boundary string does not appear in quotes and there is no semicolon at the
end. Our pattern matching fails, i.e.,

sub(’.*boundary="(.*)";.*’, "\\1", header2[boundaryIdx2])

[1] "Content-Type: multipart/alternative;
boundary=Apple-Mail-2-874629474"

We have not successfully located the boundary string because of the missing quotation
marks and semicolon. Searching for quotation marks is potentially problematic as not all
boundaries appear in quotes. If we eliminate quotation marks from the string then we can
drop them from our pattern as well. This is a simpler approach than searching for optional
quotation marks. We eliminate them with

boundary2 = gsub(’"’, "", header2[boundaryIdx2])

The substitution string is empty so this is equivalent to eliminating the quotation marks
from header2[boundaryIdx2]. Notice that we use the gsub() function, rather than sub().
The “g” stands for global, which means that all occurrences of a quotation mark in the
string are found and substituted, rather than only the first occurrence.

We have not yet solved the problem of correctly identifying that portion of the string that
contains the boundary information because we have not addressed the case of a Content-
Type value that has no semicolon. Let’s change our pattern to make the semicolon optional
by adding a ‘?’ after the semicolon in the pattern. Let’s also allow any number of blanks (0
or more) between boundary= and the boundary string, i.e.,

sub(".*boundary= *(.*);?.*", "\\1", boundary2)

[1] "Apple-Mail-2-874629474"

That seems to have done it!
Let’s check that this revised pattern successfully finds the boundary string in our first

example. When we do, we find that the pattern no longer finds the boundary string in that
message’s Content-Type value. It worked before, but we have broken the pattern matching,
i.e.,

boundary = gsub(’"’, "", header[boundaryIdx])
sub(".*boundary= *(.*);?.*", "\\1", boundary)

[1] "==_Exmh_-1317289252P;"

Our pattern no longer correctly finds the end of the boundary string, but instead includes
the semicolon. This is a case of greedy matching. We are allowing any character within
our parentheses, including the semicolon, and the semicolon at the end of the string is now
optional. We can exclude the semicolon from matching by using [^;] in the expression,
which matches all characters except the semicolon. Our revised pattern is

sub(".*boundary= *([^;]*);?.*", "\\1", boundary)

[1] "==_Exmh_-1317289252P"

Using Statistics to Identify Spam 121

Now we have again successfully located the boundary string from the sixth message, and
when we try our revised regular expression on the ninth message, we find that it still works.

Although we did not initially identify the task of finding the boundary string as a
separate function, we can wrap this code into its own function, which we call getBoundary().
The only input required is the header and the function returns the boundary string. We do
this with

getBoundary = function(header) {
boundaryIdx = grep("boundary=", header)
boundary = gsub(’"’, "", header[boundaryIdx])
gsub(".*boundary= *([^;]*);?.*", "\\1", boundary)

}

We are now ready to search through the body of the message for attachments. To get
a better sense of the format of these bodies and attachments, we examine a few more
messages, e.g.,

sampleSplit[[6]]$body

[1] "--==_Exmh_-1317289252P"
[2] "Content-Type: text/plain; charset=us-ascii"
[3] ""
[4] "> From: Chris Garrigues <cwg-exmh@DeepEddy.Com>"
[5] "> Date: Wed, 21 Aug 2002 10:40:39 -0500"
[6] ">"
...
[43] " World War III: The Wrong-Doers Vs. the Evil-Doers."
[44] ""
[45] ""
[46] ""
[47] ""
[48] "--==_Exmh_-1317289252P"
[49] "Content-Type: application/pgp-signature"
[50] ""
[51] "-----BEGIN PGP SIGNATURE-----"
[52] "Version: GnuPG v1.0.6 (GNU/Linux)"
[53] "Comment: Exmh version 2.2_20000822 06/23/2000"
[54] ""
[55] "iD8DBQE9ZQJ/K9b4h5R0IUIRAiPuAJwL4mUus5whLNQZC8MsDlGpEdK..."
[56] "PcGgN9frLIM+C5Z3vagi2wE="
[57] "=qJoJ"
[58] "-----END PGP SIGNATURE-----"
[59] ""
[60] "--==_Exmh_-1317289252P--"
[61] ""
[62] ""
[63] ""
[64] "___"
[65] "Exmh-workers mailing list"
[66] "Exmh-workers@redhat.com"
[67] "https://listman.redhat.com/mailman/listinfo/exmh-workers"
[68] ""

https://listman.redhat.com/mailman/listinfo/exmh-workers
mailto:cwg-exmh@DeepEddy.Com
mailto:Exmh-workers@redhat.com

122 Case Studies in Data Science in R

We see that this body contains one attachment, which is a PGP signature, and each body
part has its own short header. Also, there are 8 lines following the end of the attachment.

Another message body in our sample appears as

[1] "This is a multi-part message in MIME format."
[2] ""
[3] "------=_NextPart_000_0005_01C26412.7545C1D0"
[4] "Content-Type: text/plain;"
[5] "\tcharset=\"iso-8859-1\""
[6] "Content-Transfer-Encoding: 7bit"
[7] ""
[8] "liberalism"
...
[27] " http://www.english.upenn.edu/~afilreis/50s/schleslib.html"
[28] ""
[29] "------=_NextPart_000_0005_01C26412.7545C1D0"
[30] "Content-Type: application/octet-stream;"
[31] "\tname=\"Liberalism in America.url\""
[32] "Content-Transfer-Encoding: 7bit"
[33] "Content-Disposition: attachment;"
[34] "\tfilename=\"Liberalism in America.url\""
[35] ""
[36] "[DEFAULT]"
[37] "BASEURL=http://www.english.upenn.edu/~afilreis/50s/sch..."
[38] "[InternetShortcut]"
[39] "URL=http://www.english.upenn.edu/~afilreis/50s/schlesl---"
[40] "Modified=E0824ED43364C201DE"
[41] ""
[42] "------=_NextPart_000_0005_01C26412.7545C1D0--"
[43] ""
[44] ""
[45] ""

Here we find that there are a few lines in the body preceding the first boundary string and
a few lines after the closing string. Lines 4, 5, and 6 contain header information for the first
part of the body, i.e., the message. Lines 30 through 34 are header lines for the attachment.
Also note that there is an empty line between the header information for each portion of
the body and the content itself, e.g., lines 7 and 35 are empty. That is, each body part has a
structure that mimics the structure of the message with header information separated from
the content with a blank line.

We examine one more message, the 11th in our sample:

[1] ""
[2] "--------------090602010909000705010009"
[3] "Content-Type: text/plain; charset=ISO-8859-1; format=flowed"
[4] "Content-Transfer-Encoding: 8bit"
[5] ""
[6] "Geege wrote:"
...
[63] "Check out the pictures."
[64] ""
[65] ""

http://www.english.upenn.edu/~afilreis/50s/schleslib.html
http://www.english.upenn.edu/~afilreis/50s/sch...
http://www.english.upenn.edu/~afilreis/50s/schlesl---

Using Statistics to Identify Spam 123

[66] ""
[67] ""
[68] "--------------090602010909000705010009--"
[69] ""
[70] ""

Note that this body contains no attachment. There are two occurrences of the boundary
string — one at the start of the body and one at the end. That is, there is no boundary
string to separate the message text from the attachment. The header information within
the body indicates that the format is flawed.

With these examples in hand, we can begin to design a way to extract the attachments
from the body of the message. Our investigation has shown that some messages do not have
an attachment even though their header indicates that they are supposed to. We also must
decide what to do with the lines that appear before the first boundary string and after the
closing boundary string. Additionally, we might want to address the situation when the last
boundary string is not found. We have not come across such a case yet, but it seems like a
reasonable precaution to take. Let’s write our function to do the following.

• Drop the blank lines before the first boundary string.

• Keep the lines following the closing string as part of the first portion of the body and
not the attachments.

• Use the last line of the email as the end of the attachment if we find no closing boundary
string.

We prepare the last message in our sample with

boundary = getBoundary(headerList[[15]])
body = sampleSplit[[15]]$body

We search in the body for the boundary string preceded by 2 hyphens with

bString = paste("--", boundary, sep = "")
bStringLocs = which(bString == body)
bStringLocs

[1] 2 35

These lines in the body mark the start of each portion of the email. Next, we find the closing
boundary with

eString = paste("--", boundary, "--", sep = "")
eStringLoc = which(eString == body)
eStringLoc

[1] 77

We can locate the first part of the message from the body, excluding the attachments, with

msg = body[(bStringLocs[1] + 1) : (bStringLocs[2] - 1)]
tail(msg)

[1] ">" ">Yuck" "> " ">" "" ""

124 Case Studies in Data Science in R

To add the lines that appear after the last attachment to this part of the message, we do
the following

msg = c(msg, body[(eStringLoc + 1) : length(body)])
tail(msg)

[1] "" "" "" "" "" ""

It appears we have added several empty lines.
We leave as an exercise the creation of the dropAttach() function. It follows the basic

operations explored in this section. However, the special cases described earlier need to be
addressed, e.g., when there is no attachment despite the header supplying a MIME type of
multipart and a boundary string.

Next we explore how to extract the words from a message.

3.5.3 Extracting Words from the Message Body
We begin the task of separating the message into words by looking over the first few lines
of a couple of messages in sampleSplit with

head(sampleSplit[[1]]$body)

[1] " Date: Wed, 21 Aug 2002 10:54:46 -0500"
[2] " From:

Chris Garrigues <cwg-dated-1030377287.06fa6d@DeepEddy.Com>"
[3] " Message-ID: <1029945287.4797.TMDA@deepeddy.vircio.com>"
[4] ""
[5] ""
[6] " | I can’t reproduce this error."

and

msg = sampleSplit[[3]]$body
head(msg)

[1] "Man Threatens Explosion In Moscow "
[2] ""
[3] "Thursday August 22, 2002 1:40 PM"
[4] "MOSCOW (AP) - Security officers on Thursday

seized an unidentified man who"
[5] "said he was armed with explosives and threatened

to blow up his truck in"
[6] "front of Russia’s Federal Security Services

headquarters in Moscow, NTV"

What are some issues that we can see from these few lines that we need to handle in our
code? Clearly, we need to address capitalization because we want to count Federal and
federal as the same word. We also want to discard periods, commas, semicolons, etc.,
but do we keep haven’t and Russia’s as words? Do we eliminate numbers? What about
URLs and email addresses? And how do we handle plural words and past tense? That is,
do we treat services as different from service and are armed and arm distinct words?

These few lines have uncovered many issues that we need to make decisions about.
In text mining, words are often “stemmed,” meaning that the plural is converted to the

mailto:cwg-dated-1030377287.06fa6d@DeepEddy.Com
mailto:1029945287.4797.TMDA@deepeddy.vircio.com

Using Statistics to Identify Spam 125

singular and past tense to present, etc. There are stemming packages in R to perform this
conversion, which we leave as an exercise to investigate. Also, depending on the purpose of
the analysis many short common words are ignored in text analysis. That is, words such
as: as, to, of, so, etc. are dropped from the document’s content. These words are called
stop words and we leave it as an exercise to create a vector of English stop words from the
functionality provided in the tm package [1]. (Of course, each language has its own stop
words and stemming procedures.)

To process the text, we can use regular expressions. For example, we can substitute all
punctuation and digits with a blank so, e.g., don’t becomes don t and Russia’s is
changed to Russia s. This may not be the ideal transformation, but it is simple and a
good first attempt. The outcome creates “words” of one letter, which we want to eliminate.
The conversion appears as

tolower(gsub("[[:punct:]0-9[:blank:]]+", " ", msg))

Here the + converts multiple occurrences of these unwanted characters into a single blank.
The term [:punct:] is a named character class that matches any punctuation symbol,
the term 0-9 stands for the digits 0, 1, 2, ..., 9, and the term [:blank:] is a named class
that matches a space or a tab character. All 3 of these terms are collected within one set of
[] meaning that any punctuation mark, digit, or type of blank is treated as an equivalent
character and matched.

We check this transformation for a few lines in one message. The original lines are

msg[c(1, 3, 26, 27)]

[1] "Man Threatens Explosion In Moscow "
[2] "Thursday August 22, 2002 1:40 PM"
[3] "4 DVDs Free +s&p Join Now"
[4] "http://us.click.yahoo.com/pt6YBB/NXiEAA/mG3HAA/7gSolB/TM"

We convert the strings as described above and find:

cleanMsg = tolower(gsub("[[:punct:]0-9[:blank:]]+", " ", msg))
cleanMsg[c(1, 3, 26, 27)]

[1] "man threatens explosion in moscow "
[2] "thursday august pm"
[3] " dvds free s p join now"
[4] "http us click yahoo com pt ybb nxieaa mg haa gsolb tm"

Notice that much of the URL in the original string becomes several gibberish words. We
leave it as an exercise to improve this translation process.

After the translation, we can divide the strings into words by splitting the string on
blanks, i.e.,

words = unlist(strsplit(cleanMsg, "[[:blank:]]+"))

We can drop one letter words with

words = words[nchar(words) > 1]

and we can remove the stop words with a vector of stop words called, e.g., stopWords, with

http://us.click.yahoo.com/pt6YBB/NXiEAA/mG3HAA/7gSolB/TM

126 Case Studies in Data Science in R

words = words[!(words %in% stopWords)]
head(words)

[1] "man" "threatens" "explosion" "moscow"
[5] "thursday" "august"

Notice the element "in" was dropped from the collection of words in this message. We
leave it as an exercise to wrap this code up into a function called findMsgWords(). This
function takes as input the message content with all attachments eliminated. The return
value from findMsgWords() is a vector of the unique words in the message, i.e., we only
track which words are in the message, not the number of times they appear. Additionally,
we suggest considering whether it is simpler to split the string by blanks first and then
process the punctuation, digits, etc.

3.5.4 Completing the Data Preparation Process
We have completed all of the tasks to process one message. Before we can move on to
compute the log likelihood ratio (Section 3.4), we need to process all of the email in the
SpamAssassin corpus. Then we can determine the bag of words and estimate the probability,
e.g., that a spam message has the word federal in it.

Below is our function to carry out the processing of all the email in one of the directories.
Note that the input is the full path name of the directory. The function contains calls to our
functions, splitMessage(), getBoundary(), dropAttach(), and findMsgWords(). The code
uses many of the computations from the preparatory code for processing the set of sample
messages.

processAllWords = function(dirName, stopWords)
{

read all files in the directory
fileNames = list.files(dirName, full.names = TRUE)

drop files that are not email, i.e., cmds
notEmail = grep("cmds$", fileNames)
if (length(notEmail) > 0) fileNames = fileNames[- notEmail]

messages = lapply(fileNames, readLines, encoding = "latin1")

split header and body
emailSplit = lapply(messages, splitMessage)

put body and header in own lists
bodyList = lapply(emailSplit, function(msg) msg$body)
headerList = lapply(emailSplit, function(msg) msg$header)
rm(emailSplit)

determine which messages have attachments
hasAttach = sapply(headerList, function(header) {

CTloc = grep("Content-Type", header)
if (length(CTloc) == 0) return(0)
multi = grep("multi", tolower(header[CTloc]))
if (length(multi) == 0) return(0)
multi

})

Using Statistics to Identify Spam 127

hasAttach = which(hasAttach > 0)

find boundary strings for messages with attachments
boundaries = sapply(headerList[hasAttach], getBoundary)

drop attachments from message body
bodyList[hasAttach] = mapply(dropAttach, bodyList[hasAttach],

boundaries, SIMPLIFY = FALSE)

extract words from body
msgWordsList = lapply(bodyList, findMsgWords, stopWords)

invisible(msgWordsList)
}

Finally, we apply processAllWords() to each directory with

msgWordsList = lapply(fullDirNames, processAllWords,
stopWords = stopWords)

In addition to the collections of words in the messages, we also need to know which
messages are spam or ham. We can create a logical vector based on the number of elements
in each list.

numMsgs = sapply(msgWordsList, length)
numMsgs

[1] 5051 1400 500 1000 1397

The first 3 directories are ham and the last 2 are spam so we create the logical with

isSpam = rep(c(FALSE, FALSE, FALSE, TRUE, TRUE), numMsgs)

Of course, we could use the file names to ascertain whether a message is spam or not.
Finally, we flatten the 5 lists in msgWordsList into one list with

msgWordsList = unlist(msgWordsList, recursive = FALSE)

Now that we have cleaned and extracted the words from all the email in the Spam
Assassin corpus, we can proceed with the text analysis.

3.6 Implementing the Naïve Bayes Classifier
Recall from Section 3.4 that our goal is to estimate from the training data the following
probabilities:

P(a word is present | spam) ≈ # of spam messages with this word + 1/2
of spam messages + 1/2

and

128 Case Studies in Data Science in R

P(a word is absent | spam) ≈ # of spam messages without this word + 1/2
of spam messages + 1/2

And we must also make similar estimates for ham messages. We also noted there that we
work with the log of ratios of these probabilities because taking logs reduces products to
sums and tends to have better statistical properties. Thus, for a new message we compute
the log likelihood ratio as

∑
words in message

logP(word present| spam)− logP(word present| ham)

+
∑

words not in message
logP(word absent| spam)− logP(word absent| ham)

+ logP(spam)− logP(ham)

Additionally, we note that we can drop the last term, logP(spam)− logP(ham) as it is
constant across messages.

Before we can proceed with these calculations, we need to divide the corpus into test
and training sets. We do this next.

3.6.1 Test and Training Data
We want both the training and test data to be representative of the email corpus. One way
to achieve this is to randomly select email for the two subsets. We may also want to control
the sampling process so that the proportion of spam in the test and training sets matches
the corpus proportion. Also, we typically want at least half of the data to be in the training
set. In our case, we choose to use 2/3 of the data for training and 1/3 for testing.

We tally the number of spam and ham messages so that we know how many to sample
from each subset. We do this with

numEmail = length(isSpam)
numSpam = sum(isSpam)
numHam = numEmail - numSpam

The sample() function can help us select which of the messages are in the test set. We
start by setting the random seed so that if we need to repeat the selection process as we
debug our code, we get the same subset each time.

set.seed(418910)

Then we determine the indices of test spam and ham messages with

testSpamIdx = sample(numSpam, size = floor(numSpam/3))
testHamIdx = sample(numHam, size = floor(numHam/3))

We use these indices to select the word vectors from msgWordsList with

testMsgWords = c((msgWordsList[isSpam])[testSpamIdx],
(msgWordsList[!isSpam])[testHamIdx])

trainMsgWords = c((msgWordsList[isSpam])[- testSpamIdx],
(msgWordsList[!isSpam])[- testHamIdx])

Using Statistics to Identify Spam 129

Notice that the way we have organized the test and training collections, all spam messages
are first, followed by ham. Rather than subset isSpam, we can create the test and train
versions of isSpam using rep() with

testIsSpam = rep(c(TRUE, FALSE),
c(length(testSpamIdx), length(testHamIdx)))

trainIsSpam = rep(c(TRUE, FALSE),
c(numSpam - length(testSpamIdx),

numHam - length(testHamIdx)))

Now that we have created our test and training sets, we use the training data to develop
our probability estimates and then apply these to our test messages and create the log
likelihood ratio for the test messages.

3.6.2 Probability Estimates from Training Data
To estimate the probability a word is present or absent in a message given the message is
spam or ham, we need a complete listing of all words, i.e., the bag of words. We can use
an external source for this dictionary or create our own from our training data. We do the
latter with

bow = unique(unlist(trainMsgWords))

In our new training subset there are over 80,000 unique words:

length(bow)

[1] 80481

We know that some of these are garbage words from URLs that we haven’t cleaned properly.
Also, we have not stemmed words, which means there are “duplicate” words in the bag of
words. Addressing these issues is left to the exercises. We do find that even without this
additional cleaning, our classifier performs well.

For each word in bow, we compute the number of spam messages in our training set that
contain that word. We can work our way through the spam messages updating the counts
as we encounter additional occurrences of words. Those familiar with other programming
languages might think it is natural to write two nested loops that cycle over each message
and each word in that message, but this does not take advantage of the vectorized nature of
R. We consider an alternative approach that uses subsetting by name. We start by creating
a vector to hold the counts for all the words with

spamWordCounts = rep(0, length(bow))

We use bow to add names to the elements of spamWordCounts with

names(spamWordCounts) = bow

Consider the following code and consider what it does:

tmp = lapply(trainMsgWords[trainIsSpam], unique)
tt = table(unlist(tmp))
spamWordCounts[names(tt)] = tt

130 Case Studies in Data Science in R

We process each message and retrieve only the unique words. This avoids any repeated words
from any one email. Then we collapse these words from across all the spam messages and
calculate the frequency table. Because no word is repeated in any message, the frequency
of a given word in tt is the number of spam messages in which it occurred. We can then
update the elements of spamWordCounts that occur in any spam message using the names
on the frequency table.

The code above is ostensibly similar to how we computed the bag of words (bow). We
used unlist() and unique(). However, we used these in a very different way, namely applying
unique() on each message and then unlist()ing the resulting elements. An important aspect
of this is that we can update only the elements of bow with the counts from tt and leave
the counts for words that did not appear in any spam message unchanged.

Once we have our counts, we can estimate the probabilities with

spamWordProbs = (spamWordCounts + 0.5) / (sum(trainIsSpam) + 0.5)

We can do the same for the ham probabilities and then take the log of the ratios of these
spam and ham probabilities with

log(spamWordProbs) - log(hamWordProbs)

Similarly, we need to estimate the probabilities for a word not being in the message, i.e.,

log(1 - spamWordProbs) - log(1 - hamWordProbs)

We collect all of these operations into a function called computeFreqs(). For the function
signature, we have

function(wordsList, spam, bow = unique(unlist(wordsList)))

There are 3 parameters for computeFreqs(): wordsList, spam, and bow. Notice that the
default value for bow is computed from the words supplied in the wordsList argument. This
means that there is no need to compute the bag of words in advance if we wish to use only
the words in wordsList for our bag of words. On the other hand, a different bag of words
can be supplied if desired.

This function returns the building blocks for the log likelihood ratio, i.e., for each word
we find

logP(word present| spam)− logP(word present| ham)
and logP(word absent| spam)− logP(word absent| ham)

These values are returned in a matrix that has a column for each word in the bag of words.
The matrix has a row for each of the above log likelihood ratios, and a row for each word’s
observed proportion in spam and ham. The computeFreqs() function appears as:

computeFreqs =
function(wordsList, spam, bow = unique(unlist(wordsList)))
{

create a matrix for spam, ham, and log odds
wordTable = matrix(0.5, nrow = 4, ncol = length(bow),

dimnames = list(c("spam", "ham",
"presentLogOdds",
"absentLogOdds"), bow))

Using Statistics to Identify Spam 131

For each spam message, add 1 to counts for words in message
counts.spam = table(unlist(lapply(wordsList[spam], unique)))
wordTable["spam", names(counts.spam)] = counts.spam + .5

Similarly for ham messages
counts.ham = table(unlist(lapply(wordsList[!spam], unique)))
wordTable["ham", names(counts.ham)] = counts.ham + .5

Find the total number of spam and ham
numSpam = sum(spam)
numHam = length(spam) - numSpam

Prob(word|spam) and Prob(word | ham)
wordTable["spam",] = wordTable["spam",]/(numSpam + .5)
wordTable["ham",] = wordTable["ham",]/(numHam + .5)

log odds
wordTable["presentLogOdds",] =

log(wordTable["spam",]) - log(wordTable["ham",])
wordTable["absentLogOdds",] =

log((1 - wordTable["spam",])) - log((1 -wordTable["ham",]))

invisible(wordTable)
}

We apply this function to our training data with

trainTable = computeFreqs(trainMsgWords, trainIsSpam)

Now, trainTable can be used to construct the log likelihood ratio for a new message. That
is, we select values from the matrix trainTable that correspond to the words that appear
in a new message and the words that are absent from the message, and we use these to
compute the log likelihood ratio for the message. This value is then used to classify the
message as spam or ham. We do this next.

3.6.3 Classifying New Messages
The trainTable object has all of the individual word probabilities needed to construct
the log likelihood ratio for a message. To do this we need to combine these estimated
probabilities where we take the log odds from the “present” row of trainTable for each
word appearing in the message and similarly take the log odds from the “absent” row of
the table for all those words in the bag of words that do not appear in the message. We
combine these to create the likelihood that the message is spam versus ham using

∑
words in message

logP(word present| spam)− logP(word present| ham)

+
∑

words not in message
logP(word absent| spam)− logP(word absent| ham)

For example, consider the set of words in the first message in testMsgWords,

132 Case Studies in Data Science in R

newMsg = testMsgWords[[1]]

There is the possibility that a test message contains a word that is not in the bag of words.
When this happens we do not include it in our calculation as we have no information about
the likelihood a message with this word is spam or ham. We drop these new words from
newMsg with

newMsg = newMsg[!is.na(match(newMsg, colnames(trainTable)))]

For the remaining words that are in newMsg, we locate the columns in the frequency table
that contain them with the logical vector:

present = colnames(trainTable) %in% newMsg

Then we compute the log of the ratio of the probability a message is spam versus ham
with

sum(trainTable["presentLogOdds", present]) +
sum(trainTable["absentLogOdds", !present])

[1] 255

We know the first message in testMsgWords is spam, and we see the log likelihood ratio
computed for it is large and positive, indicating spam. We can try a test ham message as
well, e.g.,

newMsg = testMsgWords[[which(!testIsSpam)[1]]]
newMsg = newMsg[!is.na(match(newMsg, colnames(trainTable)))]
present = (colnames(trainTable) %in% newMsg)
sum(trainTable["presentLogOdds", present]) +

sum(trainTable["absentLogOdds", !present])

[1] -125

This message has a large negative value, which indicates it is ham.
We place this simple code into a function so that we can calculate the log likelihood

ratio (LLR) for all of the test messages. Our function, computeMsgOdds() appears as

computeMsgLLR = function(words, freqTable)
{

Discards words not in training data.
words = words[!is.na(match(words, colnames(freqTable)))]

Find which words are present
present = colnames(freqTable) %in% words

sum(freqTable["presentLogOdds", present]) +
sum(freqTable["absentLogOdds", !present])

}

We apply this function to each of the messages in our test set with

testLLR = sapply(testMsgWords, computeMsgLLR, trainTable)

Using Statistics to Identify Spam 133

We want to use these values to classify the test messages as spam or ham. A value that is
positive indicates spam is more likely and a negative value indicates ham is more likely, but
we are free to choose some other value as a threshold for classification.

We compare the summary statistics of the LLR values for the ham and spam in the test
data with

tapply(testLLR, testIsSpam, summary)

$‘FALSE‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1360 -127 -102 -117 -82 700

$‘TRUE‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
-61 7 50 138 131 23600

We see from these statistics and the boxplots in Figure 3.1 that there is a good deal of
separation of the ham and spam.

●

●
●

●

●

●●

●

●●
●

●
●
●
●
●

●
●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

ham spam

−
40

0
−

20
0

0
20

0
40

0

Lo
g

Li
ke

lih
oo

d
R

at
io

Figure 3.1: Boxplot of Log Likelihood Ratio for Spam and Ham. The log likelihood ratio,
log(P (spam | message content)/P (ham | message content)), for 3116 test messages was
computed using a naïve Bayes approximation based on word frequencies found in manually
classified training data. The test messages are grouped according to whether they are spam
or ham. Notice most ham messages have values well below 0 and nearly all spam values are
above 0.

We have 3116 LLR values corresponding to each test message, and we need to decide on
a cut-off τ , where we classify a message as spam or ham according to whether or not the
LLR exceeds this threshold. We assess the choice of τ using our test data. That is, we find

134 Case Studies in Data Science in R

the proportion of ham messages in the test set with LLR values that exceed the threshold
and so are misclassified as spam. This is the Type I error rate for the test data. Likewise,
we find the proportion of LLR values for spam messages in the test set that are below the
threshold and so misclassified as ham, which is the Type II error rate.

We can write a simple R function to compute the rate of misclassification of ham as
spam for a particular value of τ . This function takes 3 inputs: the value of τ , the vector of
LLR values for the test messages, and the hand-classified type of each message (spam or
ham). This function appears as

typeIErrorRate =
function(tau, llrVals, spam)
{

classify = llrVals > tau
sum(classify & !spam)/sum(!spam)

}

Note that we do not divide by the total number of messages, but only by the number of ham
messages. It is important to divide by the right number here, which is the total number of
ham messages as these are the only ones that can contribute to a Type I error.

The typeIErrorRate() function is not vectorized in its argument, tau. For example, in
order to find τ that yields a 0.5% Type I error rate, we examine the boxplots in Figure 3.1.
From the plot we make an initial guess that τ = 0. We use typeIErrorRate() to calculate
the Type I error with this threshold for the test messages, and find it is 0.3%. Then, we
calculate the error for a few τ values below 0 and, and find that for τ = −20 we get an
error rate of 0.5%, i.e.,

typeIErrorRate(0, testLLR,testIsSpam)

[1] 0.0035

typeIErrorRate(-20, testLLR,testIsSpam)

[1] 0.0056

Typically, we want to find the error rate for a vector of τs because we want to find one that
provides an acceptable Type I error. In its current form, if we want to use typeIErrorRate()
to calculate the Type I error for a vector of values, we need a loop in the form of an sapply()
call.

In theory, to select a threshold, we need to search over all possible values of τ . However,
it should be clear after a little thought that we can at least restrict the interval. Any value
of τ less than the minimum of the LLR values means that we classify all messages as spam
and the Type I error rate is 1. Similarly, any value of τ greater than the maximum of the
LLR values implies that we classify every message in our sample as ham so our Type I error
rate is 0. Additionally, we need to keep in mind that there are also errors in misclassifying
spam as ham. The Type II error is 1 when we use the largest observed LLR value in our
test set because all spam is classified as ham, which is clearly not acceptable either.

We also note that the Type I error rate only changes at values of τ that match one of
the observed LLR values in our set of messages. That is, for 2 values of τ , say τ1 and τ2, if
there are no LLR values from the test set between them, then their associated Type I errors
must be the same. Likewise, the Type II error rates for τ1 and τ2 are the same. This means
that we only need to compute the error rate at the 3116 LLR values for the test messages.

Our estimate of the Type I error rate is a step function and only changes at each of

Using Statistics to Identify Spam 135

the observed LLR values. We can do even better than this to reduce the set of possible τs
that we search over. It is not all LLR values that potentially cause a change in the Type I
error. Only the values corresponding to ham messages will affect the Type I error because
messages that are spam do not contribute to the Type I error.

These observations about the Type I and II error rates for our test messages imply that
we can determine the error rates as a function of τ more conveniently and efficiently. The
following function does this by looking only at the llrVals values for ham messages and
recognizing that the number of Type I errors decreases by 1 at each of these values and so
is i/(number of ham messages). Note that the function ignores ties for the ratios, but these
are unlikely since they should be unique. Our function is defined as

typeIErrorRates =
function(llrVals, isSpam)
{

o = order(llrVals)
llrVals = llrVals[o]
isSpam = isSpam[o]

idx = which(!isSpam)
N = length(idx)
list(error = (N:1)/N, values = llrVals[idx])

}

In essence, we have found a vectorized way to compute the Type I errors. We can compute
the Type II errors similarly. We leave this as an exercise.

The plot in Figure 3.2 shows that a threshold of -43 looks reasonable. A Type I error
rate of 0.01 coincides with τ = −43, and our Type II error rate is 0.02. If we want a smaller
Type I error, say 0.001, then we need to set the threshold at τ = 120 and that leads to a
very high Type II error of 0.73, i.e. 73% of the spam is misclassified as ham.

We have used the test set here to both select the threshold τ and evaluate the Type I and
II errors for that threshold. The implication of this is that the threshold we have chosen may
work well with this particular test set but not others, and it may underestimate the size of
the errors. Ideally we select τ from other data, independent of our training and test data. To
address this problem, we can apply the method of cross-validation. With cross-validation,
we partition the training data into k parts at random. Then we use each of these parts
to act as a test set and compute the LLR values for the messages in this subset using the
remaining data as a training set. We pool all of these LLR values from all k validation sets
to select the threshold τ . In this case, when we use k = 5 we find that τ = −33 corresponds
to a 1% Type I error. Finally, we apply this threshold to our original test set and find for
τ = −33, the Type I error is 0.8% and the Type II error is 4%. We leave it as an exercise
to carry out this cross-validation.

This completes the naïve Bayes approach to spam classification using word vectors.
Before we turn to the second approach where we derive characteristics of email as variables
to predict spam and ham, we briefly examine some of the computational considerations in
calculating the LLR.

3.6.4 Computational Considerations
In computing the log likelihood ratio for a message, we used the following representation of
this quantity to guide how we wrote the code

136 Case Studies in Data Science in R

−300 −200 −100 0 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Log Odds

E
rr

or
 R

at
e

Classify Ham as Spam
Classify Spam as Ham

Type I Error = 0.01

−43

Type II Error = 0Type II Error = 0Type II Error = 0Type II Error = 0.01Type II Error = 0.01Type II Error = 0.01Type II Error = 0.01Type II Error = 0.01Type II Error = 0.01Type II Error = 0.01Type II Error = 0.01Type II Error = 0.02Type II Error = 0.02Type II Error = 0.02Type II Error = 0.02Type II Error = 0.02

Figure 3.2: Comparison of Type I and II Error Rates. The Type I and II error rates for
the 3116 test messages are shown as a function of the threshold τ . For example, with a
threshold of τ = −43, all messages with an LLR value above -43 are classified as spam and
those below as ham. In this case, 1% of ham is misclassified as spam and 2% of spam is
misclassified as ham.

∑
words in message

logP(word present| spam)− logP(word present| ham)

+
∑

words not in message
logP(word absent| spam)− logP(word absent| ham)

In other words, we first computed from the observed proportions in our training set the
estimates to P(word in message| spam), P(word not in message| spam), P(word| ham), and
P(not word| ham). Then, we took logs of these estimated probabilities and combined them
to calculate the LLR for a particular message. That is, we selected which of these terms to
include in the above sum, according to whether each word in the bag of words was present
or absent from that message. Given our bag of words consists of more than 80,000 words,
we want to consider whether there are faster or more accurate ways to carry out these
computations.

The following are equivalent representations of the log likelihood ratio:

Using Statistics to Identify Spam 137

LLR = log

 ∏
words in message

P(word present| spam)
P(word present| ham)

+

log

 ∏
words not in message

P(word absent| spam)
P(word absent| ham)

= log

(∏
in msg P(word present| spam)∏
in msg P(word present| ham)

)
+ log

(∏
not in msg P(word absent| spam)∏
not in msg P(word absent| ham)

)

∝ log
∏

in msg #spam with word∏
in msg #ham with word ×

∏
not in msg #spam without word∏
not in msg #ham without word

These alternative mathematical expressions each suggest a different approach to carrying
out the computation of the log odds. We leave it as an exercise to write code for them and
compare the results to our approach.

Why might these various alternatives not give us the same answer? A computer is a
finite state machine, meaning that it has only a fixed amount of space to store a number so
some numbers can only be approximated, e.g., irrational numbers. Additionally, the order of
operations can matter. For example, if we have one large number and many small numbers,
then adding up all of the small numbers first and then adding this total to the large number
can produce a more accurate result than adding the small numbers one at a time to the
large number. Below is an artificial example that makes this point:

smallNums = rep((1/2)^40, 2000000)
largeNum = 10000

print(sum(smallNums), digits = 20)

[1] 1.8189894035458564758e-06

print(largeNum + sum(smallNums), digits = 20)

[1] 10000.000001818989404

for (i in 1:length(smallNums)) {
largeNum = largeNum + smallNums[i]

}
print(largeNum, digits = 20)

[1] 10000

In our case, we are working with thousands of small numbers such as the proportion of spam
that contains a particular work. It might matter quite a bit how we compute the LLR.

138 Case Studies in Data Science in R

3.7 Recursive Partitioning and Classification Trees
As with the naïve Bayes approach, we first describe the kind of analysis we want to do
and this leads us to determining how to prepare the raw email. With the word vectors, we
examined only the words in the message to classify it as ham or spam. We ignored all the
other information available in the message, such as information contained in the header or
that can be derived from the content. From experience we know that this other information
is often enough for us to determine whether a messages is spam or ham. This determination
is almost an unconscious process, but let’s try to examine that process and uncover the
thoughts that induce our reactions to classify a message one way or the other.

• Is it that we don’t recognize the sender’s name?

• Is the punctuation in the subject line unusual?

• Are there special words in the subject line that make it look like generic email about a
marketing topic?

• Is the mail in reply to a message that we initially sent, i.e., with a subject line that we
recognize?

• Was the mail sent at an odd time of the day?

For example, a message with the subject line that begins “CLAIM YOUR LUCKY WIN-
NING...”, we easily recognize as spam for two reasons: the subject is about winning a
prize and the letters are all capitalized. If we transfer features such as these into quanti-
tative measures on the messages, then we can analyze and compare spam and ham using
these characteristics. That is, we can represent each message as a collection of features,
such as whether or not the subject line begins Re: or the quantity of exclamation marks
in the body of the message, and we use these characteristics to differentiate between spam
and ham. The determination of which features to code into variables is itself a statistical
process.

Our goal is to create a classifier based on these characteristics. One popular method
that works well in a variety of settings is recursive partitioning. The basic idea is quite
intuitive: the method splits the data into two groups according to the value of a particular
variable. For example, it may split the messages according to whether the percentage of
capital letters in a message exceeds 10% or not. Once the data are split into the two groups,
a subsequent split divides one of these sub-groups into two groups, again according to
the value of some variable. This splitting of sub-groups continues until the messages are
partitioned into subsets that are nearly all spam or ham. At each stage, the same criteria
for selecting a variable for the split is applied to each subgroup recursively, and thus the
name recursive partitioning.

For example, Figure 3.3 shows a recursive partition that begins by splitting the email
into two groups according to whether the percentage of capital letters falls below 13% (left
branch) or not (right branch). For those messages with fewer than 13% capitals, the next
split is determined by whether the message characters contain fewer than 3.9% HTML tags
(left branch) or not (right branch). The email messages that have fewer than 13% capitals
and fewer than 3.9% HTML tags are classified as ham. For these messages, the Type II error
rate is quite high because 653 of the 1598 (653 + 8 + 13 + 281 + 643) spam messages meet
these criteria and are classified incorrectly as ham. The other messages in other parts of the
tree are also partitioned according to other yes–no questions. The resulting tree is called a
classification tree, or a decision tree, which are other names for recursive partitioning.

Using Statistics to Identify Spam 139

perCaps < 13

perHTML < 3.9

bodyChar >= 18e+3

bodyChar < 289

isInRepl = TF
4298 653

F
133 13

T
17 281

F
78 8

F
31 0

T
77 643

yes no

Figure 3.3: Example Tree from a Recursive Partition. This tree is a simple example of a
recursive partition fitted model. It was fitted using the rpart() function and restricting the
tree depth to 3 levels. The first yes–no question is whether the percentage of capitals in the
message is less than 13. If not, the second question is whether there are fewer than 289
characters in the message. If the answer to this question is also no, then the next question
is whether the message header contains an InReplyTo key. If the answer is again no, then
the message is classified as spam. Of the 6232 messages in the training set, 77 ham and 643
spam fall into this leaf. The spam have been correctly classified and the 77 ham have been
misclassified.

The partitioning process attempts to make the observations in the resulting subgroups
as similar as possible, i.e., all spam or all ham. The observations in a subgroup that form
a leaf at the bottom of the tree are given the same classification. If the messages in a leaf
are as homogeneous as possible, then we reduce misclassification errors.

Now that we have a general idea of this approach, we can identify the tasks we need to
accomplish to carry it out. We must:

• Process the email into a format that gives easy access to the information in the header,
body, and attachments.

• Develop functions for the features of interest that transform the email messages into
variables for analysis.

• Apply to these derived variables the recursive partitioning method and assess how well
it predicts spam and ham.

We tackle these tasks over the next 4 sections.

140 Case Studies in Data Science in R

3.8 Organizing an email Message into an R Data Structure
Now that we have a sense of the kind of information that we want to turn into feature sets
for our email, we consider how to represent the messages in R. That is, how do we store the
raw email message in a data structure that is conducive to converting it into measurable
characteristics for analysis? What parts of the message do we want to keep and how do we
want to organize them? A reasonable structure to create might be a list of R objects with
one object per message. Then for each message we have the following considerations:

• The header elements tell us about the sender, recipient(s), date sent, routing information
of the message, mail program used to compose the message, etc. Since we work with the
header in terms of its key-value pairs, it seems easiest to represent the contents of the
header as a named character vector where the name of an element corresponds to the
key and the string itself holds the value for that key.

• The message text does not require any special processing. Simply maintaining it as a
collection of text lines at this point seems most expedient.

• We want to extract the attachments from the body of the email. Since each attachment
has its own header, we may want the header and body of the attachment handled in
a manner parallel to the header and body of the message. Alternatively, we may want
to keep only summary information about each attachment, such as its MIME type and
length. We take the latter approach and leave the former as an exercise.

• We want the information as to whether the message is spam or ham to be part of the
message-element. A logical seems an appropriate data type. This information comes
from the name of the directory that contains the message, not from the message itself.

• While the file names of the messages are not relevant to processing their contents, it is
often useful when debugging to know the name of a message’s source file. This allows
us to easily identify and view the original source of the message and compare it with
the resulting R object. We can use the file name as the name of the element in the list
that corresponds to the individual email message.

Given these considerations, it makes sense to store each message as a named list that
contains: a named character vector for the header; a character vector with the message
content; a data frame with the summary information about the attachments; and a logical
indicating if the message is spam or not.

We want to develop our code as separate tasks, where these tasks are encapsulated in
separate functions. For example, we can write a function, processHeader(), to format the
header of a single message into a named vector and another function, processAttach(), to
create the data frame that summarizes a message’s attachments. Then we gradually work
up or outwards to process all of the messages. These top-level steps are merely loops over
the directories and the individual messages within each of the directories. The function
for reading an individual message should be the same for all directories and messages. We
focus on preparing one message and handle special cases as we encounter them in our sample
email.

A first step might be to split the message into two parts — the header and body. This
task was accomplished in Section 3.5.1 where we prepared the email for the naïve Bayes
analysis of the message text. We should be able to reuse the splitMessage() function that
we have developed already. Recall that we split the messages into their headers and bodies
with

Using Statistics to Identify Spam 141

sampleSplit = lapply(sampleEmail, splitMessage)

We address the task of creating the named vector from the headers in sampleSplit in the
next subsection.

The task of processing the attachments is similar to the task of removing the attachments
from the message body, which we carried out in Section 3.5.2. However, it is not directly
applicable because we discarded the attachments. Yet we may be able to use some of that
code here. For example, the getBoundary() function that finds the boundary string marking
the location of the attachments is useful here as well. In Section 3.8.2, we examine how we
can adapt the code from Section 3.5.2 for summarizing the attachments.

3.8.1 Processing the Header
Our plan is to process the header by converting the key: value pairs into a named vector,
where the name of each element in the vector is taken as the key. Having a separate function
to carry out this task allows us to test it without having to repeatedly read the entire
message, and if desired, we can use this function to process the header in attachments
within the message body.

To determine how to process the header, we examine a few lines of the header in one of
our sample messages with

header = sampleSplit[[1]]$header
header[1:12]

[1] "From exmh-workers-admin@redhat.com Thu Aug 22 12:36:23..."
[2] "Return-Path: <exmh-workers-admin@spamassassin.taint.org>"
[3] "Delivered-To: zzzz@localhost.netnoteinc.com"
[4] "Received: from localhost (localhost [127.0.0.1])"
[5] "\tby phobos.labs.netnoteinc.com (Postfix) with ESMTP id..."
[6] "\tfor <zzzz@localhost>; Thu, 22 Aug 2002 07:36:16 -0400..."
[7] "Received: from phobos [127.0.0.1]"
[8] "\tby localhost with IMAP (fetchmail-5.9.0)"
[9] "\tfor zzzz@localhost (single-drop); Thu, 22 Aug 2002 12..."
[10] "Received: from listman.spamassassin.taint.org (listman...."
[11] " dogma.slashnull.org (8.11.6/8.11.6) with ESMTP id g..."
[12] " <zzzz-exmh@spamassassin.taint.org>; Thu, 22 Aug 200..."

We make the following observations about these 12 header lines that are relevant to our
extraction process:

• Some key: value pairs appear on multiple lines so there is not a one-to-one correspon-
dence between lines in the header variable and key: value pairs. For example, lines 4, 5,
and 6 are all part of the same Received value, and the same is true for lines 7, 8, and
9 and for lines 10–12. We also note that when the value continues over multiple lines,
these additional lines begin with blanks as in lines 11 and 12 or with a tab character,
i.e., \t, as with lines 5 and 6.

• The first line in the header is not in the key: value format. The information in this
line also appears elsewhere in the header. This identifies the start of a new message in
general.

• Colons can appear in the value portion of the key: value pair, e.g., line 6 contains a time
in the format 07:36:16.

mailto:exmh-workers-admin@redhat.com
mailto:exmh-workers-admin@spamassassin.taint.org
mailto:zzzz@localhost.netnoteinc.com
mailto:zzzz-exmh@spamassassin.taint.org
http://dogma.slashnull.org
http://listman.spamassassin.taint.org
http://phobos.labs.netnoteinc.com

142 Case Studies in Data Science in R

Our function needs to handle these various situations as it transforms the header. In
what order do we address them? Also, to address the second issue, we need to decide what
we want to do with the first line of the header. Do we discard it because the information
appears elsewhere in the header or do we keep it? Let’s be conservative and keep this line,
but change it so that it follows the key: value format of the other lines.

To handle the situation where a value appears on multiple lines in the header, we can
collapse these extra lines into one. Then, each key: value pair occupies one line in the revised
header vector. It makes sense to fix these two issues first because then all of the lines have
the same format when we go about splitting the lines up into their keys and values.

We can address the problem with the first line of the header not being in the key: value
format by simply substituting the string "From" that appears at the start of the line with,
say, "Top-From:". By choosing a special key that is not used in typical email headers, it
will not be confused with other key: value pairs. We do this with the following call to sub():

header[1] = sub("^From", "Top-From:", header[1])
header[1]

[1] "Top-From: exmh-workers-admin@redhat.com Thu Aug 22..."

Here we have used the regular expression ’^From’ to locate ’From’ at the start of the
string. That is, the character ^ anchors the pattern we are searching for to the start of the
string, and any From later in the string is not matched. The second argument to sub() is
the substring that is substituted for the initial ’From’. Alternatively, we can use simple
string manipulation functions available in R for finding and modifying this first header line.
For example, we can remove the first 4 characters from the string and paste ’Top-From:’
to the front of this shortened string.

Now all of the information appears in a key: value format. We might ask: does R
provide a function to read files in this format? Our initial searches on the Internet and
in the documentation for input/export of files in R do not turn up anything useful. We
can write code to handle the continuation lines, and, e.g., catenate them to the previous
line, and code to identify the key and value. In fact the first time that we processed the
header, this is what we did, and we make this approach an exercise. Later, we discovered
the read.dcf() function that handles this format. According to the documentation for the
function, read.dcf() reads the format:

• Regular lines are of the form key: value and start with a non-whitespace character.

• Lines starting with whitespace are continuation lines (to the preceding field).

• Fields may appear more than once in a record.

• Records are separated by one or more empty (i.e., whitespace only) lines.

We can try read.dcf() on our sample header. Since it is already in R as a character
vector, we use a text connection to read it, i.e.,

headerPieces = read.dcf(textConnection(header), all = TRUE)

The return value is a data frame with one row, where, e.g., the Delivered-To element is
a list that contains the values for the 2 Delivered-To keys in the header. That is,

headerPieces[, "Delivered-To"]

mailto:exmh-workers-admin@redhat.com

Using Statistics to Identify Spam 143

[[1]]
[1] "zzzz@localhost.netnoteinc.com"
[2] "exmh-workers@listman.spamassassin.taint.org"

We can convert headerPieces into a character vector and use the key for the name of each
of these values. We have duplicate names when there are duplicate fields in the header. We
do this with

headerVec = unlist(headerPieces)
dupKeys = sapply(headerPieces, function(x) length(unlist(x)))
names(headerVec) = rep(colnames(headerPieces), dupKeys)

We confirm that we have 2 elements in headerVec named “Delivered-To” with

headerVec[which(names(headerVec) == "Delivered-To")]

Delivered-To
"zzzz@localhost.netnoteinc.com"

Delivered-To
"exmh-workers@listman.spamassassin.taint.org"

The header vector has 36 elements, i.e.,

length(headerVec)

[1] 36

The raw header was originally 62 lines, but apparently, 26 of these lines were continuation
lines. Moreover, these 36 elements include 10 duplicate names,

length(unique(names(headerVec)))

[1] 26

We can put this code into our processHeader() function. What are the inputs and
outputs of this function? We only need the original header vector as input, and the return
value from processHeader() is the named character vector. Our function follows:

processHeader = function(header)
{

modify the first line to create a key:value pair
header[1] = sub("^From", "Top-From:", header[1])

headerMat = read.dcf(textConnection(header), all = TRUE)
headerVec = unlist(headerMat)

dupKeys = sapply(headerMat, function(x) length(unlist(x)))
names(headerVec) = rep(colnames(headerMat), dupKeys)

return(headerVec)
}

Let’s call processHeader() on the rest of our sample messages. Recall the headers
and bodies of the messages in sampleEmail have already been separated and assigned
to sampleSplit. We apply processHeader() to them with

mailto:zzzz@localhost.netnoteinc.com
mailto:exmh-workers@listman.spamassassin.taint.org
mailto:zzzz@localhost.netnoteinc.com
mailto:exmh-workers@listman.spamassassin.taint.org

144 Case Studies in Data Science in R

headerList = lapply(sampleSplit,
function(msg) {

processHeader(msg$header)})

We can access the value of, e.g., the Content-Type key with subsetting by name, i.e.,

contentTypes = sapply(headerList, function(header)
header["Content-Type"])

names(contentTypes) = NULL
contentTypes

[1] " text/plain; charset=us-ascii"
[2] " text/plain; charset=US-ASCII"
[3] " text/plain; charset=US-ASCII"
[4] " text/plain; charset=\"us-ascii\""
[5] " text/plain; charset=US-ASCII"
[6] " multipart/signed;\n boundary=..."
[7] NA
[8] " multipart/alternative;\n ... "
[9] " multipart/alternative; boundary=Apple-Mail-2-874629474"
[10] " multipart/signed;\n boundary=..."
[11] " multipart/related;\n boundary=..."
[12] " multipart/signed;\n boundary=..."
[13] " multipart/signed;\n boundary=..."
[14] " multipart/mixed;\n boundary=..."
[15] " multipart/alternative;\n boundary=..."

We see that in our sample one of the 15 messages has no Content-Type specified, i.e., it
yields NA. When we examine the raw element, we confirm that we properly processed it,
i.e., the Content-Type key is not present in the original header.

We next tackle processing the body of the message; in particular, we extract the attach-
ments from the body and summarize them.

3.8.2 Processing Attachments
We saw in Section 3.5.2 that we can determine which messages have attachments by exam-
ining the Content-Type, e.g.,

hasAttach = grep("^ *multi", tolower(contentTypes))
hasAttach

[1] 6 8 9 10 11 12 13 14 15

The hasAttach variable contains the indices of those test messages with attachments. In
Section 3.5.2 we also determined how to find the boundary string that separates the attach-
ments in the body. We can use the function we developed there to extract the boundary
strings, e.g.,

boundaries = getBoundary(contentTypes[hasAttach])
boundaries

Using Statistics to Identify Spam 145

[1] "==_Exmh_-1317289252P"
[2] "----=_NextPart_000_00C1_01C25017.F2F04E20"
[3] "Apple-Mail-2-874629474"
[4] "==_Exmh_-518574644P"
[5] "------------090602010909000705010009"
[6] "==_Exmh_-451422450P"
[7] "==_Exmh_267413022P"
[8] "----=_NextPart_000_0005_01C26412.7545C1D0"
[9] "------------080209060700030309080805"

We can use the boundary string to locate the attachments in the body. Before we design
our function, we first need to decide what sort of information we want to store about the
attachments. Some possibilities include the attachment’s MIME type and its length. We
can find the MIME type in a manner similar to how we found the value of the boundary
string in the header. We can determine the length of the attachment from the locations of
the boundary string in the body, i.e., it is the number of lines between the boundary strings.
If we do not want to include the header information in the length then that is a bit more
work.

Our investigation of the sample email in Section 3.5.2 revealed that we need to be
aware that some messages may not have an attachment, even though their header indicates
that they are supposed to. We also must decide what to do with the lines before the first
boundary string and after the closing boundary string. As a precaution, we might want to
address the situation where the last boundary string is not found. Let’s write our function
to do the following.

• Drop the lines before the first boundary string, which marks the first part of the body.

• Keep the lines following the closing string as part of the body without attachments.

• Include the header information in the line count for the attachments.

• Use the last line of the email as the end of the attachment if we find no closing boundary
string.

We follow the ideas of Section 3.5.2 to process one of the messages in our sample. For
simplicity, we begin by assigning the boundary string and the body to boundary and body,
respectively, e.g.,

boundary = boundaries[9]
body = sampleSplit[[15]]$body

We saw earlier that we can locate the attachments by searching for the boundary string
preceded by 2 hyphens in the body, i.e.,

bString = paste("--", boundary, sep = "")
bStringLocs = which(bString == body)
bStringLocs

[1] 2 35

The lines (2 and 35) mark the start of the body and the start of the single attachment.
Next, we find the closing boundary with

eString = paste("--", boundary, "--", sep = "")
eStringLoc = which(eString == body)
eStringLoc

146 Case Studies in Data Science in R

[1] 77

In addition to extracting the content that is not part of an attachment, which the
dropAttach() function from Section 3.5.2 does, we also want to process the attachments
to find their MIME types and lengths. For example, we find the number of lines in the
attachments in our current sample message with

diff(c(bStringLocs[-1], eStringLoc))

[1] 42

We leave as an exercise the creation of the processAttach() function. The inputs to this
function are one message’s body and Content-Type value. The function returns a list with 2
elements: the first part of the body, which contains the message and no attachments; and a
data frame called attachDF, which has 2 variables, aLen and aType, that provide the length
and type of each attachment, respectively. It follows the basic operations explored in this
section. However, the special cases described earlier need to be addressed in the function,
e.g., when there is no attachment despite the header giving a MIME type of multipart and
a boundary string.

3.8.3 Testing Our Code on More email Data
We have developed our functions using a simple message so we want to check them more
carefully on a larger set of messages. These checks typically lead to code refinements to
handle cases we have not seen yet. Additionally, we may anticipate potential problems, e.g.,
a missing Content-Type, and test whether the code handles this problem, even though we
have not encountered the problem.

To begin, we can test our processAttach() function on all of the messages in sampleEmail
that have attachments. We have their corresponding Content-Types in contentTypes, and
we apply processAttach() with

bodyList = lapply(sampleSplit, function(msg) msg$body)
attList = mapply(processAttach, bodyList[hasAttach],

contentTypes[hasAttach],
SIMPLIFY = FALSE)

Let’s examine the attachment lengths. We do this with

lens = sapply(attList, function(processedA)
processedA$attachDF$aLen)

head(lens)

[[1]]
[1] 12

[[2]]
[1] 44 44

[[3]]
[1] 83

[[4]]
[1] 12

Using Statistics to Identify Spam 147

[[5]]
NULL

[[6]]
[1] 12

We see a few curious results: the fifth message has NULL for its attachment lengths and the
second message supposedly has 2 attachments of the same length. Recall that some of the
email with a multipart Content-Type do not have attachments. A brief examination of the
body of the fifth message confirms that is the case so this is not an error.

When we examine the data frame attachDF for the second email, we find the following:

attList[[2]]$attachDF

aLen aType
1 44 text/html
2 44 <META http-equiv=3DContent-Type content=3Dtext/html; =

Notice that the MIME type of the second “attachment” looks a bit suspicious. The literal
term Content-Type appears to be located within an HTML tag. We confirm that this is
the case by examining the body of the message more closely. We find the number of lines
in the body with

body = bodyList[hasAttach][[2]]
length(body)

[1] 86

Since the attachment is 44 lines long, we look at the body in the neighborhood of the 40th
line with

body[35:45]

[1] ""
[2] "------=_NextPart_000_00C1_01C25017.F2F04E20"
[3] "Content-Type: text/html;"
[4] "\tcharset=\"Windows-1252\""
[5] "Content-Transfer-Encoding: quoted-printable"
[6] ""
[7] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Transition..."
[8] "<HTML><HEAD>"
[9] "<META http-equiv=3DContent-Type content=3D\"text/html; ="
[10] "charset=3Dwindows-1252\">"
[11] "<META content=3D\"MSHTML 6.00.2716.2200\" name=3DGENERA..."

We see the actual Content-Type and its MIME type in the third line and the mistaken one
in the ninth line. Clearly we need to improve our pattern matching. Once we do this, then
the duplicates are gone.

Now that we have cleared up the problem with the curious message with 2 attachments
of the same length, we see that we have no messages with more than one attachment in
our sample. We may want to add a few more messages to our sample, ones with multiple
attachments, so that we can test our code for these cases.

148 Case Studies in Data Science in R

As another example of testing code, consider the getBoundary() function. When we first
designed it in Section 3.5.2, the input to the function was all of the lines in the header.
In the current situation, we know exactly where to search for the string and we pass to
getBoundary() only one line. This means that the code in this function could be simplified
for our current purposes. We could make a second copy of getBoundary() that eliminates
the unnecessary search for the line with the boundary= string. However, we prefer to keep
one version of this function and design the code to be general and flexible so we can reuse it
without having to copy it or modify it and potentially break it. Having copies of functions
means that we have to update all copies if we find a bug or add a feature. Good software
design and development minimizes code duplication and rewards generality when it doesn’t
add to the complexity.

3.8.4 Completing the Process
We have completed and tested all of the tasks to transform one message, and we are ready
to apply these tasks to all of the email in the SpamAssassin corpus. Below is our function
to carry out the processing of all the email in one of the directories. Note that the inputs
are the full path name of the directory and a logical indicating whether all of the email in
the directory is spam or not. The function contains calls to our functions, splitMessage(),
processHeader(), and processAttach(). The code is quite similar to the preparatory code
for processing the sample messages with the addition of some post-processing to create the
desired data structure and some preprocessing to read in the email.

We realize that the task of reading the email messages from the 9000 files is the same
for both analyses so we abstract this code from processAllWords() in Section 3.5.4 to use
for both functions. This function, readEmail() appears below

readEmail = function(dirName) {
retrieve the names of files in directory

fileNames = list.files(dirName, full.names = TRUE)
drop files that are not email

notEmail = grep("cmds$", fileNames)
if (length(notEmail) > 0) fileNames = fileNames[- notEmail]

read all files in the directory
lapply(fileNames, readLines, encoding = "latin1")

}

The processAllEmail() function pulls together these various tasks:

processAllEmail = function(dirName, isSpam = FALSE)
{

read all files in the directory
messages = readEmail(dirName)
fileNames = names(messages)
n = length(messages)

split header from body
eSplit = lapply(messages, splitMessage)
rm(messages)

process header as named character vector
headerList = lapply(eSplit, function(msg)

Using Statistics to Identify Spam 149

processHeader(msg$header))

extract content-type key
contentTypes = sapply(headerList, function(header)

header["Content-Type"])

extract the body
bodyList = lapply(eSplit, function(msg) msg$body)
rm(eSplit)

which email have attachments
hasAttach = grep("^ *multi", tolower(contentTypes))

get summary stats for attachments and the shorter body
attList = mapply(processAttach, bodyList[hasAttach],

contentTypes[hasAttach], SIMPLIFY = FALSE)

bodyList[hasAttach] = lapply(attList, function(attEl)
attEl$body)

attachInfo = vector("list", length = n)
attachInfo[hasAttach] = lapply(attList,

function(attEl) attEl$attachDF)

prepare return structure
emailList = mapply(function(header, body, attach, isSpam) {

list(isSpam = isSpam, header = header,
body = body, attach = attach)

},
headerList, bodyList, attachInfo,
rep(isSpam, n), SIMPLIFY = FALSE)

names(emailList) = fileNames

invisible(emailList)
}

Finally, we apply this over-arching function processAllEmail() to each directory with

emailStruct = mapply(processAllEmail, fullDirNames,
isSpam = rep(c(FALSE, TRUE), 3:2))

emailStruct = unlist(emailStruct, recursive = FALSE)

We extract from emailStruct the same set of sample email messages that we used in
developing processAllEmail() with

sampleStruct = emailStruct[indx]

We use these in the next section to help us develop the functions to create the feature set.

150 Case Studies in Data Science in R

3.9 Deriving Variables from the email Message
We begin by “dreaming up” a set of features for using to classify spam. Although we are
focusing on identifying spam, don’t forget that it can be much easier to identify spam if we
can also classify ham messages. That is, if we can determine that a message is ham, then
there is less doubt about it being spam! Table 3.1 provides a list of 29 variables that may
prove useful in distinguishing between spam and ham.

We focus our attention on the problem of how to create a few of these variables. Let’s
consider the use of capitalization. The over use of capitalization in email is referred to as
yelling, and from experience, we have seen that messages that yell a lot tend to be spam.
There are several approaches to quantifying the amount of yelling in a message. We may,
for example, look at the subject line in the header, and determine whether it is all capitals
or not; we may wish to report the percentage of capital letters among all letters used in
the body; or, we may count the number of lines in the body that are entirely capitalized.
In the first case, it is natural to create a logical to indicate whether or not a subject is all
capitals. Recall that the subject is an element of the header vector in each message element
of emailStruct, and it is named Subject.

A simple approach to determining if the subject is all caps is to split the subject character
string into substrings with one character per substring, and determine which are upper case
letters. The R built-in vector LETTERS is a 26-element character vector containing the capital
letters. We can use it as follows,

header = sampleStruct[[1]]$header
subject = header["Subject"]
els = strsplit(subject, "")
all(els %in% LETTERS)

[1] FALSE

We can make up some of our own test cases to test that our code performs as expected.
Below are some subject lines that we want to be sure we handle properly:

testSubject = c("DEAR MADAME", "WINNER!", "")

When we try this code on the test cases, we immediately identify several problems:

els = strsplit(testSubject, "")
sapply(els, function(subject) all(subject %in% LETTERS))

[1] FALSE FALSE TRUE

The subject “DEAR MADAME” returns FALSE because it contains a blank character, which is
not an upper case letter. The “WINNER!” returns FALSE because it contains an exclamation
mark, which is also not a capital. The blank subject line returns TRUE because the return
value from the strsplit() is character(0); consequently, the return value from the %in%()
function is logical(0), and when all() is applied to logical(0), the result is TRUE.

We clearly need to improve our code to discount punctuation and blanks in the subject
and to handle headers with no subject. To address the issue with punctuation and blanks,
we can strip these characters from the subject before looking for upper case letters. The
following call to gsub() “substitutes” a blank or punctuation mark with nothing, meaning
it drops them from the character string:

Using Statistics to Identify Spam 151

TABLE 3.1: Variable Definition Table

Variable Type Definition
isRe logical TRUE if Re: appears at the start of the subject.
numLines integer Number of lines in the body of the message.
bodyCharCt integer Number of characters in the body of the message.
underscore logical TRUE if email address in the From field of the header

contains an underscore.
subExcCt integer Number of exclamation marks in the subject.
subQuesCt integer Number of question marks in the subject.
numAtt integer Number of attachments in the message.
priority logical TRUE if a Priority key is present in the header.
numRec numeric Number of recipients of the message, including CCs.
perCaps numeric Percentage of capitals among all letters in the message

body, excluding attachments.
isInReplyTo logical TRUE if the In-Reply-To key is present in the header.
sortedRec logical TRUE if the recipients’ email addresses are sorted.
subPunc logical TRUE if words in the subject have punctuation or num-

bers embedded in them, e.g., w!se.
hour numeric Hour of the day in the Date field.
multipartText logical TRUE if the MIME type is multipart/text.
hasImages logical TRUE if the message contains images.
isPGPsigned logical TRUE if the message contains a PGP signature.
perHTML numeric Percentage of characters in HTML tags in the message

body in comparison to all characters.
subSpamWords logical TRUE if the subject contains one of the words in a spam

word vector.
subBlanks numeric Percentage of blanks in the subject.
noHost logical TRUE if there is no hostname in the Message-Id key in

the header.
numEnd logical TRUE if the email sender’s address (before the @) ends

in a number.
isYelling logical TRUE if the subject is all capital letters.
forwards numeric Number of forward symbols in a line of the body, e.g.,

>>> xxx contains 3 forwards.
isOrigMsg logical TRUE if the message body contains the phrase original

message.
isDear logical TRUE if the message body contains the word dear.
isWrote logical TRUE if the message contains the phrase wrote:.
avgWordLen numeric The average length of the words in a message.
numDlr numeric Number of dollar signs in the message body.

This table provides several possible variables that can be derived from an email message and
used for classifying spam.

152 Case Studies in Data Science in R

gsub("[[:punct:]]", "", testSubject)

[1] "DEARMADAME" "WINNER" ""

We probably want to eliminate numbers too. This may be more cleanly and simply accom-
plished by eliminating the complement, i.e., all non-alpha characters. That is,

gsub("[^[:alpha:]]", "", testSubject)

[1] "DEARMADAME" "WINNER" ""

Further testing of our code uncovers yet another peculiarity: a message with a header
that consists entirely of non-alpha characters returns an empty character string when we
eliminate non-alpha characters. This raises the question of how to handle missing data. In
the case where there is no subject line, a value of NA seems an accurate and informative
return value because it indicates the message does not have a subject. However, when a
subject has only special characters, then a value of FALSE is an appropriate return value.

Our set of expressions can be gathered into an R function called isYelling(). The ar-
gument to the function is a message of the format we have created in Section 3.8. Recall
that each message is converted into a list where the element called header contains the
header as a named vector. The return value of isYelling() is a logical indicating whether all
of the alpha characters in the subject line are upper case, with NA indicating the message
has no subject. Note that in our function, shown below, we take an alternative approach to
determining whether the subject line is all yelling than that discussed:

isYelling = function(msg) {
if ("Subject" %in% names(msg$header)) {

el = gsub("[^[:alpha:]]", "", msg$header["Subject"])
if (nchar(el) > 0)

nchar(gsub("[A-Z]", "", el)) < 1
else

FALSE
} else

NA
}

Another way to measure the presence of yelling is by the percentage of capitalized
letters in the message body. The denominator of this proportion could be the num-
ber of characters in the email message, the number of non-blank characters, the num-
ber of alpha characters, etc. There is no right answer here, but several reasonable ones.
For example, it seems reasonable to eliminate all non-alpha characters and compute:
100×#upper case letters /#upper and lower case letters. The following function perCaps()
does just that.

perCaps =
function(msg)
{

body = paste(msg$body, collapse = "")

Return NA if the body of the message is "empty"
if(length(body) == 0 || nchar(body) == 0) return(NA)

Eliminate non-alpha characters

Using Statistics to Identify Spam 153

body = gsub("[^[:alpha:]]", "", body)
capText = gsub("[^A-Z]", "", body)
100 * nchar(capText)/nchar(body)

}

We apply perCaps() to our sample messages with

sapply(sampleStruct, perCaps)

[1] 4.5 7.5 7.4 5.1 6.1 7.7 5.5 10.1 10.9 6.5
[11] 9.6 12.0 9.2 1.7 6.4

We have many different variables that we can create to quantify the difference between
spam and ham. To help us keep track of the corresponding functions we create a list of
functions. Then, we can apply this list of functions to our email structure to make a data
frame of variables. Each column in the data frame corresponds to the output from one of
these functions, and each row corresponds to a message. The list shown below contains
functions to create 4 of the 29 variables shown in Table 3.1.

funcList = list(
isRe = function(msg) {

"Subject" %in% names(msg$header) &&
length(grep("^[�]*Re:", msg$header[["Subject"]])) > 0

},
numLines = function(msg)

length(msg$body),
isYelling = function(msg) {

if ("Subject" %in% names(msg$header)) {
el = gsub("[^[:alpha:]]", "", msg$header["Subject"])
if (nchar(el) > 0)

nchar(gsub("[A-Z]", "", el)) < 1
else

FALSE
}
else NA

},
perCaps = function(msg) {

body = paste(msg$body, collapse = "")

Return NA if the body of the message is "empty"
if(length(body) == 0 || nchar(body) == 0) return(NA)

Eliminate non-alpha characters
body = gsub("[^[:alpha:]]", "", body)
capText = gsub("[^A-Z]", "", body)
100 * nchar(capText)/nchar(body)

}
)

Notice the two logical expressions on either side of && in the isRe() function. The ex-
pression on the right-hand side yields an error if the header has no element named Subject,
but fortunately, the expression on the left-hand side evaluates to FALSE in this situation
so the right-hand side is not evaluated. We rely on R’s lazy evaluation in this expression to

154 Case Studies in Data Science in R

avoid an error. Other versions of isRe() might include checking for Fwd: Re:, or it might
examine the In-Reply-To field instead of the Subject line. We leave these alternatives as
exercises.

Why do we need to put these functions into a list? If they are in a list, then we can more
easily apply them to our email corpus. That is, rather than writing explicit code, such as

isRe(msg)
perCaps(msg)
numLines(msg)
...

we can apply the functions with generic code such as

lapply(funcList, function(func)
sapply(sampleStruct, function(msg) func(msg)))

$isRe
[1] TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[9] TRUE TRUE TRUE TRUE TRUE FALSE TRUE

$numLines
[1] 50 26 38 32 31 54 35 36 65 58 70 31 38 28 34

$isYelling
Subject Subject Subject Subject Subject Subject Subject Subject

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Subject Subject Subject Subject Subject Subject Subject

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

$perCaps
[1] 4.5 7.5 7.4 5.1 6.1 7.7 5.5 10.1 10.9 6.5
[11] 9.6 12.0 9.2 1.7 6.4

If we add or remove functions in funcList our code to create the derived variables does
not change because it does not depend on the name or number of functions.

The following function, createDerivedDF(), implements this approach. We allow the
list provided in the operations argument to include expressions as well as functions. The
operation is applied to the email slightly differently, depending on whether it is a function or
expression. For an expression, we evaluate the expression in an environment which contains
the variable msg. This is the individual message object to be processed. The expression must
refer to that variable directly. The benefit of an expression is that it is very slightly simpler
to write than a function. However, it is harder to reason about how it will be evaluated
and where the variables to which it refers are located. A function is self-contained and we
can write its code in terms of our parameter names, not those defined by others. There
is a trade-off. Our function to create the derived variables from the list of functions and
expressions is

createDerivedDF =
function(email = emailStruct, operations = funcList,

verbose = FALSE)
{

els = lapply(names(operations),

Using Statistics to Identify Spam 155

function(id) {
if(verbose) print(id)
e = operations[[id]]
v = if(is.function(e))

sapply(email, e)
else

sapply(email, function(msg) eval(e))
v

})

df = as.data.frame(els)
names(df) = names(operations)
invisible(df)

}

Notice that one variable is created at a time using the code in the list of operations, and
the name of an element in operations becomes the corresponding variable/column name
in the data frame. We try createDerivedDF() on our sample messages with

sampleDF = createDerivedDF(sampleStruct)
head(sampleDF)

isRe numLines isYelling perCaps
1 TRUE 50 FALSE 4.5
2 FALSE 26 FALSE 7.5
3 FALSE 38 FALSE 7.4
4 FALSE 32 FALSE 5.1
5 TRUE 31 FALSE 6.1
6 TRUE 54 FALSE 7.7

We leave as exercises the tasks of deriving the remaining variables and any others that
you think might be promising as possible predictors of spam or ham. The data frame
emailDF in RSpamData contains the conversion of the complete set of 9348 email into the
29 variables shown in Table 3.1 plus the isSpam indicator for spam. We can load and query
it with

load("Data/spamAssassinDerivedDF.rda")
dim(emailDF)

[1] 9348 30

3.9.1 Checking Our Code for Errors
How do we know if our code to convert the email into variables performs correctly? The
code might not be giving us syntax errors, but is it giving us the values we want? To answer
this question we can try any of the following approaches:

• Create a second way to accomplish the same task and compare the 2 sets of results. If
they are not identical then the differences point to problems with the code.

• Examine the cases where NAs or large values occur, and determine if they are caused by
an error in the code or if they are legitimate.

156 Case Studies in Data Science in R

• Perform exploratory data analysis on the results to confirm basic characteristics of the
data. If we find surprising or inconsistent results, then we investigate how they arose.

For an example of the first approach, consider again the function perCaps() that we
wrote to compute the percentage of letters in the body that are capitalized. As described
earlier, we can check the upper case alpha characters in the body against those in LETTERS.
The following function takes this alternative approach.

perCaps2 =
function(msg)
{

body = paste(msg$body, collapse = "")

Return NA if the body of the message is "empty"
if(length(body) == 0 || nchar(body) == 0) return(NA)

Eliminate non-alpha characters and empty lines
body = gsub("[^[:alpha:]]", "", body)
els = unlist(strsplit(body, ""))
ctCap = sum(els %in% LETTERS)
100 * ctCap / length(els)

}

We apply perCaps() and perCaps2() to all the email and compare the results. We see
that they produce the same values for each message.

pC = sapply(emailStruct, perCaps)
pC2 = sapply(emailStruct, perCaps2)
identical(pC, pC2)

[1] TRUE

We next consider an example of the second approach to error checking; that is, we
examine unusual values to see if they indicate problems with our code. We find that a few
messages have a value of NA for the number of exclamation marks in the subject line of the
message,

indNA = which(is.na(emailDF$subExcCt))

Then we find which of the raw email messages have no subject line,

indNoSubject = which(sapply(emailStruct,
function(msg)

!("Subject" %in% names(msg$header))))

Finally, we compare the 2 sets of indices to see if they are the same, i.e., if the NAs in the
subExcCt correspond to those messages that have no subject line.

all(indNA == indNoSubject)

[1] TRUE

Using Statistics to Identify Spam 157

This is indeed the case and is one indication that our code is correct.
Lastly, we consider an example of the third approach to testing our code: we compare the

values in 2 variables to see if they are consistent with one another. Let’s take the number
of lines in the body of a message, numLines, and the number of characters in the body
of the message, bodyCharCt. We picked these two because there are constraints on their
relationship. Namely, the number of lines should not exceed the number of characters in the
body of the message. (Messages with many empty lines may violate this condition.) The
following code makes this comparison, and determines which messages, if any, violate this
inequality.

all(emailDF$bodyCharCt > emailDF$numLines)

[1] TRUE

We also examine the relationship between these 2 variables in Figure 3.4. As might be
expected, they appear to have a highly linear association.

Number of Characters

N
um

be
r

of
 L

in
es

1 10 100 1000 10000 100000

5
10

50
50

0
50

00

Figure 3.4: Comparison of Two Measures of Length for a Message. This scatter plot shows
the relationship between the number of lines and the number of characters in the body of a
message. The plot is on log scale, and 1 is added to all of the values before taking logs to
address issues with empty bodies. The line y = x is added for comparison purposes.

158 Case Studies in Data Science in R

3.10 Exploring the email Feature Set
We have derived a few dozen variables from the header, body, and attachments of the
messages. Before conducting a formal analysis, we may ask ourselves whether or not these
derived variables are useful for predicting spam. Before embarking on a complex statistical
analysis it is often a good idea to perform some simple analyses to get a better understanding
of the data and its possibilities. This exploratory analysis may indicate that we need to do a
better job of deriving variables from the messages. As seen already, this not only helps us in
our future statistical analysis, it also helps us check that the variables have been correctly
coded.

Let’s examine the percentage of capitals in the message body, comparing this percentage
between spam and ham messages. Side-by-side boxplots in Figure 3.5 help us compare the
distributions of these two groups.

percent = emailDF$perCaps
isSpamLabs = factor(emailDF$isSpam, labels = c("ham", "spam"))
boxplot(log(1 + percent) ~ isSpamLabs,

ylab = "Percent Capitals (log)")

We see from the boxplots that about 75% of the regular email have values below the lower
quartile for spam. This variable may be useful for classification.

●

●

●
●

●●

●●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●●
●●●
●
●●●

●●

●

●●
●
●

●

●●
●
●

●●

●

●

●●

●

●●●

●

●

●
●●
●●●
●
●●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●
●●

●●

●●

●
●

●
●●●
●

●

●

●●

●●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

ham spam

0
1

2
3

4

P
er

ce
nt

 C
ap

ita
ls

 (
lo

g)

Figure 3.5: Use of Capitalization in email. These boxplots compare the percentage of capital
letters among all letters in a message body for spam and ham. The use of a log scale makes
it easier to see that nearly 3/4 of the spam have more capital letters than nearly all of the
ham.

Another way to see this is with a quantile–quantile plot. If the 2 distributions have

Using Statistics to Identify Spam 159

roughly the same shape then their paired quantiles fall on a line. We see that this is indeed
the case for the percentage of capital letters in the email, although the spam messages have
a larger average number of capital letters and a greater spread than non-spam messages. A
slope other than 1 indicates the distributions have different spreads, and an intercept other
than 0 indicates a shift in the mean of the distributions. We leave it as an exercise to create
this quantile–quantile plot.

2 4 6 8 10 12

0
1

2
3

4

Total Characters (log)

Pe
rc

en
t C

ap
ita

ls
 (l

og
)

Figure 3.6: Comparison of the Amount of Capitalization and the Size of the Message. This
scatter plot examines the relationship between the percentage of capital letters among all
letters in a message and the total number of characters in the message. Spam is marked by
purple dots and ham by green. The darker color indicates overplotting. We see here that the
spam tends to be longer and have more capital letters than ham.

In addition, we can compare the joint distribution of the percentage of capital letters in
the email and the total number of characters in the body of the message for spam vs. ham
messages. We make a scatter plot of these 2 variables

colI = c("#4DAF4A80", "#984EA380")
logBodyCharCt = log(1 + emailDF$bodyCharCt)
logPerCaps = log(1 + emailDF$perCaps)
plot(logPerCaps ~ logBodyCharCt, xlab = "Total Characters (log)",

ylab = "Percent Capitals (log)",
col = colI[1 + emailDF$isSpam],
xlim = c(2,12), pch = 19, cex = 0.5)

160 Case Studies in Data Science in R

In Figure 3.6, the ham messages are denoted by green dots and the spam messages are
purple dots. We see a lot of overlap between ham and spam but the spam messages tend to
be longer and have a greater percentage of capitals.

A simple tabulation of the number of attachments in a message against whether it is
spam shows that there is very little difference between spam and ham because most messages
have no attachments.

table(emailDF$numAtt, isSpamLabs)

ham spam
0 6624 2158
1 314 230
2 11 6
4 0 1
5 1 2
18 1 0

It is doubtful that this variable will be useful for classification.
Finally, we compare spam and ham messages by examining some of the logical variables.

The variable isRe indicates whether or not the subject line has an Re: in it, and the variable
numEnd indicates whether or not the sender’s address has a number at the end of it, e.g.,
beng3000@gmail.com has a numeric end. We compare these against whether or not the
message is spam with

colM = c("#E41A1C80", "#377EB880")
isRe = factor(emailDF$isRe, labels = c("no Re:", "Re:"))
mosaicplot(table(isSpamLabs, isRe), main = "",

xlab = "", ylab = "", color = colM)

fromNE = factor(emailDF$numEnd, labels = c("No #", "#"))
mosaicplot(table(isSpamLabs, fromNE), color = colM,

main = "", xlab="", ylab = "")

In the mosaic plots in Figure 3.7 we see that the spam messages are less likely to contain
an Re: but more likely to have a numeric end to the sender’s address.

3.11 Fitting the rpart() Model to the email Data
We have examined some of the variables that we have derived from the email and uncovered
a few that may prove useful in partitioning the email. This exploratory analysis may have
suggested other variables to consider. We also may want to look more deeply into relation-
ships between the variables. For now, we proceed to apply the rpart() method to the 29
variables in emailDF and assess how well they can classify email.

Let’s first learn more about the rpart package [6]. We can read the documentation
provided for rpart and available at http://cran.r-project.org/web/packages/
rpart/rpart.pdf. We also can search for additional documentation and tutorials on
the Internet. In this process, we discover that the variables in the data frame must all be
either factors or numeric. For a factor, a split is made according to a particular level of the
factor; that is, if an observation has that particular factor level then it branches to the left,
otherwise it branches to the right. Our variables are either numeric or logical so we must
convert the logicals to factors. We use the following function to perform the conversion:

http://cran.r-project.org/web/packages/rpart/rpart.pdf
http://cran.r-project.org/web/packages/rpart/rpart.pdf
mailto:beng3000@gmail.com

Using Statistics to Identify Spam 161

ham spam
no

 R
e:

R
e:

ham spam

N
o

#
#

Figure 3.7: Exploring Categorical Measures Derived from email. These two mosaic plots
use area to denote the proportion of messages that fall in each category. The plot on the top
shows those messages that have an Re: in the subject line tend not to be spam. The bottom
plot shows that those messages that are from a user with a number at the end of their email
address tend to be spam. However, few messages are sent from such users so it is not clear
how helpful this distinction will be in our classification problem.

setupRpart = function(data) {
logicalVars = which(sapply(data, is.logical))
facVars = lapply(data[, logicalVars],

function(x) {
x = as.factor(x)
levels(x) = c("F", "T")
x

})
cbind(facVars, data[, - logicalVars])

}

We apply setupRpart() to our data frame

emailDFrp = setupRpart(emailDF)

Now that our data are properly formatted, we split them into training and test sets,
as we did in the naïve Bayes analysis. We use the same subsets as with the text mining of
Section 3.6.1 so we can more accurately compare these 2 approaches. To do this, we reset
the random seed to the value used earlier and generate the indices for the test set as follows:

set.seed(418910)
testSpamIdx = sample(numSpam, size = floor(numSpam/3))
testHamIdx = sample(numHam, size = floor(numHam/3))

We use these indices to select the rows of the data frame with

162 Case Studies in Data Science in R

testDF =
rbind(emailDFrp[emailDFrp$isSpam == "T",][testSpamIdx,],

emailDFrp[emailDFrp$isSpam == "F",][testHamIdx,])
trainDF =

rbind(emailDFrp[emailDFrp$isSpam == "T",][-testSpamIdx,],
emailDFrp[emailDFrp$isSpam == "F",][-testHamIdx,])

Then we fit the classification tree with the following call to rpart()

rpartFit = rpart(isSpam ~ ., data = trainDF, method = "class")

The documentation for the rpart() function informs us that rpart() returns an object
of class rpart and that there is a specialized plotting function that can plot a tree rep-
resentation of the object. To find out more about this plotting function, we can read the
help for plot.rpart(). We can access this specialized plotting function with the call plot¬
(rpartFit), and we find that the plot has problems with over plotting. With another
Internet search, we discover an alternative plotting library called rpart.plot [2]. We plot
the fitted tree with

library(rpart.plot)
prp(rpartFit, extra = 1)

The resulting tree appears in Figure 3.8. Other functions that can handle rpart objects
include predict() to classify data using the tree, and print() to produce text summaries of
the rpart object.

Let’s see how well the classifier does at predicting whether the test messages are spam
or ham. We use predict() on testDF to obtain the predictions with

predictions = predict(rpartFit,
newdata = testDF[, names(testDF) != "isSpam"],
type = "class")

To find out how well our tree has performed in classifying these test messages, we compare
the predictions from the fitted rpart object to the hand classifications. First we find the
Type I error, the proportion of ham messages that have been misclassified as spam. We do
this with

predsForHam = predictions[testDF$isSpam == "F"]
summary(predsForHam)

FALSE TRUE
2192 125

sum(predsForHam == "T") / length(predsForHam)

[1] 0.054

And the Type II error rate is

predsForSpam = predictions[testDF$isSpam == "T"]
sum(predsForSpam == "F") / length(predsForSpam)

[1] 0.16

Using Statistics to Identify Spam 163

perCaps < 13

perHTML < 3.9

forwards >= 1.2

numEnd = F

multipar = F

subExcCt < 0.5

isDear = F

subBlank < 34

isYellin = F

numAtt >= 0.5

bodyChar >= 18e+3

bodyChar < 289

isInRepl = T

F
2240 18

F
1914 190

T
6 26

T
0 35

T
0 41

T
42 84

T
34 112

F
29 6

T
33 141

F
133 13

T
17 281

F
78 8

F
31 0

T
77 643

yes no

Figure 3.8: Tree for Partitioning email to Predict Spam. This tree was fitted using rpart()
on 6232 messages. The default values for all of the arguments to rpart() were used. Notice
the leftmost leaf classifies as ham those messages with fewer than 13% capitals, fewer than
4% HTML tags, and at least 1 forward. Eighteen spam messages fall into this leaf and so
are misclassified, but 2240 of the ham is properly classified using these 3 yes–no questions.

We see that our classifier did reasonably well with Type I errors, but the Type II error rate
is 16%. Can we do better? We used the default settings for the partitioning algorithm, and
it may be that changing them could improve the results.

The rpart.control() function allows the user to control various aspects of the tree-fitting
procedure. It takes the following arguments,

args(rpart.control)

function (minsplit = 20L, minbucket = round(minsplit/3),
cp = 0.01, maxcompete = 4L, maxsurrogate = 5L,
usesurrogate = 2L, xval = 10L, surrogatestyle = 0L,
maxdepth = 30L, ...)

The documentation for rpart.control() explains more about how these various parameters

164 Case Studies in Data Science in R

are used in fitting the tree to the data. Let’s explore the complexity parameter, which is
used as a threshold where any split that does not decrease the overall lack of fit by cp is
not considered. The default value is 0.01 so let’s examine how the fit changes when we try
different values for cp, e.g.,

complexityVals = c(seq(0.00001, 0.0001, length=19),
seq(0.0001, 0.001, length=19),
seq(0.001, 0.005, length=9),
seq(0.005, 0.01, length=9))

We call rpart() with each of these values for cp and use the resulting model to classify the
test data with

fits = lapply(complexityVals, function(x) {
rpartObj = rpart(isSpam ~ ., data = trainDF,

method="class",
control = rpart.control(cp=x))

predict(rpartObj,
newdata = testDF[, names(testDF) != "isSpam"],
type = "class")

})

We assess the Type I and II errors for these fitted models applied to our test data with

spam = testDF$isSpam == "T"
numSpam = sum(spam)
numHam = sum(!spam)
errs = sapply(fits, function(preds) {

typeI = sum(preds[!spam] == "T") / numHam
typeII = sum(preds[spam] == "F") / numSpam
c(typeI = typeI, typeII = typeII)
})

The errors are displayed in Figure 3.9. We see there that the smallest Type I error that
we are able to achieve is about 0.04, which occurs for a complexity value of about 0.001.
The Type II error for this complexity value is 10.5%. The text mining approach has smaller
Type I and Type II errors. The poorer performance of recursive partitioning may be due
to the variables that were used in the model. Or, it may be due to the parameter settings
in rpart(). We leave as an exercise the task of developing a better feature set for predicting
spam using rpart(). Additionally, we leave as an exercise the creation of a combined approach
that employs both word vectors and derived variables in predicting spam.

3.12 Exercises
Q.1 We hand-selected email to belong to the sample set in sampleEmail. Instead of this

approach, use the sample function to choose messages at random for the sample. Be
sure to take files from all 5 directories of email. Read these files into R and test sev-
eral functions with these new messages, e.g., getBoundary() and dropAttach() from
Section 3.5.2, to make sure that they work properly.

Using Statistics to Identify Spam 165

0.000 0.001 0.002 0.003 0.004 0.005

0.
00

0.
05

0.
10

0.
15

0.
20

complexity parameter values

E
rr

or

Type II Error

Type I Error0.039

0.105

Figure 3.9: Type I and II Errors for Recursive Partitioning. This plot displays the Type I
and II errors for predicting spam as a function of the size of the complexity parameter in
the rpart() function. The complexity parameter is a mechanism for specifying the threshold
for choosing a split for a subgroup. Splits that do not achieve a gain in fit of at least the
size of the parameter value provided are not made. The Type I error is minimized at a
complexity parameter value of 0.001 for an error rate of 3.9%. The Type II error rate for
this complexity parameter value is 10.5%.

Q.2 In the text mining approach to detecting spam we ignored all attachments in creating
the set of words belonging to a message (see Section 3.5.2). Write a function to extract
words from any plain text or HTML attachment and include these words in the set of
a message’s words. Try to reuse the findMsg() function and modify the dropAttach()
function to accept an additional parameter that indicates whether or not the words in
attachments are to be extracted. Does this change improve the classification?

Q.3 The string manipulation functions in R can be used instead of regular expression
functions for finding, changing, and extracting substrings from strings. These functions
include: strsplit() to divide a string up into pieces, substr() to extract a portion of a
string, paste() to glue together multiple strings, and nchar(), which returns the number
of characters in a string. Write your own version of getBoundary() (see Section 3.5.2)
using these functions to extract the boundary string from the Content-Type. Debug
your function with the messages in sampleEmail.

Q.4 Write the dropAttach() function for Section 3.5.2. This function has two inputs, the
body of a message and the boundary string that marks the location of the attachments.
It returns the body without its attachments. Include in the return value the lines of the

166 Case Studies in Data Science in R

body that follow the first boundary string up to the string marking the first attachment
and the lines following the ending boundary string. Be sure to consider the idiosyncratic
cases of no attachments and a missing ending boundary string.

Q.5 Write the function findMsgWords() of Section 3.5.3. This function takes as input the
message body (with no attachments) and the return value is a vector of the unique words
in the message. That is, we only track which words are in the message, not the number
of times these words appear in the message. This function should eliminate punctuation,
digits, and blanks from the message. Consider whether it is simpler to split the string by
blanks first and then process the punctuation, digits, etc. The function should convert
capital letters to lower case, and drop all stop words and words that are only one letter
long. A vector of stop words is available in the tm package. Use the stopwords() function
in this package to create the vector.

Q.6 Try to improve the text cleaning in findMsgWords() of Section 3.5.3 by stemming the
words in the messages. That is, make plural words singular and reduce present and past
tenses to their root words, e.g., run, ran, runs, running all have the same “stem.” To
do this, use the stemming functions available in the text mining package tm. Incorporate
this stemming process into the findMsgWords() function. Then recreate the vectors of
words for all the email and see if the classification improves.

Q.7 Consider the treatment of URLs in the text cleaning in findMsgWords() of Sec-
tion 3.5.3. Notice that this function often turns a URL into gibberish. Should we drop
URLs altogether from the messages, or should we try to keep the URL as one whole
“word”? Why might these alternatives be better or worse than the approach taken in
Section 3.5.3? Try one of these alternatives and compare it to the approach of that
section to see if it improves the classification.

Q.8 In Section 3.6.4 we saw a few alternative mathematical expressions for the naïve Bayes
approximation to the log likelihood ratio of the chance a message is spam or ham.
Each suggests a different approach to carrying out the computation. Create alternative
versions of computeFreqs() and computeMsgOdds() in Section 3.6 to calculate the log
odds. Compare the accuracy of these alternatives to the approach used in Section 3.6.
Also consider timing the computation with a call to system.time() to determine if one
approach is much faster or slower than the others.

Q.9 The function computeFreqs() in Section 3.6 uses a default bag of words constructed
directly from the words passed to it in the argument wordsList. However, it is possible
to supply a different bag of words via the bow parameter. When this happens, it may
be the case that some words in wordsList are not found in the bag of words. This causes
an error when running the function. Determine which lines of code in computeFreqs()
are problematic and update the function to handle this situation. Be sure to test your
code.

Q.10 Use the typeIErrorRates() function in Section 3.6.3 as a guide to write a function
that computes the Type II error rates, i.e., the proportion of spam messages that are
misclassified as ham. As with the Type I error rates, convince yourself that the error rate
is monotonic in τ , that it changes only at the values of the LLR in the provided messages,
and that you only need to consider these values for the spam messages. This function,
called typeIIErrorRates(), has the same inputs as the typeIErrorRates() function and
returns the same structure. The only difference is that the rates returned are based on
Type II errors.

Using Statistics to Identify Spam 167

Q.11 In Section 3.8.1, we used the read.dcf() function to read the key: value data in the
email headers. In this exercise, we use regular expressions to extract the keys and their
values from the header.
The first step in the process is to find the continuation lines for a value, and then collapse
them with the first line of the value. These continuation lines start with either a blank
space or a tab character. Use regular expressions to locate them. Then paste them to
the first line of the value.
Next break the revised set of key:value strings into the keys and values. Again use regular
expressions to do this. Then create the names vector from these keys and values.

Q.12 Write the processAttach() function for Section 3.8.2. This function has two inputs,
the body of a message and the Content-Type value. It returns a list of 2 elements. The
first is called body and it contains the message body without its attachments. Be sure
to consider the idiosyncratic cases of no attachments and a missing ending boundary
string. The second element is a data frame called attachDF. This data frame has one
row for each attachment in the message. There are 2 variables in this data frame, aLen
and aType, which hold the number of lines and the MIME type of each attachment,
respectively.

Q.13 Write a function to handle an alternative approach to measure yelling: count the
number of lines in the email message text that consist entirely of capital letters. Carefully
consider the case where the message body is empty. How do you modify your code to
report a percentage rather than a count? In considering this modification, be sure to
make clear how you handle empty lines, lines with no alpha-characters, and messages
with no text.

Q.14 Write alternative implementations for the isRe() function in Section 3.9. For one
alternative, instead of only checking whether the subject of a message begins Re:, look
also for Fwd: Re:. For a second alternative, check for Re: anywhere in the subject, not
just at the beginning of the string. Analyze the output from these 3 functions, including
the original isRe() function in Section 3.9. How many more messages have a return value
of TRUE for these alternatives, and are they all ham? Which do you think is most useful
in predicting spam?

Q.15 Choose several of the ideas listed in Table 3.1 for deriving features from the email
and write functions for them. Be sure to check your code against what you expect. Try
writing one of these functions in two different ways and compare the output from each.
Use exploratory data analysis techniques to check that your code works as expected.
Does the output of your function match the values in the corresponding columns of
emailDF? If not, why do you think this might be the case? Does it appear that this
derived variable will be useful in identifying spam or ham?

Q.16 Consider other variables that are not listed in Table 3.1 that might by useful in the
classification problem. Write functions to derive them from the messages in emailStruct
and add them to emailDF. Refit the classification tree with the enhanced data frame.
Were these new variables chosen to partition the messages? Is the error in classification
improved?

Q.17 Carry out additional exploratory analysis as described in Section 3.9.1. Include in
your analysis a quantile–quantile plot of perCaps for the ham and spam.

Q.18 Write code to handle the attachments in the message separately from the text in
the body of the message. Since each attachment has its own header, try processing the

168 Case Studies in Data Science in R

header and body of the attachment in a manner similar to the message header and body.
Use the processHeader() function to do this. You may need to revise processHeader() to
handle cases that arise in the attachments and not in the main headers of the messages.

Q.19 Consider the other parameters that can be used to control the recursive partitioning
process. Read the documentation for them in the rpart.control() documentation. Also,
carry out an Internet search for more information on how to tweak the rpart() tuning
parameters. Experiment with values for these parameters. Do the trees that result make
sense with your understanding of how the parameters are used? Can you improve the
prediction using them?

Q.20 In Section 3.6.3 we used the test set that we had put aside to both select τ , the
threshold for the log odds, and to evaluate the Type I and II errors incurred when
we use this threshold. Ideally, we choose τ from another set of messages that is both
independent of our training data and our test data. The method of cross-validation is
designed to use the training set for training and validating the model. Implement 5-fold
cross-validation to choose τ and assess the error rate with our training data. To do this,
follow the steps:

(a) Use the sample() function to permute the indices of the training set, and organize
these permuted indices into 5 equal-size sets, called folds.

(b) For each fold, take the corresponding subset from the training data to use as a ‘test’
set. Use the remaining messages in the training data as the training set. Apply the
functions developed in Section 3.6 to estimate the probabilities that a word occurs
in a message given it is spam or ham, and use these probabilities to compute the
log likelihood ratio for the messages in the training set.

(c) Pool all of the LLR values from the messages in all of the folds, i.e., from all of the
training data, and use these values and the typeIErrorRate() function to select a
threshold that achieves a 1% Type I error.

(d) Apply this threshold to our original/real test set and find its Type I and Type II
errors.

Q.21 Often in statistics, when we combine two methods, the resulting hybrid outperforms
the two pure methods. For example, consider a naïve Bayes approach that incorporates
the derived variables into the probability calculation. For simplicity, you might try a few
variables that result from the important splits in the recursive partitioning tree from
Figure 3.8, e.g., whether or not the percentage of capitals in the message body exceeds
13%. These variables have only 2 values as the splits are based on yes–no questions.
Develop a hybrid classifier that uses both the word vectors and these additional features.

Q.22 An alternative to recursive partitioning is the kth nearest neighbor method. This
method computes the distance between 2 messages using the values of the derived vari-
ables from Section 3.9, or some subset of them. Use the email in trainDF to find the k
closest messages to each email in testDF. Then use these k neighbors to classify the test
message as spam or ham. That is, use the neighbors’ classifications to vote on the classi-
fication for the test message. Compare this method for predicting spam to the recursive
partitioning approach. Use both Type I and Type II errors in making your comparison.
Include a comparison of the two approaches from a computational perspective. Is one
much faster or easier to implement?

Using Statistics to Identify Spam 169

Bibliography
[1] Ingo Feinerer and Kurt Hornik. tm: Text Mining Package. http://cran.r-

project.org/web/packages/tm, 2014. R package version 0.5-10.

[2] Stephen Milborrow. rpart.plot: Plot rpart models. http://cran.r-project.
org/web/packages/rpart.plot, 2014. R package version 1.4-4.

[3] R Core Team. R Data Import/Export, 2012. http://cran.r-project.org/doc/
manuals/R-data.html.

[4] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[5] Duncan Temple Lang and Deborah Nolan. RSpamData: SpamAssassin Public Data.
http://omegahat.org/RSpamData, 2004. R package version 1.0.

[6] Terry Therneau, Beth Atkinson, and Brian Ripley. rpart: Recursive Partitioning and
Regression Trees. http://cran.r-project.org/web/packages/rpart, 2014.
R package version 4.1-8.

http://cran.r-project.org/web/packages/rpart.plot
http://cran.r-project.org/web/packages/rpart.plot
http://cran.r-project.org/web/packages/tm
http://cran.r-project.org/web/packages/tm
http://www.r-project.org
http://omegahat.org/RSpamData
http://cran.r-project.org/web/packages/rpart
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html

This page intentionally left blankThis page intentionally left blank

4
Processing Robot and Sensor Log Files: Seeking a
Circular Target

Samuel E. Buttrey
Naval Postgraduate School

Timothy H. Chung
Naval Postgraduate School

James N. Eagle
Naval Postgraduate School

Duncan Temple Lang
University of California, Davis

CONTENTS
4.1 Description . 171

4.1.1 Computational Topics . 172
4.2 The Data . 173

4.2.1 Reading an Entire Log File . 175
4.2.2 Exploring Log Files . 179
4.2.3 Visualizing the Path . 184
4.2.4 Exploring a “Look” . 187
4.2.5 The Error Distribution for Range Values . 190

4.3 Detecting a Circular Target . 194
4.3.1 Connecting Segments Behind the Robot . 198
4.3.2 Determining If a Segment Corresponds to a Circle 200

4.4 Detecting the Target with Streaming Data in Real Time . 213
Bibliography . 215

4.1 Description
In this case study, we explore robots searching for a circular target in a rectangular course
that contains numerous obstacles (see Figure 4.1). The robots use a search strategy to move
around the course, avoiding the obstacles and searching for the target in the shortest time
possible. The robot continuously reports its location and also what it “sees” all around it.
It searches for the target and ends when it determines it has found it, or after 30 minutes of
searching. The robot can detect objects up to a distance of 2 meters away. In this chapter,
we focus on processing these location and sight records and developing a classifier to detect
if the robot is “looking at” the target. We use a statistical approach to determine if the

171

172 Case Studies in Data Science in R

shape the robot currently “sees” is consistent with the circular shape of the target (with
known radius).

We look at log files for 100 different experiments (or runs), each log file containing the
entire path information for that robot and its search for the target. The data include the
location of the robot as it moves and what it “sees” at each of these positions. We explore
the characteristics of each of these experiments, e.g., whether they found the target, how
long the experiment lasted (up to the 30-minute time limit), how fast the robot moved,
the locations of the obstacles, and the variability in the measurements. We develop the
classifier for detecting the target and explore its operating characteristics, e.g. type I and
type II error rates. We then discuss how to use the functionality to read lines in the log file
to do classification from this streaming data in real time.

Figure 4.1: Example of the Course. This shows a sample path through the course. The robot
starts in the lower left corner. The circular target can be seen at approximately (4.5, -6.5).
There are two rectangular obstacles and one triangular obstacle. The horizontal dimensions
range from -15 to +15, and the vertical from -8 to +8.

4.1.1 Computational Topics
• Text processing of log files

• Visualization

• Non-linear least squares

• Numerical optimization

• Goodness-of-fit criteria

• Streaming data

Processing Robot and Sensor Log Files: Seeking a Circular Target 173

4.2 The Data
We have numerous data files in the logs/ directory. We can find their names with the
list.files() function:

ff <- list.files("logs", full.names = TRUE)

We look at these file names and see

[1] "logs/01groundTruth.log"
[2] "logs/JRSPdata_2010_03_10_12_12_31.log"
[3] "logs/JRSPdata_2010_03_10_12_12_50.log"
....

[102] "logs/LASER"
[103] "logs/README"

The files corresponding to the experiments, that is, runs, start with JRSPdata and end
with log. So we can specify this pattern to get only these file names with

ff <- list.files("logs", full.names = TRUE,
pattern = "JRSPdata.*\\.log")

The pattern is a regular expression. This call returns a vector of 100 file names.
How large are these files? We can use file.info() to get the size of each file:

info <- file.info(ff)

info contains information about who created the files, who can modify them, etc. However,
we are interested in the size element of this data frame. This gives the number of bytes
in each file. We can convert this to megabytes1 and look at the distribution of this with

summary(info$size/1024^2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6832 5.4060 7.1640 8.7560 9.3240 31.0500

We see that the smallest file is less than a megabyte and many of the files are between 7
and 9 megabytes. The largest file is about 31 megabytes. We can plot the distribution of
the file size, shown in Figure 4.2, with

plot(density(info$size/1024^2), xlab = "megabytes")

and we can also compute the upper quantiles with

quantile(info$size/1024^2, seq(.9, 1, by = .01))

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
15.68 16.84 23.92 25.19 25.41 26.19 27.25 29.88 29.93 30.48 31.05

So there are some reasonably large files. In total, there are sum(info$size)/1024^2,
i.e., 875.6 megabytes of data. This isn’t enormous, but it is significant so that we have to
consider processing it efficiently. This is especially true considering we want to develop code
that can process many more log files and also we ultimately want to process the data in

174 Case Studies in Data Science in R

0 10 20 30

0.
00

0.
05

0.
10

0.
15

megabytes

D
en
si
ty

Figure 4.2: Log File Size. This shows the distribution of the size of the 100 log files.

real-time, i.e., as the robot is delivering the data to us and needs to know if it has located
the target.

The log files are text files. They are not in a simple rectangular format such
as comma-separated values CSV. Instead, they are structured in a standardized
format defined and used by the Player Project. This project develops and dis-
tributes software for robot and sensor applications. The file format is documented
at http://playerstage.sourceforge.net/doc/Player-svn/player/group_
_tutorial__datalog.html. The important idea is that each line contains a record,
but there are different types of records. Each record type contains different information and
has a different structure for the values it contains. This is why the data are non-rectangular,
as each record type has a different number of values measuring different characteristics.

The first 12 lines of a particular log file (the fourth) are

Player version 2.1.3
File version 0.3.0
Format:
- Messages are newline-separated
- Common header to each message is:
time host robot interface index type subtype
(double) (uint) (uint) (string) (uint) (uint) (uint)
- Following the common header is the message payload
0000000000.100 16777343 6668 laser 00 004 001 +0.000 +0.000
� 0.000 0.156 0.155
0000000000.200 16777343 6668 position2d 00 004 001 -00.040
� +00.000 +0.000 +00.440 +00.380

1A megabyte contains 1024^2 bytes.

http://playerstage.sourceforge.net/doc/Player-svn/player/group__tutorial__datalog.html
http://playerstage.sourceforge.net/doc/Player-svn/player/group__tutorial__datalog.html

Processing Robot and Sensor Log Files: Seeking a Circular Target 175

0000000000.200 16777343 6668 position2d 00 001 001 -14.000
� -07.000 +0.785 +00.000 +00.000 +00.000 0
0000000000.200 16777343 6668 laser 00 001 001 0001
� -3.1416 +3.1416 +0.01740495 +2.0000 0361 1.838 0 1.807
� 0 1.778 0 1.749 0 1.723 0 1.697 0 1.673 0 1.650

(We have reformatted this to appear on the page. A line that starts with � is actually
a continuation of the previous line.)

Except for comment lines, which start with the pound sign (#) and can be ignored,
every line of a log file starts with 7 common/shared fields of meta-data, separated by space
characters. The names of these 7 fields are listed in the sixth line of the data file above.
Of these 7 fields, the first, fourth, and sixth are of interest for our purposes: these give,
respectively, the time, the “interface” (which describes the purpose of the record), and
the type of the message. A number of different kinds of message are possible, but for our
purposes only two combinations of interface and type are important. Lines with interface
position2d and type value 001 give the current position, orientation, and yaw of the
robot (this last measuring the angle clockwise from East to the direction the robot’s head is
facing, in radians). Lines with interface laser and type 001 give the measurements made
during the robot’s data collection, which we will call a “look.” The laser line is associated
with the previous position2d line and so these form a natural pair.

Data are collected every few seconds. There are two steps. During a look, the robot
records its position and heading via a position2d record, and then looks all around itself,
starting from the direction immediately behind it and continuing in one-degree increments
in a laser record. The last look is, like the first, immediately behind the robot, so each
data acquisition consists of 361 readings.

During a look, each reading produces a (Range, Intensity) pair. We ignore the Inten-
sity for our purposes. The range gives the extent of the robot’s view, i.e., the distance to
something it can detect. The robot’s vision is limited to 2 meters, so if there is no object
visible within that distance, the observed value for range will be 2m. Otherwise, of course,
the Range will be smaller.

Distance readings potentially contain measurement error, whether they refer to an actual
object or whether they represent an observation of the 2m limit. These errors are small (on
the order of a couple of centimeters), but in principle some Ranges could exceed 2m, and
in some cases a measurement of a Range smaller than 2m will nonetheless be associated
with the robot seeing no obstacle or target. We will want to familiarize ourselves with the
distribution of times, locations, ranges, and the errors in the measurements.

4.2.1 Reading an Entire Log File
Typically, we have to explore the actual data files in order to empirically discover and
understand their structure. We have to identify the patterns and anomalies. In this case,
the documentation for these files is quite explicit. While the structure of different lines is not
the same, the data are very structured. As a result, with our understanding of the format
of the log files, we can set about reading them into R [2]. We will write a function to do
this so that we can reuse it for all 100 log files (and potentially others). In creating this
function, we should try to keep in mind that in Section 4.4, we will want to sequentially
read individual lines and not an entire file. If possible, we should try to structure the code
so that we do not have to have separate functions for the off-line and the on-line processing.
However, since there is almost one gigabyte of text to process, we also want the function to
be reasonably efficient.

We cannot use any of the common functions such as read.csv() or read.table() to read

176 Case Studies in Data Science in R

data from a log file. Instead, the basic strategy we use is to read all of the lines with
readLines(). We then discard all of the comment lines, i.e., starting with #. We can do this
with a combination of calls to readLines() and grep() (or grepl()), such as,

grep("^#", readLines(filename), value = TRUE, invert = TRUE)

This returns the vector of lines from the file that are not matched by the regular expression
^#.

Once we have the record lines containing data, we break each of these into a collec-
tion of values using strsplit() and separating by one or more spaces. We can specify this
separator/delimiter with a regular expression in the call

tokens <- strsplit(lines, "[[:space:]]+")

The result of this is a list with an element for each line. Each element is a character vector.
The first from our sample file will appear as

[1] "0000000000.100" "16777343" "6665" "laser"
[5] "00" "004" "001" "+0.000"
[9] "+0.000" "0.000" "0.156" "0.155"

The first laser line, however, will have 735 elements.
With the data in this form, we can access the 7 values common to each record. This

allows us to discard any record that doesn’t have 001 as the value for the type field or
whose interface value is neither position2d or laser. We’ll also ensure that the
laser line immediately follows the position2d line. This ensures that we do not include
position2d or laser lines that are not part of the same position–look pair. To do all of
this, we use sapply() to extract the two fields, i.e,

iface <- sapply(tokens, ‘[[‘, 4)
type <- sapply(tokens, ‘[[‘, 6)

Now we can find the indices of the lines with position2d and 001 values for interface and
type. We can then subset this vector of indices to include only those for which the following
line is an appropriate laser line, i.e.,

i <- which(iface == "position2d" & type == "001")
i <- i[iface[i+1] == "laser" & type[i+1] == "001"]

The result is that i contains the indices of the position2d lines we want, and we can
obtain the corresponding laser lines with i + 1.

Once we have the set of all of the individual values of interest, we need to organize
the values into a data structure. We can return the records a list with an element for each
record. Each element would be a vector with all of the individual values for that record.
Accordingly, the elements corresponding to laser and position2d records will have
different lengths. This is the form of the raw data and may well be the most convenient
form when performing streaming/on-line analysis. However, it is not very convenient to
work with for exploratory data analysis. Instead, we could represent each record/line as
a row in a data frame. The data frame would have 8 columns consisting of the 7 fields
common to all records and an eighth that contains the “payload” of the record. This eighth
column would contain all of the values for a record as a single string. This gives us access
to all the data and we can work easily with the common fields. Working with the range or
positions values is somewhat awkward. Instead of storing the payload as a single string, we

Processing Robot and Sensor Log Files: Seeking a Circular Target 177

could store the vector of values using R’s ability to store arbitrary objects in a column of a
data frame. So we would have a column of type list and each element would be a vector of
the remaining values in the record. This is better than having the values in a single string,
but still not entirely convenient.

An alternative approach to organizing the records and values is to combine each po-
sition2d-laser pair into a single record. This makes sense as we think of this pair as
representing all the information about the robot at an instance in time. We have the time,
location, and the 361 range values for the “look.” We’ll use this approach and so return a
data frame with 364 columns – time, x, y, and the 361 range values. This is a convenient
format for exploratory data analysis (EDA).

To create this data frame, we can first create a data frame with just the time, x and
y vectors from the lines indexed by i above. We then create a second data frame with all
of the 361 range values for each of the laser records. We’ll have a row for each of these
laser lines immediately following the corresponding position2d lines. The rows in these
two data frames correspond to each each other and so we then use cbind() to combine these
two “side by side.”

As we create these two data frames, we have to extract the relevant elements from
each character vector and then convert these values to numeric values and combine the
results into a data frame. There are various ways to do this. One approach is to use, for
example, sapply(els[i], ‘[‘, c(1, 9, 10)) to get the time, x and y values from
position2d. Here we are referring the the [() function directly. This is a simpler version
of

sapply(els[i], function(x) x[c(1, 9, 10)])

i.e., we didn’t have to define a new anonymous function for sapply(). Since each call to
[() in the sapply() call yields a vector with 3 values, sapply() simplifies the result into a
3-row matrix, with as many columns as there are records (i.e., the length of i). We can
then transpose this matrix, convert the values to numeric, and then use as.data.frame() to
create the data frame.

We write the function to read a log file as

readLog <-
function(filename = "logs/JRSPdata_2010_03_10_12_12_31.log",

lines = readLines(filename))
{

lines = grep("^#", lines, invert = TRUE, value = TRUE)
els = strsplit(lines, "[[:space:]]+")

Get the interface and type so we can subset.
iface = sapply(els, ‘[‘, 4)
type = sapply(els, ‘[‘, 6)

find the indices corresponding to a position2d
with a laser immediately after.

i = which(iface == "position2d" & type == "001")
i = i[iface[i+1] == "laser" & type[i+1] == "001"]

Get the time, x, y, and then the range values
from the laser below.

locations = t(sapply(els[i], ‘[‘, c(1, 8, 9)))
ranges = t(sapply(els[i + 1], ‘[‘,

178 Case Studies in Data Science in R

seq(14, by = 2, length = 361)))

now combine these into a data frame
locations = as.data.frame(lapply(1:ncol(locations),

function(i)
as.numeric(locations[, i])))

ranges = as.data.frame(lapply(1:ncol(ranges),
function(i)

as.numeric(ranges[, i])))

ans = cbind(locations, ranges)
names(ans) = c("time", "x", "y",

sprintf("range%d", 1:ncol(ranges)))

invisible(ans)
}

We’ve allowed the caller to specify the actual content of the file as a vector of lines. This
makes it easier for us to test and debug the function by specifying a small subset of lines.
We might also be able to use this for the on-line/streaming approach.

Q.1 When creating the two data frames in the function, we extract a subset of values from
each record, create a matrix and then a data frame. This essentially involves creating at
least 3 copies of the relevant values in memory. What are they? Are there better ways to
do this? Consider the time, x, y data frame, for example. We could use lapply(), rather
than sapply(), to return a list of vectors (say, listOfVectors) of length 3. We could
then use as.data.frame(do.call(rbind, listOfVectors)) to create the data
frame. Does this reduce the amount of memory used? Are there other ways to arrange
the computations to avoid having 3 copies of the data in memory at once? If so, are
these faster or slower than our approach above in readLog()?

As with all functions, and code generally, that we write, we need to test the readLog()
function. For reading data, one obvious test is to explicitly and manually check the results
with the contents in the file. This is very time consuming, but very important. We can look
at a random line in a log file and then verify its values are in the data frame and correct.
If we just look at the first record, we may miss some structural problems that occur in our
code that do not apply to the first record. We must also test both the position and the
range values. It is also important to test more than one file.

Testing the results manually is tedious and also error-prone, but very important be-
fore proceeding with subsequent analysis. However, we’d also like a more programmatic
approach. We must use a different approach to extract the data rather than just emulate
the function. This is important in order to verify that the logic of our function is correct. If
we merely re-implement the same logic, we are not testing whether the approach is correct,
but merely the implementation. One alternative approach is to use the shell to extract the
different lines. We can retrieve all of the position2d lines that do not contain the 004
type with

Shell grep position2d JRSPdata_2010_03_10_12_12_31.log | grep -v ’ 004 ’

The -v flag for the grep command negates the pattern matching. This is equivalent to the
invert parameter for the grep() function in R.

We can extract the time, x, and y values from these records and read them into R with

Processing Robot and Sensor Log Files: Seeking a Circular Target 179

cmd <- "grep position2d logs/JRSPdata_2010_03_10_12_12_31.log |
grep -v ’ 004 ’ | cut -f 1,8,9 -d ’ ’"

txt <- system(cmd, intern = TRUE)

This yields lines of the form “time, x, y”. We can then read these into a data frame with

sh <- read.table(textConnection(txt))

A textConnection represents a stream of characters as if it were the contents of a file.
Connections are abstractions of streams of data, as we will see at the end of this chapter.

We can now compare the data frame from our shell command and the one returned
with our call to readLog(). If these two approaches contain the same basic data for these 3
fields, this would illustrate that our implementation of readLog() is correct. In fact, they do
not even have the same number of rows! This is probably because our readLog() function
discarded position2d lines that were not followed immediately by a laser line. How
many position2d lines are not followed by a laser line? This is tricky to do with the
shell as those utilities are line oriented. However, we can do some quick calculations with
the shell and R. We can count the number of laser records and position2d records in
the log file to see the difference. We can do this with

cmd <-
"egrep ’laser|position2d’ logs/JRSPdata_2010_03_10_12_12_31.log |

grep -v ’ 004 ’| cut -f 4 -d ’ ’"
table(system(cmd, intern = TRUE))

laser position2d
7725 7732

Note that we use egrep to use extended regular expressions and we searched for either
laser or position2d. We extracted only the interface values and then computed the
counts for each word. We see that there are 7 more position2d lines. We also see that
the number of laser lines is the same as the number of rows returned by readLog().

We leave it as an exercise to continue this shell-based approach to verifying the results
from readLog(). Compare the time, x, and y values and also the range values that are more
complex. To obtain the range values from a laser record, we need to extract 14th, 16th,
18th, . . . , 734 elements. We can use cut to do this, but we would have to carefully specify
each of these field numbers. Instead, we can create the shell command conveniently in R
with

sprintf("cut -d , -f %s",
paste(seq(14, by = 2, length = 361), collapse = ","))

4.2.2 Exploring Log Files
We explored testing the results from the readLog() function by comparing the values in the
data frame with those in the files. We also test the results by exploring the data. On occasion,
we will uncover anomalies during the EDA that result from bugs in reading the data. As a
result, the process of reading the data and exploring it is highly iterative. We’ll continue to
verify the results from readLog(), but our focus is now on exploring and becoming familiar
with the data.

We start by reading all of the log files:

180 Case Studies in Data Science in R

system.time(logs <- lapply(ff, readLog))
names(logs) <- ff

This gives us a list of the 100 log files and takes about 6 minutes (on a Macbook Pro with
16Gb of RAM and a 2.6 processor).

We start by looking at the distribution of the duration of each experiment, i.e., how
many seconds each lasted. We compute the difference between the first time and the last
time with

dur <- sapply(logs, function(x) x$time[nrow(x)] - x$time[1])

(Note that we assume the records are ordered by time and we should verify this. How?) We
can verify that all of the experiments are completed within 30 minutes by computing the
range

range(dur)

[1] 33.8 1799.7

At least one experiment lasted almost the 30 minute maximum and at least one lasted only
30 seconds.

Q.2 Did the robot find the target in that experiment?

We can examine the distribution of times with

plot(density(dur), xlim = c(0, 30*60))

We have used our knowledge that the longest time for an experiment is 30 minutes to
limit the range of the axes to avoid showing the smoothed density for infeasible values. In
Figure 4.3, we see 3 different modes corresponding to approximately 7 minutes, 20 minutes,
and 30 minutes. There are 4 runs that last more than 25 minutes (sum(dur > 25*60)).
We may want to examine those to see why they lasted longer than the others. Did they fail
to reach the target? Or did they fail to recognize it?

Let’s look at the range of the locations to ensure that they all make sense. We want to
verify that they are all within the course. We can check this with

range(sapply(logs, function(ll) range(ll$x)))

[1] -14.91 14.55

range(sapply(logs, function(ll) range(ll$y)))

[1] -7.713 7.316

Here we are computing the minimum and maximum for each log and then extremes of these.
All appear consistent with our understanding of the course.

We expect the records in each log file to be ordered in time. However, we should verify
this. We can check that the difference in times are all positive, e.g.,

table(sapply(logs, function(ll) all(diff(ll$time) > 0)))

Processing Robot and Sensor Log Files: Seeking a Circular Target 181

0 500 1000 1500

0.
00

00
0.

00
10

0.
00

20

N = 100 Bandwidth = 60.13

D
en

si
ty

Figure 4.3: Elapsed Time of 100 Experiments in Seconds. There appear to be 3 different
groups in this distribution. Most of the experiments are completed between 1 and 16 minutes
with a “center” of about 8 minutes. A smaller group of experiments is centered around 18
minutes. The final group includes those that do not find the target and use all of the 30
minutes allowed and end then.

All of these are true, so the observations are ordered. Are there any lengthy gaps in time
between successive records with a log? Let’s compute all of the time differences between
consecutive records and examine their distribution:

deltas <- unlist(lapply(logs, function(ll) diff(ll$time)))
summary(deltas)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.100 0.100 0.200 0.175 0.200 8.800

This shows that we are getting many records per second from the robot. Also, there is an
almost 9-second gap in one log file, which is curious. Are there other large values? We can
look at the large quantiles in more detail:

quantile(deltas, seq(.99, 1, length = 11))

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 8.8

182 Case Studies in Data Science in R

This value of 8.8 is the only extreme one. Which log file is it in?

which.max(deltas)

logs/JRSPdata_2010_03_10_12_39_46.log2167
49605

The name of the log file is in part of the names attribute. How many records are in this log
file?

nrow(logs[["logs/JRSPdata_2010_03_10_12_39_46.log"]])

[1] 2184

How does this compare with other log files?

summary(sapply(logs, nrow))

Min. 1st Qu. Median Mean 3rd Qu. Max.
208 1650 2180 2670 2840 9450

So this is very typical. We determine where in the log file the long delay occurs with

ll <- logs[["logs/JRSPdata_2010_03_10_12_39_46.log"]]
i <- which.max(diff(ll$time))

The pair is near the end of the log (record number 2167, as we could also have determined
from the name of the value returned by which.max(deltas) above), but not the final
records. We can then look at the two consecutive observations. They are at the same location
and all of the range values are the same. So it appears that the robot stopped. By looking
at the log file, we can see that the corresponding position2d record indicates that the
robot’s motor is stalled (see the file format documentation). This might explain the delay.
However, other records in this time period also have this stalled flag set and they do not
have the large time delay. So there doesn’t seem to be anything unusual with these records.

Now that we know the records are ordered by time, let’s look at how the robots move
and see if there are any anomalies in this regard. We can compute the change in the x and
y coordinates between each record with

delta.x <- unlist(lapply(logs, function(ll) diff(ll$x)))
delta.y <- unlist(lapply(logs, function(ll) diff(ll$y)))

and then plot them using a lattice plot:

library(lattice)
densityplot(~ c(delta.x, delta.y),

groups = rep(c("x", "y"), c(length(delta.x),
length(delta.y))),

plot.points = FALSE, xlab = "distance",
auto.key = list(columns = 2,

text = c(expression(Delta[x]),
expression(Delta[y]))))

Processing Robot and Sensor Log Files: Seeking a Circular Target 183

distance

D
en

si
ty

0

10

20

30

−1.0 −0.5 0.0 0.5 1.0

Δx Δy

Figure 4.4: Distribution of the Changes in the Horizontal and Vertical Directions. We
compute the change in the horizontal and vertical directions separately for each pair of
consecutive records in each log to explore how far the robot typically moves between records.

The resulting plot in Figure 4.4 illustrates several features. a) Most changes are close to
0 and so the robot is moving small distances. There are no unreasonable values. b) The
extreme changes in the vertical direction are smaller than those for the horizontal. We
might expect this since the horizontal dimension is twice as long as the vertical dimension
for the course. c) There are a several smaller modes in the densities. These suggest that
several identical values occur frequently. We can find these with tail(sort(table(¬
delta.x))) and see the values ±0.16. These distances may be due to the search strategy
or to the way the robot reports positions, or both.

Looking simply at the change in location ignores how long the robot took to travel this
distance. We can compute velocity and again check that there are no unreasonable values
that would indicate a robot moving an unusual distance. We compute distance divided by
time with

velocity =
lapply(logs, function(ll)

sqrt(diff(ll$x)^2 + diff(ll$y)^2)/diff(ll$time))

Note that we are computing the distances between each consecutive pair of points in a
vectorized manner. When we plot the density (Figure 4.5), we see two modes:

plot(density(unlist(velocity)), xlab = "meters/second", xaxs = "i",
xlim = c(0, max(unlist(velocity))))

There are two clear modes corresponding to slow movement and faster movement. Again,
the values seem entirely reasonable and we also now have a sense of how fast the robots are
moving around the course.

184 Case Studies in Data Science in R

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

meters/second

D
en
si
ty

Figure 4.5: Distribution of the Velocity of the Robots. This shows the bimodal distribution
of the velocity of all of the robots across all log files. We compute the distance between
consecutive points in each log and divide this by the time between these two records.

We also want to examine the distribution of the range values of all of the looks. A simple
summary yields

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.173 2.000 2.000 1.800 2.000 2.000

Three quarters or more of the values are 2, indicating nothing was detected. All are positive.
These seem reasonable at this level of exploration. We need more context to understand
and interpret the values together as segments as seen by the robot. We’ll do this later.

We have looked at variables across all log files to validate the data and understand the
aggregate distributions. We now turn our attention to individual logs. Specifically, we want
to visualize the path of the robot, identify the obstacles in the course, and also explore the
looks that seem to identify a target. By exploring looks that correspond to a target and also
those that do not, we can hopefully develop an accurate classifier for identifying a target.

4.2.3 Visualizing the Path
By looking at the distributions of the number of records in each log, the total time for each
experiment, the x and y coordinates, and the velocities, we have a coarse understanding of
how the robots moved. However, we also want to understand the paths the robots took, see
how much of the course they covered, and what general strategies they used. We also want
to identify any potential problems or anomalies. To this end, we want to visualize the entire
contents of each log file.

We can plot all of the x, y pairs for the robot with, for example,

plot(y ~ x, logs[[1]], xlim = c(-16, 16), ylim = c(-8, 8))

Processing Robot and Sensor Log Files: Seeking a Circular Target 185

We specify the axes limits to show the entire course. This makes it possible to compare
different experiments/logs that may operate in different parts of the course. We can see the
result in Figure 4.6. The robot starts on the left side of the course and moves up and to the
right and then gradually down as it moves all the way to the opposite side of the course.
When it arrives at that side, we cannot tell if the robot moves up or down. We can see
some overplotting so it may be that the robot moves up and takes large “steps” to the top
right corner and then returns. However, it is hard to understand the details of the path. We
cannot determine the start and end points or the direction of travel.

●●

●
●
●●
●●●
●●●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●
●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●●
●

●

●
●

●●

●

●

●●

●●
●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●
●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●●

●

●

●●

●●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●●

●

●
●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●●
●

●●

●

●

●
●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●●

●

●

●
●

●●●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●
●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●
●

●

●
●

●●
●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●
●

●●

●

●

●●

●●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●
●
●●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●
●

●

●●

●

●

●●
●

●

●
●
●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●●

●

●●●

●

●●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●
●●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●
●

●●

●

●
●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●

−15 −5 0 5 10

−
7.

04
−

7.
02

−
7.

00
−

6.
98

−
6.

96

x

y

●●●

x

−15 −5 5 15

−
5

0
5

Figure 4.6: Robot Path for the First Experiment. This displays the path from the first log
file. The panel on the left shows the robot’s movements from left to right across the course
and then vertically along the side. The second panel shows this path relative to the entire
course. This illustrates that the robot moved along the bottom side and only slightly vertically
before the run terminated. This experiment lasted almost 19 minutes.

We might improve the plot above by indicating the direction of travel. Firstly, we can

186 Case Studies in Data Science in R

mark the start and end points with, say, a circle and an x. We can do this with a call to
points(). We can also change the plotting character from a circle to a disk or even a point
(e.g., pch = ’.’). This may help with the overplotting. However, it will not help identify
the direction.

We might consider adding lines connecting the point to indicate direction. A simple line
will not convey the direction of motion, however. We could use an arrow at one end. This,
however, adds more content to the plot and may lead to confusion with the arrows obscuring
some of the points. We might color each line segment connecting consecutive points with
a gradient that changes from, say, green at the start to red at the end. When two of these
lines intersect, the results may be confusing, but we can explore this to see. This leads us to
another approach. Instead of drawing lines between consecutive points and coloring those,
we could color each point with a color that shifts from, say, green at the start to red at the
end. This avoids adding “ink” to connect the lines but still conveys direction.

We can compute a sequence of colors for the rows in our data frame using the rgb()
function. This takes 3 equal-length vectors specifying the red, green, and blue components
of each color. We set the blue component to 0 for each color and vary the red and green
components from 0 to 1 and 1 to 0, respectively. We can define a function to create the
vector of color values as

makeColorRamp =
function(n)
{

s = (1:n)/n
zero = rep(0, n)
rgb(s, (1-s), zero)

}

We pass it the number of observations and it returns the vector of colors. We can then
define a function plot.RobotLog() to display the path for an experiment as

plot.RobotLog =
function(x, y, col = makeColorRamp(nrow(x)), ...)
{

plot(y ~ x, x, type = "p", pch = 20, col = col, ...)
points(x$x[c(1, nrow(x))], x$y[c(1, nrow(x))],

pch = c("O", "+"), col = c("green", "blue"))
}

Note that we use . . . in the signature of the function definition to pass any additional
arguments to the call to plot(). This allows the caller to specify additional arguments for a
title, to control the axes’ ranges, etc. Our function doesn’t attempt to process these arbitrary
arguments, but R merely collects them and passes them on to plot().

We can use our new plot.RobotLog() to visualize all of the experiments in Figure 4.7
with the code

par(mfrow = c(10, 10), mar = rep(0, 4), pty = ’s’)
invisible(lapply(logs, plot.RobotLog,

xlim = c(-16, 16), ylim = c(-8, 8),
axes = FALSE))

From this, we can see some common patterns in the movement of the robots.
Our plots of the paths do not show any of the obstacles or the circular target, if the

robot encounters it. In order to show these, we need to work with the individual looks, i.e.,

Processing Robot and Sensor Log Files: Seeking a Circular Target 187

Figure 4.7: Display of All Experiments. This displays the path of the robot in each of the
100 experiments. The starting point is displayed in green with a circle. The direction of the
robot corresponds to the shift in colors from green to red. The final location is marked with
a blue x.

rows in the data frame, and determine where the robot saw an object. This will allow us
to see if the objects are all in the same locations for each experiment and to get a sense of
whether we can identify the circular target. In the next section, we examine the looks.

Q.3 Instead of changing the color uniformly across observations, we can change it based
on the time difference between consecutive records. This will help to convey velocity.
Implement this and visualize the experiments.

Q.4 We have colored the points in each path using a different, but related, sequence of
colors. In colorRamp(), we compute a vector of colors based on the number of records
in the log. This means that the i-th color is different across the logs. Consider using the
same set of colors across all logs. Does this convey more information, e.g., allow us to
compare the number of records in each log? Does this improve the overall display?

4.2.4 Exploring a “Look”
One of the primary tasks in this case study is to develop an approach to detecting a circular
target, specifically one with a known radius. Before we can do this, it helps a great deal
to become familiar with the “looks” and understand what the robot “sees.” We want to
consider the geometry of a “look” when we see nothing, the side of a rectangular or triangular

188 Case Studies in Data Science in R

obstacle, or the circular target. In the 100 logs, we have 266,000 looks. These are our data
for developing our classifier.

First, we’ll develop a function to plot a look. We have the location of the robot and then
the range values for the 360 degrees, i.e., the distance from the robot to an object in that
direction (or 2 meters). We use polar coordinates to render the path the robot sees. For
each angle we multiply the range value by the cosine and sine of the angle and add these
values to the robot’s location. We’ll plot the default “see nothing” path as a red circle and
the actual path with a black curve. We can define a function to do this with

plotLook <-
function(row, ...)
{

x = row[1, "x"]
y = row[1, "y"]

theta = seq(0, 2*pi, length = 360) - pi/2
r = as.numeric(row[1, -c(1:3, 365)])
x1 = x + r*cos(theta)
y1 = y + r*sin(theta)
par(pty = ’s’)
plot(x + 2*cos(theta), y + 2*sin(theta),

col = "red", type = "l",
xlab = "x", ylab = "y", ...) # 2 meter circle

points(x1, y1, type = "l") # what the robot sees
}

We subtracted 90 degrees (pi/2 radians) so that the points start behind the robot at
(0, 1), rather than at the coordinates (1, 0).

Note that in the function we included the expression par(pty = ’s’) to ensure that
the aspect ratio is square, i.e., the scales for the horizontal and vertical dimensions are the
same. This ensures that the circle is not distorted to appear as an ellipse depending on the
dimension of the graphics device.

When we set the pty graphics option in our function, it remains in effect after our
function returns. This is generally bad practice. We can arrange to undo this setting by
adding a call of the form par(pty = oldValue) to the end of our function. One problem
with this is that it will not get called if the call to plot() or points() fail for some reason.
For this reason, we use the on.exit() function. So we would add

oldValues = par(pty = ’s’)
on.exit(par(pty = oldValues))

Regardless of how the function returns – either correctly or due to an error – this code will
be evaluated and restore the previous value. If we cannot specify all of the local settings for
par() in a single call, we often use

old = par(no.readonly = TRUE)
on.exit(par(old))

and then one or more calls to par(). This arranges to set all of the values for par() back to
their original values, as stored in old.

We call our plotLook() function with a row from one of our logs to show that look. For
example,

Processing Robot and Sensor Log Files: Seeking a Circular Target 189

12 13 14 15

−9
−8

−7
−6

−5

x

y

Figure 4.8: Sample Final Look. This is the path/shape seen by the robot in the final look
of the first log file, JRSPdata_2010_03_10_12_12_31. The robot is in the center of the
circle. At the top right of the circle, we see a circular-like object that might be the target. A
straight edge corresponding to a rectangular obstacle appears at the bottom of the circle.

plotLook(logs[[1]][nrow(logs[[1]]),])

produces the display in Figure 4.8.
We can see the side of the rectangular obstacle on the bottom of the circle. These points

lie on a line; however, the corresponding range values are not constant, since the distances
from the center to these points vary. Note that at the ends of the line, the points vary from
the linear path. This suggests some measurement error in the range values for the larger
values closer to 2 meters.

Near the top right of the circle, we see the outline of part of a circular shape. The display
is slightly misleading. We see straight lines connecting the edges of the circular obstacle to
the outer 2 meter circle. These lines are an artifact of the way we drew the points. We
connected them with lines, i.e., points(, type = "l"). This connects the end points
of the arc to the points on the 2 meter circle giving the funnel shape. If we do not connect
the points, we get a plot like the one shown in Figure 4.8. The correct plot is shown in
Figure 4.9.

Q.5 Create a variation of the plotLook() code that produces the plot Figure 4.9. Divide
the points into separate sub-groups that are all 2 meters or all less than 2 meters and
use points(, type = "l") for each sub-group.

190 Case Studies in Data Science in R

12 13 14 15

−9
−8

−7
−6

−5

Figure 4.9: Enhanced Display of a Look. This figure shows the improved display of a robot’s
“look.” We remove the misleading lines connecting the edges of the circular target and the 2
meter arc. This uses points(, type = "l") but for each sub-group of points that form
a contiguous sub-arc of points at 2 meters, and points that are less than 2 meters. It does
not connect adjacent but disconnected sub-arcs. (See Q.5 (page 189).)

Let’s draw the final look for each of the 100 log files using our updated version of the
function plotLook2() from the exercise above. To fit these onto a grid, we’ll discard the axes
labels, tick marks, margins, etc. We can do this with

par(mar = rep(0, 4), mfrow = c(10, 10), pty = ’s’)
invisible(lapply(logs, function(ll)

plotLook2(ll[nrow(ll),], axes = FALSE)))

Note that we are specifying a value for the axes parameter in the call to plotLook2() and this
is passed on by our function to the call to plot(). This is why we added . . . as a parameter
for plotLook(). We can see the results in Figure 4.10.

4.2.5 The Error Distribution for Range Values
As we saw in the line and circular arc in Figure 4.8, the values for the range variable in a
“look” may include a small random error. The points near the ends of the line show more
“wiggle” than the others. The points on the circular segment also exhibit a similar “jagged-
ness.” We would like to be able to quantify the magnitude of this error. We could use this
when determining if we have found the target to quantify uncertainty. How can we estimate
the standard deviation, say, of the error? Is the distribution of this error approximately
symmetric? Is the standard deviation a good measure of the spread of the distribution? Is
the distribution conditional on the value of the range, e.g., different for values of the range
close to 2? The theory for estimating the distribution is straightforward – extract indepen-
dent and identically distributed values measuring the quantity of interest. Unfortunately
we do not have measurements that are identically distributed. The robot rotates and also

Processing Robot and Sensor Log Files: Seeking a Circular Target 191

x x
y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x
y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x
y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x
y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x
y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x
y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x
y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x
y

x

y
x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x
y

y y y y y y y y y

Figure 4.10: All Final Looks. This shows the final look of each of the 100 log files. Which
show a circle?

moves around. Therefore, what it is attempting to measure is different at each recording.
When the robot is at one location, we have measurements for different directions. For the
same directions, the robot is at a different location and hence “seeing” different objects.

One situation in which we do have a repeated measurement of the same value is the the
first and last range value in each laser record. By design, the robot measures 361 angles
and so is measuring the same thing with the first and last value in the vector of ranges. We
can compute the difference between these two values to estimate the error:

e = unlist(lapply(logs, function(ll) ll$range1 - ll$range361))
summary(e)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

So these are all identically 0. Is there no error? These range values are reported to 3
decimal places, i.e., millimeters. So any errors based on these values appear to be below the
millimeter level.

It is possible that the robot ensures that the start and end range values are the same.
Can we obtain other repeated measurements of the same values? Perhaps a robot revisited

192 Case Studies in Data Science in R

precisely the same location in an experiment. If so, we can compare all of the range values
at those positions. Alternatively, perhaps two robots visited the same location in different
experiments. In this case, there may be a difference in the experiment (e.g., the location of
the circular target), or a robot effect rather than a range effect. However, we may still be
able to usefully compare the measurements.

Consider a single log file. How can we find locations that the robot visited more than
once? We could compare each pair of x, y values to all other pairs. We have to compare the
i-th location to all of the other locations in the log file. We could do this with nested loops, or
a single loop and vectorize the comparisons. Alternatively, we could use a call to outer(). We
have to compare both the x values and the y values. A useful general approach is to combine
each pair of x and y values into a single value that uniquely identifies the combination. We
can use a string such as "x,y", replacing x and y with the actual values for the location. We
can quickly identify the duplicated locations with the function duplicated(). The location
values are reported to 3 decimal places, so we should continue to use this format. For a
given log file, we can find any duplicates with

ll$pos = sprintf("%.3f,%.3f", llx, lly)
w = duplicated(ll$pos)

If there are any duplicated points, we can gather them into groups and compute deviations
from the average for each of the 361 range variables. We can use any of the by(), aggregate(),
or tapply() functions to group the records based on their unique location identifier we created
above (pos). Given a group of these observations at the same location, we want to subtract
the mean for each column to find the “error” or deviation from the average value. We can
do this directly or with the scale() function. Hence, we can compute the error values with

if(any(w)) {
tmp = ll[ll$pos %in% ll$pos[w],]
errs = unlist(by(tmp[, 4:364], tmp$pos, scale, scale = FALSE,

simplify = FALSE))
}

We put these computations into a function, say getRangeErrors() and then apply this to
each log file:

rangeErrs = unlist(lapply(logs, getRangeErrors))

How many values do we have? Almost 39 million! We can compute the standard deviation
and surprisingly it is 0.0675. This is quite a bit more than we expected. We can see the
distribution in Figure 4.11.

We see that the distribution has very large tails and hence the standard deviation is not
a good measure of the spread. Instead, we might use the inter-quartile range or perhaps
compute the length of the interval containing the central 68% of the distribution. In either
case, the resulting interval is effectively 0. After all of our work, our estimate of the error
in the range values is effectively 0. However, we have found some extreme variability and
we might want to explore those further. For example, does the distribution of this error
depend on the value of the range variable with larger range values having more error as we
saw suggested in Figure 4.8?

We do have the potential confounding factor that the yaw of the robot may be different
across the different measurements at the same location. We discarded the yaw measurement
when we read each log. We could refine our readLog() function and reread the log files. We
could then group by x, y, and yaw value. We leave this as an exercise.

Processing Robot and Sensor Log Files: Seeking a Circular Target 193

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
20

40
60

80
10
0

meters

D
en
si
ty

Figure 4.11: Density of Repeated Range Values. This shows the distribution of the repeated
measurements of the range values when a robot revisited the same location. These are de-
viations from the mean of nominally identical values. There are some very extreme values
(-1.58 and 1.68). The distribution has very large tails. Most of the observations are exactly
0.

Q.6 How many different robots were used for these experiments? Are there any differences
in their operating characteristics? That is, do different robots have a different error
distribution?

We have now familiarized ourselves with the data and verified that it seems correct, and we
haven’t introduced anomalies when reading it into R. We have done a reasonable amount
of exploratory data analysis. We can now move on to our goal of developing a mechanism
to identify the circular target.

194 Case Studies in Data Science in R

4.3 Detecting a Circular Target
For a given “look,” how can we determine if the robot sees the circular target with a 0.5
meter radius? Take some time to study each of the 100 final looks in Figure 4.10. Identify
qualitatively different characteristics and groups of looks that we have to process. One
advantage of the final looks is that they are more likely to contain the circular target of
interest as each experiment set out to find this and then terminate. So those experiments
that successfully found the target should have a final look that contains the target. We
could and should look at many other looks, not just the final looks, so that we see different
types of looks. But for now, we focus on these final looks and, for convenience, create a list
containing each of them:

finalLooks = lapply(logs, function(ll) ll[nrow(ll),])

Figure 4.12 shows several of the final looks from Figure 4.10. We have selected examples
from 4 types exhibiting different characteristics. The first thing we recognize is that to find
the target, we are looking for a reasonably short sub-arc/segment of the 360 degree view, not
the entire 360 degrees. Secondly, we are only interested in segments all of whose range values
are less than 2, i.e., the robot sees something. Each short contiguous segment corresponds
to some object on the course, i.e., the target, an obstacle, or a side. We start with the 361
range values and we want to find these shorter segments of potential interest. We know from
earlier explorations that the first and 361st elements for each look are identical. Accordingly,
we can discard the 361st element for each set of ranges.

To identify the segments, we can explicitly loop over the range values in our vector and
find the first element that is less than 2. This is the start of the first segment. Then we
can find the next element that does have a value of 2. This identifies the end of the first
segment (i.e., the previous element). Then we continue from this element and find the next
value less than 2 and so on.

We have to find a way to implement this search. We can easily compute the logical
vector range < 2 and then find the index of the first TRUE or FALSE value and do this
sequentially to find the segments. We can use which(v)[1] to find the next TRUE value
and then repeatedly subset to remove all of the values up to that point. Here we will loop
over the number of segments, not the number of elements in the vector. Accordingly, the
number of iterations is smaller.

Fortunately, however, there exists a function in R that will do the computations for
us and significantly quicker. This is the rle() function, whose name stands for “run-length
encoding.” rle() finds contiguous segments of a vector that have the same value and returns
the lengths of these segments and the value of each separate segment. This allows us to
identify the indices of the elements in each segment. Consider the simple vector c(1, 1,
2, 3, 3, 3, 3, 5, 5, 5, 1). When we call rle() with this vector, we get

Run Length Encoding
lengths: int [1:5] 2 1 4 3 1
values : num [1:5] 1 2 3 5 1

There are 5 segments. The first contains 2 elements, the second just 1, and the third is the
sequence of four 3s. Note that this includes the sequences with just one element.

When we call rle() with a logical vector, it identifies the contiguous homogeneous blocks
of the TRUE and FALSE values. For example,

rle(c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE))

Processing Robot and Sensor Log Files: Seeking a Circular Target 195

x x
y

x

y

x x

y

x

y

x x

y

x

y

y y

Figure 4.12: Characteristics of Looks. This shows 4 different types of looks. In the first look,
the robot sees nothing and so there is no circular target present. In the next 3 looks (moving
row-wise), the robot sees a straight side or two straight sides that intersect. Again, there is
no circular target. All of the remaining looks appear to contain a circular target. In the fifth
look, the robot only sees the circle, while in the next 4 looks, it sees a circle and part of one
or two obstacles. The last 3 looks are more complex. We see the circular target but, drawn
in this manner, the circle appears to be connected to obstacles.

yields

Run Length Encoding
lengths: int [1:3] 2 3 3
values : logi [1:3] TRUE FALSE TRUE

If we only want the segments corresponding to the TRUE values, we have to construct the
indices for the elements in each of these sequences from the object returned by rle().

For our purposes, we call rle() with the logical vector range < 2 to find the regions
where the robot sees something and does not see something. We can then use the lengths
of these segments to compute the sequence of positions/indices within the vector that make

196 Case Studies in Data Science in R

up each object the robot sees. We can do this with the function getSegments() below. The
key to the function is the call to rle(). We then process each segment and keep track of
its starting position relative to the previous segments. We can do this with a simple for
loop. For each block of TRUE values, we compute the vector of indices. We skip the FALSE
blocks, but update the current location to its end position. The entire function is

getSegments =
return a list with elements being integer vectors
giving the indices of each contiguous segment
with values less than the threshold.
#
We discard the 361st element.

function(range, threshold = 2)
{

if(length(range) == 361)
range = range[-361]

rl = rle(range < threshold)

cur = 1L
ans = list()
for(i in seq(along = rl$lengths)) {

if(!rl$values[i]) {
cur = cur + rl$lengths[i]
next

}
ans[[length(ans) + 1L]] = seq(cur, length = rl$lengths[i])
cur = cur + rl$lengths[i]

}

ans
}

Note that we allowed the caller to specify a different value for the threshold to identify
when a robot saw something. Instead of using 2 meters, we could use, say, 1.9 meters
since a value of 1.99 may actually correspond to a true value of 2, but is smaller due to
measurement error. We can adjust the threshold to potentially account for measurement
errors and somewhat control false positive sightings.

Q.7 Can we vectorize the computations in getSegments() to avoid the for loop? Given
that we are looping over the number of objects we see, not the 360 range values, does
vectorizing significantly improve the performance? Think about how often we call get-
Segments() – once for each look in each log file.

Q.8 The getSegments() function has similarities to the plotLook2() function (the function
we developed in Q.5 (page 189)). Rewrite plotLook2() to call getSegments(). Is this a
good idea? Does it simplify the code? avoid repeating the same computations in two
places? avoid testing similar code?

As usual, we now need to test the getSegments() function. We can do this using the looks
in our existing log files. For these, we need to manually determine the segments of interest.

Processing Robot and Sensor Log Files: Seeking a Circular Target 197

This is a good thing to do. For this purpose, we temporarily modified our plotLook2()
function to show each of the segments in a different color and to return the number of
segments it encountered. This simplified matching the output of getSegments() with what
we expected from the plots.

Alternatively, we can test the getSegments() function by creating look/range vectors
with specific segments whose characteristics we define and then verify that getSegments()
returns them correctly. We’ll start with the degenerate look where we see nothing (i.e., all
range values are 2):

length(getSegments(rep(2, 360)))

We get no segments back as we expect.
Let’s create a look with 3 positive segments of length 10, 25, and 41, e.g.,

x = c(rep(2, 20), seq(1.7, 1.9, length = 10),
rep(2, 50), seq(1.4, 1.6, length = 25),
rep(2, 59), seq(.3, .5, length = 41))

x = c(x, rep(2, length = 361 - length(x)))

Note that we pad the remainder of x with values of 2 to have length 361. There is no need
for us to manually calculate how many of these we need; instead, we compute this in R.
Alternatively, we could have created this with

x = rep(2, 361)
x[21:30] = seq(1.7, 1.9, 10)
x[81:105] = seq(1.4, 1.6, 25)
x[165:205] = seq(.3, .5, 41)

The advantage of this approach is that we explicitly know the correct locations of the
segments. This will make it easier to verify the results. The output from getSegments() is

getSegments(x)

[[1]]
[1] 21 22 23 24 25 26 27 28 29 30

[[2]]
[1] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
[16] 96 97 98 99 100 101 102 103 104 105

[[3]]
[1] 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
[16] 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
[31] 195 196 197 198 199 200 201 202 203 204 205

which correspond precisely to the locations we specified.
We can also test the function with a different value for threshold, e.g.,

sapply(getSegments(x, 1.6999), length)

[1] 25 41

198 Case Studies in Data Science in R

We can see that this ignores the first segment from our previous call since all the values in
that segment are greater than the threshold.

With the getSegments() function tested on synthetic data, we can now apply it to looks
from our log files. For example, for the first look in the first log file, we can call getSegments()
with

getSegments(as.numeric(logs[[1]][1, -(1:3)]))

We have to discard the timestamp, x, and y values from the record and then transform the
one-row data frame to a numeric vector. This is cumbersome when compared with

getSegments(logs[[1]][1,])

Furthermore, it is different from how we call other functions such as plotLook(). This makes
it harder to remember how to call each of these functions. Accordingly, we should adapt
getSegments() to accept a row from one of our data frames and perform the conversion to
the numeric vector. We can implement this by adding the code

if(is.data.frame(range))
range = as.numeric(range[1, -(1:3)])

to the start of the body of the function. We may want to add more checks to this if
condition to ensure that the timestamp, x, and y fields are present. However, even this
simple addition makes using the function a lot more convenient, especially interactively.
Once again, we should retest the function and its new features.

4.3.1 Connecting Segments Behind the Robot
Consider the sixth look in Figure 4.12. At the bottom of the look, we see a horizontal line
corresponding to the side of an obstacle. The first element of the range vector corresponds
to the bottom of the circle and we then move counter-clockwise. As a result, this line is
actually made up of two separate sequences of values in the vector – one at the beginning
of the vector and the other at the end. The division is an artifact of the way the robot
swivels and how the range values are represented/structured in our records. While we are
not interested in the obstacle we see here, this “artificial” separation of the segment into
two separate sequences at the beginning and end of the vector could potentially cause a
problem. If the circular target appeared in this position, we would see two parts of the circle.
We may not classify either sequence as a circle but we might classify the entire segment as
the target.

To overcome this issue of a segment “wrapping” around from 360 degrees to 0 degrees,
the pieces directly behind the robot need to be combined by being laid end-to-end. We can
do this with c(x, rev(x)). We now have a vector of 720 elements. We can again find
the segments where we see something using the rle() function. Our existing getSegments()
function can work on the vector of 720 ranges. As we go through the vector, we stop when
we find the first value of 2 after the 360th element. This avoids identifying segments a second
time. We leave it as an exercise to implement this approach.

We will use a more direct approach. We note that we are only interested in a possible
connection between the last segment and the first in our record. We should connect these
two segments behind the robot if a) there are at least two segments, b) the first segment
starts at position 1, and c) the final segment ends at position 360. This is equivalent to
laying the vector end-to-end and computing the segments. However, it allows us to reuse
the getSegments() function we defined earlier. We can call that to get all of the individual
segments and then see if we should combine the first and the last. We can define this function
as

Processing Robot and Sensor Log Files: Seeking a Circular Target 199

getWrappedSegments =
function(range, threshold = 2,

segments = getSegments(range, threshold))
{

if(length(segments) > 1) {
s1 = segments[[1]]
s2 = segments[[length(segments)]]
if(s1 == 1L && s2[length(s2)] == 360) {

segments[[1]] = c(s2, s1)
segments = segments[-length(segments)]

}
}

segments
}

This merely implements the conditions a) – c) above. The call to getSegments() provides
the default value for the segments parameter. This allows us to explicitly pass the segments
if we have computed them in an earlier step, e.g., when we test the function or when we
compute them in order to plot them. By using the existing getSegments() function, any
improvements to that will automatically be propagated to this function. However, we can
experiment with alternative implementations of computing the initial segments without
changing getSegments() or this new getWrappedSegments() function.

Again, we need to thoroughly test our new function. Let’s create a look that should be
connected:

tmp = c(rep(1.5, 100), rep(2.0, 141), rep(1.5, 120))

This has values of 1.5 for the first 100 entries and for the last 120. It is good to make
these lengths different so that we can identify any bug based on the common length. Eval-
uating getWrappedSegments(tmp) does indeed yield a single segment consisting of a
combination of the first and last segment.

How does this function perform with the last look in our first log?

getWrappedSegments(as.numeric(finalLooks[[1]][1, -(1:3)]))

[[1]]
[1] 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
[16] 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
[31] 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
[46] 357 358 359 360 50 49 48 47 46 45 44 43 42 41 40
[61] 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
[76] 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
[91] 9 8 7 6 5 4 3 2 1

[[2]]
[1] 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
[16] 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
[31] 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
[46] 179 180 181 182 183 184 185 186

This does combine the two segments behind the robot and also identifies the other segment

200 Case Studies in Data Science in R

from 134 to 186 corresponding to a side/obstacle. Compare this with the sixth look in
Figure 4.12, which shows a line behind the robot that consists of the first and last segments
for that look.

Q.9 Test the function getWrappedSegments() for other looks, e.g., with no objects seen,
more than 3 segments, different thresholds.

4.3.2 Determining If a Segment Corresponds to a Circle
Now that we have all of the segments that correspond to something visible in a look, we
want to determine if they collectively correspond to seeing the circular object. We could
consider all of them together. However, it is simplest and probably best to consider each
individually. We can compare the shape defined by each segment to an arc/part of a circle.
If we get a “good” match, we can conclude that we have found the target. If we get more
than one good match within a look, we probably have a problem as there is only one target.
We may want to take all of the matches into account, but we focus now on recognizing an
individual segment as a circle or not.

We will focus on one contiguous segment with all of the range values less than 2 (or some
threshold). We have the location of the robot, say posrobot, and also the (x, y) coordinates
of the points on the segment. We want to determine if the arc described by the segment is
consistent with part of a circle with radius 0.5 meters. If we knew the center of the would-be
target, say rtarget, we could determine if all of the distances to each point on the arc from
this center were the same and 0.5 meters. There are several issues. One is that we don’t
know the location of the center, rtarget. Secondly, the range values, and hence the locations
of the arc, contain slight errors, as we have explored earlier. If we determine rtarget from the
arc locations, rtarget will contain random errors. Accordingly, we expect some variability in
the distances from this center to each point and they won’t all be the same, nor exactly 0.5
meters. Similarly, the circular target probably does not have a radius of exactly 0.5 meters
and the x, y coordinates of the robot’s location and even the angles probably contain some
measurement error. Accordingly, there is noise in our measurements and we want to take
this into account.

We can use simple geometry to estimate the center of the target, rtarget. We can find
the shortest distance from posrobot to each of the points on the arc. The two points posrobot
and (x, y)nearest define a line and the center of the target should be 0.5 meters from (x,
y)nearest in the direction of that line. From a statistical perspective, we are interested in
understanding the characteristics of this estimate in terms of its bias and variance for the
true location of the target. In reality, however, we are interested in how well it allows us to
correctly classify a segment as the target, given the noise in the measurements.

Since the center of the target and its precise radius are unknown and there are random
errors in the measurements of the arc locations, we may want to use a slightly different and
more generic and commonly used statistical approach than our geometric approach above.
We have n (xi, yi) locations for the arc. We know that, if they describe a circle, they should
all be very close to r = 0.5 meters from the unknown center of the circular target. If we
denote the center with (x0, y0), we then have

√
(xi − x0)2 + (yi − y0)2 − r ≈ 0

Essentially, we want to allow x0, y0, and r to vary so that we find the best fit for our
points as a circle. In other words, we want to find the values of x0, y0 and r that minimize

Processing Robot and Sensor Log Files: Seeking a Circular Target 201

n∑
i=1

(
√

(xi − x0)2 + (yi − y0)2 − r)2 (4.1)

This is similar to fitting a regression line. There we minimize

n∑
i=1

(Yi − β0 + β1Xi)2

for a simple bivariate regression. We vary β0 and β1 to find the values that minimize this
sum of squared differences between what we observe (Yi) and what we predict (β̂0 + β̂1Xi).

In the case of linear regression, the solution for the values of β0 and β1 that minimize
the sum of squares can be determined from a closed-form expression. In the case of finding
the best fit for our circle, there is no simple closed-form solution. Instead, we have to vary
x0, y0, and r and find the triple of values that minimize the sum of squares. There are
various approaches to doing this. One is to search over a grid of feasible values for these
3 parameters. For example, we may consider that 6.3 ≤ x0 ≤ 6.7, 1.2 ≤ y0 ≤ 1.45, and
.475 ≤ r ≤ 0.51. These constraints define a 3-dimensional region and we could divide this
into, say, a 100× 100× 100 grid. We would then evaluate the left-hand side of equation 4.1
at each point in this grid, i.e., (x′, y′, r′) and find the value that gives the smallest sum of
squares. We could then create a more localized and higher-resolution grid around this point
to see if we can find a better solution.

The grid approach to finding a minimum works generally, but we often waste computa-
tions on regions of the grid that are unlikely to yield the optimum value. There are many
approaches to numerical optimization that attempt to determine which direction to pursue
next, based on evaluating the target function at one or more earlier candidate solutions.
Some use the derivative to find the direction of descent. Some also use the second derivative
to determine how far to move in the direction of the first derivative. Other approaches use
stochastic search, which injects randomness into the directions we pursue, but in a way
that speeds convergence to the result. Numerical optimization is a very rich topic and there
are many available approaches. It can be important to explore different approaches and use
one that best suits the problem at hand and the function being optimized. We will use a
mechanism that uses approximations to the first and second derivatives (so that we do not
have to calculate and implement the functional form of these). The R function nlm() does
this for us.

To use nlm() to find the best fit for our potential arc of the circular target, we need to
specify a function that computes the sum of squares of the points on the arc for a given
triple of (x0, y0, r). nlm() will explore different values of this triple for us, but we need to
provide the function that indicates how well it fits for a particular triple. This function needs
to implement the left-hand side of Equation 4.1. nlm() will call this function with a vector
specifying the current values of the triple (x0, y0, r). We will also arrange to have nlm() pass
the vectors x and y giving the locations of the points on the arc. We can implement our
sum-of-squares function as

circle.fit.nlm.funk <-
function (p, x, y)
{

x0 <- p[1]
y0 <- p[2]
r <- p[3]

202 Case Studies in Data Science in R

actual.r <- sqrt((x - x0)^2 + (y - y0)^2)
sum((r - actual.r)^2)

}

Again, we have to test this function and we leave this as an exercise for the reader.
In addition to the function that provides the measure of fit, nlm() also needs an initial

guess for our triple (x0, y0, r). We can use our geometric reasoning from earlier to produce
an estimate for the center of the would-be target, given the location of the robot and the
points on the arc. We leave this as an exercise. Instead, we’ll use the very simple approach
of using the average of the xi values and the yi values in the arc as our initial guess. We
do this with the expectation that nlm() will quickly converge to a reasonable estimate. We
should explore and confirm this on actual data.

We now know the required inputs to our call to nlm(). Let’s see how we put the com-
putations together starting with a record from our log, i.e., a row in our 364-column data
frame. We’ll use the last look in the first log:

look <- logs[[1]][nrow(logs[[1]]),]

We compute the segments from this with

segs <- getWrappedSegments(as.numeric(look[1, -(1:3)]))

This yields the two segments we discussed previously, i.e., the circular target to the north-
east of the robot, and the straight line directly behind the robot that “wrapped” around the
vector. segs is a list with two vectors, and each vector gives the indices of the elements of
the range values for that segment/arc. Instead of the indices, we want the xi and yi values
for the segment. We can compute these, as we did for the plotLook() function, with

i = segs[[2]]
range = as.numeric(look[, -(1:3)])[i]
theta = seq(0, 2*pi, length = 360) - pi/2
xi = look$x + range * cos(theta[i])
yi = look$y + range * sin(theta[i])

Again, we check our calculations by, for example, plotting the results:

plot(xi, yi, type = "l")

At this point, we have the essential inputs for nlm(). We can call it with

nlm(circle.fit.nlm.funk, c(x0 = mean(xi), y0 = mean(yi), r = .5),
x = xi, y = yi)

The first argument is our sum-of-squares function to be minimized. The second argument
is our initial guess for the 3 parameters. We use 0.5 as the value for r since we were told
that was its (approximate) value. The results we get are

$minimum
[1] 0.003253

$estimate
[1] 13.8687 -5.9110 0.5387

$gradient

Processing Robot and Sensor Log Files: Seeking a Circular Target 203

[1] 5.245e-05 5.115e-05 -7.121e-05

$code
[1] 3

$iterations
[1] 17

This tells us the sum of squares for our solution was 0.003. The estimate element gives
us the values for the 3 parameters. The gradient element provides an estimate of the
derivative of our function and iterations tells us how many steps in the numerical
optimization nlm() took. code tells us about the reliability of the result. In this case, the
value 3 indicates that either we have a local minimum as we want, or we should consider
adjusting the steptol tuning parameter in the call to nlm(). steptol controls how small a step
nlm() will bother taking. If we make this smaller, nlm() will consider taking more steps.
If we try 1e-16, nlm() uses 44 iterations and yields a value of 2 for code, i.e., “probably
solution.” (Consult R’s help page for the nlm() function [1].) However, the minimum value
and estimates of the parameters are the same as with the default value for steptol.

These computations above show how to fit an arc to a segment. We should create a
separate function that combines all of the computations that take a look, compute the
separate segments of interest, and fit the arc for each segment. We first convert the look
from robot location and range values into segments. Then we loop over the segments and
fit the circle. To fit the circle, we only need the x and y vectors giving the coordinates of
the segment. We can define the function to fit a circle to a segment as

circle.fit <-
function (x, y, initGuess = c(mean(x), mean(y), .5), ...)

nlm(circle.fit.nlm.funk, initGuess, x = x, y = y, ...)

Again, this is a simple function that embodies important computations in the default values
of the parameters, but allows the caller to override these. This directly returns the results
from nlm(). We are leaving it to the caller to determine how appropriate the fit is.

We define the function robot.evaluation() to process an entire look. This function ex-
tracts the segments via a call to getWrappedSegments(). It then loops over these and
determines which ones appear to be part of a circle. For each segment, it has to create the x
and y vectors of the points on the segment/arc, as we did above. However, for each segment,
we also evaluate 3 additional criteria that actually determine whether the segment seems
to be part of the target.

Firstly, if there are too few points in the segment, we cannot reliably distinguish between
part of a circle or any object. For instance, if we have 3 or fewer points, we cannot determine
whether the segment is a line or part of a circle. We also cannot expect to get all of the
points on the target. At most we can hope to see 180 points corresponding to half the target.
The number of points we need is a tuning parameter that we would like to determine to
obtain low type I and type II error rates for classifying a segment as the circular target.
Accordingly, we’ll allow the caller to specify the minimum number of points needed in a
segment to even consider classifying it as part of the circular target. We will use 3 as the
default value for this parameter min.length.

In addition to requiring a minimum number of points, we also want to evaluate how
well the circle fits the segment and only accept those segments that yield a “close” fit. We
need to specify what “close” means. There are various different metrics we could use. Some
depend on how many points there are in the segment, and others depend on how close the
robot is to the estimated center of the target. We will use the final value of the sum of

204 Case Studies in Data Science in R

squares function that we are trying to minimize to measure the goodness of fit. Generally,
this will be larger with more terms in the sum as each term is non-negative. Accordingly,
we divide the total sum of squares by the number of terms in the sum. This allows us to
use a single threshold value for any segment. Since nlm() returns the minimum value of
the function being minimized via the estimate element of the result, we can compare the
goodness of fit to the threshold with

(out$estimate / length(segment)) > max.ss.ratio

The final criterion or constraint we will impose when evaluating how well the segment
resembles an arc of a circle relates to the radius of the estimated circle. If the estimate of the
radius is too different from the 0.5 meter value we expect, we won’t consider the segment
part of the circular target. We allow the caller to specify a lower and upper bound for the
acceptable values of the radius. This allows for an asymmetric interval.

We could also impose a constraint on the estimate of the center of the target. If it is
outside of the course, then we can eliminate it as being feasible.

We allow the caller to specify the values for testing each of these criteria. Addition-
ally, we want the caller to be able to specify the maximum range value that constitutes
the robot seeing something, e.g., 2 meters or some smaller value. So we will add each of
these as parameters in our robot.evaluation() function. We’ll also allow the caller to specify
parameters for the calls to circle.fit(). Rather than adding each of these parameters from
circle.fit() to robot.evaluation(), we can use the . . . mechanism to pass any number of ad-
ditional arguments in call to robot.evaluation() on to circle.fit(). We can implement this
function as

robot.evaluation <-
function(look, min.length = 3, max.ss.ratio = 0.01,

min.radius = .5, max.radius = 2,
range.threshold = 2,
segs = getWrappedSegments(range, range.threshold),
...)

{
x = look$x
y = look$y
range = as.numeric(look[, -(1:3)])
theta = seq(0, 2*pi, length = 360)

for(s in segs) {
if(length(s) < min.length)

next

xi = x + cos(theta[s]) * range[s]
yi = y + sin(theta[s]) * range[s]
out = circle.fit(xi, yi, ...)

if(out$code > 3)
next

if((out$minimum/length(s)) > max.ss.ratio)
next

if(abs(out$estimate[3]) < min.radius

Processing Robot and Sensor Log Files: Seeking a Circular Target 205

|| abs(out$estimate[3]) > max.radius)
next

return(list(x = xi, y = yi, range = range[s],
robot = c(x, y), fit = out))

}
}

Note that in addition to testing the 3 criteria we discussed, we also check the value of the
code element returned by circle.fit() and nlm() to ensure the results are meaningful.

In our for loop within the function, we test each of the 3 conditions one after the other.
If any of these fail, we move onto the next segment. We use the R keyword next to do this.

Note that we exit our loop and return the first segment that appears to be a circle,
if there is one (and NULL otherwise). We may want to modify this function to return all
segments that match. This depends on how we are going to deal with multiple matching
segments. When exploring the data or validating our approach and functions, we may want
to have all the matches that appear to be parts of a circle. However, when we analyze the
data in real-time after we tune the approach, we may want just the first match.

Let’s examine how our function robot.evaluation() performs on the last look of each of
the 100 log files:

finalLooks = lapply(logs, function(x) x[nrow(x),])
circs = lapply(finalLooks, robot.evaluation)

circs is a list with each element either being a segment or NULL. We can examine those
looks that were classified as the target by identifying the non-null entries:

unname(which(sapply(circs, length) > 0))

We can then compare these to the corresponding panels in Figure 4.10. Alternatively, we
can plot these again to see them more clearly:

par(mfrow = c(7, 6), mar = rep(0, 4), pty = ’s’)
invisible(lapply(finalLooks[sapply(circs, length) > 0],

plotLook2, axes = FALSE))

The 40 looks appear in Figure 4.13.
In this, we see that many of the looks do indeed show the circular target. However, in the

5th, 8th, 14th, 22nd, and 37th looks, we seem to have mistaken a right angle corresponding
to an obstacle as part of the circular target. These are type I errors – false positives. Also,
the 18th look appears slightly strange, but there does appear to be a circular boundary
near the center of the look.

We can look at the estimates and the minimum value of the sum of squares for these
looks that are misclassified:

i = which(sapply(circs, length) > 0)[c(5, 8, 14, 22, 37)]
unname(sapply(circs[i], function(o) c(ofitminimum,

ofitestimate[3],
length(o$x))))

[,1] [,2] [,3] [,4] [,5]
[1,] 0.589 0.589 0.674 0.511 0.512
[2,] 0.992 0.992 0.903 1.065 1.066
[3,] 83.000 83.000 84.000 83.000 83.000

206 Case Studies in Data Science in R

x x

y

x
y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y
x x

y

x

y

x

y

x

y

x
y

x x

y

x

y

x

y

x

y

x

y

y y y

Figure 4.13: Looks Containing a Segment Identified as a Circle. These are the looks that
were classified as containing the circular target. We see that most of the looks do indeed
contain a shape that looks like the target. However, there are several that have confused a
right angle corresponding to an obstacle in the course with the target and these seem to be
false positives.

The first row contains the minima of the sum of squares, the second the estimate of the
radius, and the third row the number of points used to estimate the circular boundary.
The minimum values for these are large relative to the other 35 looks that were classified
correctly, the largest of these being 0.055. Furthermore, the estimates of the radii are large
– close to 1. Perhaps we can further constrain the radius estimate to eliminate these, at the
risk of generating false negatives.

Figure 4.14 shows the looks that were classified as not containing a circle.
Most of these contain obstacles or no objects. However, 8 of these looks seem to contain

a circle. Again, we want to examine the nature of these fits. Unfortunately, we don’t have

Processing Robot and Sensor Log Files: Seeking a Circular Target 207

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

x x

y

x

y

x

y

x

y

x

y

x

y

x

y

y y y

Figure 4.14: Looks Containing No Identified Circle. These are the looks that were classified
as not containing the circular target. We see that most of the looks do indeed contain no
indication of the target. However, there are several that do and suggest false negatives.

this information as we did not consider these a circle. We need to be able to compute the fits
for the segments in these looks and see why they were rejected. We might decompose our
robot.evaluation() function and move the body of the for loop into a separate function.
Alternatively, we might try very lax thresholds in an effort to accept any segment.

Before we set about changing the code to fit circles to each of the segments in these
looks to see why they were rejected as circles, let’s examine the displays of these looks. At
the risk of being redundant, we’ll show just these in Figure 4.15 and we arrange them to
show two patterns.

The first 3 of these looks have a line connecting the circular arc with a straight line
corresponding to an obstacle. The fourth is similar but not quite the same. The remaining
looks suggest a circular target but with very little curvature and almost two line segments
that intersect. An important characteristic of these last 5 looks is that the circular target
is very close to the center of the green circle, i.e., the location of the robot. The problem
in identifying this arc as a circle is probably due here to the robot being too close to the
target. When we are very close to a sphere or circle, we see a relatively flat curve. It would
be interesting to look at the earlier looks in these log files to see if the robot could detect
this circle from further away.

208 Case Studies in Data Science in R

x x

y

x

y

x x

y

x

y

y y

Figure 4.15: Patterns in the False Negatives. This shows the 9 looks in which the circular
target appears to be present but which were not detected by our robot.evaluation() function.
They are arranged to show two characteristics. The first of these is a circular target “con-
nected” to another obstacle. The second pattern is a circular target that is very close to the
robot (i.e., the center of the look) and so does not appear circular.

In the first 3 looks, we can see the circular arc and then a line from that which connects
to another line. The problem here is our logic in computing the segments. Recall that we
looked for contiguous values of the range vector that were less than our threshold, 2. The
points in the circular arc correspond to a range less than 2. Likewise, the range values
corresponding to the obstacle also have a range less than 2. However, in these cases, the
end of the circular arc and the start of the obstacle are at neighboring angles and, hence,
adjacent elements in the range vector. As a result, our getSegments() function assumes
these two separate segments are just one segment characterized by all the points having
a range value less than the threshold. What is clear to our human eye is that there is a
large distance between the last point of the circular segment and the start of the obstacle’s
segment. This gives rise to the straight line connecting them in the plots.

Now that we have identified the problem for looks that have the circular target and an
obstacle at adjacent elements of the range vector, we can modify our getWrappedSegments()
function to correct for this. We can compute the distances between the pairs of consecutive
points along a segment. If one distance is “excessively large,” this identifies the divide
between two sub-segments. We can implement this with the function

separateSegment =
function(idx, x, y, threshold = 0.15)
{

xd = diff(x[idx])
yd = diff(y[idx])
d = sqrt(xd^2 + yd^2)
if(any(d > threshold)) {

i = which(d > threshold)[1]

Processing Robot and Sensor Log Files: Seeking a Circular Target 209

list(idx[1:(i-1)], idx[(i+1):length(idx)])
} else

list(idx)
}

This takes the x and y coordinates of the segment and also the indices in the range vector.
It computes the distances between the consecutive points and compares these distances to
a threshold. This is different from the 2 meter threshold for the robot “seeing” an object on
the course. Instead, this threshold defines how far two points can be from each other to be
considered part of the same arc/segment. If there are two significant segments, the function
returns a list with two elements giving the indices of the two sub-segments. Otherwise it
returns the original vector of indices for the segment.

We leave it as an exercise for the reader to adapt getWrappedSegments() to post-process
the segments it originally produced to split segments by this distance approach. In our code,
we allowed the caller to specify whether this was desired or not so that we could support
the original and this enhanced approach.

How do we determine the appropriate value for the threshold parameter so that we can
distinguish between two segments? We use trial and error on sample looks exhibiting the
characteristic of having two different segments at consecutive angles.

Q.10 Experiment with values of the distance cut-off to find a reasonable value for separating
segments that correspond to two separate obstacles in the same look.

Now that we have a new, more refined mechanism to compute the segments, we can reclassify
the final looks for the 100 log files:

circs = lapply(finalLooks, robot.evaluation)

In order to simplify evaluating the results, we manually classified the 100 looks by deciding
whether we thought there was a circle. Some of these were not obvious so we marked those
as NA. We read these classifications into R with

hasCircle = as.logical(scan("logs/hasCircle100", 1L))

We can now compare the “truth” with the results of our classifier:

hasCircle.hat = sapply(circs, length) > 0
table(hasCircle, hasCircle.hat)

hasCircle.hat
hasCircle FALSE TRUE

FALSE 51 5
TRUE 6 29

This is the “confusion matrix.” The entries on the diagonal are correctly classified. The
off-diagonal entries show 11 looks are misclassified. However, the total number of looks
in this table is 91, not 100. We have to account for those looks we manually classified as
NA. We’ll consider those as containing the target, i.e., TRUE as we were conservative in
classifying these. Accordingly, we’ll change the values for hasCircle for these looks. With
these changes, the confusion matrix is

210 Case Studies in Data Science in R

hasCircle.hat
hasCircle FALSE TRUE

FALSE 51 5
TRUE 9 35

Only 3 of these 9 looks are now misclassified.
We want to look at those looks that are incorrectly classified as not being a circle:

missed = hasCircle & hasCircle != hasCircle.hat
par(mfrow = c(3, 3), mar = rep(0, 4), pty = ’s’)
invisible(lapply(finalLooks[missed], plotLook3, axes = FALSE))

x x

y

x
y

x x

y

x

y

y y

Figure 4.16: Misclassified Looks with a Target. These 9 looks are those that were misclassified
as not containing the target. In all but one of these, the target is very close to the center of
the robot. The seventh look is more problematic.

In 8 of the 9 looks shown in Figure 4.16, the circular target is very close to the center
of the circle and hence very close to the robot. The robot cannot detect the curvature as it
is too close and the arc looks more like a line. We want to examine the fit of the circle for
each of these. To do this, we can modify robot.evaluation() to allow the caller to ask for
the information for the fit for each segment rather than just the results for the segments
that were considered circular arcs. Alternatively, we can move the code in the body of the
loop in robot.evaluation() to a separate function, say evalSegment(), and adjust it to not
simply return the first matching segment, but the list of all matching segments.

Q.11 Implement the evalSegment() function described above. Also, implement a function
evalSegments() that takes a look and computes the segments and calls evalSegment()
on each of these.

Processing Robot and Sensor Log Files: Seeking a Circular Target 211

Using our evalSegments() from the exercise above, we can explore the segments for the
looks that were not classified as containing a circle:

segs = lapply(finalLooks[missed], evalSegments, noCheck = TRUE)

The seventh of these corresponds to the “obvious” circle we missed. The details of the fit
are

segs[[7]][[1]]$fit

$minimum
[1] 0.003707

$estimate
[1] -7.5589 -7.5258 0.4975

$gradient
[1] -9.958e-07 -1.123e-06 -1.552e-06

$code
[1] 2

$iterations
[1] 15

This was not classified as the target as the estimate of the radius is less than 0.5. If we relax
the value for min.radius to 0.49, this will pass. Of course, we may need to accept lower type
I rates also.

For the segments that were very close to the robot, we can look at the estimate of the
radius of the would-be target and also the sum of squares for the fit (i.e, the minimum
element):

unname(sapply(segs[-7],
function(x) c(x[[1]]fitestimate[3],

length(x[[1]]$x),
x[[1]]fitminimum/length(x[[1]]$range))))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.9340 1.42e+02 0.9907 1.7638 8.15e+01 5.16e+01
[2,] 167.0000 8.90e+01 139.0000 116.0000 8.70e+01 9.40e+01
[3,] 0.0181 4.08e-04 0.0263 0.0129 5.93e-04 1.59e-04

[,7] [,8]
[1,] 7.94e+01 5.43e+01
[2,] 8.90e+01 9.20e+01
[3,] 2.97e-04 3.47e-04

In several of these, the radii (first row) are very large. In the other cases, the sum of squares
per point exceeds our 0.01 threshold for max.ss.ratio. If we increase this to 0.25, we would
classify 3 of these as targets, but with a radius for one of 1.77! How would this affect our
type I error rate?

Let’s return to those 5 looks that were incorrectly classified as containing the target
(type I errors) and examine their fit details:

212 Case Studies in Data Science in R

missed = !hasCircle & hasCircle != hasCircle.hat
unname(lapply(circs[missed], ‘[[‘, "fit"))

In all cases, the radii are close to 1:

summary(sapply(circs[missed], function(x) xfitestimate[3]))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.903 0.992 0.992 1.000 1.070 1.070

We can reduce the value of max.radius to, say, 0.9 to eliminate these. Again, we have to
consider how this would affect the type I and II error rates. We can check this with

circs = lapply(finalLooks, robot.evaluation,
max.radius = 0.9, min.radius = .475)

hasCircle.hat = sapply(circs, length) > 0
table(hasCircle, hasCircle.hat)

hasCircle.hat
hasCircle FALSE TRUE

FALSE 56 0
TRUE 9 35

We now have no type II errors. However, we have classified 9 looks as not having a circle.
We accepted the seventh look we missed in our earlier classifier by reducing the value of
min.radius. However, we added one more misclassified look, which again has the target close
to the robot.

To handle these challenging cases where the robot is “too close” to the target, we might
attempt to recognize the target in an earlier look. Alternatively, we could use a different
criterion for classifying such a segment.

We have manually tuned the parameters of our classifier to fit our 100 looks. We are
in real danger of overfitting our classifier to these looks. We should use a more robust
mechanism such as cross-validation to determine these tuning values, and also examine
other looks. Since we focused on the final look in each log file because we expected that
there would be more targets found in these, we may have biased our classifier’s ability to
correctly identify looks with no targets. Accordingly, we need to consider using additional
data.
Additional Data
We have looked at the final look in each of the 100 log files. We did this as these were
the most likely to contain the target, as the experiment terminated if and when it located
the target. We do not need to limit ourselves to just these final looks, however, when
developing or understanding our classifier. We have the data for over 250,000 looks. We are
only interested in those looks that actually contain an object the robot sees as we know we
will not classify a look as containing the target if there is nothing seen in that look. We can
identify these looks that see something with

allSegs = lapply(logs, function(ll)
lapply(1:nrow(ll),

function(i)
getWrappedSegments(ll[i,])))

Processing Robot and Sensor Log Files: Seeking a Circular Target 213

This yields about 200,000 looks with visible objects of some sort. We can then sample from
these and classify them ourselves. Once we know the “truth,” we now have a regular data
set with the response variable known. We can then use this to fit our statistical classifier. In
order to determine the optimal values for our parameters for min.length, max.ss.ratio,
min.radius and max.radius, we can use cross-validation. We can split this data set into
training and test subsets and evaluate the classifier for different values of these parameters
and find the best values for the type I and II errors.

A different approach to manually classifying actual looks to generate a complete data
set with a known response is to simulate data. We can generate the location of a target
and a radius close to 0.5 meters. From this, we can compute the coordinates of its circular
boundary. We can then generate a location of the robot and simulate what it would see
of the target’s boundary. We have an understanding of the distribution of the errors in
the measurement from our earlier exploration. We can sample directly from these observed
errors and add these to the measurements. Recall that the overwhelming majority are 0.
We then have a complete data set. We can also simulate looks in which the robot sees an
obstacle and add these to the data set. We can then use this entire data set to tune our
classifier.

Q.12 Our fit function used the sum of squares between the radii. We could use other
criteria such as absolute value, i.e., the L1 norm. Explore different criteria. How does
this change the code we use to determine if the arc corresponds to part of a circle? How
does it change how we classify different looks?

Q.13 Implement the geometric approach to estimating the center of the target and use
that as the initial guess we pass to nlm().

Q.14 Modify robot.evaluation() to return all of the segments that could be considered part
of a circle, and not just the first one.

Q.15 If the robot is very close to the target, it is hard identify the shape of the target as
circular. The curvature of the part of the circle looks close to a line as the robot can
see fewer points on the arc of the circle. How can we adjust the classifier or the criteria
for accepting a segment as the target to handle this case? How do we guard against
classifying an obstacle or side as the circular target in these cases?

Q.16 In the streaming data case where we process one look at a time and then determine
where to move to next, we’d like to be able to identify a circle and move towards it if we
are not certain whether it actually is a circle. How can we provide a level of confidence
or uncertainty in our classification of a segment as the circular target?

Q.17 Use cross-validation on the 100 final looks to determine the best values of the tuning
parameters max.ss.ratio, min.radius, max.radius and range.threshold for classifying a
look. What are the corresponding error rates?

4.4 Detecting the Target with Streaming Data in Real Time
We have explored the different log files and their looks. We have used the data to develop a
statistical classifier for identifying the circular target and gained an understanding of how
well it works. This is the typical way we develop statistical methods, i.e., with off-line data

214 Case Studies in Data Science in R

that we use to fit and validate models. However, our original goal was to create a classifier
that we could use in real-time, or on-line, while the robot is moving through the course to
detect the target. This is to be used as the robot reports position2d and laser records
one at a time. Not only do we want a good classifier to correctly identify the target, we also
would like to be able to develop search strategies that combine information from a sequence
of these records to tell the robot where to go next.

In this section, we process data from the robot line by line as if we were receiving the
data from the robot in real time. There are many ways we might obtain the data from the
robot as it reports its position and what it sees. Regardless of the specifics, the data would
come to us not from a file, but from a stream of data from which we can read individual
values or lines. R uses the concept of a connection to describe a general source of data
that abstracts the source of the data, e.g., a file, a Web connection, the output from a
shell command. We used readLines() to read all of the data from a log file. We can use the
same approach with a connection. However, instead of reading all of the data from the fixed
content (a file), we want to read one or more lines, process these, and then return to read
the next lines as they become available from the robot. This is quite different from the fixed
contents of files, but made possible with connections.

We first open() our connection. We’ll use a regular log file to illustrate the approach,
but this applies for any connection. The command

con = file("logs/JRSPdata_2010_03_10_12_12_31.log", "r")

creates and returns a connection object that is poised ready to read the first byte from the
stream.

We will read one line at a time with readLines(con, n = 1). Importantly, we
specify the connection object from which to read. Each time we call readLines() or some
similar function with the same connection, we read from where we left the connection in the
previous call. In other words, we do not re-open the connection and start reading from the
first line again. We merely keep reading from where the previous read operation finished.

To process the lines in the robot stream, we will mimic the computations from our
readLog() function we developed earlier in the chapter. Instead of processing all of the lines
with vectorized computations, we read one line at at time and interpret it, and then return
to read the next line. If the current line is a comment line, we discard it. If the line is a
regular record, we break its elements into separate values. We then examine the 7 common
meta-fields to determine if the record is of interest to us, i.e., has a type value of 001 and
an interface value of either laser or position2d. We can implement this via a while
loop with

while(length(line <- readLines(con, 1))) {
if(grepl("^#", line))

next

vals = strsplit(line, "[[:space:]]+")[[1]]
if(vals[6] != "001") # the type field

next

update look with values
call robot.evaluation to determine if we are
looking at the target.

}

In the condition for the loop, we both read and assign one line from the connection. If

Processing Robot and Sensor Log Files: Seeking a Circular Target 215

we are at the end of the connection, readLines() will return an empty vector. Therefore, to
detect the end, we test the length of the value of line. Note that we assigned the result of
the call to readLines() in the call to length() and the condition for the while loop. This is
shorter than explicitly assigning the value and testing it in the body of the loop.

To complete our loop, we need to add code to merge the information from the posi-
tion2d and laser lines into a look data frame and then pass this to robot.evaluation(). If
this returns information about a matching segment, then we exit the loop as we have found
the circular target. We can implement this with

iface = vals[4]
if(iface == "position2d") {

look[1, c("time", "x", "y")] = as.numeric(vals[c(1, 8:9)])
} else if(iface == "laser") {

look[1, 4:360] = as.numeric(vals[seq(14, length = 360, by = 2)])
ans = robot.evaluation(look)
if(length(ans))

break
}

The idea here is that we update a one-row data frame stored in look. We create this
once outside of the loop but insert the values from the current records. When processing
a position2d record, we update the location of the robot in look but do not call the
robot.evaluation() function. We do that only when we get the range values from the next
laser record and so have a complete record for the look.

Our loop provides the basic structure for processing streaming/on-line data. We can
adapt it to use a sequential classifier that recognizes the target but does not announce it
has found it until it has several confirmatory looks. Similarly, we can add functionality to
provide suggestions to the robot for its next move so that we can get an improved look at
the potential target based on the current view, e.g., move towards or away from the target.
We can also use R’s connections to write information to the robot and direct it as part of
the actions of the loop.

Q.18 Study the code in this case study and modify it to allow a user to substitute his/her
own functions for each of the different components we might want to change. For exam-
ple, allow a different function for fitting the circle, or metric for evaluating the fit for a
given triple of parameters. Similarly, allow for a different mechanism for computing an
initial estimate of the center of the circle for the call to nlm().

Bibliography
[1] R Core Development Team. R help page for the nlm() function, 2000–2014.

[2] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

http://www.r-project.org

This page intentionally left blankThis page intentionally left blank

5
Strategies for Analyzing a 12-Gigabyte Data Set:
Airline Flight Delays

Michael Kane
Yale University

CONTENTS
5.1 Introduction . 217

5.1.1 Computational Topics . 218
5.2 Acquiring the Airline Data Set . 219
5.3 Computing with Massive Data: Getting Flight Delay Counts 219

5.3.1 The R Programming Environment . 219
5.3.2 The UNIX Shell . 221
5.3.3 An SQL Database with R . 223
5.3.4 The bigmemory Package with R . 227

5.4 Explorations Using Parallel Computing: The Distribution of Flight Delays . . 229
5.4.1 Writing a Parallelizable Loop with foreach . 230
5.4.2 Using the Split-Apply-Combine Approach for Better Performance . . . 231
5.4.3 Using Split-Apply-Combine to Find the Best Time to Fly 232

5.5 From Exploration to Model: Do Older Planes Suffer Greater Delays? 236
Bibliography . 238

5.1 Introduction
Anyone who has dealt with flight delays at the airport understands the associated inconve-
nience and aggravation. And while we might hope that delays are rare, they are probably
more common than you think. Since October 1987, there have been over 50 million flights
in the United States that failed to depart at their scheduled times. Around 200,000 of those
flights were at least two hours late; some were much later. From these two simple facts
we can surmise that delays are not isolated, rare events; they are routine. Since 1987 the
number of flights per year has steadily increased and as this trend continues we expect to
see more inconvenience, more aggravation, and more time lost.

But why do flight delays occur? Is it simply because there are more flights now
than in previous years? Are delays caused by bad weather? Is enough time being sched-
uled for flights? Do single flight delays cause multiple flight delays later in the day?
A better understanding of the cause of flight delays could allow the airline industry
to intelligently react to issues such as bad weather, providing more flights with fewer
delays.

217

218 Case Studies in Data Science in R

This chapter presents a means for understanding flight delays by analyzing data. In 2009,
the American Statistical Association (ASA) Section on Statistical Computing and Statistical
Graphics released the “Airline on-time performance” data set [17] for their biannual data
exposition. The data set was compiled and organized by Hadley Wickham [16] from the
official releases from the US government’s Bureau of Transportation Research and Innovative
Technology Administration (RITA) Web site (http://www.transtats.bts.gov/DL_
SelectFields.asp?Table_ID=236). The data include commercial flight information
from October 1987 to April 2008 for those carriers with at least 1% of domestic U.S. flights
in a given year. In total, there is information for over 120 million flights, each with 29
variables related to flight time, delay time, departure airport, arrival airport, and so on. In
total, the uncompressed data set is about 12 gigabytes (GB) in size. The data set is so large
that it is difficult to analyze using the standard tools and techniques we have come to rely
upon. As a result, new approaches need to be utilized to understand the structure of these
data. This chapter presents some of these new approaches along with an initial exploration
of airline flight delays.

These new computational approaches are illustrated by taking the reader through the
process of acquiring, exploring, and modeling the airline data set. The first section de-
scribes how to acquire the data. The second section demonstrates the use of 3 different
computing environments to manage and access large data sets: R [7], the UNIX shell, and
SQL databases. The third section offers easy-to-use parallel computing techniques for basic
data exploration. No prior experience with parallel computing is required for this section.
The fourth section provides an approach to answering the question, “Do older planes suffer
greater delays?” This section synthesizes earlier material and demonstrates how to construct
linear models with a potentially massive data set.

5.1.1 Computational Topics
• Big Data strategies.

• Shell commands and pipes.

• Relational databases.

• Parallel computing.

• External data representation.

• The split-apply-combine approach.

Question: What if the reader runs into software questions while trying to run the
sample code?
Answer: Throughout the chapter an attempt has been made to anticipate some of the
implementation issues that will arise as the reader works through the examples. These
issues are presented as questions along with their solutions in boxes like this one.

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 219

5.2 Acquiring the Airline Data Set
The airline on-time performance data can be found at http://stat-
computing.org/dataexpo/2009/the-data.html. The Web page contains the compressed
airline delay data in comma-separated values (CSV) files, organized by year. The page also
provides descriptions of each of the 29 variables associated with each flight. The following
sections will assume that you have downloaded the data files and decompressed each of
them, e.g., using the bunzip2 shell command or potentially a point-and-click graphical
interface.

5.3 Computing with Massive Data: Getting Flight Delay Counts
This section introduces methods for managing and accessing data sets that require more
than a computer’s available RAM (Random Access Memory). At the time this chapter was
written, a 12Gb data set, such as the airline data, presents a computational challenge to
most statisticians because of its sheer size. Admittedly, this may not always be the case.
A future reader may scoff at the idea of having difficulty managing 12 gigabytes of data.
However, it is assumed that there will still be a data set which, by virtue of its size, frustrates
even this well-equipped statistician.

To begin our exploration, let’s consider two simple questions:

• How many flights are in the data set for 1987?

• How many Saturday flights appear in the entire data set, i.e., all years?

The next four subsections show distinct approaches to answering these questions. The
first uses the R programming environment with its native data structures and capabilities.
The second uses the UNIX shell, independent of R or other programming environments.
The third uses R to connect to a database where SQL queries are constructed to answer
the posed questions. The fourth and final approach utilizes some of R’s more advanced
functionality to show how the bigmemory package can be used to explore the entire airline
data set from within the R environment.

5.3.1 The R Programming Environment
The downloaded files provide data for more than 20 years of airline traffic. Each file holds
information for one year and each year contains information for approximately 5 million
flights. The aggregate data set is larger than the amount of RAM on most single computers.
However, to compute the flight count for 1987, we do not need to load the entire data set for
all years into R. We can simply load the 1987 data and compute the number of observations
with

x <- read.csv("1987.csv")
nrow(x)

[1] 1311826

To compute the number of Saturday flights across multiple files, we need to determine
how many values in the column labeled DayOfWeek correspond to Saturday in each of the

http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html

220 Case Studies in Data Science in R

data files. The values in this column have values from 1 through 7, with 1 corresponding to
Monday and 7 for Sunday. The value 6 indicates Saturday. At the same time, we need to be
wary of the size of the data set. We can find the total number of Saturday flights by working
on one file at a time, rather than trying to read all of the files at once. After a single file is
read into a data frame, the number of Saturday flights will be calculated and saved as an
intermediate result. This will be done for each file and, finally, these intermediate counts
will be added together to get the total. This approach is sometimes called the incremental
or chunking approach because a single, manageable “chunk” of data is processed and an
incremental result is stored before aggregation, which yields the final result. Here, the
individual files are natural chunks. In other cases, we divide a large collection of observations
into smaller chunks by just reading/processing chunks of the observations sequentially. For
this airline data, we can compute the total number of Saturday flights with

totalSat <- 0
for (year in 1987:1988) {

x <- read.csv(paste(year, ".csv", sep=’’))
totalSat <- totalSat + sum(x$DayOfWeek == 6)

}
totalSat

[1] 15915382

We could improve the speed of this by specifying a vector of types for each column via
the colClasses parameter. This helps read.csv() (and ultimately read.table()) so that it
doesn’t have to infer the type of each column and potentially have to reallocate memory if
it guesses incorrectly from the first k observations. We could also provide the total number
of observations via nrows if we already knew these, as we did for the 1987 data. Again,
this helps R to allocate memory efficiently by doing it just once for each column/vector of
values.

Instead of the for loop, we could also use

counts <- sapply(sprintf("%d.csv", 1987:1988),
function(f)

sum(read.csv(f)$DayOfWeek == 6))
sum(counts)

Each call to our function reads the appropriate CSV file and then discards it after computing
the number of observations. This is the critical aspect of both approaches, i.e., to avoid
having more than one year’s data frame in memory at any time. The sapply() approach
enables this; the for loop approach actually has two data frames in memory at times (when
and why?). With the sapply() code, we also have the counts for each individual year and
can examine these to see how they are distributed, e.g., does the number of flights in a year
increase over the years? The for loop code is easily modified to create this vector also.

Although these questions were easy to answer, the approach of loading files as needed
can be somewhat limiting. Also, the approach assumes that each data file can be stored
as a data frame. When operations cannot be expressed incrementally/cumulatively, this
approach becomes cumbersome. In the next sections, we will focus on approaches where the
data are managed and accessed from a single source, rather than a set of files, allowing us
to perform more sophisticated analyses.

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 221

Question: Can R objects be destroyed explicitly when we are done with them for better
performance?
Answer: It is possible to force R to remove a variable and run the garbage collector,
freeing all memory associated with that variable. For the vast majority of cases, little
is gained by doing this. Even in cases where this helps, we will not see a dramatic
increase in speed nor a dramatic decrease in memory usage.

A call to the garbage collector may help in special cases where the variables held in
an R session have memory requirements greater than the size of a computer’s available
RAM. When programs require more RAM than what is available, variables may be
“swapped” from RAM to the disk and retrieved when needed. In some cases, even
often-used variables can be swapped to disk. This causes calculations to run slower
because accessing the data from the disk takes much longer than accessing them from
RAM. In a few cases, calling the garbage collector may free unused memory in RAM,
allowing other variables to take their place and reducing the amount of time spent
swapping. It may also reduce memory fragmentation, which can be important.

The function to remove a variable is rm() and the garbage collector is called with
the gc() function. The following code shows how to use these two functions to ensure
that only one data frame exists in RAM at any time when calculating the number of
Saturday flights:

totalSat <- 0
for (year in 1987:1988) {

x <- read.csv(paste(year, ’.csv’, sep=’’))
totalSat <- totalSat + sum(x$DayOfWeek == 6)
rm(x)
gc()

}
totalSat

[1] 15915382

Here we explicitly remove the data frame object and force the garbage collector to run.
R does this implicitly.

5.3.2 The UNIX Shell
This section uses the UNIX shell to answer the previously posed questions. The shell is
a powerful interactive and scripting programming environment with a reasonably simple
language and a rich set of computational resources. Many common operations are provided
as built-in utilities, analogous to functions in R. For example, finding the number of flights
in 1987 can easily be accomplished with the wc utility. wc stands for “word count” which
is not quite what we want but the -l option can be used to count lines rather than words.
To find out how many flights in 1987 were recorded we can simply type:

Shellwc -l 1987.csv
1311827 1987.csv

Again we see that there are 1,311,826 flights that were recorded for 1987. The count from
the shell command indicates one more, but this is because it includes the first (header) line
of the file that lists the names of each column. The utility executes more quickly than the
solution from the previous section and it was expressed with less code. In this subsection we

222 Case Studies in Data Science in R

will see that the shell is often a very good tool for file manipulation, simple subset selection,
and simple summaries. Furthermore, we can invoke shell commands from R (and other
languages) and read the resulting output back into R, giving us the best of both worlds.

For the rest of this section, we would like to work with a single CSV file, which contains
all of the airline data. This file can be created by appending each of the airline files to a new
file. However, when the files are being concatenated we need to make sure that the header
information, which is given on the first line of each file, appears only once at the beginning
of the new file.

The task of combining each of the CSV files into a single file can be accomplished with
the following commands:

Shell cp 1987.csv AirlineDataAll.csv
for year in {1988..2008}

do
tail -n+2 $year.csv >> AirlineDataAll.csv

done

The resulting file begins with a header line containing the names of each column and then
contains observations for each flight for every year.

This small script illustrates some of the features of the shell. We copied the first file
(1987.csv) to our target file and then appended the contents of the other files to this new
file. We can specify the years to iterate over using a list constructor 1988..2008. This
is analogous to 1988:2008 in R. Then, we can create an argument specifying a file name
by appending .csv to the value of the shell variable year, i.e. $year.csv1. Next, we can
extract the “tail end” of a file with the UNIX tail utility. The -n+2 option specifies that tail
will return all but the first line of the file. Finally, we can use the >> operator to redirect
the output from the tail command so that it is appended to the AirlineDataAll.csv file.

The loop above is not our only option for aggregating information from a file. The
tail command itself can take multiple files as input, outputting the specified lines for each
of the files. For example, if were were interested in creating a single file, with no header
information, for all files from the twentieth century we could simply use the command:

Shell tail -n+2 19*.csv > All1900.csv

Like the last example, this one uses tail to return all but the first line of each of a set of
files. Unlike the last example, we used 19*.csv to specify all files that start with 19 and
end with .csv. This example also made use of the > operator, which overwrites the existing
contents of All1900.csv or creates the file if it does not already exist. This version does not
include the header line at the top of the file. Depending on how we use this file, this may or
may not be important, but it is something we need to know. Now that we have two different
approaches for creating a single file, holding all of the airline data, let’s use the UNIX shell
to find the number of Saturday flights.

Calculating the total number of Saturday flights is trickier than simply counting the
number of lines in a file. The day of the week column is the fourth one in AirlineDataAll.csv.
(Examine the first line of any of the original data files to verify this.) So, we would like to
extract only that column of data values from the file and see how many times 6 appears as
the extracted value (corresponding to Saturday). To do this we’ll need to introduce a few
more UNIX shell utilities and concepts. First, we can use the cut utility, which extracts and
outputs sections from each line of a file. We’ll use it to extract the fourth column of each
line and discard all other columns. This will create a large collection of values ranging from
0 to 6, i.e., the day of the week as a number, each on its own line of output. We can then use

1The shell knows that the variable is named year since a shell variable cannot have a “.” in its name.

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 223

the grep command to match only those lines that contain the character 6. This produces a
collection of lines that is a subset of that produced by the cut command. Finally, we can
use wc, with which we are already familiar, to compute the total count for Saturday flights
by counting the number of lines output by the grep command. We could implement this
with 3 separate commands and output the results of each to intermediate files, e.g.,

Shellcut -d , -f 4 AirlineDataAll.csv > tmp
grep 6 tmp > tmp1
wc -l tmp1
rm tmp tmp1

However, the shell explicitly supports directing the output from one command as input to
another command without (explicitly) using intermediate files. This the purpose of the pipe
operator |. We can write the entire computation to calculate the number of Saturday flights
with the command:

Shellcut -d , -f 4 AirlineDataAll.csv | grep 6 | wc -l
15915382

In this example the cut utility is passed 3 sets of parameters. The first set is -d, which
specifies that the file consists of columns, each of which is delimited (-d) by a comma. The
second set -f 4 specifies that we want to extract the fourth column/field. The third specifies
the name of the file whose contents we want to process. The output of the cut command is
the fourth column of AirlineDataAll.csv. The lines from the cut command are then passed
as lines of input for the grep command, which outputs all the lines that consist of the single
value 6. All 15,915,382 of those rows are passed to wc -l, which counts the number and
prints the result on the console.

We should note that we don’t actually need to create this single file containing the data
for all of the years in order to easily calculate the number of Saturday flights. We can have
cut operate on all of the files with the command cut -d , -f 4 *.csv and then pipe
this to grep and cut as before. However, in the next section we will need and use this single
file containing all of the data.

The UNIX shell capabilities go far beyond the examples shown here. There are many
other utilities included with the shell and users can even create their own utilities using
almost any programming language. As a result, the UNIX shell is often a good choice for
file manipulation and basic summaries. Moreover, we can use these shell commands from R
via the system() and system2() functions.

5.3.3 An SQL Database with R
The R programming environment approach to answering the posed questions is simple for
someone who is familiar with R and its functionality could easily be expanded to do more
than simply tally the number of flights in 1987 or on Saturdays. However, the approach
is somewhat limited in that it assumes each file is relatively small, i.e., the contents can
be held in memory. The UNIX shell approach is also simple, if you are already familiar
with its syntax and computational model. With only a single line we were able to answer
each of the posed questions. Also, the results were returned more quickly than with R.
However, the UNIX shell is not a familiar environment to many statisticians, it has a limited
computational model, and it does not have built-in capabilities for performing statistical
analyses. As a data exploration requires more sophisticated analyses, the corresponding
UNIX scripts may become difficult to write. In practice, we often combine R and the shell
to process data. However, there is an important alternative approach – databases.

224 Case Studies in Data Science in R

A database provides a general solution for managing a large data set and extracting
meaningful information. Where the previous approaches required that we manually open
files and extract the data of interest each time we process the data, a database provides a
means to ingest and structure the data once and reuse that structure each time we access
the data. A database also provides the Structured Querying Language (SQL) that allows
us to specify and efficiently extract the subset of data of interest with a powerful query.
This approach creates a rich and general way of not only extracting potentially large and
complex subsets of the data but also for computing basic summaries of these subsets. Just
as we can call the shell from R or other languages, we can interact with a database from
R, sending SQL commands to the database and accessing the output as R objects.

The examples in this section use SQLite [1], a lightweight (SQL) database engine. All
interactions with the database are done in R with the RSQLite [2] package. However, these
examples are not specific to SQLite or RSQLite. They will work with any SQL database
engine and corresponding R database connector package.

Question: How do I import the airline delay data into a database?
Answer: We’ll use SQLite as the database engine. You must have SQLite installed on
the machine. The software can be downloaded from the SQLite Web page (http:
//www.sqlite.org/). You must also have the RSQLite package installed on your
machine; it can be found on the CRAN Web site or installed directly with install¬
.packages("RSQLite"). The following instructions are based on those given by
Hadley Wickham on the 2009 Data Expo Web page.

• Inside the directory where the data (CSV files) reside, type the command:

Shell sqlite3 AirlineDelay.sqlite3

• This will create the database and put you into a SQL console/read-eval-print-loop
(REPL), with a prompt sqlite<. Next, create the table and its fields with the
command

SQL CREATE TABLE AirlineDelay (
Year int,
Month int,
DayofMonth int,
DayOfWeek int,
DepTime int,
CRSDepTime int,
ArrTime int,
CRSArrTime int,
UniqueCarrier varchar(5),
FlightNum int,
TailNum varchar(8),
ActualElapsedTime int,
CRSElapsedTime int,
AirTime int,
ArrDelay int,
DepDelay int,
Origin varchar(3),
Dest varchar(3),
Distance int,
TaxiIn int,

http://www.sqlite.org/
http://www.sqlite.org/

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 225

TaxiOut int,
Cancelled int,
CancellationCode varchar(1),
Diverted varchar(1),
CarrierDelay int,
WeatherDelay int,
NASDelay int,
SecurityDelay int,
LateAircraftDelay int);

• Now that the table has been created, import the data from the AirlineDataAll.csv
file. This may take from 10 minutes to over an hour, depending on the speed of
your machine.

SQL.separator ,
.import AirlineDataAll.csv AirlineDelay

To extract all of the flights in 1987, start by opening an R session and connecting to the
database:

library(RSQLite)
delay.con <- dbConnect("SQLite", dbname = "AirlineDelay.sqlite3")

The delay.con variable holds a connection to the database that we can use in subsequent
commands.

Queries are expressed via SQL statements. These statements allow a user to describe the
data of interest and perform operations (such as counting) on them. The SELECT statement
is used to retrieve entries from a database and we can use it to retrieve all data of the flights
from 1987:

delays87 <- dbGetQuery(delay.con,
"SELECT * FROM AirlineDelay WHERE Year=1987")

dbGetQuery() is an R function. It sends an SQL query to the database to be processed there
and dbGetQuery() waits for the result. It does not examine the query as that is written in
a different language (SQL). The query above returns all of the variables in a data frame
for those flights whose value for the year variable is equal to 1987. Now, we can find the
number of 1987 flights in a familiar way:

nrow(delays87)

[1] 1311826

Equivalently, the SQL engine can do the counting for us by utilizing the COUNT() aggre-
gator function:

dbGetQuery(delay.con, "SELECT COUNT(*), Year FROM AirlineDelay
WHERE Year=1987")

[1] 1311826

It is reasonably clear from the examples above that SQL statements are useful as we
perform more complex queries. What if, instead of getting the flight count for a single year,
we want to get the flight count for each year in the database? We can do this using the
GROUP BY clause in SQL. The following query groups all of the rows of the data set by
year and counts the number of rows in each of these groups:

226 Case Studies in Data Science in R

dbGetQuery(delay.con,
"SELECT COUNT(*), Year FROM AirlineDelay GROUP BY Year")

COUNT(*) Year
1 1311826 1987
2 5202096 1988
3 5041200 1989
4 5270893 1990
5 5076925 1991
6 5092157 1992
7 5070501 1993
8 5180048 1994
9 5327435 1995
10 5351983 1996
11 5411843 1997
12 5384721 1998
13 5527884 1999
14 5683047 2000
15 5967780 2001
16 5271359 2002
17 6488540 2003
18 7129270 2004
19 7140596 2005
20 7141922 2006
21 7453215 2007
22 7009728 2008

To find the number of Saturday flights, we can use a query similar to the previous one,
but rather than grouping by the Year variable, we subset/filter by day of week using the
WHERE clause and perform the calculations in SQL with

dbGetQuery(delay.con,
"SELECT COUNT(*), DayOfWeek FROM AirlineDelay

WHERE DayOfWeek = 6")

COUNT(*) DayOfWeek
1 15915382 6

(Note the use of the single = operator in SQL for testing equality, different from == in R.)
A database provides a useful way of managing large data sets and it supports complex

queries. However, it also comes with challenges. First, it requires the creation of the database
and the importing of data. For the airline data this was not difficult, but it did involve an
extra step. Second, the database approach also requires that the statistician is familiar with
SQL to perform even simple operations. Finally, if an analysis is done in R and the data set
is small, we would use a data.frame or matrix to manage it. When the data set gets big
and we need a new mechanism to handle the larger volume, a database connection cannot
simply be “swapped-in” in place of the familiar R data structures. Significant changes must
be made in the code in order for the analysis to work with a database. Wouldn’t it be nice if
there was an R data structure that behaved like a matrix, but at the same time, managed
large data sets for you?

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 227

5.3.4 The bigmemory Package with R
The R package bigmemory [4] provides matrix-like functionality for data sets that could
be much larger than a computer’s available RAM. This approach to computing with data
provides several advantages when compared with other approaches. First, bigmemory pro-
vides data structures that hold entire, possibly massive, sets of data. As a result, there is
no need to manually load and unload data from files. Second, the data structures provided
by bigmemory are accessed and manipulated in the same way as R’s matrix objects. Our
experience with R has prepared us to work with bigmemory and there is no need to learn
a new language, such as SQL, to access and manipulate data. Third, bigmemory works
with many of R’s standard functions with little or no modification, minimizing the amount
of time required to perform standard manipulations and analyses. Finally, bigmemory was
designed from the ground up for use in parallel and distributed computing environments.
Later on we will see how bigmemory can be used as a basis for implementing scalable
analyses for data that may be much larger than even the airline data set.

The essential data structure provided by bigmemory is the bigmatrix. A bigmatrix
maintains a binary data file on the disk called a backing file that holds all of the values in a
data set. When values from a bigmatrix object are needed by R, a check is performed to
see if they are already in RAM (cached). If they are, then the cached values are returned. If
they are not cached, then they are retrieved from the backing file, cached, and then returned.
These caching operations reduce the amount of time needed to access and manipulate the
data across separate calls, and they are transparent to the statistician. A bigmatrix
object is designed to be a convenient and intuitive tool for computing with massive data.
When using these data structures the emphasis is on the exploration, not the underlying
technology.

As mentioned before, bigmatrix looks like a standard R matrix. It has rows and
columns, and subsets of the elements of a bigmatrix can be read and set using the
standard subsetting operator ([]). Like R’s matrix, a big.matrix object requires that
all elements are of the same type. However, this leads to a challenge with the airline data
set since it has columns that are character type as well as numeric. Before we can read the
airline data into a bigmatrix, some preprocessing must be done so that all the columns
and their values are numeric. For columns with character data, this preprocessing step
creates a mapping between a unique numeric value and the character value for each row,
much like R’s factor data type. Preprocessing is left as an exercise for the reader or a
preprocessing script is available from the author of this chapter. For the rest of the chapter,
we will assume that the preprocessing step has been performed and that the preprocessed
file has been named airline.csv.

A user can create a bigmatrix from a CSV file with the function read.big.matrix()
that is similar to R’s read.csv() function, e.g.,

x <- read.big.matrix("airline.csv", header = TRUE,
backingfile = "airline.bin",
descriptorfile = "airline.desc",
type = "integer", extraCols = "age")

The extraCols and descriptorfile parameters used in the example will be explained later.
As we said, a big.matrix object x acts like a regular R matrix and commands such

as dim() and head() give the appropriate results, e.g.,

dim(x) # How big is x?

228 Case Studies in Data Science in R

[1] 123534969 30

x[1:6,1:6] # Show the first 6 rows and columns.

Year Month DayofMonth DayOfWeek DepTime CRSDepTime
[1,] 1987 10 14 3 741 730
[2,] 1987 10 15 4 729 730
[3,] 1987 10 17 6 741 730
[4,] 1987 10 18 7 729 730
[5,] 1987 10 19 1 749 730
[6,] 1987 10 21 3 728 730

At this point, we can compute the number of flights in 1987 in a familiar way:

sum(x[, "Year"] == 1987)

[1] 1311826

Similarly, the number of Saturday flights can be found using the command

sum(x[,"DayOfWeek"] == 6)

[1] 15915382

Depending on your hardware, the read.big.matrix() function could have taken over 30
minutes to complete. The prospect of waiting to load these data in future R sessions is
very unappealing. Wouldn’t it be nice if subsequent sessions could create a bigmatrix by
simply attaching to the existing backing file and not have to wait to create the big matrix
object? Fortunately, we can do this by using a descriptor file. This file contains all of the
information needed to create a new bigmatrix from an available backing file. A new
bigmatrix, named y, which uses the airline backing file, can be rapidly created with the
attach.big.matrix() function:

y <- attach.big.matrix("airline.desc")

It is important to realize that the variables x and y now point to the same data set. This
means that changes made in x will be reflected in y. To illustrate this point, let’s create a
new bigmatrix object which has 3 rows, 3 columns, and holds zero integer values.

foo <- big.matrix(nrow = 3, ncol = 3, type = "integer", init = 0)

We can look at the contents of foo by typing:

foo

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0

Now, let’s create another variable bar:

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 229

bar <- foo

If foo and bar were R matrices, then bar would be assigned a copy of foo. However, since
foo is a bigmatrix object, the assignment causes bar to point to the same data as foo.
This is easily verified with

bar[1,1] <- 1
foo

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 0 0
[3,] 0 0 0

The fact that big.matrix objects can reference the same data can be extremely useful.
By preventing R from making copies of a potentially large data set, calculations can be
made more efficient, both in terms of memory usage and computing time. However, this
functionality comes at a price. Because they do not follow the same copy semantics as R
matrices, a statistician may have to make small modifications so that bigmatrix objects
work correctly with existing R code.

Q.1 Using the UNIX shell, create the AirlineDataAll.csv file without using a loop.

Q.2 Write a preprocessing script (using the shell, R, Python or any tools) to create a file
that can be used with bigmemory, i.e., convert the non-numeric values to numeric
values in some well-defined manner.

Q.3 How many flights were there for each day of the week?

Q.4 For each year, how many flights were there for each day of the week?

Q.5 For each year, how many of the tail codes are listed as NA?

Q.6 Which year had the greatest proportion of late flights? Is this result significant?

Q.7 Which flight day is best for minimizing departure delays? Which time of day?

5.4 Explorations Using Parallel Computing: The Distribution of
Flight Delays

Many calculations executing quickly on small data sets take proportionally longer on larger
ones. When execution time becomes an issue, parallel computing can be used to reduce the
time required by computationally intensive calculations. R offers several different packages
for executing code in parallel, each relying on different underlying technologies. Because
these parallel mechanisms, or backends, are different, their configuration and use are also
slightly different. As a result, it has traditionally been cumbersome to migrate sequential
code to a parallel platform, and even after this migration was successful, the resulting
parallel code was usually specific to a single parallel backend. The foreach package [11]
addresses this issue by providing one approach to standardizing the syntax for describing
parallel calculations. The foreach package decouples the function calls needed to run

230 Case Studies in Data Science in R

code in parallel from the underlying technology executing the code. This approach allows
a statistician to write and debug sequential code and then run it in parallel by registering
an appropriate package such as multicore [14], snow [13] or nws [12]. Using the foreach
package, R code can run sequentially on a single machine, in parallel on a single machine,
or in parallel on a cluster of machines with no (or very minimal) code changes.

Although parallel computing can dramatically decrease execution time for many calcu-
lations, you should be aware that there are limitations. There are even cases where par-
allelization can increase execution time, not decrease it. When deciding whether or not
to parallelize code there are a few things to keep in mind. First, there is some additional
overhead associated with executing any parallel code (e.g., launching the worker processes,
copying data to them, collecting the results). As a result, code should only be parallelized
when each of the tasks run in parallel takes a sufficient amount of time to compute so that
this overhead becomes a negligible part of the overall computational time. Second, you can
expect a speed-up that is at most linear in the number of processor cores. If a snippet of
code takes t seconds to execute on a single core and it is run in parallel on two cores, it
will take more than t/2 seconds to execute. Speed gains often diminish as the number of
cores being utilized increases. Finally, each R object in the main R session that is used
in the parallel computations is typically copied to each of the parallel processes. If these
copies cannot all be stored in RAM, then there will be significant overhead as the operating
system uses the hard drive to manage these copied data structures.

Now that you are aware of the issues with parallel computing, we are going to explore
the process of creating parallel code. The next subsection discusses the process writing code
that can be executed in parallel. The following section presents an approach for optimizing
potentially parallel code called split-apply-combine. The third and final subsection explores
the use of the foreach and bigmemory packages to perform more sophisticated analyses
with the airline data set in parallel.

5.4.1 Writing a Parallelizable Loop with foreach

Let’s go back to the question from the last section’s exercises, “For each day of the week,
how many flights are recorded?” To compute the solution, we could use a big.matrix
object to store the airline data and a for loop to iterate over each day, finding the number
of flights, e.g.,

x <- attach.big.matrix("airline.desc")
dayCount = integer(7)
for (i in 1:7)

dayCount[i] <- sum(x[,"DayOfWeek"] == i)

dayCount

[1] 18136111 18061938 18103222 18083800 18091338
[5] 15915382 17143178

You may notice that computing the number of Monday flights is completely independent of
computing the number of Tuesday flights. Wouldn’t it be nice if we could take advantage of
the multiple cores in a machine to calculate day of the week counts at the same time? Well,
we can; and loops like this, where each iteration is independent of other iterations, are so
easy to execute in parallel that they are sometimes called “embarrassingly parallel.”

It is important to understand that not all loops are embarrassingly parallel and some
calculations must be run sequentially. A single Markov chain simulation is generally impos-
sible to run in parallel. As an example, consider the following random walk on the integers
with an initial state of zero, implemented with

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 231

state <- numeric(10)
for (i in 2:10)

state[i] <- state[i - 1] + sample(c(-1, 1), 1)
state

[1] 0 1 0 1 2 3 2 3 4 5 6

For the value of state at time i to be calculated, the value of state at time i - 1 must be
known. Information must be shared across loop iterations to perform the simulation, and
as a result, iterations of the loop must be computed sequentially, not in parallel.

Getting back to the question at hand, let’s start with a sequential solution to the prob-
lem of tallying flights in a given day. Unlike the previous implementation, let’s use the
foreach [11] package. This package allows us to define embarrassingly parallel loops ei-
ther sequentially or in parallel. The new code uses the foreach() function and the previously
created big.matrix object:

library(foreach)
dayCount <- foreach(i = 1:7, .combine=c) %do% {

sum(x[,"DayOfWeek"] == i)
}

Like the previous code example, loop iterations are indexed by an integer i going from 1
to 7. In each iteration of the loop, the number of times DayOfWeek is identical to the loop
counter is calculated. Unlike the previous example, the calculated value is simply returned,
not appended to the dayCount variable. The .combine parameter tells foreach() to combine
the results from each iteration of the loop into a vector, which is returned and stored in
the dayCount variable. You should also notice that after the foreach() statement, there is a
%do% operator that tells the function to perform each loop iteration sequentially. (We’ll use
%dopar% later to perform the loop in parallel.) The result of this example and the previous
one are the same; dayCount holds the number of flights recorded for each day of the week
in a vector of numeric values.

Both the for and foreach() loop in this subsection process the entire DayOfWeek
column 7 times to extract the number of delays for each day. For small data sets, each of
these passes happen very quickly and the corresponding delay may go unnoticed. However,
as the number of rows in the data set grows, each extraction requires more time, eventually
delaying the exploration. This delay would be even more pronounced if we were finding the
delay count for each day of the month. A day of the month count would require 31 separate
passes through the data set and would take more than 4 times longer than finding the delay
count for the day of the week. Wouldn’t it be nice if we could perform these calculations
while only passing through the data once to get the rows of interest and once to perform the
calculation? In the next subsection, we will explore a different approach that only requires
a single pass through the data offering significant performance gains.

5.4.2 Using the Split-Apply-Combine Approach for Better Performance
The task of counting the number of delays by the day of the week can be recast into
separating all of the observations into 7 groups, one for each day of the week and then
counting the number in each group. We can do this generally for records using the split()
function, which passes through the data once. The split() function returns a named list.
The names of the list, in our case, correspond to the day of the week. For each of day of
the week, the list contains a vector of indices corresponding to the rows for that day:

232 Case Studies in Data Science in R

Split the rows of x by days of the week.
dow <- split(1:nrow(x), x[,"DayOfWeek"])

Rename the names of dow
names(dow) <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")

Get the first 6 rows corresponding to Monday flights.
dow$Mon[1:6]

[1] 5 11 19 26 32 38

Now that we have the row numbers for each day of the week, we can write a foreach()
loop to get the counts for each day. Since all of the information to get the delay counts is
contained in the dow variable, we don’t need to include the data set in the calculation.

dayCount <- foreach(dayInds = dow, .combine = c) %do% {
length(dayInds)

}
dayCount

[1] 18136111 18061938 18103222 18083800 18091338
[6] 15915382 17143178

There are many calculations, like this, that can be accomplished by grouping data (called
the split), performing a single calculation on each group (the apply), and returning the
results in a specified format (the combine). The term “split-apply-combine” was coined
by Hadley Wickham [18] but the approach has been available in a number of different
computing environments for some time under different names.

There are several advantages to the split-apply-combine approach over a traditional
for loop. First, as already mentioned, split-apply-combine is computationally efficient. It
only requires two passes through the data: one to create the groups and one to perform
the calculation. Admittedly, storing the groups from the split step requires extra memory.
However, this overhead is usually manageable. In contrast, a for loop makes a costly pass
through the data for each group, which can be significant if the number of groups is large.
Second, calculations that can be expressed within the split-apply-combine framework are
guaranteed to be embarrassingly parallel. Because the split defines groups on the rows
of a data set, calculations for each group are guaranteed to be independent. When the
calculation being applied to a group is intensive, as in the next section, parallel computing
can dramatically reduce execution time.

5.4.3 Using Split-Apply-Combine to Find the Best Time to Fly
Now that we have gained some familiarity with foreach() and parallel computing, let’s move
on to the more difficult question, “Which is the best hour of the day to fly to minimize
departure delays?” This was originally posed as one of the ASA Data Expo challenges and
the solution lends itself to the split-apply-combine approach.

To answer this question, we need to start by determining what is meant by the “best”
hour. About half of the flights in the data set do not have departure delays. Of the flights
with departure delays, most are only a few minutes late. Is the best hour the one minimizing
the chance of any delay? Is the best hour the one that tends to have fewer long delays?
In this situation, we have all of the flights, not a sample. Accordingly, we do not need

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 233

to perform hypothesis tests that take sampling variability of the statistics into account.
Instead, we can examine the population distributions directly from the data.

Let’s turn our attention to the worst delays. The question can be refined by asking, “How
long were the longest 1% of flight delays for a given hour?” A frequent flyer might interpret
this as, “How long could my longest delay be for 99% of my flights.” Along with finding the
longest 1% of departure delays, let’s find the longest 0.1%, 0.01%, 0.001%. That is, let’s find
the quantile values for probabilities of 0.9, 0.99, 0.999, and 0.9999 in the departure delays.

To find the quantiles, we will start by splitting the data based on the hour of departure
for each flight. Since there is no column that gives us the hour of departure for a given flight
we will need to extract this information from the CRSDepTime column that encodes times,
such as 8:30 AM as 830. The hour of departure can be calculated with

Divide CRSDepTime by 100 and take the floor to
get the departure hour.

depHours <- floor(x[,"CRSDepTime"]/100)
Set the departure hours listed as 24 to 0.

depHours[depHours==24] <- 0

Now that we have a vector holding the departure hours for each flight, we can split on
it and calculate the desired quantiles:

Split on the hours.
hourInds <- split(1:length(depHours), depHours)

Create a variable to hold the quantile probabilities.
myProbs <- c(0.9, 0.99, 0.999, 0.9999)

Use foreach to find the quantiles for each hour.
delayQuantiles <- foreach(hour = hourInds, .combine=cbind) %do% {

require(bigmemory)
x <- attach.big.matrix("airline.desc")
quantile(x[hour, "DepDelay"], myProbs,

na.rm = TRUE)
}

Clean up the column names.
colnames(delayQuantiles) <- names(hourInds)

You may have noticed that for each iteration of the foreach() loop, we are ensuring
that the bigmemory package is loaded and we are are calling attach.big.matrix(). These
steps are not required when the loop is run sequentially but we will see later that they are
required when the loop is run in parallel.

Now that we can calculate the delay quantiles sequentially, let’s parallelize the code
so that it runs faster. We’ll start by registering a parallel backend. When this chapter
was written, there were 5 different parallel packages that were compatible with foreach:
doMC [8], doMPI [15], doRedis [5], doSMP [9], and doSNOW [10]. Each of these packages
allow R users to exploit distinct parallel programming technologies. Packages like doMC
and doSMP allow R users to take advantage of multiple cores on single machine. The other
packages allow R users to create parallel programs for a single machine or even a cluster
of machines. The doRedis package even supports programming in the “cloud.” For this
section, we are going to use the doSNOW package to perform parallel calculations on a single
machine using multiple cores.

234 Case Studies in Data Science in R

To run the foreach() loop in parallel, we need to determine the number of parallel R
sessions that will be used to perform the calculation. In general, it is a good idea to use the
total number of cores on the machine minus one. This allows the extra core to deal with
some of the overhead associated with the parallel calculations. After the parallel workers
are instantiated, they are registered with foreach. This step informs foreach how the
iterations of the loop will be parallelized. Then, we change %do% clause in the foreach()
loop to %dopar% in order to let the foreach() function know that code should be executed
in parallel. We do all of this with

Load the parallel package so we can find
how many cores are on the machine.

library(parallel)

Load our parallel backend.
library(doSNOW)

Use the total number of cores on the
machine minus one.

numParallelCores <- max(1, detectCores()-1)

Create the parallel processes.
cl <- makeCluster(rep("localhost", numParallelCores),

type = "SOCK")

Register the parallel processes with foreach.
registerDoSNOW(cl)

Run the foreach loop again, this time
with %dopar% so that it is executed in parallel.

delayQuantiles <- foreach(hour=hourInds, .combine=cbind) %dopar% {
require(bigmemory)
x <- attach.big.matrix("airline.desc")
quantile(x[hour, "DepDelay"], myProbs, na.rm=TRUE)

}
colnames(delayQuantiles) <- names(hourInds)
stopCluster(cl)

When you run this code you should notice that it runs significantly faster than the
sequential code (depending on how many cores you have available). By using foreach(), we
have reduced the effort needed to migrate between sequential and parallel code.

It is important to understand that when a foreach() loop is run in parallel each iteration
of the loop is run in a separate R session in another process, sometimes referred to as a
worker process. Variables used inside the loop are copied from the master R session to each
of the worker sessions. This presents two challenges when computing with a big.matrix in
parallel. First, the bigmemory package is not automatically loaded in each of the worker
sessions when they are started. However, this issue is easily remedied by requiring that
the bigmemory package is loaded in the worker, before a calculation begins. Second, a
big.matrix object holds a pointer to a location in memory that is only valid in the
process where the pointer is created. As a result, the mechanism foreach() uses to copy
variables from master to worker sessions doesn’t work for a big.matrix(). This issue is also
easily remedied by using the attach.big.matrix() function in the worker process after the
bigmemory package has been loaded and before the calculation.

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 235

Now that we have efficiently calculated the airline quantile delays we can visualize these
delays using ggplot2:

library(ggplot2)
dq <- melt(delayQuantiles)
names(dq) <- c("percentile", "hour", "delay")
qplot(hour, delay, data = dq, color = percentile, geom = "line")

Figure 5.1: Hourly Delay Quantiles. The airline delay quantiles (in minutes) for each hour
of the day.

Figure 5.1 shows the delays by hour. The graph indicates that delays are worse in the
early hours of the morning, for these quantiles. These may correspond to red-eye flights that
are delayed arriving at their destination and therefore cause delays for subsequent flights.
The graph also indicates that flights leaving between 6:00 AM and 4:00 PM see the fewest
lengthy delays.

For the examples in this section, a big.matrix object was used to hold the airline data
because the data set is too large on many machines for a native R matrix or data.frame
object. A big.matrix object manages a large data set by caching needed data and leaving
the rest on disk. It has the advantage of using less RAM than what would be needed to hold
the entire data set, but this isn’t its only advantage. When performing parallel calculations,
variables are copied from the master R session to worker R sessions. If a variable uses a
large amount of memory, then a worker R session incurs the overhead of waiting for these
variables to be copied. Also, each worker must hold a copy of the variable potentially using
up all of the available memory on one machine. A big.matrix object does not suffer from
either of these problems. Descriptors are small and are quickly copied from one process to
another. Also, a big.matrix object in each worker session is not a copy of the original.
Each is a reference to the same data used by the master. These two qualities mean that
bigmemory provides an efficient solution to computing in parallel with massive data and
that we are now able to explore and visualize these data sets more easily than before. The
bigmemory approach can be used for more than exploration and in the next section we
will use bigmemory to model data and provide techniques to help answer the question “Do
older planes suffer greater delays?”

236 Case Studies in Data Science in R

Q.8 Which is the best day of the week to fly?

Q.9 Which is the best day of the month to fly?

Q.10 Are flights being given more time to reach their destination for later years?

Q.11 Which departure and arrival airport combination is associated with the worst delays?

5.5 From Exploration to Model: Do Older Planes Suffer Greater
Delays?

Another question posed by the 2009 Data Expo was “Do older planes suffer greater delays?”
The fact that the airline data does not give a plane’s age presents a difficulty in answering
this. We might search for this information on the Web to see if we can find auxiliary
sources of data to determine the age of each plane given its uniquely identifying tail number.
However, in the absence of this auxiliary data, we can use the current data to approximate
it. The year and month of each flight are available, and we have each plane’s unique tail
code. For each flight, we can get the number of months the plane has been used since the
first time it appears in the data set. This approach does have an issue with censoring: if a
plane appears in the first year and month of the data set, we don’t know if the plane started
service in that month (January, 1988) or sometime before then. Nonetheless, this approach
is reasonable given the limited data we have.

How do we calculate the age of a plane? Using the big.matrix object from before,
which holds the entire data set, we can quickly find that there are 13,536 unique tail codes
that appear in the data set:

length(unique(x[,"TailNum"]))

[1] 13536

The task of finding the first time a tail code appears (in months A.D.) is independent across
tail codes, so we’ll split the data by the TailNum variable and use foreach() to find this
value for each TailNum group:

planeStart <- foreach(tailInds = tailSplit, .combine=c) %dopar% {
require(bigmemory)
x <- attach.big.matrix("airline.desc")

Get the first year this tail code appears in the
data set.

minYear <- min(x[tailInds, "Year"], na.rm = TRUE)

Get the rows that have the same year.
minYearTailInds <-

tailInds[which(x[tailInds, "Year"] == minYear)]

The first month this tail code appears is the
minimum month for rows indexed by minYearTailInds.

minMonth <- min(x[minYearTailInds, "Month"], na.rm = TRUE)

Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays 237

Return the first time the tail code appears
in months A.D.

12*minYear + minMonth
}

Remember the extraCols = "age" argument that was specified when the bigmatrix
object was created in Section 5.3.4 (page 227)? This argument created an extra column
named age in the bigmatrix object and this can be assigned a value with the single R
command

x[,"age"] <- x[,"Year"] * 12 + x[,"Month"] -
planeStart[x[,"TailNum"]]

Now that we have created a variable holding the age of a plane, what should we do with
it? One approach to answering the posed question is to create a linear model with arrival
delay modeled as a linear function of airplane age to see if there is an association between
older planes and larger arrival delays. While the lm() function will not, in general, be able
to handle this much data, there is a function, called biglm() in the biglm [6] package,
designed to perform regressions in this setting. The biglm() function works on subsets of
rows at a time so that a linear model can be updated incrementally with new rows of data.
A wrapper for this function has been implemented in the biganalytics [3] package for
creating linear models with bigmatrix objects. Regressing arrival delay as a function of
age can be implemented as

library(biganalytics)
blm <- biglm.big.matrix(ArrDelay ~ age, data = x)

and calling summary(blm) gives a summary similar to that of an lm object:

Large data regression model: biglm(formula = formula,
data = data, ...)

Sample size = 84216580
Coef (95% CI) SE p

(Intercept) 6.8339 6.8229 6.8448 0.0055 0
age 0.0127 0.0126 0.0129 0.0001 0

The model indicates that older planes are associated with large delays. However, the effect
is very small and there may also be effects that are not accounted for in the model. At this
point though you have the tools and techniques to begin evaluating these issues, as well as
pursuing your own exploration and analysis for the airline data as well as other massive
data sets.

Q.12 One of the examples in this section creates a vector, named planeStart, which gives
the first month in which a plane with a given tail code appears in the data set. Estimate
the amount of time the loop to create this vector will take to run sequentially? and in
parallel?

Q.13 How many of the planes ages are censored?

Q.14 How much do weather delays contribute to arrival delay?

Q.15 Along with age, which other variables in the airline delay data set contribute to
arrival delays?

238 Case Studies in Data Science in R

Bibliography
[1] The SQLite Web page. http://www.sqlite.org/, 12/9/2009.

[2] David James. RSQLite: SQLite interface for R. http://cran.r-project.org/
package=RSQLite, 2011. R package version 0.10.0.

[3] Michael J. Kane and John W. Emerson. biganalytics: A library of utilities
for big.matrix objects of package bigmemory. http://cran.r-project.org/
package=biganalytics, 2010. R package version 1.0.14.

[4] Michael J. Kane and John W. Emerson. bigmemory: Manage massive matrices
with shared memory and memory-mapped files. http://cran.r-project.org/
package=bigmemory, 2011. R package version 4.2.11.

[5] B. Lewis. doRedis: Foreach parallel adapter for the rredis package. http://cran.
r-project.org/package=doRedis, 2011. R package version 1.0.4.

[6] Thomas Lumley. biglm: bounded memory linear and generalized linear models. http:
//cran.r-project.org/package=biglm, 2011. R package version 0.8.

[7] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[8] Revolution Analytics. doMC: Foreach parallel adaptor for the multicore package. http:
//cran.r-project.org/package=doMC, 2011. R package version 1.2.3.

[9] Revolution Analytics. doSMP: Foreach parallel adaptor for the revoIPC package.
http://cran.r-project.org/package=doSMP, 2011. R package version 1.0-1.

[10] Revolution Analytics. doSNOW: Foreach parallel adaptor for the snow package. http:
//cran.r-project.org/package=doSNOW, 2011. R package version 1.0.5.

[11] Revolution Analytics. foreach: Foreach looping construct for R. http://cran.r-
project.org/package=foreach, 2011. R package version 1.3.1.

[12] Revolution Computing with support and contributions from Pfizer Inc. nws: bounded
memory linear and generalized linear models. http://cran.r-project.org/
package=nws, 2010. R package version 1.7.0.1.

[13] Luke Tierney, A Rossini, Na Li, and H. Sevcikova. snow: Simple Network of Work-
stations. http://cran.r-project.org/package=snow, 2011. R package ver-
sion 0.3-8.

[14] Simon Urbanek. multicore: Parallel processing of R code on machines with multi-
ple cores or CPUs. http://cran.r-project.org/package=multicore, 2011.
R package version 0.1-6.

[15] Steve Weston. doMPI: Foreach parallel adaptor for the Rmpi package. http://cran.
r-project.org/package=doMPI, 2010. R package version 0.1-5.

[16] Hadley Wickham. Hadley Wickham’s Homepage. http://had.co.nz, 19/9/2009.

[17] Hadley Wickham. Airline on-time performance Web page. http://stat-
computing.org/dataexpo/2009/, 2009.

[18] Hadley Wickham. The Split-Apply-Combine Strategy for Data Analysis. Journal of
Statistical Software, 40:1–29, 2011.

http://www.sqlite.org/
http://cran.r-project.org/package=RSQLite
http://cran.r-project.org/package=RSQLite
http://cran.r-project.org/package=biganalytics
http://cran.r-project.org/package=biganalytics
http://cran.r-project.org/package=bigmemory
http://cran.r-project.org/package=bigmemory
http://cran.r-project.org/package=doRedis
http://cran.r-project.org/package=doRedis
http://cran.r-project.org/package=biglm
http://cran.r-project.org/package=biglm
http://www.r-project.org
http://cran.r-project.org/package=doMC
http://cran.r-project.org/package=doMC
http://cran.r-project.org/package=doSMP
http://cran.r-project.org/package=doSNOW
http://cran.r-project.org/package=doSNOW
http://cran.r-project.org/package=foreach
http://cran.r-project.org/package=foreach
http://cran.r-project.org/package=nws
http://cran.r-project.org/package=nws
http://cran.r-project.org/package=snow
http://cran.r-project.org/package=multicore
http://cran.r-project.org/package=doMPI
http://cran.r-project.org/package=doMPI
http://had.co.nz
http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/

Part II

Simulation Studies

This page intentionally left blankThis page intentionally left blank

6
Pairs Trading

Cari Kaufman
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
6.1 The Problem . 241

6.1.1 Computational Topics . 245
6.2 The Data Format . 246
6.3 Reading the Financial Data . 247
6.4 Visualizing the Time Series . 250
6.5 Finding Opening and Closing Positions . 251

6.5.1 Identifying a Position . 251
6.5.2 Displaying Positions . 254
6.5.3 Finding All Positions . 256
6.5.4 Computing the Profit for a Position . 257
6.5.5 Finding the Optimal Value for k . 260

6.6 Simulation Study . 263
6.6.1 Simulating the Stock Price Series . 265
6.6.2 Making stockSim() Faster . 273
Bibliography . 276

6.1 The Problem
Finance and financial trading are important elements of all economies. Historically, peo-
ple used various strategies and hunches to choose when to buy and sell stock and which
stocks to trade. Increasingly, people try to use data, algorithms and, importantly, statistical
methods to develop more automated strategies for determining what and when to trade in
order to increase profits. Over the years, there have been many different approaches and
algorithms in this direction, and recent developments illustrate computer trading is increas-
ing rapidly. Some people are even developing statistical/machine learning algorithms that
run on network routers to make sub-millisecond trades to exploit time delays other people
experience.

In this chapter, we will explore one of the first trading strategies based on computer-
intensive analysis of past stock performance. The approach is called pairs trading [3] and
was developed at Morgan Stanley in the 1980s. The strategy involves two different stocks,
hence the name pairs. The key behind pairs trading is to have two stocks whose prices
are positively correlated over time. It is perhaps simplest to understand the idea via an

241

242 Case Studies in Data Science in R

example. The Dow Jones and S&P 500 indices are two “stocks” we can buy and sell. These
are not regular stocks such as those offered by companies such as Google, YAHOO, and
ATT. Instead, these are actually collections of stocks, but that detail doesn’t concern us as
the same principle applies for any pair of stock that can be bought and sold. As you can
see for the time interval 1990–1995 in Figure 6.1, the prices of these two stocks are highly
positively correlated. Figure 6.2 shows the daily ratio of the prices of the two indices over
the same time period. The ratio seems to be fluctuating around a stable value, at least for
most of the time period.

1990 1991 1992 1993 1994 1995

25
00

30
00

35
00

40
00

Date

D
ow

n
Jo

ne
s

30
0

35
0

40
0

45
0

S
&

P
 5

00

Figure 6.1: Historical Prices for the Dow Jones and S&P 500 Indices, 1990–1995. This
shows the time series of the two “stock” prices for the 5-year period. There is clearly a high
correlation over time between the two financial indices. The values of the two series are
quite different and plotted on different scales, with that for the S&P 500 on the right of the
plot.

The key idea underlying pairs trading is that the movement of the ratio away from its
historical average represents an opportunity to make money. For example, if stock 1 is doing
better than it typically does, relative to stock 2, then we should sell stock 1 and buy stock
2. This is called “opening a position.” Then, when the ratio returns to its historical average,
we should buy stock 1 and sell stock 2. This is called “closing the position.” The reasoning
is quite simple – when stock 1 is priced sufficiently higher than usual, it is likely to go down
in value and the price of stock 2 is likely to go up, at least relative to the price of stock 1,
since they are positively correlated. Of course, both could increase, but we are interested in
relative change as we are looking at the ratio.

To implement this pairs strategy, we need rules for when we should open and close
positions. (We’ll assume we can always sell a stock, even if we don’t actually own it. The
mechanism for this is called “short selling,” but the details aren’t important here.) We can
devise rules based on the current value of the price ratio and what it has been in the past.
We’ll use historical data to determine the “optimal” rule and then use this rule as a trading
strategy for the future.

Pairs Trading 243

1990 1991 1992 1993 1994 1995

7.
6

7.
8

8.
0

8.
2

8.
4

Date

R
at

io r

r − σr

r + σr

r − 2σr

r + 2σr

Figure 6.2: Historical Ratio for the Dow Jones and S&P 500 Indices. This shows the ratio of
the two “stock” prices from 1990 to 1995. The ratio appears to move around the mean until
1994 and then to rise above it. The horizontal lines show one and two standard deviations
from the mean of the ratio.

We’ll refer to the mean and standard deviation of the ratio for this “training”/historical
data as m and s, respectively. We’ll consider the following class of rules:

• When the ratio of stock 1’s price over stock 2’s price moves above k standard deviations
from the long term mean (i.e., r > m+ ks), sell $1 worth of stock 1 and buy $1 worth
of stock 2 (for simplicity, we are assuming we can buy fractions of a share). Then we
wait until the ratio is less than or equal to m, at which point, we close the position by
buying back however many shares of stock 1 we initially sold, and selling the shares of
stock 2 we initially bought.

• Similarly, when the ratio is less than m− ks, do the same thing but reversing the roles
of stock 1 and stock 2. In this case we wait until the ratio rises back up to be greater
than or equal to m.

There are two things to note. First, k represents how extreme the ratio needs to be
before we open a position. Second, $1 is just an arbitrary amount to invest. Buying a fixed
dollar amount, rather than a fixed number of shares, allows us to work with stocks that
have very different prices, and also to deal with fractions of stocks.

Now let’s see what happens if we implement this strategy with the Dow Jones and S&P
500 prices, going forward from 1995 with k = 2. Figure 6.3 shows the ratios for 1995 to
2010, with a horizontal line displaying the threshold of two standard deviations above and

244 Case Studies in Data Science in R

below the mean displayed on the plot. It is important to recognize that we are using the
mean and standard deviation from the previous period 1990 to 1995. We are basing our
trading strategy on historical values and so use these to determine the thresholds for our
trading rules. Also, DJI and GSPC are the shorthand “ticker” names for Dow Jones and
S&P 500.

1995 2000 2005 2010

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

Date

R
at

io

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

Figure 6.3: Ratio of Dow Jones to S&P 500 for 1995–2010. The circles show the starting and
closing positions for trades. We open a position when the ratio is outside of the threshold
lines. We close that position when the ratio returns to the mean. The green circles identify
the opening of a trading position; the red circles the corresponding close of the position.
Circle 7 opens a position but the ratio never returns to the mean. We close the position on
the final day of the series. Note that the threshold lines use the mean and standard deviation
from the period 1990 to 1995.

In this time series, we start with the value of the ratio already above our threshold,
on the first trading day of 1995 (circle 1 on the plot). DJI is at $3838.48 and GSPC is at
$459.11, so we sell $1’s worth of the DJI corresponding to $1/3838.48 = 0.00026 units, and
we buy 1/459.11 = 0.0022 units of GSPC. Now we wait until the ratio reverts to the mean,
which happens on June 19, 1998 (circle 2 on the plot). At this point both indices have gone
up: DJI is at $8712.87 and GSPC is at $1100.65. We close the position, meaning we buy
back 0.00026 units of DJI for $2.27 and sell 0.0022 units of GSPC for $2.40. Our total profit
is therefore ($1 – $2.27) + ($2.40 – $1) = $0.13. Note that we always subtract the buying
price from the selling price, but we bought and sold in different orders for the two indices.
We lost money on DJI but earned a bit more than that on GSPC. Pairs trading often works
this way, with gains in one stock offsetting losses in the other. Also, note that to get the

Pairs Trading 245

profit for a different investment amount, you just multiply 0.13 by that amount. Therefore,
using $1 as our baseline amount allows us to calculate the percent profit.

We have additional opportunities to trade: opening at point 3 and closing at point 4, then
opening at point 5 and closing at point 6. Doing this, we end up with a cumulative/total
profit at point 6 of $0.25. However, look at what happens beyond point 7. According to our
rule, we open a position at 7, but the ratio does not revert back to the mean. We wait until
the end of the entire time period and then close the position, even though the ratio hasn’t
reverted back to the mean by this point in time. We end up losing about $0.11 on that final
trade, eradicating a significant portion of our profit.

In our example, we arbitrarily used the value k = 2. However, the “optimal” (i.e., to
maximize earnings) value of k depends on many things. We want to “estimate” or determine
the optimal value based on the historical data for our pair of stocks. For this, we use the
data from previous years to determine what is the best value of k for the future. That is,
we use the old data as “training” data.

One thing we haven’t considered yet is that it costs money to make a trade. These costs
can vary depending on whether you’re an institutional trader or an individual. However, to
keep things simple, let’s assume that the costs are a fixed proportion p of the total money
changing hands (in absolute value). For example, to buy $30 worth of stock and sell $100
worth of stock, we would pay $130× p.

In this chapter, we’ll develop functions to explore pairs trading. We start by retrieving
and reading stock price data from the Web and exploring the time series of the prices and
their ratios. We then develop functions to determine the start and end of a position and
then all positions. In order to validate the code and understand the pairs trading approach,
we define functions to visualize the positions. We also write a function to compute the profit
for a position and then another for the entire period with multiple positions. We then use
these functions to determine the optimal parameter value (for k) for pairs trading for two
stocks. We divide the data into a training period, and the remainder as a test period. We
use the former to determine the optimal value and use that value for the test data. Finally,
we move from studying actual stock prices to simulating data from a mathematical model
in an effort to understand the impact of within- and between-correlation for the two stock
price time series on profit when using pairs trading. This is computationally intensive so we
also attempt to improve the run-time speed of the functions we developed earlier and also
for simulating the time series.

6.1.1 Computational Topics
This case study ranges from simple access to data directly from the Internet within R [2],
to working with dates, writing fast code, simulating random processes, and “estimating”
optimal parameter values for an objective function using a grid search. These include:

• Designing, writing and testing small, reusable functions.

• Developing efficient code.

• Using vectorized operations.

• Profiling code and finding the bottlenecks.

• Writing and interfacing to C code for speed.

• Numerical optimization by grid search.

• Dividing data into training and test subsets to determine optimal values.

246 Case Studies in Data Science in R

• Simulation of a stochastic process.

6.2 The Data Format
Pairs trading works best with two stocks that are reasonably correlated. The common
example is companies that are in the same business sector/category such as ATT and
Verizon, or Google and YAHOO. When demand for more telecommunications services in-
creases, both companies do well. However, they are also competitors. Companies whose
products/services complement each other are also correlated, e.g., hard-drive manufactur-
ers and computer/device vendors. As demand for devices grows, so too does the demand
for storage.

We can select any two stock histories. We can use companies we know. Alternatively,
we can explore many companies at http://finance.yahoo.com/stock-center/ or
similar sites. For a given company name, we can retrieve its symbol name via the page
http://finance.yahoo.com/lookup.

We can retrieve the historical data for a given company symbol via the Web page
http://finance.yahoo.com/q/hp. In the form in the middle of that page, we enter
the symbol name and this displays the data. That brings us to, e.g., http://finance.
yahoo.com/q?s=GOOG, i.e., the same basic URL but with the symbol added as an ar-
gument to the request. On the left hand side of this page, there is a navigation bar with
many links. One is entitled Historical Prices. When we click on this, we are brought
to the page with rows of data corresponding to the different days. There we can enter the
start and end dates of interest. However, the YAHOO site presents the resulting data in a
sequence of HTML pages. We would have to extract the data from the first page, perhaps
with readHTMLTable(), and then navigate to the next page and so on. Fortunately, there
is a simpler, more direct mechanism.

When we enter the start and end dates, the resulting page provides a link to the raw data
near the bottom of the initial page of historical prices for this symbol. Scrolling down to
the bottom of the page, we see the link Download to Spreadsheet and we can explore
that link. For Google, it is http://real-chart.finance.yahoo.com/table.csv?
s=GOOG&a=02&b=27&c=2000&d=07&e=1&f=2014&g=d. This URL corresponds to an
HTTP GET request that we send to the URL http://real-chart.finance.yahoo.
com/table.csv along with named arguments. We can see the symbol name (GOOG) passed
as the value for the argument named s. Similarly, we see there are 8 other named arguments.
These are cryptically named a, b, c, d, e, f, and g. With minimal detective work, we see
that a, b, and c specify the month, day, and year for the start date of interest, and d, e,
and f specify the same for the end date. The argument g indicates we want daily prices,
not monthly. We can download the data directly from within R and save the contents to a
local file with, e.g.,

u = paste("http://real-chart.finance.yahoo.com/table.csv",
"s=GOOG&a=02&b=27&c=2010&d=09&e=24&f=2014&g=d",
sep = "?")

download.file(u, "GOOG.csv")

Then we can read this into R with read.csv().

Q.1 Instead of using download.file() and copying the data to a local file, we can use

http://finance.yahoo.com/stock-center/
http://finance.yahoo.com/lookup
http://finance.yahoo.com/q/hp
http://finance.yahoo.com/q?s=GOOG
http://finance.yahoo.com/q?s=GOOG
http://real-chart.finance.yahoo.com/table.csv?s=GOOG&a=02&b=27&c=2000&d=07&e=1&f=2014&g=d
http://real-chart.finance.yahoo.com/table.csv?s=GOOG&a=02&b=27&c=2000&d=07&e=1&f=2014&g=d
http://real-chart.finance.yahoo.com/table.csv
http://real-chart.finance.yahoo.com/table.csv
http://real-chart.finance.yahoo.com/table.csv

Pairs Trading 247

getForm() in the RCurl package to fetch the data directly into an R session. We can
then pass the resulting content to read.csv() using a textConnection(). This approach is
sometimes necessary when we need more control over how the request is sent to get the
Web page. For example, some Web sites require a login or some form of authentication.
Write the code to retrieve and read the data using this approach.

Once we manage to get the raw data, we can examine it to determine its structure. The
first two rows (and header) of the Google data appear as

Date,Open,High,Low,Close,Volume,Adj Close
2013-11-07,1022.61,1023.93,1007.64,1007.95,1679600,1007.95
2013-11-06,1025.60,1027.00,1015.37,1022.75,912900,1022.75

Requests for different stock symbols will yield the same basic structure. For each record,
we have the date and details about the price and the number of shares traded that day.
There are various different prices reported (opening and closing, minimum and maximum
during the day). We are interested in the adjusted closing price (Adj Close). This takes
into account other aspects related to the stock that occur before the start of the next day’s
trading. These also include events such as stock splits and payment of dividends. See [1].

6.3 Reading the Financial Data
The first thing we do is write a function to read the data for a stock from a CSV file. Why
bother? Well, we need to read data for at least 2 stocks and we don’t want to repeat the
code for each (i.e., the DRY principle). We want to handle reading the data into an R data
frame and correctly representing the Date column as a Date object in R. This allows us to
easily re-run the code from the very beginning of the computations, e.g., when we get new
data for the same stocks or for new and different choices of stocks. Let’s create a function
readData() that takes the name of the CSV file and optionally a string or vector of string
values specifying the format of the Date values, e.g., month/day/year. We’ll make our
function smart enough, by default, to try different common date formats, using each format
successively until all of the values are valid dates, not NA (or we have tried all date formats).
This may not be necessary if all of the data come in the same format, i.e., both the number
of columns and the format of the Date values.

The function is quite simple. We read the data using read.csv(), ensuring that the Date
values remain as strings and are not interpreted as a factor. Then we loop over the different
common date format strings attempting to convert any date values that have not already
been converted to Date values. Finally, we arrange for the observations to be ordered in
increasing order of the date. We define the function with

readData =
#
A function to read the data and convert the Date column
to an object of class Date.
The date values are expected to be in a column named Date.
We may want to relax this and allow the caller specify the
column - by name or index.

function(fileName, dateFormat = c("%Y-%m-%d", "%Y/%m/%d"), ...)

248 Case Studies in Data Science in R

{
data = read.csv(fileName, header = TRUE,

stringsAsFactors = FALSE, ...)
for(fmt in dateFormat) {

tmp = as.Date(data$Date, fmt)
if(all(!is.na(tmp))) {

data$Date = tmp
break

}
}

data[order(data$Date),]
}

We use stringsAsFactors to keep the date values as strings rather than allowing R to
convert them to a factor variable.

Q.2 What is the purpose of the . . . in the function definition?

Now that we have a function to read our data and have manually downloaded the CSV files
for the two companies, let’s read the values for two stocks, ATT and Verizon:

att = readData("ATT.CSV") # ATT symbol
verizon = readData("VERIZON.CSV") # VZ symbol

As we mentioned in Q.1 (page 246), we can fetch the data directly from the Web site
without having to manually download it. This reduces our labor but, more importantly, also
avoids any mistakes by downloading the generically named table.csv file and changing its
name to the corresponding stock symbol, e.g., VERIZON, GOOG. This will tightly couple
retrieving the data by symbol name and assigning it to a variable in R, reducing the number
of manual steps that might go awry.

Before we proceed, we have to restrict our attention to the common period of time for
which we have prices for both stock. We need to compute the days in common between the
two data sets. We can define a function that computes the subsets with common dates and
returns a data frame with records/rows for each day with the adjusted closing prices for the
two stock. We’ll pass the two data frames from the calls to readData() as the inputs. Again,
we want a function to do this rather than having to type the raw code for each data set.
We would also have to adjust that code to use different variable names to avoid overwriting
the variables. Using a function makes the computations local and allow us to easily assign
the result of different calls to different variables.

Our function computes the set of dates that are common to both stocks and then the
earliest and latest of these common dates. Then we subset the two stocks and create the data
frame of common dates and pairs of stock values. We do this with the function definition

combine2Stocks =
function(a, b, stockNames = c(deparse(substitute(a)),

deparse(substitute(b))))
{

rr = range(intersect(a$Date, b$Date))
a.sub = a[a$Date >= rr[1] & a$Date <= rr[2],]
b.sub = b[b$Date >= rr[1] & b$Date <= rr[2],]

Pairs Trading 249

structure(data.frame(a.sub$Date,
a.sub$Adj.Close,
b.sub$Adj.Close),

names = c("Date", stockNames))
}

Note the use of the default value for the stockNames parameter. It uses deparse() and sub-
stitute() to obtain the text versions of the argument values for the parameters a and b as they
were specified by the caller of our function. For example, if we call combine2Stocks() with
the expression combine2Stocks(att, verizon), the default value for stockNames will
be c("att", "verizon"). This is the same approach plot() uses to compute the labels
for the horizontal and vertical axes. Since we made stockNames a parameter for the func-
tion, the caller can also specify the names explicitly to provide more meaningful names for
the columns of the resulting data frame, if she desires.

Note also that our function assumes, or takes advantage of, the fact that the stocks will
have a price for contiguous trading days in this period. If there were “holes” in either of the
stocks, we would find the intersection of the dates in common and then %in% to subset the
two data frames. Also, our function assumes the records in each data frame are sorted. We
could sort them ourselves using order() if this was not the case. Recall that we did this in
readData() for this very reason.

Let’s test this function:

overlap = combine2Stocks(att, verizon)
names(overlap)

[1] "Date" "att" "verizon"

range(overlap$Date)

[1] "1984-07-19" "2013-11-07"

We can compare this with the dates from the two original separate data frames:

range(att$Date)

[1] "1984-07-19" "2013-11-07"

range(verizon$Date)

[1] "1983-11-21" "2013-11-07"

So we see that the earlier stock prices for Verizon are omitted and that we have data up to
the same time point, November 2013.

We can now create the ratio of the adjusted closing price:

r = overlap$att/overlap$verizon

We might choose to also put this calculation into our combine2Stocks() function. This would
make the function more specialized and potentially add a column we don’t actually want. If
we plan to use this function in contexts where the ratio is not of interest, we wouldn’t want
this. So we might add a parameter to combine2Stocks() that allows the caller to indicate
whether to add this ratio column or not.

Q.3 Modify combine2Stocks() to accept an additional parameter that controls whether it
adds the ratio to the data frame.

250 Case Studies in Data Science in R

6.4 Visualizing the Time Series
We now have the inputs for our trading scheme, namely the prices and the ratio. Next,
we want to see where the ratio goes outside of some range or limit that would make us
open a position. This visualization doesn’t define or implement the calculations for our
rule. It merely displays the cutoff points. This will help us to understand the pairs trading
strategy and also to debug the code when we develop it. So let’s write a function to plot
the time series for the ratio and also to draw the upper and lower horizontal lines for our
pair trading rule, for a given k. This is very simple as we can just call plot() with the ratio
and then abline() for the 3 lines at the mean, mean + k * sd and mean - k * sd.
We’ll optionally allow the caller to specify the dates to use on the horizontal axis, but also
let them omit these if they don’t care about the dates explicitly but only about the order.
In that case, we just use 1, 2, . . . as the values for the x variable in the call to plot(). We
define the function as
plotRatio =
function(r, k = 1, date = seq(along = r), ...)
{

plot(date, r, type = "l", ...)
abline(h = c(mean(r),

mean(r) + k * sd(r),
mean(r) - k * sd(r)),

col = c("darkgreen", rep("red", 2*length(k))),
lty = "dashed")

}

Note again that we allow the caller to pass additional arguments to the plot() call via
She can use this to specify a title, axis labels, etc.

We can now look at our ratio over time with
plotRatio(r, k = .85, overlap$Date, col = "lightgray",

xlab = "Date", ylab = "Ratio")

Figure 6.4 shows the result.
Note that we wrote this function in such a way that allows the caller to pass a vector

for k, not just a single value. The function then draws the bounds/lines for multiple trading
rules. This is why we wrote the more general and complex expression rep("red", 2*¬
length(k)) in the call to abline() rather than just c("red", "red") or rep("red",
2).

Q.4 In addition to drawing the lines, we might also want to identify them. Add code to
display the value of k on each line.

Q.5 Instead of using rep() to repeat the color "red", can we use R’s recycling rule and
merely specify

col = c("darkgreen", "red", "red")

and have this work correctly with a vector of values for k?

Q.6 We have used the colors red and dark green to indicate the lines for the average ratio
and the two extremes, respectively. Why might the choice of colors green and red be
bad? How would we define our function to allow the caller to specify different colors?

Pairs Trading 251

1985 1990 1995 2000 2005 2010 2015

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

Date

R
at

io

Figure 6.4: A Simple Plot of the Ratio of Stock Prices for ATT and Verizon. The mean of
the ratio (µratio) is shown as a dashed line and thresholds lines indicating µratio ± kσratio,
with k = 0.85.

You should draw several plots or lines corresponding to different rules and go through the
process of finding the opening and closing positions. It is important to do this manually so
that we can write an algorithm to do it. We need to think how the calculations are done.

6.5 Finding Opening and Closing Positions
We are now ready to start writing code to calculate the opening and closing positions. We
need to compute all the opening and closing positions for the entire period of interest, but
we start by writing a function to identify just one. This is not the first position, but the
“next” position given a starting position or day to start from. This will allow us to use the
function to find all of the positions.

6.5.1 Identifying a Position
The function takes the entire ratio vector and an optional starting day that is an index into
the vector at which we should start the search. To find the first position, we specify this
position/index as 1. After we find the first position, we would specify the day of the end of

252 Case Studies in Data Science in R

that position as the starting point from which to search for the next position. In this way,
we will move across the time series in blocks, starting from where we ended the previous
position.

The function needs the value for k to define the extremes, and it can optionally accept
the mean and standard deviation (m and s) of the ratio. This allows us to compute these
statistics just once and avoid recomputing them for each call. However, this is cheap for
even moderately sized vectors.

Our function starts by determining the upper and lower bound above and below which
we would open a position. These are the variables up and down, respectively. It then discards
all the ratio values up to (but not including) the startDay. The next step is the important
one. We compute a logical vector as long as the remaining values in the ratio vector, which
tells us if that ratio value is outside the bounds. These are the potential points at which we
would open a position. We want the first of these as that is where we will open the next
position. If there are no such points, we return an empty integer vector.

Assuming we have identified a starting position, we next need to find the end/close of
that position. If we opened with a high ratio (i.e., ratio[start] > up), we need to
find the index of the first ratio value after the start day that is at or below the mean m.
Alternatively, if we started the position with a low value of the ratio, then we need to find
the index of the first ratio that is at or above the mean. We compute this as which(¬
backToNormal)[1], having done the appropriate computation to obtain backToNormal.
Of course, there is the possibility that there is no close to the position we opened within
the period at which we are looking, as we saw in Figure 6.3. In this case, we use the index
of the last element in the ratio. We might also have chosen to represent this explicitly as
NA, as this would unambiguously indicate there was no closing position.

We need to do something to compute these start and end indices relative to the original
vector. Since we subsetted the original ratio vector, we have to adjust the indices computed
on this subset relative to the entire vector. Similarly, we have to adjust the index for the
end of the position. In short, we have to add start to the end position index, and also add
startDay to each term to keep all the which() calls relative to the same origin. With these
additions, our function is defined as

findNextPosition =
e.g., findNextPosition(r)
findNextPosition(r, 1174)
Check they are increasing and correctly offset

function(ratio, startDay = 1, k = 1,
m = mean(ratio), s = sd(ratio))

{
up = m + k *s
down = m - k *s

if(startDay > 1)
ratio = ratio[- (1:(startDay-1))]

isExtreme = ratio >= up | ratio <= down

if(!any(isExtreme))
return(integer())

start = which(isExtreme)[1]
backToNormal = if(ratio[start] > up)

Pairs Trading 253

ratio[- (1:start)] <= m
else

ratio[- (1:start)] >= m

return either the end of the position or the index
of the end of the vector.
Could return NA for not ended, i.e. which(backToNormal)[1]
for both cases. But then the caller has to interpret that.

end = if(any(backToNormal))
which(backToNormal)[1] + start

else
length(ratio)

c(start, end) + startDay - 1
}

Now we have our findNextPosition() function and we can and need to test it. We specify
k and then call it:

k = .85
a = findNextPosition(r, k = k)

This gives us the first position we open and close and we’ll assign that to a. The contents
of a are 10 and 276, indicating that we open the position on day 10 and close it on day 276.

For the next position, we call findNextPosition() again, but this time specify the starting
point as the end of the previous position, i.e., a[2]

b = findNextPosition(r, a[2], k = k)

Similarly, we can find the third position with

c = findNextPosition(r, b[2], k = k)

Now we can check if these values are correct. How?

Q.7 Why don’t we start at a[2] + 1 rather than the same day we closed the position?

Note that our function findNextPosition() computes whether the ratio exceeds either thresh-
old for all of the values in the vector. If we think about this, we are wasting computations.
We could find the first index that exceeds the threshold and stop. However, to do that we
would need to explicitly loop over the individual daily ratio values to find the first one that
exceeds the threshold. Looping in R is significantly less efficient than vectorized operations.
The expression ratio >= up | ratio <= down is vectorized. Even though it performs
unnecessary computations, its speed means that these wasted cycles still result in a signif-
icant performance gain relative to looping over the individual values and stopping at the
first one.

254 Case Studies in Data Science in R

6.5.2 Displaying Positions
We can examine the start and end of each position at the R console to understand the
process and the nature of the positions. This is a good idea and we can use the start and
end positions to index into the r vector to examine how the positions work. We can then
compare these ratio values to the mean and k * sd. However, another way is to plot the
start and end positions of the positions on the plot of the ratio time series and examine
them there as we did in Figure 6.3.

We could indicate these days on the plot as circles or lines using the symbols() function,
e.g,

symbols(overlap$Date[a[1]], r[a[1]], circles = 60,
fg = "darkgreen", add = TRUE, inches = FALSE)

symbols(overlap$Date[a[2]], r[a[2]], circles = 60,
fg = "red", add = TRUE, inches = FALSE)

We don’t want to repeat this code twice and we certainly don’t want to repeat it for each
position we open and close. Instead, we can pass a vector of x and y coordinates in a single
call to symbols() to draw two circles for the start and end dates. We can create a function
for this as

showPosition =
function(days, ratios, radius = 100)
{

symbols(days, ratios, circles = rep(radius, 2),
fg = c("darkgreen", "red"), add = TRUE, inches = FALSE)

}

days is a vector of length 2 containing the dates of the starting and ending days of the
position to be plotted. ratios is a vector with the values of the ratios for those two days.
We call this function after a call to our plotRatio() function. That displays the time series
of the ratio and showPosition() adds the circles to that plot. The radius parameter allows
the caller to control the size of the circles.

If we call plotRatio() with the Date values for the horizontal axis, we must pass the
actual Date values for the open and close dates for our trading position to showPosition().
Alternatively, if our call to plotRatio() uses the indices of the ratio vector (1, 2, . . .), then
we call showPosition() with the indices for the start and end of our position. In either case,
we must pass the values of the ratio for the days.

A different approach to visualizing the start and end of a position is to put vertical lines
at the opening and closing dates of that position. This avoids needing to know the value of
the ratio. The basic idea of the function is just to add vertical lines at both the start and
end positions and to color them green for open and red for close. The caller can change the
colors. She can also specify additional arguments to abline(). We can implement this easily
with

showPosition =
function(pos, col = c("darkgreen", "red"), ...)
{

if(is.list(pos))
return(invisible(lapply(pos, showPosition, col = col, ...)))

abline(v = pos, col = col, ...)
}

Pairs Trading 255

The first two lines of the function handle the case where the caller specifies a list of individual
position start and end vectors. This will be convenient when we compute all the positions
and have them in a list. This part of the function arranges to loop over the individual
start-end vectors and call the function with each vector to add just that line. Another, and
possibly better alternative, is to collapse the list to a vector and draw a line for each of the
elements in the resulting vector, i.e.

abline(unlist(pos), col = col, ...)

This is much simpler as we can remove the first two lines. The colors will be recycled across
the resulting vector and so will work correctly. As a result, the function is more succinctly
written as

showPosition =
function(pos, col = c("darkgreen", "red"), ...)

abline(v = unlist(pos), col = col, ...)

Now let’s use our original showPosition() to display our start and end points for our 3
positions.

plotRatio(r, k, overlap$Date, xlab = "Date", ylab = "Ratio")
showPosition(overlap$Date[a], r[a])
showPosition(overlap$Date[b], r[b])
showPosition(overlap$Date[c], r[c])

We see these first 3 positions in Figure 6.5. They appear to be correct, i.e., occurring at the
points of intersection of the time series with the horizontal lines on the plot. We’ll want to
avoid repeating the calls to showPosition() for each position and instead, show all locations
in a single call. Before we do this, we’ll develop a function to compute all the positions.

1985 1990 1995 2000 2005 2010 2015

0.
6

0.
8

1.
0

1.
2

Date

R
at

io

●

●

●

●

●

●

Figure 6.5: Visualizing the First Three Positions. This shows the first 3 positions for the
ATT/VERIZON stock price ratio. It allows us to verify that our findNextPosition() function
is working correctly.

256 Case Studies in Data Science in R

6.5.3 Finding All Positions
To compute all the positions for a time series, we call findNextPosition() in much the same
way as we did manually above to compute a, band c. Our function has to continue to call
findNextPosition() while there are still more days to process. We can use a while loop
to iterate over the blocks of the time series until we have processed all days and found all
positions. We know there are no positions remaining when findNextPosition() either returns
an empty vector to tell us there was no new position, or the position contains either an NA
or the last day of the time series as the close of the next position. We collect the individual
positions in a list in the variable when. We use cur to store the current day at which we
start the search for the next position. We define the function as

getPositions =
function(ratio, k = 1, m = mean(ratio), s = sd(ratio))
{

when = list()
cur = 1

while(cur < length(ratio)) {
tmp = findNextPosition(ratio, cur, k, m, s)
if(length(tmp) == 0) # done

break
when[[length(when) + 1]] = tmp
if(is.na(tmp[2]) || tmp[2] == length(ratio))

break
cur = tmp[2]

}

when
}

In each iteration of the loop (except the last), we append the new position to the list
when. Ordinarily, appending objects is a bad approach. Instead, we should pre-allocate the
vector/list with the appropriate number of elements and then fill these in as we iterate.
In this case, we don’t know ahead of time how many positions there will be, so we cannot
create a list with the correct number of elements. Fortunately, the number of positions is
reasonably small, so appending each to the end of the list does not incur significant overhead.

Again, let’s check whether the new function behaves correctly. We’ll do this by visualizing
the positions using our existing functions:

pos = getPositions(r, k)
plotRatio(r, k, overlap$Date, xlab = "Date", ylab = "Ratio")
invisible(lapply(pos, function(p)

showPosition(overlap$Date[p], r[p])))

(The invisible() function just avoids printing the object without assigning it to a variable.)
We might want to verify the function works for a different value of k. Before we do this,

however, let’s change the definition of showPosition() so that we can pass the entire list of
positions and plot them all in one step. We’ll keep it so that we can call it with a single
position, but also a list of the locations of multiple positions. There are various ways to
implement this, e.g., looping over the positions. However, if we unlist the list of position
indices, we can use the resulting integer vector to index the ratio. This allows us to keep the
code almost the same as before. The primary difference is that we unlist the positions and

Pairs Trading 257

repeat the radius a suitable number of times. We can use R’s recycling rule for the colors.
Our enhanced function is

showPosition =
function(days, ratio, radius = 70)
{

if(is.list(days))
days = unlist(days)

symbols(days, ratio[days],
circles = rep(radius, length(days)),
fg = c("darkgreen", "red"),
add = TRUE, inches = FALSE)

}

Now we test the getPositions() function with a different value of k and show the positions
with

k = .5
pos = getPositions(r, k)
plotRatio(r, k, col = "lightgray", ylab = "ratio")
showPosition(pos, r)

The results are shown in Figure 6.6. The smaller value of k leads to more positions being
opened and closed.

6.5.4 Computing the Profit for a Position
The start and end day of each position is important. However, we also need to compute the
profit for that position, and we need to write a function to do this. Our description of how to
do this for the first position for the DJI and GSPC stock in Section 6.1 is quite explicit and
now we need to map that into general R code. What we are buying and what we are selling
can become somewhat confusing. Accordingly, let’s take the time to write the code clearly
to make the calculations explicit. Then let’s test to make certain it works. The function’s
name is positionProfit(). It takes the position, which is the vector of the start and end day
indices of that position. We can use these indices to get the stock prices for the two stocks.
Therefore, we also need to pass these vectors of stock prices to the function as well. These
are the parameters stockPriceA and stockPriceB. We also need the mean of the ratio (so
that we can determine which stock we sell and which we buy) and the percentage we pay
in commission of the total dollar amount.

Again, we start the function by handling the case that the position is actually a list of
position vectors. We just loop over these using sapply() and then return the values. (We’ll
talk about the parameter byStock later.) After this if expression, we turn to the real
computations for the start-end vector of a single position. Basically, we get the start and
end prices for stock A and B by indexing using pos. We determine how many units of A
and B we can buy for $1 at the start of the position. Then we determine how much that
number of units of A and B cost at the end of the position. Given these values, we can now
determine the profit for the position. We determine whether, at the opening of the position,
we are selling A or selling B. This depends on whether the ratio is high or low, respectively.
Then we know the terms for the profit calculation. By default, we return the sum of these
profit terms. We define this function with

258 Case Studies in Data Science in R

0 2000 4000 6000

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

date

ra
tio

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.6: Positions for k = 0.5. With a smaller value of k, we get many more opening and
closing positions.

positionProfit =
r = overlap$att/overlap$verizon
k = 1.7
pos = getPositions(r, k)
positionProfit(pos[[1]], overlap$att, overlap$verizon)

function(pos, stockPriceA, stockPriceB,
ratioMean = mean(stockPriceA/stockPriceB),
p = .001, byStock = FALSE)

{
if(is.list(pos)) {

ans = sapply(pos, positionProfit,
stockPriceA, stockPriceB, ratioMean, p, byStock)

if(byStock)
rownames(ans) = c("A", "B", "commission")

return(ans)
}

prices at the start and end of the positions
priceA = stockPriceA[pos]
priceB = stockPriceB[pos]

how many units can we by of A and B with $1

Pairs Trading 259

unitsOfA = 1/priceA[1]
unitsOfB = 1/priceB[1]

The dollar amount of how many units we would buy of A and B
at the cost at the end of the position of each.

amt = c(unitsOfA * priceA[2], unitsOfB * priceB[2])

Which stock are we selling
sellWhat = if(priceA[1]/priceB[1] > ratioMean) "A" else "B"

profit = if(sellWhat == "A")
c((1 - amt[1]), (amt[2] - 1), - p * sum(amt))

else
c((1 - amt[2]), (amt[1] - 1), - p * sum(amt))

if(byStock)
profit

else
sum(profit)

}

The byStock parameter allows us to return not the total profit, but the individual
components of the profit from stocks A and B separately. This might be of interest to us as
then we can see the details of the gains and losses for each position.

The positionProfit() function is not very complex, but there are several steps. As a
result, we really need to verify it is correct. Our example for the first position for DJI and
GSPC works through a particular case and shows the calculations and the result. We’ll try
our function with that data.

pf = positionProfit(c(1, 2), c(3838.48, 8712.87),
c(459.11, 1100.65), p = 0)

This gives us a value of 0.12748, which we round to cents using round(pf, 2), yielding
$0.13 as we calculated previously.

Do we believe our function is working correctly? We can and did check the calculations
manually for some of the positions we calculated for our ATT/VERIZON ratio with k = 0.5
above:

prof = positionProfit(pos, overlap$att, overlap$verizon, mean(r))

[1] 1.067 0.097 0.108 0.122 0.155 0.174 0.087 0.078 0.088
[10] 0.101 0.119 0.113 0.091 0.091 0.090 0.069 0.179 0.092
[19] 0.137 0.101 -0.056

summary(prof)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.0559 0.0901 0.1010 0.1480 0.1220 1.0700

Look at the individual values for the profit. Do they seem reasonable? The only negative
value occurs in the final position, which was closed by rule at the end of the series, not when
the ratio returned to the mean. The overall profit is the sum over the individual profits (or
losses) for the different positions, i.e., sum(prof). Do we believe this result of 3.1?

260 Case Studies in Data Science in R

6.5.5 Finding the Optimal Value for k
We are now ready to use these functions to find the best value of k from training data and
the apply it to test data. We have the basic machinery in place with the functions we have
defined. We just need to create the training and test data sets. We have almost 20 years of
data for the two stocks. We can look at a particular period for the training data, or we can
just split the data in two. We do the latter with

i = 1:floor(nrow(overlap)/2)
train = overlap[i,]
test = overlap[- i,]

We can now compute the training and test ratio vectors.

r.train = train$att/train$verizon
r.test = test$att/test$verizon

Or we can subset r itself.
Instead of splitting the data in half, we may want to create the test and training data

using specific dates. To do this, we use R’s Date class. This represents a data as the number
of days from some origin, e.g., January 1, 1970, or January 1, 1900. R displays this date in
a more human-readable format such as "1970-1-1". Furthermore, R’s Date class handles
all types of details such as leap years, number of days in each month, etc.

To create our training and test data, we can start at the first day we have both stock
prices. Then we will create a 5-year period for the training data and the remainder of the
data will serve as our test data. We can find the break point for the training and test data
with

train.period = seq(min(overlap$Date), by = "5 years", length =2)

We now have a vector of length 2 of class Date containing the start and end dates of our
training data. We can use this to subset the stock price vectors and compute the ratio time
series for this period:

att.train = subset(att, Date >= train.period[1] &
Date < train.period[2])$Adj.Close

verizon.train = subset(verizon,
Date >= train.period[1] &

Date < train.period[2])$Adj.Close
r.train = att.train/verizon.train

We can compute the test data set similarly:

att.test = subset(att, !(Date >= train.period[1] &
Date < train.period[2]))$Adj.Close

verizon.test = subset(verizon,
!(Date >= train.period[1] &

Date < train.period[2]))$Adj.Close
r.test = att.test/verizon.test

We still have to combine the 4 vectors (the date, two stock prices and the ratio) into a data
frame for the training and test data.

Regardless of how we split our data into training and test sets, we are ready to compute
the overall profit for different values of k on our training data. Let’s vary k over 1,000 values.

Pairs Trading 261

What values should we look between? The largest value we should bother with is the value
of k, which gives us upper and lower bounds that lead to the ratio never crossing those
lines. Any value greater than that will lead to no positions. We can calculate this maximum
value with

k.max = max((r.train - mean(r.train))/sd(r.train))

Similarly, any value below

k.min = min((abs(r.train - mean(r.train))/sd(r.train)))

won’t make any difference as all values of the ratio will be outside the bounds.
We compute the sequence of values for k that we want to explore with

ks = seq(k.min, k.max, length = 1000)
m = mean(r.train)

We have also computed the mean of the ratio here as it doesn’t vary and we can avoid
recomputing it when we search for each position.

Q.8 Can we search over the different values of k more intelligently? For example, can we
find just the set of unique values that will lead to different positions?

Q.9 Are we in danger of overfitting our training data?

Now let’s loop over the different values of k and compute the profit for that strategy/rule
defined by k:

profits =
sapply(ks,

function(k) {
pos = getPositions(r.train, k)
sum(positionProfit(pos, train$att, train$verizon,

mean(r.train)))
})

We have 1000 values of k and 1000 corresponding profits. We can plot these and see the
relationship between k and profit with

plot(ks, profits, type = "l", xlab = "k", ylab = "Profit")

and shown in Figure 6.7. Ideally, this is a simple concave function, or at least shows a single
maximum for profit for a value of k.

We can see the maximum value in the plot and we can also calculate the corresponding
value(s) of k that yield the maximum profit with

ks[profits == max(profits)]

[1] 0.610 0.613 0.616 0.619 0.622

Ideally, we would like a single value, but this gives us 5 contiguous values in our sequence.
These correspond to the flat region of the curve in Figure 6.7 at k = 0.61. In some cases, we
would explore this interval at greater resolution (in terms of k) to see if there were larger
values for profit at other values for k. However, in this case, it is probable that all values of
k within this interval lead to the same trading positions and hence the same profit. We can
check this with

262 Case Studies in Data Science in R

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

k

P
ro

fit

Figure 6.7: Profit for Different Values of k. For this time training data, all values of k
yielded a positive profit. For small values of k, there were many opportunities for positions
and the profits were larger than for increasing values of k. The maximum profit of 0.88
occurs at values of k between 0.61 and 0.62.

tmp.k = ks[profits == max(profits)]
pos = getPositions(r.train, tmp.k[1])
all(sapply(tmp.k[-1],

function(k)
identical(pos, getPositions(r.train, k))))

Indeed, all of the positions are the same as the first one.
Which value of k should we use from these 5 values? We could use any of them. Alter-

natively, we could take the mean or the median of these. We’ll use the mean

k.star = mean(ks[profits == max(profits)])

What is the rate of return, i.e, our profit on $1? We can calculate this directly with
max(profits) and obtain a value of 88%, which is a very large return on investment
(ROI).

Now that we have our “optimal” value of k for our training data (k.star), let’s see how
well we do on our test data using this value. We can compute the positions for our k.star
using the mean and standard deviation from the training set. Then we compute the overall
profits. We do this with

pos = getPositions(r.test, k.star, mean(r.train), sd(r.train))
testProfit = sum(positionProfit(pos, test$att, test$verizon))

This is our percent profit and yields 0.51 (51%), smaller than from our training data, but
still a very good return.

Pairs Trading 263

Q.10 Download historical stock price information for many different stocks. Then explore
the pairs trading strategy for each pair of stocks. Explore the distribution of profits.
Are there characteristics of stocks that seem to lead to larger gains? Does this provide
insight into when pairs trading might work or fail?

6.6 Simulation Study
We chose two stocks for which pairs trading yielded a high rate of profit, at least for the
period of interest. For a different time period, the results may have been quite different.
Similarly, for a different pair of stocks, the profits may also be significantly different, either
higher or perhaps a lot lower or even negative, meaning a loss. A very reasonable question
an investor should ask when considering whether to use a pairs trading approach is what
are the characteristics of the two stocks that yield a high profit margin?

How do we set about addressing such a general question? It refers to all classes of stock
time series. We need to make this more concrete and restrict ourselves to one or two specific
classes of stock price series. How do we concretize these? It is hopefully natural to consider
a mathematical model for a pair of time series. We can write an equation modeling the price
of a stock, say X(1), on day t as a function of the price from previous days, i.e.,

X
(1)
t = f(X(1)

t−1, X
(1)
t−2, . . . , X

(1)
1)

We could do the same for a second stock X(2)
t = g(X(2)

t−1, X
(2)
t−2, . . . , X

(2)
1). However, if these

are to be related in some ways, the value of each stock at time t must depend on the prices
of both stocks from previous days, i.e.,

X
(1)
t = f(X(1)

t−1, X
(2)
t−1, X

(1)
t−2, X

(2)
t−2, . . . , X

(1)
1 , X

(2)
1)

and similarly for X(2)
t .

Our equations above make matters somewhat more concrete, but what about the form
of the mathematical functions f and g? These can be any meaningful functions. So again,
we must be more specific to be able to address the investor’s question. Two common sim-
plifications are a) to use linear functions, and b) have the values X(1)

t and X
(2)
t at time

t depend only on the previous days values, i.e., X(1)
t−1 and X

(2)
t−1. We might consider the

following model, called a vector autoregression,

X
(1)
t = ρX

(1)
t−1 + ψ(1− ρ)X(2)

t−1

X
(2)
t = ρX

(2)
t−1 + ψ(1− ρ)X(1)

t−1

How do we interpret these two equations above and the mechanism for generating new
values for time t? As we see, X(i)

t depends on the previous day’s values of both stocks and
we combine these two values by adding multiples of each together. ρ is a parameter that
controls how correlated the price for, say, stock 1 is to the price for that same stock the
previous day. If ρ has a value 1, the first equation indicates that X(1)

t = X
(1)
t−1, i.e., each day

will have the same value. This isn’t a good model, but it does illustrate the role of ρ. If ρ
is less than 1, the second term is non-zero and we add some proportion of the value from
the second stock price for the previous day, specifically ψ(1− ρ)X(2)

t−1. If ψ is positive, then
larger values of X(2)

t−1 will contribute more to the current day’s price of stock 1. In short,

264 Case Studies in Data Science in R

ρ controls the correlation between daily prices within a single stock, while ψ controls the
between-stock correlation for the prices.

The equations define a simple but reasonably flexible model. We can generate various
different types of time series by varying ρ and ψ. One important element missing from this
model, however, is randomness. We saw that if ρ = 1, each day’s price is the same as the
last. Even for this specific case, we want some random fluctuation. Generally, we want our
model to have a random component to have it be more realistic. This may complicate our
mathematical analysis, but better address the actual question.

Again, in the interest of simplicity, we will introduce an additive random term to our
equations:

X
(1)
t = ρX

(1)
t−1 + ψ(1− ρ)X(2)

t−1 + ε
(1)
t

X
(2)
t = ρX

(2)
t−1 + ψ(1− ρ)X(1)

t−1 + ε
(2)
t

We need to know the distributions of the ε(i)t if we are to analyze how pairs trading behaves
under stock prices generated from this model. Again, for simplicity, we can use a Normal
distribution for each of the error terms, say, ε(i)t ∼ N(0, σ2

i). Each can have a different
standard deviation, so our model has 4 parameters: ρ, ψ, σ1 and σ2.

Each of these two time series fluctuate around a mean of 0. However, we want to allow
the average price to change over time, so we add a trend. Again, we start with a simple
model, specifically a linear trend in price. We’ll define the actual stock price series as

Y
(1)
t = β

(1)
0 + β

(1)
1 t+X

(1)
t (6.1)

Y
(2)
t = β

(2)
0 + β

(2)
1 t+X

(2)
t ,

Note that we are using Y
(i)
t to denote the two stock prices. We now have 4 additional

parameters β(i)
0 and β(i)

1 , for i = 1, 2, for a total of 8 separate parameters: ρ, ψ, σ1, σ2, β(1)
0 ,

β
(2)
0 , β(1)

1 and β(2)
1 . We’ll denote this 8-dimensional vector as Θ. The linear term is a simple

function of the day number, i.e., t. To this, we add the correlated components X(i)
t for each

stock. This makes the Y (1)
t and Y

(2)
t values correlated with each other and also with the

values from the previous days t− 1, t− 2,
We now have a concrete mathematical model for two time series. This defines a reason-

able class of stock prices and we can use it to address the investor’s question about how
pairs trading would work for different time series. Ideally, we would be able to compute the
optimal value of k and develop a closed-form solution for the profit as a function of the 8
parameters. Since there is randomness in the model, we will have to use our mathematical
statistics skills to compute the distribution of the profit as a function of k and the 8 pa-
rameters. We may be able to compute the expected value (mean) and standard deviation
of the distribution, but it may require approximations for the distribution. We may not be
able to obtain a closed-form solution for these results. Even ostensibly simple mathematical
models may prove to be inaccessible for mathematical analysis. In these cases, we can use
simulation to explore the models and get answers to our questions.

Rather than working with the equations mathematically, we will simulate actual time
series from the two equations. We want to understand how our pairs trading “algorithm”
or rule performs as we vary the 8 different parameters. This will then help us understand
the characteristics of the algorithm and be able to address the investor’s question, i.e., how
does profit vary with the values of ρ, ψ, σ1, and σ2, and the β vector? This will hopefully
help us identify good pairs of stock to use together.

How will we use simulation? For a particular vector of the 8 parameters, say Θ, we will
generate n observations for the two series Y (i)

t using Equations 6.1 above. We then divide

Pairs Trading 265

these into a training set and test set. As we did for the ATT and Verizon stock, we use the
training set to find the best value of k for our pairs trading. Then we use that value with
our test data to evaluate how well we would actually do. The value for profit we obtain is
for a particular realization of the two time series. We need many independent replications
to estimate the distribution of profit for this particular value of Θ. We may be interested in
the average profit, some of the quantiles, the standard deviation, or some other statistics.
We repeat this for many different values of Θ to understand the distribution of profit across
the parameter space for Θ. This will allow us to understand how these factors change our
expected profit and what characteristics of the stock work well for pairs trading, at least
for our mathematical model.

6.6.1 Simulating the Stock Price Series
We now know the different steps involved in our simulation study. Our first task is to be able
to generate the data for the two stock prices for a given value of Θ, i.e., the 8 parameters.
This corresponds to implementing the two equations in Equations 6.1. Since the tth value
of each series depends on the (t-1)th value of the time series, a loop is the most obvious
way of creating the series. We may have concerns about speed. Instead, we could try using
a call to cumsum() but it is difficult to see if this correctly implements the mathematics
underlying the model. Let’s write the function using a loop and see if it is fast enough.

We can clearly calculate the linear terms in Equation 6.1 using a vectorized approach in
R. If we have a vector containing the two β0 values and similarly a vector for the β1 values,
we can generate the values with

beta0[1] + beta1[1] * (1:n)
beta0[2] + beta1[2] * (1:n)

We may want to avoid repeating the expression 1:n, but this is a minor detail.
We need to compute the vectors of length n for the X(i)

t terms that we will add to the
Y

(i)
t linear terms. We could write this as

x1 = x2 = numeric(n)
x1[1] = rnorm(1, 0, sigma[1])
x2[1] = rnorm(1, 0, sigma[2])
for(i in 2:n) {

x1[i] = rho * x1[i - 1] + psi * (1 - rho) * x2[i - 1]
+ rnorm(1, 0, sigma[1])

x2[i] = rho * x2[i - 1] + psi * (1 - rho) * x1[i - 1]
+ rnorm(1, 0, sigma[2])

}

This is a faithful mapping of the equations to code and is relatively easy to understand
and verify. It is reasonably efficient in that it pre-allocates the vectors x1 and x2 and then
inserts the values into those (rather than concatenating each value to the end and having
to resize the vector in each iteration).

Our code is somewhat repetitive. We treat x1 and x2 separately even though the com-
putations for each are very similar. We also have 4 calls to rnorm() in the code and this
corresponds to 2*n calls when executed since two of these are within the loop. Each call to
rnorm() generates a single value. We’d like to be able to vectorize these. We can exploit a
powerful feature of many of R’s random number generation functions. In the call rnorm¬
(10, sd = c(1, 2)), R will generate 10 values. Note the fact that the argument for

266 Case Studies in Data Science in R

sd is a vector of length 2. How does rnorm() interpret this? It will use R’s recycling rule to
make this a vector of length 10, i.e., c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2). It then uses
the i-th value from this vector as the standard deviation when generating the i-th random
value. In other words, this call will generate 10 values alternating between a N(0, 1) and a
N(0, 2) distribution. We could generate the first two ε(i)t values as a vector with rnorm(2,
sd = sigma). However, we can generate all 2*n values as a matrix with

epsilon = matrix(rnorm(2 * n, sd = sigma), ncol = 2, byrow = TRUE)

This is significantly faster than the 2*n individual calls to rnorm().
Instead of having 2 separate variables x1 and x2, we could use a 2-column matrix to

store the results. This also makes sense since we can return a single object containing the
2 series. We can pre-allocate this with

X = matrix(0, n, 2)

Then we can set the first day’s values with

X[1,] = epsilon[1,]

Q.11 In one implementation of our code, we used X = matrix(NA, n, 2) rather than
X = matrix(0, n, 2). Why is the second slightly more efficient?

Since we are using a matrix to collect the results, we would write the body of our loop as

X[i, 1] = rho * X[i - 1, 1] + psi * (1 - rho) * X[i - 1, 2]
+ epsilon[i, 1]

X[i, 2] = rho * X[i - 1, 2] + psi * (1 - rho) * X[i - 1, 1]
+ epsilon[i, 2]

We have eliminated the calls to rnorm() within these expressions and we are extracting the
relevant elements from epsilon matrix. However, we are still processing individual values
(scalars) rather than vectors and the two expressions are very similar. With a little thought
and framing the computations slightly differently, we can reduce the two expressions to one
line of code and also improve performance. We can use matrix multiplication to compute
the first 2 terms of each equation. Specifically,[

ρ ψ(1− ρ)
ψ(1− ρ) ρ

] [
X

(1)
t−1

X
(2)
t−1

]

yields the vector of length 2 that we want. So we can implement this with

A = matrix(c(rho, psi*(1-rho), psi*(1-rho), rho), 2)
for(i in 2:n)

X[i,] = A %*% X[i-1,] + epsilon[i,]

When we put all of these changes together, we can define our function as

Pairs Trading 267

stockSim =
function(n = 4000, rho = 0.99, psi = 0, sigma = rep(1, 2),

beta0 = rep(100, 2), beta1 = rep(0, 2),
epsilon = matrix(rnorm(2*n, sd = sigma),

nrow = n, byrow = TRUE))
{

X = matrix(0, nrow = n, ncol = 2)
X[1,] = epsilon[1,]

A = matrix(c(rho, psi*(1-rho), psi*(1-rho), rho), nrow = 2)
for(i in 2:n)

X[i,] = A %*% X[i-1,] + epsilon[i,]

Add in the trends, in place
X[,1] = beta0[1] + beta1[1] * (1:n) + X[,1]
X[,2] = beta0[2] + beta1[2] * (1:n) + X[,2]

X
}

We have specified default values for the 8 different parameters in Θ. Interestingly, we
have also allowed the caller to provide values for the epsilon variable. This allows us to
specify the random values explicitly, which is useful for testing and reproducing results.

It is valuable to take the time to implement all 3 versions of our code. These are

1. the simple loop with 4 calls to rnorm(),

2. the vectorized call to rnorm() for all 2*n values, but using 2 expressions to compute
the 2 time series, and

3. adapting the approach in b) to use matrix multiplication.

When we time these, we see that the last of these is approximately 3 times faster than
the first. Of course, the important question is if each of the implementations is correct.

How do we verify that our function stockSim() is correct? It involves random values, so
it is challenging. We can at least control the seed for the random number generator (see
set.seed() and .Random.seed) to reproduce the exact same random values in the same calls
to the random number generation functions. This may not allow us to guarantee the same
sequence of random numbers. However, we allowed the caller of stockSim() to specify the
matrix of random values via the epsilon parameter. This allows us to provide the same
random values across different calls and so remove the randomness. We can also remove
all of the randomness from the computations (e.g., with σi = 0) to see if the deterministic
values are correct. Similarly, we can use fully correlated values, i.e., values of 1 for rho and
psi. We can also specify 0 correlation and see if the results are uncorrelated.

Using the stockSim() function, we can generate stock prices for different values of rho,
psi and the vector of betas with

a = stockSim(rho = .99, psi = 0)

We can display these with

matplot(1:nrow(a), a, type = "l", xlab = "Day", ylab = "Y",
col = c("black", "grey"), lty = "solid")

268 Case Studies in Data Science in R

0 1000 2000 3000 4000

10
0

20
0

30
0

40
0

50
0

Day

S
to

ck
 P

ric
e

Figure 6.8: Two Simulated Time Series. The two time series are generated from the model
in 6.1 with ρ = 0.99 and ψ = 0.9 and β1 = c(.05, .1).

as shown in Figure 6.8.
We can also generate values that have a different linear trend in the price. We’ll use

beta1 = c(.05, .1) for the slopes of our linear trends:

a = stockSim(beta1 = c(.05, .1))

The two series diverge and as we explore different slopes and intercepts, the series can be
on quite different scales. As a result, when we plot them, one can appear to be almost
constant as its variations are dominated by the scale of the other series. This merely makes
it difficult to visualize them on the same plot with the same vertical scale. It does not affect
our computations in any way, especially since we are focused on the ratio. However, it can
be useful (and also potentially confusing) to plot the two series on the same plot using two
different scales as we did in Figure 6.1.

Q.12 Write a function to plot two series on the same plot using two separate axes, one on
the left and one on the right.

Now let’s use our simulation function stockSim() to generate time series data and explore
the effect of varying ρ, ψ, β(i)

0 , and β(i)
1 on the profit rate for pairs trading. For a particular

set of values for these 8 parameters, we want many independent and identically distributed
values of the profit to provide an estimate for the distribution of the profit. We’ll write a
function simProfitDist() to generate these observations for a given set of values for the 8
parameters. We can then iterate over the different combinations of the parameter values
and pass these to simProfitDist().

The idea for each sample replicate within the simProfitDist() function is as follows.

• Generate two time series using the 8 parameters.

Pairs Trading 269

• Split the time series into training and test datasets.

• Use the training data to determine the optimal value of k for the pairs trading strategy.

• Using that value of k, determine the profit for the test data.

We can use stockSim() to generate the sample data in the first step. We’ll define two
functions later – getBestK() and getProfit.K() – to compute the optimal value of k from the
training data, and to calculate the profit for a list of trading positions. If we assume these
exist, we can define a new function runSim() that implements steps 1 through 4 above as

runSim =
function(rho, psi, beta0 = c(100, 100), beta1 = c(0, 0),

sigma = c(1, 1), n = 4000)
{

X = stockSim(n, rho, psi, sigma, beta = beta0, beta1 = beta1)
train = X[1:floor(n/2),]
test = X[(floor(n/2)+1):n,]
m = mean(train[, 1]/train[, 2])
s = sd(train[, 1]/train[, 2])
k.star = getBestK(train[, 1], train[, 2], m = m, s = s)
getProfit.K(k.star, test[, 1], test[, 2], m, s)

}

Note again that we use the mean and standard deviation from the training data to compute
the positions for the test data. We can call runSim() with values for each of the 8 parameters
in very much the same way as stockSim(). Indeed, we might consider using . . . for the
signature of runSim() and pass all of the parameters directly to stockSim().

For runSim() to work, we need to define getBestK() and getProfit.K(). These are closely
related to the code we used for computing the profit for our ATT and Verizon stocks
in Section 6.5.5. Indeed, we defined a function positionProfit() to compute the profit for
one position, given the start and end of the position and the vectors of stock prices. This
allows us to define our getProfit.K() function by computing all of the trading positions with
getPositions() and then computing the total profit for each position with positionProfit().
Accordingly, we implement our function getProfit.K() with

getProfit.K =
function(k, x, y, m = mean(x/y), s = sd(x/y))
{

pos = getPositions(x/y, k, m = m, s = s)
if(length(pos) == 0)

0
else

sum(positionProfit(pos, x, y, m))
}

Similar to getProfit.K(), our getBestK() function also needs to find the trading positions
and compute the overall profit. However, it needs to do this for different possible values of k
in order to determine the value of k yielding the highest profit for the training data. Again,
we have all the building blocks and merely need to connect them:

getBestK =
function(x, y, ks = seq(0.1, max.k, length = N), N = 100,

max.k = NA, m = mean(x/y), s = sd(x/y))

270 Case Studies in Data Science in R

{
if(is.na(max.k)) {

r = x/y
max.k = max(r/sd(r))

}

pr.k = sapply(ks, getProfit.K, x, y, m = m, s = s)
median(ks[pr.k == max(pr.k)])

}

Note that we start the function by computing the default value formax.k if it is not supplied,
i.e., if it is NA. We compute this value from the vector of stock prices ratios. Importantly,
we compute this before we refer to the argument ks. As a result, if the caller doesn’t specify
the value for ks, the default expression for ks will use the newly calculated value of max.k.
This is lazy evaluation. The default value of ks is only computed when it is needed, i.e.,
first referenced, and at that stage max.k has been calculated, if necessary.

With these two functions defined, we are now in a position to call runSim(). Before we
do our simulations over the 8-dimensional grid for our model parameters, we need to verify
that all of these functions work correctly. We can use our original ATT and Verizon data
and results to test getBestK() and getProfit.K(). These should yield the same results for the
training and test data that we obtained directly in Section 6.5.5.

Q.13 How can we test the runSim() function? Implement these tests.

We now return to define our top-level function simProfitDist(). Recall that we intended
this to run multiple identically distributed simulations for a given vector of the 8 model
parameters and return a collection of profit values. Given runSim(), this is quite easy to
implement and may not even be worth having as a separate function. We can define it with

simProfitDist =
function(..., B = 999)

sapply(1:B, function(i, ...) runSim(...), ...)

B is the number of replicates we have in our simulation for the same parameter settings.
This controls the variability of our estimate of the average.

. . . allows us to pass any arguments to runSim(). We use it to avoid having to explicitly
copy the parameters and their default values from runSim(). Similarly, if we ever add a
parameter to runSim(), we will not also have to add it here. Unfortunately, we cannot use
replicate() and simply pass . . . in a call to runSim(), e.g.,

replicate(B, runSim(...))

This does not work as replicate() uses non-standard evaluation and manipulates the ex-
pression to create a function. For this reason, we have to use sapply() or a for loop. With
sapply(), we pass the . . . parameter to sapply(), which in turn passes this to our anony-
mous function. This then calls runSim() and ignores the argument i. This is slightly strange
gymnastics, but worth thinking about. It is equivalent to

function(..., B = 999) {
ans = numeric(B)
for(i in 1:B)

Pairs Trading 271

ans[i] = runSim(...)
ans

}

which hopefully makes the idea clearer. In fact, we don’t need the function simProfitDist()
as we can use direct calls such as

replicate(B, runSim(rho = .9, psi = .95))

Q.14 In addition to the total profit for a simulation, we would like to examine the number
of trading positions and the optimal value of k used for trading. Modify the functions
to collect this information and explore the results.

With simProfitDist() defined, we can simulate the profit for a particular setting of our
parameters:

system.time({ x = simProfitDist(.99, .9, c(0, 0)) })

On my machine, this took approximately 17 seconds to run for 999 samples or realizations
of the simulation. Let’s look at the distribution of the profit values:

summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-415.0 -0.1 0.0 0.3 0.1 579.0

Should we be suspicious of values such as 529 and -415? The former means that our profit
was 529%! The density plot in Figure 6.9 shows very large tails and a strong concentration
very near 0.

The percentage of times we actually lost money was

sum(x < 0)/length(x)

This is 48%. However, the median profit is 0. Should we be suspicious of getting values that
are exactly 0? Do these come from having no positions? or do the amounts from different
positions actually cancel each other exactly?

Now that we have our function simProfitDist(), we can explore the parameter space and
the profit rate for different values of our 8 parameters. We’ll vary psi from .8 to .99, and the
slopes (beta1) from -.01 to .01. If we have 20 different values for each of these parameters,
we have 20× 20× 20 different combinations:

g = expand.grid(psi = seq(.8, .99, length = 20),
beta1 = seq(-.01, .01, length = 20),
beta2 = seq(-.01, .01, length = 20))

That is 8000 different settings. At 17 seconds each, that is about 2267 minutes. That’s a
little over 11

2 days to run. This does not include varying rho. If we had 20 separate values
for it, our run time would be over 30 days. This is why we need to make our code run faster.
We can use many computers and run the different simulations in parallel, or we can make
our code faster, or both. We’ll focus on making the code faster, and leave it as an exercise
to use parallel computing for the different parameter value combinations.

To determine how to make the code faster, let’s profile this code:

272 Case Studies in Data Science in R

−40000 −20000 0 20000 40000 60000

0.
00
0

0.
00
3

0.
00
6

Profit

D
en
si
ty

Figure 6.9: Density of Profit. This shows the distribution for 999 values of profit simulated
from our time series model in equation 6.1 with ρ = 0.99 and ψ = 0.9. We see a large
concentration very close to 0. We also see some slightly more commonly occurring values
corresponding to the small modes/“bumps.” The extreme values are very extreme and also
very variable across simulations, as we expect.

Rprof("sim.prof")
system.time({x = simProfitDist(.99, .9, c(0, 0))})
Rprof(NULL)
head(summaryRprof("sim.prof")$by.self)

self.time self.pct total.time total.pct
"stockSim" 8.06 49.81 10.74 66.38
"%*%" 1.02 6.30 1.02 6.30
"FUN" 0.86 5.32 16.16 99.88
"+" 0.70 4.33 0.70 4.33
"findNextPosition" 0.64 3.96 2.20 13.60
".External" 0.58 3.58 0.58 3.58

As we might have expected, stockSim() is the expensive function, accounting for 50% of the
total run time. Our findNextPosition() function appears as the fifth most expensive function,
but it is only consuming 4% of the time and remember we are calling that a lot more
often than stockSim(). The matrix multiplication is the second most expensive function,
but its time is a lot less than stockSim() and again, we are calling it even more times than
stockSim(). These data indicate that we should focus on improving the stockSim() function.

Before we make stockSim() faster, let’s think about how we can count the number of
times findNextPosition() and stockSim() are called. This will allow us to better understand
the profiling data above. simProfitDist() calls stockSim() for each of the B samples it gen-
erates. So this count is simple to determine. How many times findNextPosition() is called

Pairs Trading 273

depends on the values of the ratio, i.e., the data themselves. If we have one very long posi-
tion that lasts for 90% of the days, we’ll only be looking for the remaining positions in the
final 10% of the data. This will, on average, lead to only a few calls to findNextPosition().
Alternatively, if we have many short positions, we will call findNextPosition() many times.
The number of positions and their length depends on the value of k. Furthermore, we search
over different values of k for the optimal trading rule. The sequence of values of k we search
also depends on the data. Accordingly, it is hard to know, a priori, how many times we call
findNextPosition(). So we will count the number of calls.

We could modify findNextPosition() to add some code to update a variable each time
it is called. However, there is a more general way than modifying the function directly. We
can use the trace() function to perform arbitrary actions when a given function is called. In
our case, our action will be to increment the value of a variable. We can do this with

counter = 0L
trace(findNextPosition, quote(counter <<- counter + 1L),

print = FALSE)

We create the counter variable. The expression counter <<- counter + 1L increments
this counter. We need the global assignment operator «- to update the counter variable in
our work space rather than creating a local value within findNextPosition(). We use quote()
in the call to trace() because we don’t want R to evaluate this expression as the value of the
argument to trace(). Instead, we want this to be an expression that will be evaluated only
when findNextPosition() is called in the future. If we omit the print argument, we will see
thousands of messages of the form

Tracing findNextPosition(ratio, cur, k, m, s) on entry

Having called trace() with the incrementing expression, we can repeat our simulation

system.time({x = simProfitDist(.99, .9, c(0, 0))})

and then check the value of counter. This shows that we call findNextPosition() 100,899
times.

If we want to count the number of calls to findNextPosition() in a different simulation,
we can reset counter to 0 and then run the simulation. When we want to stop collecting
the counts, we use

untrace(findNextPosition)

Q.15 Rather than using the global variable counter in R’s global environment, use a
closure, in other words, lexical scoping, to manage a “private” variable that keeps the
count of the number of times findNextPosition() is called. You do this by creating a
function that returns a list with two functions. One of these functions increments the
counter variable. The other function returns the current value of that counter. You can
also add a third function that resets the counter. Use the incrementing function with
trace() to count the number of calls to findNextPosition().

6.6.2 Making stockSim() Faster
How can we make stockSim() faster? We can think harder and find a faster equivalent algo-
rithm to perform the computations. Alternatively, we can try to compile the code to make
it faster. We might use the compile package to create byte-code or the very experimental

274 Case Studies in Data Science in R

RLLVMCompile and Rllvm packages to create native machine code. Alternatively, we can
write C/C++ code to make this go quicker.

Let’s try the compiler package and its cmpFun() function to compile the stockSim()
function. We do this with

library(compiler)
stockSim.cmp = cmpfun(stockSim)

We can see how much this improves the speed of the function by calling the original and
the new version several times and comparing the times:

tm.orig = system.time({replicate(80, stockSim())})
tm.compiled = system.time({replicate(80, stockSim.cmp())})
tm.orig/tm.compiled

user system elapsed
1.455 2.000 1.454

This shows about a 45% improvement, which is significant. If we used longer time series
by specifying a larger value for n in the call to stockSim(), we would see even greater
improvements. This improved performance is good, but we may be able to get more with
C code.

The C code below (which you don’t have to understand in all its details) is basically the
same as the original R version of the stockSim() function in which we did not use matrix
multiplication, but implemented the two equations 6.1 directly.

C void
stockSim(double *ans, const int *len, const double *rho,

const double *psi, const double *eps)
{

int i,j;
double psi_rho = (1 - *rho) * (*psi);
for(i = 1, j = *len + 1; i < *len; i++, j++) {

ans[i] = *rho * ans[i - 1] + psi_rho * ans[j - 1] + eps[i];
ans[j] = *rho * ans[j - 1] + psi_rho * ans[i - 1] + eps[j];

}
}

We can call this from R in a manner similar to calling an R function. We will actually pass
an R vector (ans) into which the C code will insert the results. This is how the C code
returns its results to R.

To use this, we have to compile, link and then load it into our R session. We use the
shell command

Shell R CMD SHLIB stockSim.c

to create the dynamically loadable/shared library (DLL/DSO). Then we dynamically load
this into the R session with

dyn.load("stockSim.so")

(On Windows, we use the extension dll in place of so.) This makes the routine available
so that we can invoke it from R using the .C() function.

We now write an R function that acts as a front-end, or wrapper, for calling this C routine

Pairs Trading 275

from R. We define this much like the R stockSim() function. It has the same parameters as
the R function and performs the same basic computations. However, it coerces the inputs
to the appropriate type expected by the C code and allocates space for the two time series
that the C routine will create. The R code is

stockSim.c =
function(n = 4000, rho = 0.99, psi = 0, sigma = rep(1, 2),

beta0 = rep(100, 2), beta1 = rep(0, 2),
epsilon = matrix(rnorm(2*n, sd = sigma), nrow = n))

{
X = matrix(0, nrow = n, ncol = 2)
X[1,] = epsilon[1,]
X = .C("stockSim", X, as.integer(n), rho, psi, epsilon)[[1]]

Add in the trends
X[,1] = beta0[1] + beta1[1] * (1:n) + X[,1]
X[,2] = beta0[2] + beta1[2] * (1:n) + X[,2]

X
}

The final steps in this function add the linear component, which we can do entirely in
R very quickly.

We now have an alternative to the R version of stockSim(). We first need to ensure it
is correct. One way to do this is check if the two implementations agree. We can test this
by naming the two functions differently (as we did) and then passing the same matrix of
epsilon values. This is why we made epsilon a parameter of the function. It allows us to
control the randomness and hence make it the same in calls to the two functions. We call
both versions with

e = matrix(rnorm(2*4000, sd = c(1, 1)), , 2)
tmp1 = stockSim.c(epsilon = e)
tmp2 = stockSim(epsilon = e)
identical(tmp1, tmp2)

This does indeed return TRUE, which confirms that the two functions yield the same results.
We may want to test further.

Now that we believe stockSim() and stockSim.c() behave the same, we can replace the
former with the latter with

stockSim = stockSim.c

This allows us to leave all of our code and functions that call stockSim() unchanged. We
can now run our simulation again and profile this:

Rprof("sim.prof")
system.time({x = simProfitDist(.99, .9, c(0, 0))})
Rprof(NULL)
head(summaryRprof("sim.prof")$by.self)

This takes less than half the time of the original stockSim() function, down to 6.7 seconds.
findNextPosition() is now consuming 10% of the time, and so is mean(). Accordingly, we
may want to avoid recomputing the mean when we can avoid it. That is why I went back

276 Case Studies in Data Science in R

through the code and explicitly added a parameter to getBestK() and getProfit.K() so that
we could pass the value and compute it in runSim() just once for a given training data set.
This shaves 2 seconds off the run time.

We now have all of the functions to perform our simulations and understand pairs trading
in the context of these simple time series models. For simplicity, we’ll just look at 20 values
for each of ρ and ψ and compute the median profit for 100 repetitions for each combination
of these values. We use expand.grid() to compute all pairs of values:

p = seq(.5, 1, length = 20)
params = as.matrix(expand.grid(p, p))

We can then loop over each row of this matrix and separate the 2 values to call simProfit-
Dist() with

profits = apply(params, 1,
function(p)

median(simProfitDist(p[1], p[2], B = 100)))

We leave further explorations as an exercise.

Q.16 Our pairs trading approach uses the mean and standard deviation from the train-
ing data for the thresholds for the future/test data. We could, however, update the
thresholds after we receive the new stock prices, e.g., each day. We can use the same
mechanism to determine the optimal value of k with the updated training set, created
by adding the new observation to the previous training set. This then changes when we
open or close a position in the future. Implement this approach and explore how the
profit rate changes.

Q.17 We have used a symmetric trading rule, i.e., r̄ ± kσr. We could use an asymmetric
rule with a different deviation from the mean above and below, i.e., r̄ + ka and r̄ − kb.
Implement a mechanism to find the optimal values for ka and kb, and then explore the
properties of that trading approach and how it compares to the symmetric approach.

Bibliography
[1] Investopedia. Adjusted Closing Price. http://www.investopedia.com/terms/

a/adjusted_closing_price.asp, 2005–2014.

[2] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[3] Wikipedia. Pairs Trading. http://en.wikipedia.org/wiki/Pairs_trade,
2005–2014.

http://www.investopedia.com/terms/a/adjusted_closing_price.asp
http://www.investopedia.com/terms/a/adjusted_closing_price.asp
http://www.r-project.org
http://en.wikipedia.org/wiki/Pairs_trade

7
Simulation Study of a Branching Process

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
7.1 Introduction . 277

7.1.1 The Monte Carlo Method . 279
7.1.2 Computational Topics . 281

7.2 Exploring the Random Process . 281
7.3 Generating Offspring . 284

7.3.1 Checking the Results . 286
7.3.2 Considering Alternative Implementations . 287

7.4 Profiling and Improving Our Code . 289
7.5 From One Job’s Offspring to an Entire Generation . 290
7.6 Unit Testing . 292
7.7 A Structure for the Function’s Return Value . 293
7.8 The Family Tree: Simulating the Branching Process . 294
7.9 Replicating the Simulation . 299

7.9.1 Analyzing the Simulation Results . 301
7.10 Exercises . 306

Bibliography . 308

7.1 Introduction
Parallel computing allows us to break up our programs into smaller pieces that can run
simultaneously on different CPUs. Sometimes a program spawns another program/job that
needs to wait before it can begin its work because it requires the results of another program
that has not completed. In this situation even where there are ‘infinitely’ many CPUs avail-
able, a queue of interdependent tasks will form. Tsitsiklis, Papadimitriou, and Humblet [6]
studied the behavior of systems of interdependent jobs. One of the questions that interested
them was: what is the distribution of the length of time that a computational process,
including all of its subtasks, takes to complete? The answer to this kind of question may
help developers design code that can run efficiently in a parallel fashion or design queuing
systems for managing jobs on a compute cluster. Similar problems arise with, e.g., Web
servers with multiple queues and database requests where a request to update information
must wait for earlier requests that are working with the same information.

In order to study this problem, Tsitsiklis et. al. proposed a probability model for the

277

278 Case Studies in Data Science in R

generation of jobs and their interdependencies. While it is relatively easy to state the as-
sumptions of their model, answering questions about this random system is mathematically
difficult.

Aldous and Krebs [1] considered a slight variant of the branching process proposed by
Tsitsiklis et. al. (More recently, Bodenave [2] and Kordzakhia [3] have studied variants of
the Aldous and Krebs process.) The Aldous and Krebs process can be viewed as one where:

• The initial job generates other jobs with the times between the start of jobs independent
and identically distributed.

• These offspring jobs must all wait until their parent program completes before they can
start running.

• Each job can spawn jobs of its own as soon as it is generated, i.e., it need not wait to
begin running before it generates a job.

An illustration of this system appears in Figure 7.1. There, the initial job generated 3
jobs. The first of these 3 jobs did not generate any jobs of its own, the second spawned
3 jobs, and the third generated 2, the first of which spawned 2 jobs. In this figure, the
system of jobs is still running. The initial job has completed, as have its first 2 child jobs
so they are marked with an X. The third child, marked R, is still running so its children
and grandchildren are waiting for it to complete before they can begin to run (they are
marked W). As for the children of the second subtask, one has completed and the other two
are running. Each program that is running or waiting to begin to run (i.e., the R and W
nodes in the tree) may generate additional jobs at a time in the future that we have not yet
observed. Aldous and Krebs were interested in studying the behavior of the time it takes for
the entire system of jobs to finish running, particularly, which combination of job creation
and job-completion rates leads to processes that definitely complete in a finite amount of
time and which might never complete.

X

XX R

W WR X R

W W
Figure 7.1: Diagram of an Example Branching Process. This tree shows a possible realization
of the stochastic process studied by Aldous and Krebs. Each node in the tree represents a
program. Jobs marked with an “X” have completed running, those marked “R” are currently
running, and “W” nodes are waiting for their parent to complete before starting to run.

Simulation Study of a Branching Process 279

Both Tsitsiklis et. al. and Aldous and Krebs studied their proposed random processes
via mathematics, where they found analytic solutions to features of the process. To derive
these results, they considered ways to simplify the more complex problem to one where
their analysis would still yield meaningful and potentially useful insights. Simulations can
be used as an adjunct to, or substitution for, these closed-form analytic solutions when such
solutions do not exist because, e.g., they may be very cumbersome to solve analytically or
we might not yet have figured out how to solve them. Also, if we want to study how the
behavior of the process changes when the assumed behavior is violated, then simulations
can offer insights that might be difficult to obtain analytically. That is, simulation studies
attempt to model a random process using the computer in order to provide insights about
properties of the process. To do this, we use the Monte Carlo method.

7.1.1 The Monte Carlo Method
Monte Carlo simulation is very simple. To study a random variable, we repeatedly generate
independent random outcomes from its probability distribution, and we use the properties
of these empirical results as approximations to their expected properties. For example, if
we are interested in studying the behavior of the sum of 3 Exponential random variables,
then we generate, say, 6 thousand outcomes from this probability distribution, i.e., 6,000
sums of 3 exponential random variables. We do this with

empirical = replicate(6000, sum(rexp(n = 3)))

If we are interested in the expected value and standard deviation for the sum of 3 exponen-
tials, then we estimate these quantities with the mean and SD of our sample, respectively.
That is,

mean(empirical)

[1] 2.993

sd(empirical)

[1] 1.716

Of course, we can solve these questions easily analytically, and we know that the expected
value is 3 and the SD is

√
3. Our simulated results are close to these values.

It is a bit harder to find analytically, say, the chance that the sum is at most 5. We can
estimate this probability using our sample by finding the proportion of observed values that
are at most 5, e.g.,

sum(empirical <= 5)/length(empirical)

[1] 0.874

If we run a larger simulation, then these sample statistics should be even closer to their
expected value.

Additionally, we may want to understand how the distribution depends on the rate
parameter of the Exponential distribution. In this case, we would select a set of values for
the rate, e.g.,

rates = c(seq(0.1, 1, by = 0.1), seq(2, 7, by = 1))

280 Case Studies in Data Science in R

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

0.1

0.2

0.3

0.6

12

7

Figure 7.2: Empirical CDFs for the Sum of Three Exponentials. In a study of the sum
of 3 independent Exponential random variables with the same rate, 6,000 sample outcomes
were generated and used to estimate the cumulative distribution function. The plot shows
the empirical CDF for 16 values of the rate parameter, i.e., 0.1, 0.2, ..., 0.9, 1, 2, ..., 7.
To help match each rate to its curve, a few of these rates are included in the figure next to
their corresponding curves.

Then we run the simulation for each value, i.e.,

samples = lapply(rates, function(r) {
replicate(6000, sum(rexp(n = 3, rate = r))) })

And, we examine how various properties of this random quantity depend on the rate, e.g.,
Figure 7.2 shows the empirical cumulative distribution function of these distributions.

The branching process we study in this chapter is more complex than the sum of 3
independent random exponentials, so the Monte Carlo method is extremely useful for ex-
amining the behavior of this process. We use features of the samples of this random process
to provide insights to the behavior of the process. We simulate the version of the stochastic
process proposed by Aldous and Krebs. We wish to find conditions under which the system
terminates in finite time. As we do this, we explore how to carry out a Monte Carlo study.

We can think of a simulation study as an experiment for which we design, conduct, and
analyze the results. As with in-vivo experiments, we can determine the sample size needed to
deliver acceptable precision, use statistical principles to summarize and analyze the results,
and bring the principles of experimental design to determine how to study the process, e.g.,
what parameters to vary and how to vary them. With simulations we need to carefully
establish the problem so that our results are reliable and reproducible. For example, testing
and debugging code needs to be done carefully because the results of the simulation are not
the same from one execution of the simulation to the next. In this chapter we:

Simulation Study of a Branching Process 281

• Precisely specify the model for the stochastic process. This includes understanding re-
lationships between Poisson, Uniform, and Exponential distributions that underlay the
Poisson process.

• Determine how to randomly generate the first generation of jobs, and then how to
produce successive generations.

• Ascertain what information about each realization of the process we need to record
and how to organize this information into a data structure so we can keep and easily
summarize relevant information.

• Design and carry out a comprehensive study of this stochastic process.

7.1.2 Computational Topics
• The Monte Carlo method, simulation, and random number generation using R’s [5]

built-in probability distribution generators.

• Loops and recursion.

• Modular code and designing code in small testable steps.

• Debugging code via exploratory data analysis of the results.

• Data structures and deciding what representation to use for simulation results.

• Efficiency and profiling code.

• Three-dimensional visualizations and creating custom visualizations of simulation re-
sults.

7.2 Exploring the Random Process
As a first step in designing the simulation study, let’s explore the process to get a better
understanding of how it works. The process begins with a sole job that lasts for a random
amount of time. The completion time (often referred to as lifetime) is determined by some
probability distribution. Typically the exponential distribution is used to model lifetimes so
we follow that approach here. The exponential distribution has a rate parameter, κ, where
the density is

κ exp−κx, x > 0.

As mentioned in Section 7.1.1, the expected value for the exponential distribution can be
easily found analytically to be 1/κ.

Let’s begin with a rate κ = 0.3 and generate the first job’s lifetime as follows:

kappa = 0.3
d0 = rexp(1, rate = kappa)
d0

[1] 8.384

282 Case Studies in Data Science in R

We see that our first job starts at time 0 and completes at time 8.384. Over its life span,
the job spawns additional jobs. How do we generate these offspring?

According to Aldous and Krebs, births are to follow a Poisson process so we must figure
out how to generate random values from a Poisson process. Note that the Poisson process
is related to but different from the Poisson random variable. The process is a probability
mechanism for generating random events in time, such as the starting times for jobs. The
count of the number of events generated in a fixed time interval is a Poisson random variable,
i.e.,

P(k births in an interval of length 1) = λkk!
e

−λ

, k = 0, 1, 2, . . .

A property of the Poisson process that we can use to generate births is that the time
between each pair of consecutive events, which is called the inter-arrival time, has an Ex-
ponential distribution and these inter-arrival times are independent of one another. This
means that we can generate the inter-arrival times from the exponential distribution and
piece them together to get the birth/start times of jobs. The initial job starts at time 0 so
its first offspring’s birth date is the first inter-arrival time. That is, we generate the first
offspring’s birth date as an exponential random outcome. Then, we generate the time be-
tween the birth of the first and second offspring with another independent realization from
the exponential distribution, the time between the second and third offspring also has an
exponential distribution independent of the others, and so on.

For example, we generate the time of the first offspring’s birth using, say, a rate of
lambda = 0.5 as follows:

lambda = 0.5
birth1 = rexp(1, rate = lambda)
birth1

[1] 1.47

We generate the inter-arrival time between the first and second offspring with

itime = c(birth1, rexp(1, rate = lambda))
itime

[1] 1.470 4.084

This means the second job arrives 4.08 units of time after the first. Similarly, we generate
the third inter-arrival time with

itime = c(itime, rexp(1, rate = lambda))
itime

[1] 1.470 4.084 2.052

We convert the inter-arrival times into birth times by computing the cumulative sum of
these inter-arrival times. We do this with

cumsum(itime)

[1] 1.470 5.554 7.606

The birth of the third offspring is earlier than the completion time of the original job (recall
the value of d0 is 8.38) so we generate one more inter-arrival time and determine whether
it occurs before d0:

Simulation Study of a Branching Process 283

itime = c(itime, rexp(1, rate = lambda))
btime = cumsum(itime)
btime

[1] 1.470 5.554 7.606 10.868

The fourth time occurs after the parent job has finished and, therefore, does not actually
happen. This means the first job has only 3 offspring, i.e.,

btime = btime[btime < d0]

In other words, once we get a time that occurs after the completion of our first job, i.e.,
after d0, then we stop generating offspring and keep only those times that occur before the
parent job completes.

The process proposed by Aldous and Krebs says that once a program is spawned, it
must wait until its parent completes before it begins running, and its run time follows the
same distribution as its parent’s. This means that we can think of each job’s lifetime as
consisting of two distinct parts.
• The time that the job’s parent lives, and it waits to begin running.

• The time that the job lives beyond its parent, when it runs.
This two-part lifetime is why Aldous and Krebs dubbed the process a birth-and-
assassination process. The idea is that the children in the process are protected by their
parent. When the parent lives, its children cannot ‘die,’ but once the parent is ‘assassinated,’
then the children are no longer protected and they now can be assassinated. The time when
they are unprotected and can be assassinated is the job’s run time.

More formally, we can think of each child as living a certain random amount of time
past the death of its parent. This time is treated as an independent increment past the
parent’s death, and we model it with the same Exponential distribution as the original
job’s lifetime, i.e., an exponential random variable with rate κ. This means that we can
generate the completion times for all 3 of the offspring with one call to rexp(), e.g.,

dtime = d0 + rexp(n = length(btime), rate = kappa)
dtime

[1] 9.877 9.205 24.552

Notice that in this particular instance, the second-born is the first to die and the last-born
lives much later than its siblings.

We could continue in this way to generate the offspring of each of these 3 children, i.e.,
the third generation of jobs. For example, the birth date of the first child of the original
job’s first born is:

btime[1] + rexp(1, rate = lambda)

[1] 6.234

and its time of completion is

dtime[1] + rexp(1, rate = kappa)

[1] 12.56

However, now that we have some experience generating a few of these jobs, we can outline a
better approach to programming the stochastic process. For example, if we know the birth
and completion time of a job, then we have the tools to generate the birth and completion
times of that job’s offspring. Let’s make our first task to write a function to generate the
birth and completion times of a job’s offspring given the parent job’s time of birth and
completion. This is the topic of the next section.

284 Case Studies in Data Science in R

7.3 Generating Offspring
We have identified a task that we would like to encapsulate in a function – generating
random birth times and the corresponding completion times of a job’s offspring. What
should be the parameters for this function? As noted earlier, we need a) the parent’s birth
time and b) completion/death time in order to generate its offspring’s lifetimes, so these two
times should be input parameters to our function. Also, we can specify c) the rate for the
inter-arrival of the offspring, and we can provide d) a rate for the run times of the offspring
in order to parameterize the exponential distributions for the birth and completion times.
In our exploratory code, we took these parameters to be λ = 0.5 and κ = 0.3, respectively.
We want to parameterize these values so they can be easily modified when we study their
impact on the longevity of the process. We now have identified 4 parameters for our function
definition. Our function signature appears as

function(bTime, cTime, lambda = 0.5, kappa = 0.3)

We have provided default values for the two rates so that they need not be specified in a
function call but can be easily overridden to get different distributions.

Next, we need to write the code in the body of our function. We saw in the previous
section one approach to generating the birth of children. There, we generated an inter-arrival
time and added this time to the latest birth time. If this new time occurs before the parent’s
completion time then it is the next offspring’s birth time. If the time is after the parent’s
completion, then we stop generating birth times. Essentially, we manually performed a loop.
We can do these computations with a while loop. For example, in pseudo-code this might
appear as

while (most_recent_birth < parent_completion_time) {
kidBirths = c(kidBirths, most_recent_birth)
most_recent_birth = most_recent_birth + rexp(1, rate = lambda)

}

Notice that the while loop terminates once the most recent “birth” time occurs after the
parent has died. Before checking this relationship, we must have generated that birth time,
and if it occurs before the parent’s death, then we can append it to the vector of birth
times we have already observed. In this way, we incrementally build the birth-time vector.
We might consider whether there are faster ways to generate these births and deaths. For
example, if we expect a parent to have 4 offspring, then we could generate inter-arrival times
4 at a time, e.g., rexp(4, rate = lambda) and work with sets of 4 times. We leave this
approach as an exercise. Later, we explore a different approach to generating offspring that
utilizes a property of the Poisson process to generate all of a job’s offspring without the
need for looping. For now, we encapsulate this loop and the generation of the completion
times of the offspring into the following genKids() function:

genKids =
function(bTime, cTime, lambda = 0.5, kappa = 0.3)
{

Parent job born at bTime and completes at cTime

Birth time of first child
mostRecent = rexp(1, rate = lambda) + bTime
kidBirths = numeric()

Simulation Study of a Branching Process 285

while (mostRecent < cTime) {
kidBirths = c(kidBirths, mostRecent)
mostRecent = mostRecent + rexp(1, rate = lambda)

}

generate lifetimes for all offspring
numKids = length(kidBirths)
runtime = rexp(numKids, rate = kappa)
kidCompletes = rep(cTime, numKids) + runtime

data.frame(births = kidBirths,
completes = kidCompletes)

}

Let’s try out our function by calling it a few times.

genKids(1, 6)

[1] births completes
<0 rows> (or 0-length row.names)

genKids(1, 6)

births completes
1 2.47 9.42

genKids(1, 6)

births completes
1 4.261 13.939
2 5.157 8.680
3 5.649 8.624

Our function calls do not give us any errors, but we should still examine the return values
carefully to make sure that the function carries out the computations as expected. We
consider this issue in the next section, but before proceeding we examine another way to
generate the birth times.

In genKids() we calculate one birth time after another until a condition is met, i.e., until a
birth time exceeds the parent’s lifetime. This sequence of operations suggests an alternative
way to successively generate the birth times via recursion. That is, we call a function, say
genBirth(), to generate the next birth time, add it to the collection of previously generated
birth times, and have the function call itself to generate the next birth time, and so on. The
function continues calling itself until the next birth time exceeds the parent’s completion
time, at which point it returns the collection of birth times and the program ceases. Below
is an implementation of genBirth().

genBirth = function(currentTime, cTime,
births = numeric(), lambda = 0.5) {

Generate birth time of next job after currentTime
mostRecent = rexp(1, rate = lambda) + currentTime

286 Case Studies in Data Science in R

if (mostRecent > cTime)
return(births)

else {
births = c(births, mostRecent)
genBirth(currentTime = mostRecent, cTime, births, lambda)

}
}

Note that as with genKids(), we need the rate of the inter-arrival times and the com-
pletion time of the parent. Since we do not generate the completion times of the offspring,
we do not need the parameter kappa. Also notice that we recursively add a birth time to
a collection of birth times that have already occurred so we have the additional parameter,
births, which we augment with the latest birth.

We can re-implement genKids() so that it uses genBirth() to obtain the birth times of
the offspring as follows:

genKidsR =
function(bTime, cTime, lambda = 0.5, kappa = 0.3) {

Parent job born at bTime and completes at cTime

kidBirths = genBirth(bTime, cTime, lambda = lambda)

generate lifetimes for all offspring
numKids = length(kidBirths)
runtime = rexp(numKids, rate = kappa)
kidDeaths = rep(cTime, numKids) + runtime

data.frame(births = kidBirths,
completes = kidDeaths)

}

With the recursive function genBirth(), we no longer need the while loop in genKids().
We leave it as an exercise to confirm that this version of the function, i.e., genKidsR(),
yields the same birth and death times as the original genKids(). The general concept of
recursion can be difficult. It can also be inefficient, as, equivalently, can be while and for
loops. In subsequent sections, we address the concept of efficiency, and consider how we
might redesign our code.

7.3.1 Checking the Results
One simple check to determine that our function is behaving as expected is to confirm that
the offspring are born after the parent’s birth time and that they complete after their parent
has completed. We can see that this is the case for our 3 sample sets of offspring, and we
can imagine writing code to test whether or not this simple condition holds for all offspring
of a job.

We additionally might take a statistical approach to check our function. For example,
a random number of children are generated for the parent job. We can examine the distri-
bution of the number of children born to this parent by generating many instances of its
offspring and tallying the number of children in each instance. Since the inter-arrival rate is
λ, probability theory tells us that we expect λ× (deathtime− birthtime) children. In our
example, this is 0.5× (6− 1), or 2.5, children. We can compare this expected value against

Simulation Study of a Branching Process 287

our simulation results by repeating our simulation 1000 times and computing the average
number of observed offspring with

numKids = replicate(1000, nrow(genKids(1, 6)))
mean(numKids)

[1] 2.503

The standard deviation of the number of children is sqrt(2.5), or approximately 1.58, so
the standard error for the sample average is sqrt(2.5/1000), or 0.05. We see that our
sample average is within 1 SE of what we would expect.

Furthermore, the distribution of the number of children should follow the Poisson(2.5)
distribution. To confirm this, we can compare the empirical probability mass function for the
number of children a job has to the Poisson distribution. We find the empirical proportions
and the Poisson(2.5) probabilities with

eprobs = table(numKids)/length(numKids)
probs = dpois(x = 0:max(numKids), lambda = 2.5)

Then we plot these proportions and probabilities side by side with

plot(eprobs, type = "h",
ylab = "Proportion", xlab = "Number of offspring")

segments(x0 = 0.1 + 0:max(numKids), y0 = rep(0, max(numKids)),
y1 = probs, col="grey", lwd = 2)

In Figure 7.3, we see that the heights of the bars for the two distributions are very close.
Additionally, we can carry out a chi-square goodness of fit test of the simulated counts of
children to the expected counts for 1,000 observations from a Poisson(2.5) distribution, and
we find a p-value of 0.994. The observed counts fit the expected counts very closely.

The property that we have been using to validate our code, i.e., that exponential inter-
arrival times lead to a Poisson number of children, offers an alternative, possibly more
efficient approach to generate offspring. We consider it next.

7.3.2 Considering Alternative Implementations
There are other ways than the approach taken earlier in this section to generate the birth
and death times of a job’s offspring. For example, since R is a vectorized language, we may
ask ourselves if there is a way to modify our function genKids(), or design a new function,
so that it generates the offspring in a vectorized manner, rather than one at a time in a
while loop or via recursion. The problem is that we don’t know how many children a job
has so we cannot simply generate the correct number of inter-arrival times all in one go.
As mentioned already, we can partially remedy this problem by generating multiple inter-
arrival times, based on the expected number of children and its standard deviation. Then
we would keep only those times that correspond to births before the parent’s completion
time. If we do not generate enough inter-arrival times, then we can generate another batch
of inter-arrival times to add to our original set and check again. This way, we typically
only need to generate a set of inter-arrival times once. We leave the implementation of this
approach as an exercise.

Alternatively, we use the additional information about the Poisson process discussed in
Section 7.3.1 and generate the offspring by a quite different method. When we observe a
Poisson process over a fixed time interval, say, an interval of length t, then the number

288 Case Studies in Data Science in R

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Number of offspring

P
ro

po
rti

on

0 1 2 3 4 5 6 7 8 9

Figure 7.3: Empirical Distribution of the Number of Offspring for a Job. This figure shows
the observed proportion of the number of offspring randomly generated for a parent with a
birth time of 1 and a completion time of 6. The inter-arrival times of the parent’s children
are independent and follow an exponential distribution with parameter λ = 0.5. The process
was simulated 1,000 times, and the observed proportion of 0, 1, 2, ..., 9 offspring plotted
(black line segments). In addition, the true probabilities from the Poisson(2.5) distribution
are plotted next to the observed proportions (grey line segments).

of events in that interval, e.g., the number of births, follows the Poisson(λt) distribution,
where λ is the rate per unit of time. In addition, once we know the number of events in
the time interval (e.g., the number of jobs generated by the parent), then the locations of
these events are independent of each other and follow the Uniform distribution. We can
use these two properties of the Poisson process to more simply generate the offspring. That
is, rather than generating offspring one after another using the inter-arrival times, we first
generate the number of offspring, and then we generate all of their birth times with one call
to runif().

Suppose as before that the parent has a birth time of bTime and a completion time of
cTime, then the number of offspring that this job has can be generated with

numKids = rpois(1, lambda = (cTime - bTime) * lambda)

Now that we have the parent’s number of offspring, we can generate the offspring’s birth
times according to the Uniform distribution with

sort(runif(numKids, min = bTime, max = cTime))

Note that we sorted these times so that they appear in birth order. We can update genKids()
to use this probabilistic property and abandon the while loop. We leave this modification
as an exercise, and call the modified function genKidsU().

Simulation Study of a Branching Process 289

Is this new function any faster than our first version? We can time our different versions
of the function to see if one runs much faster.

7.4 Profiling and Improving Our Code
In this section, we compare two approaches for generating the offspring of a job to see if
the approach that uses a while loop is significantly slower or faster than the approach
that takes advantage of the Poisson and Uniform properties of the number and location of
offspring (described in Section 7.3.2). We can use the system.time() function to make this
comparison. Both versions of the genKids() function are quite fast for the values of the
parameters in which we are interested, so how do we make an accurate comparison? We
can repeat the call to these functions many times and determine the total time it takes to
perform the multiple calls. We do this with:

time1 = system.time(replicate(4000, genKids(1, cTime = 9)))
time2 = system.time(replicate(4000, genKidsU(1, cTime = 9)))

time1/time2

user system elapsed
0.823 0.375 0.815

The first approach with the while loop is nearly 20% faster!
This speedup seems counter-intuitive because it generates the birth dates of the jobs one

at a time and incrementally expands the birthKids vector with each new child. However,
since the arguments for the birth and completion time of the parent are 1 and 9, the parent
typically has very few offspring so this incremental addition may not cost us much. What
happens when we increase the completion time of the parent? Let’s try a cTime of 100,

time1 = system.time(replicate(4000, genKids(1, cTime = 100)))
time2 = system.time(replicate(4000, genKidsU(1, cTime = 100)))
time1/time2

user system elapsed
1.602 27.333 1.669

Now the genKids() function is slower than genKidsU() by about 60%. It makes sense that
the gains from vectorizing the operations are realized when the parent has a large number
of children.

We can investigate which operations in genKids() takes the most time by profiling the
code. We use Rprof() to do this with

set.seed(seedx)
Rprof("profGenKids1.out")
invisible(replicate(1000, genKids(1, cTime = 100)))
Rprof(NULL)

The summaryRprof() function tallies the timings for the various function calls and presents
them in a table, e.g.,

290 Case Studies in Data Science in R

summaryRprof("profGenKids1.out")$by.self

self.time self.pct total.time total.pct
".External" 0.18 34.62 0.18 34.62
"c" 0.08 15.38 0.08 15.38
"data.frame" 0.06 11.54 0.18 34.62
"genKids" 0.04 7.69 0.52 100.00
"rexp" 0.02 3.85 0.20 38.46
"make.names" 0.02 3.85 0.04 7.69
"paste" 0.02 3.85 0.04 7.69
"+" 0.02 3.85 0.02 3.85
...

We see from the profile that calling the rexp() function repeatedly is taking about 40% of
the time. For a comparison, we see below that this operation is not among the top time-
consuming computations for genKidsU(). It takes less than 6% of the time:

set.seed(seedx)
Rprof("profGenKidsU.out")
invisible(replicate(1000, genKidsU(1, cTime = 100)))
Rprof(NULL)
summaryRprof("profGenKidsU.out")$by.self

self.time self.pct total.time total.pct
"genKidsU" 0.04 12.50 0.30 93.75
"match" 0.04 12.50 0.06 18.75
"as.data.frame" 0.02 6.25 0.12 37.50
"force" 0.02 6.25 0.10 31.25
"deparse" 0.02 6.25 0.08 25.00
"make.names" 0.02 6.25 0.06 18.75
"as.list" 0.02 6.25 0.04 12.50
"as.list.default" 0.02 6.25 0.02 6.25
...

On the other hand, the functions in which we are spending the most time are genKidsU()
itself and match(). Also, calls to force() and deparse() take up a significant proportion of
the time. Where are the calls to these functions? Additionally, it would be valuable to know
how often these are actually called during the computations, and hence the time per call.
Since the genKidsU() function takes the most amount of time and we wrote it, we may
want to examine it more closely to see if improvements can be gained here. We leave it as
an exercise to consider other modifications to speed up genKids() and/or genKidsU().

7.5 From One Job’s Offspring to an Entire Generation
We have so far examined how to generate the offspring for one job. What are the next steps
in our simulation? We can view the stochastic process as a family tree – the initial job has
offspring, these offspring have their own offspring, and so on. The jobs in the process can be
organized as a tree with a job being a node in the tree, branches from that job connect to its
offspring, and a level/depth of the tree corresponds to a generation. This is why the process

Simulation Study of a Branching Process 291

is called a branching process. (See Figure 7.1 for an example.) Our genKidsU() function
generates the children for one job. A natural next step might be to generate the offspring
for all of the jobs in one generation, and after that, to generate the next generation, and so
on.

Let’s first consider how we might generate all of the offspring for one generation. We
might want to loop over each job in that generation and call genKidsU(), or we might modify
genKidsU() so that it takes vector inputs, e.g., a vector of birth times for a set of jobs, rather
than one birth time. To determine whether or not to vectorize genKidsU() requires us to
decide how to implement the whole simulation. For now, let’s explore the possibility of
modifying genKidsU() to accept vector arguments for the birth and completion times.

We take bTimes and cTimes to be vectors of the same length where the ith element of
each vector corresponds to the same job, i = 1, . . . , n. That is, the ith element of bTimes
and the ith element of cTimes contain the birth and completion times, respectively, of the
ith of n jobs. Then, we can generate the number of children of each of the n jobs with

lifeTimes = cTimes - bTimes
numKids = rpois(n = length(lifeTimes), lambda = lambda * lifeTimes)

This code is nearly identical to that in genKidsU() because subtraction is a vectorized
operation in R and rpois() accepts a vector of rates for lambda (one for each of the n
random outcomes).

Now that we have the number of offspring for each parent, we can generate the times for
birth and completion of the offspring with runif() and rexp(). Unfortunately, runif() does
not take vector values for its parameters so we instead use mapply(), i.e.,

kidBirths = mapply(function(n, min, max)
sort(runif(n, min, max)),

n = numKids, min = bTimes, max = cTimes)

Note that kidBirths is a list where each element contains the birth times of a job’s chil-
dren. We also must generate the completion time for these children. We can do this within
the function provided in mapply(). Our vectorized version of genKidsU(), which we call
genKidsV(), appears as

genKidsV = function(bTimes, cTimes, lambda = 0.5, kappa = 0.3) {
bTimes & cTimes - vector of birth and completion times

Determine how many children each job has
parentAge = cTimes - bTimes
numKids = rpois(n = length(parentAge),

lambda = lambda*parentAge)

Determine the birth and completion times of the children
mapply(function(n, min, max) {

births = sort(runif(n, min, max))
runtimes = rexp(n, rate = kappa)
completes = rep(max, n) + runtimes
data.frame(births, completes)

},
n = numKids , min = bTimes, max = cTimes,
SIMPLIFY = FALSE)

}

292 Case Studies in Data Science in R

At this point in the project, we may want to set up some test cases where we specify
the inputs and know what to expect for the outputs of our function. This way we can run
the test cases after each change to our function(s) and check that our code still runs as
expected. This is the topic of the next section.

7.6 Unit Testing
When we design tests for code, we consider several sets of input values for our functions
and examine the outputs. Since this is a simulation, we can’t know exactly what the return
values will be so we check that these make sense according to our understanding of the
probability model. Additionally, we want to be sure to include scenarios that lead to special
situations, e.g., a generation with no offspring, to make sure our code handles these cases
correctly. As we debug our code and uncover new problems, we fix these problems and add
more test cases to our suite of tests for these situations. We want to make sure that our
code continues to work properly across a variety of scenarios.

With simulation studies, we often set the seed for the random number generator before
we run our test cases. This way, the return values are the same each time we run the code
so after we initially check that the return values are reasonable, then we only need to check
that they match the return value from previous runs of the code.

Let’s start with a simple small example with 3 jobs with the following birth and com-
pletion times:

bTimes1 = 1:3
cTimes1 = c(3, 10, 15)

We set the seed for the random number generator with

seed1 = 12062013
set.seed(seed1)

In our first call to genKidsV() we find:

kids = genKidsV(bTimes1, cTimes1)
kids

[[1]]
births completes

1 2.94 8.92

[[2]]
births completes

1 2.17 10.3
2 3.20 15.2
3 8.71 16.0

[[3]]
births completes

1 3.17 16.8
2 5.50 15.5
3 9.78 20.5
4 10.33 24.8

Simulation Study of a Branching Process 293

We see that the first parent has 1 child, the second has 3, and the third has 4 children. The
birth and completion times of these offspring are returned in a list of 3 data frames. We
call the function a second time with the same input arguments, but since the seed has not
been reset, a different collection of birth and completions times are generated:

kids2 = genKidsV(bTimes1, cTimes1)
sapply(kids2, nrow)

[1] 2 4 6

We find that this time the 3 parents have 2, 4, and 6 children, respectively. If we reset the
seed, before calling genKidsV() again, we get the same results as the first call, i.e.,

set.seed(seed1)
kids3 = genKidsV(bTimes = bTimes1, cTimes = cTimes1)
identical(kids, kids3)

[1] TRUE

How might we improve the code in genKidsV()? One consideration is whether or not
we want the return value as a list of data frames. The list may be a useful data structure
for representing a tree, where each data frame holds the information for one generation.
However, this return value can be awkward to work with when we are trying to examine
the process across generations.

7.7 A Structure for the Function’s Return Value
A single data frame provides a more compact format for the return value of genKidsV().
However, if we collapse the list of data frames into one data frame, then we lose the in-
formation as to which child belongs to which parent. We need to add an identifier for the
parents as a column in the data frame. This identifier needs to be passed to the function.
Additionally, it makes sense to assign an identifier to each offspring so that when we gen-
erate the children of these offspring, we have their identifiers to pass to genKidsV(). Our
return value might be something like the following:

data.frame(parentID = rep(parentID, numKids),
kidID = 1:sum(numKids),
births = unlist(sapply(kidStats, "[[", "births")),
completes = unlist(sapply(kidStats,"[[", "completes"))))

We leave it as an exercise to modify genKidsV() and confirm that we have the same
results as earlier when the seed was set to seed1. That is, the births and completes should
be the same as in our earlier call, but now formatted differently:

set.seed(seed1)
genKidsV(bTimes1, cTimes1, parentID = letters[1:3])

parentID kidID births completes
1 a 1 2.94 8.92
2 b 2 2.17 10.32

294 Case Studies in Data Science in R

3 b 3 3.20 15.17
4 b 4 8.71 16.03
5 c 5 3.17 16.76
6 c 6 5.50 15.50
7 c 7 9.78 20.46
8 c 8 10.33 24.80

We have modified our function and confirmed that for this one test case the return value
from genKidsV() remains the same, i.e., the first job produced 1 child, born at 2.94 and
completed at 8.92, the second child had 3 children and their birth and complete times match
those from the call to the earlier version of genKidsV() (Section 7.6). We want to develop
additional test cases, and we may wish to programmatically check the return values rather
than manually inspecting the output each time we run the test cases. We leave this as an
exercise.

7.8 The Family Tree: Simulating the Branching Process
We are now ready to generate the whole process. We know from Aldous and Krebs that,
depending on the parameter values for λ and κ, the process may continue on indefinitely or
it may complete in a finite amount of time. How do we simulate this sort of process? Clearly
we can’t let the process run and run if it is never going to complete so how do we decide
when to stop? We could run it for a fixed number of generations and if the process has not
completed, then we terminate it; we could run it until we have generated a fixed number
of offspring; or we could run the simulation for a fixed amount of time (i.e., we observe all
births and completes before a particular time, T say). These are 3 reasonable possibilities
and there are others. Additionally, we might check more than one of these approaches to
decide whether or not to terminate the process. Our choice in part depends on the way we
have implemented the process. With the current implementation, we can create an entire
generation with one call to genKidsV so it makes sense to start by capping the number of
generations. Of course, the number of offspring in a generation could become large, but let’s
try this approach and see how well it controls the process.

To simulate the process, we need to call the genKidsV() function for each successive
generation and collect the return value from each call. We first get the process started with
the single, lead job, and then we successively call genKidsV() for the specified number of
generations. We also need to check to make sure that the process hasn’t terminated before
we ask genKidsV() to produce the next generation. Our input parameters to this function
are the original λ and κ rates for the Poisson and Exponential random variables, and the
limit on the number of generations to simulate. As for the return value, a list of generations
seems simplest. One implementation might be as follows:

familyTree = function(lambda = 0.5, kappa = 0.3, maxGen = 10) {
maxGen - maximum number of generations to observe
Return value - a list with 1 data frame per generation.

allGens = vector(mode = "list", length = maxGen)

Generate the root of the tree
allGens[[1]] = data.frame(parentID = NA, kidID = 1, births = 0,

completes = rexp(1, rate = kappa))

Simulation Study of a Branching Process 295

Generate future generations, one at a time.
for (i in 2:maxGen) {

nextGen = genKidsV(bTimes = allGens[[(i - 1)]]$births,
cTimes = allGens[[(i - 1)]]$completes,
parentID = allGens[[(i - 1)]]$kidID,
lambda = lambda, kappa = kappa)

if (is.null(nextGen)) return(allGens[1:(i - 1)])
allGens[[i]] = nextGen

}

return(allGens)
}

Let’s try out our function, by setting the seed and calling familyTree() with

set.seed(seed1)
tree = familyTree(lambda = 0.4, kappa = 1, maxGen = 10)

Rather than poring over the numeric value of the birth and completion times, we can create
a visualization to inspect the tree. For example, Figure 7.4 provides a plot of the contents of
tree. It represents each job as a line segment and marks the birth of each job’s children with
an X on the segment. There we see that the process completed in 4 generations and that
there are 9 jobs in this instance of the process. As an exercise, consider designing another
custom visualization that explores the tree.

Let’s try generating the process again, this time with a different seed and different values
for λ and κ:

seed2 = 12212013
set.seed(seed2)
tree = familyTree(lambda = 0.3, kappa = 0.5, maxGen = 10)

The length of tree tells us how many generations are in this particular instance of the
process, i.e.,

length(tree)

[1] 10

Since this tree has 10 generations, it may not have completed by the time it reached the
maximum number of generations in the simulation. We can determine the number of children
in each generation with

sapply(tree, nrow)

[1] 1 1 1 5 7 5 13 39 81 147

We see that the number of offspring in the seventh through tenth generations increases
dramatically from 13 to 147. This implies that the process has not died out by the tenth
generation, when we stopped generating offspring. Altogether, this particular random pro-
cess includes 300 children, i.e.,

sum(sapply(tree, nrow))

[1] 300

296 Case Studies in Data Science in R

Time

0 1 2 3 4 5

Gen 1

Gen 2

Gen 3

Gen 4

Figure 7.4: Visualization of a Randomly Generated Branching Process. This plot shows the
lifetimes of each member of a randomly generated birth and assassination process with a
birth rate of λ = 0.4 and a completion rate of κ = 1. Each job’s lifetime is represented by a
grey line segment with endpoints at its birth and completion times. The Xs on the segment
denote the birth times of the job’s offspring. The dashed lines separate the generations.
None of the jobs in the fourth generation of this instance of the process had offspring so the
process terminated there. Notice that one job in the second generation ran for a very long
time and had just one child.

We can re-generate the process and this time allow for, e.g., 15 generations to see if the
process runs for more than 10 generations, i.e.,

set.seed(seed2)
tree = familyTree(lambda = 0.3, kappa = 0.5, maxGen = 15)
sapply(tree[- (1:9)], nrow)

[1] 147 286 572 1130 2231 4666

Indeed, the tree has a large number of offspring in the 15th generation.
How do we summarize these trees for statistical analysis? The plot in Figure 7.4 is

helpful for examining one or two trees, but it’s not feasible to make thousands of these
plots, especially when there may also be thousands of children in a tree. Before we decide
on how to summarize a tree, let’s experiment with other values for λ and κ and see what is
generated:

set.seed(seed2)
tree = familyTree(lambda = 1, kappa = 0.5, maxGen = 10)

We can again determine the number of generations, children in each generation, and total
number of offspring with the following computations, respectively:

Simulation Study of a Branching Process 297

length(tree)

[1] 10

sapply(tree, nrow)

[1] 1 3 7 19 99 464 2616
[8] 15155 90848 561791

sum(sapply(tree, nrow))

[1] 671003

This tree has over 670,000 jobs. Let’s run the simulation again with the same values for λ
and κ but without resetting the seed to see if this was an unusual occurrence or not:

tree = familyTree(lambda = 1, kappa = 0.5, maxGen = 10)
sum(sapply(tree, nrow))

[1] 989086

This time, there are nearly one million jobs in the first 10 generations.
We can imagine that other choices of λ and κ might lead to instances of the branching

process that are so large as to cause problems with run time. We may want to implement
a different approach to limiting the process, such as a time limit on observing the process.
How would we go about modifying the code to implement this cap on the simulation? To
answer this question, we further investigate the process. It would be helpful to know more
about the birth and completion times across generations. We first examine the range of
these with

sapply(tree, function(gen) range(gen$births))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0.009 0.311 0.537 1.03 1.66 2.06 3.31 3.97 4.1
[2,] 0 0.009 3.388 6.689 12.62 20.30 27.31 37.17 49.84 58.4

sapply(tree, function(gen) range(gen$completes))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.214 4.48 5.26 5.93 6.46 6.85 7.28 7.94 8.34 9.49
[2,] 0.214 4.48 8.43 13.09 21.98 27.51 37.43 50.03 58.56 70.26

If we want to observe this process up until, say, a time of 12, we see that we would have to
observe more than 10 generations because there are jobs in the tenth generation that are
born as early as 4.1. On the other hand, there are jobs in earlier generations that die well
after 12 so we would only know that they are still alive by 12 and we would only observe
those jobs’ offspring that occur before 12.

We need to develop an alternative version of familyTree() that accepts a cap on the
time that the process is observed. If we wish to keep much of the approach the same as in
the first implementation of familyTree(), then we need to drop the offspring in a generation
if they are born after the specified time. And, we need to continue creating generations
until all children born in a generation occur after the time limit. Figure 7.5 shows the first 5

298 Case Studies in Data Science in R

generations of a process that is limited using this approach. With a cap of 8, i.e., we observe
no births or deaths after 8, and with λ = 1 and κ = 0.5, we find that already in the third
generation, we are not observing the entire lifespan of some jobs. We leave it as an exercise to
implement this alternative stopping rule. Instead, we implement a simpler limitation, which
terminates the process once a specified threshold for the number of offspring is exceeded.

This alternative stops producing generations once the total number of offspring in the
generations simulated so far has reached a specified limit. We can incorporate this limit into
our original familyTree() function so the simulation stops once either of these two limits is
reached. Below is one implementation of familyTree():

familyTree = function(lambda = 0.5, kappa = 0.3,
maxGen = 10, maxOffspring = 1000) {

Return value - a list with 1 data frame per generation.
allGens = vector(mode = "list", length = maxGen)

Generate root of the tree
allGens[[1]] = data.frame(parentID = NA, kidID = 1,

births = 0,
completes = rexp(1, rate = kappa))

currentNumOffspring = 0

Generate future generations, one at a time.
for (i in 2:maxGen) {

nextGen = genKidsV(bTimes = allGens[[(i - 1)]]$births,
cTimes = allGens[[(i - 1)]]$completes,
parentID = allGens[[(i - 1)]]$kidID,
lambda = lambda, kappa = kappa)

if (is.null(nextGen)) return(allGens[1:(i - 1)])
allGens[[i]] = nextGen
currentNumOffspring = currentNumOffspring + nrow(nextGen)
if (currentNumOffspring > maxOffspring)

return(allGens[1:i])
}
allGens

}

We can compare the output from the same settings of λ and κ from our earlier call to
the version of the family tree function that caps only the number of generations. We set the
seed to the same value as before and this time increase maxGen to 100 but limit the total
offspring to 1000. We call this new version of the function with

set.seed(seed2)
tree = familyTree(lambda = 1, kappa = 0.5,

maxGen = 100, maxOffspring = 1000)

The limitation on the process yields only 7 generations, i.e.,

length(tree)

[1] 7

Simulation Study of a Branching Process 299

We determine the number of offspring in each of these generations with

sapply(tree, nrow)

[1] 1 3 7 19 99 464 2616

Rather than generating nearly 700,000 jobs, we observe only 3209.
Now that we have developed and tested our functions to generate a random birth and

assassination process, we turn to the question of how to design and carry out our simulation
study.

7.9 Replicating the Simulation
We are now ready to study the branching process for various combinations of the parameter
values λ and κ. To do this, we want to automate the call to familyTree(). Since it can easily
become unwieldy to save the thousands of lists of data frames from each observed process,
we want to store only relevant summaries. We have been examining the process through
its number of generations and number of jobs. What other statistics about the tree might
be useful to examine? The following simple function calls familyTree() and summarizes the
return value by these two simple summaries:

exptOne = function(l, k, mG, mO){
Helper function to call familyTree
Returns - summary statistics for analysis,

aTree = familyTree(lambda = l, kappa = k, maxGen = mG,
maxOffspring = mO)

numGen = length(aTree)
numJobs = sum(sapply(aTree, nrow))
c(numGen, numJobs)

}

Let’s try exptOne() with the previous settings of our seed, and the lambda, kappa,
maxGen, and maxOffspring arguments:

set.seed(seed2)
exptOne(1, 0.5, 100, 1000)

[1] 7 3209

We obtain the same summary statistics from our earlier call to familyTree().
We want to call exptOne() many times for each of several values of lambda and kappa.

We can specify the number of replications and the values for lambda and kappa via a
function that calls exptOne(), i.e.,

MCBA = function(params, repeats = 5, mG = 10, mO = 1000){
params: matrix columns of lambda and kappa values
For each lambda and kappa pair, run "repeats" times

n = nrow(params)

300 Case Studies in Data Science in R

Time

0 2 4 6 8

Gen 1
Gen 2

Gen 3

Gen 4

Gen 5

Figure 7.5: Visualization of a Randomly Generated Branching Process Over a Fixed Time
Interval. This plot shows the lifetimes of each member of the first 5 generations of a simu-
lated birth and assassination process that has been observed up to time of 8. Each lifetime
is represented by a grey line segment with endpoints at its birth and completion times. A
job that has not completed by 8 time steps is censored and consequently, we see only its
offspring born before 8.

Simulation Study of a Branching Process 301

mcResults = vector("list", length = n)

for (i in 1:n) {
cat("param set is ", i, "\n")
mcResults[[i]] = replicate(repeats,

exptOne(l = params[i, 1],
k = params[i, 2],
mG = mG, mO = mO))

}
mcResults

}

Notice that as the code begins to run the simulation for a new row in the parameter set,
it prints the row number to the console. This helps us follow the progress of our simulation.
That is, we can determine if the simulation is ‘stuck’ on a particular set of parameter values
or progressing through the simulation.

What values of λ and κ do we use for our simulation study? We can try a few values to
determine a feasible region of the parameter space. For example,

trialKappas = c(0.1, 10, 0.1, 10)
trialLambdas = c(0.1, 0.1, 10, 10)
trialParams = matrix(c(trialLambdas, trialKappas), ncol = 2)
mcTrialOutput = MCBA(params = trialParams, repeats = 100,

mG = 200, mO = 100000)

We find that the second simulation is very fast and the others take several minutes to
complete (running on a MacBook Air with 8GB of memory and a 2 GHz Intel Core i7).

We examine the output from the process by plotting the number of generations against
the number of offspring.

oldPar = par(mfrow = c(2, 2), mar = c(3,3,1,1))

mapply(function(oneSet, lambda, kappa) {
plot(x = oneSet[2,], y = jitter(oneSet[1,], 1), log = "x",

ylim = c(1,20), xlim = c(1, 10^7), pch = 19, cex = 0.6)
text(x = 50, y = 15, bquote(paste(lambda == .(lambda))))
text(x = 300, y = 15, bquote(paste(kappa == .(kappa))))
},
mcTrialOutput, lambda = trialLambdas, kappa = trialKappas)

par(oldPar)

We see in Figure 7.6 that these 4 sets of (λ, κ) pairs have very different behaviors. The
pairs (0.1, 0.1) and (10, 10) behave similarly; some instances terminate before reaching 5
generations and others are still running when they reach the maximum of 100,000 offspring.
On the other hand, none of the (0.1, 10) simulations survive more than one generation.
Conversely, it appears that all of the pairs (10, 0.1) simulations run up against the limitation
on the number of children before they reach the fifth or sixth generation.

7.9.1 Analyzing the Simulation Results
Based on our trial simulations for a couple of parameter values, we limit λ and κ as follows:

302 Case Studies in Data Science in R

●●

●

●

●

●

●
●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●●●

●

●

●

1e+00 1e+02 1e+04 1e+06

5
10

15
20

λ = 0.1 κ = 0.1

●●

1e+00 1e+02 1e+04 1e+06

5
10

15
20

λ = 0.1 κ = 10

●

●

●

●

●●
●

●
● ●●●

●●●

●

●
●● ●

●
●

●

●
●

● ●

●

●
●

●

●●
●

● ●● ●
● ●

●● ● ●●● ●●
● ●

●● ●
●

●

● ●
●

●

●●
●

●

●
● ●

● ●● ●
●

●
●● ●
●●● ●● ●●●

●● ●
●●●

● ●●

●

●●
●

●

● ●●

1e+00 1e+02 1e+04 1e+06

5
10

15
20

λ = 10 κ = 0.1

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●●●●
●

●

●

●

●

●●

●

1e+00 1e+02 1e+04 1e+06

5
10

15
20

λ = 10 κ = 10

Figure 7.6: Scatterplots of the Number of Generations Against the Number of Offspring.
These 4 scatter plots show the different behavior exhibited by the branching process as λ and
κ vary. Each simulation terminates when the process dies out or one of the following limits
is reached: 200 generations; 100,000 offspring. One hundred simulations are run for each
(λ, κ) pair.

lambdas = c(seq(0.1, 0.6, by = 0.1), seq(0.8, 2, by = 0.2),
seq(2.25, 3, by = 0.25))

kappas = c(lambdas, 3.25, 3.50, 3.75, 4.00, 4.50, 5.00)

We create all combinations of the values for these two parameters with expand.grid(), i.e.,

paramGrid = as.matrix(expand.grid(lambdas, kappas))

Additionally, we limit the number of offspring to 1,000 because the trial runs indicated that
we should have a reasonable indication of the longevity of the process by the time 1,000
offspring have been generated.

We call MCBA() with the matrix of parameter values and the limitations on the size of
the tree with

mcGrid = MCBA(params = paramGrid, repeats = 400, mG = 20,
mO = 1000)

Simulation Study of a Branching Process 303

Note that for each (λ, κ) pair, 400 instances of the process are generated. We can summarize
our simulation by, e.g., plotting the upper quartile of number of offspring in each of the
400 replications. Since we have 3 variables (λ, κ, and the number of offspring), we make a
3-dimensional scatter plot. We begin by computing the log upper quartile of the number of
children for each parameter setting with

logUQkids = sapply(mcGrid, function(x)
log(quantile(x[2,], probs = 0.75), base = 10))

We also use color to distinguish between trees that die out and those that surpass the 1,000
offspring limit, i.e.

UQCut = cut(logUQkids, breaks = c(-0.1, 0.5, 2, max(logUQkids)))
color3 = c("#b3cde3aa", "#8856a7aa", "#810f7caa")
colors = color3[UQCut]

The scatterplot3d package [4] offers functionality for making 3D plots. We use the
package’s function of the same name to plot the upper quartile values against their corre-
sponding λ and κ pairs with

library(scatterplot3d)
sdp = scatterplot3d(x = paramGrid[, 1], y = paramGrid[, 2],

z = logUQkids, pch = 15, color = colors,
xlab = "Lambda", ylab = "Kappa",
zlab = "Upper Quartile Offspring",
angle = 120, type="h")

legend("left", inset = .08, bty = "n", cex = 0.8,
legend = c("[0, 0.5)", "[0.5, 2)", "[2, 5)"),
fill = color3)

In Figure 7.7 we see a pattern that is consistent with the observations made about Figure 7.6
where the process either dies out or generates a large number of offspring.

Alternatively, we can summarize these results by finding the proportion of families for
each parameter set that hit the limit on the simulation, i.e., the families that contain 20
generations or that have more than 1000 offspring. We calculate these proportions as follows:

mcGridAlive = sapply(mcGrid, function(oneParamSet) {
sum((oneParamSet[1,] == 20) | (oneParamSet[2,] > 1000)) /

length(oneParamSet[2,]) })

Again, we must consider how to plot a triple, (λ, κ, p), where p is the proportion of the
400 simulations that reach the limits set in the simulation. One approach is to create a
filled contour, or level plot, where the values for p are represented with color. We use
filled.contour() to do this with

filled.contour(lambdas, kappas,
matrix(mcGridAlive, nrow = length(lambdas),

ncol = length(kappas)),
xlab = "Lambda", ylab = "Kappa",
xlim = c(0.1, 3), ylim = c(0.1, 3.1))

304 Case Studies in Data Science in R

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

0

1

2

3

4

5

Lambda

K
ap

pa

U
pp

er
 Q

ua
rti

le
 O

ffs
pr

in
g

lo
g1

0

[0, 0.5)
[0.5, 2)
[2, 5)

Figure 7.7: Three-Dimensional Scatterplot of the Number of Offspring by λ and κ. Each
point in this scatter plot represents the upper quartile of the number of offspring in 400
random outcomes of the branching process for a particular (λ, κ) pair. The offspring are
plotted on log base 10 scale, so the first category, i.e., [0, 0.5) corresponds to 1 to 3 offspring.

Figure 7.8 shows the results. There we see that nearly all of the simulated processes where κ
is small are still ‘alive’ at the time we stopped the simulation and nearly all of the simulated
processes for small λ values terminate before the limitations are reached. Also noticeable
is the pale diagonal region in the plot where those pairs below this region are more likely
than not to still be running and those above the diagonal are less likely than not to have
completed.

Another measure of longevity that we can examine is the proportion of simulations that
have 20 or more offspring. The simulation is run for at most 20 generations, so this seems
like a reasonable threshold to examine. We compute this proportion as follows:

mcGridProp20kids = sapply(mcGrid, function(oneParamSet) {
sum(oneParamSet[2,] > 19) / length(oneParamSet[2,]) })

mcGridProp20kidsMat = matrix(mcGridProp20kids,
nrow = length(lambdas),
ncol = length(kappas))

Simulation Study of a Branching Process 305

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Lambda

K
ap
pa

Figure 7.8: Image Map of the Proportion of Replicates That Reach the Simulation Limits.
This image map represents a smoothed contour of the proportion of the 400 simulations for
each (λ, κ) pair that reached 20 generations or 1000 offspring and so were terminated.

Rather than use filled.contour(), we make an image plot and again use color to denote p.
This time, however, we choose 7 colors in the rainbow palette to represent the values of p.
We make the high values correspond to red and the low values to blue in this palette, i.e.,

breaks = c(0, 0.10, 0.2, 0.3, 0.5, 0.7, 0.9, 1)
colors = rev(rainbow(10))[-(1:3)]

image(lambdas, kappas, mcGridProp20kidsMat, col = colors,
breaks = breaks, xlab = "Lambda", ylab = "Kappa",
xlim = c(0.05, 3.05), ylim = c(0.05, 3.05))

midBreaks = (breaks[-8] + breaks[-1]) / 2
legend(x = 0.1, y = 3.25, legend = midBreaks, fill = cols,

bty = "n", ncol = 7, xpd = TRUE)

The image plot is shown in Figure 7.9. It has a similar appearance to Figure 7.8
With these visual summaries of the simulation study, we see that the relationship be-

tween λ and κ is key to the longevity of the process. For example, when κ > λ, the process
dies out within a few generations. There appears to be a region where the process at times
produces many thousands of children and seems to carry on indefinitely, and other regions
(e.g., where λ is small) when the process never terminates, or nearly so. The plots we have
made suggest that we may be able to parameterize the process in terms of the ratio λ/κ

306 Case Studies in Data Science in R

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Lambda

K
ap
pa

0.05 0.15 0.25 0.4 0.6 0.8 0.95

Figure 7.9: Proportion of Simulations with at Least 20 Offspring. This image map uses
color from the rainbow palette to represent the proportion of 400 random outcomes for each
(λ, κ) pair that have at least 20 offspring.

and work with only one parameter. This observation suggests alternative visualization for
these simulation results may be useful to examine. If we want to carry out more simulations
to further investigate this property, we can do this without modifying our code as we can
simply set κ to 1. We leave it as an exercise to follow up on these insights.

7.10 Exercises
Q.1 Write an alternative function to genKids() (see Section 7.3), called genKidsB(), where

the B stands for batch. In this function, generate the inter-arrival times in batches,
where the size of the batch depends on the expected number of offspring for a job.
The expected number depends on the rate λ and the birth and completion times of the
parent. That is, for a job born at time α and complete at time β, we expect it to have

Simulation Study of a Branching Process 307

(β − α) × λ offspring. The parameters to this function and their default values should
be the same as genKids().

Q.2 Write the function to genKidsU() described in Section 7.3.2. This function generates
the birth and completion times for a job that is born at α and completes at β. The
number of children follow a Poisson((β − α) × λ. Once the number of children are
known, their births can be generated according to the Uniform on the interval (α, β).
As mentioned in Section 7.3.2, these times are not generated in order so they need to
be sorted. The parameters to genKidsU() and their default values should be the same
as genKids().

Q.3 Develop a test suite to confirm that the recursive function genKidsR() (see Section 7.3)
is consistent with the while-loop version of genKids() (also in Section 7.3).

Q.4 Use Rprof() to profile the genKidsU() function in the previous exercise. As in Sec-
tion 7.4, profile the code by calling genKidsU() 1000 times with the parameter settings:
bTime = 1, cTime = 100, and the default values for λ and κ. Also profile the code with
one simulation, where cTime = 1000000. Do the profiles look different? Try improving
the efficiency of your code based on the profile information. Additionally, does the code
include calls to force() and deparse()? Or some other unexpected functions? Can you
determine why these functions are being called?

Q.5 Develop a set of test cases for genKidsV() (see Section 7.6). Write code to check the
output from genKidsV() for these test cases.

Q.6 Figure 7.4 is a custom visualization of the birth and completion times for a tree. Design
an alternative custom visualization of the return value from familyTree().

Q.7 Incorporate into familyTree() a limit on the time that the tree is observed. If we want
to observe a process up until time t then those offspring with birth times after t are
discarded. Also, the simulation stops once all of the observed births in a generation are
after t. See Figure 7.5 for a visualization of the first 5 generations in a simulated process
that is truncated at time 8.

Q.8 Update the genKidsV() function developed in Section 7.5 to return one data frame
rather than a list of data frames. This data frame needs to include additional columns
that supply the parent and offspring identifiers. See Section 7.7 for an example of the
modified return value.

Q.9 The branching process was summarized by two statistics: the number of generations
and the number of offspring (see Section 7.9). Consider other summary statistics for the
process. Incorporate them into exptOne(). Carry out a simulation study and create a
visualization of the simulation that uses these additional statistics. Do they confirm the
earlier findings? Do they offer any new insights?

Q.10 Carry out a simulation study to see if the re-parameterization suggested in Sec-
tion 7.9.1 is appropriate. For example, fix κ to be 1, and run the simulation for various
values of λ. Compare the results to other simulations where κ is c 6= 1, but the ratio of
λ/c matches one of the λ values from the earlier simulation when κ was 1.

Q.11 Consider other probability functions to describe the lifetime of a process. Revise fam-
ilyTree() (see Section 7.8) and genKidsV() (see Section 7.5) to take as an argument the
random number generator for any probability distribution. The functions familyTree()
and genKidsV() are to use this probability distribution (with arguments that may be
specific to the distribution) to generate the completion times of the jobs.

308 Case Studies in Data Science in R

Q.12 Redesign the simulation study, where rather than generating one branching process
at a time, the processes are generated in a vectorized fashion. This may require rewriting
genKidsV() (Section 7.5) and familyTree() (Section 7.8).

Bibliography
[1] David Aldous and William Krebs. The ‘Birth-and-Assassination’ Process. Statistics and

Probability Letters, 10:427–430, 1990.

[2] Charles Bordenave. On the birth-and-assassination process, with an application to
scotching a rumor in a network. Electronic Journal of Probability, 13:2014–2030, 2008.

[3] George Kordzakhia. The Escape model on a homogeneous tree. Electronic Communi-
cations in Probability, 10:113–124, 2005.

[4] Uwe Ligges, Martin Maechler, and Sarah Schnackenberg. scatterplot3d: 3D Scat-
ter Plot. http://cran.r-project.org/web/packages/scatterplot3d, 2014.
R package version 0.3-35.

[5] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[6] John Tsitsiklis, Christos Papadimitriou, and Pierre Humblet. The Performance of a
Precedence-Based Queuing Discipline. Journal of the Association for Computing Ma-
chinery, 33:593–602, 1986.

http://cran.r-project.org/web/packages/scatterplot3d
http://www.r-project.org

8
A Self-Organizing Dynamic System with a Phase
Transition

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
8.1 Introduction and Motivation . 309

8.1.1 Computational Topics . 310
8.2 The Model . 310

8.2.1 The Order Cars Move . 312
8.3 Implementing the BML Model . 314

8.3.1 Creating the Initial Grid Configuration . 314
8.3.2 Testing the Grid Creation Function . 318
8.3.3 Displaying the Grid . 321
8.3.4 Visualizing the Grid . 322
8.3.5 Simple and Convenient Object-Oriented Programming 325
8.3.6 Moving the Cars . 327

8.4 Evaluating the Performance of the Code . 334
8.5 Implementing the BML Model in C . 346

8.5.1 The Algorithm in C . 348
8.5.2 Compiling, Loading, and Calling the C Code . 355

8.6 Running the Simulations . 359
8.6.1 Exploring Car Velocity . 360

8.7 Experimental Compilation . 362
Bibliography . 364

8.1 Introduction and Motivation
In this chapter, we will explore a very simple dynamic system. It exhibits two interesting
characteristics – a phase transition and self-organization.

Most things in nature behave continuously. As inputs change a little, the outcomes
change slightly. It is interesting when a slight change in an input causes a significantly dif-
ferent outcome. In some cases, as we vary an input over a range of values, we see continuous
changes and then abruptly see qualitatively different outputs. This tipping point is called
a phase transition. Basically, the system can jump between qualitatively different states as
the inputs change very slightly in a continuous manner. One example is a liquid changing
to a gas as we increase the temperature.

309

310 Case Studies in Data Science in R

We are also familiar with systems which exhibit a global characteristic that is defined
via set of equations or formulae controlling the global space. It is interesting when a system
exhibits one or more global characteristics, but when the rules for the system are specified
for local behavior. When elements change independently of the others, or only depend on a
single neighbor, it can be surprising to see global patterns emerge. We will explore a system
that uses very simple local rules and exhibits this self-organizing behavior.

Researchers are very interested in understanding systems that exhibit phase transitions
and/or self-organization. They represent interesting opportunities and challenges in model-
ing systems. Complex systems are difficult to understand mathematically. Researchers try
to find simple systems that exhibit a phase transition or self-organization and try to analyze
the mathematics underlying these in order to potentially gain an understanding of more
complex systems. In this case study, we will simulate one of the very simplest mathematical
models that was thought to exhibit a phase transition. Via simulation and exploring the
resulting data, researchers also found self-organizing behavior and other characteristics in
this simple dynamic system.

8.1.1 Computational Topics
We will map a mathematical description of a dynamic process to code. We will focus on
writing small functions in a flexible, reusable manner. We will validate the functions and
combine them to create higher-level functions. We’ll use R’s [8] simple S3 object-oriented
programming model to define classes and methods for working with the data structures
from our simulation of the dynamic model. We’ll explore making the code faster in several
different ways, including writing vectorized code and using compiled C code from within R.
Finally, we’ll use a simulation study to investigate the behavior of the dynamic model for
different ranges of the inputs and different outputs.

• Developing small functions that we combine together to implement the entire dynamic
process.

• Computational efficiency.

• Choice of data structures to simplify and improve computations.

• Comparing loops and vectorized operations and striving for vectorized code.

• Matrix subsetting operations in R.

• Classes and S3 object-oriented programming in R.

• Profiling code to find where bottlenecks occur.

• The C programming language and interfacing to C code from R.

• Simulation.

8.2 The Model
The Biham-Middleton-Levine (BML) model [2] is a very simple 2-dimensional dynamic
system that exhibits self-organizing behavior and a phase transition. We can describe the

A Self-Organizing Dynamic System with a Phase Transition 311

model as follows. We start with an m-by-n grid of cells. Each cell can contain at most 1
car. We have two types of cars — red and blue. Each car can move 1 cell in a given time
interval. The red cars move horizontally to the right; blue cars move vertically upward.
When a car reaches an edge of the grid, its next potential position is to wrap around to
the other side/edge of the grid. In other words, when a red car reaches the right-most cell
of the grid, it would next move to the cell of the first column of the grid, and in the same
row. This wrap-around motion gives the grid a torus-like connection between the edges. A
car cannot move if the cell to which it would move is currently occupied. There are useful
interactive demonstrations of the model at http://www.jasondavies.com/bml/

We start with a (random) collection of cars located on the grid at time 0, for example,
(a) in Figure 8.1. At time t = 1, all of the red cars move to the right or to the first column if
they are already at the right edge of the grid, unless that cell is currently occupied. At time
t = 2, the blue cars move. This continues with the red cars moving at the odd-numbered
times and the blue cars moving at the even number times.

t = 0

(a)

t = 1

(b)

t = 2

(c)

Figure 8.1: Movement on a Sample Grid. (a) shows the initial state of a 3-by-5 grid con-
taining 3 red and 3 blue cars. At time t = 1, the red cars move horizontally. The red car
on the bottom row “wraps around” to the first column on the same row. At time t = 2, the
blue cars move up within the same column. The blue car in cell (1, 3) is blocked by the red
car above it that moved to that cell in at time t = 1. Accordingly, we obtain a sequence of
grids indexed by time.

How do the cars get on the grid? In other words, how do we create the initial state of the
system? We randomly place nR and nB cars on the grid. We have to make certain that each
car is in its own cell and that 2 cars don’t occupy the same cell. This is the only random
part of the dynamic system. After the cars are randomly located in the initial grid, how
they move is entirely deterministic.

Suppose we only had 2 cars on the grid. Both are likely to be able to move at each time
step as they probably will not be beside each other. Here, the cars move freely and their
velocity is essentially 1 unit of distance for each unit of time. However, suppose we have a
10-by-10 grid and we have 100 cars. Clearly, no cell is vacant and no car can move. We have
a complete traffic jam and the velocity is 0. Between these two extremes in the proportion
of occupied cells, we will observe different behaviors and self-organizing schemes ranging
from global free-flowing traffic to localized deadlock to global deadlock.

The behavior of this model depends critically on the number of cars on the grid. If we

http://www.jasondavies.com/bml/

312 Case Studies in Data Science in R

have very few cars, they are unlikely to be close to each other and so will probably move
freely. Alternatively, if we have many cars relative to the number of cells in the grid, the
cars are likely to form a traffic jam. So the density of cars — number of cars divided by the
number of cells — is the the key parameter. Figure 8.2 shows a grid that has 25% of the
cells occupied by cars. The locations of the cars are initially random. After 500 time periods
of the cars moving, the cars appear to form regular diagonal lines and most of the cars are
moving in each time cycle. The 3rd panel shows the grid after 1,000 iterations, confirming
the free-flowing equilibrium.

Suppose we start with 40% of the cells in the grid randomly assigned a car (red and
blue in equal numbers). The first panel in Figure 8.3 shows this initial configuration. After
500 iterations, we see emerging deadlock with some cars still in the middle of the grid and
moving reasonably freely. After 1000 iterations, we see that the cars have formed deadlocked
clusters.

What is the value of the density of the cars that changes the behavior of the dynamic
system from free-flowing to jammed? How do the cars organize themselves ? What are the
characteristics of these organizations? How do these depend on the dimensions of the grid?
These are questions we want to be able to answer via simulation and data analysis.

t = 0 t = 500 t = 1,000

Figure 8.2: Sample Free-Flowing Traffic Grids. The 3 panels show the initial grid at time t
= 0, t = 500, and t = 1000. Cars occupy 25% of the cells. After 500 iterations, the cars
start to organize along diagonal lines. After 1000 iterations, the lines are becoming clearer.

8.2.1 The Order Cars Move
The details of how the cars move described above essentially characterize the BML model.
However, there is one practical aspect that we need to discuss in order to program the
model. Consider the very simple grid in Figure 8.4.

We have 3 adjacent red cars in a single row, which we refer to as A, B, C. At time t = 1,
we attempt to move each of the red cars. If we move car C first, it will move horizontally to
the empty fourth cell in the row. We can then move car B to the cell that C was previously
occupying. Similarly, A can then move to B’s previous spot.

If we had not moved C first, but processed the cars in the order A, B and then C, we
would have a very different outcome. A would not be able to move since B is occupying the
cell to which it would move. Similarly, B would be unable to move to C’s current location.
Finally, C would move to the fourth cell in the row, as before.

When we move the cars one at a time, the order in which we attempt to move the cars

A Self-Organizing Dynamic System with a Phase Transition 313

t = 0 t = 500 t = 1,000

Figure 8.3: Sample Deadlocked Traffic Grids. Three grids at different time steps showing
the emergence of deadlocked traffic.

A B C

Figure 8.4: The order in which cars move. If car A tries to move first, it cannot move as
B is occupying the target cell. However, if C moves first, it can move to the right and then
B can move and then A. The order in which the cars move leads to different outcomes.

might change which ones actually move in a given time period. We have several choices for
dealing with this when we implement our algorithm.

1. We can process the cars in the order in which they were placed on the grid and ignore
any ordering effect.

2. We could randomize the order in which we process each car at each time period and
again move them using this random order.

3. Within a time step, we could start by moving all those cars that can move and then
move those cars that couldn’t initially move. We would then continue to repeat this
again within this time step until all the cars for this time step had either moved or were
actually blocked, i.e., until none of the eligible cars moved in an iteration.

We would like to know if these different approaches lead to qualitatively different results.
Initially, however, we will start with the simplest approach (1 above) but try to write
our code so that we can easily substitute in any of the other different ordering schemes.
Motivated by computational efficiency, we will ultimately use a vectorized approach that
corresponds to a fourth approach. This moves all cars simultaneously. This effectively means
that we determine which target cells are vacant in one step and then move only those cars
that will move to one of these vacant cells. This does not allow a car to move into a cell if
another car moves out of that cell in the same time period. This corresponds to moving car
A, then B, and then C in Figure 8.4.

314 Case Studies in Data Science in R

8.3 Implementing the BML Model
We now have a complete description of the BML model and can start to write R code to
implement and simulate it. Let’s think about the different steps we have and also what
inputs we need at each step.

1. For the step at time t = 0, we need to create the grid.

2. We want to view the grid at the start and also at different time steps in the process as
it evolves. Visualizing the state of the grid helps us to understand the process, but is
also essential to help debugging the code.

3. At a time t, we need to move the cars. At odd numbered time steps, we move the red
cars, and at even numbered time steps, we move the blue cars.

4. To run the process, we need to iterate over a sequence of time steps, not just a single
time step.

We will need code for each of these steps. As we develop functions for these, we’ll also try
to make them flexible, extensible, and efficient. We’ll also visualize the grids and compute
summary statistics from them such as the proportion of cars that move at each time step,
and hence average velocity.

8.3.1 Creating the Initial Grid Configuration
To create the grid, we need to know the dimensions of the grid and the number of cars to
create and where to position them. We can think of the grid as being a square and use just
a single dimension to describe it. However, this is unnecessarily restrictive. It costs us very
little to allow the user of our function createGrid() to specify different lengths for the width
and height of the the grid. We can allow the caller to specify 1 length and use that for both
dimensions, but still have the option of specifying the 2 dimensions separately. Being able
to vary the dimensions allows us to explore how the behavior of the process changes as we
use, say, relatively prime dimensions. This does indeed turn out to be important. So we can
use calls of the form

createGrid(100)
createGrid(c(100, 200))

Similar to the dimension, we can also specify the number of red and blue cars separately
or specify a single value to be used for each, e.g., createGrid(100, 50) or create-
Grid(100, c(50, 30)). Rather than specifying the number of cars, it can be convenient
to specify the proportion of the cells that should contain a car, e.g., createGrid(100,
.25). As we change the dimensions, this makes it easy to keep the same density of occupied
cells. Given this proportion and the dimensions of the grid, we can compute the total num-
ber of cars. We can divide this in two to get the number of red and blue cars. Accordingly,
we have 3 different ways to specify how the number of each type of car is computed: a single
number used for both types, a vector of length 2 with a number for each car color, and a
proportion between 0 and 1 used to compute the proportion of cells occupied by a car of
either type.

So let’s put these different forms of inputs for the caller together to define the skeleton
of a function to create our initial (t = 0) grid:

A Self-Organizing Dynamic System with a Phase Transition 315

createGrid =
function(dims = c(100, 100), numCars = .3)
{

if(length(dims) == 1)
dims = rep(dims, 2) # a square grid

if(length(numCars) == 1 && numCars < 1)
numCars = rep(prod(dims) * numCars/2, 2)

...
}

This function ensures that dims and numCars have the correct length and interpretation.

Q.1 Does the function above handle all input cases? If not, which ones could occur that
haven’t be handled?

We can now generate the actual locations of the cars. How should we do this? We know we
need numCars[1] red cars and numCars[2] blue cars. For each car, we need its row and
column numbers. We have to ensure that there is no existing car already at that location.
We could generate the location one car at a time. We would generate a possible location (i,
j) and then check to see if the cell is already occupied. If the cell is occupied, we generate
another possible location and iterate until we place that car. As we place more and more
cars, there will be fewer available locations for the next cars. As a result, we will spend more
time/iterations finding an available location. Furthermore, if we place the red cars first, the
blue ones have to fit into the remaining available cells. Will this introduce a bias?

Rather than using a loop to place each car, we want to use a vectorized approach. This
is the R style of programming that makes for more succinct, flexible, and efficient code. So
let’s think of different approaches to placing the cars using a vectorized operation. Firstly,
suppose we have a 2-column matrix of the locations (row and column indices) of all the cars
without knowing the color of each car. We can randomly assign the red and blue labels to
those locations/rows. This gives the same result probabilistically as if we allocate the colors
before positioning them. We could generate the colors/labels for the nR + nB cars with

carColors = sample(rep(c("red", "blue"), numCars))

Note that we are using rep() to create a vector with the specified number of red and blue
elements and then we are generating a permutation of this vector. This ensures we end up
with the specified number of red and blue values, rather than a random sample from the
2 values, which allows the number of each to be different from what we specified for each.
It is essential that numCars is a vector with 2 elements giving nR and nB . We can check
carColors contains the correct number for each color with

table(carColors)

Q.2 What if we used

sample(c("red", "blue"), sum(numCars), prob = numCars,
replace = TRUE)

316 Case Studies in Data Science in R

to generate the colors for the sampled locations? Is this qualitatively the same as the
previous code with rep()? If not, what is the difference? Will this matter for our simu-
lations?

Once we know the colors of the cells with cars, we need to generate their locations. We
might consider sampling the row indices and then the column indices and combine them
together into a 2-column matrix, e.g.

N = sum(numCars)
rows = sample(1:dims[1], numCars, replace = TRUE)
cols = sample(1:dims[2], numCars, replace = TRUE)

Here sum(numCars) is the total number of cars to be placed. Unfortunately, we will
probably end up with conflicts with 2 cars at the same location. We could determine which
cars would be in an already occupied cell and resample the entire collection of cells again.
We can repeat this until we eventually get no conflicts. This is similar to the approach and
the problem we had above when we placed the cars separately and sequentially.

Let’s consider a different approach. We could label each cell uniquely by its row and
column numbers. We could then sample from these unique cell identifiers and decompose
each identifier for a cell into its row and column. We would be guaranteed not to get any
conflicts as we sample without replacement from all the available cells. This would allow us
to do the sampling in one operation. We can create the unique identifiers with

ids = outer(1:dims[1], 1:dims[2], paste, sep = ",")

This yields character strings of the form "1,1", "1,2", . . . , "m,n". We can then sample
these using

pos = sample(ids, sum(numCars))

and get the row and column values with

tmp = strsplit(pos, ",")
rows = as.integer(sapply(tmp, ‘[‘, 1))
cols = as.integer(sapply(tmp, ‘[‘, 2))

This works well, but we can make this much simpler.
Instead of explicitly creating all of the unique “row,column” pair identifiers, we could

use the numbers 1, 2, 3, . . . , dims[1]*dims[2] as unique identifiers. We then sample
from these identifiers. Given these, we have to be able to map each identifier value back to
a row and column. Fortunately, this is quite easy. To get the column number, we subtract
1 from the cell identifier value, divide this by the number of rows, and round this value
down to the integer value, and add 1 to get the column number. As a computation, this is
floor((value - 1)/dims[1]) + 1L. To get the row number, we use the remainder
from performing the division for the column number and adding 1, i.e., (value - 1L)¬
%%dims[1] + 1L. For example, suppose we have a 10-by-9 grid and we sample an index
14. This would correspond to row 4 and column 5.

Again, this is relatively straightforward, but there is an even simpler mechanism. Let’s
take this idea of sampling the indices 1, 2, 3, . . . further. Suppose we represent our grid
of cells as an R matrix. We can use these positions to directly index into elements of the
matrix. This is because a matrix is merely a vector of values with a dimension attribute
that specifies the number of rows and columns. We can create our empty grid with

A Self-Organizing Dynamic System with a Phase Transition 317

m = matrix(0, dims[1], dims[2])

We can then sample the indices at which the cars will be located with

pos = sample(1:(dims[1]*dims[2]), sum(numCars))

Then

m[pos] = 1

sets only the elements corresponding to our sampled cells to 1. This is much more succinct.
We have glossed over one detail in subsetting the matrix by the sampled indices. A

matrix stores the values in column order and not row order. In other words, the matrix

matrix(1:10, 5, 2)

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

is actually stored as an integer vector in the form

[1] 1 2 3 4 5 6 7 8 9 10

This is different from row-oriented storage, which would yield

[1] 1 3 5 7 9 2 4 6 8 10

In our case it doesn’t matter whether we use rows or columns when indexing as the cells
we sample are uniformly distributed throughout the entire collection of cells in the matrix.
The order doesn’t matter.

Let’s create the final version of our function to create our sampled grid and color the
cells red and blue using this final approach:

createGrid =
function(dims = c(100, 100), numCars = .3)
{

if(length(dims) == 1)
dims = rep(dims, 2)

if(length(numCars) == 1 && numCars < 1)
numCars = rep(prod(dims) * numCars/2, 2)

grid = matrix("", dims[1], dims[2])

pos = sample(1:prod(dims), sum(numCars))
grid[pos] = sample(rep(c("red", "blue"), numCars))

grid

We set the elements with a car to the corresponding color. Note that we explicitly returned
grid at the end of the function. Sometimes people forget to do this and leave the last
expression as the assignment grid[pos] = sample(...). This would return just vector
returned by the second call to sample().

318 Case Studies in Data Science in R

8.3.2 Testing the Grid Creation Function
Before we move on to the next steps of moving the cars, let’s verify that our function gives
us sensible output. This is very important. If we get this wrong, the rest of our work will
also be wrong. Any testing we do on subsequent code will be wasted and this can consume a
lot of time and also even lead to erroneous code, results, and confusion in the programmer’s
mind. In short, we need a solid foundation for each next step.

We need to think of ways to test the createGrid()function. We can print the results,
but for anything but very small grids, the output will be overwhelming. Therefore, we need
some meaningful summaries. We also need to test it with different inputs, e.g., non-square
grids, different numbers of red and blue cars, and different densities.

A simple test is whether the function returns what we expect

g = createGrid()
class(g)

[1] "matrix"

dim(g)

[1] 100 100

These are what we expect.
We should also check that the number of red and blue cars is the same and account for

30% of the available cells:

table(g)

blue red
7000 1500 1500

The first element (7000) is the count of the empty cells. The name appears blank as this
corresponds to the value "" in the grid. Do we expect the numbers of red and blue cars to
be identical?

Rather than simply evaluating these expressions and visually verifying the results are
as we expect, we can raise an error if they are not. For example,

stopifnot(dim(g) != c(100, 100))
stopifnot(all(table(g) %in% c(7000L, blue = 1500L, red = 1500L)))

The latter test doesn’t check whether the individual elements in table(g) are the same as
those in the vector we expect. Instead, it merely checks that all the values are in the vector
we expect; the counts could be in a different order corresponding to different colors. To
test they are exactly as we expect, we have to compare the corresponding elements. table()
returns a slightly more complex object than a simple vector of counts. To test for equality
of the object, we have to get the dimension, dimension names, and class to be the same,
e.g.,

stopifnot(identical(table(g),
structure(c(7000L, 1500L, 1500L),

dim = 3L, class = "table",
dimnames = list(g = c("",

"blue",
"red")))))

A Self-Organizing Dynamic System with a Phase Transition 319

This is a much better test, but its added complexity runs the risk of introducing errors/bugs
into the test itself.

Let’s use our function to create a small grid with unequal dimensions:

createGrid(c(3, 5), .5)

This gives a warning

Warning in grid[pos] = sample(rep(c("red", "blue"), numCars)) :
number of items to replace is not a multiple of replacement length

So good thing we checked! We use

options(error = recover, warn = 2)

to establish a debugging mechanism that allows us to explore the errors and warnings when
and where they occur. If you are not familiar with the recover() function, take a moment to
read its help page. Setting warn = 2 causes warnings to be treated as errors. This allows us
to stop at a warning and explore the current state of the computations where that warning
occurs. We trigger the problem again by re-evaluating the same expression:1

createGrid(c(3, 5), .5)

Error in grid[pos] = sample(rep(c("red", "blue"), numCars)) :
(converted from warning) number of items to replace is not
a multiple of replacement length

Enter a frame number, or 0 to exit

1: createGrid(c(3, 5), 0.5)
2: #13: .signalSimpleWarning("number of items to replace is not
3: withRestarts({

.Internal(.signalCondition(simpleWarning(msg, cal
4: withOneRestart(expr, restarts[[1]])
5: doWithOneRestart(return(expr), restart)

Selection:

When the warning occurs, R converts it to an error and calls stop(), which is intercepted
by our error handler, the recover() function. We are presented with the stack of current
function calls, i.e., the call stack. These are the items 1 through 5. The error is in the body
of the function createGrid(). So we can enter 1 at the Selection: prompt. This will place
us in the call frame for this function call. We can then examine (and even modify) the
parameters and local variables that define the state of this call.

Within the debugging browser, when we look at the value of numCars, we see this is

[1] 3.75 3.75

and pos is something like

[1] 1 14 7 3 15 9 12

1Given the computations involve randomness, it is possible that the same call will not generate a warning
each time. However, in this case it will.

320 Case Studies in Data Science in R

What is the right hand side of the assignment? It is the value of the expression

sample(rep(c("red", "blue"), numCars))

and is something like

[1] "red" "red" "blue" "blue" "blue" "red"

The values are random, but the number of elements is not and is 6 rather than 7, which is
the length of pos (since sum(numCars) is 7.5). That is the disparity. The problem is the
fractional values in numCars, i.e., 3.75 and how this affects the call to rep(). Instead of using
rep(), we can use rep_len() and ensure that we get the same number of elements as in pos:

rep_len(c("red", "blue"), length(pos))

But this doesn’t allow us to specify a different number of cars for the red and blue cars,
i.e., a vector for numCars. Instead, we might use

sample(rep(c("red", "blue"), ceiling(numCars)))[seq(along = pos)]

which rounds the number of cars for each type to the next largest integer and then subsets
the result to have the same length as pos.

Q.3 Does this lead to an imbalance in the number of cars? Is this what we want?

We can make this change and redefine the function as

createGrid =
function(dims = c(100, 100), numCars = .3)
{

if(length(dims) == 1)
dims = rep(dims, 2)

if(length(numCars) == 1 && numCars < 1)
numCars = rep(prod(dims) * numCars/2, 2)

grid = matrix("", dims[1], dims[2])

pos = sample(1:prod(dims), sum(numCars))
grid[pos] = sample(rep(c("red", "blue"),

ceiling(numCars)))[seq(along = pos)]

grid
}

Now we need to rerun our tests that passed for the previous version and continue to
add new tests. It is essential we do this. We have modified and added code. As a result,
there is a good chance we have introduced a bug. Having the tests from earlier in separate
files that we can source() into R and raise an error (via, e.g., stopifnot()) if there is an
unanticipated result allows us to easily recheck our code and be somewhat confident about
it before embarking on the next step.

Let’s create a small grid. We may want to ensure we can get the exact values again for
the cells and so set the random seed:

A Self-Organizing Dynamic System with a Phase Transition 321

set.seed(1456)
createGrid(c(3, 5), .5)

[,1] [,2] [,3] [,4] [,5]
[1,] "red" "" "red" "" ""
[2,] "" "red" "" "blue" ""
[3,] "blue" "blue" "" "red" ""

We can specify the number of red and blue cars with

set.seed(1234)
createGrid(c(3, 5), c(9, 3))

[,1] [,2] [,3] [,4] [,5]
[1,] "red" "red" "red" "blue" "red"
[2,] "red" "red" "red" "" ""
[3,] "blue" "red" "blue" "" "red"

Again, we need to develop tests for corner cases, e.g., the caller asking for 0 cars of either
or both types, or more cars than can fit on the grid, etc.

Q.4 Add code to the createGrid() function to raise an error or warning as appropriate when
the caller specifies infeasible inputs for the number of cars or for the dimensions of the
grid.

We can check the counts again

set.seed(1234)
g = createGrid(c(3, 5), c(9, 3))
table(g)

blue red
3 3 9

Q.5 Should we allow the caller to use names on the vector of number of cars numCars
to indicate the colors or values for the two types of cars in the matrix? Modify the
createGrid() function to use these.

8.3.3 Displaying the Grid
When we display a BMLGrid object in the R console, it is shown as a matrix, as we saw
in the 3-by-5 example above. There are several aspects of this that make it harder than we
would like to quickly comprehend. Firstly, the row and column names are distracting, e.g.,
the [1,] and [,1] on the side and above the actual cell values. We could display these as
1, 2, 3, . . . , without the surrounding [,]. More importantly, the rows appear in increasing
order on the console. Specifically, row 1 appears above row 2, which appears above row 3,
and so on. This is not how we think about the grid and can make it hard to reason about
the movement of an individual car in the grid. When a blue car moves “up” from row 2 to
row 3, it will actually move down as displayed on the console. Accordingly, we’d like the
rows to appear in the opposite order. We can define our own function to display a BML
grid object. We might implement it as

322 Case Studies in Data Science in R

print.BMLGrid =
function(x, ...)

print(structure(x[nrow(x):1,],
dimnames = list(nrow(x):1, 1:ncol(x))))

This creates a new matrix object in the appropriate manner so that the rows appear in
the “correct” order and the row and column names are set appropriately. It then uses R’s
regular print() function to display this new representation of the original grid.

With this new print.BMLGrid() function, our grid m will appear as

1 2 3 4
3 "blue" "blue" "" "red"
2 "blue" "" "red" ""
1 "" "red" "" "red"

Q.6 The quotes around the color names (e.g., "blue") are distracting. Write a different
version of print.BMLGrid() that produces the display without the quotes. Reuse existing
functionality in R rather than writing code to format individual lines of output. Hint:
when does R display character vectors/strings without quotes?

Q.7 Instead of using the names of the colors, use arrows such as ↑ and →.

8.3.4 Visualizing the Grid
In addition to printing the grid on the console, we can visualize it using R’s graphics
capabilities. This is useful so we can see that the locations of the cars and colors appear
random and potentially identify any anomalies in our code. We should write a function to
do this so that we don’t have to remember the details. We could draw the cells as colored
circles on a scatter plot. However, it seems to make more sense to display them as rectangles
that occupy the grid’s cell. We could use the rect() function to draw the rectangles. We need
to create 4 vectors specifying the x and y locations for the two opposite corners of each cell,
i.e., 4 n-length vectors where n is the total number of cars. We also have to create the initial
coordinate system for drawing the rectangles by creating a new plot. This is quite simple
but involves several steps. Instead, we should think about whether there is an existing high-
level function in R or some R package that does what we want, or close to it, so that we
could adapt it. Reusing functions is a good thing to do as they save us programming time
but also are more likely to be correct and full-featured.

We might try to use the image() function to render the matrix for us. Before reading
further in this chapter, consult the help page for image() and think about how we will use
it to display the contents of the grid.

To use image(), we have to convert the string values in the matrix to numbers. We can
do this by mapping the values "", "red", and "blue" to a set of numbers, say, 1, 2, and
3, respectively. We can do this with the match() function via

z = matrix(match(g, c("", "red", "blue")), nrow(g), ncol(g))

The result corresponding to our grid m we created earlier is

[,1] [,2] [,3] [,4]
[1,] 3 3 1 2
[2,] 3 1 2 1
[3,] 1 2 1 2

A Self-Organizing Dynamic System with a Phase Transition 323

We can then call the image() function as image(z) This display in Figure 8.5 is somewhat
difficult to interpret. We should control the colors explicitly. Based on our matching, the
colors should be white for 1, red for 2, and blue for 3. Therefore, our plot command should
be

image(z, col = c("white", "red", "blue"))

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8.5: Simple Plot from image(). Using a simple call to image() to display the grid
uses the wrong colors and also does not display the cells in the order we expect or want.

We have to carefully verify that the cells in the matrix correspond to those in the image.
In fact, they do not. The problem is that image() essentially rotates the matrix by 90 degrees
and displays that. Therefore, the rows and columns are exchanged in the plot. In order to
obtain the same display as we have via print.BMLGrid() and as we would expect, we have
to transpose the matrix before passing it to image(). We can use

image(t(z), col = c("white", "red", "blue"))

To view a grid, we don’t want to have to remember and perform these calculations
each time. We should write a function to plot it for us that uses and encapsulates these
computations. Let’s call our function plot.BMLGrid() and define it as

plot.BMLGrid =
function(x, ...)
{

z = matrix(match(x, c("", "red", "blue")), nrow(x), ncol(x))
image(t(z), col = c("white", "red", "blue"),

axes = FALSE, xlab = "", ylab = "", ...)
box()

}

We remove the horizontal and vertical axes as they have no meaning in this context. Alter-
natively, we could add the row and column numbers for the grid. Note also that we changed

324 Case Studies in Data Science in R

our code to refer to x, the function’s parameter, rather than g, which we had in our interac-
tive expression we used to experiment with the image() function. This style of interactively
refining a command and then copying it to the body of a function can often lead to bugs
due to referring to variables not defined in the new function. Our function would still work
because g is available in the work space, but it ignores any grid we explicitly pass to it! It
is good practice to use codetools::findGlobals(plot.BMLGrid, FALSE) to check
for and identify any non-local variables.

Importantly, our function passes any arguments for image() that we don’t use directly
in our function to the call to image() via the . . . mechanism. This allows the caller to
customize the image() function with additional inputs. For example, she can specify a title
for the plot with

plot.BMLGrid(g, main = "A sample title", sub = "A sub title")

This is good practice to make our function more flexible for the callers with little additional
effort.

Q.8 How would we change our plot.BMLGrid() function to allow the caller to override the
axes = FALSE argument in the call to image()? In other words, we want no axes to
appear by default, but to allow the caller to optionally show them.

We can use our new function to display the grid with plot.BMLGrid(g). Again, we have
to verify that this code is correct and we leave it as an exercise.

Let’s look at a larger grid:

g = createGrid(c(100, 100), .5)
plot.BMLGrid(g)

We show this in the first panel of Figure 8.6.
We can also use many more red than blue cars to see if this characteristic appears in

the display. We’ll create a 10,000-cell display with half of the cells being red and 500 being
blue. The remaining 4,500 cells are white/empty:

g = createGrid(c(100, 100), c(5e3, 500))
plot.BMLGrid(g)

We can see this in the second panel of Figure 8.6.
Let’s also create our own grid with no random values, but where we explicitly place the

cars deterministically:

m = matrix("", 3, 4)
m[3, 1] = "blue"
m[1, 4] = "red"

m[row(m) == col(m) - 1] = "red"
m[col(m) == row(m) - 1] = "blue"

The final two expressions put red cars along the upper-off-diagonal and blue cars along the
lower-off-diagonal. This is shown in the third panel of Figure 8.6.

Before we move on to the next topic, we note that we have now repeated our colors
(white, red, and blue) in 3 different places: in createGrid() and in the calls to match() and
image(). We are violating the DRY (Don’t Repeat Yourself) principle. We have to ensure

A Self-Organizing Dynamic System with a Phase Transition 325

Figure 8.6: Sample Grid Displays. The first panel shows a 100-by-100 grid with 50% of the
cells occupied equally with red and blue cars. The second panel has the same dimensions but
there are 5000 red cars and only 500 blue cars. The 3rd panel shows a small 3-by-4 grid
where we placed the cars manually.

they are all the same and in the same order. It also makes it harder for us to change if
we want to use different colors, e.g., for issues with color-blindness, displaying in different
media such as an overhead projector versus a monitor versus printing. Instead, we should
define the color names as a vector and reuse this in each of these 3 locations. We can use a
global variable and make this the default value for a parameter in each of these functions.
(We leave this as an exercise.) In general, global variables are “bad;” however, here we are
using this essentially as a global constant/immutable vector in a centralized location.

8.3.5 Simple and Convenient Object-Oriented Programming
We defined the plot.BMLGrid() function in the previous section. This made visualizing an
arbitrary grid created with createGrid(), or even directly by specifying the values of the cells,
very straightforward. Since we wrote the plot.BMLGrid() function, it is easy to remember
its name. However, suppose that this function is in an R package. We’d have to find the
function and remember its name. Instead, we’d like to be able to simply call the generic
plot() function and have it display our grid/matrix using our plot.BMLGrid() function. In
other words, we’d like to use the general verb plot() but have it understand to do something
specific for our particular data structure. This is one important aspect of object-oriented
programming and is quite simple using R’s S3 classes and methods mechanism.

We don’t want R to display all matrix objects using our plot.BMLGrid() function. In-
stead, we want it to be used for our grid objects that we generate with our createGrid()
function or other similar specialized functions. In other words, we want to use the generic
function plot() but have it be specialized for objects that represent BML grids. To do this,
we need only make each of our grid objects have a class attribute named BMLGrid, the same
suffix as we used in the name of our plot function, e.g., plot.BMLGrid(). We can associate
the class name with a grid object easily with

class(g) = "BMLGrid"

Then, when we call plot(g), R will implicitly call our plot.BMLGrid() function and pro-
duce the plot we want. If you want to verify this, we can use trace() to show each call to a
function, i.e., trace(plot.BMLGrid) and then plot(g).

How does R know to call plot.BMLGrid()? It is quite simple. The plot() function con-
tains a call of the form UseMethod("plot"). When R evaluates this, it looks at the

326 Case Studies in Data Science in R

primary/first argument2 in this call to plot() and obtains its class attribute. This is often
a single string, but it can be a character vector with more than one element. R combines
the name of the generic function being called — plot in this case — with each name in
the class vector and also the word default, each separated by a period, i.e., plot.BML-
Grid and plot.default. R then iterates over these names and searches for a function
with that name. If it finds such a function, it passes control to that function. In our ex-
ample, R will search for plot.BMLGrid() and plot.default(). Since we named our function
plot.BMLGrid(), R will find and invoke that function. If we had named the function anything
else, say plot.CarGrid, R would have ignored it and used plot.default().

The vector of class names for an R object also allows us to inherit methods. For example,
suppose we evaluated the expression

summary(g)

summary() is also a generic function that calls UseMethod() to dispatch to class-specific
methods. R then looks for summary.BMLGrid() but doesn’t find one. Instead, it finds
summary.default() and calls that since we inherited the default method.

Our grid object is stored as a matrix in R. However, when we set the class attribute, we
overwrote the original matrix class value of the object with the single string "BMLGrid".
However, we could have set the class on our grid as

class(g) = c("BMLGrid", "matrix")

or more generally

class(g) = c("BMLGrid", class(g))

In either case, the class vector will include both BMLGrid and matrix. As a result,
when R looks for a method for a generic function such as summary(), it will search for
summary.BMLGrid(), summary.matrix(), and summary.default(), in that order. What this
means is that if there is a summary.matrix() method, we will inherit that rather than using
the default method. This is method inheritance by class. Our BMLGrid class is more specific
than matrix and so we will use BMLGrid methods before a matrix method. However, if
there is no BMLGrid method for a particular generic function, we will use a matrix method,
if one is available. Otherwise, we’ll use the default method or else fail.

The method dispatch mechanism also allows us to create specialized versions of our
own BMLGrid class. For instance, we might define a SquareBMLGrid class that has all
the characteristics of a BMLGrid object but which has the special property that the width
and height of the grid are the same. Or we might define a class CoPrimeBMLGrid, which
indicates the dimensions are relative primes of each other. We would set our class as

class(g) = c("SquareBMLGrid", "BMLGrid", "matrix")

and

class(g) = c("CoPrimeBMLGrid", "BMLGrid", "matrix")

respectively. This would allow us to define methods for each of these classes that re-
quired more specific computations, but also allow us to inherit more general methods, e.g.,
print.BMLGrid().

In order to make use of our BMLGrid methods, our grid objects need to have the class
BMLGrid. We modify our function createGrid() to specify this class on our return object.
We can replace the final expression returning the grid object with either

2Actually, R dispatches on the argument matching the first parameter, not necessarily the first argument
as it may be named argument. Also, UseMethod() can identify the parameter on which to select the method.

A Self-Organizing Dynamic System with a Phase Transition 327

class(grid) = c("BMLGrid", "matrix")
grid

or

structure(grid, class = c("BMLGrid", "matrix"))

Classes and methods help users by allowing them to use generic function names rather
than having to remember names such as plot.BMLGrid(). They also allow programmers to
simplify code. Rather than having numerous if statements in a function to handle different
classes of inputs, these specializations can be handled in various separate functions that R
automatically finds and invokes as we described. This makes it easy to extend an existing
generic function without modifying it and also makes maintaining the functions easier and
more reliable. It does make finding which code will actually be used a little more indirect.
However, we can use R’s methods() function to query the available methods for a particular
generic function, e.g., methods(plot).

The S4 and reference class mechanisms are more powerful than the S3 class mechanism.
However, we won’t explore these here. Instead, see Chapter 9. Most of the R modeling
functions in R use S3 and so these are powerful and effective, and also something useful to
understand.

One of the powerful aspects of object-oriented programming is being able to define a
new, more specialized class and provide a method for it. We did this with BMLGrid,
print.BMLGrid(), and plot.BMLGrid(). We can introduce new classes that extend
BMLGrid simply by prepending the new class name to the class vector, e.g.,

class(g) = c("ExtendedBMLGrid", "BMLGrid", "matrix")

We might also define a method for the ExtendedBMLGrid, e.g.,
plot.ExtendedBMLGrid(). However, suppose we wanted this method to first perform
some computations and then call the regular method for the BMLGrid class. We might
be tempted to explicitly call plot.BMLGrid(). Instead, a more flexible and general
approach is to call NextMethod(), e.g., NextMethod("plot"). This arranges to
call the next inherited method based on the class of the object (typically, the first
argument in the current method). This avoids explicitly assuming the name of the next
class, e.g., BMLGrid, and allows for other programmers to define further specialized
classes and methods.

8.3.6 Moving the Cars
After all this work, we have now created our grid corresponding to the first of our 4 steps
(see Section 8.3). The next task is to move the cars for a given time step. We have to move
either the red cars east, or the blue cars north. We could write two separate functions, each
handling the different colored cars. However, they are likely to share common operations
and we would end up repeating code. This is bad. We’ll probably cut-and-paste code from
one function to the other. If there is an error in the original function, it will be present in
the second. We often correct it in one but not the other. Additionally, if we improve the
code in one place, we have to make the same changes in the other place. Furthermore, it
makes reading, understanding, and maintaining the code harder. We have lost the explicit
connection between the two that is clear when two functions call a shared function, but not

328 Case Studies in Data Science in R

when we have the code repeated. The general idea is the DRY principle — Don’t Repeat
Yourself. It is such an important concept in programming, we’ll say it again — Don’t Repeat
Yourself!

Ideally, and ultimately, we would like to have a single function that we can call to move
either set of cars, which color depending on the caller. Certainly, we would like to have
a single function that identifies the common abstractions across the 2 colors, and perhaps
specializes the actual motion for the different directions in other functions. It may be prudent
not to be too ambitious at the very beginning. We may want to start by writing two separate
functions to get things working. Then we could examine these and identify their common
parts and combine them into one more general function. This is a good approach as we are
striving for the general version ultimately, but making things simpler initially. Starting with
the more general, abstract version may slow us down and be too difficult without having a
working version for one type of car.

The most obvious way to move the cars is to process each car separately, determine
whether the cell to which it would move is currently vacant, and if so update the location of
that car. When a car moves, we have to clear the cell it currently occupies and set the color
of the cell to which it moves. We can do all of this within a loop to process all of the cars of a
given color. As usual, this is not ideal in R as it can be slow. Instead, we’d like a vectorized
approach. However, let’s implement this loop approach here as a) we want a version that
we know is correct and which we can use to check a more ambitious, vectorized version, and
b) we’ll revisit this in another context later on in the chapter (when we implement a fast
version in C). This approach treats the cars sequentially, rather than simultaneously. As a
result, a car may not be able to move in this time step, but would if we changed the order
in which we process the cars. This is fine for our implementation.

While the loop will be relatively easy to write, we immediately run into a problem with
how we have represented our grid. We have the entire matrix but we do not know the
location of the red or the blue cars. When we created the grid, we knew their locations.
However, we then put this information into the matrix and discarded it. For each time step,
we have to extract the information from the matrix about where the cars are currently
located. We can do this with the row() and col() functions. We can get the locations of all
the cars with

i = row(g)[g != ""]
j = col(g)[g != ""]
pos = cbind(i, j)

We can use pos to index our grid matrix to get the color associated with each of the cars:

colors = g[pos]

Note how we are using a (2-column) matrix to subset a matrix. This takes a little time to
get used to. Take a moment to experiment at the R console with matrix subsetting using
some small, simple matrices or these grids of cars.

We can combine the row and column information into a data frame representing all of
the car locations and colors using

cars = data.frame(i = i, j = j, colors = colors)

We now have the locations and we can loop over the relevant subset (blue or red) to move
those cars.

Q.9 Why should we use a data frame to represent this information? What are the alterna-
tives? A matrix? A list? Three variables i, j, and pos?

A Self-Organizing Dynamic System with a Phase Transition 329

Our loop to move the cars of one color, say blue, can be implemented something like the
following

w = which(cars$colors == "blue")
for(idx in w) {

curPos = c(cars$i[idx], cars$j[idx])
nextPos = c(if(cars$j[idx] == nrow(grid))

1L
else

cars$j[idx] + 1L,
cars$j[idx])

check if nextPos is empty
if(grid[nextPos[1], nextPos[2]] == "") {

grid[nextPos[1], nextPos[2]] = "blue"
grid[curPos[1], curPos[2]] = ""

}
}

The code is reasonably straightforward. We determine the indices for the blue cars and
loop over these. For each blue car index, we extract its current position and compute its
would-be next position. We adjust for reaching the top edge of the grid so that we wrap
around to the lowest row on the grid, if this occurred. Then we test if the would-be position
is available/empty and if so, update the current contents of the grid.

Q.10 Note that we cannot use a call to lapply()/sapply() in place of the for loop above.
Why?

To move the red cars, we would have very similar code. We’d replace “blue” with “red” and
also how we compute the nextPos. This allows us to see how to write a single function,
moveCars(), which can move either set of cars — red or blue. Our moveCars() function
takes the current grid and returns the updated grid. Note that these 2 grids will be separate
copies, not a modification of a shared grid object. This allows us to build up a sequence of
grids and visualize the progress and easily compare them to validate our code. Our function
also needs to know which color of car we are moving. We define it by combining the code
from the different steps above.

moveCars =
function(grid, color = "red")
{

i = row(grid)[grid != ""]
j = col(grid)[grid != ""]
pos = cbind(i, j)
colors = grid[pos]
cars = data.frame(i = i, j = j, colors = colors)

w = which(cars$colors == color)
for(idx in w) {

curPos = c(i = cars$i[idx], j = cars$j[idx])
nextPos = if(color == "red")

330 Case Studies in Data Science in R

c(curPos[1],
if(curPos[2] == ncol(grid))

1L
else

curPos[2] + 1L)
else

c(if(curPos[1] == nrow(grid))
1L

else
curPos[1] + 1L,

curPos[2])

check if nextPos is empty
if(grid[nextPos[1], nextPos[2]] == "") {

grid[nextPos[1], nextPos[2]] = color
grid[curPos[1], curPos[2]] = ""

}
}

grid
}

We could improve this function by separating the code to compute the data frame of
car locations into its own function, e.g.,

getCarLocations =
function(g)
{

i = row(g)[g != ""]
j = col(g)[g != ""]
pos = cbind(i, j)
data.frame(i = i, j = j, colors = g[pos])

}

This allows us to test this code separately from moving the cars and also makes moveCars()
easier to read.

We can also move the code to calculate nextPos to a separate function, getNextPosi-
tion(). That function would need the current position and whether we are moving horizon-
tally or vertically. It also needs to know the dimension of the grid so that it can “wrap” cars
around the edges, i.e., back to position 1 when they reach the edge of the grid. We represent
the position of each car in the form c(row, column) where the row corresponds to the
vertical position and the column corresponds to the horizontal position. We can define this
function as

getNextPosition =
function(curPos, dim, horizontal = TRUE)
{

if(horizontal)
c(curPos[1],

if(curPos[2] == dim[2])
1L

else
curPos[2] + 1L)

A Self-Organizing Dynamic System with a Phase Transition 331

else
c(if(curPos[1] == dim[1])

1L
else curPos[1] + 1L,
curPos[2])

}

We’d call this in our moveCars() function as

getNextPosition(as.integer(cars[idx, 1:2]), dim(grid),
color == "red")

or

getNextPosition(c(cars$i[idx], cars$j[idx]), dim(grid),
color == "red")

Our refined version of moveCars() is now

moveCars =
function(grid, color = "red")
{

cars = getCarLocations(grid)

w = which(cars$colors == color)
for(idx in w) {

curPos = c(cars$i[idx], cars$j[idx])
nextPos = getNextPosition(curPos, dim(grid), color == "red")

check if nextPos is empty
if(grid[nextPos[1], nextPos[2]] == "") {

grid[nextPos[1], nextPos[2]] = color
grid[curPos[1], curPos[2]] = ""

}
}

grid
}

This is a lot more succinct and easier to read and follow. We can also test the getCar-
Locations() and getNextPosition() functions independently. This is an improvement in all
regards with little mental effort or changes to the overall code.

We should verify that when we re-factored the code, we did not introduce references to
parameters or variables from the old functions that are not defined in the new functions.
Again, we use findGlobals() to verify this. Additionally, we need to write tests for getCar-
Locations() and getNextPosition() to verify they are working correctly for different inputs.
Then we need to verify that the moveCars() function works correctly.

We’ll use a small grid that we can inspect visually to test getCarLocations(). We’ll use
the grid shown below and assigned to the variable g:

1 2 3 4 5
3
2 blue red red blue
1 red blue blue

332 Case Studies in Data Science in R

The output of getCarLocations() is

getCarLocations(g)

i j colors
1 1 1 red
2 2 1 blue
3 2 2 red
4 1 3 blue
5 1 4 blue
6 2 4 red
7 2 5 blue

We leave it as an exercise to verify these are correct. It may be easier to verify this by
displaying the grid as a regular matrix via unclass(g).

We need to try other grids, e.g.,

a = createGrid(c(4, 5), .7)
pos = getCarLocations(a)
nrow(pos) == sum(a != "")

This doesn’t test if the actual locations are correct, just that the total number of occupied
cells is correct. We need to determine a good test to verify that the results from getCarLoca-
tions() are correct. We must use a different approach than implemented in getCarLocations()
so we are not repeating the same logic. Again, we leave this as an exercise.

Q.11 Develop tests for the getCarLocations() function.

To test the getNextPositions() function, we can try different locations and directions (i.e.,
colors).

getNextPosition(c(2, 3), dim = c(4, 5), horizontal = TRUE)

should give (2, 4). However,

getNextPosition(c(2, 5), dim = c(4, 5), TRUE)

should wrap around and give (2, 1).

a = getNextPosition(c(2, 5), dim = c(4, 5), horizontal = FALSE)

returns (3, 5) as we are moving upwards. Moving that new position with

getNextPosition(a, dim = c(4, 5), horizontal = TRUE)

moves to (3, 1) due to the wrap around.
So all seems fine with our helper functions. Are we confident they are correct? As we

have said, there is no point in moving to the next steps in the overall task unless we are
sufficiently satisfied the functions that act as a foundation for those steps are correct. What
other tests should we consider? When will we be satisfied/comfortable that our code is
working correctly?

Now we need to test moveCars():

A Self-Organizing Dynamic System with a Phase Transition 333

g1 = moveCars(g)

This moves the red cars in the grid. We can compare the 2 grids (the before and after)
visually with

g

1 2 3 4 5
3
2 blue red red blue
1 red blue blue

g1

1 2 3 4 5
3
2 blue red red blue
1 red blue blue

We can see that the red cars moved right, except the one in position (2, 4). That is blocked
by a blue car in (2, 5). If we move the blue cars in the original grid (out of order since we
haven’t yet moved the red cars) with

moveCars(g, "blue")

1 2 3 4 5
3 blue blue
2 red blue red
1 red blue

the blue cars in columns 1, 3, and 5 move up. The other blue car in (1, 4) is blocked by the
red car in (2, 4).

Instead of seeing how the blues move in the original grid, we’ll move the red cars and
then the blue cars. We do this by calling moveCars() twice — once for the red cars and
once for the blue — making certain to pass the output of the first call as the updated grid
in the second call, i.e.,

g2 = moveCars(moveCars(g), "blue")
g2

1 2 3 4 5
3 blue blue
2 red red
1 red blue blue

We can compare this to the output from g1 above. Again, things look correct. In this case,
only the 2 blue cars in columns 1 and 5 were able to move. The other 2 were blocked by
red cars in the second row. Moving the red cars in g2 with moveCars(g2) yields

1 2 3 4 5
3 blue blue
2 red red
1 red blue blue

334 Case Studies in Data Science in R

So we see that the red car in (2, 4) has moved, but the red car at (2, 3) didn’t. This is
because the red car at (2, 4) was blocking it.

If we spend time verifying these functions, we will save ourselves time later on. Knowing
these are correct allows us to use them to validate the results from other implementations,
e.g., vectorized or compiled versions. So our time spent verifying these will be well spent
and rewarded. We should note that in each call to moveCars(), we are recomputing the
locations of the cars at each time step via getCarLocations(). However, in the previous
time step we actually knew these locations so these computations are not really necessary.
Instead, when we move a car on the grid, we could also update the location of that car in
the associated data frame. This is duplicating information and, in a way, violating the DRY
principle. However, here we are repeating data, not code. We would have to ensure that the
two representations of the same information are synchronized at all times. We are also using
more memory. However, it can remove the need for unnecessary, redundant computations.
There is a trade-off.

8.4 Evaluating the Performance of the Code
Let’s run our model through multiple time steps. We can write a function to do this as we
repeat this regularly for different configurations:

runBML =
function(grid = createGrid(...), numSteps = 100, ...)
{

for(i in 1:numSteps) {
grid = moveCars(grid, "red")
grid = moveCars(grid, "blue")

}

grid
}

Technically, we iterate over twice the number of time steps as in each iteration we move
both sets of cars. We allow the caller to specify the initial grid. We also use . . . to allow the
caller to specify inputs to createGrid(), which we call on their behalf if they don’t provide
the grid.

We can use this function to run a simple simulation using the defaults for creating the
grid:

g = createGrid()
g.out = runBML(g)

We can plot the initial and final grid side-by-side with

par(mfrow = c(1, 2), mar = rep(1, 4), pty = ’s’)
plot(g, main = "Initial Grid")
plot(g.out, main = "After 100 iterations")

Note that we changed the margins for each plot and also used a square plotting region so
that the aspect ratio of each grid is square. The display is shown in Figure 8.7.

A Self-Organizing Dynamic System with a Phase Transition 335

Initial grid After 100 iterations

Figure 8.7: Sample Grid at Start and After 100 Iterations. The left panel shows the initial
grid with low density. The right panel shows the state of the grid after 100 iterations. The
diagonal lines are already starting to emerge.

Let’s see how long this takes to run on a 100-by-100 grid, 50% filled with cars. We’ll
create this once and reuse it in all our timings so that we are comparing code on the same
grid:

set.seed(1345)
g100 = createGrid(c(100, 100), .5)

We time the code with

tm1 = system.time(runBML(g100))

We create the grid separately from the timing so as to measure only the time to move the
cars. The call to runBML() took 15.9 seconds on a Macbook Pro laptop running OS X
Mavericks, with a 2.6Ghz Intel Core i7 processor and 16GB of memory. Note that this will
get slower as the number of cars increases, i.e., the density gets larger. This is because our
loop in moveCars() will loop over more items.

Let’s find out where the computations spend most of their time. We can use profiling
for this via the Rprof() and summaryRprof() functions, e.g.,

Rprof("/tmp/BML.prof")
g.out = runBML(g)
Rprof(NULL)
head(summaryRprof("/tmp/BML.prof")$by.self, 10)

self.time self.pct total.time total.pct
"moveCars" 5.58 37.55 14.86 100.00
"[[.data.frame" 1.16 7.81 3.54 23.82
"$" 0.90 6.06 5.88 39.57
"[[" 0.88 5.92 4.42 29.74
"dim" 0.78 5.25 0.78 5.25

336 Case Studies in Data Science in R

"match" 0.76 5.11 1.10 7.40
"getNextPosition" 0.74 4.98 1.64 11.04
"[" 0.74 4.98 0.74 4.98
"<Anonymous>" 0.58 3.90 0.70 4.71
"$.data.frame" 0.56 3.77 4.98 33.51

As we expect, moveCars() is taking a large proportion of the overall time. So is accessing
elements in the data frame (with [[and $). Where did we use match() other than in the
plot.BMLGrid() function, which is not being called anywhere within the call to runBML()?
Also, why is getNextPosition() taking almost 5% of the time?

Q.12 This information doesn’t tell us how many times each function has been called. How
could we calculate how often a function was called? Consider using trace() to gather this
information. (See Chapter 6.)

We can make some simple improvements. We are calling dim() in each iteration of move-
Cars() in the call to getNextPosition(). We could move this outside of the loop as the
dimensions of the grid don’t change. This is just a good thing to do in any computations
— move invariants outside of the loop and compute them just once. Our new function
definition is

moveCars =
function(grid, color = "red")
{

cars = getCarLocations(grid)

w = which(cars$colors == color)
sz = dim(grid)
horiz = (color == "red")
for(idx in w) {

curPos = c(cars$i[idx], cars$j[idx])
nextPos = getNextPosition(curPos, sz, horiz)

check if nextPos is empty
if(grid[nextPos[1], nextPos[2]] == "") {

grid[nextPos[1], nextPos[2]] = color
grid[curPos[1], curPos[2]] = ""

}
}

grid
}

The small changes are highlighted.
We can compare the speed of our new function with our previous timing results in tm1

via

tm2 = system.time(runBML(g100))
tm1/tm2

user system elapsed
1.396 1.300 1.396

A Self-Organizing Dynamic System with a Phase Transition 337

This does speed things up by approximately 40%, which is quite significant.
We can go further than taking the call to dim() outside of the loop in moveCars(). We

can specify the actual dimensions for the grid as a parameter for moveCars() so that it
can be computed once in runBML() and passed in each call to moveCars(). We can use a
default value for this parameter in moveCars() so that callers don’t have to specify it. Is
passing the dimension to moveCars() likely to significantly reduce the overall computation
time?

Unfortunately, these changes are not likely to speed up the computations tremendously.
This is because the calls to dim() only account for 4% of the total time. To improve the
performance significantly, we should focus on the first few functions in the output of sum-
maryRProf(). Where do we subset the data frame? How can we speed up moveCars()?

The most obvious improvement we can make to our code is to remove the loops and
attempt to vectorize the computations within in moveCars(). This also involves vectorizing
getNextPosition(). We cannot remove the loop in the runBML() function as the grid that
serves as the input for iteration t is the output from the t-1th iteration. So the iterations
depend on each other.

Working with data frames can be expensive as they have a lot more structure and
constraints than a matrix does. Let’s see where [[.data.frame() is called. One way to do this
is to trace calls to that function so that we can perform an operation each time it is called.
We’ll just print out the call stack.

trace("[[.data.frame", quote(print(sys.calls())))
gs = createGrid(c(3, 4))
moveCars(gs)

On the R console, we see output for each call to [[.data.frame() of the form

[[1]]
moveCars(gs)

[[2]]
which(cars$colors == color)

[[3]]
cars$colors

[[4]]
‘$.data.frame‘(cars, colors)

[[5]]
x[[name]]

[[6]]
‘[[.data.frame‘(x, name)

[[7]]
.doTrace(print(sys.calls()), "on entry")

[[8]]
eval.parent(exprObj)

[[9]]

338 Case Studies in Data Science in R

eval(expr, p)

[[10]]
eval(expr, envir, enclos)

So [[.data.frame() is being called as a result of calls of the form cars$varName, e.g.,
cars$colors. This gives us a hint. What if we used a matrix to store the locations and
we kept the colors in a separate but parallel vector, or as row names for the 2-column matrix
of car locations? This involves modifying the code a bit. Accordingly, before we invest time
in this, let’s see if we can improve the performance by focusing on the most computationally
expensive issues.

What we would like to do is work with all the locations for, say, the red cars in vector
operations. Given their current positions, we would like to compute all of the “next posi-
tions” in a vectorized computation. Then we’d like to find out which of these are empty and
then update just those in the grid. This would remove the loop over the individual cars.
Let’s try to do this within the current structure of the code.

Suppose we had 2 vectors giving us the row and column indices for all of the red cars.
We can get these from cars:

rows = cars$i
cols = cars$j

These give us the current positions of the cars. The next positions can be computed for the
red cars with

nextRows = rows
nextCols = ifelse(cols == ncol(grid), 1L, cols + 1L)

The row index doesn’t change since the cars are moving horizontally. The ifelse() function
is a vectorized version of an if-else statement. We could also compute the nextCols with

nextCols = cols + 1L
nextCols[nextCols > ncol(grid)] = 1L

Either approach allows us to vectorize the computations for calculating nextPos and we
could still loop over the cars to determine if they could move. However, we can do this with
the 2-column matrix subsetting we saw earlier, via

w = (grid[cbind(nextRows, nextCols)] == "")

to determine which of the target cells are empty. This is similar to how we obtained the
colors of the cars in getCarLocations() (see page 328). The variable w is now a logical vector
with as many elements as there are in both nextRows and nextCols, i.e., the number of
red cars. So we can use this to assign new updated values to the matrix and also to set the
old locations to "":

grid [cbind(nextRows[w], nextCols[w])] = "red"
grid [cbind(rows[w], cols[w])] = ""

To check if these computations are correct, let’s create a simple grid and look at the
results as we step through them. We’ll create a new grid:

gs = createGrid(c(4, 7), .5)
gs

A Self-Organizing Dynamic System with a Phase Transition 339

1 2 3 4 5 6 7
4 red red red red blue
3
2 blue blue red blue blue red
1 red blue blue

We can see this in the left panel of Figure 8.8. Now we mimic the steps above for computing
the next potential location of each red car but for this particular grid g. We compute the
current rows and columns of the red cars with

pos = getCarLocations(gs)
red = pos$colors == "red"
rows = pos$i[red]
cols = pos$j[red]

Next we compute the target locations of each red car via

nextRows = rows
nextCols = ifelse(cols == ncol(gs), 1L, cols + 1L)

We check if the new columns are correct:

cbind(cols, nextCols)

cols nextCols
[1,] 1 2
[2,] 1 2
[3,] 2 3
[4,] 3 4
[5,] 4 5
[6,] 5 6
[7,] 7 1

Note that the car in column 7 would move to column 1 as it wraps around and the other
columns are simple updates.

Figure 8.8: A Grid before and after Moving the Red Cars. The left panel shows the initial
4-by-7 grid. The second panel shows the state of the grid after the red cars have moved.

So how can we determine if the “next”/target cells are empty? We can look at their
values

gs[cbind(nextRows, nextCols)]

340 Case Studies in Data Science in R

[1] "" "red" "red" "" "blue" "blue" ""

Do these correspond to the values we expect?
We compute the logical vector of empty cells with

w = gs[cbind(nextRows, nextCols)] == ""

We then look at the positions of the red cars that will actually move:

cbind(rows, cols)[w,]

rows cols
[1,] 1 1
[2,] 4 3
[3,] 2 7

These do indeed correspond to the only red cars that can move. They will move to

cbind(nextRows, nextCols)[w,]

nextRows nextCols
[1,] 1 2
[2,] 4 4
[3,] 2 1

as we expect.
Updating the grid with

gs[cbind(nextRows, nextCols)[w,]] = "red"
gs[cbind(rows, cols)[w,]] = ""

yields the new grid

1 2 3 4 5 6 7
4 red red red red blue
3
2 red blue blue red blue blue
1 red blue blue

This gives us the correct result as shown in the right panel of Figure 8.8.
So now let’s rewrite our moveCars() function to use this vectorized approach:

moveCars =
function(grid, color = "red")
{

cars = getCarLocations(grid)

w = which(cars$colors == color)
rows = cars$i[w]
cols = cars$j[w]

if(color == "red") {
nextRows = rows
nextCols = ifelse(cols == ncol(grid), 1L, cols + 1L)

A Self-Organizing Dynamic System with a Phase Transition 341

} else {
nextRows = ifelse(rows == nrow(grid), 1L, rows + 1L)
nextCols = cols

}

w = grid[cbind(nextRows, nextCols)] == ""
grid[cbind(nextRows, nextCols)[w, , drop = FALSE]] = color
grid[cbind(rows, cols)[w,, drop = FALSE]] = ""

grid
}

Note the use of drop = FALSE when subsetting the matrices created with cbind().

Q.13 Why is the use of drop = FALSE important? Under what circumstances will it yield
a different result than cbind(nextRows, nextCols)[w,]?

Again, we need to test our computations and function moveCars() thoroughly, including
degenerate cases, e.g., where no car can move, where only one car can move, or with 1-by-
1 grids. We can compare the output from this function with our previous version. These
should yield the same results for arbitrary inputs. If they do agree for several different
inputs, we can be confident our new function is correct. However, even if they agree, both
could be incorrect. We can rename the function we defined earlier before we overwrite it,
and then call them both with the same inputs. We can display the 2 grids or compare them
in the R console or use identical() or all.equal() to test for equality of results from the two
versions of the function. We’ll stop here, but you should not until you are satisfied the code
is correct.

We can now time this new vectorized version of moveCars() and compare it to our
previous timing:

tm_v = system.time(runBML(g100))
tm2/tm_v

user system elapsed
21.281 0.794 20.148

This is a significant improvement. This is 20 times faster than the our previous implementa-
tion, which in turn was 30% faster than our initial version. Instead of running for an hour,
this would be finished in 3 minutes!

Let’s continue to profile our code and see if there are other improvements we can make:

Rprof("/tmp/BML.prof")
g.out = runBML(g)
Rprof(NULL)
head(summaryRprof("/tmp/BML.prof")$by.self, 10)

self.time self.pct total.time total.pct
"ifelse" 0.22 21.57 0.26 25.49
"getCarLocations" 0.12 11.76 0.52 50.98
"Ops.factor" 0.10 9.80 0.14 13.73
"data.frame" 0.06 5.88 0.32 31.37

342 Case Studies in Data Science in R

"==" 0.06 5.88 0.20 19.61
"!=" 0.06 5.88 0.06 5.88
"unique" 0.04 3.92 0.08 7.84
"deparse" 0.04 3.92 0.04 3.92
"NextMethod" 0.04 3.92 0.04 3.92
"unique.default" 0.04 3.92 0.04 3.92

What does this tell us? Calls to ifelse() takes a lot of time, over 20% of the overall time.
Also, getCarLocations() is expensive.

We saw earlier (page 338) an alternative to using ifelse(), i.e., adding 1 to each column
value and then changing those greater than ncol(grid) to 1:

nextCols = cols + 1L
nextCols[nextCols > ncol(grid)] = 1L

So let’s try using this approach and see if this improves the overall time:

moveCars =
function(grid, color = "red")
{

cars = getCarLocations(grid)

w = which(cars$colors == color)
rows = cars$i[w]
cols = cars$j[w]

if(color == "red") {
nextRows = rows
nextCols = cols + 1L
nextCols[nextCols > ncol(grid)] = 1L

} else {
nextRows = rows + 1L
nextRows[nextRows > nrow(grid)] = 1L
nextCols = cols

}

w = grid[cbind(nextRows, nextCols)] == ""
grid[cbind(nextRows, nextCols)[w,, drop = FALSE]] = color
grid[cbind(rows, cols)[w, , drop = FALSE]] = ""

grid
}

To time this, we use

tm_v2 = system.time(runBML(g100))
tm2/tm_v2

user system elapsed
25.60 1.12 24.44

This does indeed improve the performance by a factor of approximately 24 on one machine,
and 33 on another. In other words, this runs 24 times faster than the non-vectorized code.
It is also 20% faster than our first attempt at vectorizing the code (see tm_v).

We can profile the code again and we end up with

A Self-Organizing Dynamic System with a Phase Transition 343

self.time self.pct total.time total.pct
"getCarLocations" 0.16 20.51 0.50 64.10
"data.frame" 0.12 15.38 0.30 38.46
"Ops.factor" 0.10 12.82 0.12 15.38
"match" 0.10 12.82 0.10 12.82
"moveCars" 0.06 7.69 0.78 100.00
"==" 0.06 7.69 0.18 23.08
"as.data.frame" 0.02 2.56 0.16 20.51
"deparse" 0.02 2.56 0.04 5.13
"!=" 0.02 2.56 0.02 2.56
"cbind" 0.02 2.56 0.02 2.56

Now getCarLocations() and data.frame() take most of the time. These two are related as
getCarLocations() calls data.frame(). However, the times and percentages here are for each
individual function and do not include the time they spent waiting for other functions they
call.

As we discussed earlier (page 338), we might be better off to now switch to a matrix to
store the positions of the cars and either return the colors separately or via the row names.
The matrix would have 2 columns and as many rows as there are cars. This approach was
not the highest priority earlier. However, given the changes we made to address these larger
issues, this has now become more prominent.

We can implement this matrix approach with a new version of getCarLocations() defined
as

getCarLocations =
function(g)
{

i = row(g)[g != ""]
j = col(g)[g != ""]
pos = cbind(i, j)
structure(pos, dimnames = list(g[pos], c("i", "j")))

}

This affects how moveCars() accesses the 2 columns and the colors. Accordingly, we have
to redefine it also. This is quite simple. Instead of accessing the i and j elements, we access
the first and second column. We could use names, but since we know they are the first and
second elements this is even faster as we avoid matching the names, at the expense of clarity
and ease of understanding of the code. So our updated function is

moveCars =
function(grid, color = "red")
{

cars = getCarLocations(grid)

w = which(rownames(cars) == color)
rows = cars[w, 1]
cols = cars[w, 2]

if(color == "red") {
nextRows = rows
nextCols = cols + 1L
nextCols[nextCols > ncol(grid)] = 1L

344 Case Studies in Data Science in R

} else {
nextRows = rows + 1L
nextRows[nextRows > nrow(grid)] = 1L
nextCols = cols

}

w = grid[cbind(nextRows, nextCols)] == ""
grid[cbind(nextRows, nextCols)[w, , drop = FALSE]] = color
grid[cbind(rows, cols)[w, , drop = FALSE]] = ""

grid
}

If we time this and compare it to our previous implementation, we get

tm_v3 = system.time(runBML(g100))
tm_v2/tm_v3

user system elapsed
1.35 1.33 1.35

So we see a 35% speedup by moving from a data frame to a matrix. This is just in the context
of this particular problem. There are good reasons for using data frames for data analysis.
They do incur some overhead, but avoid others. You might also explore the data.table [3]
package if you need to use a data.frame for large data, but the computations are slow,
e.g., with a lot of subsetting of rows.

We can again profile the new code and we get

self.time self.pct total.time total.pct
"moveCars" 0.12 21.43 0.56 100.00
"getCarLocations" 0.10 17.86 0.30 53.57
"==" 0.10 17.86 0.10 17.86
"!=" 0.08 14.29 0.08 14.29
"structure" 0.06 10.71 0.06 10.71
"cbind" 0.04 7.14 0.04 7.14
"col" 0.04 7.14 0.04 7.14
"which" 0.02 3.57 0.10 17.86

moveCars() takes the most time but is reasonably efficient. We can improve getCarLoca-
tions(). It computes g != "" in two places. We can evaluate this once and assign it to
a local variable. This is an invariant and we shouldn’t recompute it. So we can define
getCarLocations() as

getCarLocations =
function(g)
{

w = (g != "")
i = row(g)[w]
j = col(g)[w]
pos = cbind(i, j)
structure(pos, dimnames = list(g[pos], c("i", "j")))

}

A Self-Organizing Dynamic System with a Phase Transition 345

We already created pos once and used it twice. This is about as efficient as this function
can be written for this approach.

In moveCars(), we compute cbind(nextRows, nextCols) twice. We could again
use a local variable to store this and then reference that in both places. This amounts to
changing

w = grid[cbind(nextRows, nextCols)] == ""
grid[cbind(nextRows, nextCols)[w, , drop = FALSE]] = color
grid[cbind(rows, cols)[w, , drop = FALSE]] = ""

to

nextLocs = cbind(nextRows, nextCols)
w = grid[nextLocs] == ""
grid[nextLocs[w, , drop = FALSE]] = color
grid[cbind(rows, cols)[w, , drop = FALSE]] = ""

in our most recent definition of moveCars().
Timing these enhancements, we get

tm_v4 = system.time(runBML(g100))
tm_v3/tm_v4

user system elapsed
1.17 1.00 1.16

and a 16% improvement in the overall time.
Note that we have not had to change the runBML() function. We implemented the

functions it calls in such a way that they continue to take the same inputs, but perform
their computations differently. The caller does not need to know about these details.

So we have now gone from 41 seconds to 0.643 seconds for the initial loop-based ver-
sion and the highly optimized, vectorized version of our functions, respectively. This is an
improvement of a factor of 63. That’s quite significant.

If we profile the code yet again, we get

self.time self.pct total.time total.pct
"moveCars" 0.14 29.17 0.48 100.00
"!=" 0.08 16.67 0.08 16.67
"==" 0.08 16.67 0.08 16.67
"structure" 0.06 12.50 0.06 12.50
"which" 0.04 8.33 0.08 16.67
"cbind" 0.04 8.33 0.04 8.33
"getCarLocations" 0.02 4.17 0.18 37.50
"+" 0.02 4.17 0.02 4.17

We see that moveCars(), the primary function, is taking most of the time. The next impor-
tant functions are low-level R functions and we can’t improve them. We can avoid them,
but how? getCarLocations() takes 4% of the time and it is responsible for the only call to
the !=, which accounts for 17% of the time. So can we improve matters?

Let’s think about what moveCars() does. It starts by calling getCarLocations() each
time. This is fine if we call moveCars() just once. But in runBML(), we call moveCars()
multiple times. At the end of each call to moveCars(), we know the updated locations of
the cars. However, we compute them again each time. We could have moveCars() return
these updated locations. Of course, we also want the grid and moveCars() needs that also.
So we could have moveCars() return both the grid and the updated car locations, e.g.,

346 Case Studies in Data Science in R

nextLocs[!w,] = cbind(rows, cols)[!w,]
list(grid = grid, locations = nextLocs)

This could in fact define a BML grid. We could rethink how we represent our grid and in
our function createGrid(), we could return the matrix and also the car locations. We already
know where the cars are located and so we could return this information in different and
redundant forms. The point is that we would avoid the time in recomputing the information
in these different forms. This comes at the expense of extra memory. However, it is how I
initially approached this problem!

Q.14 Modify the functions to use this approach of maintaining the locations of the cars
across calls to moveCars(). Then determine how this changes the performance.

We have performed the timings, profiling, and performance improvements using grids with
the same dimensions and densities. We should have explored other dimensions and densities
to ensure that the changes to the code improved matters for all grids.

8.5 Implementing the BML Model in C
With our improved code, we can run a 100-by-100 grid with the (default) density 0.3 for
100 iterations in approximately 0.267 seconds. What about a 100-by-100 grid with density
0.6? This takes about 0.327 seconds. This is because there are 6000 cars as opposed to 3000
cars to move. If we increase the size of the grid to 1000-by-1000 and keep the density at
60%, the computations take about 37 seconds. This is because there are now 100 times the
number of cells and cars. So we would expect the time to be about 100 times more than the
smaller grid. These times will vary significantly across different computers, based on the
capabilities of the individual machines. However, the key is that we are comparing them to
each other on the same machine, not across machines.

While we can deduce that the computational time increases proportionally to the num-
ber of cells, we can explore this empirically. We can time the computations for different
dimensions and then plot the times versus the dimension or number of cells. We can do this
with

N = 2^(3:20)
timings =

sapply(N,
function(n) {

print(n)
g = createGrid(as.integer(rep(sqrt(n), 2)), .5)
system.time(runBML(g))

})
plot(N, timings[3,], type = "p",

xlab = "Number of grid cells",
ylab = "Elapsed Time (seconds)")

abline(lm(timings[3,] ~ N))

Note that the different values of N are used as the number of cells in the grid, not the value

A Self-Organizing Dynamic System with a Phase Transition 347

●●●●●●●●●●●●
●

●

●

●

●

●

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
10

20
30

40

Number of grid cells

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Figure 8.9: Run-Time for Vectorized Code as a Function of the Number of Grid Cells. This
shows that as the number of grid cells, and the total number of cars, doubles, the time taken
approximately doubles. We have also added the least squares fit for the elapsed times as a
function of grid size n. This plot was computed for square grids, but applies generally to the
number of cells in a grid.

of each dimension. This is why we take the square root of the parameter n in our function.
The results are shown in Figure 8.9.

Q.15 When timing the computations, also vary the density of the cars and draw a 3-
dimensional plot showing the relationship between number of cells, density, and time.

We want to explore the behavior for different densities of the cars and also for various grid
dimensions. For each density-dimension configuration, we need to generate many different
random starting grids and run the BML process for many time steps until the process is
in a stable equilibrium. This involves a lot of computations. We can wait 30 seconds for
one call to runBML() for 100 iterations on a small grid. However, if we want to run for
32,000 iterations, say, this will take approximately 2 2

3 hours. This is just for one instance
of a grid with a specific dimension and density. We need to repeat this many times to
average across the random initial configurations of the grids. With just 10 replications, the
computations will take one day. However, we want more replications and also to repeat the
entire procedure for many different dimensions and densities. This will take far too long
and we need to make the computations a lot faster if we are to explore the different aspects
of the process across the parameter space of inputs.

One approach to reducing the computation time is to run separate grids independently of
each other on multiple processors. We can do this in a reasonably straightforward manner in

348 Case Studies in Data Science in R

R with the parallel [7] package and several others. We leave this as an exercise described
at the end of the chapter. Instead, we will focus on making the code significantly faster using
compiled C code. This can also be used in the parallel approach and so we will achieve even
greater speed improvements.

We have have already made the R code a lot faster by carefully profiling the code and
using vectorized operations. If we want to make this significantly faster than this, we might
try implementing the computations using a compiled language, specifically C or C++.
We’ll focus on implementing the important and bottleneck function moveCars() in C, but
we’ll also implement runBML() as a C routine since it is quite simple. We’ll also compute
additional information for each time cycle, namely how many cars of each type actually
moved. This will allow us to explore different aspects of the BML process.

One benefit of implementing moveCars() in C is that we can write the code in the
“obvious” manner that we started with, i.e., a loop to move each car. This means we can
deal with individual cars rather than vectorized code that moved all the cars in one step.
We still have to decide, however, whether to move the cars sequentially or simultaneously.
Since our runBML() function uses the simultaneous approach and the original description
and the existing research of the BML process uses this definition, we will also implement
this. It is marginally more involved and very slightly slower. These are not important as we
want to get the same and correct results.

In the next section, we will discuss how to implement moving the cars using C code.
We’ll also outline how to call C code from R. This involves transferring inputs from R to a
C routine (function), and accessing the results returned from C. This is intentionally very
high-level. We will not cover these in great depth, and we certainly are not attempting to
teach programming in C. However, it provides concrete examples of the basic steps that
one can often mimic relatively easily. There are many good references on different aspects
of these topics, including books, on-line documents, and one of the the R manuals [6]. We’ll
discuss the basic mechanisms provided by R. There are others, however, such as Rcpp [5]
and other foreign function interface packages, e.g., rdyncall [1] and Rffi [9].

8.5.1 The Algorithm in C
Before we discuss the details of calling C from R and “marshalling” data between the two
languages or writing C code, let’s focus on how to implement the simultaneous approach.
There are two issues — one is how we find the cars we want to move, and the second is the
computation to ensure they move simultaneously, not sequentially. These are orthogonal to
each other, i.e., how we solve one doesn’t impact how we solve the other. We’ll start with
the first issue and also consider the slow way of doing this.

We start with just our grid, and suppose we want to move the red cars. We can loop
over all of the cells in the grid, visiting them one at a time. If that cell contains a red car,
we determine whether that car can move to the target cell and update the grid if it can. If
the cell we visit is empty or contains a blue car, we continue on to visit the next cell. This
approach involves looping over all cells in the grid. If the grid is large and the density low,
most of the cells we visit will be empty (or contain a blue car). We waste a lot of time.

A potentially better approach than looping over all the cells in the grid is to maintain
the locations of the red cars in a 2-column matrix, as we discussed earlier. To maintain the
current state of the BML grid, we will use a grid and two 2-column matrices containing the
locations of the red and blue cars separately. Each row in these location matrices contains
the row and column index for the corresponding car. When moving the red cars, we loop
over each row in the corresponding location matrix, and retrieve the location of that car.
Then we determine whether it can move and update the state of the grid if it can. This
involves not only updating the 2 cells in the grid matrix (where the car currently is and its

A Self-Organizing Dynamic System with a Phase Transition 349

new position), but also updating the location of the car in the current row of the red car
locations matrix. At the next iteration, we will be able to use this new car location without
having to find that car.

How do we deal with moving the cars simultaneously rather than in order? Essentially
this relates only to 2 red cars at the end points of a given row, or 2 blue cars at the edges
of a given column. If we were to move 1 red car in the first column and later attempt to
move a red car in the final column of the grid in the same row, we would need to identify
that this second car could not move. Its target cell is occupied when it attempts to move at
the same time as the first car. If we moved the cars sequentially rather than simultaneously,
the target cell would be vacant. This is a not a concern for cars in adjacent cells not at the
edges since we process these in the order they appear in the matrix, i.e., column-wise, and
row-wise within each column. This means that, for example, a red car in column 2 cannot
move to column 3 if there is a car there and we will not move that car in the third column
before the car in the second column.

How do we guard against moving a red car on the right edge of the grid into a cell that
has just become vacant in the same time step? One approach is to keep a vector for the
original state of the first column. Then we check if the corresponding element is empty in
this column when moving to the car on the right. In other words, we don’t check the cell in
the current state of the grid as that might have been vacated in the same time step; instead,
we check the original state of that cell.

A second approach is to use 2 grids in our computations. We have an original grid and
our new grid that we update. The original grid remains unchanged as we move the cars
within an iteration. When determining if we can move a car, we check the original grid.
When we do move a car, we update the new grid (and the row in the matrix of car locations).
When we are finished moving all the cars within this iteration, the new grid becomes our
current grid and we use it as the input to the next step.

To make the C code marginally simpler, we will use the second approach, i.e., 2 grids.
We’ll also create this second grid in R and pass it to the C code. We want to avoid managing
(allocating and freeing) memory in C code when we can. That is why we do this in R.
Hopefully the basic algorithm for moving either collection of cars is now reasonably clear.
We maintain 2 grids and a location matrix for that color’s collection of cars. We loop over
each car and get its location (i, j). We then determine the location of where that would
move, say (ni, nj). We then consult the original grid and check the value originalGrid¬
[ni, nj] == 0. If this is true, we move the car by updating the new grid and the car
location in its matrix. After potentially moving all of the cars in this location matrix, we
set originalGrid = newGrid.

It is easier for most people to use loops, rather than vectorized operations. The cost
of the simplicity of using loops in C rather than matrix subsetting in R is that we have
to learn the initially complex interface between R and C code. R provides two interfaces
to invoke compiled routines — .C() and .Call(). The latter is more flexible and powerful,
but more involved and specialized to R. In general, you should use .Call() whenever the C
code needs to allocate results as R objects and also when the code needs richer access to
R objects than simple vectors and matrices. When we are dealing with vectors or matrices
of data and inserting values into existing vectors or matrices to perform our computations,
we can use the .C() interface. This is useful when exactly the same code can be used in
R, Python, MATLAB®, etc. Typically, we have one high-level worker routine in C that
manipulates these basic types and performs the actual computations of interest, and an
additional “proxy” C routine that we call from R. This proxy routine passes its arguments
to the worker routine in the appropriate form. The worker routine can be shared across
different environments such as R, Python, stand-alone applications, etc. The proxy routine
can be written to use either the .Call() or the .C() interface.

350 Case Studies in Data Science in R

We’ll use the .C() interface to implement our BML routines. This allows us to pass
data values from R as pointers to primitive C types (rather than as R objects, which the
.Call() interface enables and expects). We can pass an R integer vector to C as a pointer
to a collection of int elements, and similarly a numeric vector as a pointer to a collection
of double elements. A matrix is passed as a pointer to its elements, which are stored as a
vector, arranged in column order. In each of these cases, we also have to pass the number of
elements in the vector as a separate argument. This is typically passed as an integer vector
of length 1, i.e., a pointer to a sequence of integers declared as int * in C. Similarly, we
can pass the dimensions of a matrix as an integer vector with 2 elements. In this way, the
length and dimension are treated as regular data vectors, which simplifies the interface.

When reading this section, it will clearly help if you are familiar with the C programming
language. However, hopefully you can understand the big picture and the different parts
and steps by which we develop, compile and use the C code from R. The syntaxes of the
R and C languages and their basic programming models are quite similar. Don’t worry
about the details. You can learn about those later. Knowing how to use C code from R can
greatly simplify speeding up bottlenecks in your code. Hopefully, you can use other people’s
existing C code. In that case, you just need to know enough to be able to invoke that C
code from R.

Our strategy is to write code in C and an R function to invoke this code. We will
implement two C routines. The first is a high-level routine named R_BML that we call
directly from R with our grid, the number of iterations and additional information we can
implement in R for simplicity. This will actually perform the iterations by moving the red
and then blue cars as many times as desired. The second C routine, named moveCars, will
move the actual cars and update the grid. The R function we write will take our initial
grid and the number of iterations and call the R_BML routine. We will create the auxiliary
information, i.e., the matrices containing the locations of the red and the blue cars, and pass
all of these to R_BML. R_BML is a little more than the proxy function we mentioned above
since it actually performs the loop for the number of iterations and is more than a direct
call to moveCars. The moveCars routine is quite similar in nature to our moveCars()
function. It attempts to move all of the cars of a particular color and to update the grid.

For simplicity in the C code and for speed, we’ll represent our grid as matrix with integer
rather than string values ("red" and "blue"). A value of 0 corresponds to empty, 1 to
red, and 2 to blue. We’ll also pass the locations of the blue cars and the red cars separately
as matrices, each with 2 columns and a row for each of the cars of that color. We want
to know the number of cars that are moved at each time step and we pass a 2-column
matrix for this via the velocity parameter. We also need to specify how many iterations to
perform, where each iteration moves the red cars and then the blue cars, i.e., 2 time steps
per iteration. Accordingly, we can declare our C routine to move the cars in 1 time step as

C void
R_BML(int *grid, int *newGrid, int *dims,

int *red, int *numRed, int *blue, int *numBlue,
int *velocity, int *numIters)

We haven’t mentioned the parameters dims, numRed, numBlue, or newGrid. Since the
.C() interface passes a matrix such as our grid as a pointer to the contiguous collection of
its data elements (int *), we no longer have access to its dimensions. We would if we used
the .Call() interface, but then our code would be slightly more complicated. When using
the .C() interface, we will pass the length or dimensions of vectors and matrices as separate
arguments in the form of integer vectors. Therefore the dims parameter has type int * in C
and we use this to pass the value of dim(grid). Similarly, we pass the number of red cars
and the number of blue cars via the parameters numRed and numBlue. We compute these

A Self-Organizing Dynamic System with a Phase Transition 351

with nrow(red) and nrow(blue) from the car location matrices. While each of these
dimensions is a single number, they are passed generally as integer vectors and so have type
int * in C.

The final parameter to explain in the signature of our routine is newGrid. This is the
second grid that we will use to update the current grid as we move the cars. We will allocate
this in R as an empty grid (i.e. all 0 values) with the same dimension as our initial grid.

Because we create this second grid in R and also pass the 2-column matrix for storing
the velocities of the time steps, our C code will not have to allocate any memory. This
greatly simplifies matters as this is a source of common problems for C programmers. We
allocate the memory in R, pass it to our routine, and when control is returned back to R,
we collect the results and R releases the memory as it does for any R object no longer in
use.

Rather than launching each time step from R within a loop as we did for runBML(), we’ll
implement this loop in C for additional speed. numSteps specifies the number of iterations,
or time steps, we perform. The parameter verbose is a logical vector of length 1 (i.e. a
scalar) and so is passed to C as an int *, like an integer vector. This controls whether we
emit a message to the console for every 100-th time step. This can be useful for lengthy
runs to show that the computations are proceeding and not caught in an infinite loop or
stopped in any other way.

The final parameter — ans — is used to return the number of cars that moved for each
type in each time interval/cycle. ans is an integer matrix with 2 columns. With the .C()
interface, the caller in R pre-allocates the R objects to store the results and passes these
to the C routine. That routine can then insert values into this space and the .C() function
takes care of passing the values back to the caller as regular R objects. The R_BML routine
inserts the number of cars moved at each time into this memory.

Similarly to updating ans, the routine bml_move that actually moves the individual
cars updates the state of the grid by modifying the contents of the grid parameter directly.
This is returned to R containing the new state. This is also true of the locations of the red
and blue cars in the parameters redLocations and blueLocations. The .C() function makes
a copy of its arguments and so we are not modifying the objects in our R session, but copies
of them. The ability to change the state of memory passed by the caller has both advantages
and disadvantages. It reduces the amount of memory needed for computations and provides
a different computational model than R. However, it also makes for very complex bugs and
difficult debugging.

We now know how we will define the R_BML C routine that we will call from R. Often,
this is just a simple routine that passes its argument to a another routine that is not directly
accessible to R. This is because routines that we invoke via the .C() interface have a very
specific signature. They return nothing explicitly (i.e. have a return type of void) and can
only accept int * and double * types (along with a few other limited types). So let’s write
the body of this routine R invokes:

void
R_BML(int *grid, int *newGrid, int *dims,

int *red, int *numRed, int *blue, int *numBlue,
int *velocity, int *numIters)

{
int dir = RED, i;

for(i = 0; i < *numIters; i++) {
// move the red cars

dir = RED;

352 Case Studies in Data Science in R

moveCars(grid, newGrid, dims, &dir, numRed, red,
velocity + i);

// next the blue, but copy the contents of newGrid
// to grid and reset newGrid.

memcpy(grid, newGrid, sizeof(int) * dims[0] * dims[1]);

dir = BLUE;
moveCars(grid, newGrid, dims, &dir, numBlue, blue,

velocity + i + numIters[0]);
if(velocity[i] == 0 && velocity[i + numIters[0]] == 0)

break;

// again copy the newGrid back to
// grid for the next iteration.

memcpy(grid, newGrid, sizeof(int) * dims[0] * dims[1]);
}

}

This is conceptually quite simple. We create a loop that iterates over 0, 1, 2, . . . , nu-
mIters−1. Hence there are numIters iterations in total. We have to dereference the value in
numIters since we are passed a pointer to this scalar (an R integer vector with 1 element).
We do this with *numIters or equivalently numSteps[0]. Remember that C uses 0-based
indexing, i.e., the first element is at position 0, while R uses 1-based indexing. This can be
the cause of many hard-to-see bugs when writing C code to be called from R as we switch
between the two programming models.

The real work in each iteration is to call moveCars to move the red cars and then again
to move the blue cars. Before we move the blue cars, we copy the updated contents of the
grid in newGrid back to grid. This means grid will start each call to moveCars containing
the current state of the grid. We use memcpy to copy the elements from newGrid to grid.
This is different from R where we use the simple assignment grid = newGrid. This is
not how C works. We have to explicitly copy each element in newGrid to the corresponding
element in grid.

Q.16 We can avoid these calls to memcpy, both simplifying the code and also making it
slightly faster by not copying the contents of newGrid to grid. Make the appropriate
changes and verify that the results are the same and correct.

This is the entire routine, analogous to runBML() in R. It merely loops over the time steps.
The real work is done in the calls to moveCars.

The idea of moveCars is that we give it the grid of current positions of the car and
the locations of the cars we want to move. We also specify which direction we are moving,
corresponding to red or blue. The routine loops over each car we want to move, computes
its target next position, as we did in R, and then checks to see if that cell is currently vacant
in the current grid. If it is, we update the newGrid and also the position of the current car
in the locations matrix; if not, we move on to the next car. This is quite straightforward
and very similar to our initial implementation in R in which we used loops to iterate over
each car. However, before we start moving the cars, we have to initialize our target grid to
have the contents of the current grid. So our routine is defined as

A Self-Organizing Dynamic System with a Phase Transition 353

void
moveCars(int *grid, int *newGrid, const int *dims, int *dir,

int *numCars, int *carLocations, int *ans)
{

int k, i, j, ni, nj;

int colorToMove = *dir;
int numMoved = 0;

/* Copy the old grid to the new grid and then we update
the positions on the new grid only for the cars that
can move, relative to the old grid. */

memcpy(newGrid, grid, sizeof(int) * dims[0] * dims[1]);

for(k = 0; k < numCars[0]; k++) {
i = carLocations[k] - 1;
j = carLocations[k + numCars[0]] - 1;

if(colorToMove == RED) {
ni = i;
nj = j + 1;
if(nj == dims[1])

nj = 0;
} else {

nj = j;
ni = i + 1;
if(ni == dims[0])

ni = 0;
}

if(grid[ni + nj * dims[0]] == 0) {
// moving the car

numMoved++;
newGrid[ni + nj * dims[0]] = colorToMove;
newGrid[i + j * dims[0]] = 0;

if(colorToMove == RED)
// update column

carLocations[k + numCars[0]] = nj + 1;
else

carLocations[k] = ni + 1; // update row
}

} // end k loop

ans[0] = numMoved;
}

Within our loop over the cars being moved, we fetch the row and column of the current
car. Next, we compute the target row and column based on whether the car is red or blue.
Then we use these new coordinates to query if that cell in the current grid is vacant. If it
is, we update the corresponding cell in newGrid and mark the current location as empty

354 Case Studies in Data Science in R

(0). We also update the corresponding column in the carLocations to reflect the new
location. Unlike R, the changes to newGrid and carLocations will be seen in the caller
and so persist to the next call to moveCars. This is a very different computational model
than in R. There are some points to note that may not be entirely obvious for those less
familiar with C. carLocations is a pointer to a sequence of int values. This corresponds to a
2-column integer matrix in R. Matrices are stored in column order, as shown in Figure 8.10.
However, to get the current location of a car, we want the 2 elements in the i-th row. We
use locations[i] for the i-th element in the first column, but locations[i + *num]
to get the i-th element in the second element. This is because we have to jump to the i-th
element of the second column. Since the elements of the first column are stored first, we
have to skip all the elements in the first column and start from the beginning of the second
column. These start at offset num[0], which is the number of rows in the matrix. This is a
common idiom when accessing elements in a matrix and one we use to access elements in
the grid. Note that when we compute the current position of the i-th car (r and c), we also
subtract 1 from the row and column positions. The reason for this is that the locations in
R use 1-based indexing. However, in C we use 0-based indexing and so have to subtract 1.
We use these offsets to index the grid array element to check the current state of the cell.

We compute the row and column of the next position of the car and store these in ni
and nj. We do this differently for red and blue cars to reflect how they move. So in this
expression, we check to see if adding 1 to the column would bring it beyond the right edge.
If it would, we wrap the car to the other side of the grid. Otherwise, we just add 1 (speed)
to the column value. We use a general increment value here, speed, so that the cars can
move more than 1 cell in a cycle. However, this is always 1 in our simulations.

We have used the data type Direction in the signature to indicate whether we are moving
red or blue cars, and we also use the value RED in our code. These are not defined by the C
language. Instead, we defined them ourselves as an enumerated constant type, i.e. an enum.
We do this with

C typedef enum {RED = 1, BLUE = 2} Direction;

This is much better than using the ad hoc convention 1 and 2 to indicate RED and BLUE,
respectively. These are hard to understand as plain numbers and also easy to confuse.
Symbolic names are much more clear and robust. We can also define RED and BLUE as R
variables for the same reasons. However, it is imperative that we ensure that they have the
same values as in the C code if we are to pass these values from R to C.

1 r + 1 2r + 1 . . . r(c-1) + 1
2 r + 2 2r + 2 . . . r(c-1) + 2
3 r + 3 2r + 3 . . . r(c-1) + 3
.
r 2r 3r . . . rc

1 2 3 . . . r r+1 r+2 r+3 . . . 2r 2r+1 2r+2 . . . 3r . . . r(c-1)+1 r(c-1)+2 . . . rc

Figure 8.10: Matrix Layout as a Vector. A matrix in R is stored as a vector with elements
ordered by column. The order of the elements from the matrix is shown in the vector. To
compute the position in the vector of the (i, j) element in the matrix m, we use i+ (j− 1)×
nrow(m). In the first column, we just use the row offset i. In the second column, we have to
add nrow(m) to skip over the elements in the first column. We use the same computation
in C but subtract 1 since it is 0-based. Therefore, the index in C for the (i, j) element is
i− 1 + (j − 1)× nrow(m).

A Self-Organizing Dynamic System with a Phase Transition 355

We have arranged the code in two separate files — RBML.c and BML.c. The former is
for the routine that can be called directly from R; the latter is generic C code that can be
reused outside of R. This is a good way to structure the code as we may want to use the
code in BML.c in another setting such as from Python or MATLAB®. We might also want
to put the loop over the time steps in BML.c for maximal reuse. However, we have put it
in our R-callable routine for simplicity.

We define the enumerated type Direction and declare our routine bml_move in a header
file, BML.h. This makes these available to the two separate C source files and ensures they
both have a consistent view of the same entities. This is important so that the compiler
can identify if we define bml_move in one way and call it in another or if we have different
definitions for RED or BLUE.

8.5.2 Compiling, Loading, and Calling the C Code
Unlike with R code, we have to process the C code before we can use it. We have to compile
the code in each of the two source files RBML_simultaneous.c and BML_simultaneous.c,
and then we have to “link” them together to create a dynamically shared object (DSO), also
called a DLL (Dynamically Loadable Library). If the code is in an R package (specifically,
in the src/ directory), all this is done for us via the package installation mechanism. So
creating a package is typically a good idea. However, it is also good to see how we can
compile, link, and load the C code directly and understand what the package installation
mechanism does for us. This helps us when we encounter problems.

We can compile and link the code in the C source files with the shell command

ShellR CMD SHLIB -o BML.so BML_simultaneous.c RBML_simultaneous.c

Here we call the SHLIB script provided by R and specify the two source files to compile and
link. We tell SHLIB to write the resulting DSO/DLL to the file named BML.so. If there are
any errors in compiling or linking the code, the DSO will not be created and error messages
will be displayed. We would have to modify the C code to remove these errors and then
re-run the shell SHLIB command.

Once the DSO is created, we can load it into an R session with

dyn.load("BML.so")

(If the code were in a package, we would load the code via the directive useDynLib(¬
packageName) in the package’s NAMESPACE file.) If all the symbols in the code are
defined, this will succeed. If not, we have to go back to the compilation and linking step
and try to determine what is wrong. In our case, we have quite simple C code that does
not refer to routines or data types in other libraries. As a result, this is simpler as we don’t
have to find other headers files or libraries at compile, link, or load time.

We can verify that our C routine R_BML_simultaneous is loaded and available with

stopifnot(is.loaded("R_BML_simultaneous"))

We are now ready to invoke our C routine. We’ll create a grid and then convert it to an
integer representation by mapping the color names to integers:

g = createGrid(c(1000, 1000), .5)
gi = matrix(match(g, c("red", "blue"), 0L), nrow(g), ncol(g))

Note that we mapped "red" to 1, "blue" to 2, and "" to 0 (rather than NA) to be con-
sistent with the C code. It is vital to get this correct, i.e., to synchronize the representation
of the values in the two languages — R and C.

We can get the locations of the red and blue cars with

356 Case Studies in Data Science in R

pos = getCarLocations(g)
red = pos[rownames(pos) == "red",]
blue = pos[rownames(pos) == "blue",]

Recall that our most recent version of the getCarLocations() function now returns a 2-
column integer matrix so we have what we need.

We can invoke our C routine with the unwieldy

val = .C("R_BML_simultaneous",
grid = gi, matrix(0, nrow(gi), ncol(gi)), dim(gi),
red, nrow(red), blue, nrow(blue),
1000L, FALSE, velocity = integer(2*1000))

g1 = val$grid
class(g1) = c("BMLGrid", "matrix")

The .C() call passes the R objects to the C routine R_BML. Since the C code could have
changed any of its inputs, the .C() function returns (copies of) all of its arguments. So val
is a list with 9 elements corresponding to the 9 arguments to R_BML. We have named two
of the arguments, i.e., grid and velocity. This allows us to easily retrieve the final grid and
also the velocity matrix. Since gi was an ordinary matrix when we passed it .C(), it is still
a matrix. We need to set its class so that it is a BMLGrid.

Unfortunately, when we call plot() for g1 to see the final state of the grid, our
plot.BMLGrid() tries to match the values of the cells to color names in order to map the
matrix colors to integer values. Of course, g1 is already in this form. So we could enhance
plot.BMLGrid() to recognize this. The simple fix is to define plot.BMLGrid() as

plot.BMLGrid =
function(x, xlab = "", ylab = "", ...)
{

if(typeof(x) == "character")
z = matrix(match(x, c("", "red", "blue")), nrow(x), ncol(x))

else
z = x

image(t(z), col = c("white", "red", "blue"),
axes = FALSE, xlab = xlab, ylab = ylab, ...)

box()
}

Alternatively, we could define a new specialized class to indicate that the matrix is in
named-color form or integer-form and then define methods for these.

Q.17 Implement a class and methods for the integer version of the BMLGrid matrix. Try to
inherit methods as much as possible and avoid modifying existing code where possible.
You can consider different class hierarchies or ancestry orders.

We certainly don’t want to call the C routine directly via the .C() interface. We have to
ensure that the inputs have the correct type, e.g., integers rather than numeric vectors.
If they are wrong, we will get the wrong answer or crash the R process. The latter is
greatly preferred as it identifies a problem; we may not recognize incorrect answers. For
most C routines we call from R, we create a wrapper function that ensures the inputs are
correct, allocates the space for the results, and so on. We can define our wrapper function
by combining the computations we did above into a single function:

A Self-Organizing Dynamic System with a Phase Transition 357

crunBML =
function(grid, numIter = 100L, check = FALSE)
{

k = class(grid)
gi = gridToIntegerGrid(grid)

velocity = matrix(0L, as.integer(numIter), 2L,
dimnames = list(NULL, c("red", "blue")))

pos = getCarLocations(gi)
red = pos[rownames(pos) == "1",]
blue = pos[rownames(pos) == "2",]
ans = .C("R_BML_simultaneous", gi, grid = gi, dim(gi),

red = red, nrow(red),
blue = blue, nrow(blue),
as.integer(numIter), FALSE,
velocity = velocity)

ans = ans[c("grid", "velocity")]
class(ans$grid) = k
ans

}

This function returns a list with 2 elements, one the updated grid and the other the
2-column velocity matrix.

Note that pass gi as two separate values to the C routine. The .C() function ensures
that these two instances are first duplicated/copied and passed as separate instances of
the integer matrix. By passing gi for the new grid, it is appropriately initialized with the
current contents of the grid. This is important since the C code does not populate the cells
in the new grid if a car cannot move in the old grid.

The gridToIntegerGrid() function that we call in crunBML() uses match() to map the
color names "", "red", and "blue" to 0, 1, and 2, as we did manually above. It makes
sense to define this as a separate function, again so we can test it and reuse it independently
of crunBML(). Indeed, we can call it from plot.BMLGrid().

Before we consider how fast our crunBML() function and the associated C code run, we
must verify that they give the correct results. Since we are implementing what we expect is
the same algorithm as implemented in runBML(), we should be able to pass the same grid
to crunBML() and runBML() with the same number of iterations and get exactly the same
result. We need to do this for various different initial grids and explore corner cases, e.g.,
different number of blue and red cars, non-square grids, degenerate inputs (dimensions or
number of cars). Since we need to compare many pairs of resulting grids, we should develop
a function to compare 2 grids and verify that they are identical, not just similar.

Q.18 Write the function to compare 2 grids and verify they are the same. Raise an error
if they are not. The error should identify in what way the grids are not the same. You
can do this with the error message and/or by specifying a class for the error. (See the
help for condition in R.)

Q.19 Use the function to compare the outputs from crunBML() and runBML() for a variety
of different grids to verify they give the same results for the same inputs.

358 Case Studies in Data Science in R

Now, let’s call crunBML() and see how fast it is. We’ll use the same sized grid as we did
when timing our vectorized versions, i.e., a 100-by-100 grid with 50% density:

tm_c = system.time(o <- crunBML(g100))
tm_v4/tm_c

user system elapsed
38.1 Inf 40.5

So we get a speedup of a factor 40 by using compiled code. The simple-minded compiled
code significantly outperforms the carefully optimized vectorized version written in R. This
doesn’t mean R is a bad language. It merely means that its dynamic nature, which makes
it easy to express computations, often leads to slower code than with fully type-specified,
compiled languages. This is true of most interpreted languages such as MATLAB® and
Python, i.e., they are slower than compiled languages such as C. It is often useful to rewrite
small, relevant parts of an R computation in C code. We use profiling to identify the
bottlenecks and only rewrite the time-critical parts, and only if run-time speed is a serious
issue.

We should note that we recommend using the .Call() interface rather than .C() function.
It is much more flexible. It requires learning the C-level API for R objects, but this is quite
simple for the common tasks. The Rcpp package provides another approach that makes
working with R objects in C++ code more convenient.

Let’s compare the timings of all of our approaches and implementations at this point.
We can combine them into a matrix with

timings = rbind(loop1 = tm1, loop2 = tm2,
vector1 = tm_v, vector2 = tm_v2,
vector3 = tm_v3, vector4 = tm_v4,
C = tm_c)[,1:3]

user.self sys.self elapsed
tm1 16.337 1.218 17.557
tm2 12.364 0.027 12.391
tm_v 0.581 0.034 0.615
tm_v2 0.483 0.024 0.507
tm_v3 0.358 0.018 0.376
tm_v4 0.305 0.018 0.324
tm_c 0.008 0.000 0.008

It is far more effective to display these graphically. We can visualize these in many different
ways. One possible approach is a dotplot of the times, e.g., dotchart(timings[,3]).
However, it might be more meaningful to display the ratio of these times as a dotplot to
show the relative times. We use the fastest implementation as the baseline to show how
many times slower the others are relative to this. We do this with

dotchart(timings[,3]/timings[nrow(timings),3])

and the results are shown in the left panel of Figure 8.11. The plot illustrates the very large
speedup by vectorizing over using loops. The different vectorization improvements and the
transition to C don’t seem very remarkable. However, this is due to the very large scale of
the plot. If we look at just these (in the right panel of Figure 8.11), we can clearly see how
performant the C code is.

A Self-Organizing Dynamic System with a Phase Transition 359

loop1
loop2
vector1
vector2
vector3
vector4
C

●

●

●

●

●

●

●

0 500 1000 2000

Speedup factor

A
pp

ro
ac

h

vector1
vector2
vector3
vector4
C

●

●

●

●

●

0 20 40 60 80

Speedup factor

(a) (b)

Figure 8.11: Comparison of Times for Different Computational Approaches. This shows
the relative speed of the different approaches, ranging from the naïve loop version, to the
fastest vectorized approach, to using the C code. There is a very significant speedup from
the loop-version of the code. However, this plot hides the significant speedup between the
different vectorized approaches and especially the C code. Panel (b) shows these relative
speedups when we omit the loop approaches and we can compare the remaining approaches
on a more appropriate scale.

8.6 Running the Simulations
Now that we have developed our functions to run the simulations rapidly, we can explore
the BML model. We’ll start by looking at how the model stabilizes for different densities
of cars. For a given density and grid dimension, we create a grid and let it evolve for 2T
time steps. Often we will plot the result, comparing the initial grid to its final state. We
can encapsulate these steps in a function runGrid() so that we can then focus on varying
the density and dimensions:

runGrid =
function(dims, numCars, numIter = 1000, plot = TRUE)
{

grid = createGrid(dims, numCars)
g.out = crunBML(grid, numIter)
if(plot) {

plot(grid)
plot(g.out$grid)

}

invisible(list(initial = grid,
final = g.out$grid,
velocity = g.out$velocity))

}

We can call this function something like

par(mfrow = c(1, 3))
z = runGrid(c(1000, 1000), .35, plot = TRUE)

360 Case Studies in Data Science in R

plot(rowSums(z$velocity), type = "l",
main = "Number of cars moving in each pair of time steps")

to show the start and end grid states and also the number of red and blue cars that moved
in each iteration.

set.seed(13123)

We now vary the density, while keeping the grid a 1024 square:

runs = lapply(c(.25, .33, .38, .38, .55, .65),
function(density)

runGrid(1024, density, 30000, FALSE))

The final grids from each of these are shown in Figure 8.12. These illustrate the different
equilibrium configurations of the system. We leave it to the reader to explore the behavior
for densities between 0.25 and 0.33.

8.6.1 Exploring Car Velocity
Since we have added the ability to collect information about the number of cars that move
in each time step, i.e., the velocity, we can explore how this changes across iterations within
a run of the BML process. Let’s create a small, low-density grid, e.g., a 20-by-20 grid with
10% of the nodes occupied. We create it and run it for 300 iterations with

run = runGrid(20, .1)

We can access the velocity matrix and compute the average velocity for each direction across
all time steps:

colMeans(run$velocity)

[1] 19.86 19.84

We might want to normalize these values by the number of cars in each of these directions,
which we can do with

tmp = colMeans(run$velocity)
tmp/table(run$final)[c("1", "2")]

red blue
0.993 0.992

3 Since the density of cars on the grid is low, almost all of the cars can move at all times.
Note how using names makes things simpler and more reliable.

Average velocity may not tell the entire story. We might want to see if it is relatively
stationary across all iterations or if it changes as the system evolves. We’ll combine the
2 directions (red and blue) and again look at percentages but this time displaying the
proportion of cars that move in each iteration:

3Note that we used "1" and "2" to correspond to red and blue, respectively, in the output of table().
This is because the final object has been mapped to 0, 1, 2 rather than "", "1" and "2" in a call to
gridToIntegerGrid().

A Self-Organizing Dynamic System with a Phase Transition 361

ρ = .25 ρ = .33

ρ = .38 ρ = .38

ρ = .55 ρ = .65

Figure 8.12: Sample 1024-by-1024 Grids with Different Densities. Each grid has the same
dimension and is run for 128,000 time steps. In the top-left, we have a free-flowing grid with
a density of 0.25 in which the cars arrange themselves into diagonal lines. At a slightly higher
density of 0.33 (top-right), we see one group of cars that are partially deadlocked but which
continue to move. We also see bands of red and blue cars moving, but not parallel to each
other. Some cars will move freely, at least until they meet the partially deadlocked group. The
cars in that group move more slowly until they escape. This gives rise to different velocities.
At a slightly higher density, we see additional groups but the same pattern of moving cars.
For a different configuration at the same density (0.38) we see a very different structure
with mostly deadlocked cars in two parallel groups running diagonally. Note the alternating
colors of the diagonal bands. For higher densities, we see more localized groupings but the
same deadlock.

362 Case Studies in Data Science in R

plot(rowSums(run$velocity)/sum(run$final != 0), type = "l",
xlab = "iteration", ylab = "% moving",
main = "Normalized velocity for low-density grid")

Clearly, the process takes some time to become stable but then reaches almost 100% of the
cars moving at each cycle.

We would like to understand how velocity varies as we change the density of cars and
the dimension of the grid. Figure 8.13 shows the average proportion of cars moving across
all iterations for 4 different grid sizes and 20 different densities.

Q.20 Look at the velocity time series for a larger grid with the same density.

Q.21 Is there a difference in velocity for the vertical and horizontal directions? Does the
fact that the horizontal moves first make a difference?

Q.22 Recreate Figure 8.13.

Q.23 Are there better ways to display the data from Figure 8.13?

Q.24 How long did it take to compute these results? How can we reduce this time?

Q.25 How do the dimensions of the grid affect velocity? What if the 2 dimensions are quite
different? What if one is a multiple of the other? What if the 2 dimensions are relatively
prime?

8.7 Experimental Compilation
Writing C code to speed up computations can be difficult, frustrating, error-prone, and
distracting. It is important when we need to improve the run-time. However, it would be
better if we could write code in R and have it transformed into faster-running code. The
cmpFun() function in the compiler package is one approach. The experimental RLLVM-
Compile package is another. RLLVMCompile can can be used to compile versions of the
initial code that we developed using R loops. The package programmatically translates
that R code into machine instructions similar to the C code. Importantly, we don’t have to
write this low-level code. Instead, an extensive collection of R functions do this for us by
analyzing and mapping our existing R code and creating the native, fast code. Currently,
this compilation approach results in code that can run BML simulations about 50% slower
than the C implementation. It outperforms the fastest vectorized version (see tm_v4) by a
factor of 27, at least on some machines.

The LLVM compilation approach is not yet very robust, or broad in its scope. It is not
designed to compile all of the R language and is not likely to make all R code significantly
faster. It is currently well suited to scalar operations and loops. It does mean we can
potentially write non-vectorized R code and not pay an enormous penalty. It also means
we don’t necessarily have to move to C code to overcome significant bottlenecks. However,
vectorization and using C code will always be important skills to master in R. Vectorization
allows us to write efficient, but more importantly, highly succinct and expressive code to do
things we do often in data analysis.

Q.26 Create an R package with all of the code to simulate a BML process.

A Self-Organizing Dynamic System with a Phase Transition 363

● ● ● ● ● ●
● ●

● ●
● ●

●

●

●

●

● ● ● ●

● ● ● ● ●
●

● ● ●

●
●

●

●

●

● ● ● ● ● ●

● ● ● ● ●
●

● ●

●

●

●

● ●

●

● ● ● ● ● ●

●
● ●

●

●

●

●

●

● ●
●

●

●

● ● ●

●

● ● ●

● ● ● ●

● ●

● ●

●

●

● ●
● ●

●

●

●

● ● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

● ● ●

● ● ● ●

●
● ● ● ●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

●

● ● ●

● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

● ● ● ●

● ● ● ● ●

●
●

●

●
●

●

●

●

●

●

●

●

● ● ●

0.30 0.32 0.34 0.36 0.38 0.40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L = 64

density

M
ea

n
%

 o
f c

ar
s

m
ov

in
g

● ● ● ● ● ●

●

●

● ● ● ●
●

● ●

●

● ● ●

●

● ● ● ● ● ●

●

●

●

●
●

●

●

● ●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

●

●

●
●

●

● ● ● ● ● ●

● ● ● ● ● ●
●

●
●

●

● ●

●

●
●

●

●

● ● ●

● ● ● ● ● ●

●

●
● ●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ● ● ●

● ●

●

●

●

● ● ●

●
●

●

● ●

● ● ● ●

●

● ●

●

●

●

●
●

● ●

●

● ● ● ● ●

● ● ● ● ● ●

●

●
●

●

●

●
●

●

●

● ● ●

●

●

● ● ● ● ● ●

●

●

●

●

●

● ●

● ● ● ●

●

● ●

● ● ● ● ● ● ●

●

●

●
●

●

●

●

● ●

●

● ● ●

0.30 0.32 0.34 0.36 0.38 0.40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L = 128

density

M
ea

n
%

 o
f c

ar
s

m
ov

in
g

● ●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
● ●

●
●

● ●

● ●

● ● ● ● ●

●

● ● ●

●

●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

● ●

●

●
●

●
●

● ●

●

●

●

● ● ●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

● ●

●
● ●

●
● ● ●

●

●

● ●
●

● ●
●

●

● ●

● ● ●

●

●
●

● ●
●

●
●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ● ●

● ● ●

●

●

●

● ●

●

●

● ●

● ● ●

●

●

●

●

●

● ● ●

●
●

●

●
●

●
●

●

●

●

●

● ● ● ●

●

●

0.30 0.32 0.34 0.36 0.38 0.40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L = 256

density

M
ea

n
%

 o
f c

ar
s

m
ov

in
g

● ●

●

●

●

● ●

● ●

●

●

● ●

●

● ●

● ●

●

●

●

●
●

●

●

● ● ●

●
● ●

● ●

●

● ●

●

●

●

●

● ●

●

● ●
●

● ● ● ●

●
●

●

● ●

●

●

●

● ●

● ●

●

●
●

● ●

●

●

●

●
●

●

●

● ● ● ● ● ●

● ●

●

●

●

●
● ●

●

● ● ● ●

●

●

● ●

● ●

●

● ●

●

● ●

● ● ● ●

●

●

●

● ● ●

●

● ● ● ●

● ●

●

●

●

●

● ●

●

●

● ● ● ● ●

● ●

● ●
●

● ●

●

●
●

●
●

●

● ● ● ● ●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

●

● ● ● ● ●

● ●
●

●

● ●

0.30 0.32 0.34 0.36 0.38 0.40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L = 512

density

M
ea

n
%

 o
f c

ar
s

m
ov

in
g

Figure 8.13: Average Velocity of Cars by Occupancy Density. These plots mirror those
in [4] (page 3), with apparently more replications. They show the average proportion of cars
moving in each time step on the vertical axis. The horizontal axis shows a range of car
densities for the different grids. The 4 panels correspond to the different sizes of the square
grid: 64, 128, 256, and 512. Each point in a plot corresponds to running the initial grid
through 64,000 total iterations of both red and blue cars, i.e. 128,000 time steps. We see
variation for a given density corresponding to different random grid configurations. We see
that the density at which deadlock occurs decreases as the grid size increases. Importantly,
we see that there are different points of equilibrium, not simply free-flowing or deadlocked.
These are the intermediate states that were previously unexpected until reported in [4].

364 Case Studies in Data Science in R

Q.27 Use R’s byte-compiler function cmpFun() to compile our different implementations
of the functions moveCars(), getCarLocations(), etc. Compare the performance of these
compiled functions to our different approaches.

Q.28 Run multiple BML processes in parallel to explore its behavior for different densities
and dimensions. Explore the parallel package to do this.

Q.29 Make an animation of the BML process so that we could show this outside of R. By
this, we mean a display that shows the sequence of grid states over time. This might be
a video or an SVG file. You can show the changes to the grid at different time intervals.

Q.30 We might want to look at the time-series of the movement of individual cars across
iterations. We could use this to see if particular cars are persistently stuck and others
are not, or do they all go through periods of being stuck and then free-flowing. Change
the code to allow capturing this information.

Q.31 If we look at displays of the BML model on, for example, Wikipedia, the patterns in
the traffic flow appear in the opposite direction, i.e. from left to right. Why is this?

Q.32 Write code to find (contiguous) regions in a grid that have very low mobility, i.e.,
traffic jams. Can we characterize the shapes of these regions?

Q.33 For grid configurations that end in deadlock, how many iterations does it take to
reach complete deadlock? How does this depend on the density of cars and grid size?

Q.34 Now that we have the tools for performing experiments, we can explore different
behaviors of different configurations. There are many different interesting features un-
covered in [4]. Explore the intermediate phases. Use co-prime grid dimensions and see
if the behavior changes in any way.

Q.35 We mentioned that the choice of red and blue as colors may not be a good one, as
some people have a rare form of color blindness that makes these 2 colors appear similar.
Also, displaying colors on overhead projectors and other devices can give very different
results than on computer screens. As a result, we may want to change the colors for
the 2 different types of cars. What are better colors to use? Change the code in this
case study so that the R user can specify different colors to represent the horizontal
and vertical moving cars. Make certain that all of the code still yields the same results!
In how many places does the caller have to specify the new colors? Ideally, they should
only have to specify it in one place and the rest of the code should know which colors
correspond to horizontal and vertical. How do we implement this?

Bibliography
[1] Daniel Adler. rdyncall: Improved foreign function interface (FFI) and dynamic

bindings to C libraries (e.g., OpenGL). http://cran.r-project.org/package=
rdyncall, 2012. R package version 0.7.5.

[2] O Biham, A Middleton, and D Levine. Self-organization and a dynamical transition in
traffic-flow models. Physics Review A, 46:R6124–R6127, 1992.

http://cran.r-project.org/package=rdyncall
http://cran.r-project.org/package=rdyncall

A Self-Organizing Dynamic System with a Phase Transition 365

[3] M Dowle, T Short, S Lianoglou, and A Srinivasan. data.table Package. http://
cran.r-project.org/web/packages/data.table, 2014. R package version 1.9-
4.

[4] Raissa D’Souza. Coexisting phases and lattice dependence of a cellular automaton model
for traffic flow. Physics Review E, 71, 2005.

[5] Dirk Eddelbuettel and Romain Francois. Rcpp: Seamless R and C++ integration.
http://cran.r-project.org/package=Rcpp, 2011. R package version 0.9.15.

[6] R Core Team. Writing R Extensions. Vienna, Austria, 2012. http://cran.r-
project.org/doc/manuals/r-release/R-exts.html.

[7] R Core Team. parallel: Support for Parallel computation in R. http://www.r-
project.org, 2014. R package version 3.2.0.

[8] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[9] Duncan Temple Lang. Rffi: Interface to libffi to dynamically invoke arbitrary compiled
routines at run-time without compiled bindings. http://www.omegahat.org/Rffi,
2011. R package version 0.3-0.

http://cran.r-project.org/web/packages/data.table
http://cran.r-project.org/web/packages/data.table
http://cran.r-project.org/package=Rcpp
http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://www.rproject.org
http://www.rproject.org
http://www.r-project.org
http://www.omegahat.org/Rffi

This page intentionally left blankThis page intentionally left blank

9
Simulating Blackjack

Hadley Wickham
RStudio

CONTENTS
9.1 Introduction . 367

9.1.1 Computational Topics . 368
9.2 Blackjack Basics . 368

9.2.1 Testing Functions . 370
9.3 Playing a Hand of Blackjack . 372

9.3.1 Creating Functions for the Player’s Actions . 373
9.4 Strategies for Playing . 376

9.4.1 Developing the Optimal Strategy . 379
9.5 Playing Many Games . 382
9.6 A More Accurate Card Dealer Shoe . 384
9.7 Counting Cards . 390
9.8 Putting It All Together . 393
9.9 Exercises . 394

Bibliography . 396

9.1 Introduction
Blackjack is an extremely popular casino game, in part because if the correct strategy is
used, the house advantage is under 1% (meaning that in the long term, the gambler loses,
on average, 1% of the amount he or she bets), and card counting techniques can give the
motivated player the ability to swing the advantage even further so that it’s actually possible
for the odds to be in your favor. In this project, we develop a set of functions to simulate a
game of blackjack, starting simply and working your way up to card counting.

Our overall strategy is to work in small steps and create code that we can test and
explore at each step. Once we are satisfied with the code, we move on to the next step.
This tutorial is a bit easier than situations where you need to design a simulation study
on your own from scratch because we have laid out the steps in a logical sequence and we
proceed in a (fairly) straight path from problem definition to solution. In real life, we often
discover that we have missed something in a previous step, that we have gone down a dead
end, or accidentally circled back to somewhere we have already been, and consequently we
need to modify our previously written code or sometimes start again from scratch, taking
into account what we have discovered. The exercises at the end of the chapter give some
practice in a more realistic setting, where all the steps have not been laid out in advance.

We tackle the challenge of developing a realistic simulation of blackjack and the influence
of card counting in 7 steps:

367

368 Case Studies in Data Science in R

• Blackjack basics: We start by modelling a deck of cards, their value in blackjack, and
figuring out who wins a hand.

• Playing a hand: We play a hand of blackjack, dealing the cards to a player and
exploring what options they can take. Here we develop a blackjack game that we can play
manually: our winnings are computed automatically, but we have to tell the computer
what action to take.

• Game strategies: We implement some strategies so that we can automatically play a
game without human intervention. We start with a simple strategy and work our way
toward an optimal strategy.

• Many games: To see how well our strategy pays off, we play a few thousand hands of
blackjack. This will involve some statistical thinking about variation and some visuali-
sation to explore the results.

• A more accurate shoe: Before we can implement card counting, we need a model
for the dealer’s shoe (the device used to store and automatically shuffle and deal cards)
that makes counting possible. Here, we learn about mutable objects and programming
with reference classes in R [2].

• Card counting: We develop some functions to count cards and incorporate these into
our strategy. That is, we adjust a bet based on the count.

• Pulling it all together: Finally we combine all of these elements to see how much of
a difference counting cards actually makes in the long run.

9.1.1 Computational Topics
In this chapter, we cover the following:

• How to break down a complex problem into simple tasks.

• Ways to use data to make your functions simpler.

• Tips for developing robust functions in R.

• Strategies to make sure that our code actually works the way we expect it to work.

• Reference classes, for creating objects that can be modified in place.

9.2 Blackjack Basics
If you are not familiar with blackjack, there are many online resources, including the wiz-
ardofodds site at http://wizardofodds.com/games/blackjack/. You can play a
few practice rounds online at http://www.onlineblackjackguru.com/ or http:
//www.hitorstand.net/.

We start our computer model of blackjack with a model for a deck of cards that is
relevant to blackjack. A deck of cards has 52 cards with 13 cards from each suit — hearts,
diamonds, spades, and clubs. Each suit has a card labeled 2, 3, ..., 10 and a Jack, Queen,

http://wizardofodds.com/games/blackjack/
http://www.onlineblackjackguru.com/
http://www.hitorstand.net/
http://www.hitorstand.net/

Simulating Blackjack 369

King, and Ace. The Jack, Queen, and King all have the same value (10). In blackjack, the
Ace can count as either 1 or 11. For the moment, we assign an Ace a value of 1 since we do
not interpret the card’s value until later and we can determine if it is 11 from the value 1.
Since the numeric worth of the card is all that matters in blackjack, i.e., the suit does not
matter, we can represent a deck of cards in R with

deck = rep(c(1:10, 10, 10, 10), 4)

This in turn leads to a simple model for shuffling n decks of cards:

shuffle_decks = function(n) sample(rep(deck, n))

In blackjack, the player’s hand has 2 or more cards, and if the total value of the cards
in the hand exceeds that of the dealer’s hand, but does not exceed 21, then the player wins.
This means that we need to be able to compute the value of a hand of cards. This function
should allow us to compare 2 hands of cards to see which is the winner. There are 3 things
we need to account for:

• Busting (going over 21) loses to every non-busted hand.

• If a hand has an Ace and the total value of the cards in the hand (with the Ace counted
as 1) is 11 or less, then we count the Ace as an 11 and increase the value of the hand
without busting. If a hand has 2 Aces, only one can possibly switch to 11 because two
11s is a bust.

• The term “blackjack” refers to getting a hand worth 21 with only 2 cards. Blackjack is
better than reaching 21 with 3 or more cards, so we need to distinguish between the
different ways to achieve a value of 21.

To compute the value of a hand of cards, we can sum up the value of the cards, and then
take into consideration the special cases described above. If our goal is to simply compare
2 hands to see which is higher, we can set the value of a hand to zero if it is a bust; add 10
to the value of a hand if it contains an Ace and the hand’s value is less than 12; and add a
small amount to the value, if it is 21 and contains only 2 cards, so that it beats other 21s.
The following function takes in a vector of cards in a hand and returns its value:

handValue = function(cards) {
value = sum(cards)

Check for an Ace and change value if it doesn’t bust
if (any(cards == 1) && value <= 11)

value = value + 10

Check bust (set to 0); check black jack (set to 21.5)
if(value > 21)

0
else if (value == 21 && length(cards) == 2)

21.5 # Blackjack
else

value
}

The player’s winnings depend on how much was bet and whether or not the hand is
blackjack. To compute the winnings, we need to know the value of the player’s hand and

370 Case Studies in Data Science in R

the dealer’s hand. In blackjack, if the player goes bust then the player loses, even if the
dealer also goes bust. If the player gets blackjack then the player is paid $1.5 to every $1
bet. All other winning bets are paid 1 to 1, meaning for every dollar the player bets, he or
she keeps that dollar and the dealer pays another dollar. When the dealer and player tie,
meaning their hands have the same value (and neither have busted), then the player keeps
the bet and is not paid any winnings.

winnings = function(dealer, players) {
if (dealer > 21) {

Dealer has blackjack, ties players with blackjack
-1 * (players <= 21)

} else if (dealer == 0) {
Dealer busts - all non-busted players win

1.5 * (players > 21) +
1 * (players <= 21 & players > 0) +
-1 * (players == 0)

} else {
Dealer 21 or below, all player values > dealer win

1.5 * (players > 21) +
1 * (players <= 21 & players > dealer) +
-1 * (players <= 21 & players < dealer)

}
}

Notice that this function makes use of the fact that in R, TRUE and FALSE are treated as
1 and 0 in arithmetic operations, e.g., FALSE * 2.5 is 0. Note the comments in the code:
we use them to help remember the reasoning behind each condition in the if statement.

In the winnings() function, we have chosen to break the function down by the dealer’s
cards first, and then the player’s cards. What would happen if we switched this order and
started with the player’s values? Is the function easier or harder to understand? We leave
this as an exercise.

It’s possible to write a very terse implementation of this algorithm by rearranging the
conditions and taking advantage of logical to numeric coercion:

winnings = function(dealer, players){
(players > dealer & players > 21) * 1.5 + # blackjack
(players > dealer & players <= 21) * 1 + # win
(players < dealer | players == 0) * -1 # lose

}

How does the function work? Does it do the same thing as the original? Is it easier to
follow the logic in the first or second function? Why? When do you think using code like
this is appropriate? We leave the exploration of this version of the winnings() function as
an exercise.

Does our first version of the winnings() function work properly? That is, does it correctly
calculate the player’s winnings? What about the second version of winnings()? This is the
topic of the next section.

9.2.1 Testing Functions
Rather than wait until we have finished all of our programming, we check the functions
that we have written along the way. We want to make sure that these functions produce the

Simulating Blackjack 371

correct results. One way to check is to run the function for a subset of all possible inputs
and make sure that the results are correct.

For the handValue() function, we need to create test cases that include blackjack, hands
where an Ace counts as 11 and where it counts as 1, multiple Aces, and busts with and
without an Ace in the hand. The following test cases cover these possibilities:

test_cards = list(c(10, 1), c(10, 5, 6), c(10, 1, 1),
c(7, 6, 1, 5), c(3, 6, 1, 1),
c(2, 3, 4, 10), c(5, 1, 9, 1, 1),
c(5, 10, 7), c(10, 9, 1, 1, 1))

We know that the value for each hand is

test_cards_val = c(21.5, 21, 12, 19, 21, 19, 17, 0, 0)

When tested, our function matches these values,

identical(test_cards_val, sapply(test_cards, handValue))

[1] TRUE

The handValue() function appears to be correctly determining the value of a hand of cards.
Next we set up test cases for the winnings() function. We want to cover the combinations

of the dealer and the player busting, getting blackjack, or some other value, and ties. We
generate these as a matrix of correct results for combinations of the following values: 0, 16,
19, 20, 21, and 21.5, for the player and the dealer, i.e.,

test_vals = c(0, 16, 19, 20, 21, 21.5)

testWinnings =
matrix(c(-1, 1, 1, 1, 1, 1.5,

-1, 0, 1, 1, 1, 1.5,
-1, -1, 0, 1, 1, 1.5,
-1, -1, -1, 0, 1, 1.5,
-1, -1, -1, -1, 0, 1.5,
-1, -1, -1, -1, -1, 0),

nrow = length(test_vals), byrow = TRUE)
dimnames(testWinnings) = list(dealer = test_vals,

player = test_vals)

testWinnings

player
dealer 0 16 19 20 21 21.5

0 -1 1 1 1 1 1.5
16 -1 0 1 1 1 1.5
19 -1 -1 0 1 1 1.5
20 -1 -1 -1 0 1 1.5
21 -1 -1 -1 -1 0 1.5
21.5 -1 -1 -1 -1 -1 0.0

We fill the check matrix with the results from calls to winnings() for the test cases with

372 Case Studies in Data Science in R

check = testWinnings
check[] = NA

for(i in seq_along(test_vals)) {
for(j in seq_along(test_vals)) {

check[i, j] = winnings(test_vals[i], test_vals[j])
}

}

identical(check, testWinnings)

[1] TRUE

Again, our function produces the correct answer for these test cases.

9.3 Playing a Hand of Blackjack
We now have the basic pieces set up to shuffle a deck of cards, score a hand of blackjack,
and determine a player’s winnings. Next we need to figure out how to model a game, i.e.,
the decisions that the player makes and also the dealing and process of delivering the next
card. We start with a simple model that’s easy to program, and gradually make it more
sophisticated, getting closer and closer to the real situation.

There are two basic actions a player can take after the first 2 cards are dealt to the
player.
Hit
The player can request “a hit.” Then 1 card is removed from the deck(s), which is (are)
stored in the shoe, and added to the player’s hand.
Stand
The player can continue to request hits, receiving 1 card at a time from the shoe, until the
player decides to end the turn, i.e., until the player stands.

Before requesting the first card, the player is allowed two other actions.
Double Down
The player can double his or her bet. If the player doubles the bet, then exactly 1 hit is
made and the player must then stand.
Split
If the first 2 cards dealt to the player are identical in value, the player may choose to split
them into 2 hands. The player must put up an additional bet of equal size to the original
bet, each of these 2 hands is dealt the second card, and the player then makes decisions
independently about hits, stands, etc. with these hands. There are many casino-specific
rules for the actions a player can take after splitting. Typically, if dealt a blackjack from a
split, the casino treats it as 21, not blackjack. Sometimes when splitting Aces, the player
can only receive 1 additional card for a total of 2 cards per hand.

In a single round of blackjack, almost everything about the hand the player is dealt can
change: cards can be added to the hand, the size of the bet can double, and the number of
hands that a player has can increase. We need to keep this in mind as we proceed.

We start by modelling the shoe, which contains the shuffled cards to be dealt. We begin
with a very simple model, a function that draws m cards with replacement from a deck.

Simulating Blackjack 373

Shoes typically contain more than 1 deck and the decks are reshuffled often so we start with
the following function:

shoe = function(m = 1) sample(deck, m, replace = TRUE)

In practice, dealing is without replacement, but this shoe() is effectively equivalent to a
shoe with a very large number of decks that is reshuffled after every hand. This is not a
useful model for card counting, but is similar to the continuously reshuffled shoes used by
some casinos.

Next we create a model for the hand. A hand has a bet, a shoe (our function for getting
more cards), and some cards. Blackjack always starts with 2 cards so we default to drawing
2 cards from the shoe.

new_hand = function(shoe, cards = shoe(2), bet = 1) {
list(bet = bet, shoe = shoe, cards = cards)

}

Even though the player does not get to choose cards in a real blackjack game, we keep cards
as a parameter so that we can specify them when we start testing our functions.

We can make our new_hand() function a little more user friendly by using some S3
object-oriented programming. The following code modifies new_hand() to return an object
of class hand:

new_hand = function(shoe, cards = shoe(2), bet = 1, ...) {
structure(list(bet = bet, shoe = shoe, cards = cards),

class = "hand")
}

Then we can create a specialized print() method to give a nicely formatted display with

print.hand = function(x, ...) {
cat("Blackjack hand: ", paste(x$cards, collapse = "-"),

" (", handValue(x$cards), "). Bet: ", x$bet,
"\n", sep = "")

}

For example, we create a hand that has a bet of $7 with

myCards = new_hand(shoe, bet = 7)

Then we print myCards implicitly using the print.hand() method as follows:

myCards

Blackjack hand: 6-10 (16). Bet: 7

9.3.1 Creating Functions for the Player’s Actions
Now we can write functions for each of the 4 actions, which we call hit(), stand(), dd() for
double down, and splitPair(). Each function takes a hand as input and returns a hand (or
list of hands in the case of a split) as output. If you have programmed in other languages,
your first thought might be to modify the existing hand rather than returning a new hand.
This is not the most natural style of programming in R. It is generally better to stick to

374 Case Studies in Data Science in R

so-called “functional” programming, where the function doesn’t have any side-effects, i.e.,
mutates its inputs, but just returns a new object. This makes it much easier to reason about
a program, because you can understand each function in isolation.

Recall that the hit action draws 1 card from the shoe and adds it to those cards already
in the hand. We can do this with

hit = function(hand) {
hand$cards = c(hand$cards, hand$shoe(1))
hand

}

We test hit with the hand that we created and stored in myCards

hit(myCards)

Blackjack hand: 6-10-7 (0). Bet: 7

Our 2 cards are 6 and 10 and we are dealt a 7 so we go bust and the value of the cards is
now 0.

The stand() action is very simple. It returns the unaltered hand. We write this function
as follows:

stand = function(hand) hand

The double down function doubles the bet, requests 1 additional card, and then stands.

dd = function(hand) {
hand$bet = hand$bet * 2
hand = hit(hand)
stand(hand)

}

When we double down on our original hand, we find

dd(myCards)

Blackjack hand: 6-10-4 (20). Bet: 14

Lastly, we write our splitPair() function, which splits a hand with 2 cards into 2 hands.
We need to draw 1 card from the shoe for each new hand. The bet for each hand remains
the same as the original bet. Our function is:

splitPair = function(hand) {
list(

new_hand(hand$shoe,
cards = c(hand$cards[1], hand$shoe(1)),
bet = hand$bet),

new_hand(hand$shoe,
cards = c(hand$cards[2], hand$shoe(1)),
bet = hand$bet)

)
}

We test our splitPair() function with myCards even though in a real game we cannot split
cards that are not of equal value. We do this with

Simulating Blackjack 375

splitHand = splitPair(myCards)
splitHand

[[1]]
Blackjack hand: 6-10 (16). Bet: 7

[[2]]
Blackjack hand: 10-10 (20). Bet: 7

The basics of these functions (hit(), stand(), dd() and splitPair()) are working, but our
testing is not very extensive.

Currently these functions do not check that they are given the correct input. How could
we make the functions safer so, e.g., a hit could not be made if the hand has gone bust? Or
as we just did, split when the 2 cards are not of equal value? What other “safety” features
can we add to these functions? We leave these as exercises.

Now let’s play a round of blackjack against a dealer. We set the seed of the random
number generator with set.seed() to ensure the results are the same when the seed is set
to the same value before running the code. This is a useful mechanism for making random
results reproducible. We set the seed to, say, 1014 with

set.seed(1014)

Then deal a hand of cards to the dealer and a player:

dealer = new_hand(shoe)
player = new_hand(shoe)

When we play blackjack, we can see 1 of the 2 cards in the dealer’s hand. Our dealer’s top
card is

dealer$cards[1]

[1] 5

And our hand is

player

Blackjack hand: 6-9 (15). Bet: 1

We decide to take a card:

player = hit(player)
player

Blackjack hand: 6-9-1 (16). Bet: 1

We were dealt an Ace, which must be used as a 1 in computing the total value of our cards,
or otherwise we would bust. At this point, we stand. Now it is the dealer’s turn so the dealer
reveals the hidden card:

dealer

Blackjack hand: 5-5 (10). Bet: 1

376 Case Studies in Data Science in R

According to casino rules, the dealer must hit because the total value of the dealer’s cards
is less than 17.

dealer = hit(dealer)
dealer

Blackjack hand: 5-5-10 (20). Bet: 1

At 20, the dealer must stand because the value is 17 or over. We know that we have lost,
but we call winnings() to confirm that it works as expected:

winnings(handValue(dealer$cards), handValue(player$cards))

[1] -1

We leave it to the reader to check that all the action functions work correctly. You can
do this by placing specific cards in a hand using the cards parameter of new_hand(). What
cases do you need to test?

Our next step is to develop some code that plays a game automatically, using a strategy
that says what to play given the dealer’s top card and the player’s cards. This is the topic
of the next section.

9.4 Strategies for Playing
We start by developing a very simple strategy: hit if the dealer’s top card has a value more
than 6 and our total is less than 17, otherwise stand. This is a pretty poor strategy, but
it allows us to build the scaffolding for developing better strategies. We use abbreviations
to communicate our different actions: S for stand, H for hit, D for double down, and SP for
split. Then our simple_strategy() function is

strategy_simple = function(mine, dealerFaceUp) {
if (handValue(dealerFaceUp) > 6 && handValue(mine) < 17)

"H"
else

"S"
}

This function is very simple, but it still has a bug in it! Can you spot it? If the player
busts, then the value of the cards is zero, and the strategy will keep hitting forever. We need
to add a check to ensure that if the player has busted then the player must stand. Below is
our revision to simple_strategy():

strategy_simple = function(mine, dealerFaceUp) {
if (handValue(mine) == 0) return("S")
if (handValue(dealerFaceUp) > 6 && handValue(mine) < 17)

"H"
else

"S"
}

Simulating Blackjack 377

We also need a strategy for generating the sequence of dealer’s cards. A dealer must
follow the simple rule: hit if the value is less than 17, otherwise stand. We can implement
the dealer’s simple strategy directly:

dealer_cards = function(shoe) {
cards = shoe(2)
while(handValue(cards) < 17 && handValue(cards) > 0) {

cards = c(cards, shoe(1))
}
cards

}

Notice that in one round of blackjack there is no back and forth between the dealer’s and
the player’s actions. The round begins with the player and dealer each being dealt 2 cards,
and the player sees only 1 of the dealer’s 2 cards. The player’s turn is first. He or she takes
1 card at a time and after each card is dealt decides whether to take another or to stand.
After the player stands, it is the dealer’s turn, and the dealer is obligated to follow the rule
just described: take a card if the dealer’s card total is less than 17 and otherwise stand, no
matter what is in the player’s hand. We have dealer_cards() carry out the dealer’s entire
turn because the dealer’s strategy is not affected by the player’s cards.

Now, we have all the pieces in place to write a function that plays a game of blackjack
automatically. This function has 2 main parameters: shoe, where we pass in our function for
getting new cards; and strategy, where we supply a function that, based on the dealer’s top
card and the player’s cards, tells us what action to take. We also have parameters hand and
dealer to provide the player’s and dealer’s hands, respectively. These hands have a default
value of a new hand, and we override the defaults to control the inputs to the game.

We ignore the issue of splitting at first, and create a function, play_hand(), as follows:

play_hand = function(shoe, strategy,
hand = new_hand(shoe),
dealer = dealer_cards(shoe)) {

face_up_card = dealer[1]

action = strategy(hand$cards, face_up_card)
while(action != "S" && handValue(hand$cards) != 0) {

if (action == "H") {
hand = hit(hand)
action = strategy(hand$cards, face_card)

} else if (action == "D") {
hand = dd(hand)
action = "S"

} else {
stop("Unknown action: should be one of S, H, D, SP")

}
}

winnings(handValue(dealer), handValue(hand$cards)) * hand$bet
}

Notice that the winnings are computed based on a $1 bet, so they need to be scaled by the
actual bet.

378 Case Studies in Data Science in R

Let’s try our new function. We first set the seed and then call play_hand(), passing it
our shoe() and simple_strategy() functions as follows:

set.seed(1014)
play_hand(shoe, strategy_simple)

[1] 1.5

No errors occurred, and the winnings indicate we were dealt blackjack!
We cannot easily check if our simple strategy is working correctly without knowing what

cards we were dealt and what the dealer was dealt. To figure this out we can augment our
code to provide play-by-play information about the game. We would not necessarily always
want to provide this information so we add another parameter to play_hand() called verbose
to indicate whether or not we want to see this additional information. We set the default
value of verbose to FALSE so the caller of the function must specifically request the extra
information. Our augmented function is now defined as

play_hand = function(shoe, strategy,
hand = new_hand(shoe),
dealer = dealer_cards(shoe),
verbose = FALSE) {

if (verbose) {
cat("New hand \n")
cat(" Dealer: ", paste(dealer, collapse = "-"),

" (", handValue(dealer), ")\n", sep = "")
cat(" Player: ", paste(hand$cards, collapse = "-"),

": ", sep = "")

}
face_card = dealer[1]

action = strategy(hand$cards, face_card)
while(action != "S" && handValue(hand$cards) != 0) {

if (verbose) cat(action)
if (action == "H") {

hand = hit(hand)
action = strategy(hand$cards, face_card)

} else if (action == "D") {
hand = dd(hand)
action = "S"

} else {
stop("Unknown action: should be one of S, H, D, SP")

}
}
if (verbose) {

cat(action, " -> ", paste(hand$cards, collapse = "-"),
" (", handValue(hand$cards), ")", sep = "", "\n")

}

winnings(handValue(dealer), handValue(hand$cards)) * hand$bet
}

Simulating Blackjack 379

Let’s rerun our test to see if we indeed won with blackjack:

set.seed(1014)
play_hand(shoe, strategy_simple, verbose = TRUE)

New hand
Dealer: 5-5-6-9 (0)
Player: 1-10: S -> 1-10 (21.5)

[1] 1.5

The verbose option provides messages that are useful when we are testing our implementa-
tion, but impacts performance when we start to play thousands of games. Using the verbose
parameter is a common pattern for this situation.

The final challenge in writing our play_hand() function is to handle the split action.
Making it easy to implement the results of splitting depends critically on the output of this
function. Here we make the function call itself for each of the new hands and then return
the sum of the winnings. That is, we add up the winnings from the multiple independent
hands created when splitting. The code that we add to play_hand() for the split action
looks as follows:

hands = splitPair(hand)
one = play_hand(shoe, strategy, hands[[1]], dealer,

verbose = verbose)
two = play_hand(shoe, strategy, hands[[2]], dealer,

verbose = verbose)
return(one + two)

We leave it as an exercise to incorporate the split action into play_hand().
After adding the split action to our function, we rerun the earlier test to see that it still

works the same way:

set.seed(1014)
play_hand(shoe, strategy_simple, verbose = TRUE)

New hand
Dealer: 5-5-6-9 (0)
Player: 1-10: S -> 1-10 (21.5)

[1] 1.5

Although we get the expected results, we have not tested the new code that performs the
split action. We can set up an artificial hand with cards that a strategy would split to test
this code. Unfortunately, our strategy is so simple that it will never determine that the
hand should be split so we hold off further testing until we have a more complex strategy.

9.4.1 Developing the Optimal Strategy
Now that we have the ability to play a game of blackjack, we turn back to our strategy:
what’s the best action to take for each situation? It turns out that if the shoe behaves as an
“infinite” deck then the optimal strategy has been known for quite some time. The optimal
strategy was first derived in [1]. It is quite complex, but we can take a hint from the many
Web sites that describe the strategy, and instead of describing an algorithm, work with a
lookup table. Our lookup table is adapted from Wikipedia (see http://en.wikipedia.
org/wiki/Blackjack). The table has 3 inputs: the value of the dealer’s face-up card,

http://en.wikipedia.org/wiki/Blackjack
http://en.wikipedia.org/wiki/Blackjack

380 Case Studies in Data Science in R

TABLE 9.1: Optimal Strategy

type value 2 3 4 5 6 7 8 9 10 11
hard 20 S S S S S S S S S S
hard 19 S S S S S S S S S S
hard 18 S S S S S S S S S S
soft 20 S S S S S S S S S S
soft 19 S S S S S S S S S S
soft 18 S Ds Ds Ds Ds S S H H H
pair 20 S S S S S S S S S S
pair 18 SP SP SP SP SP S SP SP S S

This table displays a few of the strategies for playing blackjack. These are based on an infinite
deck, i.e., the chance of a particular card on the next draw is determined by the proportion
of such cards in a full deck. S means stand, SP means split, and Ds means double down if
allowed, otherwise split. Columns correspond to the value of the dealer’s face-up card. Rows
correspond to the value of the player’s hand and whether it is soft, hard, or composed of a
pair.

the value of the player’s cards, and the type of hand. A hand can be one of 3 types: a pair,
hard, or soft. A soft hand is one with an Ace that is treated as an 11, rather than a 1. A
hard hand is the complement of a soft hand. That is, a hard hand either has no Aces or
every Ace must be treated as a 1 to avoid busting. We treat pairs specially as they can be
split. For example, a soft 12 must be a pair of Aces, and the optimal strategy is to always
split Aces. A few rows of this “strategy lookup table” appear in Table 9.1. The dealer values
are encoded in the columns of the table and player’s hand type and value in the rows.

Moving the algorithmic complexity to a lookup table makes our strategy function very
simple. We first read in the strategies from a csv file with

lookuptable = read.csv("Data/strategy.csv", header = TRUE,
stringsAsFactors = FALSE, check.names = FALSE)

head(lookuptable)

type value 2 3 4 5 6 7 8 9 10 11
1 hard 20 S S S S S S S S S S
2 hard 19 S S S S S S S S S S
3 hard 18 S S S S S S S S S S
4 hard 17 S S S S S S S S S S
5 hard 16 S S S S S H H H H H
6 hard 15 S S S S S H H H H H

Our strategy function performs a table lookup based on the value of the cards in the player’s
hand, whether that value is hard or soft, and the dealer’s face-up card. Our function appears
below:

strategy_optimal = function(player_hand, dealerFaceUp,
optimal = lookuptable) {

Stand if 21 or already busted
player_value = handValue(player_hand)
if (player_value == 0) return("S")
if (player_value >= 21) return("S")

Simulating Blackjack 381

dealer_value = handValue(dealerFaceUp)
loc_ace = player_hand == 1

if (length(player_hand) == 2 &&
player_hand[1] == player_hand[2]) {

type = "pair"
if (player_hand[1] == 1) player_value = 2

} else if (sum(loc_ace) > 0 &&
(player_value - sum(loc_ace)) >

handValue(player_hand[!loc_ace])) {
type = "soft"

} else {
type = "hard"

}

out = optimal[optimal$type == type &
optimal$value == player_value,
as.character(dealer_value)]

if (length(out) == 0) browser()
if (out == "Dh")

if (length(player_hand) > 2) out = "H" else out = "D"
if (out == "Ds")

if (length(player_hand) > 2) out = "S" else out = "D"
out

}

There’s one important debugging feature of R that we use in this function:

if (length(out) == 0) browser()

This ensures that if the lookup is unsuccessful, we enter an interactive browser to diagnose
the problem. It took a few iterations before we worked out all the kinks in using the table.

We examine the strategies selected for several cases to ensure that they have been
correctly chosen. We do this by providing the player’s cards and the dealer’s face-up card in
calls to strategy_optimal() and check the return value against the optimal strategy discerned
from reading the lookup table. We use the stopifnot() function to check that all of the logical
tests are true. We do this with

stopifnot(strategy_optimal(c(4, 1, 6), 3) == "S",
strategy_optimal(c(3, 2, 6), 3) == "H",
strategy_optimal(c(5, 6), 3) == "D",
strategy_optimal(c(3, 2, 6), 1) == "H",
strategy_optimal(c(5, 6), 1) == "H",
strategy_optimal(c(6, 1, 5, 1), 7) == "H",
strategy_optimal(c(6, 1, 5, 1), 6) == "H",
strategy_optimal(c(1, 1), 7) == "SP",
strategy_optimal(c(9, 9), 7) == "S",
strategy_optimal(c(6, 6), 7) == "H",
strategy_optimal(c(3, 3), 7) == "SP",
strategy_optimal(c(7, 1), 5) == "D",
strategy_optimal(c(7, 1), 7) == "S",

382 Case Studies in Data Science in R

strategy_optimal(c(2, 1), 9) == "H",
strategy_optimal(c(2, 1), 5) == "D")

Error: strategy_optimal(c(6, 1, 5, 1), 6) == "H" is not TRUE

There is a problem with the strategy when the player holds cards with values 6, 1, 5, 1 and
the dealer’s top card is 6. The player’s hand is worth 13 and despite having 2 Aces, it is
hard. We re-check the lookup table and see that the correct action is not to hit, which is
not what we have specified. After we correct this mistake, the tests all return TRUE.

Now that we have two strategies, we can compare them by playing many rounds of
blackjack many times. This is the topic of the next section.

9.5 Playing Many Games
We have the pieces in place to easily play many rounds of blackjack. For example, we could
use the base R function replicate() to play 10 hands with

set.seed(101451)
replicate(10, play_hand(shoe = shoe,

strategy = strategy_optimal))

[1] 1 1 1 0 -1 1 0 -1 1 -1

We see that in these rounds we lost 3 times, won 5 times, tied twice, and never beat
the dealer with blackjack or doubled down. If we want to check that our code is working
correctly, we can turn on the verbose option in play_hand(), e.g.,

replicate(3, play_hand(shoe = shoe, strategy = strategy_optimal,
verbose = TRUE))

New hand
Dealer: 7-1 (18)
Player: 6-10: HS -> 6-10-10 (0)

New hand
Dealer: 4-5-1 (20)
Player: 6-4: DS -> 6-4-2 (12)

New hand
Dealer: 5-1-6-5 (17)
Player: 1-3: DS -> 1-3-10 (14)

[1] -1 -2 -2

It appears that our code is working correctly.
We can play a thousand hands for each strategy and capture the results with:

set.seed(10114)
win_optimal = replicate(1000, play_hand(shoe = shoe,

strategy = strategy_optimal))
set.seed(10114)
win_simple = replicate(1000, play_hand(shoe = shoe,

strategy = strategy_simple))

Simulating Blackjack 383

Notice that we started each simulation at the same point by setting the seed between
calls to the different strategies. We overlay density plots of the winnings from these results
with

plot(density(win_optimal, bw = 0.25), col = "green", lwd = 2,
xlab = "Winnings", xlim = c(-3, 3),
ylim = c(0, 0.9), main = "")

lines(density(win_simple, bw = 0.25), col = "purple", lwd = 2)
legend("topright", col = c("green", "purple"),

legend = c("Optimal", "Simple"), bty = "n", lty = 1)

The plot appears in Figure 9.1. It’s difficult to tell whether the simple strategy loses more
often than the optimal strategy. We can find the average net gain with

mean(win_optimal)

[1] -0.033

mean(win_simple)

[1] -0.056

The optimal strategy cannot make up for the casino’s advantage, but it loses less on average
than our simple strategy.

Now that we have verified that our gambling simulation works, we can turn this into a
function that finds the average winnings and other summary statistics for a given number
of rounds, e.g.,

payoff = function(n, strategy, shoe) {
results = replicate(n, play_hand(shoe = shoe,

strategy = strategy))
c(avgGain = mean(results), sdGain = sd(results),

medGain = median(results))
}

The real development cycle was not quite so smooth — we had a few problems that cropped
up very rarely so we had to play a few thousand games to uncover them all. Systematic
testing of the play_hand() function would have saved a lot of time! This is the topic of an
exercise.

We can then use the payoff() function to compare our two strategies for 50 rounds of
the game. For each strategy, we play 50 hands 1000 times with

win_simple50 = replicate(1000,
payoff(50, strategy_simple, shoe))

win_optimal50 = replicate(1000,
payoff(50, strategy_optimal, shoe))

We plot the distribution of these strategies’ payoffs with a frequency polygon as follows:

df = data.frame(
value = c(win_simple50["avgGain",],

win_optimal50["avgGain",]),
strategy = rep(c("simple", "optimal"), each = 1000))

library(ggplot2)
qplot(value, data = df, geom = "freqpoly", colour = strategy,

binwidth = 0.05)

384 Case Studies in Data Science in R

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

Winnings

D
en
si
ty

Optimal
Simple

Figure 9.1: Density Plot Comparing the Winnings from Two Strategies. This plot shows
the density of the gain from 1,000 $1 bets for two different strategies: the optimal strategy
for an infinite deck, and a simple strategy that hits when the dealer shows a 6 or higher
and the player’s cards are under 17, and otherwise stands. A gain of $2 or -$2 results from
winning or losing a double down, respectively. The simple strategy never doubles the bet.

If you haven’t seen this type of plot before, it’s a straightforward tweak to the histogram:
instead of displaying the counts with a bar, we use connected line segments. (See [3]). This
makes it easier to compare distributions. The plot appears in Figure 9.2.

Our optimal strategy is better than the simple strategy, but not by much. The optimal
strategy is for an infinite deck. We might do better if we can use card counting techniques,
but in order to do that we need a better model for the shoe. This is the topic of the next
section.

9.6 A More Accurate Card Dealer Shoe
Our final task is to implement some card counting strategies. We have most of the pieces
in place; we have implemented the optimal strategy and can play games automatically.
However, our model of the shoe is too simple. The shoe currently just samples with replace-
ment from a deck of cards, which does not match the behavior of most blackjack tables.

Simulating Blackjack 385

0

50

100

150

−0.4 0.0 0.4
value

co
un
t strategy

optimal

simple

Figure 9.2: A Comparison of the Optimal and Simple Strategies. The distribution of payoffs
under the optimal strategy peaks at a higher value. Note that the variability is considerable:
there is about a 40% chance of losing 5% or more of your money with the optimal strategy
and about a 55% chance with the simple strategy.

Instead, we want a shoe that contains a fixed number of decks of cards, deals cards without
replacement, and reshuffles at known points.

Developing a better model for the shoe is challenging because now we must keep track of
the state: what cards remain in the shoe. R is primarily a functional programming language,
which means that it’s not easy to modify an object within another function. For example,
consider the simple function f() that modifies the element a in the input list x:

y = list()
y$a = 1
f = function(x) {

x$a = 2
}
y$a

[1] 1

f(y)
y$a

386 Case Studies in Data Science in R

[1] 1

The list y, which is passed into f(), remains unchanged because it is passed by value.
The assignment within the call to f(), x$a = 2, occurs within the environment/call frame
of the function call for f(). This sort of behavior makes it hard to modify our existing shoe()
function to update the cards remaining in the shoe.

Generally, the only way a function can interact with the external environment is through
the objects that it returns. Every time it looks as though we are modifying an object, R
actually creates a modified copy. We can implement our new shoe() function by returning
both the cards drawn from the shoe and the new state of the shoe every time we use it.
This technique is called threading state, and would require extensive modifications to our
existing code.

Instead, we’re going to use a newer, less well known feature of R: reference classes
(sometimes called R5 for short). Reference classes allow us to create objects that can be
modified by other functions. Compare the behavior of the following reference class to the
results from manipulating a list:

A = setRefClass("A", fields = c(a = "numeric"))
y = A$new()
y$a = 1
f(y)
y$a

[1] 2

Reference classes are a large topic so we give a brief introduction – enough to use them for
the shoe. For our purposes, a reference class has 3 important properties: a name, a list of
fields that store information about each instance/object of this class, and a list of methods
that access and modify the object and the values in its fields. It is the ability of these
methods to modify/update the values of the object’s fields and for these changes to persist
across calls that makes reference classes quite different than the regular computational
model in R. We create our class by first figuring out what these should be and then filling
in the details.

To make these ideas easier to discuss, let’s create a simple reference class that will be
useful to us later: a simple counter. The name of the class is Counter, it has one field, the
count, a numeric vector, and it has two methods. One method, initialize(), sets count to
1. The second method, increment(), increases count by 1. We define Counter with

Counter = setRefClass("Counter",
fields = list("count" = "numeric"),
methods = list(

initialize = function() {
count <<- 1

},
increment = function() {

count <<- count + 1
}

))

Let’s try out our new class by creating two counters, ctr1 and ctr2, with the following
calls to Counter$new:

Simulating Blackjack 387

ctr1 = Counter$new()
ctr2 = Counter$new()

We also can simply call Counter(). Next we check the value of each of our counters with

ctr1$count

[1] 1

ctr2$count

[1] 1

The new() method of Counter sets up the counter for us and calls the initialize() method.
We can increment the counters by calling increment(). Let’s increment ctr1 once and ctr2
3 times. We do this and confirm that they have been properly incremented with:

ctr1$increment()
ctr1$count

[1] 2

ctr2$count

[1] 1

ctr2$increment()
ctr2$increment()
ctr2$increment()
ctr2$count

[1] 4

There are a few important things to notice:

• The methods are associated with the object, so we call a method of a reference class
object using the syntax object$method(). That is, we use the $ on the object like
we would subset a list. The expression ctr1$count() calls the count() method of the
ctr1 object.

• The setRefClass() function creates reference classes by returning a special reference class
that allows us to create new objects with this class’s new() method. The example above
calls new() without any arguments, but if supplied, the arguments override the default
values of the fields.

• The object’s fields are modified from inside the methods by using the special <<- op-
erator. This operator makes the assignment in the parent environment of the function,
which is the object’s environment.

To design our shoe class, we need to work out what fields and methods we need.
Figuring out precisely what you need to do to solve a problem is usually the main challenge
for programming: once you’ve got that, you just need to turn it into code that the computer
can understand.

Reshuffling rules vary from table to table and casino to casino, so we use a simple first-
pass approximation: a multi-deck shoe that is replenished and shuffled whenever there are 52
cards left. This means that we need to know how many decks to use, which cards are left in
the shoe, and when to reshuffle. We can use the following 3 fields to track this information:

388 Case Studies in Data Science in R

• decks, a single integer, giving the number of decks in the shoe.

• cards, an integer vector containing the ordering of all the cards in the shoe.

• pos, a single integer giving our current position in the shoe.

Instead of modifying our vector of cards each time we draw them, we use the pos field to
keep our place in the sequence of cards. This is a small performance optimization because
we do not want to have to re-order or subset a (potentially large) vector of cards each time
we draw 1 card.

In addition, we set up a field that we can use for debugging purposes:

• debug, a single logical value, which determines whether or not we should display useful
debugging information on the R console from within methods.

As for methods, we need to shuffle the cards and to draw cards from the shoe. These
are described below along with two additional methods that are useful to us.

• shuffle() generates a random ordering of the decks of cards, where the number of decks
is provided by decks and the permutation is stored in cards. This method uses our
existing shuffle_decks() function to update the cards field, and will reset pos to 0. If
debug is TRUE, then it will also display an informative message.

• draw_n() returns a vector of n cards taken from cards beginning at pos. This method
also increments pos by n so that we do not draw the same cards multiple times. It calls
the helper method decks_left() to see if it is time to reshuffle. If there is less than 1 deck
in the shoe then it calls shuffle() to shuffle the cards.

• decks_left() determines how many full decks of cards we have left in the shoe; this is
just floor(decks - pos / 52).

• played() displays what cards have already been played. This is a convenience function.
It simply indexes into cards with the appropriate vector created from pos.

This description leads us to the following class definition. We have not provided the code
for the draw_n() method and leave that as an exercise.

Shoe = setRefClass("Shoe",
fields = list(

decks = "numeric", # number of decks
cards = "numeric", # vector of cards
pos = "numeric", # current position in shoe
debug = "logical" # display informative messages?

),
methods = list(

shuffle = function() {
if (debug) message("Shuffling the shoe")
cards <<- shuffle_decks(decks)
pos <<- 0

},

draw_n = function(n) {
Return a subset from the field cards of the next n cards
begin at the field pos + 1. Increment pos appropriately
Exercise for you to provide code.

Simulating Blackjack 389

},

decks_left = function() floor(decks - pos / 52),

played = function() cards[seq_len(pos)]
)

)

We also create a new_shoe() function, which creates a new shoe and shuffles it. This
function is defined as

new_shoe = function(decks = 6, debug = FALSE) {
shoe = Shoe$new(decks = decks, debug = debug)
shoe$shuffle()
shoe

}

Let’s examine a new shoe. We create a shoe with

my_shoe = new_shoe(decks = 3, debug = TRUE)

Shuffling the shoe

We see the message letting us know that our shoe was shuffled when it was created. Now
let’s deal a dozen cards, check the value of pos after, and see how many full decks we have
left with

my_shoe$draw_n(12)

[1] 4 10 10 1 8 4 5 10 2 10 3 1

my_shoe$pos

[1] 12

my_shoe$decks_left()

[1] 2

We can continue to draw more cards and trigger the shuffling with

my_shoe$draw_n(37)

[1] 8 1 5 10 10 10 10 3 8 2 9 10 10 7
[15] 10 8 4 8 2 10 4 2 9 9 7 10 9 6
[29] 6 10 9 10 1 10 1 10 4

my_shoe$pos

[1] 49

my_shoe$draw_n(54)

390 Case Studies in Data Science in R

Shuffling the shoe
[1] 3 1

Or, we can simply shuffle the shoe with a call to my_shoe$shuffle().
One of the important parts of this design is that we have a method, draw_n(), that

works exactly the same way (i.e., it has the same interface) as our old shoe() function. This
means we can easily plug the more accurate shoe() into our old code without changing any
code that uses it. We do this with

my_shoe = new_shoe(decks = 6, debug = TRUE)
replicate(3, play_hand(shoe = my_shoe$draw_n,

strategy = strategy_optimal,
verbose = TRUE))

New hand
Dealer: 3-3-10-2 (18)
Player: 1-2: HS -> 1-2-6 (19)

New hand
Dealer: 6-7-3-10 (0)
Player: 10-6: S -> 10-6 (16)

New hand
Dealer: 9-5-10 (0)
Player: 8-10: S -> 8-10 (18)

[1] 1 1 1

We can also call payoff() with

my_shoe$pos = 0
payoff(50, strategy_optimal, my_shoe$draw_n)

Shuffling the shoe
avgGain sdGain medGain

-0.04 1.16 0.00

my_shoe$pos

[1] 69

We reset pos to 0 and found that the shoe of 6 decks was shuffled once over the course of
50 rounds of blackjack. That seems about right because between the dealer and the player
about 7–8 cards are used each round, so we expect to reshuffle after about 35 hands.

9.7 Counting Cards
We are ready to implement card counting. The idea of card counting is to reduce our risk by
using our knowledge of what cards remain in the shoe. If there are many low cards left then
we are safer when we hit; if there are many high-value cards left, then we are less safe. Card
counting has two components. We generate a running count or tally of the cards that have
been dealt since the last shuffle. Typically a counting system adds or subtracts 1 according

Simulating Blackjack 391

TABLE 9.2: Card Counting Strategies

strategy 1 2 3 4 5 6 7 8 9 10
Canfield Expert 0 0 1 1 1 1 1 0 -1 -1
Canfield Master 0 1 1 2 2 2 1 0 -1 -2
Hi-Lo -1 1 1 1 1 1 0 0 0 -1
Hi-Opt I 0 0 1 1 1 1 0 0 0 -1
Hi-Opt II 0 1 1 2 2 1 1 0 0 -2

This table displays a few counting strategies. The columns of the table correspond to the
value that we add to the running total for each card value. Rows correspond to the various
counting regimes.

to whether the value of the card is low or high, respectively. Therefore, if the tally is high,
then the remainder of the shoe is rich in 10s. The second component is a betting strategy
that is guided by this running tally. The betting strategy can include both changing the
size of the bet and the decision to hit or stand. We will examine only the effect of changing
the size of the bet.

Many different counting systems have been developed. Table 9.2 shows a few, generated
from http://www.qfit.com/card-counting.htm. To “count” we look at the cards
that have been dealt, tally the values from the table that are assigned to each card, and
then divide by the number of decks that have been dealt.

We leave it as an exercise to implement the hi_low() function that takes in a numeric
vector, say cards, and returns the Hi-Lo count as described in Table 9.2.

This basic strategy extends well, if we want to make a function that takes the vector of
cards and the name of a strategy. As with our playing strategy, we can use subsetting to
index into the table of values. We leave it as an exercise to extend the hi_low() function to
the any_count() function that takes a second argument, say strategy, which contains the
card values for one of the strategies in count_table.

Next we need to connect the count to the shoe: when the shoe reshuffles, it also needs
to reset all the counts. There are a few ways we could implement this:

• Each shoe keeps a list of all card-counting objects, and when the shoe is shuffled, it calls
a function associated with each object to reset the count to zero.

• We create a new game function that plays multiple hands of blackjack and tracks when
the shoe needs to be shuffled and the count to be reset.

• The card-counting function can look at the shoe to see if it has been reshuffled recently,
and if so, reset its own count.

If we examine these possibilities, we see the three strategies correspond to the three
main pieces of our code: the shoe, the game, and the count. When thinking about how to
implement new behaviors, it is useful to systematically work through all our options.

A fourth option is to abandon the idea of a running count and compute the complete
count whenever needed. Instead of providing a running count that is incremented or decre-
mented each time a card is played, it would re-count all cards whenever asked. This would
be less efficient, but much simpler because the count is insulated from the game, and doesn’t
need to be controlled by any of the elements in the game.

This is a sound design principle: if we can make something independent (even if it’s
less efficient), it’s usually a good idea to do so. This approach makes our code easier to

http://www.qfit.com/card-counting.htm

392 Case Studies in Data Science in R

understand and to test, and once we have it working correctly we can use profiling tools
to figure out where the slow parts are and then improve them. Generally our predictions
about what parts of a program will be slow are poor, and we are better off using data to
figure out what is slow. Otherwise, we easily can spend hours optimizing a part of the code
that only takes seconds to run.

We make it easy to get the current count from the shoe by adding a count method to
the Shoe class. This is also straightforward because we already have a way to get the count
via the any_count() function for a set of cards played.

Lastly, we need a function that takes the count and figures out how much the player
should bet. The basic principle is that the player should bet an amount proportional to the
count, with the restrictions that the player must always bet some amount and can only bet
integer amounts.

Here is a simple bet() function that implements this description:

bet = function(count) pmax(floor(count), 1)

We might want to check our bet() function with a plot. This is easy to do with a little-
known feature of the base plot() function. We can give plot() a function and a range of
values and it will create a plot of that function for us, e.g.,

plot(bet, from = -5, to = 10)

The results are shown in Figure 9.3. We see that bet() is a step function with increments of
1 at the integers.

−5 0 5 10

2
4

6
8

10

x

be
t

Figure 9.3: Plot of the bet() Function. This plot shows the bet() function over the domain
from -5 to 10. We can use this visualization to confirm that the function works as expected.

Simulating Blackjack 393

9.8 Putting It All Together
Now we have a complete system to model the payoff from card counting. To make it easier
to compare the bets from the counting strategy with the same bet every time, we take
advantage of the fact that varying the bets changes our computation of the gain by a factor
determined by bet(). We assume for simplicity that the initial bets are all $1, and we leave
it as an exercise to modify the code to handle more complex situations. We define the
count_payoff() function as a simple wrapper to play_hand() that also computes the count
for each hand, which determines the size of the bet. The played() method is very useful
here because we can pass that to our hi_low() function to ascertain the count. We do this
as follows:

count_payoff = function(shoe, n = 100) {
gain = numeric(n)
count = numeric(n)

gain[1] = play_hand(shoe$draw_n, strategy_optimal)
count[1] = 0

for (i in 2:n) {
count[i] = hi_low(shoe$played())
gain[i] = play_hand(shoe$draw_n, strategy_optimal)

}
c(sum(gain), sum(gain * bet(count)))

}

Now we can call count_payoff() many times and compare the gain of the optimal strategy
with a fixed bet to one that varies the size of the bet according to the Hi-Low counting
strategy. We run our simulation of 50 hands 1000 times with

set.seed(155100)
my_shoe = new_shoe()
payoffs = replicate(1000, count_payoff(my_shoe, 50))

In this simulation, the two strategies for bet size (Hi-Low versus a constant bet) differ
by 0.8 on average:

apply(payoffs, 1, mean)

[1] 0.52 1.34

The standard deviation of gain is larger in the Hi-Low strategy:

apply(payoffs, 1, sd)

[1] 8.6 18.4

The difference in standard deviations makes sense since we are not changing the strategy,
only increasing the size of the bet. The two sets of 1000 gains are not independent because
they are based on the same set of cards and optimal strategy. The average and SD of the
difference in gains across the 1000 bets are:

394 Case Studies in Data Science in R

diffs = payoffs[2,] - payoffs[1,]
mean(diffs)

[1] 0.82

sd(diffs)

[1] 13

And the SE for the difference in these simulated means is about 0.41. We also make a
polygon plot to compare the difference in the gains. The plot appears in Figure 9.4. It
confirms our observations based on the mean and SD of the simulations.

0

100

200

−50 0 50 100
Difference in Gain for 50 Bets (Hi−Low − Fixed)

co
un

t

Figure 9.4: Comparison of Average Gain for Card Counting. A comparison of the fixed and
varying bet amount strategies. For each set of 50 hands, we take the difference in the gains
between a fixed bet and a bet adjusted according to the Hi-Low counting strategy. Values
above 0 are when the gain for the counting strategy exceeded the fixed bet.

9.9 Exercises
Q.1 In the winnings() function in Section 9.2, we chose to break the function down by the

value of the dealer’s cards first, and then the player’s cards. What happens when we

Simulating Blackjack 395

switch this order and start with the player’s values? Is the function easier or harder to
understand? Write this alternative version of the function and test it using the test code
in Section 9.2.1 to make sure that your code works as expected.

Q.2 How does the terse version of the winnings() function in Section 9.2 work? Is it consis-
tent with the original version? Test this new version of the function with the test cases
developed in Section 9.2.1. Is it easier to follow the logic in the first or second version of
the winnings() function? Why? When do you think using code like this is appropriate?

Q.3 Consider how you might add checks to the hit(), dd(), and splitPair() functions (see
Section 9.3.1) to ensure that they are being used properly. For example, add code to
splitPair() so that an error message is returned if the player tries to split a hand when
the 2 cards are not of equal value. Add other checks as well.

Q.4 Compile a set of test cases for the checks that you developed in the previous exercise.
Write a function that calls these functions (hit(), dd(), and splitPair()) with the test
cases and returns an informative message indicating whether the functions pass all of
the tests and if not, where problems occurred. Create other test cases and test functions
for the play_hand() function.

Q.5 Implement the draw_n() method for the Shoe class of Section 9.6. This function has
one input: n, which indicates how many cards should be drawn from the shoe. It returns
a vector of n cards taken from the cards field of the Shoe object. This vector of cards
begins at the position indicated by the pos fields. This method also increments pos by
n so that we do not draw the same cards multiple times. It also calls the helper method
decks_left() to see if it is time to reshuffle. If there is less than 1 deck in the shoe then
it calls the shuffle() method to shuffle the cards.

Q.6 Implement the hi_low() function from Section 9.7. This function takes one input, which
is a numeric vector cards, and it returns the Hi-Lo count (see Table 9.2). If you want
an additional challenge, write the function without using an if statement or any loops.
For example, consider taking advantage of the fact that the vector of cards is a numeric
vector, and use that to subset into a vector of count values.

Q.7 Implement the any_count() function for counting cards (see Section 9.7). This function
has 2 arguments: a numeric vector cards that contains the cards played, and a numeric
vector, strategy, which is of length 10 and contains the card values for one of the
strategies in Table 9.2. Modify count_payoff() to use any_count(). This may require
modifying the function definition to accept a strategy argument.

Q.8 Suppose a bet was larger than $1, say $4, how might the bet() function take this into
consideration in deciding the size of the bet? Modify bet() (in Section 9.7) so that bets
are integers, but utilize a standard bet size. What impact does this change have on other
functions, e.g., winnings()? Is there a need to modify any of the earlier code?

Q.9 Implement other play options that are available in some games of blackjack, such as
insurance and surrendering. Think about the play_hand() function. Can you simply
augment this function with code for these new actions, or do you need to fundamentally
re-structure how the function works? See Section 9.4 for the play_hand() function.

Q.10 A major simplification in our simulation is that we have effectively given the gambler
an infinite amount of money. How do things change if we also account for ruin, i.e., the
gambler running out of money?

396 Case Studies in Data Science in R

Q.11 Can you make the code faster? Use profiling techniques to find the slow parts of the
code. Also, consider how you might use vectorization to play multiple games at once.

Bibliography
[1] Roger Baldwin, Wilbert Cantey, Herbert Maisel, and James McDermott. The optimum

strategy in blackjack. Journal of the American Statistical Association, 51:429–429, 1956.

[2] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[3] Hadley Wickham and Winston Chang. ggplot2: An Implementation of the Grammar
of Graphics. http://cran.r-project.org/package=ggplot2, 2011. R package
version 0.9.3.1.

http://www.r-project.org
http://cran.r-project.org/package=ggplot2

Part III

Data and Web Technologies

This page intentionally left blankThis page intentionally left blank

10
Baseball: Exploring Data in a Relational Database

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
10.1 Introduction . 399

10.1.1 Computational Topics . 400
10.2 Sean Lahman’s Database . 401

10.2.1 Connecting to the Baseball Database from within R 401
10.3 Aggregating Salaries into Payroll . 403
10.4 Merging Payroll Data with Information in Other Tables . 408

10.4.1 Adding Team Names to the Payroll Data . 409
10.4.2 Adding World Series Records to the Payroll Data . 411

10.5 Exploring the Extreme Salaries . 412
10.6 Exercises . 415

Bibliography . 416

10.1 Introduction
Baseball fascinates many Americans and others, and many statisticians share this fascina-
tion with the sport. Nate Silver, who gained wide acclaim for the accuracy of his novel
statistical methods to predict election outcomes, has also used statistics to study issues in
baseball, such as the trade-offs in scheduling cold-weather games, home-field advantage, and
effects of steroid use (see http://www.baseballprospectus.com/news/?author=
59). This search for new baseball knowledge through statistical measures of in-game activity
has been coined “sabermetrics” after the Society of American Baseball Research (SABR).
In Moneyball [6], John Henry, former owner of the Florida Marlins, compared the baseball
industry to the financial industry: “People in both fields [finance and baseball] operate with
beliefs and biases. To the extent you can eliminate both and replace them with data, you
gain a clear advantage.”

In this chapter, we explore the change in player salaries and team payrolls over time via
Sean Lahman’s baseball data [5], a comprehensive baseball archive that is freely available
online. This archive is organized as a relational database so a central focus of this case
study is on the computational aspects of accessing data stored in a relational database, and
through our explorations, we also gain practice with SQL (Structured Query Language),
a language designed for accessing data stored in a relational database. As statisticians we
often do not have a say in the format in which the data that we have been asked to work

399

http://www.baseballprospectus.com/news/?author=59
http://www.baseballprospectus.com/news/?author=59

400 Case Studies in Data Science in R

with are stored. For this reason, it can be useful to be familiar with various common formats
so that we are not limited in the projects in which we can participate. On the flip side, we
might be in a position to make recommendations about how to store data, so it is good for
us to have some familiarity with the possibilities and their pros and cons.

Particular issues that arise when working with data stored in a relational database
include figuring out where to perform the computations. For example, do we extract an
entire data table from the database into R [9] and work with it there, or do we perform some
subsetting, collapsing, or analysis in the database first and then retrieve the results back
into R for further reduction and analysis? Additionally, do we retrieve the data in batches
and carry out computations in R that update with each new batch or do we process all the
results in one step? The answers to these and other questions, of course, depend on various
circumstances and context, such as the size of the data, the complexity of the structure
and organization of the data, and the functionality available in the database management
system.

Section 10.2 provides a brief introduction to the baseball archive and its organization.
There we determine where and how the information we need to analyze salaries is stored,
and we see how to connect to the database from within R. In Section 10.3 we work with
one of the tables in the database and extract and summarize salary information into team
payrolls using simple SQL commands. In Section 10.4, we continue our investigation of
salaries with tasks that require us to combine information that is stored in more than one
table in the database. Additionally, at times we must perform parts of the analysis in R
because the database does not offer the functionality required. In Section 10.5, we examine
the players with the largest salaries, and we demonstrate how to retrieve intermediate results
in batches and complete the analysis incrementally in R.

For those requiring an introduction to SQL we recommend [10]. We provide here only
brief summaries of the basic features of the SELECT statement. In addition, we provide
brief descriptions of SQL concepts, syntax, and statements as we encounter them.

Additional questions about baseball are provided in the exercises, and we encourage
readers to pose their own questions to investigate.

10.1.1 Computational Topics
To explore the baseball data, we need to gain some experience working with a relational
database. More specifically, we need to accomplish the following:

• Read schema for a database to understand how the database is organized.

• Use basic SELECT statements, including the WHERE clause, to access and retrieve subsets
of data stored in a single table.

• Merge and combine information within and across tables with clauses such as GROUP
BY, HAVING, and LEFT OUTER JOIN.

• Retrieve data from a query in blocks and further process it in R.

We use R functions to interface with the database, and we compare how we might
perform some or all of the computations in R. This comparison also helps us understand
the pros and cons of working in one environment over the other.

Baseball: Exploring Data in a Relational Database 401

TABLE 10.1: Mapping Relational Database Terms to Statistics Terms

SQL Statistics Description
relation/table data frame rectangular arrangement of values
tuple observation/record row in a data frame
attribute variable column in a data frame
key row name variable or combination of variables that uniquely

identifies a row in the table

This table provides a simple mapping between terms used in statistics and corresponding
concepts in relational database theory and parlance.

10.2 Sean Lahman’s Database
The baseball archive we work with in this chapter is available at http://seanlahman.
com/baseball-archive/statistics. This archive was created and licensed by Sean
Lahman so we are entitled to use it for research and teaching purposes, but cannot distribute
it. We are very grateful for Lahman’s efforts in compiling and managing this database.
Other sites for baseball data include http://asp.usatoday.com/sports/baseball/
salaries/default.aspx and http://www.baseball-databank.org/.

The terminology used to describe a relational database is different from the terminology
statisticians typically use to describe data. We use common statistical terms throughout this
chapter, but provide in Table 10.1 a mapping between database terminology and statistics
terminology.

The variables in the different tables of Lahman’s baseball archive are described online
in http://seanlahman.com/files/database/readme2012.txt. As noted there,
this database “can never take the place of a good reference book like The Baseball En-
cyclopedia [7]. But it will enable people to do the kind of queries and analysis that those
traditional sources don’t allow.” We begin by accessing the basic descriptions of the tables
and variables in the “readme” document. According to Section 2.0 of this document, called
Data Tables, there are 4 main tables in the database: Master, which holds biographical
information about the people in the database, and Batting, Pitching, and Fielding,
which hold, respectively, batting, pitching, and fielding statistics for each player. Player
salary and team payrolls are not included in the Master table so we must dig a little
deeper. We can continue reading this documentation, or use R functions to explore the
organization of the database.

10.2.1 Connecting to the Baseball Database from within R
Packages such as RMySQL [4], ROracle [8], and RPostgreSQL [2] offer the ability to con-
nect with different implementations of relational database management systems (RDBMS),
such as MySQL, Oracle, and PostgreSQL, respectively. All of these packages are compliant
with the DBI package [3], which provides a common database interface for communicating
between R and an RDBMS. For example, the DBI package provides functions to keep track
of whether an SQL statement produces output, how many rows are affected by the oper-
ation, how many rows have been fetched (if the statement is a query), and whether there
are more rows to fetch.

With each of these packages, we can initialize a driver to the relevant RDBMS and

http://seanlahman.com/baseball-archive/statistics
http://seanlahman.com/baseball-archive/statistics
http://asp.usatoday.com/sports/baseball/salaries/default.aspx
http://asp.usatoday.com/sports/baseball/salaries/default.aspx
http://www.baseball-databank.org/
http://seanlahman.com/files/database/readme2012.txt

402 Case Studies in Data Science in R

establish a connection to a particular database. For example, to access a MySQL database,
we use the RMySQL package:

library(RMySQL)

Then, we initialize a driver for a MySQL database with

drv = dbDriver("MySQL")

and make a connection to the database with

con = dbConnect(drv, user = "login", dbname = "BaseballDataBank",
host = "URL")

Here the host argument points to the location of the database server, which may be running
locally or remotely. Also, user specifies the login name for the user.

At this point, we can submit commands for execution. For example, we find what tables
are in this database with

dbListTables(con)

[1] "AllstarFull" "Appearances"
[3] "AwardsManagers" "AwardsPlayers"
[5] "AwardsShareManagers" "AwardsSharePlayers"
[7] "Batting" "BattingPost"
[9] "Fielding" "FieldingOF"
[11] "FieldingPost" "HallOfFame"
[13] "Managers" "ManagersHalf"
[15] "Master" "Pitching"
[17] "PitchingPost" "Salaries"
[19] "Schools" "SchoolsPlayers"
[21] "SeriesPost" "Teams"
[23] "TeamsFranchises" "TeamsHalf"

We see that there is a table called Salaries, and we can query the variable names in this
table with

dbListFields(con, "Salaries")

[1] "yearID" "teamID" "lgID" "playerID" "salary"

Although we do not have variable definitions, we see that this table is at the player–year
level so we should be able to aggregate the salary values to create an annual team payroll.
We can double check our understanding against the online documentation.

The documentation states: “Each player is assigned a unique number (playerID). All
of the information relating to that player is tagged with his playerID. The playerIDs are
linked to names and birth dates in the Master table.” Also, according to the documentation,
the Salaries table contains the following information:

2.15 Salaries table

yearID Year
teamID Team
lgID League
playerID Player ID code
salary Salary

Baseball: Exploring Data in a Relational Database 403

This confirms our understanding of the variables in the Salaries table.
The process to access a relational database from within R is identical for all databases,

i.e., the querying functions are the same across the R packages. For example, in the next
section, we demonstrate how to use the SELECT statement to retrieve salary data from the
Salaries table in our database. This query is independent of the RDBMS implementation.

10.3 Aggregating Salaries into Payroll
To calculate the team payrolls, we need to compute the sum of the salaries for the players
on each team for each year. If this table is a data frame in R, then we can easily make
these calculations with the tapply() or by() functions. That is, if the Salaries table is
not very large, then we can retrieve it from the database as a data frame and perform these
computations. To determine how large the table is, we can calculate the number of rows in
the table with

query = "SELECT COUNT(*) FROM Salaries;"
dbGetQuery(con, query)

COUNT(*)
1 23141

Here, con holds the connection to the database (see Section 10.2.1) and query is a character
string consisting of the SQL statement.

The Salaries table has 23141 rows and, as we saw earlier, 5 variables. Since the table
is not very large, we can retrieve the entire table with

salaryDF = dbGetQuery(con, "SELECT * FROM Salaries;")

Or we can retrieve only the variables necessary to compute the annual team payrolls with

query = "SELECT salary, teamID, yearID FROM Salaries;"
salaryDF = dbGetQuery(con, query)

The return value in R from the latter of these two queries is a data frame consisting of 3
columns, called salary, teamID, and yearID. These 3 elements in salaryDF correspond to
the columns in the table in the database. We confirm this with

class(salaryDF)

[1] "data.frame"

dim(salaryDF)

[1] 23141 3

sapply(salaryDF, class)

salary teamID yearID
"integer" "character" "integer"

404 Case Studies in Data Science in R

We also see that the data types of the variables are as we expect so no conversion is necessary
to calculate payroll from the salary values.

One advantage to retrieving the table in its entirety is that we can use familiar R
commands to explore the data. For example, with this data frame, we can easily find the
payrolls with

payrolls = tapply(salaryDF$salary, salaryDF[-1], sum)

However, this approach to working with a database can be problematic or cumbersome, if
the table is too large to retrieve from R or if the data reduction can be performed more
efficiently in the database. For these reasons, we demonstrate how to compute the team
payrolls in the database, rather than in R. For those familiar with R, the direct comparison
of the two approaches can be helpful for learning SQL.

SELECT statements read a bit like an English sentence because SQL is a declarative
language where the functions and clauses are regular English words and the delimiters
are commas and white space. The SQL keywords are not case sensitive, but we use the
convention of capitalizing them to make it easier to distinguish between the operations in
the language and the variable and table names.

SELECTing Variables from Tables
The following simple SELECT statement demonstrates the basic features of the

language:

SELECT x, y 1 2
FROM table; 3 4

1 The names of the variables to be extracted/selected from the table appear in a
comma-separated list. A * indicates all of the variables in the table are to be
selected. An SQL function, such as COUNT(*) or MIN(x), returns the number
of rows or the minimum value in x, respectively.

2 Blanks and new lines can appear anywhere in the statement so we format the
statement for ease of reading.

3 In FROM we specify the name of the table from which to select the variables.
More than one table can be listed and these tables are joined together. (See
Section 10.4.)

4 Statements end with a semicolon.

The result is an SQL table with the specified columns.

Let’s explore Salaries a little more before we compute the team payrolls. For which
years do we have salary information? Most versions of SQL contain MIN() and MAX()
functions, and we can use them to address this question with

dbGetQuery(con, "SELECT MIN(yearID) from Salaries;")
dbGetQuery(con, "SELECT MAX(yearID) from Salaries;")

or we can combine the two queries into one with

dbGetQuery(con, "SELECT MIN(yearID), MAX(yearID) from Salaries;")

MIN(yearID) MAX(yearID)
1 1985 2012

Baseball: Exploring Data in a Relational Database 405

The salary data covers 28 years.
To determine whether we have salary data for all years between 1985 and 2012, we can

extract the unique values for year from Salaries with

query = "SELECT DISTINCT yearID from Salaries;"
years = dbGetQuery(con, query)

We can then examine years in R to see whether there are 28 values, one for each year from
1985 to 2012:

length(years[[1]])

[1] 28

Notice that we have performed some of the summarization in the database when we re-
quested that the yearID values be DISTINCT and some in R when we used length().

We can also ask whether or not the other tables in the database cover the same time
period. For example, we check the Teams table to see if it has earlier records:

dbGetQuery(con, "SELECT MIN(yearID), MAX(yearID) from Teams;")

MIN(yearID) MAX(yearID)
1 1871 2012

Unlike the salary data, the team information dates back to 1871. If we examine yearID for
the Pitching and Batting tables, we find that 1871 is the earliest and 2012 the most
recent year for these tables as well.

We know there are over 23,000 records in the Salaries table covering the period from
1985 to 2012. Let’s examine a few of these records with

query = "SELECT * FROM Salaries LIMIT 6;"
dbGetQuery(con, query)

yearID teamID lgID playerID salary
1 1985 BAL AL murraed02 1472819
2 1985 BAL AL lynnfr01 1090000
3 1985 BAL AL ripkeca01 800000
4 1985 BAL AL lacyle01 725000
5 1985 BAL AL flanami01 641667
6 1985 BAL AL boddimi01 625000

The LIMIT clause restricts the results to 6 rows. It is similar to the head() function in
R and can be helpful for examining a few of the values in a table to confirm they are as
expected. We see that we have each player’s annual salary and we also have the team and
league on which they played that year.

Let’s first find the payrolls for the teams in a particular year, say 1999. We use a WHERE
clause to select only those records from 1999, i.e.,

SQLSELECT teamID, salary
FROM Salaries
WHERE yearID = 1999;

However, we want to aggregate all of the salaries for a team. We do this by including the
GROUP BY clause as follows:

406 Case Studies in Data Science in R

SQL SELECT teamID, SUM(salary)
FROM Salaries
WHERE yearID = 1999
GROUP BY teamID;

The GROUP BY clause in this statement collects together all records with the same value
for teamID; it is similar to the tapply() and by() functions, e.g.,

tapply(salary, teamID, sum)

The results table has 2 variables: the teamID and the sum of salaries for all records with
the same value of teamID.

If we prefer to use different names for the variables in the results table, then we can
rename them using the AS clause as follows:

SQL SELECT teamID AS team, SUM(salary) AS payroll
FROM Salaries
WHERE yearID = 1999
GROUP BY teamID;

We do this here so that we can use the variable name payroll rather than SUM(salary),
which is cumbersome to use as a variable name in R.

The WHERE, GROUP BY, and HAVING Clauses
The SELECT statement has several optional clauses. Three commonly used ones

are WHERE, GROUP BY, and HAVING.

SQL SELECT * FROM table; WHERE x = 3 AND y > 10;

The WHERE clause subsets the rows in the table according to the specified logical
expression. Logical expressions can be combined with AND and OR and negated with
NOT. Note that because SQL does not have the notion of assignment, it uses = for the
logical “equal to” operator in contrast to R’s ==.

SELECT z, SUM(w)
FROM table
WHERE x = 3 AND y > 10
GROUP BY z 1
HAVING MAX(y) < 20; 2

1 The GROUP BY clause collapses rows in the table that have the same value for
z. The result is an SQL table with one row per unique value in z.

2 The HAVING clause subsets the rows produced by the GROUP BY clause. The
logical expression follows the same syntax as the expression in the WHERE clause.
Since this clause selects rows from the collapsed table, it only appears when there
is a GROUP BY clause.

Below is the sequence in which the clauses are applied.

1. FROM : The working table is constructed from the tables provided.

Baseball: Exploring Data in a Relational Database 407

2. WHERE: The logical expression in the WHERE clause is applied to the working table
and only those rows that test TRUE are retained.

3. GROUP BY: The results are split into groups of rows that have the same value for
the variable(s) in the GROUP BY clause.

4. HAVING: This logical expression is applied to each group resulting from the GROUP
BY and only those that test TRUE are retained.

5. SELECT: The variables not specified in the SELECT clause are dropped, aggregates
are calculated, e.g.,MIN(), and options such as DISTINCT, ORDER BY, and LIMIT
are applied.

Now we retrieve the payrolls for all teams and years with the SELECT statement:

payrolls = dbGetQuery(con,
"SELECT yearID AS year, teamID AS team,

lgID AS league, SUM(salary) AS payroll
FROM Salaries GROUP BY team, year;")

Note that we have used 2 variables team and year to aggregate (or group) the rows so
that we have a payroll for each team for each year.

We want to adjust these payroll figures for inflation before comparing them. We use
inflation rates relative to 1985, the first year of payroll data, found at http://www.bls.
gov/data/inflation_calculator.htm. This information is available in inflation:

head(inflation)
1985 1986 1987 1988 1989 1990
1.00 1.02 1.06 1.10 1.15 1.21

We adjust the payrolls with

payrollStd = mapply(function(pay, year)
pay/inflation[as.character(year)],

payrolls$payroll, payrolls$year)

We prefer to perform these computations in R rather than in the database, where these
simple algebraic calculations can be cumbersome.

Figure 10.1 displays boxplots of payroll versus year for each of the 2 leagues (American
and National). The following code produced this plot:

payrolls$payrollStd = payrollStd/1000000

boxplot(payrollStd ~ league + year, data = payrolls, log = "y",
ylim = c(5,125), col = gray.colors(2), axes = FALSE,
ylab = "Inflation-adjusted Payroll (millions)")

axis(1, at = seq(1.5, 55, by = 10),
labels = seq(1985, 2010, by = 5))

axis(2)
legend("topleft",

legend= c("American League", "National League"),
fill = gray.colors(2), bty = "n")

The boxplots show a sharp rise in payroll in the early 1990s. In the 2000s the variability
increases. (Note payroll is plotted on a log scale).

http://www.bls.gov/data/inflation_calculator.htm
http://www.bls.gov/data/inflation_calculator.htm

408 Case Studies in Data Science in R

●

●

●

●

●

●
●

●
● ● ●

●

In
fla

tio
n−

ad
ju

st
ed

 P
ay

ro
ll

(m
ill

io
ns

)

1985 1990 1995 2000 2005 2010

5
10

20
50

10
0

American League
National League

Figure 10.1: Boxplots of Team Payrolls by League. These boxplots show the team payrolls
for the American League (dark gray) and the National League (light gray) from 1985 to
2012. Payroll has been logged and is reported in millions of dollars. The American League
appears to have greater spread in payroll than the National League. Also evident is the sharp
increase in payrolls in the late 1980s and early 1990s.

10.4 Merging Payroll Data with Information in Other Tables
We continue our investigation of team payroll with the question: Do teams with high payrolls
more often win the World Series? The World Series results do not appear in the Salaries
table. The World Series results are in the SeriesPost, which contains the post season
wins and losses. It has the following variables,

dbListFields(con, "SeriesPost")

[1] "yearID" "round" "teamIDwinner" "lgIDwinner"
[5] "teamIDloser" "lgIDloser" "wins" "losses"
[9] "ties"

We should be able to use the ID of the team winning the World Series in this table to
augment the payrolls with this additional piece of information.

Relational databases are designed to reduce redundancy by storing information in mul-
tiple tables, so it’s not uncommon to merge information contained in multiple tables to
acquire the desired information. Before we do, we try a simpler task – adding the team
name to the payroll information. For example, we might want to use the name of a team as
an annotation or label in a graphic.

You might wonder why Lahman didn’t include the team name along with/rather than
the team identifier in the Salaries table. The team identifier is shorter than the name
and having both is redundant. That is, the team is uniquely identified by its teamID so
there’s no need to also keep team name in this table, especially since the team appears many
times in Salaries (once for every player-year combination) so the team name is repeated

Baseball: Exploring Data in a Relational Database 409

unnecessarily. The database saves space by having a smaller table that has only one row for
each team’s information, in exchange for the need to look in this table for any additional
information about a team (other than teamID). Databases are designed for this type of
look up/merger so they are fast at it. Design issues are an important part of building a
database (see [10] and [1]).

10.4.1 Adding Team Names to the Payroll Data
We can include the team’s name in our payroll data frame by “joining” the Salaries and
Teams tables in SQL. First, we examine the variables in the Teams table with

dbListFields(con, "Teams")

[1] "yearID" "lgID" "teamID" "franchID"
... "name" "park" "attendance"

Since teams can move, change names, close, etc., there is a team record for each year. This
means that we need to match both the team identifier and the year across the Salaries
and Teams tables. We do this as follows:

query =
"SELECT Salaries.yearID AS year, Teams.name AS team,

Salaries.teamID AS id, SUM(Salaries.salary) AS payroll
FROM Salaries, Teams
WHERE Salaries.teamID = Teams.teamID AND

Salaries.yearID = Teams.yearID
GROUP BY Salaries.teamID, Salaries.yearID;"

payrollWN = dbGetQuery(con, query)

This gives:

year team id payroll
1 1997 Anaheim Angels ANA 31135472
2 1998 Anaheim Angels ANA 41281000
3 1999 Anaheim Angels ANA 55388166
4 2000 Anaheim Angels ANA 51464167
5 2001 Anaheim Angels ANA 47535167
6 2002 Anaheim Angels ANA 61721667

The 2 tables to be merged are specified in the FROM clause as comma-separated table names.
The resulting table consists of all possible combinations of 1 record from each table and is
dubbed an “outer join” in relational database terminology. We specify which rows in this
combined table to keep via the WHERE clause. Here we keep only those records where the
team and year identifiers match across the 2 tables. Additionally, now that we are working
with 2 tables, we need to keep straight which variable is from which table. To do this, we
prepend the table name to the variable name, e.g., Salaries.yearID refers to the yearID
in the Salaries table. This is similar to using the $ in R, e.g., salaries$yearID.

We can double check that the payroll values match our previously computed values with

all(payrollWN$payroll == payrolls$payroll)

410 Case Studies in Data Science in R

[1] FALSE
Warning message:
In payrollWN$payroll == payrolls$payroll :

longer object length is not a multiple of shorter object length

It appears that our joined tables have a different number of rows than the payrolls data
frame we created earlier. (Note we also assumed that the rows of these 2 results tables are
in the same order.) A call to dim() reveals that there is 1 fewer row in payrollWN:

dim(payrollWN)

[1] 797 4

dim(payrolls)

[1] 798 5

To figure out how we might be missing a record, we tally the number of records per team
in each data frame with

table(payrolls$team)

ANA ARI ATL BAL BOS CAL CHA CHN CIN CLE COL DET FLO HOU KC KCA...
8 15 28 28 28 12 28 28 28 28 20 28 19 28 1 27

table(payrollWN$id)

ANA ARI ATL BAL BOS CAL CHA CHN CIN CLE COL DET FLO HOU KCA...
8 15 28 28 28 12 28 28 28 28 20 28 19 28 27

The one payroll value for team KC looks suspicious. It is not in payrollWN. When we drop
this record from payrolls, the payroll values all match:

all(payrolls$payroll[payrolls$team != "KC"] == payrollWN$payroll)

[1] TRUE

It looks as though that team identifier should be KCA. We leave it as an exercise to confirm
whether or not this is the case.

In R we often use the merge() function to merge data frames. The outer join that we
just completed is equivalent to

merge(Payrolls, Teams, by.x = c("yearID", "teamID"),
by.y = c("yearID", "teamID"),
all.x = FALSE, all.y = FALSE)

Here Payrolls is the aggregated salary data for annual payrolls. The by.x and by.y specify
the keys for merging, and the all.x and all.y indicate that all records from both sources
are to be kept. These 4 arguments yield an equivalent result to the WHERE clause in the
SELECT statement.

Before we turn to the World Series question, we briefly consider the efficiency of perform-
ing a merge in R and SQL. Relational databases are designed to be efficient in merging so
we typically merge tables in the database rather than in R. We compare the two approaches
(R and SQL) by running 100 identical merges of the Teams and Salaries tables. In SQL,
we find:

Baseball: Exploring Data in a Relational Database 411

system.time(replicate(100, invisible(dbGetQuery(con, query))))

user system elapsed
6.307 0.030 6.342

whereas, in R we have the following time:

system.time(replicate(100, invisible(queryFcn())))

user system elapsed
8.606 0.462 9.063

Here, queryFcn() retrieves the Salaries and Teams tables into R and then calls merge()
and tapply() to merge and aggregate the data. Performing the aggregation and merge in R
is about 50% slower than in SQL. In this case, since the tables are not very large, the run
times are not dramatically different.

Next we augment the payroll information with the World Series results. This involves a
different type of table join.

10.4.2 Adding World Series Records to the Payroll Data
Let’s begin by examining the data in SeriesPost for one year, say 2012,

dbGetQuery(con, "SELECT round, teamIDwinner, teamIDloser
FROM SeriesPost WHERE yearID = ’2012’;")

round teamIDwinner teamIDloser
1 ALWC BAL TEX
2 ALCS DET NYA
3 ALDS1 NYA BAL
4 ALDS2 DET OAK
5 NLWC SLN ATL
6 NLCS SFN SLN
7 NLDS1 SLN WAS
8 NLDS2 SFN CIN
9 WS SFN DET

We see that there are records for the pennant races as well as the World Series in this table.
We are interested only in the World Series winners, i.e., in the records where round is WS.

When we join the Salaries and SeriesPost tables, we want to keep all of the records
in the Salaries and augment these with the information in the SeriesPost table. This
type of join is called a left outer join, or simply a left join. Two other factors complicate
matters. We still want to aggregate the salary records into team payrolls. And, we don’t
want to match all of the records in the SeriesPost table, only those for World Series
results.

We build up the SELECT statement incrementally. First, we specify the variables that
we retain in the results. These are the same as before with the addition of the round, e.g.,

SQLSELECT
Salaries.yearID AS year, Salaries.teamID AS team,
SUM(Salaries.salary) AS payroll, SeriesPost.round as round

Next, for the FROM clause, we provide only the Salaries table and include SeriesPost
in the LEFT OUTER JOIN clause as follows:

412 Case Studies in Data Science in R

SQL FROM Salaries LEFT OUTER JOIN SeriesPost

The values of the variables to use in the match are specified in the ON clause, rather than
the WHERE clause as in the outer join. This is because the WHERE clause in this statement
applies to the Salaries table. Also, we include the logical expression to limit the records
in SeriesPost to those from the World Series in the ON clause. The ON clause is then:

SQL ON SeriesPost.teamIDwinner = Salaries.teamID
AND SeriesPost.yearID = Salaries.yearID
AND SeriesPost.round = ’WS’

Notice that we match the identifier in teamIDwinner in SeriesPost to the value in
teamID in Salaries. Finally, we include the GROUP BY clause to aggregate the records
in Salaries as before. All together our SELECT statement appears as

query =
"SELECT Salaries.yearID AS year, Salaries.teamID AS team,

SUM(Salaries.salary) AS payroll, SeriesPost.round as round
FROM Salaries LEFT OUTER JOIN SeriesPost
ON SeriesPost.teamIDwinner = Salaries.teamID

AND SeriesPost.yearID = Salaries.yearID
AND SeriesPost.round = ’WS’

GROUP BY team, year;"

payrolls = dbGetQuery(con, query)

Figure 10.2 shows a scatter plot of payroll by year. The points for the payrolls of the teams
that won the World Series appear darker. Indeed, the high payroll teams tend to win the
series.

10.5 Exploring the Extreme Salaries
Lastly, we investigate the largest salaries in the database. The salary table in the database
is not very large, and we can easily pull the entire table into R to find, say, the 3 largest
salaries in 2003 with

sals = dbReadTable(con, "Salaries")
sort(unique(sals$salary[sals$yearID == 2003]),

decreasing = TRUE)[1:3]

[1] 22000000 20000000 18700000

We can perform the same computation in SQL with the following:

query = "SELECT DISTINCT Salary FROM Salaries
WHERE yearID = 2003 ORDER BY Salary DESC
LIMIT 3;"

Baseball: Exploring Data in a Relational Database 413

1985 1990 1995 2000 2005 2010

5
10

20
50

10
0

Year

P
ay

ro
ll

(in
fla

tio
n−

ad
ju

st
ed

 m
ill

io
ns

)

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

● ●

ANA

ARI

ATL

BOS BOS

CHA

CIN

FLO
FLO

KCA

LAN

MIN

MIN

NYA

NYA

NYA NYA

NYA

NYN
OAK

PHI SFN
SFN

SLN SLN

TOR TOR

Figure 10.2: Scatter Plot of Team Payroll by Year. In this scatter plot, the plotting symbol
is a transparent gray and the year has been jittered slightly to avoid over plotting. The
identifier of the teams that won the World Series are added to the corresponding point,
which is colored red. In almost every case, these dots are at or above the upper quartile of
team payroll. Payroll is reported in millions of dollars and plotted on a log scale.

The result of this query yields the first 3 records from the ordered list of distinct values for
salary.

If we want to get the next 4 salary values, we have to reissue the query and ask for
the first 7 records. An alternative approach is to use the dbSendQuery() function, instead
of dbGetQuery(). With dbSendQuery(), the query is performed in the database without
waiting and bringing the results into R. Then we can transfer results in blocks with the
fetch() function. We start by issuing a query for the sorted distinct salary values as follows:

query = "SELECT DISTINCT Salary FROM Salaries
WHERE yearID = 2003 ORDER BY Salary DESC;"

res = dbSendQuery(con, query)

The results from this query have not been transferred into R, but they remain in the
database for us to fetch. For example, we can retrieve the first 3 records with

topSalary = fetch(res, n = 3)
topSalary

salary
1 22000000
2 20000000
3 18700000

These salary figures match those from the calls to sort() and unique() in R. We can then
retrieve the next 4 records in the results table with

fetch(res, n = 4)

414 Case Studies in Data Science in R

salary
4 17166667
5 16000000
6 15714286
7 15666667

After we have completed our fetching, we clear the results object with

dbClearResult(res)

[1] TRUE

Alternatively, if we want to retrieve all the remaining results in one call to fetch(), we can
do this with, e.g., fetch(res, n = -1). Here the value -1 indicates to retrieve all
remaining rows in the table.

If the data are large, then sorting the salaries might be a very expensive operation in
the database and it also would be difficult to bring all of the salaries into R for sorting. We
consider a third approach to finding the 3 largest salary values that retrieves the unsorted
salaries into R in blocks. For each block, we find the 3 largest salaries, and compare these
with the 3 largest values seen so far, and so on. That is, we sort our data in blocks. To do
this, we first determine the total number of records in the Salaries table so we can track
our progress with

query1 = "SELECT COUNT(*) FROM Salaries WHERE yearID = 2003;"
totCount = dbGetQuery(con, query1)

Then we submit the simple query that obtains the salaries values for 2003 with

query2 = "SELECT Salary FROM Salaries WHERE yearID = 2003;"
res = dbSendQuery(con, query2)

The following while loop performs the fetching and batch sorting:

blockSize = 200
totRead = 0
top3Salary = NULL

while (totRead < totCount) {
top3Salary = sort(unique(c(top3Salary,

fetch(res, n = blockSize)[[1]])),
decreasing = TRUE)[1:3]

totRead = totRead + blockSize
}

top3Salary

[1] 22000000 20000000 18700000

dbClearResult(res)

Baseball: Exploring Data in a Relational Database 415

The last batch of results may be shorter than the block size, but the fetch does not give us
an error when we ask for more records than remain in the results table.

If the ultimate goal is to find the players that correspond to the 3 largest salaries, then we
return to the database and query the Salaries table for the playerIDs that correspond
to the extreme salaries (there may be more than 3 because more than one player may have
one of these salaries). One way to do this is to paste together a query that contains the 3
salary values:

charSalary = paste(top3Salary, collapse = ", ")
query3 = paste("SELECT playerID FROM Salaries WHERE yearID = 2003

AND Salary IN (", charSalary, ") ;", sep = "")
dbGetQuery(con, query3)

playerID
1 ramirma02
2 rodrial01
3 delgaca01

Notice that we have programmatically constructed an SQL query in R based on the results
of an earlier SQL query.

Now that we have finished working with the database in this R session, we free up
resources by disconnecting and unloading the driver with

dbDisconnect(con)
dbUnloadDriver(drv)

There are several additional functions that can help us manage the state of a query.
For example, to determine whether or not there are more results to be fetched we call
dbHasCompleted(). Also, if we are handling multiple queries in batch mode, we can keep
track of them with dbListResults(con), which gives a list of all currently active result
set objects for the connection con. The call, dbGetRowCount(results), provides a status
of the number of rows that have been fetched so far in the query.

10.6 Exercises
The following exercises are designed to suggest additional exploratory analyses of the base-
ball archive. These questions have been loosely organized into 5 groups. In addition, we
encourage you to make up your own questions that hopefully lead to fun explorations of the
data. As you answer these questions, keep in mind the decisions as to where to perform the
calculations, try addressing the questions using multiple approaches, and make comparisons
of these approaches.

Instructions for how to set up a database can be found in Chapter 5.

World Series

Q.1 Which team lost the World Series each year? Do these teams also have high payrolls?
Some argue that teams with lower payrolls make it into the post season playoffs, but
typically don’t win the World Series. Do you find any evidence of this?

416 Case Studies in Data Science in R

Q.2 Do you see a relationship between the number of games won in a season and winning
the World Series?

Team Payroll

Q.3 Augment the team payrolls to include each team’s name, division, and league. Create
a visualization that includes this additional information.

Q.4 One might expect a team with old players to be paying these veteran players high
salaries near the end of their careers. Teams with a large number of mature players
would therefore have a large payroll. Is there any evidence supporting this?

Q.5 Examine the distribution of salaries of individual players over time for different teams.

Players

Q.6 Not all of the people in the database are players, e.g., some are managers. How many
are players? How many are managers? How many are both, or neither?

Q.7 What are the top 10 collegiate producers of major league baseball players? How many
colleges are represented in the database? Be careful in handling those records for players
who did not attend college.

Q.8 Has the distribution of home runs for players increased over the years?

Q.9 Look at the distribution of how well batters do. Does this vary over the years? Do the
same players excel each year? Is there a clustering, a bimodal distribution?

Q.10 Are Hall-of-Fame players, in general, inducted because of rare, outstanding perfor-
mances, or are they rewarded for consistency over years?

Q.11 Do pitchers get better with age? Is there an improvement and then a fall off in
performance? Is this related to how old they are, or the number of years they have been
pitching? What about the league they are in? Do we have information about each of
these factors? If so, how can we combine them to present information about the general
question?

Miscellaneous

Q.12 How complete are the records for the earliest seasons recorded in this database? For
example, we know that there is no salary information prior to 1985, but are all of the
other tables “complete”?

Q.13 Are certain baseball parks better for hitting home runs? Can we tell from this data?
Can we make inferences about this question?

Q.14 What is the distribution of the number of shut-outs for a team in a season?

Bibliography
[1] Joe Celko. SQL for Smarties: Advanced SQL Programming. Elsevier, Burlington, MA,

2010.

Baseball: Exploring Data in a Relational Database 417

[2] Jon Conway, Dirk Eddelbuettel, Tomoaki Nishiyama, Sameer Prayaga, and Neil Tiffin.
RPostgreSQL: R interface to the PostgreSQL database system. http://cran.r-
project.org/package=RPostgreSQL, 2013. R package version 0.4.

[3] David James. DBI: R Database Interface. http://cran.r-project.org/
package=DBI, 2013. R package version 1.1-11.

[4] David James, Saikat DebRoy, and Jeffrey Horner. RMySQL: R interface to the MySQL
database. http://cran.r-project.org/package=RMySQL, 2012. R package
version 0.9-3.

[5] Sean Lahman. Lahman’s Baseball Database. http://seanlahman.com/
baseball-archive/statistics, 2014.

[6] Michael Lewis. Moneyball. W.W. Norton, New York, NY, 2003.

[7] MacMillan. The Baseball Encyclopedia: The Complete and Definitive Record of Major
League Baseball. Simon and Schuster, New York, NY, 1996.

[8] Denis Mukhin, David James, and Jake Luciani. ROracle: OCI based Oracle
database interface for R. http://cran.r-project.org/package=ROracle,
2014. R package version 1.1-11.

[9] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[10] F.D. Rolland. The Essence of Databases. Prentice Hall, New York, 1998.

http://cran.r-project.org/package=RPostgreSQL
http://cran.r-project.org/package=RPostgreSQL
http://cran.r-project.org/package=DBI
http://cran.r-project.org/package=DBI
http://cran.r-project.org/package=RMySQL
http://seanlahman.com/baseball-archive/statistics
http://seanlahman.com/baseball-archive/statistics
http://cran.r-project.org/package=ROracle
http://www.r-project.org

This page intentionally left blankThis page intentionally left blank

11
CIA Factbook Mashup

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
11.1 Introduction . 419

11.1.1 Computational Topics . 421
11.2 Acquiring the Data . 421

11.2.1 Extracting Latitude and Longitude from a CSV File 421
11.3 Integrating Data from Different Sources . 423
11.4 Preparing the Data for Plotting . 424

11.4.1 Redoing the Merge of the Factbook and Location Data 428
11.5 Plotting with Google Earth™ . 430
11.6 Extracting Demographic Information from the CIA XML File 435
11.7 Generating KML Directly . 442
11.8 Additional Computational Tasks . 448

11.8.1 Creating Plotting Symbols . 448
11.8.2 Efficiency in Generating KML from Strings . 448
11.8.3 Extracting Latitude and Longitude from an HTML File 450

11.9 Exercises . 451
Bibliography . 454

11.1 Introduction
The tremendous increase in data that are freely available on the Web has created numerous
possibilities for extracting data from different sources, putting them together, and creating
exciting new types of visualizations. These visualizations, sometimes called “mashups,” are
typically interactive and displayed on the Web. According to Wikipedia [13],

The term [mashup] implies easy, fast integration, frequently using open application
programming interfaces (API) and data sources to produce enriched results that
were not necessarily the original reason for producing the raw source data. ... The
main characteristics of a mashup are combination, visualization, and aggregation.

This shift in the accessibility of data has changed the role of the statistician to one
who actively seeks out relevant data and incorporates them into an analysis. Moreover, new
technologies for presenting information have led to interesting ways to visualize data that
are qualitatively different from the typical static 2-dimensional plot. As an example, Google

419

420 Case Studies in Data Science in R

Earth™ [2] offers a canvas for presenting information that supports user interaction, easily
incorporates contributions of others, and allows layering of information. In this chapter, we
mash together data from a “Factbook” published by the Central Intelligence Agency (CIA)
and a file of latitude and longitude pairs for countries around the world from MaxMind
(http://www.maxmind.com) to create a visualization of statistics on infant mortality
for display on Google Earth™ (see Figure 11.1).

More specifically, the data sources we work with to create this visualization are:

• Latitude and longitude of the geographic center of each country available in
a comma-separated-value (CSV) format at http://dev.maxmind.com/static/
csv/codes/country_latlon.csv;

• The CIA Factbook, which contains, among other things, the populations and infant
mortality rates for hundreds of countries. The 2012 Factbook is available in an XML
format from Michael Schierl’s Web site on Source Forge at http://jmatchparser.
sourceforge.net/factbook/data/factbook.xml.gz.

Figure 11.1: Display of Infant Mortality by Country on Google Earth™. This screenshot
of the Google Earth™ virtual earth browser displays circles scaled to the population size and
colored according to the infant mortality rate for a country. The data are available from
the CIA Factbook. The locations of the circles are determined from MaxMind’s latitude and
longitude of the country’s geographic center. When the viewer clicks on a circle, a window
pops up with more detailed information for that country.

To create our visualization, we need to extract the relevant information from the data
files. As mentioned, these data are in different formats, namely CSV and XML. We describe
the CSV extraction in Section 11.2, and we postpone to later in the chapter in Section 11.6
the extraction of country statistics from the XML file. We also provide the data from the
CIA Factbook in 3 data frames in R [10], in case the reader wishes to focus on the merging
and plotting and not the extraction of the data from XML.

http://www.maxmind.com
http://dev.maxmind.com/static/csv/codes/country_latlon.csv
http://dev.maxmind.com/static/csv/codes/country_latlon.csv
http://jmatchparser.sourceforge.net/factbook/data/factbook.xml.gz
http://jmatchparser.sourceforge.net/factbook/data/factbook.xml.gz

CIA Factbook Mashup 421

Once we have extracted these data, we integrate the data sources into a single structure
where all of the information for each country (i.e., infant mortality, population, latitude,
longitude, and country name) are merged together. We do this in Section 11.3. In addition,
we transform the variables into formats that are amenable to plotting (Section 11.4). For
example, we discretize a numeric variable in order to represent it via one of several colors
for the plotting symbols.

Finally, we plot the data. We begin by making a static 2-dimensional map to which we
add the information we have retrieved from the CIA Factbook. This task is addressed in
Section 11.4. We then proceed to create an interactive visualization for display on Google
Earth™. We take two approaches. The first uses the functionality in the RKML package [6].
For those who want more experience working with XML, we also create the Google Earth™
display more directly using the XML package [12]. These two approaches are the topics of
Section 11.5 and Section 11.7, respectively.

11.1.1 Computational Topics
• Data manipulation: extract data from different formats, merge data from multiple

sources, and transform variables.

• Programmatic access to data available on the Web: we write code that uses HTTP to
acquire the data.

• Programmatic data retrieval to create a reproducible record of the data acquisition
process.

• Visualization: maps, color, plotting symbols, labels, and legends.

• Interactive visualization on Google Earth™, including customized placemarks, pop-up
windows, tool-tips, and legends.

• Modularity: design functions to create our visualization in pieces that correspond to
different subtasks of the larger task of making a map, which facilitates testing and
enables re-usability for different purposes.

• Tree structures in XML and XPath expressions to locate content.

11.2 Acquiring the Data
The data for our visualization are found in two different sources and formats. Both sources
are available on the Web. The latitudes and longitudes for countries are available in a
CSV file, and are easily read into R using the standard utility functions, e.g., read.csv() or
read.table(). Extracting the country demographic information from the Factbook requires
more work because these data are in an XML document. We postpone that task until
Section 11.6.

11.2.1 Extracting Latitude and Longitude from a CSV File
The latitudes and longitudes for countries are available from many places on the Web.
We found the site at http://dev.maxmind.com/static/csv/codes/country_
latlon.csv to be easy to use. Below is a snippet of the CSV file found there:

http://dev.maxmind.com/static/csv/codes/country_latlon.csv
http://dev.maxmind.com/static/csv/codes/country_latlon.csv

422 Case Studies in Data Science in R

"iso 3166 country","latitude","longitude"
AD,42.5000,1.5000
AE,24.0000,54.0000
AF,33.0000,65.0000
AG,17.0500,-61.8000
AI,18.2500,-63.1667
AL,41.0000,20.0000

We see that countries are identified by 2-letter codes, defined by the iso 3166 country
codes. The term “iso” stands for the International Organization for Standardization (ISO).
This organization has created standard codes for country names, and these are available at
http://www.nationsonline.org/oneworld/country_code_list.htm.

We can read the data into R with a call to read.csv() as follows:

latlonDF = read.csv(urlLatLon)

Here, urlLatLon is a character string containing the maxmind.com URL. When we examine
the first few rows of the latlonDF data frame, we see that they match the above snippet
of the CSV file:

head(latlonDF)

iso.3166.country latitude longitude
1 AD 42.50 1.5000
2 AE 24.00 54.0000
3 AF 33.00 65.0000
4 AG 17.05 -61.8000
5 AI 18.25 -63.1667
6 AL 41.00 20.0000

In addition, we have two data frames with the CIA Factbook information, infMortDF
containing the infant mortality values by country and, similarly, popDF for the population
information. We have two data frames of demographic information, rather than one, because
the countries’ statistics are not presented in the same order in the Factbook. The population
statistics are in order of the most populous country to the least and the infant mortality
rates are in order of highest to lowest rate. We briefly examine these two data frames with

head(popDF)

pop ctry
1 1349585838 ch
2 1220800359 in
3 316668567 us
4 251160124 id
5 201009622 br
6 193238868 pk

head(infMortDF)

infMort ctry
1 121.63 af
2 108.70 ml
3 103.72 so
4 97.17 ct
5 94.40 pu
6 93.61 cd

http://www.nationsonline.org/oneworld/country_code_list.htm
http://maxmind.com

CIA Factbook Mashup 423

It’s not a surprise that China is the first country in the population data frame, India is
second, and the USA third, and these 3 countries are clearly not among those with the
highest infant mortality rates.

Notice that the CIA Factbook appears to also use the ISO codes to identify countries.
We can match a country’s latitude and longitude with its demographic information using
this unique identifier. This is the topic of the next section.

11.3 Integrating Data from Different Sources
We have all of the pieces of information that we need to create our visualization, but they
are not collected together in one data structure. We have no guarantee that infMortDF,
popDF, and latlonDF contain information for the same countries. For example, we see that
we have latitude and longitude for 240 countries, i.e.,

nrow(latlonDF)

[1] 240

However, we have infant mortality rates for 223 countries and population counts for 239
countries. Additionally, even though infant mortality and population figures come from
the same source, the 239 countries for which we have population information need not
be a superset of the 223 countries for which we have infant mortality data. Moreover as
noted earlier, the population and mortality statistics are not provided in the same order.
Additionally, the latitude and longitude are ordered alphabetically by ISO code.

Before we can create any plots, we need to match all of the relevant data values for each
country. We can create a data frame for this purpose where we have latitude, longitude,
infant mortality, population, and country code as variables and each country as a row in the
data frame. Another issue that we must address is which countries should we include in this
data frame, i.e., do we want to keep a country even if we do not have all of the information
for it? If we are missing latitude and longitude, then we do not know where to place the
plotting symbol for that country. And, if we are missing infant mortality or population size,
then we do not have the information that we need to plot. How we handle the merging of
these values depends on our purpose, and in this situation, we keep only those countries for
which we have all of the relevant information.

Let’s begin by combining the demographic data since these come from the same source
and consequently should have fewer problems with matching. We merge these data using
the country codes that appear in the variable ctry in each data frame. We can use the
merge() function to do this with

IMPop = merge(infMortDF, popDF, by = "ctry", all = FALSE)
dim(IMPop)

[1] 222 3

We see that the resulting data frame is smaller than both the infant mortality and population
data frames, indicating the intersection of these two sets of countries is a proper subset of
both. We leave it as an exercise to determine which rows of infMortDF and popDF were
excluded.

Matching longitude and latitude with demographic information requires that we match
a record in IMPop with the correct record in latlonDF. The country code that identifies a

424 Case Studies in Data Science in R

country in latlonDF is in the column iso.3166.country. Unfortunately, when we read the
CSV file into latlonDF we did not specify that this character data should be kept as strings
so the country codes were converted into factors. We now convert them back to strings
before using them to merge with IMPop. Also, notice that the codes in IMPop are lower case
while those in latlonDF are upper case, so we also convert the codes in latlonDF to lower
case. We do this with

latlonDF$code = tolower(as.character(latlonDF$iso.3166.country))

Then we merge the two data frames with

allCtryData = merge(IMPop, latlonDF, by.x = "ctry", by.y = "code",
all = FALSE)

We now have one data frame with all of the information for each country.
We soon see that we have made a big mistake in assuming that the two data sources use

the same coding for country name. For example, GB stands for Great Britain in the Factbook
and Gabon in the MaxMind file. When we discover this, we have more data extraction and
merging to do. For now, let’s continue with the data frame that we have created. We correct
our mistakes later in Section 11.4.1.

11.4 Preparing the Data for Plotting
For our first visualization of infant mortality and population, we make a static map. After
that, we tackle making a Google Earth™ visualization in Section 11.5. (We use much of
the preparatory work for the static map in making the interactive visualization.) To include
both infant mortality and population on the same map we can use discs where we scale each
country’s symbol according to population size, and color it according to infant mortality
rate. To assign infant mortality to a color, we need to discretize the rates, i.e., we need to
convert the numeric values into ordered categories because we can use only a finite number
of colors. In this section, we discuss how we choose colors, create the categorical version of
infant mortality, and translate population values into symbol size.

We choose colors from one of the color palettes offered by Cindy Brewer and made avail-
able in the RColorBrewer package [5]. Brewer’s palettes have been developed especially
for map making and to enable accurate comparisons. Several palettes are available in the
package, and we prefer the palette called YlOrRd that ranges from pale yellow to orange
to dark red because red typically connotes danger. This sequential palette is also useful for
comparing ordered values where we want to focus on one end of the spectrum, e.g., those
countries with high rates. Another reason for choosing the yellow-orange-red sequence is to
make it easy for the viewer to distinguish the circles from the green and brown background
colors used for rendering land areas in Google Earth™. Finally, we selected only 5 col-
ors, and consequently 5 levels of mortality, because it’s difficult for our eyes to distinguish
between more than 5 to 7 colors.

library(RColorBrewer)
display.brewer.all()
cols = brewer.pal(9, "YlOrRd")[c(1, 2, 4, 6, 7)]

Now that we have our colors, we need to connect infant mortality to color. To do this,

CIA Factbook Mashup 425

we can create an ordered factor using the cut() function where infant mortality values are
categorized by the interval in which they fall. We can choose the end points of these intervals
by either specifying the number of intervals or by providing the cut points. When we specify
the number of intervals, the range is divided equally, e.g.,

newInfMort = cut(allCtryData$infMort, breaks = 5)
summary(newInfMort)

(1.68,25.7] (25.7,49.7] (49.7,73.7] (73.7,97.7] (97.7,122]
96 24 17 8 3

Alternatively, we can provide the cut points as

newInfMort2 = cut(allCtryData$infMort,
breaks = c(0, 37, 50, 65, 80, 150))

summary(newInfMort2)

(0,37] (37,50] (50,65] (65,80] (80,150]
106 15 12 9 6

Notice that there are only a few countries with very high rates.
In order to settle on the cut points, let’s examine the distribution of infant mortality

more closely. We make a histogram with

hist(allCtryData$infMort, breaks = 20, main = "",
xlab = "Infant Mortality per 1000 Live Births")

We see in Figure 11.2 that infant mortality has a highly skewed distribution with a long
right tail and that the vast majority of countries have infant mortality rates less than 15
per 1,000. When we use intervals of the same length, then the rightmost intervals have very
few observations.

We could try using the empirical quintiles to determine the intervals,

quantile(allCtryData$infMort, probs = seq(0, 1, by = 0.2))

0% 20% 40% 60% 80% 100%
1.8 5.4 12.3 21.9 48.5 121.6

If we use these as cut-points, then the large values are lumped together in the top interval
with other less alarming values. This makes it hard to focus on the highest countries. Let’s
try cut points made from a hybrid of these two approaches. We are interested in high and
very high rates and less so in the lower values. We can choose these cut-points using quantiles
that are finer at the right tail of the distribution and coarser on the left. We also want to
round these cut-points to values that are easy for the reader to digest, e.g., 50 rather than
48.49. In addition, we might want to do a little research to see if there are commonly used
rates set by, say, the United Nations or Centers for Disease Control that we might want to
use for standard reference points. Taking these various constraints into consideration, we
settle on breaks at 10, 25, 50, and 75:

InfMortDiscrete = cut(allCtryData$infMort,
breaks = c(0, 10, 25, 50, 75, 150))

426 Case Studies in Data Science in R

Infant Mortality per 1000 Live Births

Fr
eq

ue
nc

y

0 20 40 60 80 100 120

0
5

10
15

20
25

30

Figure 11.2: Distribution of Infant Mortality for Countries in the CIA Factbook. This
histogram of infant mortality rates shows a highly skewed distribution. Most countries have
rates under 20 per 1000 live births and a few countries have rates between 80 and 125.

Now that we have discretized the mortality rates, we are ready to make a world map. For
this map, we want to place circles at the location of each country where the color filling the
circle corresponds to infant mortality and the size of the circle corresponds to population.
Specifically, we want the area of the circle to correspond to population, so the radius is
proportional to the square root of population. After trial and error, we find that if we scale
the square-root of population by 4000 then the circles are small enough that they don’t
overlap and occlude aspects of the map. We make our map with the map() function in the
maps package [1] with

library(maps)
world = map(database = "world", fill = TRUE, col="light grey")

Then we add the discs of different size and color with

symbols(allCtryData$longitude, allCtryData$latitude, add = TRUE,
circles= sqrt(allCtryData$pop)/4000, inches = FALSE,
fg = cols[InfMortDiscrete], bg = cols[InfMortDiscrete])

And lastly, we place a legend on the map with

legend(x = -150, y = 0, title = "Infant Mortality",
legend = levels(InfMortDiscrete), fill = cols, cex = 0.8)

Our choice for the radius has some difficulties because the range of population is several
orders of magnitude:

CIA Factbook Mashup 427

range(allCtryData$pop)

[1] 5189 1349585838

The small countries have symbols that are so tiny that we can barely see them, if at all, and
we certainly can’t see their colors. On the other hand, if we make the circles larger so that
we can see the small countries, then the circles for the larger countries such as India are so
big that they cover too much of the map. We can confirm this problem via a histogram of
the square-root of population (see Figure 11.3), where we create this histogram as follows:

hist(sqrt(allCtryData$pop), breaks = 20,
xlab = "Square-root of Population", main = "")

One way to remedy this problem is to have a minimum radius so that any country with a
population below a particular level is represented by a circle large enough to see it. Another
way is to cap the size of the largest circles. We try the first approach and leave the second
as an exercise. We set the minimum radius using the pmax() function as follows:

rads = pmax(sqrt(allCtryData$pop)/4000, 1)

Square−root of Population

Fr
eq

ue
nc

y

0 10000 20000 30000

0
10

20
30

40
50

60

Figure 11.3: Population Distribution for Countries in the CIA Factbook. This histogram
of the square root of population size for countries shows a highly skewed distribution with a
mode around 1000.

Figure 11.4 uses these revised radii, and is an improvement. However, if we look a bit
more closely at the map, we see that there appears to be something wrong. We would not
expect the UK to have such a high infant mortality rate, the circle that represents China is
very small, and there is a country in central Europe with an unexpectedly large population.
What is going on? Something is amiss with the data.

428 Case Studies in Data Science in R

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Infant Mortality

(0,10]
(10,25]
(25,50]
(50,75]
(75,150]

Figure 11.4: Incorrect Map of Infant Mortality and Population. In this map each disk corre-
sponds to a country’s infant mortality and population. The size of the disk is proportional to
the population and the color reflects the infant mortality rate. Notice the size of China’s disk
is too small – it has the highest population but one of the smallest disks. Other anomalies
are apparent with closer inspection.

11.4.1 Redoing the Merge of the Factbook and Location Data
Let’s check the merging of the latitude and longitude data frame with the data frame of
population statistics. We can query some of the countries from the merged data frame,
allCtryData, and examine their values. We have assumed that, e.g., the code ch cor-
responds to China and af to Afghanistan and that the coding of the countries is the
same in both sources, i.e., that they both use ISO 3166 country codes. The Web site
https://www.iso.org/obp/ui/#search (see Figure 11.5) provides a lookup facil-
ity for country codes and names. We see that the United Kingdom maps to GB for Great
Britain and that Switzerland, not China, maps to CH. Let’s examine the entries in the data
frame for these two country codes:

allCtryData[allCtryData$ctry %in% c("ch","gb"),]

ctry infMort pop iso.3166.country latitude longitude
29 ch 15.62 1349585838 CH 47 8
50 gb 49 1640286 GB 54 -2

The latitude and longitude for these European countries look approximately correct, but
the population and mortality rates look too high. Switzerland does not have 1.3 billion
people and Great Britain does not have an infant mortality rate of 49 per 1000 births.
Could the CIA Factbook be using a different set of country codes? When we examined the

https://www.iso.org/obp/ui/#search

CIA Factbook Mashup 429

first few country populations, we saw the largest country had a country code of ch and a
population that matches the one shown here for Switzerland. It must be that ch stands for
China in the CIA Factbook and not Switzerland. The merge worked as instructed, but our
instructions were wrong because the two data files use different codes for country name.

Figure 11.5: Screenshot of the ISO Country Code Mapping. This screenshot of the ISO
Web site shows the ISO code for the United Kingdom as GB. Codes are also available in
XML and CSV formats at http://www.iso.org/iso/home/standards/country_
codes.htm.

When we re-examine the Factbook, we find a table near the end of the document that
contains the mapping from the CIA code to the ISO code. We can extract this mapping and
use it to merge the Factbook information with the latitude/longitude information. We can
also retrieve the country name from this table to use later in the Google Earth™ mashup.
These data are in the data frame codeMapDF:

head(codeMapDF)

cia name iso
1 af Afghanistan AF
2 ax Akrotiri -
3 al Albania AL
4 ag Algeria DZ
5 aq American Samoa AS
6 an Andorra AD

The task of extracting this information from the Factbook follows the techniques of Sec-
tion 11.3. We leave it as an exercise to redo the merge of these data sources. Below is the
top of the revised data frame:

iso ctry infMort pop name lat lon
1 AD an 3.76 85293 Andorra 42.50 1.50
2 AE ae 11.59 5473972 United Arab Emirates 24.00 54.00
3 AF af 121.63 31108077 Afghanistan 33.00 65.00
4 AG ac 14.17 90156 Antigua and Barbuda 17.05 -61.80
5 AI av 3.44 15754 Anguilla 18.25 -63.17
6 AL al 14.12 3011405 Albania 41.00 20.00

http://www.iso.org/iso/home/standards/country_codes.htm
http://www.iso.org/iso/home/standards/country_codes.htm

430 Case Studies in Data Science in R

(Note the variable names were shortened for formatting purposes.) In addition, let’s check
that the confusion between China and Switzerland and between Gabon and Great Britain
have been rectified:

allCtryData[allCtryData$ctry %in% c("ch", "sz", "gb", "uk"),]

iso ctry infMort pop name latitude longitude
37 CH sz 3.90 7996026 Switzerland 47 8.00
42 CN ch 15.62 1349585838 China 35 105.00
67 GA gb 49.00 1640286 Gabon -1 11.75
68 GB uk 4.56 63395574 United Kingdom 54 -2.00

Our revised map appears in Figure 11.6

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

Infant Mortality

(0,10]
(10,25]
(25,50]
(50,75]
(75,150]

Figure 11.6: Map of Infant Mortality and Population. This map correctly matches the
country demographic information with latitude and longitude. Notice now the symbols for
India and China are approximately the same size and the largest symbols on the map. Also
note that the symbol for the United Kingdom is now pale yellow, the color we would expect
it to be, because it is not being confused with Gabon.

11.5 Plotting with Google Earth™
Google Earth™ [2] provides exciting new ways to display spatial and spatial-temporal data,
whether they are locations of homes, stores, or hiking paths, or more scientific data such

CIA Factbook Mashup 431

as earthquake locations, predictions from climate models, or as in our case, mashups of
world health statistics. For example, we can load into Google Earth™ a KML document
that contains the locations of the centers of the countries in the CIA Factbook. Google
Earth™ renders these locations as pushpins on the surface of the earth. (See for example
Figure 11.7.) Alternatively, we can mark each country with a circle, as in the map we created
earlier, where the color corresponds to a level of infant mortality and the size relates to the
country’s population (see Figure 11.1). Moreover, we can augment each circle with additional
information so that when we click on it, a small window pops up with this information, e.g.,
the window might show other health statistics or a plot of GDP per capita over time. If
another organization has provided information and visualization elements for display on
Google Earth™, we can layer this onto the earth browser along with our data. We can
zoom in and rotate the earth to get a closer look at, e.g., the sub-Saharan countries. When
zooming in, additional features, such as terrain, political boundaries, roads, and buildings,
come into focus, and the circles appropriately scale to the new view. Finally, if we arrange
other health statistics in folders by, say, level of infant mortality, then we can easily filter
the view of the data by hiding/removing countries with rates under, say, 10, and focus on
those countries with higher values.

Figure 11.7: Default Google Earth™ Image. This screenshot of Google Earth™ displays the
location of each country with a pushpin. The locations are from our latitude and longitude
file. A more informative Google Earth™ visualization appears in Figure 11.1.

The earth browser is a technological development that allows us to move substantively
beyond the static plot. Moreover, Google Earth™ is a well-established standard that makes
it easy to incorporate information from other applications. It offers opportunities for inter-
active presentation-style spatial graphics that are not directly available in R. The RKML
package [6] provides functionality to create displays for Google Earth™ and Maps. With
RKML, we can produce plots on Google Earth™ for exploratory data analysis in an R ses-
sion and for formal presentation of results. The plots can be simple displays of spatial data,

432 Case Studies in Data Science in R

richer displays that incorporate additional information via styles and balloon windows, and
more complex interactive displays via links between Google Earth™, R plots, and HTML
forms in Web pages (see for example [7]).

This package is called RKML because the Keyhole Markup Language (KML) is the
language Google uses to render information on its earth browser. KML is an XML vo-
cabulary. It is an open standard maintained by the Open Geospatial Consortium, Inc.
(OGC) [9] (http://www.opengeospatial.org/standards/kml/). The functions in
RKML produce KML documents that can be opened in Google Earth™ for display.

We can think of plotting on Google Earth™ as analogous to having a blank canvas made
from a call to plot() with a type of ‘n’, and on this canvas, we add plotting symbols with a
call to points(). With RKML, we call the kmlPoints() function to add what Google Earth™
calls placemarks to the surface of the earth. We can do this with

library(RKML)
doc = kmlPoints(allCtryData)

Since allCtryData contains variables called longitude and latitude, the kmlPoints()
function uses these to position the placemarks. The next step is simply to save the document
in the variable doc to a KML file for loading into Google Earth™. We do this with

saveXML(doc, "countryPlain.kml")

When we open this file in Google Earth™, we see the typical yellow pushpins arranged
around the globe at the latitudes and longitudes of the countries in our data frame.

Of course, this visualization does not have any population and infant mortality infor-
mation. We can substitute the yellow pushpins with our own circles that are filled with
color representing the rate of infant mortality and sized according to population. This way,
we make a visualization similar to the flat map that we constructed in Section 11.4.1. The
color and size of each circle are determined as before by the country’s infant mortality
rate and population, respectively. See Figure 11.1 for a screenshot of the enhanced display.
One difference from the static map, however, is that we also discretize population size for
simplicity.

We can supply all of this style information via arguments to kmlPoints(), and as a result,
customize a display to be more informative and aesthetic than the map with pushpins.
However, we want to use the same style settings for many placemarks. KML supports style
specifications by having a collection of descriptions in a separate part of the document that
acts as a dictionary of styles. The approach is somewhat similar to styles in word processors
or in Cascading Style Sheets. We create these styles and give them unique identifiers. Then,
we use these identifiers to associate a style with each point in the call to kmlPoints(). The
basic call in pseudocode is

kmlPoints(dataFrame, docStyles = styleList, style = pmStyleIds)

Here styleList holds a named list of styles that are stored at the top level of the document
and available for use by all the graphical elements. The variable pmStyleIds is a vector of
style names that associates each longitude–latitude pair with one of the styles in styleList.
We use the style parameter here in a similar, but slightly more indirect, way as we use the
col and pch parameters in plot(). The indirection comes from specifying a style name rather
than the actual style information. The use of docStyles avoids redundancy in the KML
document because we do not repeat the same information for multiple elements with the
same appearance. This reduces the size of the file, avoids redundant information, and greatly
simplifies changing the appearance of a set of points because we only need to change the
information in one location in the file. Also, this way, we can combine styles.

http://www.opengeospatial.org/standards/kml/

CIA Factbook Mashup 433

We need 25 styles, one for each color-size combination, i.e., one for each mortality-
population combination. More specifically, our goal is to create a list, ballStyles, to hold
these 25 styles. We give each style a name, e.g., ball_m-k, where m ranges from 1 to 5
and corresponds to 1 of 5 colored circles (e.g., yor3ball.png when m is 3) and k also ranges
from 1 to 5 and corresponds to a scaling of the circle, (e.g., 1.75 is the second smallest scale
factor and is used when k is 2). In this example, the "ball_3_2" element of ballStyles is
used to represent countries that fall into the third level of mortality and second population
range; its contents are

ballStyles[["ball_3-2"]]

$IconStyle
$IconStyle$scale
[1] "1.75"

$IconStyle$Icon
href

"yor3ball.png"

This is the format of the style information required by kmlPoints(), i.e., a list of lists with
each element corresponding to a node in the KML style specifications. That is, ballStyles
is in R, not KML. It will be converted to KML when the document is created.

We construct these 25 style settings with

popScales = as.character(1+ c(0.25, .75, 1.5, 3, 7))
icon = rep(sprintf("yor%dball.png",

seq(along = levels(InfMortDiscrete))),
each = length(levels(popDiscrete)))

scale = rep(popScales, length(levels(InfMortDiscrete)))

ballStyles = mapply(function(scale, icon)
list(IconStyle =

list(scale = scale,
Icon = c(href = icon))),

scale, icon, SIMPLIFY = FALSE)

g = expand.grid(seq(along = levels(InfMortDiscrete)),
seq(along = levels(popDiscrete)))

names(ballStyles) = sprintf("ball_%d-%d", g[,2], g[,1])

With these style settings in hand, we match each observation to the name of its asso-
ciated style. The discretized values of mortality and population for each observation are in
InfMortDiscrete and popDiscrete, respectively. Together these values determine which
style to use for each placemark. The code for generating the style id for each point is:

ctryStyle = sprintf("ball_%d-%d", InfMortDiscrete, popDiscrete)

We now have the list of 25 styles in ballStyles and the associated style for each longitude-
latitude pair in ctryStyle. We call kmlPoints() with

kmlPoints(allCtryData, docStyles = ballStyles, style = ctryStyle)

434 Case Studies in Data Science in R

However, before we create this KML document, we want to further augment the display
with more informative descriptions that appear in the pop-up windows and Places panel,
which is a hierarchical viewer that appears along the left-hand side of the viewer and
is used to organize and show/hide individual placemarks and collections of them. Each
placemark’s description is displayed in a pop-up balloon-type window when the viewer
clicks on its associated circle. For our descriptions, let’s use the country’s name and actual
infant mortality rate and population, rather than the discretized versions. We format this
information as an HTML table with

ptDescriptions =
sprintf(paste(

"<table><tr><td>Country:</td><td>%s</td></tr>",
"<tr><td>Infant Mortality:</td>",
"<td>%s per 1,000 live births</td></tr>",
"<tr><td>Population:</td><td>%s</td></tr></table>"),

allCtryData$name, allCtryData$infMort, allCtryData$pop)

We also could have used functions in the R2HTML package [3] to create an HTML table from
our data frame. See Figure 11.1 for a screenshot that shows one of these pop-up windows.

Lastly, we set up some additional document-level information, e.g., the top-level doc-
ument name and description and the folder name that appears in the Places panel. We
specify these as strings with

docName = "Infant Mortality"
docDescription = "2012 CIA Factbook"
folderName = "Countries"

The docName variable is a label that appears alongside the blue and white icon for the
document in the Places panel of the virtual browser, docDescription provides a brief
description of the KML document that appears below the document label, and folderName
is a label for a collection of placemarks within the document.

We now have prepared all of the information for our Google Earth™ mashup. The
following call to kmlPoints() supplies this information to customize the display as well as
the essential longitude-latitude pairs:

doc = kmlPoints(allCtryData, docName = docName,
docDescription = docDescription,
docStyles = ballStyles,
folderName = folderName,
style = ctryStyle,
description = ptDescriptions,
ids = allCtryData$ctry,
.names = allCtryData$name)

Note that we override the default label that appears next to each placemark in the virtual-
earth viewer via the argument .names. In this case, we supply the country name for the
placemark’s label.

Before saving our document, we add to it a legend detailing the meaning of the colors.
We use the kmlLegend() function, which has arguments that are similar to those of the
regular legend() function in R:

CIA Factbook Mashup 435

kmlLegend(x = 20, y = 20, title = "Infant Mortality",
legend = levels(InfMortDiscrete), fill = cols,
text.col = "white", dims = c(100, 108),
parent = doc)

Google Earth™ adds the legend as an overlay to the viewing window. The x and y argument
values in this function call provide the coordinates in pixels for the location of the legend.
These coordinates are not supplied in longitude and latitude because the legend remains
fixed on the 3D viewer so it can be seen in all views of the earth. The legend also remains
the same size as the display zooms in and out. For this reason, it does not make sense
to create a legend for circle size. The parent argument to kmlLegend() specifies the KML
document to which the legend is to be added.

Finally, we save the document for viewing in Google Earth™ with

saveXML(doc, "ctryFancy.kml")

Although we specified the file name ‘ctryFancy.kml’, saveXML() creates the file named
‘ctryFancy.kmz’. The kmz extension means the file is a zipped collection of files. This
file contains the KML document and the 5 PNG files for the icons, e.g., yor1.png.

11.6 Extracting Demographic Information from the CIA XML File
The CIA Factbook is stored as a compressed (gzip’ed) file called factbook.xml.gz at http:
//jmatchparser.sourceforge.net/factbook/data/. Before we begin our search
in this XML document for the desired information, we provide a little information about
the structure of an XML document and how to work with it in R in the sidebar below. The
functions presented there are in the XML package [12].

The Structure of an XML Document
Consider the following simple small document:

<?xml version="1.0"?>
<a>

<f/>
<c>Some Text

<d><f/></d>
<e id="eId"/>
<b id="bob">More Text

</c>

This XML document can be represented as a tree, which represents the hierarchical
structure of the document. There is a top node that contains all other nodes, and nodes
are properly nested. Each node in the document (not the tree) begins with a start tag,
e.g., <c>, and ends with a corresponding closing tag, e.g., </c>. When a node is nested
within another, its start and closing tags must appear between the start and closing
tags of its containing/parent node. If a node has no content (text or child nodes) then
it can be contracted to one tag, e.g., .

http://jmatchparser.sourceforge.net/factbook/data/
http://jmatchparser.sourceforge.net/factbook/data/

436 Case Studies in Data Science in R

a

b c

e id="eId"Some Text d
f

f More Text

b id="bob"

The xmlParse(), xmlRoot(), xmlChildren(), and other functions in the XML package
can read and access the XML document as a tree structure within R. Additionally, since
an XML document has a hierarchical list-like structure, we can operate on it as a list
using the [and [[operators.

Before we embark on the task of reading the data from the Factbook into R, we download
and unzip it and view this source document in a browser such as Chrome or Firefox to get
a sense of its structure. The browser renders the document in its hierarchical form as shown
in Figure 11.8.

The Factbook document is sufficiently large that it is hard to visually inspect it for
the information that we want. By trial and error and searching for terms such as “infant”
and “infant mortality,” etc., we find the part of the document that contains the desired
information. A relevant snippet of this document is shown here:

<factbook lastupdate="2013-03-20+01:00">
<news date="2013-03-21+01:00">
In 2012, fiscal and monetary policies shifted towards...

</news>
...
<category name="People and Society">
<description>
This category includes entries dealing with ...
health and education indicators).
</description>

...
<field dollars="false" unit="(deaths/1,000 live births)"

rankorder="1" name="Infant mortality rate" id="f2091">
<description>
This entry gives the number of deaths of infants
under one year old in a given year per 1,000 live births...
</description>
<rank number="121.63" dateEstimated="true"

dateLatest="2012-12-31" dateEarliest="2012-01-01"
dateText="2012 est." country="af"/>

<rank number="108.70" dateEstimated="true"
dateLatest="2012-12-31" dateEarliest="2012-01-01"
dateText="2012 est." country="ml"/>

...

We have discovered that the information about infant mortality is contained in a
<field> node and this <field> node has an id attribute value of ‘f2091’. Within this

CIA Factbook Mashup 437

Figure 11.8: Screenshot of the CIA Factbook Rendered in Chrome. The Chrome browser
renders an XML file using indentation and color to highlight the structure of the document.
The top or root node of the file is <factbook> and it has an attribute called lastup-
date, which indicates how recently the information was updated. The <news> nodes are
indented one space, corresponding to their depth in the hierarchy, i.e., they are children of
<factbook>.

<field> node there are several <rank> nodes, one for each country for which the CIA
has infant mortality data.

The infant mortality value for a country appears as the value of the number attribute
of a corresponding <rank> node, and the country code appears in the country attribute
of this same node. Notice that the country identifier is ‘af’ for the first country, which we
know is Afghanistan.

Exactly where in this document we can find this <field> node is not obvious by visual
inspection due to the size of the document. Later we demonstrate how to use a powerful
XML technology (XPath) to more easily locate this information, but for now, we explore
the structure of the document with subsetting and other functions available in the XML
package.

We first parse the downloaded document in R using the xmlParse() function as follows:

library(XML)
factbookDoc = xmlParse("Data/factbook.xml.gz")

We now have an XML tree structure in R, which we can explore to find the country statistics
that interest us.

438 Case Studies in Data Science in R

We begin our exploration at the root of the tree. We access the root, confirm that it is
<factbook>, and ascertain how many children it has with the following calls to xmlRoot(),
xmlName(), and xmlSize(), respectively,

factbookRoot = xmlRoot(factbookDoc)
xmlName(factbookRoot)

[1] "factbook"

xmlSize(factbookRoot)

[1] 228

We find the names of these 228 child nodes with

table(names(factbookRoot))

appendix category definition faqCategory
7 10 42 7

news region
149 13

We don’t see any <field> nodes as children of <factbook> so they must be deeper in
the tree structure, e.g., grandchildren or great grandchildren of <factbook>.

We can return to the Chrome browser and more closely examine the document to see if
we can determine where the <field> nodes might be in the hierarchy, or we can take a
guess that the <field> nodes are within a <category> node because it seems unlikely
that they are in <appendix>, <definition>, or <news> nodes. If we do not find the
<field> node in a <category> node, we can expand our search. Let’s examine the
children of these 10 <category> nodes:

sapply(factbookRoot["category"], function(node) table(names(node)))

category category category category category ...
description 1 1 1 1 1
field 2 21 35 27 41

It appears that each <category> node has one <description> node and several
<field> children. Let’s also examine the attributes on the <category> nodes to see
if they can help us locate the information we are seeking. We do this as follows:

sapply(factbookRoot["category"], xmlAttrs)

category.name category.name category.name
"Introduction" "Geography" "People and Society"
category.name category.name category.name
"Government" "Economy" "Energy"
category.name category.name category.name

"Communications" "Transportation" "Military"
category.name

"Transnational Issues"

CIA Factbook Mashup 439

Of these 10 name attributes, the one called ‘People and Society’ seems most promising.
We further explore this particular <category> node by examining the id attribute values
on all of its <field> children. We are looking for one with the value ‘f2091’. We access
the index of the ‘People and Society’ category child with

categoryNodes = factbookRoot["category"]
w = sapply(categoryNodes, xmlGetAttr, "name")=="People and Society"

Then we extract the value for the id attributes of this node’s children with

Ids = sapply(categoryNodes[[which(w)]] ["field"],
xmlGetAttr, "id")

We search for the attribute value f2091 with

f2091Index = which(Ids == "f2091")
f2091Index

field
17

We have found the desired <field> node. It is the 17th <field> node of the People and
Society <category> node.

All that remains is to obtain the country and number attribute values on the <rank>
children nodes of our f2091 <field> node. We obtain all of the <rank> nodes with

rankNodes =
categoryNodes[[which(w)]]["field"][[f2091Index]]["rank"]

xmlSize(rankNodes)

[1] 223

Then we use xmlGetAttr() to retrieve the value of the number and country attributes with

infMortNum = sapply(rankNodes, xmlGetAttr, "number")
infMortCtry = sapply(rankNodes, xmlGetAttr, "country")

We examine the first few:

head(infMortNum)

rank rank rank rank rank rank
"121.63" "108.70" "103.72" "97.17" "94.40" "93.61"

head(infMortCtry)

rank rank rank rank rank rank
"af" "ml" "so" "ct" "pu" "cd"

We have seen that it is possible to traverse the tree structure from within R using [and
[[and xmlChildren(), but it is quite cumbersome. An alternative approach for extracting
this information uses the XPath query language. XPath is a powerful language designed to
locate sets of nodes and attributes in XML documents. We only briefly introduce XPath in
the sidebar below to give a sense of the possibilities.

440 Case Studies in Data Science in R

Simple XPath Expressions
XPath is a powerful technology for specifying queries to locate matching nodes and

attributes in an XML document. We supply a set of examples here that give a few of
the basics of the language. For a more comprehensive treatment see [11] and Chapter
3 of [8] for a description of the language and its use in R. The following sample tree
hierarchy is used to demonstrate XPath.

a

b c

e id="eId"Some Text d
f

f More Text

b id="bob"

/a/b All children of the <a> root. This finds the first, leftmost node in the
document and not the node with an id of ‘bob’ because it is not a child of
<a>.

/a/c/b All nodes that are children of a <c> node, which is itself a child of the
<a> root. This expression locates the rightmost node, the one with the id of
bob.

//b All nodes anywhere in the document. This expression locates both
nodes.

//b[@id=’bob’] All nodes anywhere in document that have an id attribute
with a value ‘bob’. This locates the rightmost node.

//d/f All <f> children of any <d> node in the document. This expression locates
one <f> node, the rightmost one.

//b[@type=’2’]/f All <f> children of a node anywhere in the document,
where the node has a type of 2. This expression does not locate any nodes in
this document.

//b/.. The parent of any node in the document. This expression locates the
<c> node and the <a> root node of the document.

The XPath expression that locates all <field> nodes anywhere in the document is
simply, //field, and the following expression locates all <rank> nodes that are children
of these <field> nodes: //field/rank. Of course, we want only the <rank> nodes
that are children of the particular <field> node that has an id attribute value of f2091.
We can add a conditional expression to restrict the <field> nodes to those with this id
value: //field[@id=’f2091’]/rank. This expression essentially says, look through all
levels of the document (//) for a node named <field> that has an attribute (@) named
id with a value of f2091, and from within that node (or nodes if there is more than one
that satisfies this constraint), locate all <rank> child nodes.

The getNodeSet() function accepts an XML node or document and an XPath expression
and returns a list of the elements within the node that are located by the expression. We

CIA Factbook Mashup 441

provide getNodeSet() the root node of the document and our XPath expression to locate
the f2091 <field> node:

field2091 = getNodeSet(factbookDoc, "//field[@id=’f2091’]")

Let’s examine the attributes of the returned node to confirm we have our desired node:

xmlAttrs(field2091[[1]])

dollars unit
"false" "(deaths/1,000 live births)"

rankorder name
"1" "Infant mortality rate"
id

"f2091"

It appears we have located the correct <field> node so let’s continue with this approach
to locate all of the <rank> nodes in the f2091 <field> node. We do this with

rankNodes = getNodeSet(factbookDoc, "//field[@id=’f2091’]/rank")

When we examine the attribute values of the first node in rankNodes we find:

xmlAttrs(rankNodes[[1]])

number dateEstimated dateLatest dateEarliest
"121.63" "true" "2012-12-31" "2012-01-01"
dateText country

"2012 est." "af"

This matches what we saw in the browser and in the alternative approach to extracting the
information by traversing the tree via the [[operator.

Now we can use the xmlGetAttr() function as before to extract the desired attributes’
values from these nodes. We do this with

infNum = as.numeric(sapply(rankNodes, xmlGetAttr, "number"))
infCtry = sapply(rankNodes, xmlGetAttr, "country")

Since the information in the XML file is plain text, we convert the mortality rate to a
numeric vector. We leave the country codes as strings because it makes combining these
data with population and location information easier.

Whether we use the powerful XPath expression or the subsetting approach, we now have
the infant mortality data in infNum, and we have the corresponding country identifier in
infCtry. We can combine these 2 vectors into a data frame with

infMortDF = data.frame(infMort = infNum, ctry = infCtry,
stringsAsFactors = FALSE)

We can use either of these two approaches (XPath or subsetting) to also extract country
population values from the Factbook. This time we are searching for the <rank> nodes
within the <field> node that has an id of ‘f2119’. As before, we determined that ‘f2119’
is the value of id for the population values by investigating the tree. We use XPath with

442 Case Studies in Data Science in R

rankNodes = getNodeSet(factbookRoot, "//field[@id=’f2119’]/rank")
popNum = as.numeric(sapply(rankNodes, xmlGetAttr, "number"))
popCtry = sapply(rankNodes, xmlGetAttr, "country")

popDF = data.frame(pop = popNum, ctry = popCtry,
stringsAsFactors = FALSE)

We have created the two data frames infMortDF and popDF that were used in Section 11.3.
We saw in Section 11.4.1 that we also need to find the mapping of the ISO country code

to the country code used by the CIA in order to properly merge the latitude and longitude
with this demographic information. This information is in another part of the Factbook, i.e.,
not in a <field> node. We leave it as an exercise to locate and extract this information.
We have provided the results in the data frame codeMapDF for cross checking.

11.7 Generating KML Directly
We saw in Section 11.5 how the kmlPoints() function can create a KML document for
display in Google Earth™. If we have knowledge of the KML node names and structure, we
can generate the KML ourselves using the functionality in the XML package, specifically
with the newXMLDoc() and newXMLNode() functions. A brief introduction to how to use
these functions appears in the sidebar below. There are many more parameters and features
to newXMLNode(), but these are all that we need to generate our KML document.

Generating a Simple XML Document
We demonstrate how to generate the following simple small document with the

functions in the XML package:

<?xml version="1.0"?>
<a>

<c>

Some Text
<d/>
<e id="eId"/>

</c>

We use the tree representation of this document to organize the steps in creating
this document.

a

b c

e id="eId"Some text d

There are many ways to create this document. We provide a few possibilities as

CIA Factbook Mashup 443

examples of the functionality in XML. A first step is to create the empty document
with

doc = newXMLDoc()

Next we add the root node to the document with

aRoot = newXMLNode("a", doc = doc)

A child node can be added to a node with newXMLNode(). We need only provide
the name of the node as a string and a reference to its parent. We add the node
to <a> with

newXMLNode("b", parent = aRoot)

Children can be added to the new node as it is created via the . . . argument to
newXMLNode(), e.g.,

cNode = newXMLNode("c", "Some Text", newXMLNode("d"),
parent = aRoot)

Here, a string in . . . corresponds to a text node, not a node name. Also, attributes can
be included in the node via the attrs parameter, e.g.,

newXMLNode("e", attrs = c(id = "eId"), parent = cNode)

We can also specify the parent of <e> as aRoot[[2]], i.e., as the second child of the
root node.

We save the XML document to a text file with

saveXML(doc, "sample.xml")

To generate a KML document, we need to know the basic structure of a document and
the allowable tag names, attribute names, and values. We can ascertain the basic structure
by examining an excerpt of our target document, e.g.,

<?xml version="1.0"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>
<name>Infant Mortality</name>
<description>2012 CIA Factbook</description>
<LookAt>

<longitude>-121</longitude>
<latitude>43</latitude>
<altitude>4100000</altitude>
<tilt>0</tilt>
<heading>0</heading>
<altitudeMode>absolute</altitudeMode>

</LookAt>
<Style id="ball_1-1">

<IconStyle>
<scale>1.5</scale>

http://www.opengis.net/kml/2.2

444 Case Studies in Data Science in R

<Icon>yor1ball.png</Icon>
</IconStyle>

</Style>
...

<Folder>
<name>CIA Fact Book</name>

...
<Placemark id="uk">

<name>United Kingdom</name>
<description>

<table>
<tr><td>Country:</td><td>United Kingdom</td></tr>
<tr><td>Infant Mortality:</td>

<td>4.56 per 1,000 live births</td></tr>
<tr><td>Population:</td><td>63395574</td></tr>

</table>
</description>
<styleUrl>#ball_1-3</styleUrl>
<Point>

<coordinates>-2.000,54.000,0</coordinates>
</Point>

</Placemark>
...

</Folder>
</Document>

</kml>

To learn more about valid elements and hierarchy in a KML document, refer to the KML ref-
erence at http://code.google.com/apis/kml/documentation/kmlreference.
html.

From the partial listing of the KML document above, we see that it begins with some
document-level information, such as its name and description and where to orient the view-
port (<LookAt>) when the document is first opened in Google Earth™. We also see that
the general style information is placed at the top of the document. In this example, the
style called "ball_1-1" provides a scale and an image/icon to be used by placemarks for
countries in the lowest infant mortality and smallest population categories. These are in,
respectively, <scale> and <Icon> in <IconStyle>.

We also see that one folder (the <Folder> element) contains the placemarks for all
the countries. Each country’s <Placemark> contains its name, the style to apply to the
placemark, and the coordinates to position the placemark. In addition, the <Placemark>
element for a country contains a brief HTML table with country-specific information that
appears in a pop-up window when we click on its icon.

Before we start writing code to create our document, let’s think about how we might
organize our code into tasks and corresponding functions. We can easily identify one task to
create the basic top-level document and a second task to create a placemark. We can design
functions for each of these. Also, let’s develop our functions incrementally, where our initial
placemarks use the simple pushpins provided by Google Earth™ and have no information
for the pop-up window.

Now that we have identified these first tasks, let’s enumerate the inputs and output for
each function. To create the template document, we provide the starting position of the
Google Earth™ viewer and the document name and description. These appear in the side

http://code.google.com/apis/kml/documentation/kmlreference.html
http://code.google.com/apis/kml/documentation/kmlreference.html

CIA Factbook Mashup 445

panel called Places in the viewer. Let’s make these the inputs to our function, but also
provide default values so the user doesn’t have to specify them. The return value should be
the document tree to which we add our placemarks. The country placemarks are children
of a <Folder> node so let’s build that node in this initial function too. Our function is:

makeBaseDocument =
function(docName = "Infant mortality",

docDesc = "2012 CIA Factbook",
lat = 43, lon = -121, alt = 4100000,
tilt = 0, heading = 0)

{
doc = newXMLDoc()
rootNode = newXMLNode("kml", doc = doc)
DocNode = newXMLNode("Document", parent = rootNode)
newXMLNode("name", docName , parent = DocNode)
newXMLNode("description", docDesc, parent = DocNode)
LANode = newXMLNode("LookAt", parent = DocNode)
newXMLNode("longitude", lon, parent = LANode)
newXMLNode("latitude", lat, parent = LANode)
newXMLNode("altitude", alt, parent = LANode)
newXMLNode("tilt", tilt, parent = LANode)
newXMLNode("heading", heading, parent = LANode)
newXMLNode("altitudeMode", "absolute", parent = LANode)
newXMLNode("Folder", parent = DocNode)
return(doc)

}

We call our function makeBaseDocument(), using the default parameter values, to create
the document template as follows:

baseDoc = makeBaseDocument()
baseDoc

<?xml version="1.0"?>
<kml>

<Document>
<name>Infant mortality</name>
<description>2012 CIA Factbook</description>
<LookAt>

<longitude>-121</longitude>
<latitude>43</latitude>
<altitude>4100000</altitude>
<tilt>0</tilt>
<heading>0</heading>
<altitudeMode>absolute</altitudeMode>

</LookAt>
<Folder/>

</Document>
</kml>

Our stub of a KML document matches the target.
Our next task is to create the simple pushpin placemarks as shown in Figure 11.7. Let’s

have our function create one placemark. For inputs, we need to provide the latitude and

446 Case Studies in Data Science in R

longitude. We can also supply a unique identifier and a label for the placemark. The label
appears next to the placemark on the earth browser. As in the visualization produced by
RKML in Section 11.5 we use the country name for the label and country code for the iden-
tifier. We won’t provide any default input values for these parameters. The <PlaceMark>
node needs to be placed in the <Folder> node so we also want to supply the <Folder>
node as an input to make it easy to add the <PlaceMark> node as a child of the <Folder>.
Instead, we could have our functions return the <Placemark> node and assign its par-
ent after creating it, but it seems simpler to pass in the parent node and add the new
<Placemark> to its parent as we create it. When we do this, we don’t need to return the
updated <Folder> node because the original object is modified within our function. That
is, the XML functions work with pointers to C-level structures and any change within a
function to a node that has been passed in to the function is reflected in the original C-level
structure. For more information about working with XML using the XML package in R
see [8].

Our function, which we call addPlacemark(), is defined as

addPlacemark = function(lat, lon, id, label, parent){
newXMLNode("Placemark",

newXMLNode("name", label),
newXMLNode("Point",

newXMLNode("coordinates",
paste(lon, lat, 0, sep = ","))),

attrs = c(id = id), parent = parent)
}

It might seem unnecessary to have this function because all it does is create a <Placemark>
node by calling the newXMLNode() function with our input values. Let’s wait to see if we
still need it after we replace the pushpin with a circle and add a pop-up window.

We are now ready to add a placemark for each country to baseDoc, or more specifically
its <Folder> element. We use our addPlacemark() function to do this. First we need to
access the <Folder> node, which is to be the parent to all of our placemarks. We do this
by accessing the root node of the document and then its child, the <Folder> node, as

root = xmlRoot(baseDoc)
folder = root[["Document"]][["Folder"]]

Then with mapply(), we add the placemarks:

mapply(addPlacemark,
lat = allCtryData$latitude, lon = allCtryData$longitude,
id = allCtryData$ctry, label = allCtryData$name,
parent = folder)

If we save this document with saveXML() and open it in Google Earth™, we would see
a yellow pushpin for each country as in Figure 11.7.

Now we consider how to change the appearance of the placemarks by providing style
references on the placemarks. We can use the same references that we created in Section 11.5;
these names are in ctryStyle. We also want to augment a placemark with additional
information that appears in the pop-up window associated with the placemark. We can use
the descriptions also created in Section 11.5, which are available in ptDescriptions. Since
we have already constructed the descriptions, all that we need to do is add them as text
content to a <description> node in each <Placemark>. We can either add another

CIA Factbook Mashup 447

call to newXMLNode() within addPlacemark(), or add them to the <Placemark> nodes
after they are created. It seems simplest to update our addPlacemark() function so that it
also creates a <description> node. One consideration is whether or not the function has
been in use for a while and other people’s code depends on it. We wouldn’t want to break
their code unnecessarily. However, if we add an optional parameter to our existing function
where the default value indicates that no description is needed, then that leaves the existing
behavior unaltered. Similarly, we can add an optional parameter for style information.

The function definition for our updated function would be

addPlacemark =
function(lat, lon, id, label, parent, style = NULL, desc = NULL)

We leave it as an exercise to modify the function. The augmented <Placemark> element
would look like

<Placemark id="an">
<name>Andorra</name>
<description>

<table>
<tr><td>Country:</td> <td>Andorra</td></tr>
<tr><td>Infant Mortality:</td>

<td>3.76 per 1,000 live births</td></tr>
<tr><td>Population:</td> <td>85293</td></tr>

</table>
</description>
<styleUrl>#ball_1-1</styleUrl>
<Point>

<coordinates>1.500,42.500,0</coordinates>
</Point>

</Placemark>

We apply the updated addPlacemark() with

mapply(addPlacemark,
lat = allCtryData$latitude, lon = allCtryData$longitude,
id = allCtryData$ctry, label = allCtryData$name,
parent = folder, style = ctryStyle, desc = ptDescriptions)

We have one additional task – to add the <Style> nodes defining the actual styles
to the document. Recall that this information is in a list called ballStyles. In this case,
given the complexity of the <Style> element, we might choose to wrap these details into
a separate function, say, makeStyleNode():

makeStyleNode = function(styleInfo, id){
st = newXMLNode("Style", attrs = c("id" = id))
newXMLNode("IconStyle",

newXMLNode("scale", styleInfo$IconStyle$scale),
newXMLNode("Icon", styleInfo$IconStyle$Icon),
parent = st)

return(st)
}

We can generate a list of these <Style> nodes with

448 Case Studies in Data Science in R

styleNodes = mapply(makeStyleNode, ballStyles, names(ballStyles))

These elements are not yet part of the KML document because we did not specify a parent
node in makeStyleNodes() when we created them. Our final task is to place these <Style>
nodes in the document, between the <LookAt> and the <Folder> nodes. We can do this
with the addChildren() function, which takes a list of children in its kids argument and a
position as to where to add the children in its at argument. We call addChildren() with

addChildren(root[["Document"]], kids = styleNodes, at = 3)

We have built the KML document, and we now save it with

saveXML(baseDoc, file = "countryMashup.kml")

As mentioned in Section 11.5 the file name is changed to ‘countryMashup.kmz’ because
saveXML() zips the KML file together with the 5 PNG files.

We should gather all of these calls to addPlacemark(), makeBaseDocument(),
makeStyleNode(), saveXML(), etc., into a single function that creates the entire KML
document for us. We leave this task as an exercise.

11.8 Additional Computational Tasks
There are several other computational tasks associated with the creation of the Google
Earth™ display in Figure 11.1. For example, the circles representing each country were
made using R’s plotting functions. Also, we sped up the process of creating the placemarks
by a factor of about 200 by building them from strings. And, our first attempt at extracting
the latitude and longitude for the center of each country was using an HTML file. We briefly
describe each of these tasks here.

11.8.1 Creating Plotting Symbols
The colored disks used in the Google Earth™ display are created in R using its plot()
function. That is, a disk is made by setting up a blank R canvas that has a transparent
background and no axes and no labels. On this canvas we draw a circle with draw.circle()
and fill it with the desired color. We leave it as an exercise to write a function that takes a
vector of colors as input and creates a PNG file of a circle for each color.

11.8.2 Efficiency in Generating KML from Strings
There are occasions when using string manipulation to create XML content, rather than
using newXMLNode(), can be much faster. These are typically when we need to create many
nodes that have the same structure but with different values in the content or attributes.
For this reason, the XML package includes the function parseXMLAndAdd(), which takes
XML content as a string, parses it, and returns the parsed tree or adds the parsed nodes
to a specified parent. When we develop a function to generate XML, the ideal approach is
to use a string-based approach when it is significantly faster and to use a node approach
otherwise because the tree structure can be more readily updated and modified than strings.

For our Google Earth™ visualization, it is convenient to generate the placemarks with
strings. That is, we can create a series of <Placemark> nodes as a string in a vectorized
manner as follows:

CIA Factbook Mashup 449

kmlTxt = sprintf("<Placemark><Point><coordinates>%.3f,%.3f,0
</coordinates></Point></Placemark>",

allCtryData$longitude, allCtryData$latitude)

This approach vectorizes the operation across all 200+ countries, which we cannot do with
newXMLNode().

Let’s compare these two approaches for creating the simple pushpin placemarks. We
write two versions of a function that take the same inputs but differ in their implementation.
The first, called addPlacemarks.fast(), creates placemarks using strings. This function is
implemented as

addPlacemarks.fast =
function(lon, lat, parent)
{

txt = sprintf("<Placemark><Point><coordinates>%.3f,%.3f,0
</coordinates></Point></Placemark>",

lon, lat)
parseXMLAndAdd(paste(txt, collapse = ""), parent)

}

The second function, called addPlacemarks.slow(), creates placemarks using calls to
newXMLNode(). This function is implemented as

makePM = function(x, y, parent) {
newXMLNode("Placemark",

newXMLNode("Point",
newXMLNode("coordinates",

paste(x, y, 0, sep=","))),
parent = parent)

}

addPlacemarks.slow =
function(lon, lat, parent)
{

mapply(makePM, x = lon, y = lat, parent = parent)
}

For our test, we set up the document and the inputs to the functions as follows:

doc = newXMLDoc()
root = newXMLNode("kml", doc = doc)
folder = newXMLNode("Folder", parent = root)

lons = rep(allCtryData$longitude, 10)
lats = rep(allCtryData$latitude, 10)

Then we use system.time() to time the “slow” function with

system.time(invisible(
addPlacemarks.slow(lons, lats, folder)))

user system elapsed
4.580 0.016 4.645

450 Case Studies in Data Science in R

Next, we time the “fast” function using the same latitudes and longitudes with

rm(doc)
doc = newXMLDoc()
root = newXMLNode("kml", doc = doc)
folder = newXMLNode("Folder", parent = root)

system.time(invisible(
addPlacemarks.fast(lons, lats, folder)))

user system elapsed
0.023 0.001 0.024

The string-based approach is 200 times faster!

11.8.3 Extracting Latitude and Longitude from an HTML File
As mentioned earlier, locations for countries are available from many places on the Web.
For example, in addition to the CSV file, MaxMind also provides these data within an
HTML page that is available at http://dev.maxmind.com/geoip/legacy/codes/
country_latlon/. See the screenshot in Figure 11.9 for the layout. Since well-formed
HTML is a special case of XML, we can extract latitude and longitude from this HTML
file using the same tools that we used to find the demographic information in the Factbook.
We leave it as an exercise to do this.

Figure 11.9: Screenshot of the MaxMind Web Page with Country Latitude and Longitude.
MaxMind makes available the average latitude and longitude for countries in several formats,
including in a display on the Web as shown here in this screenshot.

http://dev.maxmind.com/geoip/legacy/codes/country_latlon/
http://dev.maxmind.com/geoip/legacy/codes/country_latlon/

CIA Factbook Mashup 451

11.9 Exercises
Q.1 In the merge of infMortDF and popDF in Section 11.3 some rows in each data frame

were excluded from the resulting data frame. Determine which rows in each data frame
did not find a match in the other.

Q.2 The data frame codeMapDF contains a mapping of the ISO 3166 codes to the codes used
in the CIA Factbook. It also contains country name. Below are the first few observations
in this data frame:

head(codeMapDF)

cia name iso
1 af Afghanistan AF
2 ax Akrotiri -
3 al Albania AL
4 ag Algeria DZ
5 aq American Samoa AS
6 an Andorra AD

Use this data frame to fix the problem with the merging of the location data, which
uses ISO codes, with the demographic data, which uses the CIA Factbook coding. Be
sure the final data frame contains both codes and the country name from codeMapDF,
as well as the original variables.

Q.3 Remake the map in Figure 11.6 to include the countries for which there is latitude and
longitude, even if there is no demographic information. To do this you need to modify
the call to merge(). In particular, the all.x and all.y parameters are helpful here. In
the map, use a special plotting symbol to denote those countries where demographic
information is missing.

Q.4 To determine the color of a circle in the map in Figure 11.6, we discretized the infant
mortality rates. Investigate alternative cut points for this discretization that derive from
standards used by international organizations such as the United Nations, World Health
Organization, and World Bank. Remake the map to incorporate these external values.

Q.5 To determine the size of a circle in the map in Figure 11.6, we used a scaling of the
square-root of population. We found that the range in population was so large that when
the largest countries had a reasonably sized disk, the disks for the smaller countries could
not be seen. To address this problem we created a lower bound for the disk size so that
no matter how small the country, a disk with this minimum size would be plotted. Find
an alternative scaling for population that instead caps the size of the larger countries.
That is, for very large countries, no matter how large the population, the disk plotted
on the map is no bigger than this cap. Remake the map using this approach to scaling
the circles.

Q.6 The mapproj [4] library contains various projections of the 3D earth into 2D maps.
Install this package and investigate the projections. To do this you will want to read
some resources and tutorials available online. Remake the map in Figure 11.6 using a
projection.

Q.7 There are many other statistics available in the Factbook. Choose demographic infor-
mation other than infant mortality to extract and visualize.

452 Case Studies in Data Science in R

Q.8 Wikipedia tables offer another source of data. For example, Wikipedia has a list of in-
fant mortality rates by country at http://en.wikipedia.org/wiki/List_of_
countries_by_infant_mortality_rate. These data are from the United Na-
tions World Population Prospects report (http://esa.un.org/unpd/wpp/Excel-
Data/mortality.htm) and the CIA World Factbook. Another source of informa-
tion is the World Bank, which provides infant mortality rates at http://data.
worldbank.org/indicator/SP.DYN.IMRT.IN. Create a mashup with data from
one of these alternative sources.

Q.9 XPath is a powerful tool for locating content in an XML document, and there are
often many XPath expressions that we can use to access the information we want. For
example, rather than use the id attribute of <field> to find the relevant data, try
another approach, such as locating the desired nodes by filtering on the value of the
name attribute.

Q.10 Use XPath to extract the mapping between the two types of country codes from
the CIA Factbook. Once you have this mapping in a data frame, use it to re-merge the
latitude/longitude data with the Factbook data. Then recreate the world map. It should
look like Figure 11.6. To assist you in this task, we provide a snippet of the Factbook
that shows a portion of the table that contains the various codes for countries:

<table title="" lettergrouped="1">
<columnHeader colspan="1" title="Entity"/>
<columnHeader colspan="1" title="FIPS 10"/>
<columnHeader colspan="3" title="ISO 3166"/>
<columnHeader colspan="1" title="Stanag"/>
<columnHeader colspan="1" title="Internet"/>
<columnHeader colspan="1" title="Comment"/>
...
<row>
<cell country="ch" content="China"/>
<cell center="1" content="CH"/>
<cell content="CN"/>
<cell content="CHN"/>
<cell content="156"/>
<cell center="1" content="CHN"/>
<cell center="1" content=".cn"/>
<cell content="see also Taiwan"/>
</row>
...
<row>
<cell country="gb" content="Gabon"/>
<cell center="1" content="GB"/>
<cell content="GA"/>
<cell content="GAB"/>
<cell content="266"/>
<cell center="1" content="GAB"/>
<cell center="1" content=".ga"/>
<cell content=" "/>
</row>

<row>

http://en.wikipedia.org/wiki/List_of_countries_by_infant_mortality_rate
http://en.wikipedia.org/wiki/List_of_countries_by_infant_mortality_rate
http://esa.un.org/unpd/wpp/Excel-Data/mortality.htm
http://esa.un.org/unpd/wpp/Excel-Data/mortality.htm
http://data.worldbank.org/indicator/SP.DYN.IMRT.IN
http://data.worldbank.org/indicator/SP.DYN.IMRT.IN

CIA Factbook Mashup 453

<cell country="sz" content="Switzerland"/>
<cell center="1" content="SZ"/>
<cell content="CH"/><cell content="CHE"/>
<cell content="756"/>
<cell center="1" content="CHE"/>
<cell center="1" content=".ch"/>
<cell content=" "/>
</row>

Q.11 In Section 11.8.3 we saw that the latitudes and longitudes for the countries are
available on the Web, embedded in the page at http://dev.maxmind.com/geoip/
legacy/codes/average-latitude-and-longitude-for-countries/. A
snippet of the HTML source for this page is shown in Figure 11.10. Extract these
location coordinates from this HTML file.

Figure 11.10: Screenshot of the HTML Source of the MaxMind Web Page. This screenshot
displays the HTML source of the Web page shown in Figure 11.9. Notice that the latitudes
and longitudes for the countries appear within a <pre> node in the HTML document.

Examine the HTML source, and notice that the data are simply placed as plain
text within a <pre> node in the document. If we can extract the contents of this
<pre> node, then we can place this information in a data frame. Begin by pars-
ing the HTML document with htmlParse(). Don’t download the document, simply
pass the function the URL, http://dev.maxmind.com/geoip/legacy/codes/
average-latitude-and-longitude-for-countries/.
Next, access the root of the document using xmlRoot(), and use an XPath expression
to locate the <pre> nodes in the document. The getNodeSet() function should be
useful here. The getNodeSet() function takes the XML tree (or subtree) and an XPath
expression as input and returns a list of all nodes in the tree that are located with this
expression.

http://dev.maxmind.com/geoip/legacy/codes/average-latitude-and-longitude-for-countries/
http://dev.maxmind.com/geoip/legacy/codes/average-latitude-and-longitude-for-countries/
http://dev.maxmind.com/geoip/legacy/codes/average-latitude-and-longitude-for-countries/
http://dev.maxmind.com/geoip/legacy/codes/average-latitude-and-longitude-for-countries/

454 Case Studies in Data Science in R

Once you have located these <pre> nodes, check to see how many were found. It should
be only one. The latitude and longitude values are in the text content of this node.
Extract the text content with the xmlValue() function. It should look something like:

[1] "\n\"iso 3166 country\",\"latitude\",\"longitude\"\n
AD,42.5000,1.5000\nAE,24.0000,54.0000\nAF...

The content is one long character string containing all the data.
Complete the exercise by reading the plain text in your character vector into a data
frame. Use read.table() to do this. The parameters, text, skip, header, and sep should
be useful here.

Q.12 Collect all of the steps for generating the KML document (see Section 11.7) into one
function, called makeCIAPlot(). Consider generalizing it so that it can be used with
other Factbook variables or other data.

Q.13 The plotting symbols used in Figure 11.1 were created in R. Write a function as
described in Section 11.8.1 to create a set of PNG files that can be used as placemarks
on Google Earth™. Rather than simply making circles, consider making other shapes,
including a miniature plot of the data. Also, use a different color scheme than the
yellow-orange-red palette.
This placemark function creates the icons by setting up a blank canvas that has a
transparent background and no axes or labels. On this canvas draw a circle or some
other shape and fill it with the desired color. The function should take as input a vector
of colors and create a set of circles (or some other shape) as PNG files, one for each
color. The png(), plot(), and draw.circle() functions might be helpful. In addition, you
might try making the symbols partially transparent so that when they overlap on the
plot, they can still be seen.

Q.14 Make an R plot for the pop-up window of each country. That is, for each country,
make a plot that is country-specific. Save this plot to a PNG file and add the file name
to the <description> node, e.g., the content for the description might be something
like

Afghanistan:

The resulting KML document should be a .kmz file, i.e., a zip archive, that contains all
of these PNG files as well as the KML document.

Q.15 Rewrite the addPlacemark() and makeStyleNode() functions to use the technique de-
scribed in Section 11.8.2. That is, construct the placemarks by pasting strings together,
and then convert the strings into XML nodes with a call to xmlParseAndAdd().

Bibliography
[1] Richard Becker, Allan Wilks, Ray Brownrigg, and Thomas Minka. maps: Draw ge-

ographical maps. http://cran.r-project.org/web/packages/maps/, 2011.
R package version 2.1.

http://cran.r-project.org/web/packages/maps/

CIA Factbook Mashup 455

[2] Google, Inc. : A 3D virtual earth browser, version 6. http://www.google.com/
earth/, 2011.

[3] Eric Lecoutre. R2HTML: HTML exportation for R objects. http://cran.r-
project.org/package=R2HTML, 2011. R package version 2.2.

[4] Doug McIlroy, Ray Brownrigg, Thomas Mink, and Roger Bivand. mapproj: Map Pro-
jections. http://cran.r-project.org/package=mapproj, 2014. R package
version 1.2-2.

[5] Erich Neuwirth. RColorBrewer: ColorBrewer palettes. http://cran.r-
project.org/web/packages/RColorBrewer, 2011. R package version 1.0-5.

[6] Deborah Nolan and Duncan Temple Lang. RKML: Simple tools for creating KML
displays from R. http://www.omegahat.org/RKML/, 2011. R package version 0.7.

[7] Deborah Nolan and Duncan Temple Lang. Interactive and animated scalable vector
graphics and R data displays. Journal of Statistical Software, 46:1–88, 2012.

[8] Deborah Nolan and Duncan Temple Lang. XML and Web Technologies for Data Sci-
ences with R. Springer, New York, 2013.

[9] Open Geospatial Consortium, Inc. OGC KML standards. http://www.
opengeospatial.org/standards/kml/, 2010.

[10] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[11] John Simpson. XPath and XPointer: Locating Content in XML Documents. O’Reilly
Media, Inc., Sebastopol, CA, 2002.

[12] Duncan Temple Lang. XML: Tools for parsing and generating XML within R and
S-PLUS. http://www.omegahat.org/RSXML, 2011. R package version 3.4.

[13] Wikipedia. Mashup (web application hybrid). http://en.wikipedia.org/wiki/
Mashup_(web_application_hybrid), 2012.

http://www.google.com/earth/
http://www.google.com/earth/
http://cran.r-project.org/package=R2HTML
http://cran.r-project.org/package=R2HTML
http://cran.r-project.org/package=mapproj
http://cran.r-project.org/web/packages/RColorBrewer
http://cran.r-project.org/web/packages/RColorBrewer
http://www.omegahat.org/RKML/
http://www.opengeospatial.org/standards/kml/
http://www.opengeospatial.org/standards/kml/
http://www.r-project.org
http://www.omegahat.org/RSXML
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

This page intentionally left blankThis page intentionally left blank

12
Exploring Data Science Jobs with Web Scraping and
Text Mining

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California, Davis

CONTENTS
12.1 Introduction and Motivation . 457

12.1.1 Computational Topics . 459
12.2 Exploring Different Web Sites . 459
12.3 Preliminary/Exploratory Scraping: The Kaggle Job List . 465

12.3.1 Processing the Text . 469
12.3.2 Generalizing to Other Posts . 470
12.3.3 Scraping the Kaggle Post List . 473

12.4 Scraping CyberCoders.com . 475
12.4.1 Getting the Skill List from a Job Post . 478
12.4.2 Finding the Links to Job Postings in the Search Results 482
12.4.3 Finding the Next Page of Job Post Search Results 487
12.4.4 Putting It All Together . 488

12.5 A Reusable Generic Framework for Arbitrary Sites . 489
12.6 Scraping Career Builder . 492
12.7 Scraping Monster.com . 494
12.8 Analyzing the Results: The Important Skills . 495
12.9 Note on Web Scraping . 503
12.10 Exercises . 503

Bibliography . 504

12.1 Introduction and Motivation
In this case study, we will explore on-line job postings for different professions or types of
positions. We are interested in finding the set of skills that different types of positions expect
and want, and which are valuable, but not required. We also want to find information about
what educational level an applicant should have (i.e., BSc, MSc, or PhD) for different types
of jobs, how many years of experience are needed, what the salary ranges are, and how these
differ geographically. We will work with on-line postings so they are up-to-date and easily
accessed programmatically. We expect the resulting information will be interesting for both
students and instructors. Also, in the case study, you will learn some of the skills that are

457

458 Case Studies in Data Science in R

currently very much in vogue for data science and develop tools to continue to robustly
gather these data in the future.

Ideally, there would be a single Web site with all job postings of interest. We could then
query these with a rich query language and the results would be returned to us in a conve-
nient form such as JSON or XML. We could then convert these results into data structures
in any language such as R [6] or Python and start to explore the data. Each job posting
would, ideally, have the same structure, with fields for salary range as a minimum and a
maximum, location, list of required skills, educational background, and so on. We would
be able to extract these easily, given the standard structure for each job. Furthermore, we
could do text processing and even natural language processing (NLP) on the less structured
aspects of each posting. We might even think of retrieving the job postings and housing
them in a local database, or perhaps even better, a text search engine such as Lucene [1]
or ElasticSearch [2].

Unfortunately, on-line job posting sites haven’t yet moved to a programmatic interface
that allows us to query the jobs easily. Indeed, they are almost exclusively sites for humans to
visit and read individual job postings. The postings typically have little common structure.
On a given site, each job posting is shown in approximately the same style, but there are
significant differences in the structure and appearance of the postings. As we move from
one site to another, the formatting and display of the postings are very different. We have
to find the salary and the location in different places in the posts. The required skill set is
typically in free-form text, sometimes in a bullet-list.

Basically, each job advertising site has a different format and there is potentially a lot
of variability between the structure of each job posting. Instead of JSON or XML, the job
postings are in HTML and the data of interest are intertwined with a lot of markup for
formatting and rendering the postings, advertisements, etc. We have to figure out how to
extract the actual data we want from this distracting formatting information. Ideally, we’d
be able to write one function to handle any job posting. In reality, we will be fortunate if we
can write one function for all postings on a particular site. We will have to explore a sample
of postings from that site and try to identify commonalities across these, e.g., the class on
an HTML element that identifies the salary, location, or set of skills. These commonalities
may allow us to extract the primary information that is readily available, but potentially
miss some that is too difficult to identify across different postings.

In addition to processing the content of each job posting, we have to locate and retrieve
the individual job postings. Again, this is different for each Web site. We want to try to
identify the commonalities to reduce the amount of code and testing we have to do.

To fetch the job posting documents from Web sites, we’ll make HTTP requests from R
(either implicitly or explicitly), just like your Web browser does. We’ll process the HTML
documents as hierarchical/tree-like structures, looking for elements and sub-trees that con-
tain the information we want. To query the tree and retrieve these elements, we’ll use the
XPath [7, 5] domain-specific language (DSL). We’ll use the XML [9] package to manipulate
the HTML elements and evaluate XPath queries. When we have to explicitly make HTTP
requests, we will use the RCurl package [10].

We will also briefly explore accessing job posts via a more structured Web service that
provides an Application Programming Interface (API) to query jobs. This involves explicit
HTTP requests to get the data. The results are returned as JSON content, which we process
with either the RJSONIO [8] or rjson [3] packages.

This chapter does not provide an introduction to HTML, XML, XPath, JSON , HTTP,
or Web services. Instead, we refer the reader to [5] for an overview of all of these topics,
with an R-oriented perspective. There are also numerous tutorials and books on each of
these different topics.

Before we start looking at any Web sites and details, we want to mention an important

Exploring Data Science Jobs with Web Scraping and Text Mining 459

issue, namely reproducing the computations and results in this chapter. As we all know,
Web sites and pages come and go, and their contents and appearances change, some very
rapidly. In our case, job postings are often available for a short period of time and are then
removed. We will be getting the data (i.e., the job postings) directly from the Web sites. So
we cannot control whether the same job postings will be available and at the same URLs
when we revisit the computations. Furthermore, owners of Web sites sometimes change the
appearance and format of the pages. This means that when we develop code to extract
data from pages based on a particular format, that code may not work in the future. This
is an unfortunate problem with Web scraping, generally (and why we greatly prefer to use
Web services and APIs). We have made some sample pages available on the book’s Web
site (http://rdatasciencecases.org) to allow readers to work with specific HTML
formats, and to dynamically explore the computations we discuss in this chapter. We have
also written the code with robustness in mind so as to be able to adapt to changes in the
HTML representation. However, we cannot guarantee that the code will be able to read the
same job postings in the future.

12.1.1 Computational Topics
In this case study, you will get some experience with the following.

• Scraping data from HTML pages.

• The basics of HTTP/Web requests.

• Using the XPath language and queries.

• Manipulating XML/HTML elements in R.

• Text processing, regular expressions, stop words, and word stemming.

• Reusable functions, modular software, and designing software for extensibility.

• Simple exploratory data analysis and visualization.

12.2 Exploring Different Web Sites
Let’s start by looking at a collection of job postings. We will do this in our Web browser
so that we can first get an understanding of the sites we are going to programmati-
cally visit. There are several Web sites to explore. For example, linkedin.com, monster.
com, simplyhired.com, usajobs.gov, careerbuilder.com, indeed.com, and
more specific data mining and statistics oriented sites such as Kaggle’s jobs forum and
statscareers.com . We will look first at Kaggle, primarily because it is slightly smaller
than some of the others and a little more focused on data science and statistical and machine
learning.

Before we explore Kaggle, we want to explicitly note that many Web sites actively
prohibit users from scraping content. Several of the Web sites mentioned above do.
We are discussing strategies to scrape Web sites generally by focusing on details for
specific Web sites. If you want to scrape a Web site, you need to verify that you are
permitted to do so by examining its user agreement or Terms of Service (ToS).

http://rdatasciencecases.org
http://usajobs.gov
http://linkedin.com
http://monster.com
http://monster.com
http://simplyhired.com
http://careerbuilder.com
http://indeed.com
http://statscareers.com

460 Case Studies in Data Science in R

We visit Kaggle.com in our Web browser, and then click on the Jobs Board link.
This brings us to http://www.kaggle.com/forums/f/145/data-science-jobs,
a page similar to that shown in Figure 12.1.

Each row of the table on this page shows a job posting (and the first two are about
the jobs forum itself). We can click on a job posting, say the one labeled “Singapore Data
Analyst wanted.” The page for this is shown in Figure 12.2. This is a slightly unusual
posting. It is an informal posting with little description of the job; just a sentence or two
by the poster. There are some responses by others commenting on the original posting.

Figure 12.1: Kaggle Jobs Board Web Page. This is the front page of the Kaggle jobs forum.
All of the posts are available via this page and its successive pages via the links 2, 3,
We can click on the link for a specific job to read that post.

Let’s look at another job posting, say, “Pandora Media Inc. is looking for a Se-
nior Scientist – Growth Hacking.” This is shown in Figure 12.3 and can be accessed di-
rectly at https://www.kaggle.com/forums/t/5140/pandora-media-inc-is-
looking-for-a-senior-scientist-recommender-systems. This is a more typ-
ical posting. The post has several paragraphs describing aspects of the job. There is a
separate bullet list of requirements.

Let’s look at a second site – monster.com. Unlike Kaggle, which posts all jobs on its
sole job list, the main page for monster.com provides a search form for querying jobs by
a specific title, arbitrary keywords, or by location. We enter the search term “Data Science”
as keywords, and we see a page like that shown in Figure 12.4.

We will look at the second post in this list, titled “Data Analyst for leading consumer
science firm in Cincinnati...” This appears in Figure 12.5. As in the second Kaggle post we
looked at, we see a few paragraphs describing the job, a few lists describing the position, the
role, rewards, etc. The salary range is mentioned in the second item at the very top of the

http://www.kaggle.com/forums/f/145/data-science-jobs
https://www.kaggle.com/forums/t/5140/pandora-media-inc-is-looking-for-a-senior-scientist-recommender-systems
https://www.kaggle.com/forums/t/5140/pandora-media-inc-is-looking-for-a-senior-scientist-recommender-systems
http://Kaggle.com
http://monster.com
http://monster.com

Exploring Data Science Jobs with Web Scraping and Text Mining 461

Figure 12.2: Kaggle Job Post and Comments. This shows a very informal job posting and
follow-up posts on the same page. There are very few details about the position being adver-
tised.

page, above the general text. We also see some metadata provided by monster.com about
similar jobs (e.g., Clustering, Data Analysis, SQL) near the bottom of the post. This is
separate from the content of the actual post and we can potentially use this to help cluster
the jobs into groups and identify key skills. Indeed, can we think about how sites produce
these associations, or are they specified manually?

We can explore other job posting sites and we will see different pages for different jobs.
Before reading further, we suggest that you visit at least two other sites to see if we can
identify commonalities in the job postings and how we find the postings. Kaggle is quite
different from Monster.com in that we find jobs in the latter via a search form. This is the
case for most of the other sites. Accordingly, we want to examine these search query forms
and see if we can use the same approach, just with different details of the particular URL
to which we submit the search query.

Generally, we will find the following pattern. We navigate to the first page of the job
postings, either of the entire collection (on Kaggle) or for a particular search string or job
title. This initial page typically contains multiple postings and also links to subsequent
pages of postings. We want to collect information about each job post on that page, and
then move to the next page. We use this approach to process the posts on each page and
then visit the next page of results, continuing until there are no more pages of search results.
Take a moment to identify these components on several of the different Web sites. Find the
URL for submitting the search query, the link to one or more of the postings, and the link
to the next page of postings. These are common aspects of Web scraping.

http://monster.com
http://monster.com

462 Case Studies in Data Science in R

Figure 12.3: Screenshot of Kaggle Job Post by Pandora, the free, personalized radio Web
site. There are several paragraphs describing the company and the position. There is a
bullet-list of required skills.

Exploring Data Science Jobs with Web Scraping and Text Mining 463

Figure 12.4: List of Search Results for Data Science Jobs on Monster.com. We can enter
the search term in various fields to obtain a list of matching job posts. These are shown
below the textfields. Each entry corresponds to a job posting. These is some metadata in
these items, but none of much interest to us. There are also numerous advertisements on
the page, distracting us from the data of interest.

In short, we need to find two sets of information for each page of posts: the links to the
individual posts, and the link to the next page. Instead of the link to the next page, we can
also find the links for all of the pages as these are typically presented as pages 1, 2, 3,,
10 or some similar maximum number. However, when there are more than this maximum
number of pages, we have to find these incrementally, i.e., find the next page of results after
this one. Accordingly, it is often more robust to find the next successive page, until there
are no more.

In addition to finding the links to each post and the link to the next page of posts, we
also have to process the contents of each post. This will differ for each site. Hopefully we
can identify some similarities. After looking at some representative pages, we can identify
these potential common patterns, and also the anomalies. We can start to develop strategies
to extract the information programmatically. As we do this, we also want to consider how
we will represent the data we scrape from each page. Should we just store the entire page,
unprocessed? Should we break the text into words? What about the links it contains? Are
these of interest? Can we identify, and reliably extract, the different parts of the posting
such as the skills needed, the salary, the educational background necessary, keywords? Do
we want all the words, or perhaps the important words? How do we differentiate between
words like programming and program? Are they different or do they indicate the same
concept?

http://monster.com

464 Case Studies in Data Science in R

Figure 12.5: Job Post on monster.com. This is a cross-listed job posting on monster.com
that actually comes from the cybercoders.com Web site. As with the Kaggle posts, much
of the post is free-form text. There are several lists that provide metadata about the job.
There is also structured content for similar jobs, listing the related skills.

http://monster.com
http://monster.com
http://cybercoders.com

Exploring Data Science Jobs with Web Scraping and Text Mining 465

Ideally, we can identify a collection of common fields or variables about each post such
as the location, the salary range, the minimum educational requirement, and a collection
of keywords about the skills required. We might then keep all of the words as a separate
variable. Alternatively, we could have a variable for each possible word and a logical value
indicating whether the word was present in the post or not. We might instead store the
count of the number of instances of that word in a post. When deciding how to store the
data, we want to think about what operations we might want to do with them in order
to explore, visualize, summarize, and potentially model them. As a result, we have to pose
specific questions we may want to ask. For this, we might choose first to explore the raw
data a little before doing this, perhaps working with a small sample to think about questions
and how to express them in R. To do this, we’ll start scraping and exploring some pages
and experiment with different organizations of the data.

12.3 Preliminary/Exploratory Scraping: The Kaggle Job List
Let’s start by scraping a post for which we know the URL for the post. We
will look at a Kaggle post. We can use the browser to click on a link to any
post, say http://www.kaggle.com/forums/t/5153/pandora-media-inc-is-
looking-for-a-senior-scientist-growth-hacking, which we displayed above
in Figure 12.3. If we quickly read the actual post, we see that it is mostly free-form text in
3 paragraphs, followed by 2 bullet-lists. These lists give requirements for the job and also
optional requirements that would help a candidate. There is no salary listed in the text.
The location (Oakland, California) is not explicitly identified in a separate part of the post,
but is contained in the penultimate line of text of the third paragraph. As a result, we
might think about structuring the result of processing this document as a simple list with
3 elements: the raw text, the requirements, and the optional requirements.

To understand the structure of the document, we can look at its HTML source, either
in the browser or in R. Use the View page source item in your browser, or the R commands

library(XML)
doc = htmlParse(u)
doc

to parse and print the document in the console. Here, u contains the URL address
http://www.kaggle.com/forums/t/5153/pandora-media-inc-is-looking-
for-a-senior-scientist-growth-hacking as a string. We can also look at the
rendered page in the browser and identify the individual elements in the source and the
page using the Developer tools or Inspector. You can move the cursor over part of the
page and see the corresponding HTML element(s). Familiarize yourself with the basic
elements and structure of the HTML content, i.e., <head>, <body>, <p> for identifying a
paragraph, section header elements <h1>, <h2>, . . . <h6>, <a> for hyperlinks, for
images, <div> for an abstract container that is often used for layout and appearance. The
source for the page also contains JavaScript code in <script> elements. Some of these
elements are in the <head> element and others are directly in the body. The JavaScript
code can create dynamic content (i.e., at load and view time), but is also used for adding
event handlers. We will ignore the JavaScript code and focus on the content in the HTML
elements. We will attempt to extract the information in the post, making use of the HTML
elements and attributes to understand the context and meaning of the content.

As we look at the HTML document, we see an image (of a goose) on the left with some

http://www.kaggle.com/forums/t/5153/pandora-media-inc-is-looking-for-a-senior-scientist-growth-hacking
http://www.kaggle.com/forums/t/5153/pandora-media-inc-is-looking-for-a-senior-scientist-growth-hacking
http://www.kaggle.com/forums/t/5153/pandora-media-inc-is-looking-for-a-senior-scientist-growth-hacking
http://www.kaggle.com/forums/t/5153/pandora-media-inc-is-looking-for-a-senior-scientist-growth-hacking

466 Case Studies in Data Science in R

text underneath it and the main content of the post to its right. These are actually columns
in an HTML <table>. The <table> node has a class attribute with a value post. We
can use this to find the post and differentiate between it and any other tables on the page.
In this case, there is only one. We will have to look at other postings to see if this is always
the case.

Within an HTML <table> element, there are rows identified by <tr> elements. Within
a row, there are cells, each identified by a <td> (table data) or <th> (for the table’s header
row(s)) elements/nodes. Let’s look at the table in our post in R. We can fetch the table
node with

tbls = getNodeSet(doc, "//table[@class = ’post ’]")

(Note the space at the end of the string “post ”.) This uses the XPath language to search
for all nodes within the document (i.e., all descendants of the root node) that are named
<table> and which also have an attribute class with a value of post. The result is a list
with 0 or more matching elements. We should check whether there is exactly one element
using

length(tbls)

Indeed, we see there is one, and only one, element matching this XPath query in this
document.

We can look at the sub-elements within the <table>. We should see <tr> nodes. We
can use names() to get these:

table = tbls[[1]]
names(table)

tr tr
"tr" "tr"

The first row contains the image and poster information and then the post itself. We can
access this first <tr> element with row1 = table[[1]]. The post is in the second
column/cell of this row. However, there are other text elements in the row along with the
<td> elements. We can see the element names of the row’s children elements with

names(row1)

td text td text comment text
"td" "text" "td" "text" "comment" "text"

The post itself is in the third element, i.e, the second <td> element. We can access this
element and query its attributes with

xmlAttrs(row1[[3]])

class
"postbox"

We see that this has a class named postbox. So rather than relying on the presence or
absence of text nodes and numerical indices that might change, we could get the post node
more robustly by looking for the element named <td> that has a class attribute value of
postbox. We can find this with getNodeSet() and the XPath expression //td[@class
= ’postbox’]. Hopefully there will be only one such node in the document, and indeed
there is. If there were more than one, we would make the XPath expression more specific
and restrictive to identify the node we want. However, we can retrieve the node with

Exploring Data Science Jobs with Web Scraping and Text Mining 467

postNodes = getNodeSet(doc, "//td[@class = ’postbox’]")[[1]]

The second row of the post table has some extra information that doesn’t interest us,
but you should verify that.

Our goal above was to search the document to identify the node(s) we wanted and then
to create an XPath expression to retrieve that node programmatically. To this end, we can
explore the structure and content of the document in R (or Python) or in the Web browser.
We typically start in the Web browser and view the HTML source. In the source page, we
search for text that we see in the rendered page. We then look at the surrounding HTML
elements and try to identify unique aspects to these, typically a class attribute, but also a
particular combination of HTML elements such as a <div> containing a <table> with
the first element of the first row being a element.

Now that we have the <td> node containing the content of the post, we can extract
its content. We could very simply get all of the text with the xmlValue() function. This
combines the content of all of the text nodes within this node and its children and their
children into a single string:

txt = xmlValue(postNodes)

If we just want the words, this is all we need to do. However, we lose context by doing
this, which is harder to recover with just the text. For example, in this post, we have a
Requirements and another Plus Requirements section and the content within these
are in bullet lists. We would like to be able to associate the text in these sections with
necessary requirements and optional requirements. We would also like to be able to process
each element of each list separately from the other list elements. If we discard this markup,
we lose this context.

By examining the HTML document, we see these sections are encoded in HTML elements
as

<p>Requirements:</p>

BS/BA in quantitative field or equivalentMinimum 3 years
professional experience
Experience with large scale growth and retention systems
Experience with the Hadoop technology stack
Experience with R, Matlab, or other scientific computing
language
Experience with SQL databases Familiarity with the modern web
technology stack
Familiarity with software engineering practice
Strong communication skills
A natural sense of curiosity and drive to experiment

and

<p>Plus Requirements:</p>

Graduate degree in quantitative field
.....

We have a <p> element with the section title within a element. After this
<p>, we have a element identifying an unordered list (i.e., no numbers). There may

468 Case Studies in Data Science in R

be a text node in between these. However, we can find these nodes with XPath by
searching from the <td> post node through all its descendants looking for a paragraph
node (<p>) that has a child element named . When we find this, we want the
next “beside,” i.e., a sibling of, the <p> node. We express this with the following
XPath query and evaluate it with getNodeSet():

uls = getNodeSet(postNodes,
".//p[strong]/following-sibling::ul")

Again, we check if there are 2 of these as we expect, and that they contain the text we
expect.

We can process each of these elements and extract the text for each item (
for list item). Using xpathSApply(), we do this via

items = xpathSApply(uls[[1]], ".//li", xmlValue)

for the first list (or we can use the readHTMLList() function in the XML package). We can
process both lists with

items = lapply(uls, function(node)
xpathSApply(node, ".//li", xmlValue))

Before we process the words within each of these items, we want to find the names for
these lists, i.e., the titles Requirements and Plus Requirements. We can use getSib-
ling() with each of the nodes in the uls variable to find the previous sibling. Unfortunately,
this is a text element containing white space. It is the sibling of this text element we want,
i.e.,

getSibling(getSibling(uls[[1]], TRUE), TRUE)

The value TRUE in this call instructs the getSibling() function to get the preceding sibling,
not the following sibling.

Instead of navigating text or any other irrelevant elements with calls to getSibling(), we
can use XPath again. Given a node, we can find the preceding paragraph containing
the node with

tmp = getNodeSet(uls[[1]],
"./preceding-sibling::p[strong]/strong")

xmlValue(tmp[[1]])

We can do this for each of the nodes in uls to get the title/label for the list.
As an alternative approach, we can use the previous XPath query we used to find the

 but get the corresponding <p> nodes

titles = xpathSApply(doc,
"//p[strong and following-sibling::ul]/strong",
xmlValue)

Which of these different approaches is better depends on the structure of other docu-
ments and how this format is likely to be the same or different across other posts. Indeed,
our calculations seem to be quite specific to the particular content and format of this HTML
document and this post. Do we think it will be similar in other posts? How robust will this
approach be? Before we spend too much time refining this, we should look at other posts.
Furthermore, it is not clear that all the Kaggle posts have this information or that we will

Exploring Data Science Jobs with Web Scraping and Text Mining 469

be able to reliably extract it. As we explore more posts, we may decide to get just the
collection of words and treat the entire post as free-form text. This doesn’t mean we won’t
be able to extract more structured metadata from posts on other Web sites, however.

Now that we have the text from the semi-structured lists, we want the text and words
from the remainder of the post. In order to extract these, we want to process the other
elements in the post node. We should avoid processing the and nodes we have
already processed a second time. We do this by finding all of the <p> nodes that are
not being used as titles, i.e., that have a element. Again, we can express this
succinctly with XPath:

paras = getNodeSet(postNodes[[1]], ".//p[not(strong)]")

This will ignore the and nodes. We have to be careful that there aren’t any
<p> nodes within any of the ones that we want to ignore.

12.3.1 Processing the Text
At least for this one Kaggle post, we now have all the text in the different sections. We
have the <p> nodes containing the free-form text in paras and the text from the lists in
items. We want the words, not the sentences or paragraphs. We can easily get these using
the strsplit() function, separating the words by white space or punctuation characters.

itemWords = lapply(items, strsplit, "[[:space:][:punct:]]+")

Note that the second argument in each call to strsplit() is a regular expression
([[:space:][:punct:]]+). This splits the words by space and punctuation. For the
paras, we get the text and split it into words with

words = lapply(paras, function(p)
strsplit(xmlValue(p),

"[[:space:][:punct:]]+"))

Note that by splitting the text using punctuation as a separator, we remove the oppor-
tunity to use this when post-processing the text. For example, we might try to identify the
location for the job in the post by looking for text of the form City, State. This would
have matched Oakland, California. However, if we just have the 2 words Oakland
and California sequentially in a vector, we do not know if they were separated by a period,
comma, or space.

We can combine the different sets of words from the different parts of the post into a
list to represent a post:

post = list(freeForm = unlist(words),
requirements = itemWords[[1]],
optionalSkills = itemWords[[2]])

Note that we have given new names to the vectors of words in the 2 Requirement sections.
These titles may not be the same in each post and we’ll have to manage this and make the
correct associations. We are using more informative names in our R object to identify the
nature of the content.

We are not interested in all of the words in the post. We can discard pronouns, conjunc-
tions, and prepositions such as a, and, this, that, it, to and verbs such as is, are,
was and so on. We often call these stop words. We can create our own list of these words.

470 Case Studies in Data Science in R

However, collections of stop words are available on the Web. Choosing which collection to
use is almost as complex as getting the collections. Of course, we can also combine them.
For now, we’ll just assume we have the collection of stop words in a character vector in R,
say the variable StopWords. We will see how to fetch them in an exercise at the end of the
chapter (Q.23 (page 504)). For now, we can load the object from StopWords.rda:

load(url("http://rdatasciencecases.github.io/StopWords.rda"))

Once we have the vector of stop words, we can discard the words in our post that are
also in the stop words. We use setdiff() applied to each character vector. We can write a
general function that operates on the vector or a list and that does the appropriate thing.
Our function is

removeStopWords =
function(x, stopWords = StopWords)
{

if(is.character(x))
setdiff(x, stopWords)

else if(is.list(x))
lapply(x, removeStopWords, stopWords)

else
x

}

We can apply this to our post list with

post = lapply(post, removeStopWords)

or more directly with removeStopWords(post). This preserves the structure of our list
and its sub-elements but processes only the character sub-elements. Note that the function
is recursive, i.e., it calls itself.

12.3.2 Generalizing to Other Posts
We have seen all the general steps to process a post. However, we have processed only
one post and other posts will have different characteristics, e.g., no lists, different sections.
The posts can differ very significantly, even within a single site. However, within Kaggle,
there are similarities across posts and many of them are semi-structured text with lists.
Let’s look at the post at http://www.kaggle.com/forums/t/5192/data-mining-
architect-toronto-on, which is also shown in Figure 12.6.

Let’s use the same code we used above to try to extract the information from this
page. As we do so, we’ll probably have to adapt the code. While we are doing this, we will
try to generalize the code so that it can work with both pages, and hopefully others. We
will build functions so that we don’t have to repeat the code. This is a good approach to
programming. We have developed code outside of a function for a particular post. Now we
are generalizing that code and turning it into functions to handle different content. This
is better than starting out writing very general functions without really knowing what the
inputs will look like. As we develop the function, we can add parameters to control how it
behaves and also program it to adapt to differently structured content.

Our function to process a Kaggle post will take the URL of the page for that job. It
parses the HTML document and then finds the content of the post in the <td> element
with a class postbox. Then we will process the sections and the free-form text and remove

http://rdatasciencecases.github.io/StopWords.rda
http://www.kaggle.com/forums/t/5192/data-mining-architect-toronto-on
http://www.kaggle.com/forums/t/5192/data-mining-architect-toronto-on

Exploring Data Science Jobs with Web Scraping and Text Mining 471

Figure 12.6: Semi-Structured Job Post on Kaggle. This shows another Kaggle job posting.
Again, much of the content is free-form text within different sections that have a title. There
are 2 lists with metadata about education and experience qualifications necessary for the job.

472 Case Studies in Data Science in R

the stop words for each of the different groups of words. We will need to know the stop
words, so we add this as a parameter to our function. We give it a default of StopWords.
This allows us to override the set of stop words, but we do not have to specify them.

While we want our function to extract all of the information from a post, it is often useful
to be able to pre- or post- process the HTML document to extract additional information.
As a result, it can be useful to be able to download and parse the document once outside
of the function and then pass it to our function. So, we also allow the caller to specify a
previously parsed HTML document rather than the URL. We can do this in different ways,
but it is perhaps simplest to have this as a separate parameter for a function, with a default
value that parses the URL specified by the caller. The skeleton of our function might look
like

readKagglePost =
function(u, stopWords = StopWords, doc = htmlParse(u))
{

}

If the caller specifies a URL, doc will be assigned the parsed document via its default value.
However, if the caller specifies the parsed document via the doc parameter, she doesn’t need
to specify the URL and the function does not need to retrieve and repair the document.

As an alternative approach, we could have checked the class of u and if it was not a
previously parsed HTML document, then call htmlParse(). We could implement this via

readKagglePost =
function(u, stopWords = StopWords)
{

if(!is(u, "HTMLInternalDocument"))
u = htmlParse(u)

}

If retrieving the document uses HTTPS or requires some additional information such
as a password or cookie, we will have to use a different approach than htmlParse() to fetch
the document before we parse its content. We will use getURLContent() or getForm() from
the RCurl [10] package to retrieve the document and then parse it with htmlParse(¬
getURLContent(u), asText = TRUE). This makes the first version of our function
more flexible as the caller can control how to fetch the document, perhaps reusing different
connections to the Web server, etc., and pass the parsed document to readKagglePost().

Given the parsed document, we start our function by obtaining the node containing the
post:

post = getNodeSet(doc, "//td[@class = ’postbox’]")

If that doesn’t exist, we want to raise an error, so we can add code such as

if(length(postNodes) == 0)
stop("cannot find <td class=’postbox’> element in HTML")

else if(length(postNodes) > 1)
stop("found more than one <td class=’postbox’>

elements in HTML")

The next step is to find all our special sections, i.e., those that follow a

<p>....<p>

Exploring Data Science Jobs with Web Scraping and Text Mining 473

In the first post we explored, the next element was a . In the second post, these sections
are just a sequence of <p> nodes. Each <p> node starts with a – to indicate a list item.
We can try to develop some heuristics for this, but first we have to differentiate between
having <p> and nodes.

At this point, we see many dissimilarities and special cases in just 2 posts. As we sug-
gested earlier, it may not be worth the effort to try to extract the metadata from lists in the
reasonably free-form Kaggle posts. Instead, we will just extract all the words. This will be
our generic Kaggle post-processing function. We can do this with the following definition:

readKagglePost =
function(u, stopWords = StopWords, doc = htmlParse(u))
{

post = getNodeSet(doc, "//td[@class = ’postbox’]")

if(length(postNodes) == 0)
stop("cannot find <td class=’postbox’> element in HTML")

else if(length(postNodes) > 1)
stop("found more than one <td class=’postbox’>

elements in HTML")

txt = xmlValue(post[[1]])
strsplit(txt, "[[:space:][:punct:]]+")[[1]]

}

12.3.3 Scraping the Kaggle Post List
We are now ready to scrape all of the posts from the Kaggle job list. This will be a little
simpler than for other sites we look at next. This is because a) there are currently about
750 posts and b) we don’t have to specify a particular query to identify the posts of interest,
e.g., a particular job title or location. Instead, we will read all of the posts so that we can
examine the distribution of words and any of the metadata we extract.

We can look at the Kaggle job listing page and see how many pages there are in total.
These are listed as 1 2 3 4 5 6 7 8 9 10 .. 39 40. The final number is the last
page. We can create the links to the second and subsequent pages with

baseURL = "https://www.kaggle.com/forums/f/145/data-science-jobs"
sprintf("%s?page=%d", baseURL, 2:40)

We are of course hard-coding the number of pages and not determining this programmati-
cally. That’s probably reasonable since we don’t have to do this for sub-lists, i.e., by different
search term or job classification. However, it will limit us when want to get more recent
posts in the future.

We can loop over these URLs giving the successive lists of job postings. For one of these
pages, we find the links to each post in that page. We then have the URLs for all of the job
posts on the Kaggle forum. We use readKagglePost() to read each of these posts. We can
then write our function to read all of the posts as something like

readAllKagglePosts =
function(numPages, baseURL =

"https://www.kaggle.com/forums/f/145/data-science-jobs")
{

https://www.kaggle.com/forums/f/145/data-science-jobs
https://www.kaggle.com/forums/f/145/data-science-jobs

474 Case Studies in Data Science in R

pageURLs = c(baseURL,
sprintf("%s?page=%d", baseURL, 2:numPages))

postLinks = unlist(lapply(pageURLs, getPostLinks))
lapply(postLinks, readKagglePost)

}

We need to define the getPostLinks() function to get the URLs for each post on a specific
page of job listings. We look at one of these pages to determine how the links to the posts
are formatted. We can retrieve one of these pages and parse it with
baseURL = "https://www.kaggle.com/forums/f/145/data-science-jobs"
txt = getForm(baseURL, page = "2")
doc = htmlParse(txt, asText = TRUE)

or we can use one of the URLs we created above.
These pages contain HTML elements something like

<div class="topiclist-topic">
<div class="topiclist-topic-name name-col">
<h3>
<a href="/forums/t/9663/graduate-data-scientist-edinburgh-uk"
title="Go to topic ’Graduate Data Scientist - Edinburgh, UK’">

Graduate Data Scientist - Edinburgh, UK

</h3>

</div>
</div>

We can explore different XPath queries to find the (up to) 20 posts per page. We might use
the specific
getNodeSet(doc, "//a[starts-with(@href, ’/forums/t’)]/@href")

However, that yields 40 matching links. This is exactly twice the number we expected. This
is because we are also matching the links in the third column with the title Last Post.
We don’t want these, so we have to be more specific in our XPath query. We could get the
first of these links in each row of the table. However, this is not structured as a table, so this
approach won’t work. Instead, let’s look for the these links directly within a <h3> element:
getNodeSet(doc, "//h3/a[starts-with(@href, ’/forums/t’)]/@href")

This indeed yields the 20 links we want. We could also write this as
getNodeSet(doc, "//h3/a/@href[starts-with(., ’/forums/t’)]")

This is very marginally shorter!
We can define our function to get the links within a page as

getPostLinks =
function(link)
{

txt = getURLContent(link, followlocation = TRUE)
doc = htmlParse(txt, asText = TRUE)
getNodeSet(doc, "//h3/a[starts-with(@href, ’/forums/t’)]

/@href")
}

We now have all the pieces of our function

https://www.kaggle.com/forums/f/145/data-science-jobs

Exploring Data Science Jobs with Web Scraping and Text Mining 475

12.4 Scraping CyberCoders.com

Figure 12.7: Search Results for Data Scientist Jobs on CyberCoders.com. We enter the
search term in the text field at the top of the Web page. The results are displayed below.
Note that in addition to the link to each particular job, the results page also shows metadata
about each job, e.g., salary range, location, and a list of required skills. If this is all the
information we wanted, we would not have to scrape the actual postings.

Like many of the job posting sites, cybercoders.com allows us to specify a search
query to find jobs of interest. This is shown Figure 12.7, along with the page of results and
links to the matching jobs. Unlike Kaggle, the list of matching job postings contains a lot
of important information about each job, e.g., the title, the location, the salary range, and
a list of necessary skills. In addition to extracting the content of the post, we also want to
fetch this meta-information, if it is easier to extract here, rather than from the full content
of each posting.

When we click on a post in the results page, we also see that it has more structure than
Kaggle’s posts. An example is shown in Figure 12.8. As with Kaggle posts, most of the post
is free-form text with some lists. However, because these posts are created by CyberCoders
itself, they are much more uniform. This should make it significantly easier for us to extract
data across different posts on this site.

Importantly, the posts on cybercoders.com contain the location and salary in the
top right of the page and an itemized list of Preferred Skills at the bottom left of

http://cybercoders.com
http://cybercoders.com
http://cybercoders.com
http://cybercoders.com

476 Case Studies in Data Science in R

Figure 12.8: Sample Job Post on CyberCoders.com. This job posting, like others on
cybercoders.com, has several paragraphs of free-form text, and also some itemized lists
including one listing the skills necessary for the position. Additionally, the post has the lo-
cation and salary separately in the top-right corner. It also displays the preferred skills as a
list of phrases.

http://cybercoders.com
http://cybercoders.com

Exploring Data Science Jobs with Web Scraping and Text Mining 477

the post. Let’s focus on getting these 3 pieces of information first. We can get the free-form
text in much the same way as we did for the Kaggle posts.

Again, we start by looking at the HTML source of two or more posts on the
cybercoders.com site. The source for the post shown in Figure 12.8 includes the fol-
lowing HTML elements

<div class="job-info-main">
<div class="location">

San Francisco, CA

</div>

<div class="wage">

Full-time $110k - $130k</div>

</div>
</div>

This is the information about the location and salary that we want. How did we find this?
We looked at the rendered page in the Web browser and then searched in the source page
for the salary, i.e., $110k. This brought us directly to these HTML elements.

Given the parsed HTML document for the job post, we can get the job location and
salary information using an XPath query. We are looking for the <div> node with a class
attribute with the value job-info-main. We do this with

node = getNodeSet(cydoc, "//div[@class = ’job-info-main’]")[[1]]

Note that we only kept the first matching node. There is a second node in the HTML
document which is identical. However, it is not visible on the page as it is within a <div>
element that is made invisible by the CSS style attribute with the value display: none.
We ignore this second node.

We can then get the location information from node with xmlValue(node[[2]]).
Why is the location in the second element, not the first? The first element is just blank
text between the end of the opening <div> and the start of the location <div>. Instead of
having to know about these “hidden” text elements consisting of white space, we could either
make our XPath query return the location and wage <div> elements or, alternatively, we
can access the resulting <div> elements directly in R via the node variable.

Given either of the <div> elements, we get the content of interest with xmlValue().
Therefore, we can use XPath to get this information with

info = xpathSApply(cydoc, "//div[@class=’job-info-main’][1]/div",
xmlValue)

The xpathSApply() function is a convenience function equivalent to lapply(getNode-
Set(doc, query), fun). Note that we are not using node here, and so restrict the
query to the first of the job-info-main <div> nodes. Alternatively, we can retrieve the
<div> elements from node via node["div"] to get all child elements of node named div.
We can then apply xmlValue() to each of those. That is,

sapply(node["div"], xmlValue)

gives the same result as the xpathSApply() call above.

http://cybercoders.com

478 Case Studies in Data Science in R

12.4.1 Getting the Skill List from a Job Post
Now that we have the location and salary from a post, we can focus on extracting the entries
in the Preferred Skills list at the bottom of the post in Figure 12.8. Again, we look
at the HTML source and search for one of the terms. This term may also be in the regular
text of the post, so we have to make certain we find the one in the skills list. The relevant
HTML elements starts with

<div class="skills-section">
<h4>Preferred Skills</h4>
<div class="skills">

<ul class="skill-list">
<li class="skill-item">

Linux

<li class="skill-item">

Hadoop

The content of each skill is within a (list item) element with a class attribute with
value skill-item. The actual text is within a element with skill-name as
the class attribute. Again, we can fetch all of these elements directly with a single XPath
expression:

lis = getNodeSet(cydoc, "//div[@class = ’skills-section’]//
li[@class = ’skill-item’]//
span[@class = ’skill-name’]")

We get the text for all of the skills with sapply(lis, xmlValue) (or just use xpath-
SApply() instead of getNodeSet() and sapply().)

We can also get the date on which the job was posted from the page. This is in the
HTML content

<div class="job-details">
<div class="jobDetailsHeader">

<h4>Job Details</h4>
</div>
<div class="posted">

Posted 01/01/2015
</div>

Again, a simple XPath query can fetch this value:

Exploring Data Science Jobs with Web Scraping and Text Mining 479

xmlValue(getNodeSet(doc,
"//div[@class = ’job-details’]//

div[@class=’posted’]/
span/following-sibling::text()")[[1]],

trim = TRUE)

The following-sibling::text() expression matches all of the text nodes at the same
level as the element but after it. We get the first of these from the R list.

Both of the XPath queries we have used above specify a very specific path. This ensures
we don’t match other nodes. However, we may be able to use simpler queries if they uniquely
match the nodes. For example, when finding the skills, we may be able to use just //¬
span[@class = ’skill-name’] rather than qualifying it with the and <div>
ancestors.

We can combine all of these different steps into a function (see cy.readPost() below) to
read a post. Rather than have one function that performs all of the steps, we will make
a separate function for each step. This makes each of the functions easier to read, test,
maintain, and adjust if the format of the pages changes. We’ll define one function which
calls these three functions. Again, we’ll use the same basic signature (i.e., parameters and
their order) as we did for the Kaggle function readKagglePost(). We can define this job-level
function as

cy.readPost =
function(u, stopWords = StopWords, doc = htmlParse(u))
{

ans = list(words = cy.getFreeFormWords(doc, stopWords),
datePosted = cy.getDatePosted(doc),
skills = cy.getSkillList(doc))

o = cy.getLocationSalary(doc)
ans[names(o)] = o

ans
}

We collect the vector of words, date posted, and the skills into a list. Then we add the
location and salary information as separate elements to this list.

Note that we have used the prefix “cy.” for each of the three sub-functions. This makes
these specific to the cybercoders.com site and helps identify the functions as being for
this particular site. We might have alternatively collected all of these functions into a list
and assigned it to a variable, say, cyFuns, e.g.,

cyFuns =
list(readPost = function(u, stopWords = StopWords,

doc = htmlParse(u)) {...},
datePosted = function(doc) {...},
skills = function(doc) { ...}

Here we avoid assigning the functions individually to top-level R variables by defining the
functions inline when defining the list of functions. We can then loop over these functions
to create the initial list ans in cy.readPost().

We also added a doc parameter to the cy.readPost() function. The default value for this
is to retrieve and parse the HTML document from the URL u. We allow the caller to specify
this for two reasons. Firstly, she might have already parsed this document and so does not

http://cybercoders.com

480 Case Studies in Data Science in R

want to have to repeat this step, especially if she is off-line. Secondly, we may need to use
a more flexible HTTP request mechanism to retrieve the page than htmlParse() provides.
Having this as a parameter that the caller can provide makes cy.readPost() more flexible.

Our cy.readPost() function refers to cy.getFreeFormWords() and cy.getSkillList(). We
have to implement these two. The cy.getFreeFormWords() function has to find the part of
the HTML document that contains the visible text in the rendered document that describes
the job. We want to omit the information about the location, salary, date posted, and skill
list, since we have collected these separately from the free-form text. We could collect all of
the remaining words together. However, we may want to identify any lists or sections that
provide more context. For example, many of the posts have a What you will be doing
section, and a What you need for this position section. We’ll explore how to find
the different sections of a post. Again, we have to look at two or more postings and try to
identify a pattern.

The free-form text of the post is inside the
<div class="job-details">

node, but so too is the location information. We can find the node containing the free-form
text using XPath by looking for the node that contains the start of the text, e.g.,

a = getNodeSet(cydoc,
"//*[starts-with(., ’Are you a Data Scientist’)]")[[1]]

Unfortunately, the result is empty. The issue is that the text starts with white space. We
could use contains() rather than starts-with() in the XPath expression. Alterna-
tively, we can remove (or trim) the white space using the normalize-space() function:

a = getNodeSet(cydoc,
"//*[normalize-space(., ’Are you a Data Scientist’)]")[[1]]

Now that we have the node, we can traverse its ancestors with either repeated calls to
xmlParent() or a single call to xmlAncestors(). We can then try to identify the node that
includes all of the text of the post, but no more. Then we can examine these to identify the
pattern to find that node or its sub-nodes of interest in other posts.

For this CyberCoders document, the free-form text is inside several separate sibling
<div> nodes within the job-details <div>. This contains several top-level text nodes
and <div> nodes that we do not want to include. We can see this with

names(xmlParent(a))

text div text div text p text p text
"text" "div" "text" "div" "text" "p" "text" "p" "text"

In other documents, we have numerous <h4> elements and comments. All of these top-level
text nodes are white space, and any comment nodes are of no interest to us. Any <h4>
elements are the start of the sections such as What You Will Be Doing. We can look
at the XML attributes of each of the <div> elements with

sapply(xmlParent(a)["div"], xmlAttrs)

$div
class

"jobDetailsHeader"

$div
class

"posted"

Exploring Data Science Jobs with Web Scraping and Text Mining 481

This document does not have <h4> elements identifying the different sections. These section
titles are merely included in the text. In other documents, they are in <h4> elements and
have attributes

$div
class data-section

"section-data" "1"

$div
class data-section

"section-data section-data-title" "5"

$div
class data-section

"section-data section-data-title" "8"

$div
class data-section

"section-data" "9"

All of these <div> elements in which we are interested have a data-section attribute and
also contain the name section-data in the class attribute. So we could retrieve these
with

getNodeSet(doc, "//div[@class=’job-details’]/
div[@data-section]")

We can then process the text within each of these, for example, using xmlValue() on the
entire HTML sub-tree.

If the document has no <h4> elements, we could use some heuristic approach to finding
the different sections. However, we won’t bother. For those documents that do use <h4>
elements to identify and separate sections, we can process these separately, if we desire. We
could find these nodes with

details = getNodeSet(doc, "//div[@class=’job-details’]")[[1]]
xpathSApply(details, "./h4", getSibling)

Note that the second XPath query here is searching from the node <div
class=’job-details’> down that sub-tree. It is not searching the entire document.
This is why we preceded the h4 element name with ./, anchoring the search from the node
assigned to details. Also note that each <h4> element is followed by a <div> node which
contains the content for the section. This is why we use getSibling() to obtain that <div>
node.

Once we have these nodes, we can process them as HTML lists, or lists with free-form
text. These are often also problematic as they may not be or nodes with
elements identifying the list elements. Instead, they are formatted to look like lists but are
actually separated by
 (line breaks). We can attempt to identify and process these, but
we have to decide whether it is worth the effort, and if we want this information differently
from just words in the post.

After determining where the text is and how it is structured, let’s write our
cy.getFreeFormWords() function as

482 Case Studies in Data Science in R

cy.getFreeFormWords =
function(doc, stopWords = StopWords)
{

words = xpathApply(doc, "//div[@class=’job-details’]/
div[@data-section]",

function(x)
asWords(xmlValue(x)))

}

This fetches the lists of free-form text in the HTML document and then decomposes the
text into the words in each element, using spaces and punctuation characters to separate
them. We could improve this to add the section (<h4>) titles as names of the elements in
the list, when they are available. However, this suffices for our current purposes of looking
at the words.

Note that we have used a function asWords() to process the text of each node. We leave
this as an exercise for the reader to implement in Q.2 (page 482).

Q.1 Implement the cy.getSkillList() and cy.getLocationSalary() functions. Use the code
we explored to extract the skill sets and salary and location from the parsed HTML
document.

Q.2 Implement the function asWords(). It accepts a character vector and separates each
element into words, using white space and appropriate punctuation characters as delim-
iters. It should also remove stop words, and allow the caller to optionally specify the set
of stop words. It should also optionally stem each of the words. Stemming is discussed
in Chapter 3, specifically Section 3.5.3.

We now have all our functions and we can test them on some of the CyberCoder posts, e.g.,

u = "http://www.cybercoders.com/data-scientist-job-140783"
ans1 = cy.readPost(u)
names(ans1)

[1] "words" "datePosted" "skills" "location" "salary"

ans1$salary

[1] "Full-time $90k - $130k"

We need to try another job post, and then another, and so on to test the cy.readPost()
function and discover any formatting differences. We can find other posts manually on the
Web site. However, we can also identify them programmatically, which we’ll discuss next.

12.4.2 Finding the Links to Job Postings in the Search Results
Now that we can read an individual post with reasonable generality, we need to be able to
programmatically find the posts. Again, recall that we start with the first page returned
by a search based on a query string. That page contains links to the first set of results. We
have to find out how to programmatically make the initial query to get the first page of
results, and then determine how to find all the links to the job postings on that page.

http://www.cybercoders.com/data-scientist-job-140783

Exploring Data Science Jobs with Web Scraping and Text Mining 483

One way to determine how to submit the search query programmatically is to per-
form a search in the browser on the CyberCoders page and examine the URL to which
that brings us. If we type "Data Scientist" into the query textfield, the browser
shows the page http://www.cybercoders.com/search/?searchterms="Data+
Scientist"&searchlocation=&newsearch=true&sorttype= This indicates that
the HTML form used HTTP’s GET operation to submit the request. It also identifies the
named parameters as searchterms, searchlocation, newsearch, and sorttype,
and shows their values (after each = character). We could also get this information from the
Web browser’s developer tools by examining the network requests. This may be important
if a) the HTTP operation is a POST rather than a GET request, or b) if there are hidden
parameters or cookies that are not shown in the request. For our purposes, we have sufficient
information to make the request in R based on the URL shown in the browser’s navigation
field.

Rather than using the URL above directly, we can decompose it into a URL and the
form parameters and values. Then we can reuse this easily to make different queries. We
can use getFormParams() to do this or do it manually:

u = "http://www.cybercoders.com/search/?searchterms=Data+Science\
&searchlocation=&newsearch=true&sorttype="
p = getFormParams(u)

searchterms searchlocation newsearch sorttype
"Data+Science" "" "true" ""

We can then submit the query with getForm() via

txt = getForm("http://www.cybercoders.com/search/",
searchterms = ’"Data Scientist"’,
searchlocation = "", newsearch = "true",
sorttype = "")

(or use the .params parameter and p.) The resulting value in txt is a character vector
with a single element containing the HTML document as it would be received by the Web
browser. Instead of rendering it, we will retrieve the links to the job postings it contains.
To do this, we first parse the HTML document and then find the relevant <a> elements,
i.e., those that have links to actual job postings. The first step is as simple as

doc = htmlParse(txt, asText = TRUE)

To find the links, we again explore the structure of the HTML document. We can search
for a job posting that we can see in the Web browser and then look at the surrounding
HTML elements. After some exploring, we can see that each job posting is contained in a
<div> element with a class attribute value of job-listing-item. An example of this is

<div class="job-listing-item">
<div class="job-status">

<div class="status-item default" data-jobid="127835"></div>
</div>
<div class="job-details-container">

<div class="job-title">
Data Scientist

</div>
<div class="details">

http://www.cybercoders.com/search/?searchterms="Data+Scientist"&searchlocation=&newsearch=true&sorttype=
http://www.cybercoders.com/search/?searchterms="Data+Scientist"&searchlocation=&newsearch=true&sorttype=
http://www.cybercoders.com/search/?searchterms=Data+Science\&searchlocation=&newsearch=true&sorttype=
http://www.cybercoders.com/search/?searchterms=Data+Science\&searchlocation=&newsearch=true&sorttype=
http://www.cybercoders.com/search/

484 Case Studies in Data Science in R

...
</div>

</div>

We are looking for the href attribute value in the a element within the <div> with a class
attribute with a value job-title. This is in a <div> with a class attribute with the value
job-details-container. We can retrieve the URL of interest with

links = getNodeSet(doc, "//div[@class = ’job-title’]/a/@href")

The first of these links looks something like "/data-scientist-job-127835". This is
a relative URL, relative to the base URL of our query, i.e., http://www.cybercoders.
com/search/. We need to merge these links with this URL. We can use getRelativeURL()
to do this, e.g.,

getRelativeURL("/data-scientist-job-127835",
"http://www.cybercoders.com/search/")

[1] "http://www.cybercoders.com/data-scientist-job-127835"

We can retrieve and complete all of the URLs in a vectorized manner with the getNodeSet()
call and

links = getRelativeURL(as.character(links),
"http://www.cybercoders.com/search/")

We are now ready to read the actual job posts contents from the first page of results
with the command

posts = lapply(links, cy.readPost)

However, we want to combine all of these steps into a function. Given a page of search
results, we want to find the links and then read each post. We can break these into two
separate functions to make them easier to test and reuse. The first finds the links. We can
define this function as

cy.getPostLinks =
function(doc, baseURL = "http://www.cybercoders.com/search/")
{

if(is.character(doc))
doc = htmlParse(doc)

links = getNodeSet(doc, "//div[@class = ’job-title’]/a/@href")
getRelativeURL(as.character(links), baseURL)

}

To make this more flexible, we have allowed the caller to pass either the parsed HTML
document (doc) or a string specifying its URL.

We can then define the second function, cy.readPagePosts(), to process all of the posts
on a single page of search results as

cy.readPagePosts =
function(doc, links = cy.getPostLinks(doc, baseURL),

baseURL = "http://www.cybercoders.com/search/")

http://www.cybercoders.com/search/
http://www.cybercoders.com/search/
http://www.cybercoders.com/search/
http://www.cybercoders.com/data-scientist-job-127835
http://www.cybercoders.com/search/
http://www.cybercoders.com/search/
http://www.cybercoders.com/search/

Exploring Data Science Jobs with Web Scraping and Text Mining 485

{
if(is.character(doc))

doc = htmlParse(doc)
lapply(links, cy.readPost)

}

Here, the default value for links performs half of the typical calculations. However, the
caller can specify a different collection of links. This is useful for testing individual links or
a subset of links.

As usual, we need to test this. We have the parsed version of the first page of results in
doc. Therefore, we can get the posts with

posts = cy.readPagePosts(doc)

A quick way to check if these results are reasonable is to examine the collection of salary
values in each post:

sapply(posts, ‘[[‘, "salary")

Similarly, let’s count the number of words in each post (after removing the stop words)

summary(sapply(posts, function(x) length(unlist(x$words))))

At least one of the posts appears to have no words. Let’s investigate that.

which(sapply(posts, function(x) length(unlist(x$words))) == 0)

/data-scientist-job-127835
16

We can examine this URL in a Web browser with browseURL(links[16]). When we see
this in the Web browser, there are clearly many words and not all of them are stop words!
There is a problem in our code. Let’s look at the result of reading that post:

posts[[16]]

$words
list()

$datePosted
[1] "06/23/2014"

$skills
[1] "linux" "Hadoop" "iOS"
[4] "Android" "Data Modeling" "Linear Regresssion"

$location
[1] "San Jose, CA"

$salary
[1] "Full-time $110k - $130k"

486 Case Studies in Data Science in R

This confirms that a) the words element is empty, and b) that the other entries appear to
be reasonable and correct. An initial guess about why words is empty is that the XPath
query to identify the text does not apply here and yielded no nodes. While this is the only
post that yielded no words, we may have missed elements in other posts, so we need to
check that somehow.

To examine the HTML source for post 16, we can again use either R or the Web browser.
We can again look for the node starting with the text Are you a Data Scientist:

nodes = getNodeSet(doc,
"//*[starts-with(normalize-space(.),

’Are you a Data Scientist with a PhD’)]")

This removes the leading white space and we also made the query more specific to eliminate
matching a generic node at the end of the post. This node appears after the Posted
information

<p>
Are you a Data Scientist with a PhD and an

</p>

This is a paragraph node (<p>), not a <div> and there is no section-data class at-
tribute. This is indeed why we missed this text. We can modify our cy.getFreeFormWords()
function to include these <p> nodes. We may chose to do it conditionally when there are
no regular matching <h4> and <div> nodes, or to match these in all cases. Our updated
function is

cy.getFreeFormWords =
function(doc, stopWords = StopWords)
{

nodes = getNodeSet(doc, "//div[@class=’job-details’]/
div[@data-section]")

if(length(nodes) == 0)
nodes = getNodeSet(doc, "//div[@class=’job-details’]//p")

if(length(nodes) == 0)
warning("did not find any nodes for the free form text in ",

docName(doc))

words = lapply(nodes,
function(x)

strsplit(xmlValue(x),
"[[:space:][:punct:]]+"))

removeStopWords(words, stopWords)
}

Note that we switched from using xpathApply() to getNodeSet(). This is because we have
to wait to process the nodes since we may find none and have to find the <p> nodes. We
also added a warning to identify a page in which we did not find any free-form text. This
will help to identify potential issues for the caller.

We can test this version of the function with w = cy.readPost(links[16])$¬
words. However, it may be more prudent to call cy.getFreeFormWords() directly since we
have already retrieved the document. We did this since it took a few iterations to identify

Exploring Data Science Jobs with Web Scraping and Text Mining 487

the precise pattern and there is no point waiting to retrieve the document each time when
we already have it. Also, it reduces the number of unnecessary requests to the server, saving
its resources.

With the cy.getFreeFormWords() function now apparently working, we can reload the
links and test cy.readPost() again, perhaps looking at the post with the next smallest number
of words, and also verifying the other information returned in each post object.

Q.3 Test the cy.getFreeFormWords() function on several posts as suggested above.

12.4.3 Finding the Next Page of Job Post Search Results
We have seen how to make the initial query for a particular search term using getForm(),
find the links to the job posts in the resulting page, and read the contents of each post. The
last step in scraping the job post information from CyberCoders is to find the next page
of results after the first one, and generally, the next one after that. Recall that we have
the result of the initial query via getForm() in the variable txt. We’ll parse this HTML
document again and look for the link to the next page:

doc = htmlParse(txt, asText = TRUE)

Again, we can look at the rendered page in the Web browser to see how to identify the “next
page” link. This is displayed as a right-facing arrow near the very bottom of the page. The
link is http://www.cybercoders.com/search/?page=2&searchterms=Data%
20Scientis&searchlocation=&newsearch=true&sorttype=. This is essentially
the same URL as for our initial query, but it contains the additional page=2. We could add
that as a parameter in our call to getForm(). We could just keep requesting the next page
and when we got an error, we would know that we had reached the end. However, let’s do
this a little more elegantly. Instead, let’s find the link to the next page and if there is none,
we will stop.

How do we find the link to the next page? If we examine the HTML source, we find the
following near the end:

<li class="lnk-next pager-item ">
»

So, we can look for an HTML node named a with a rel attribute containing the word next.
There are actually two of these, but they have identical href attributes, which is what we
want. One is at the top of the page and the other is at the bottom to make it convenient
for the reader. The call

getNodeSet(doc, "//a[@rel=’next’]/@href")[[1]]

gives us the result ./?page=2&searchterms=Data%20Science&searchlocation=
&newsearch=true&sorttype=

We’ll write a function that takes the parsed HTML document as an input and returns
the link to the next page of results. It needs to convert this link to an absolute URL
rather than a relative link. We’ll get the name of the base URL via docName() from the
original parsed HTML document. However, there may be cases where this is not known,
e.g., when we use getForm() to retrieve the initial document as we do here. Therefore,
we’ll let the caller specify the base URL but calculate it from the parsed HTML document
if they don’t. If that results in an NA value, we’ll use the hard-coded URL to http:
//www.cybercoders.com/search. Our function is

http://www.cybercoders.com/search/?page=2&searchterms=Data%20Scientis&searchlocation=&newsearch=true&sorttype=
http://www.cybercoders.com/search/?page=2&searchterms=Data%20Scientis&searchlocation=&newsearch=true&sorttype=
http://www.cybercoders.com/search
http://www.cybercoders.com/search

488 Case Studies in Data Science in R

cy.getNextPageLink =
function(doc, baseURL = docName(doc))
{

if(is.na(baseURL))
baseURL = "http://www.cybercoders.com/search/"

link = getNodeSet(doc, "//a[@rel=’next’]/@href")
if(length(link) == 0)

return(character())

getRelativeURL(link[[1]], baseURL)
}

Note that if there is no next page link, we know we are on the last page of results and so
return an empty character vector. The caller will use this to know not to request any more
pages.

As with any function, we need to test this. We can start with the first page in doc:

tmp = cy.getNextPageLink(doc,
"http://www.cybercoders.com/search/")

Q.4 Test the cy.getNextPageLink() function by calling it again with the result of the pre-
vious call to cy.getNextPageLink().

12.4.4 Putting It All Together
At this point, we have all of the pieces to retrieve all the job posts on cybercoders.com
for a given search query. We now have to put it all together into a top-level function that we
can call with a search string for the type of jobs in which we are interested. This function
submits the initial query and then reads the posts from each result page. We might define
the function as

cyberCoders =
function(query)
{

txt = getForm("http://www.cybercoders.com/search/",
searchterms = query, searchlocation = "",
newsearch = "true", sorttype = "")

doc = htmlParse(txt)

posts = list()
while(TRUE) {

posts = c(posts, cy.readPagePosts(doc))
nextPage = cy.getNextPageLink(doc)
if(length(nextPage) == 0)

break

nextPage = getURLContent(nextPage)
doc = htmlParse(nextPage, asText = TRUE)

}
invisible(posts)

}

http://www.cybercoders.com/search/
http://www.cybercoders.com/search/
http://www.cybercoders.com/search/
http://cybercoders.com

Exploring Data Science Jobs with Web Scraping and Text Mining 489

We can test this function with

dataSciPosts = cyberCoders("Data Scientist")

This takes some time. For each post and each page query, we have to connect to the
Web server and wait for the result. Each of these can take several seconds. Since this is
a potentially infinite loop, we don’t know if the function is stuck in the loop or waiting for
a response from the Web server. Accordingly, we may want add a verbose parameter and
output a message at the start of each iteration, i.e., page of results.

We can also speed up the requests very slightly and also be better “netizens.” Instead
of connecting to the same Web server for each request, we can create one connection and
reuse this each time. We can create a connection using getCurlHandle(). We can then use
this in each request, i.e., calls to getForm() and getURLContent(). We pass the connection
via the curl parameter in these functions.

Currently, we only call getForm() and getURLContent() to get the search result pages,
not the individual posts. We retrieve the job post documents in our cy.getPostLinks() func-
tion with a call to the htmlParse() function. That uses its own mechanism to make the
HTTP request. We can change this to use getURLContent() and then parse the resulting
document. Then we can use curl = getCurlHandle() in those calls to getURLCon-
tent().

Not only does using a curl handle maintain the connection to the Web server and reduce
the overhead of re-connecting for each request, it also allows us to control theHTTP requests
in much richer ways, such as supporting cookies and many options, and also handles secure
HTTP, i.e., HTTPS.

Now that we have the functionality to get the posts from cybercoders.com , we can
do so for any search term. Having retrieved the posts for the query "Data Scientist",
we can look at the distribution of the corresponding most common skills with

tt = sort(table(unlist(lapply(cy.dataSciPosts, ‘[[‘, "skills"))),
decreasing = TRUE)

tt[tt >= 2]

We’ll look at these in Section 12.8.

12.5 A Reusable Generic Framework for Arbitrary Sites
When we look at how we scraped the posts from both Kaggle and CyberCoders, we can see
a shared pattern. There are 4 components to get the information from all of the job posts
for a given query:

1. A mechanism to submit the search query and get the first page of results.

2. A means to extract the links to the individual job posts from a page of results.

3. A function to read the contents of an individual job post.

4. A way to find the next page of results, relative to the current page.

Each of these steps is quite different for each Web site, but the way we coordinate the
different operations is the same across sites. Basically, we submit the query and get the first

http://cybercoders.com

490 Case Studies in Data Science in R

page of results. Then we apply step 2 to this page and then apply step 3 to each of the
resulting links. We then find the next page and repeat steps 2, 3, and 4 on the new page of
results. We can use a while loop to repeat the entire process until there is no “next” page
of results. If we have a collection of Web site-specific functions for each of steps 2, 3, and 4,
we can call those functions within our while loop.

We can implement this generic mechanism to scrape an arbitrary Web site of job posts
with the following function:

searchJobs =
Given a search query, get the pages listing the jobs.
we loop over these pages and harvest the
individual jobs in each.

function(firstPage, getNextPage_f, getJobDescriptionLinks_f,
getJobDescription_f = getJobDescription,
max = NA, curl = getCurlHandle(followlocation = TRUE))

{
curPage = firstPage
jobs = list()

pageNum = 1L
while(is.na(max) || length(jobs) < max) {

doc = htmlParse(curPage, asText = TRUE)

links = getJobDescriptionLinks_f(doc, curl = curl)
posts = structure(lapply(links,

function(l)
try(getJobDescription_f(

getURLContent(l,
curl = curl),

stem = FALSE,
curl = curl))),

names = links)
jobs = c(jobs, posts)

curPage = getNextPage_f(doc, curl = curl)
if(length(curPage) == 0)

break
pageNum = pageNum + 1L

}

invisible(jobs[!sapply(jobs, inherits, "try-error")])
}

This function iterates until there are no more search results pages for this query or until
we have collected more than max posts. The max parameter allows us to limit the number
of job postings we scrape. This can be useful for debugging and also to limit our requests
to the Web server.

The caller provides the content of the first page of results. We leave it to her to submit
the query and retrieve this page of results. This is site-specific. As we saw previously, for
Kaggle, this is simply

Exploring Data Science Jobs with Web Scraping and Text Mining 491

u = "http://www.kaggle.com/forums/f/145/data-science-jobs"
getURLContent(u)

For CyberCoders, we use

getForm("http://www.cybercoders.com/search/",
searchterms = queryString, searchlocation = "",
newsearch = "true", sorttype = "")

Our searchJobs() function parses this HTML document and then applies the site-specific
function getJobDescriptionLinks_f() to extract the links to the individual job posts. It then
iterates over these and calls the site-specific function getJobDescription_f() to process each
job posting. It appends these to the list of job descriptions and then determines the next
page of results using, again, the site-specific function getNextPage_f().

The caller of the function specifies the site-specific functions for steps 2, 3, and 4 above.
The searchJobs() function doesn’t need to know how they work, just that they expect specific
inputs and return specific outputs. This abstraction means that we can scrape newWeb sites
by implementing these three focused functions and making the initial query. Each of these
should be quite short. We can implement a site-specific job post reader function to extract
the metadata along with the free-form text. However, if we are content with reading only the
words, we can use the generic getJobDescription() function which will work for arbitrary job
posts (or any HTML page). This is the default value for the getJobDescription_f parameter.

We would also probably implement the initial query mechanism as a function so that we
can reuse it. However, we envisage people writing a new high-level function for a particular
job Web site. This would hide the details of making the initial query to get the first page
of job listings, and specifying the different site-specific functions in a call to searchJobs().
For example, we could define a function for searching the CyberCoders Web site as

searchCyberCoders =
function(query, ...)
{

txt = getForm("http://www.cybercoders.com/search/",
searchterms = query, searchlocation = "",
newsearch = "true", sorttype = "")

searchJobs(txt, cy.getNextPageLink,
cy.getPostLinks,
cy.readPost, ...)

}

This generic searchJobs() function helps us focus on the essential elements of scraping
a new site. Furthermore, it requires us to decompose the steps into separate functions.
Each of these does one thing and so is relatively simple. We can also test them separately.
This abstraction results in significantly more modular code that we (and others) can easily
substitute. This framework also supports more complicated Web sites, e.g., if we have to
use, and login to, a specific account to access the information.

There are several more detailed aspects of the searchJobs() function that are interesting.
We explicitly retrieve the HTML document with getURLContent() before passing it to

the getJobDescription_f() function provided by the caller. This ensures that we don’t rely
on htmlParse()’s ability to make the HTTP request. This allows us to process some atypical
postings on some sites that require HTTPS rather than HTTP requests. On some sites,
“sponsored” job postings required these different requests to access the job, and getURL-
Content() gives us the flexibility to do this.

http://www.kaggle.com/forums/f/145/data-science-jobs
http://www.cybercoders.com/search/
http://www.cybercoders.com/search/

492 Case Studies in Data Science in R

We also call the getJobDescription_f() function within a call to try(). This means that
if getJobDescription_f() raises an error for any reason for a particular post, we will catch
the error here and continue on to the next post. That error will not cause the entire while
loop to fail. If getJobDescription_f() does raise an error, the resulting element in the list of
jobs will have class try-error. We then remove any of these at the end of the loop.

Q.5 Modify the searchJobs() function to have it optionally give progress messages as it
completes pages of results.

Q.6 Suppose we download the first 400 jobs using searchJobs() and later decide to retrieve
the next 200. How do we avoid processing the first 400 jobs again?

Q.7 Implement the top-level Kaggle scraping function using searchJobs(). How much did
you have to change? Is this an improvement?

Q.8 We could have made our searchJobs() function entirely generic by having the caller
specify a function for performing the initial search query. Do this. Do you think this is
a worthwhile addition in comparison with having a separate function for each job site,
such as cyberCoders() or searchCyberCoders() which we defined earlier?

Q.9 Instead of having the caller specify individual functions, we could define a closure or
use a reference class with methods for getting the next page, finding the URLs for the
job postings, and reading an individual post. We could then extend this class for each
target Web site. Do this. Does this organization improve the code?

12.6 Scraping Career Builder
Now that we have developed a generic way to process a new Web site, we can see how we
can use this to implement the functions for scraping the careerbuilder.com site. We
need to find the first page of results for a given query term, find the links to the posts in that
page, and find the next page of results from that page. If we want to provide a customized
way to read each post, we can do this. Otherwise, we can simply read all the words in the
text with our generic getJobDescription() function.

We can determine how to make the initial query by exploring the site using a Web
browser. This amounts to another call to getForm() with several parameters and the query
string. This is done with

txt = getForm(baseURL,
IPath= "QH", qb = "1",
s_rawwords = "queryString", s_freeloc = "",
s_jobtypes = "ALL",
sc_cmp2 = "js_findjob_home",
FindJobHomeButton="hptest_ignore2",

.opts = list(followlocation = TRUE))

where baseURL is

http://www.careerbuilder.com/jobseeker/jobs/jobresults.aspx

http://www.careerbuilder.com/jobseeker/jobs/jobresults.aspx
http://careerbuilder.com

Exploring Data Science Jobs with Web Scraping and Text Mining 493

The followlocation = TRUE is an important option for the query in case this redirects
to another URL.

Getting the links to the individual posts in the results page involves a simple XPath
query. We can retrieve them with a function for processing the parsed HTML page as

cb.getJobLinks =
function(doc)

getNodeSet(doc, "//a[@class = ’jt prefTitle’]/@href")

We discover this, as we did before, by examining sample HTML pages and looking for the
defining pattern.

The last remaining component is to find the next page. Again, this site displays the text
Next Page that is a hyperlink to the next page of results. We can retrieve this URL from
the current results page with the function

cb.getNextPage =
function(doc)
{

nxt = getNodeSet(doc, "//a[. = ’Next Page’]/@href")
if(length(nxt) == 0)

return(character())

nxt[[1]]
}

This is remarkably similar to other versions of the same function and only differs by the
particular XPath query. We might abstract this into a function and just specify this query
string, however, it is probably not worth this extra effort.

We can now define the simple function to scrape collections of job posts on
careerbuilder.com using these helper functions. This amounts to getting the text for
the first page of results and calling searchJobs(). We can define this as

searchCareerBuilders =
function(query, ..., baseURL =

’http://www.careerbuilder.com/jobseeker/jobs/jobresults.aspx’)
{

txt = getForm(baseURL, IPath= "QH", qb = "1",
s_rawwords=query,
s_freeloc="", s_jobtypes="ALL",
sc_cmp2= "js_findjob_home",
FindJobHomeButton="hptest_ignore2",

.opts = list(followlocation = TRUE))

searchJobs(getNextPage_f = cb.getNextPage,
getJobDescriptionLinks_f = cb.getJobLinks,
txt = txt, ...)

}

This allows us to collect posts from careerbuilder.com for any search term.

Q.10 Enhance this function to use a single curl handle for all of the HTTP requests.

http://www.careerbuilder.com/jobseeker/jobs/jobresults.aspx
http://careerbuilder.com
http://careerbuilder.com

494 Case Studies in Data Science in R

12.7 Scraping Monster.com
We now have a simple recipe, and an example, for scraping a new Web site. We can replicate
this for the monster.com site. We’ll use a Web browser to identify the URL for a particular
job search query term. When we enter "Data Scientist" in the text field, our browser
brings us to http://jobsearch.monster.com/search/Data-Scientist_5? This
is quite different from previous sites we have scraped. The query string Data Science is
not a value of a parameter on the right of the ? in the URL. Instead, the query string is
in the path in the URL. Where did the _5 come from? This was appended by a mixture of
the HTML form in the Web browser and redirection on the Web server.

We can use the developer tools in the Web browser to investigate the Web requests when
we submit the search query. Unfortunately, among all of the many requests for images, ads,
etc., the request for the primary page of results seems to go straight to the URL above. There
does not seem to be a regular form request. This could be because it is a POST, rather
than a GET, submission. However, we would see that request in the network developer
tools panel. So something is quite different for this site.

We can explore the source of the top-level HTML page to understand the form. We can
use the RHTMLForms package to programmatically query this page to get a description
of each of the elements. However, this form is complicated by the presence of JavaScript.
Indeed, this may be the cause of the different behavior.

We could spend time determining how to mimic the search request from R. However,
while this is interesting for understanding how to scrape in general, it distracts us from our
goal of actually getting the job postings. Sometimes it is important to pursue these apparent
tangents. In this case, we can sidestep it quite easily. Basically, to scrape jobs for a particular
search term, we need to determine the first page of the results. Then we find the next page
link within that page, and so on. We can by-pass the initial form submission to find the
first page and just enter the URL ourselves. We saw the URL for the search term Data
Scientist. For the search term Visualization, it is http://jobsearch.monster.
com/search/Visualization_5, and for Data Science Engineer it ends in Data-
Science-Engineer_5?. We see a pattern: spaces in the search string are replaced with
‘-’; we prepend the URL http://jobsearch.monster.com/search/ and append _5.
For example, Machine Learning corresponds to http://jobsearch.monster.com/
search/Machine-Learning_5?. We can write a function to map a search string to this
form:

monsterSearchURL =
function(q)
{

sprintf("http://jobsearch.monster.com/search/%s_5?",
gsub(" ", "-", q))

}

We can write a function monsterSearch() to take the query, construct this URL and
then call searchJobs().

monsterSearch =
function(q, firstPage = monsterSearchURL(q), ...)
{

txt = getURLContent(firstPage, followlocation = TRUE)
searchJobs(txt, monsterNextPage, monsterJobLinks, ...)

}

http://jobsearch.monster.com/search/Data-Scientist_5?
http://jobsearch.monster.com/search/Visualization_5
http://jobsearch.monster.com/search/Visualization_5
http://jobsearch.monster.com/search/ and append _5
http://jobsearch.monster.com/search/Machine-Learning_5?
http://jobsearch.monster.com/search/Machine-Learning_5?
http://jobsearch.monster.com/search/%s_5?
http://monster.com
http://monster.com

Exploring Data Science Jobs with Web Scraping and Text Mining 495

The first parameter q is our search term and we use it to construct the URL. However,
we have also added the firstPage as a parameter with a default value of the URL from the
query string. By having this as an explicit parameter, the caller can specify the exact URL
for the first page of the search, in case it does not correspond to the scheme we deduced
above.

Again, in our monsterSearch() function, we are using the generic word collector to
process each post. We need to provide the monster.com-specific functions to find the
next page and find the links to the posts in a page of results. We can find the next page
using the XPath query

nxt = getNodeSet(doc, "//a[@title=’Next’]/@href")

Similarly, we can find the URLs for each job post with

nodes = getNodeSet(doc, "//a[starts-with(@class, ’slJobTitle’)]
/@href")

We can use these expressions to define monsterNextPage() and monsterJobLinks(), respec-
tively.

12.8 Analyzing the Results: The Important Skills
When we scraped the different Web sites, dice.com had 10,363 results for the search term
Data Science. In contrast, CyberCoders has 35 results for the same term. However, the
search term Data Scientist returned 70 posts on CyberCoders and 486 on Dice. For
a different search term, the query visualization returned 979 results on dice, and 113
on CyberCoders. CareerBuilder.com returns over 12,000 results for Data Science! What do
these numbers tell us about the number of jobs in this field? About the sites themselves?
For one, some sites focus on specific fields more than others, e.g., information technology
only, rather than all jobs, such as nursing, accounting, etc. Secondly, some sites match
queries quite liberally, e.g., returning a job post title Food Science Lab Technician
as a match for Data Science! What if we enclosed the query term in quotes, i.e., "Data
Science"?

The job postings we scraped are not a random sample. They are all of the recent posts
from these Web sites for the particular queries. Therefore, it is hard to say what larger
population they are drawn from and represent. We have to be careful with any statistical
inference we might make. For example, if we could compute the average salary for the posts
found under Data Scientist and similarly for Statisticians, could we use a t-test to see if
they are statistically different? Similarly, can we look at the counts of key words such as
Python, R, and Hadoop in job posts from two different sites and use a test to see if the
counts/proportions come from similar populations?

In short, there are lots of issues about making inferences from these data. However,
the data are very informative and we can explore and summarize them to learn about the
nature of different jobs, without using statistical tests.

Let’s look at which skills and technologies are important for different types of jobs
corresponding to our search queries. Of course, almost all of the jobs include the words
data, scientist, statistics, communication, experience, business, and so on. We’ll focus on
the technologies and programming languages, but these other terms are very important.
However, you should take the time to explore these.

http://monster.com
http://dice.com
http://careerbuilder.com

496 Case Studies in Data Science in R

While each of the Kaggle posts were structured very differently, we were able to extract
all the words for each post. We can look at the frequency of all the words, but of course
many are not that interesting. Instead, we’ll look for words such as R, Python, SAS, Hadoop,
SQL and so on. Figure 12.9 shows the frequencies of these selected words. We see that R,
Python and SQL are the most common. There are two important things to note. Firstly,
we have selected the terms based on our knowledge of what is important in Data Science.
This helps to compare the important terms. However, it is entirely possible that we have
omitted some that appear in many of the posts. We should carefully examine all of the 13
thousand words, or find a good way to identify new important words. Secondly, we should
be aware that Kaggle is a specific community. Its focus and members are different from the
general business community. Accordingly, the results for Kaggle may be quite different from
other job sites. Indeed, each site has a different focus and niche.

For CyberCoders postings, we were able to explicitly extract the set of skill keywords.
For the query Data Science, we get the count for each skill with

cyber.dsSkills = table(unlist(lapply(cyber.DataScientist,
‘[[‘, "skills")))

There are only 35 postings in this collection, and 97 different skills. We should merge this
with the postings for Data Scientist. This gives us 102 postings in total and 167 different
skills. There are 28 skills that occurred in 5 or more of these postings. We might display
the counts for the commonly occurring words via a dotplot as shown in Figure 12.10. We
create this with:

i = (names(cyber.dsSkills) == "Natural Language Processing")
if(any(i))

names(cyber.dsSkills)[i] = "NLP"
dotchart(sort(cyber.dsSkills[cyber.dsSkills > 4]),

main = "Skills from Data Science/Scientist on CyberCoders")

Note that we have changed the phrase Natural Language Processing to its common
abbreviation NLP in order to make the axis labels more appropriate for the plot.

Q.11 Check that no posting had any skill repeated twice or more.

Alternatively, we might draw a word cloud for the CyberCoders skills as in Figure 12.11.
We create this via the wordcloud [4] package for R and the commands:

library(wordcloud)
wordcloud(names(cyber.dsSkills), cyber.dsSkills)

Is this a more effective way to visualize this data than the dot plot? Does the frequency
correspond to the height of the letters or the area of the phrase? Is this another example of
using two dimensions to represent one and mislead the viewer to compare area in contrast
to height. (See [11].)

Q.12 Visualize the skills for Data Science job postings from other Web sites, e.g., dice.
com and monster.com. Are they similar across Web sites? If so, combine the words
across all posts and visualize them.

The salary is most readily available (and accurate) in the cybercoders and dice.com posts.
However, to extract the salary range for each job, we have to perform a some text manipu-
lation on each salary string.

http://dice.com
http://dice.com
http://monster.com
http://dice.com

Exploring Data Science Jobs with Web Scraping and Text Mining 497

mcmc
s−plus
hdfs
xml
git
rest
shell
solr
storm
weka
parallel
aws
scikit−learn
scipy
postgres
d3
numpy
pandas
github
cluster
map
mahout
mongodb
cassandra
algorithm
reduce
hbase
scala
unix
javascript
spark
ruby
stata
mysql
oracle
microsoft
tableau
pig
cloud
mapreduce
nosql
linux
amazon
perl
spss
c++
c
hive
excel
visualization
matlab
sas
java
hadoop
sql
python
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

Figure 12.9: Frequency of Selected Terms over all Kaggle Job Posts. This shows the number
of occurrences of each of the selected terms across all 842 job posts on Kaggle by January
2015.

498 Case Studies in Data Science in R

Data Modeling

Scala

SPSS

Statistical Modeling

Statistics

Large Data Sets

NoSQL

C++

Data Science

SAS

Predictive Modeling

Mapreduce

Hive

Matlab

Big Data

Java

SQL

Data Mining

R

Hadoop

Python

Machine Learning

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30 35 40

Figure 12.10: Dotplot for Frequency of Skill Phrases across CyberCoder.com Data Science
Job Posts. This shows the number of occurrences of different terms we selected across Data
Science job postings on this Web site.

http://cybercoder.com

Exploring Data Science Jobs with Web Scraping and Text Mining 499

Machine Learning
Python

Hadoop
R

Data Mining

SQL
Java

Big Data

Hive

Matlab

Mapreduce

Predictive Modeling

C++
Data Science

SAS

La
rg

e
D

at
a

S
et

s

NoSQL

D
at

a
M

od
el

in
g

S
ca

la

S
P

S
S

Statistical Modeling

S
ta

tis
tic

s Linux

NLP

Pig

Predictive Analytics

SPARK

Statistical Analysis
Algorithm Development

AWS

Business Intelligence

MySQL

Pattern Recognition

Programming

Figure 12.11: Word Cloud for Frequency of Skill Phrases Across CyberCoder.com Job Posts.
This is a different display of the counts of different words across posts on cybercoders.
com.

For CyberCoder posts, the salary is in the salary element for each post and is in the
form "Full-time $90k - $200k", for example. Let’s convert this to a minimum and
maximum. We’ll write a function to do this:

cy.processSalaries =
function(posts)
{

tmp = strsplit(gsub(".* \\$([0-9]+)k - \\$([0-9]+)k",
"\\1,\\2", sapply(posts, ‘[[‘, "salary")),

",")
vals = lapply(1:2, function(i)

1000*as.integer(sapply(tmp, ‘[‘, i)))

http://cybercoder.com
http://cybercoders.com
http://cybercoders.com

500 Case Studies in Data Science in R

ans = as.data.frame(vals)
names(ans) = c("low", "high")
ans

}

We can combine the different posts together and then call this with

dsPosts = c(cyber.DataScientist, cyber.DataScience)
sl = cy.processSalaries(dsPosts)

Some of these values were mapped to NA. We need to examine the original value for our
salary string in the posts corresponding to these NAs in order to adjust our function to be
able handle these values. We can find which posts were problematic with

which(is.na(sl$low))

[1] 10 15 19 22 26 28 34 40 58 89

and the original values with

sapply(dsPosts[is.na(sl$low)], ‘[[‘, "salary")

Each of these has the value "Full-time Compensation Unspecified", so NA seems
appropriate.

Now we can look at the distribution of the differences between the highs and lows within
the same post:

summary(rowMeans(sl))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0 113800 130000 130700 150000 225000 10

We also have salary information from dice.com posts. The salary information is in the
baseSalary element of each post. This is less structured than in the CyberCoder posts.
Accordingly, we’ll have to deal with more possible specifications to extract the actual values.
We first examine the different values

unique(unlist(sapply(dice.dsPosts, ‘[[‘, "baseSalary")))

and attempt to identify the different possibilities and patterns. There are numerous values
that provide no information, e.g., inquiry, Salary DOE (depends on experience), Expe-
rience Based, Market, competitive. We’ll map these to NA. There are many values
that give a range, like CyberCoders. For example, two are "120-150K" and "$90-110K".
We also have other values that are single values, e.g., "120000". Others mention stock
options, e.g, "80k-120k +Stock Opts". Other salaries are given as a minimum, e.g.,
"200,000 + Bonus", "$100,000+", "150k+ DOE". It is not obvious how we should
map these to both a low and high value. The value can be the low value, but there is no high
value. We might map this upper bound on the salary to NA, but we will have to determine
how we will use these values.

Some salaries are given as hourly rates, e.g., "60/hr on W2". We’ll ignore these and
map them to NA.

One strategy for mapping the strings to pairs of (low, high) values is to use a sequence
of regular expressions. We start with the first and use it to find matches and convert
those values into the form we want. For those values that were not matched by the first

http://dice.com

Exploring Data Science Jobs with Web Scraping and Text Mining 501

regular expression, we use the second regular expression. Generally, we apply the next
regular expression in the collection to the subset of values that were not matched by any of
the previous expressions. At the end, we hope that all values are matched by one regular
expression.

We can write a function to perform the conversion of the general salary strings and
then convert the results to a data frame of low and high values. The idea is that we have
numerous pairs of regular expressions that we will pass to gsub() on the remaining strings
that have not yet been converted. Each call to gsub() attempts to create new strings of the
form "low;high". It would take "$110,000 - $140,000" and transform it to "1¬
10,000;140,000". Similarly, it would take "$100,000+" and return "100,000;NA".
We define the collection of regular expressions pairs as a named character vector:

SalaryRegularExpressions =
c("^([0-9,]+)(\\.00)?(DOE)?$" = "\\1;\\1",

"^([0-9,]+)[Kk]$" = "\\1;\\1",
"^\\$?([0-9,]+)[Kk]\\+$" = "\\1;NA",
"^to \\$?([0-9,]+)[Kk]$" = "NA;\\1",
"\\$?([0-9,]+)[Kk]?(- |-)\\$?([0-9,]+)[Kk]?" = "\\1;\\3",
"\\$?([0-9,]+)[Kk]?(\\+DOE)? ?\\+ ?\

(Equity|Bonus|Stock|Stock Opts).*$" = "\\1;\\1",
"^\\$([0-9,]+)([Kk]|\\.00|\\+)?$" = "\\1;\\1",
"\\$?([0-9,]+)[Kk]? to \\$?([0-9,]+)[Kk]?.*" = "\\1;\\3",
"\\$?([0-9,]+)[Kk]?\\+?(DOE)?$" = "\\1;\\1",
"\\$?([0-9,]+)[Kk]?/ann.*" = "\\1;\\1",
"\\$?([0-9,]+)[Kk]?/ann.*" = "\\1;\\1",
"\\$?([0-9,]+)[Kk]? all in" = "NA;\\1")

Each element in this vector has a corresponding name. This name is used to match a salary
string. For the salary strings that this regular expression matches, we use the corresponding
regular expression element to transform those salary strings into the form low;high. These
regular expressions look quite complex and are certainly hard to read. Take the time to figure
out what each does. Consider some of the sample salary strings we discussed above.

We now define our function to convert all of the salaries to a data.frame containing
low and high values:

getSalaryRange =
function(values, asDataFrame = TRUE,

rx = SalaryRegularExpressions)
{

done = rep(FALSE, length(values))
ans = rep(NA, length(values))

for(i in seq(along = rx)) {
w = grepl(names(rx)[i], values[!done])
tmp = gsub(names(rx[i]), rx[i], values[!done][w])
ans[!done][w] = tmp
done = !is.na(ans)

}

ans = structure(gsub(",", "", ans), names = values)

502 Case Studies in Data Science in R

if(asDataFrame)
convertLowHighToDataframe(ans)

else
ans

}

Q.13 Why do we use a for loop in getSalaryRange() rather than sapply() or lapply()?

There are two helper functions used in getSalaryRange() above: convertLowHighTo-
Dataframe() and fixNum(). The former splits the resulting low;high strings and then
creates a data frame with 2 columns. It also converts values that are given in units of 1000
to their full amounts using fixNum(), e.g., 100K or 100, which should be 100000. We define
convertLowHighToDataframe() with

convertLowHighToDataframe =
function(ans)
{

ans = as.data.frame(do.call(rbind, strsplit(ans, ";")),
stringsAsFactors = FALSE)

names(ans) = c("low", "high")
ans[] = lapply(ans, fixNum)
ans

}

Q.14 Implement the fixNum() function. It takes a number as a salary value and determines
whether to multiply it by 1000 to put it on the proper scale. This is used to adjust salaries
that are reported as, e.g., $100K.

With these two functions in place, we can look at the dice.com salaries:

dice.salaries = getSalaryRange(unlist(sapply(dice.dsPosts,
‘[[‘, "baseSalary")))

summary(rowMeans(dice.salaries))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0 97500 120000 115300 147500 225000 497

Note that there are almost 500 NA values out of 632. However, there are 40 rows that have
one missing value, corresponding to the low or the high not being specified. We identify
these with

w = apply(dice.salaries, 1, function(x) sum(is.na(x))) == 1
avgSalary = rowMeans(dice.salaries)
avgSalary[w] = apply(dice.salaries[w,], 1,

function(x) x[!is.na(x)])
summary(avgSalary)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0 82500 117500 110800 140000 250000 457

http://dice.com

Exploring Data Science Jobs with Web Scraping and Text Mining 503

We see that including these shifts the distribution slightly to the left, but increases the
maximum!

There are many more aspects to explore. For example, we can look at the data ge-
ographically. How many jobs are there in different states? cities? How does salary vary
geographically? How do the necessary skill sets differ by salary? Is the set of skills chang-
ing over time? Compare the skill sets for different search queries – data analyst, machine
learning, statistician, . . .

12.9 Note on Web Scraping
Scraping a single page is quite easy. In many cases, helper functions such as read-
HTMLTable() will extract the data we want. If the data of interest is in a less structured
form, we just have to find the particular rendering to identify the data we want and then
we can extract them with the corresponding XPath queries. If there are two similar pages,
we may have to adapt, generalize, or restrict the XPath queries. However, if we want to
scrape many “similar” pages, we are moving from one-off code to actual software. This is
why it is significantly more involved.

Before you scrape data from a Web site, you should first ask two questions, at least.
The first is whether there is an easier and more structured way to obtain the data. Most
sites have the data we want in some form of a database and they generate the HTML pages
from this. Sites are increasingly creating Web services and APIs (Application Programming
Interfaces) for accessing data. Instead of mimicking a browser and scraping HTML content,
we can use HTTP to send our query request more directly and get the result as JSON or
XML. This is much more reliable and easier to process in robust ways.

Some sites provide the data of interest in “bulk” form and they prefer people to use that
rather than making many requests for small pages. If the site doesn’t appear to offer the
data in bulk form, you can email them and ask if there is a way to access the data. For
many companies, the data are the primary assets and also often confidential and so they
won’t want to share them. However, in other cases, people may be willing to share the data
in a much more structured format that will avoid many of the headaches of scraping Web
pages.

If you do have to scrape the pages, the second question you need to ask is whether you
are legally allowed to do this. Most sites have an explicit terms of service (ToS) that you
agree to when you use their site. If this states that you are not to programmatically access
the site, then you are not permitted to scrape the pages. If you do, the Web site can easily
detect this and can block your IP address or even your entire local network. Other sites will
rate-limit you and you are not to exceed that many requests in a fixed period of time.

12.10 Exercises
Q.15 Display all of the jobs from different sites geographically on a Google Earth or Google

Maps display. Group the points to allow them to be toggled on and off. For example,
group them by the Web sites on which they were found, or by general job category, or
by salary range. See Chapter 11 for information about Google Earth and KML.

504 Case Studies in Data Science in R

Q.16 Compare job postings for different keywords or job titles and compare their charac-
teristics in various dimensions.

Q.17 Find other job sites and scrape data from those. How do these compare with the sites
we have looked at?

Q.18 Compare the salaries for Data Science postings for the two sites Dice and Cyber-
Coders.

Q.19 Compare the data you scraped now to the data we obtained in 2013 (available on the
Web site). How have the salaries and skills changed?

Q.20 Determine the date for each job posting and see how the demand for different tech-
nologies has changed over time.

Q.21 Use pairs of words, i.e., 2-grams, rather than single words to analyze the posts. What
are common pairs of words?

Q.22 Use Natural Language Processing to analyze the words in sentences to identify the
metadata about the jobs from the free-form text.

Q.23 We assumed the set of stop words was available. There are many different sets of stop
words and we can retrieve others. Extract the stop words from http://www.ranks.
nl/resources/stopwords.html. Additionally, there is a collection of stop words
for different languages in a zip archive at http://stop-words.googlecode.com/
files/stop-words-collection-2011.11.21.zip. Use the RCurl and Rcom-
pression packages to retrieve and extract the files for your language and create the
set of stop words from these.

Bibliography
[1] Apache Software Foundation. Apache Lucene: Open-source search software. http:

//lucene.apache.org, 2011.

[2] Shay Banon. Elasticsearch: An open source, distributed, RESTful search engine.
http://www.elasticsearch.org, 2011.

[3] Alex Couture-Beil. rjson: Converts R object into JSON and vice-versa. http:
//cran.r-project.org/web/packages/rjson/, 2011. R package version 0.2.6.

[4] Ian Fellows. wordcloud: Pretty word clouds. http://cran.r-project.org/
web/packages/wordcloud, 2014. R package version 2.5.

[5] Deborah Nolan and Duncan Temple Lang. XML and Web Technologies for Data Sci-
ences with R. Springer, New York, 2013.

[6] R Development Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria, 2012. http://www.r-project.org.

[7] John Simpson. XPath and XPointer: Locating Content in XML Documents. O’Reilly
Media, Inc., Sebastopol, CA, 2002.

http://www.ranks.nl/resources/stopwords.html
http://www.ranks.nl/resources/stopwords.html
http://stop-words.googlecode.com/files/stop-words-collection-2011.11.21.zip
http://stop-words.googlecode.com/files/stop-words-collection-2011.11.21.zip
http://lucene.apache.org
http://lucene.apache.org
http://www.elasticsearch.org
http://cran.r-project.org/web/packages/rjson/
http://cran.r-project.org/web/packages/rjson/
http://cran.r-project.org/web/packages/wordcloud
http://cran.r-project.org/web/packages/wordcloud
http://www.r-project.org

Exploring Data Science Jobs with Web Scraping and Text Mining 505

[8] Duncan Temple Lang. RJSONIO: Serialize R objects to JSON (JavaScript Object
Notation). http://www.omegahat.org/RJSONIO, 2011. R package version 0.95.

[9] Duncan Temple Lang. XML: Tools for parsing and generating XML within R and
S-PLUS. http://www.omegahat.org/RSXML, 2011. R package version 3.4.

[10] Duncan Temple Lang. RCurl: General network (HTTP, FTP, etc.) client interface for
R. http://www.omegahat.org/RCurl, 2012. R package version 1.95-3.

[11] Edward Tufte. The Visual Display of Quantitative Information. Graphics Press, Con-
necticut, 1983.

http://www.omegahat.org/RJSONIO
http://www.omegahat.org/RSXML
http://www.omegahat.org/RCurl

This page intentionally left blankThis page intentionally left blank

Colophon

The content of this book was authored using DocBook, an XML vocabulary for technical
documents. We introduced numerous extensions to the vocabulary for R code and plots,
other languages and concepts such as SQL, C, XPath, and the UNIX shell. The content
was edited primarily using the Emacs text editor, using our extended version of nxml-mode
(which is available on the book’s Web site http://rdatasciencecases.org).

The typesetting for the book was performed by transforming the XML to LATEX using
xsltproc. We used the dblatex XSL style sheets that build on top of the docbook-xsl dis-
tribution (version 1.74-0). Again, we implemented extensions to these XSL style sheets to
process our extensions to the DocBook vocabulary and also to customize the appearance
to conform with the Chapman & Hall format. The resulting LATEX markup is processed by
pdflatex to create the final PDF file, using the Chapman & Hall krants.cls LATEX class file.

The authoring tools for Emacs and the XSL stylesheets are available on the book’s
Web site and also in the XDynDocs package available via Github and the Omegahat Web
site (http://www.omegahat.org/XDynDocs). Similarly, tools for programmatically
querying, validating, and updating the document are available in the XDocTools package
(https://github.com/omegahat/XDocTools). Code from the book and supplemen-
tary materials are available at http://rdatasciencecases.org

515

http://rdatasciencecases.org
http://www.omegahat.org/XDynDocs
https://github.com/omegahat/XDocTools
http://rdatasciencecases.org

	Cover
	Dedication
	Contents
	Preface
	Acknowledgments
	Authors
	Co-Authors
	Part I: Data Manipulation and Modeling
	1: Predicting Location via Indoor Positioning Systems
	2: Modeling Runners’ Times in the Cherry Blossom Race
	3: Using Statistics to Identify Spam
	4: Processing Robot and Sensor Log Files: Seeking a Circular Target
	5: Strategies for Analyzing a 12-Gigabyte Data Set: Airline Flight Delays

	Part II: Simulation Studies
	6: Pairs Trading
	7: Simulation Study of a Branching Process
	8: A Self-Organizing Dynamic System with a Phase Transition
	9: Simulating Blackjack

	Part III: Data and Web Technologies
	10: Baseball: Exploring Data in a Relational Database
	11: CIA Factbook Mashup
	12: Exploring Data Science Jobs with Web Scraping and Text Mining

	Colophon

